process.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/leds.h>
  33. #include <linux/reboot.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/idmap.h>
  36. #include <asm/processor.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/system_misc.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/tls.h>
  42. #include <asm/vdso.h>
  43. #ifdef CONFIG_CC_STACKPROTECTOR
  44. #include <linux/stackprotector.h>
  45. unsigned long __stack_chk_guard __read_mostly;
  46. EXPORT_SYMBOL(__stack_chk_guard);
  47. #endif
  48. static const char *processor_modes[] __maybe_unused = {
  49. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  50. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  51. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
  52. "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  53. };
  54. static const char *isa_modes[] __maybe_unused = {
  55. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  56. };
  57. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  58. typedef void (*phys_reset_t)(unsigned long);
  59. /*
  60. * A temporary stack to use for CPU reset. This is static so that we
  61. * don't clobber it with the identity mapping. When running with this
  62. * stack, any references to the current task *will not work* so you
  63. * should really do as little as possible before jumping to your reset
  64. * code.
  65. */
  66. static u64 soft_restart_stack[16];
  67. static void __soft_restart(void *addr)
  68. {
  69. phys_reset_t phys_reset;
  70. /* Take out a flat memory mapping. */
  71. setup_mm_for_reboot();
  72. /* Clean and invalidate caches */
  73. flush_cache_all();
  74. /* Turn off caching */
  75. cpu_proc_fin();
  76. /* Push out any further dirty data, and ensure cache is empty */
  77. flush_cache_all();
  78. /* Switch to the identity mapping. */
  79. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  80. phys_reset((unsigned long)addr);
  81. /* Should never get here. */
  82. BUG();
  83. }
  84. void soft_restart(unsigned long addr)
  85. {
  86. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  87. /* Disable interrupts first */
  88. raw_local_irq_disable();
  89. local_fiq_disable();
  90. /* Disable the L2 if we're the last man standing. */
  91. if (num_online_cpus() == 1)
  92. outer_disable();
  93. /* Change to the new stack and continue with the reset. */
  94. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  95. /* Should never get here. */
  96. BUG();
  97. }
  98. /*
  99. * Function pointers to optional machine specific functions
  100. */
  101. void (*pm_power_off)(void);
  102. EXPORT_SYMBOL(pm_power_off);
  103. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  104. /*
  105. * This is our default idle handler.
  106. */
  107. void (*arm_pm_idle)(void);
  108. /*
  109. * Called from the core idle loop.
  110. */
  111. void arch_cpu_idle(void)
  112. {
  113. if (arm_pm_idle)
  114. arm_pm_idle();
  115. else
  116. cpu_do_idle();
  117. local_irq_enable();
  118. }
  119. void arch_cpu_idle_prepare(void)
  120. {
  121. local_fiq_enable();
  122. }
  123. void arch_cpu_idle_enter(void)
  124. {
  125. ledtrig_cpu(CPU_LED_IDLE_START);
  126. #ifdef CONFIG_PL310_ERRATA_769419
  127. wmb();
  128. #endif
  129. }
  130. void arch_cpu_idle_exit(void)
  131. {
  132. ledtrig_cpu(CPU_LED_IDLE_END);
  133. }
  134. #ifdef CONFIG_HOTPLUG_CPU
  135. void arch_cpu_idle_dead(void)
  136. {
  137. cpu_die();
  138. }
  139. #endif
  140. /*
  141. * Called by kexec, immediately prior to machine_kexec().
  142. *
  143. * This must completely disable all secondary CPUs; simply causing those CPUs
  144. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  145. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  146. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  147. * functionality embodied in disable_nonboot_cpus() to achieve this.
  148. */
  149. void machine_shutdown(void)
  150. {
  151. disable_nonboot_cpus();
  152. }
  153. /*
  154. * Halting simply requires that the secondary CPUs stop performing any
  155. * activity (executing tasks, handling interrupts). smp_send_stop()
  156. * achieves this.
  157. */
  158. void machine_halt(void)
  159. {
  160. local_irq_disable();
  161. smp_send_stop();
  162. local_irq_disable();
  163. while (1);
  164. }
  165. /*
  166. * Power-off simply requires that the secondary CPUs stop performing any
  167. * activity (executing tasks, handling interrupts). smp_send_stop()
  168. * achieves this. When the system power is turned off, it will take all CPUs
  169. * with it.
  170. */
  171. void machine_power_off(void)
  172. {
  173. local_irq_disable();
  174. smp_send_stop();
  175. if (pm_power_off)
  176. pm_power_off();
  177. }
  178. /*
  179. * Restart requires that the secondary CPUs stop performing any activity
  180. * while the primary CPU resets the system. Systems with a single CPU can
  181. * use soft_restart() as their machine descriptor's .restart hook, since that
  182. * will cause the only available CPU to reset. Systems with multiple CPUs must
  183. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  184. * This is required so that any code running after reset on the primary CPU
  185. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  186. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  187. * to use. Implementing such co-ordination would be essentially impossible.
  188. */
  189. void machine_restart(char *cmd)
  190. {
  191. local_irq_disable();
  192. smp_send_stop();
  193. if (arm_pm_restart)
  194. arm_pm_restart(reboot_mode, cmd);
  195. else
  196. do_kernel_restart(cmd);
  197. /* Give a grace period for failure to restart of 1s */
  198. mdelay(1000);
  199. /* Whoops - the platform was unable to reboot. Tell the user! */
  200. printk("Reboot failed -- System halted\n");
  201. local_irq_disable();
  202. while (1);
  203. }
  204. void __show_regs(struct pt_regs *regs)
  205. {
  206. unsigned long flags;
  207. char buf[64];
  208. show_regs_print_info(KERN_DEFAULT);
  209. print_symbol("PC is at %s\n", instruction_pointer(regs));
  210. print_symbol("LR is at %s\n", regs->ARM_lr);
  211. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  212. "sp : %08lx ip : %08lx fp : %08lx\n",
  213. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  214. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  215. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  216. regs->ARM_r10, regs->ARM_r9,
  217. regs->ARM_r8);
  218. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  219. regs->ARM_r7, regs->ARM_r6,
  220. regs->ARM_r5, regs->ARM_r4);
  221. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  222. regs->ARM_r3, regs->ARM_r2,
  223. regs->ARM_r1, regs->ARM_r0);
  224. flags = regs->ARM_cpsr;
  225. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  226. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  227. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  228. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  229. buf[4] = '\0';
  230. #ifndef CONFIG_CPU_V7M
  231. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  232. buf, interrupts_enabled(regs) ? "n" : "ff",
  233. fast_interrupts_enabled(regs) ? "n" : "ff",
  234. processor_modes[processor_mode(regs)],
  235. isa_modes[isa_mode(regs)],
  236. get_fs() == get_ds() ? "kernel" : "user");
  237. #else
  238. printk("xPSR: %08lx\n", regs->ARM_cpsr);
  239. #endif
  240. #ifdef CONFIG_CPU_CP15
  241. {
  242. unsigned int ctrl;
  243. buf[0] = '\0';
  244. #ifdef CONFIG_CPU_CP15_MMU
  245. {
  246. unsigned int transbase, dac;
  247. asm("mrc p15, 0, %0, c2, c0\n\t"
  248. "mrc p15, 0, %1, c3, c0\n"
  249. : "=r" (transbase), "=r" (dac));
  250. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  251. transbase, dac);
  252. }
  253. #endif
  254. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  255. printk("Control: %08x%s\n", ctrl, buf);
  256. }
  257. #endif
  258. }
  259. void show_regs(struct pt_regs * regs)
  260. {
  261. __show_regs(regs);
  262. dump_stack();
  263. }
  264. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  265. EXPORT_SYMBOL_GPL(thread_notify_head);
  266. /*
  267. * Free current thread data structures etc..
  268. */
  269. void exit_thread(void)
  270. {
  271. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  272. }
  273. void flush_thread(void)
  274. {
  275. struct thread_info *thread = current_thread_info();
  276. struct task_struct *tsk = current;
  277. flush_ptrace_hw_breakpoint(tsk);
  278. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  279. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  280. memset(&thread->fpstate, 0, sizeof(union fp_state));
  281. flush_tls();
  282. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  283. }
  284. void release_thread(struct task_struct *dead_task)
  285. {
  286. }
  287. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  288. int
  289. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  290. unsigned long stk_sz, struct task_struct *p)
  291. {
  292. struct thread_info *thread = task_thread_info(p);
  293. struct pt_regs *childregs = task_pt_regs(p);
  294. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  295. if (likely(!(p->flags & PF_KTHREAD))) {
  296. *childregs = *current_pt_regs();
  297. childregs->ARM_r0 = 0;
  298. if (stack_start)
  299. childregs->ARM_sp = stack_start;
  300. } else {
  301. memset(childregs, 0, sizeof(struct pt_regs));
  302. thread->cpu_context.r4 = stk_sz;
  303. thread->cpu_context.r5 = stack_start;
  304. childregs->ARM_cpsr = SVC_MODE;
  305. }
  306. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  307. thread->cpu_context.sp = (unsigned long)childregs;
  308. clear_ptrace_hw_breakpoint(p);
  309. if (clone_flags & CLONE_SETTLS)
  310. thread->tp_value[0] = childregs->ARM_r3;
  311. thread->tp_value[1] = get_tpuser();
  312. thread_notify(THREAD_NOTIFY_COPY, thread);
  313. return 0;
  314. }
  315. /*
  316. * Fill in the task's elfregs structure for a core dump.
  317. */
  318. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  319. {
  320. elf_core_copy_regs(elfregs, task_pt_regs(t));
  321. return 1;
  322. }
  323. /*
  324. * fill in the fpe structure for a core dump...
  325. */
  326. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  327. {
  328. struct thread_info *thread = current_thread_info();
  329. int used_math = thread->used_cp[1] | thread->used_cp[2];
  330. if (used_math)
  331. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  332. return used_math != 0;
  333. }
  334. EXPORT_SYMBOL(dump_fpu);
  335. unsigned long get_wchan(struct task_struct *p)
  336. {
  337. struct stackframe frame;
  338. unsigned long stack_page;
  339. int count = 0;
  340. if (!p || p == current || p->state == TASK_RUNNING)
  341. return 0;
  342. frame.fp = thread_saved_fp(p);
  343. frame.sp = thread_saved_sp(p);
  344. frame.lr = 0; /* recovered from the stack */
  345. frame.pc = thread_saved_pc(p);
  346. stack_page = (unsigned long)task_stack_page(p);
  347. do {
  348. if (frame.sp < stack_page ||
  349. frame.sp >= stack_page + THREAD_SIZE ||
  350. unwind_frame(&frame) < 0)
  351. return 0;
  352. if (!in_sched_functions(frame.pc))
  353. return frame.pc;
  354. } while (count ++ < 16);
  355. return 0;
  356. }
  357. unsigned long arch_randomize_brk(struct mm_struct *mm)
  358. {
  359. unsigned long range_end = mm->brk + 0x02000000;
  360. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  361. }
  362. #ifdef CONFIG_MMU
  363. #ifdef CONFIG_KUSER_HELPERS
  364. /*
  365. * The vectors page is always readable from user space for the
  366. * atomic helpers. Insert it into the gate_vma so that it is visible
  367. * through ptrace and /proc/<pid>/mem.
  368. */
  369. static struct vm_area_struct gate_vma = {
  370. .vm_start = 0xffff0000,
  371. .vm_end = 0xffff0000 + PAGE_SIZE,
  372. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  373. };
  374. static int __init gate_vma_init(void)
  375. {
  376. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  377. return 0;
  378. }
  379. arch_initcall(gate_vma_init);
  380. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  381. {
  382. return &gate_vma;
  383. }
  384. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  385. {
  386. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  387. }
  388. int in_gate_area_no_mm(unsigned long addr)
  389. {
  390. return in_gate_area(NULL, addr);
  391. }
  392. #define is_gate_vma(vma) ((vma) == &gate_vma)
  393. #else
  394. #define is_gate_vma(vma) 0
  395. #endif
  396. const char *arch_vma_name(struct vm_area_struct *vma)
  397. {
  398. return is_gate_vma(vma) ? "[vectors]" : NULL;
  399. }
  400. /* If possible, provide a placement hint at a random offset from the
  401. * stack for the sigpage and vdso pages.
  402. */
  403. static unsigned long sigpage_addr(const struct mm_struct *mm,
  404. unsigned int npages)
  405. {
  406. unsigned long offset;
  407. unsigned long first;
  408. unsigned long last;
  409. unsigned long addr;
  410. unsigned int slots;
  411. first = PAGE_ALIGN(mm->start_stack);
  412. last = TASK_SIZE - (npages << PAGE_SHIFT);
  413. /* No room after stack? */
  414. if (first > last)
  415. return 0;
  416. /* Just enough room? */
  417. if (first == last)
  418. return first;
  419. slots = ((last - first) >> PAGE_SHIFT) + 1;
  420. offset = get_random_int() % slots;
  421. addr = first + (offset << PAGE_SHIFT);
  422. return addr;
  423. }
  424. static struct page *signal_page;
  425. extern struct page *get_signal_page(void);
  426. static const struct vm_special_mapping sigpage_mapping = {
  427. .name = "[sigpage]",
  428. .pages = &signal_page,
  429. };
  430. int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
  431. {
  432. struct mm_struct *mm = current->mm;
  433. struct vm_area_struct *vma;
  434. unsigned long npages;
  435. unsigned long addr;
  436. unsigned long hint;
  437. int ret = 0;
  438. if (!signal_page)
  439. signal_page = get_signal_page();
  440. if (!signal_page)
  441. return -ENOMEM;
  442. npages = 1; /* for sigpage */
  443. npages += vdso_total_pages;
  444. down_write(&mm->mmap_sem);
  445. hint = sigpage_addr(mm, npages);
  446. addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
  447. if (IS_ERR_VALUE(addr)) {
  448. ret = addr;
  449. goto up_fail;
  450. }
  451. vma = _install_special_mapping(mm, addr, PAGE_SIZE,
  452. VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
  453. &sigpage_mapping);
  454. if (IS_ERR(vma)) {
  455. ret = PTR_ERR(vma);
  456. goto up_fail;
  457. }
  458. mm->context.sigpage = addr;
  459. /* Unlike the sigpage, failure to install the vdso is unlikely
  460. * to be fatal to the process, so no error check needed
  461. * here.
  462. */
  463. arm_install_vdso(mm, addr + PAGE_SIZE);
  464. up_fail:
  465. up_write(&mm->mmap_sem);
  466. return ret;
  467. }
  468. #endif