ctree.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  22. *root, struct btrfs_path *path, int level);
  23. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_key *ins_key,
  25. struct btrfs_path *path, int data_size);
  26. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct buffer_head *dst, struct buffer_head
  28. *src);
  29. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  30. btrfs_root *root, struct buffer_head *dst_buf,
  31. struct buffer_head *src_buf);
  32. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  33. struct btrfs_path *path, int level, int slot);
  34. inline void btrfs_init_path(struct btrfs_path *p)
  35. {
  36. memset(p, 0, sizeof(*p));
  37. }
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. btrfs_init_path(path);
  44. return path;
  45. }
  46. void btrfs_free_path(struct btrfs_path *p)
  47. {
  48. btrfs_release_path(NULL, p);
  49. kmem_cache_free(btrfs_path_cachep, p);
  50. }
  51. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (!p->nodes[i])
  56. break;
  57. btrfs_block_release(root, p->nodes[i]);
  58. }
  59. memset(p, 0, sizeof(*p));
  60. }
  61. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  62. *root, struct buffer_head *buf, struct buffer_head
  63. *parent, int parent_slot, struct buffer_head
  64. **cow_ret)
  65. {
  66. struct buffer_head *cow;
  67. struct btrfs_node *cow_node;
  68. int ret;
  69. WARN_ON(!buffer_uptodate(buf));
  70. if (trans->transaction != root->fs_info->running_transaction) {
  71. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  72. root->fs_info->running_transaction->transid);
  73. WARN_ON(1);
  74. }
  75. if (trans->transid != root->fs_info->generation) {
  76. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  77. root->fs_info->generation);
  78. WARN_ON(1);
  79. }
  80. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  81. trans->transid) {
  82. *cow_ret = buf;
  83. return 0;
  84. }
  85. cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
  86. if (IS_ERR(cow))
  87. return PTR_ERR(cow);
  88. cow_node = btrfs_buffer_node(cow);
  89. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  90. WARN_ON(1);
  91. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  92. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  93. btrfs_set_header_generation(&cow_node->header, trans->transid);
  94. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  95. ret = btrfs_inc_ref(trans, root, buf);
  96. if (ret)
  97. return ret;
  98. if (buf == root->node) {
  99. root->node = cow;
  100. get_bh(cow);
  101. if (buf != root->commit_root) {
  102. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  103. }
  104. btrfs_block_release(root, buf);
  105. } else {
  106. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  107. bh_blocknr(cow));
  108. btrfs_mark_buffer_dirty(parent);
  109. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  110. }
  111. btrfs_block_release(root, buf);
  112. btrfs_mark_buffer_dirty(cow);
  113. *cow_ret = cow;
  114. return 0;
  115. }
  116. /*
  117. * The leaf data grows from end-to-front in the node.
  118. * this returns the address of the start of the last item,
  119. * which is the stop of the leaf data stack
  120. */
  121. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  122. struct btrfs_leaf *leaf)
  123. {
  124. u32 nr = btrfs_header_nritems(&leaf->header);
  125. if (nr == 0)
  126. return BTRFS_LEAF_DATA_SIZE(root);
  127. return btrfs_item_offset(leaf->items + nr - 1);
  128. }
  129. /*
  130. * compare two keys in a memcmp fashion
  131. */
  132. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  133. {
  134. struct btrfs_key k1;
  135. btrfs_disk_key_to_cpu(&k1, disk);
  136. if (k1.objectid > k2->objectid)
  137. return 1;
  138. if (k1.objectid < k2->objectid)
  139. return -1;
  140. if (k1.flags > k2->flags)
  141. return 1;
  142. if (k1.flags < k2->flags)
  143. return -1;
  144. if (k1.offset > k2->offset)
  145. return 1;
  146. if (k1.offset < k2->offset)
  147. return -1;
  148. return 0;
  149. }
  150. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  151. int level)
  152. {
  153. struct btrfs_node *parent = NULL;
  154. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  155. int parent_slot;
  156. int slot;
  157. struct btrfs_key cpukey;
  158. u32 nritems = btrfs_header_nritems(&node->header);
  159. if (path->nodes[level + 1])
  160. parent = btrfs_buffer_node(path->nodes[level + 1]);
  161. parent_slot = path->slots[level + 1];
  162. slot = path->slots[level];
  163. BUG_ON(nritems == 0);
  164. if (parent) {
  165. struct btrfs_disk_key *parent_key;
  166. parent_key = &parent->ptrs[parent_slot].key;
  167. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  168. sizeof(struct btrfs_disk_key)));
  169. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  170. btrfs_header_blocknr(&node->header));
  171. }
  172. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  173. if (slot != 0) {
  174. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  175. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  176. }
  177. if (slot < nritems - 1) {
  178. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  179. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  180. }
  181. return 0;
  182. }
  183. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  184. int level)
  185. {
  186. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  187. struct btrfs_node *parent = NULL;
  188. int parent_slot;
  189. int slot = path->slots[0];
  190. struct btrfs_key cpukey;
  191. u32 nritems = btrfs_header_nritems(&leaf->header);
  192. if (path->nodes[level + 1])
  193. parent = btrfs_buffer_node(path->nodes[level + 1]);
  194. parent_slot = path->slots[level + 1];
  195. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  196. if (nritems == 0)
  197. return 0;
  198. if (parent) {
  199. struct btrfs_disk_key *parent_key;
  200. parent_key = &parent->ptrs[parent_slot].key;
  201. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  202. sizeof(struct btrfs_disk_key)));
  203. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  204. btrfs_header_blocknr(&leaf->header));
  205. }
  206. if (slot != 0) {
  207. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  208. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  209. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  210. btrfs_item_end(leaf->items + slot));
  211. }
  212. if (slot < nritems - 1) {
  213. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  214. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  215. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  216. btrfs_item_end(leaf->items + slot + 1));
  217. }
  218. BUG_ON(btrfs_item_offset(leaf->items) +
  219. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  220. return 0;
  221. }
  222. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  223. int level)
  224. {
  225. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  226. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  227. sizeof(node->header.fsid)))
  228. BUG();
  229. if (level == 0)
  230. return check_leaf(root, path, level);
  231. return check_node(root, path, level);
  232. }
  233. /*
  234. * search for key in the array p. items p are item_size apart
  235. * and there are 'max' items in p
  236. * the slot in the array is returned via slot, and it points to
  237. * the place where you would insert key if it is not found in
  238. * the array.
  239. *
  240. * slot may point to max if the key is bigger than all of the keys
  241. */
  242. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  243. int max, int *slot)
  244. {
  245. int low = 0;
  246. int high = max;
  247. int mid;
  248. int ret;
  249. struct btrfs_disk_key *tmp;
  250. while(low < high) {
  251. mid = (low + high) / 2;
  252. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  253. ret = comp_keys(tmp, key);
  254. if (ret < 0)
  255. low = mid + 1;
  256. else if (ret > 0)
  257. high = mid;
  258. else {
  259. *slot = mid;
  260. return 0;
  261. }
  262. }
  263. *slot = low;
  264. return 1;
  265. }
  266. /*
  267. * simple bin_search frontend that does the right thing for
  268. * leaves vs nodes
  269. */
  270. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  271. {
  272. if (btrfs_is_leaf(c)) {
  273. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  274. return generic_bin_search((void *)l->items,
  275. sizeof(struct btrfs_item),
  276. key, btrfs_header_nritems(&c->header),
  277. slot);
  278. } else {
  279. return generic_bin_search((void *)c->ptrs,
  280. sizeof(struct btrfs_key_ptr),
  281. key, btrfs_header_nritems(&c->header),
  282. slot);
  283. }
  284. return -1;
  285. }
  286. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  287. struct buffer_head *parent_buf,
  288. int slot)
  289. {
  290. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  291. if (slot < 0)
  292. return NULL;
  293. if (slot >= btrfs_header_nritems(&node->header))
  294. return NULL;
  295. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  296. }
  297. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  298. *root, struct btrfs_path *path, int level)
  299. {
  300. struct buffer_head *right_buf;
  301. struct buffer_head *mid_buf;
  302. struct buffer_head *left_buf;
  303. struct buffer_head *parent_buf = NULL;
  304. struct btrfs_node *right = NULL;
  305. struct btrfs_node *mid;
  306. struct btrfs_node *left = NULL;
  307. struct btrfs_node *parent = NULL;
  308. int ret = 0;
  309. int wret;
  310. int pslot;
  311. int orig_slot = path->slots[level];
  312. int err_on_enospc = 0;
  313. u64 orig_ptr;
  314. if (level == 0)
  315. return 0;
  316. mid_buf = path->nodes[level];
  317. mid = btrfs_buffer_node(mid_buf);
  318. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  319. if (level < BTRFS_MAX_LEVEL - 1)
  320. parent_buf = path->nodes[level + 1];
  321. pslot = path->slots[level + 1];
  322. /*
  323. * deal with the case where there is only one pointer in the root
  324. * by promoting the node below to a root
  325. */
  326. if (!parent_buf) {
  327. struct buffer_head *child;
  328. u64 blocknr = bh_blocknr(mid_buf);
  329. if (btrfs_header_nritems(&mid->header) != 1)
  330. return 0;
  331. /* promote the child to a root */
  332. child = read_node_slot(root, mid_buf, 0);
  333. BUG_ON(!child);
  334. root->node = child;
  335. path->nodes[level] = NULL;
  336. clean_tree_block(trans, root, mid_buf);
  337. wait_on_buffer(mid_buf);
  338. /* once for the path */
  339. btrfs_block_release(root, mid_buf);
  340. /* once for the root ptr */
  341. btrfs_block_release(root, mid_buf);
  342. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  343. }
  344. parent = btrfs_buffer_node(parent_buf);
  345. if (btrfs_header_nritems(&mid->header) >
  346. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  347. return 0;
  348. if (btrfs_header_nritems(&mid->header) < 2)
  349. err_on_enospc = 1;
  350. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  351. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  352. /* first, try to make some room in the middle buffer */
  353. if (left_buf) {
  354. wret = btrfs_cow_block(trans, root, left_buf,
  355. parent_buf, pslot - 1, &left_buf);
  356. if (wret) {
  357. ret = wret;
  358. goto enospc;
  359. }
  360. left = btrfs_buffer_node(left_buf);
  361. orig_slot += btrfs_header_nritems(&left->header);
  362. wret = push_node_left(trans, root, left_buf, mid_buf);
  363. if (wret < 0)
  364. ret = wret;
  365. if (btrfs_header_nritems(&mid->header) < 2)
  366. err_on_enospc = 1;
  367. }
  368. /*
  369. * then try to empty the right most buffer into the middle
  370. */
  371. if (right_buf) {
  372. wret = btrfs_cow_block(trans, root, right_buf,
  373. parent_buf, pslot + 1, &right_buf);
  374. if (wret) {
  375. ret = wret;
  376. goto enospc;
  377. }
  378. right = btrfs_buffer_node(right_buf);
  379. wret = push_node_left(trans, root, mid_buf, right_buf);
  380. if (wret < 0 && wret != -ENOSPC)
  381. ret = wret;
  382. if (btrfs_header_nritems(&right->header) == 0) {
  383. u64 blocknr = bh_blocknr(right_buf);
  384. clean_tree_block(trans, root, right_buf);
  385. wait_on_buffer(right_buf);
  386. btrfs_block_release(root, right_buf);
  387. right_buf = NULL;
  388. right = NULL;
  389. wret = del_ptr(trans, root, path, level + 1, pslot +
  390. 1);
  391. if (wret)
  392. ret = wret;
  393. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  394. if (wret)
  395. ret = wret;
  396. } else {
  397. btrfs_memcpy(root, parent,
  398. &parent->ptrs[pslot + 1].key,
  399. &right->ptrs[0].key,
  400. sizeof(struct btrfs_disk_key));
  401. btrfs_mark_buffer_dirty(parent_buf);
  402. }
  403. }
  404. if (btrfs_header_nritems(&mid->header) == 1) {
  405. /*
  406. * we're not allowed to leave a node with one item in the
  407. * tree during a delete. A deletion from lower in the tree
  408. * could try to delete the only pointer in this node.
  409. * So, pull some keys from the left.
  410. * There has to be a left pointer at this point because
  411. * otherwise we would have pulled some pointers from the
  412. * right
  413. */
  414. BUG_ON(!left_buf);
  415. wret = balance_node_right(trans, root, mid_buf, left_buf);
  416. if (wret < 0) {
  417. ret = wret;
  418. goto enospc;
  419. }
  420. BUG_ON(wret == 1);
  421. }
  422. if (btrfs_header_nritems(&mid->header) == 0) {
  423. /* we've managed to empty the middle node, drop it */
  424. u64 blocknr = bh_blocknr(mid_buf);
  425. clean_tree_block(trans, root, mid_buf);
  426. wait_on_buffer(mid_buf);
  427. btrfs_block_release(root, mid_buf);
  428. mid_buf = NULL;
  429. mid = NULL;
  430. wret = del_ptr(trans, root, path, level + 1, pslot);
  431. if (wret)
  432. ret = wret;
  433. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  434. if (wret)
  435. ret = wret;
  436. } else {
  437. /* update the parent key to reflect our changes */
  438. btrfs_memcpy(root, parent,
  439. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  440. sizeof(struct btrfs_disk_key));
  441. btrfs_mark_buffer_dirty(parent_buf);
  442. }
  443. /* update the path */
  444. if (left_buf) {
  445. if (btrfs_header_nritems(&left->header) > orig_slot) {
  446. get_bh(left_buf);
  447. path->nodes[level] = left_buf;
  448. path->slots[level + 1] -= 1;
  449. path->slots[level] = orig_slot;
  450. if (mid_buf)
  451. btrfs_block_release(root, mid_buf);
  452. } else {
  453. orig_slot -= btrfs_header_nritems(&left->header);
  454. path->slots[level] = orig_slot;
  455. }
  456. }
  457. /* double check we haven't messed things up */
  458. check_block(root, path, level);
  459. if (orig_ptr !=
  460. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  461. path->slots[level]))
  462. BUG();
  463. enospc:
  464. if (right_buf)
  465. btrfs_block_release(root, right_buf);
  466. if (left_buf)
  467. btrfs_block_release(root, left_buf);
  468. return ret;
  469. }
  470. /* returns zero if the push worked, non-zero otherwise */
  471. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  472. struct btrfs_root *root,
  473. struct btrfs_path *path, int level)
  474. {
  475. struct buffer_head *right_buf;
  476. struct buffer_head *mid_buf;
  477. struct buffer_head *left_buf;
  478. struct buffer_head *parent_buf = NULL;
  479. struct btrfs_node *right = NULL;
  480. struct btrfs_node *mid;
  481. struct btrfs_node *left = NULL;
  482. struct btrfs_node *parent = NULL;
  483. int ret = 0;
  484. int wret;
  485. int pslot;
  486. int orig_slot = path->slots[level];
  487. u64 orig_ptr;
  488. if (level == 0)
  489. return 1;
  490. mid_buf = path->nodes[level];
  491. mid = btrfs_buffer_node(mid_buf);
  492. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  493. if (level < BTRFS_MAX_LEVEL - 1)
  494. parent_buf = path->nodes[level + 1];
  495. pslot = path->slots[level + 1];
  496. if (!parent_buf)
  497. return 1;
  498. parent = btrfs_buffer_node(parent_buf);
  499. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  500. /* first, try to make some room in the middle buffer */
  501. if (left_buf) {
  502. u32 left_nr;
  503. left = btrfs_buffer_node(left_buf);
  504. left_nr = btrfs_header_nritems(&left->header);
  505. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  506. wret = 1;
  507. } else {
  508. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  509. pslot - 1, &left_buf);
  510. if (ret)
  511. wret = 1;
  512. else {
  513. left = btrfs_buffer_node(left_buf);
  514. wret = push_node_left(trans, root,
  515. left_buf, mid_buf);
  516. }
  517. }
  518. if (wret < 0)
  519. ret = wret;
  520. if (wret == 0) {
  521. orig_slot += left_nr;
  522. btrfs_memcpy(root, parent,
  523. &parent->ptrs[pslot].key,
  524. &mid->ptrs[0].key,
  525. sizeof(struct btrfs_disk_key));
  526. btrfs_mark_buffer_dirty(parent_buf);
  527. if (btrfs_header_nritems(&left->header) > orig_slot) {
  528. path->nodes[level] = left_buf;
  529. path->slots[level + 1] -= 1;
  530. path->slots[level] = orig_slot;
  531. btrfs_block_release(root, mid_buf);
  532. } else {
  533. orig_slot -=
  534. btrfs_header_nritems(&left->header);
  535. path->slots[level] = orig_slot;
  536. btrfs_block_release(root, left_buf);
  537. }
  538. check_node(root, path, level);
  539. return 0;
  540. }
  541. btrfs_block_release(root, left_buf);
  542. }
  543. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  544. /*
  545. * then try to empty the right most buffer into the middle
  546. */
  547. if (right_buf) {
  548. u32 right_nr;
  549. right = btrfs_buffer_node(right_buf);
  550. right_nr = btrfs_header_nritems(&right->header);
  551. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  552. wret = 1;
  553. } else {
  554. ret = btrfs_cow_block(trans, root, right_buf,
  555. parent_buf, pslot + 1,
  556. &right_buf);
  557. if (ret)
  558. wret = 1;
  559. else {
  560. right = btrfs_buffer_node(right_buf);
  561. wret = balance_node_right(trans, root,
  562. right_buf, mid_buf);
  563. }
  564. }
  565. if (wret < 0)
  566. ret = wret;
  567. if (wret == 0) {
  568. btrfs_memcpy(root, parent,
  569. &parent->ptrs[pslot + 1].key,
  570. &right->ptrs[0].key,
  571. sizeof(struct btrfs_disk_key));
  572. btrfs_mark_buffer_dirty(parent_buf);
  573. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  574. path->nodes[level] = right_buf;
  575. path->slots[level + 1] += 1;
  576. path->slots[level] = orig_slot -
  577. btrfs_header_nritems(&mid->header);
  578. btrfs_block_release(root, mid_buf);
  579. } else {
  580. btrfs_block_release(root, right_buf);
  581. }
  582. check_node(root, path, level);
  583. return 0;
  584. }
  585. btrfs_block_release(root, right_buf);
  586. }
  587. check_node(root, path, level);
  588. return 1;
  589. }
  590. /*
  591. * look for key in the tree. path is filled in with nodes along the way
  592. * if key is found, we return zero and you can find the item in the leaf
  593. * level of the path (level 0)
  594. *
  595. * If the key isn't found, the path points to the slot where it should
  596. * be inserted, and 1 is returned. If there are other errors during the
  597. * search a negative error number is returned.
  598. *
  599. * if ins_len > 0, nodes and leaves will be split as we walk down the
  600. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  601. * possible)
  602. */
  603. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  604. *root, struct btrfs_key *key, struct btrfs_path *p, int
  605. ins_len, int cow)
  606. {
  607. struct buffer_head *b;
  608. struct buffer_head *cow_buf;
  609. struct btrfs_node *c;
  610. int slot;
  611. int ret;
  612. int level;
  613. WARN_ON(p->nodes[0] != NULL);
  614. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  615. again:
  616. b = root->node;
  617. get_bh(b);
  618. while (b) {
  619. c = btrfs_buffer_node(b);
  620. level = btrfs_header_level(&c->header);
  621. if (cow) {
  622. int wret;
  623. wret = btrfs_cow_block(trans, root, b,
  624. p->nodes[level + 1],
  625. p->slots[level + 1],
  626. &cow_buf);
  627. if (wret) {
  628. btrfs_block_release(root, cow_buf);
  629. return wret;
  630. }
  631. b = cow_buf;
  632. c = btrfs_buffer_node(b);
  633. }
  634. BUG_ON(!cow && ins_len);
  635. if (level != btrfs_header_level(&c->header))
  636. WARN_ON(1);
  637. level = btrfs_header_level(&c->header);
  638. p->nodes[level] = b;
  639. ret = check_block(root, p, level);
  640. if (ret)
  641. return -1;
  642. ret = bin_search(c, key, &slot);
  643. if (!btrfs_is_leaf(c)) {
  644. if (ret && slot > 0)
  645. slot -= 1;
  646. p->slots[level] = slot;
  647. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  648. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  649. int sret = split_node(trans, root, p, level);
  650. BUG_ON(sret > 0);
  651. if (sret)
  652. return sret;
  653. b = p->nodes[level];
  654. c = btrfs_buffer_node(b);
  655. slot = p->slots[level];
  656. } else if (ins_len < 0) {
  657. int sret = balance_level(trans, root, p,
  658. level);
  659. if (sret)
  660. return sret;
  661. b = p->nodes[level];
  662. if (!b)
  663. goto again;
  664. c = btrfs_buffer_node(b);
  665. slot = p->slots[level];
  666. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  667. }
  668. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  669. } else {
  670. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  671. p->slots[level] = slot;
  672. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  673. sizeof(struct btrfs_item) + ins_len) {
  674. int sret = split_leaf(trans, root, key,
  675. p, ins_len);
  676. BUG_ON(sret > 0);
  677. if (sret)
  678. return sret;
  679. }
  680. return ret;
  681. }
  682. }
  683. return 1;
  684. }
  685. /*
  686. * adjust the pointers going up the tree, starting at level
  687. * making sure the right key of each node is points to 'key'.
  688. * This is used after shifting pointers to the left, so it stops
  689. * fixing up pointers when a given leaf/node is not in slot 0 of the
  690. * higher levels
  691. *
  692. * If this fails to write a tree block, it returns -1, but continues
  693. * fixing up the blocks in ram so the tree is consistent.
  694. */
  695. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  696. *root, struct btrfs_path *path, struct btrfs_disk_key
  697. *key, int level)
  698. {
  699. int i;
  700. int ret = 0;
  701. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  702. struct btrfs_node *t;
  703. int tslot = path->slots[i];
  704. if (!path->nodes[i])
  705. break;
  706. t = btrfs_buffer_node(path->nodes[i]);
  707. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  708. btrfs_mark_buffer_dirty(path->nodes[i]);
  709. if (tslot != 0)
  710. break;
  711. }
  712. return ret;
  713. }
  714. /*
  715. * try to push data from one node into the next node left in the
  716. * tree.
  717. *
  718. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  719. * error, and > 0 if there was no room in the left hand block.
  720. */
  721. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  722. *root, struct buffer_head *dst_buf, struct
  723. buffer_head *src_buf)
  724. {
  725. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  726. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  727. int push_items = 0;
  728. int src_nritems;
  729. int dst_nritems;
  730. int ret = 0;
  731. src_nritems = btrfs_header_nritems(&src->header);
  732. dst_nritems = btrfs_header_nritems(&dst->header);
  733. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  734. if (push_items <= 0) {
  735. return 1;
  736. }
  737. if (src_nritems < push_items)
  738. push_items = src_nritems;
  739. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  740. push_items * sizeof(struct btrfs_key_ptr));
  741. if (push_items < src_nritems) {
  742. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  743. (src_nritems - push_items) *
  744. sizeof(struct btrfs_key_ptr));
  745. }
  746. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  747. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  748. btrfs_mark_buffer_dirty(src_buf);
  749. btrfs_mark_buffer_dirty(dst_buf);
  750. return ret;
  751. }
  752. /*
  753. * try to push data from one node into the next node right in the
  754. * tree.
  755. *
  756. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  757. * error, and > 0 if there was no room in the right hand block.
  758. *
  759. * this will only push up to 1/2 the contents of the left node over
  760. */
  761. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  762. btrfs_root *root, struct buffer_head *dst_buf,
  763. struct buffer_head *src_buf)
  764. {
  765. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  766. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  767. int push_items = 0;
  768. int max_push;
  769. int src_nritems;
  770. int dst_nritems;
  771. int ret = 0;
  772. src_nritems = btrfs_header_nritems(&src->header);
  773. dst_nritems = btrfs_header_nritems(&dst->header);
  774. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  775. if (push_items <= 0) {
  776. return 1;
  777. }
  778. max_push = src_nritems / 2 + 1;
  779. /* don't try to empty the node */
  780. if (max_push > src_nritems)
  781. return 1;
  782. if (max_push < push_items)
  783. push_items = max_push;
  784. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  785. dst_nritems * sizeof(struct btrfs_key_ptr));
  786. btrfs_memcpy(root, dst, dst->ptrs,
  787. src->ptrs + src_nritems - push_items,
  788. push_items * sizeof(struct btrfs_key_ptr));
  789. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  790. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  791. btrfs_mark_buffer_dirty(src_buf);
  792. btrfs_mark_buffer_dirty(dst_buf);
  793. return ret;
  794. }
  795. /*
  796. * helper function to insert a new root level in the tree.
  797. * A new node is allocated, and a single item is inserted to
  798. * point to the existing root
  799. *
  800. * returns zero on success or < 0 on failure.
  801. */
  802. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  803. *root, struct btrfs_path *path, int level)
  804. {
  805. struct buffer_head *t;
  806. struct btrfs_node *lower;
  807. struct btrfs_node *c;
  808. struct btrfs_disk_key *lower_key;
  809. BUG_ON(path->nodes[level]);
  810. BUG_ON(path->nodes[level-1] != root->node);
  811. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
  812. if (IS_ERR(t))
  813. return PTR_ERR(t);
  814. c = btrfs_buffer_node(t);
  815. memset(c, 0, root->blocksize);
  816. btrfs_set_header_nritems(&c->header, 1);
  817. btrfs_set_header_level(&c->header, level);
  818. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  819. btrfs_set_header_generation(&c->header, trans->transid);
  820. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  821. lower = btrfs_buffer_node(path->nodes[level-1]);
  822. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  823. sizeof(c->header.fsid));
  824. if (btrfs_is_leaf(lower))
  825. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  826. else
  827. lower_key = &lower->ptrs[0].key;
  828. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  829. sizeof(struct btrfs_disk_key));
  830. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  831. btrfs_mark_buffer_dirty(t);
  832. /* the super has an extra ref to root->node */
  833. btrfs_block_release(root, root->node);
  834. root->node = t;
  835. get_bh(t);
  836. path->nodes[level] = t;
  837. path->slots[level] = 0;
  838. return 0;
  839. }
  840. /*
  841. * worker function to insert a single pointer in a node.
  842. * the node should have enough room for the pointer already
  843. *
  844. * slot and level indicate where you want the key to go, and
  845. * blocknr is the block the key points to.
  846. *
  847. * returns zero on success and < 0 on any error
  848. */
  849. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  850. *root, struct btrfs_path *path, struct btrfs_disk_key
  851. *key, u64 blocknr, int slot, int level)
  852. {
  853. struct btrfs_node *lower;
  854. int nritems;
  855. BUG_ON(!path->nodes[level]);
  856. lower = btrfs_buffer_node(path->nodes[level]);
  857. nritems = btrfs_header_nritems(&lower->header);
  858. if (slot > nritems)
  859. BUG();
  860. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  861. BUG();
  862. if (slot != nritems) {
  863. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  864. lower->ptrs + slot,
  865. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  866. }
  867. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  868. key, sizeof(struct btrfs_disk_key));
  869. btrfs_set_node_blockptr(lower, slot, blocknr);
  870. btrfs_set_header_nritems(&lower->header, nritems + 1);
  871. btrfs_mark_buffer_dirty(path->nodes[level]);
  872. check_node(root, path, level);
  873. return 0;
  874. }
  875. /*
  876. * split the node at the specified level in path in two.
  877. * The path is corrected to point to the appropriate node after the split
  878. *
  879. * Before splitting this tries to make some room in the node by pushing
  880. * left and right, if either one works, it returns right away.
  881. *
  882. * returns 0 on success and < 0 on failure
  883. */
  884. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  885. *root, struct btrfs_path *path, int level)
  886. {
  887. struct buffer_head *t;
  888. struct btrfs_node *c;
  889. struct buffer_head *split_buffer;
  890. struct btrfs_node *split;
  891. int mid;
  892. int ret;
  893. int wret;
  894. u32 c_nritems;
  895. t = path->nodes[level];
  896. c = btrfs_buffer_node(t);
  897. if (t == root->node) {
  898. /* trying to split the root, lets make a new one */
  899. ret = insert_new_root(trans, root, path, level + 1);
  900. if (ret)
  901. return ret;
  902. } else {
  903. ret = push_nodes_for_insert(trans, root, path, level);
  904. t = path->nodes[level];
  905. c = btrfs_buffer_node(t);
  906. if (!ret &&
  907. btrfs_header_nritems(&c->header) <
  908. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  909. return 0;
  910. if (ret < 0)
  911. return ret;
  912. }
  913. c_nritems = btrfs_header_nritems(&c->header);
  914. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
  915. if (IS_ERR(split_buffer))
  916. return PTR_ERR(split_buffer);
  917. split = btrfs_buffer_node(split_buffer);
  918. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  919. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  920. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  921. btrfs_set_header_generation(&split->header, trans->transid);
  922. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  923. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  924. sizeof(split->header.fsid));
  925. mid = (c_nritems + 1) / 2;
  926. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  927. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  928. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  929. btrfs_set_header_nritems(&c->header, mid);
  930. ret = 0;
  931. btrfs_mark_buffer_dirty(t);
  932. btrfs_mark_buffer_dirty(split_buffer);
  933. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  934. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  935. level + 1);
  936. if (wret)
  937. ret = wret;
  938. if (path->slots[level] >= mid) {
  939. path->slots[level] -= mid;
  940. btrfs_block_release(root, t);
  941. path->nodes[level] = split_buffer;
  942. path->slots[level + 1] += 1;
  943. } else {
  944. btrfs_block_release(root, split_buffer);
  945. }
  946. return ret;
  947. }
  948. /*
  949. * how many bytes are required to store the items in a leaf. start
  950. * and nr indicate which items in the leaf to check. This totals up the
  951. * space used both by the item structs and the item data
  952. */
  953. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  954. {
  955. int data_len;
  956. int nritems = btrfs_header_nritems(&l->header);
  957. int end = min(nritems, start + nr) - 1;
  958. if (!nr)
  959. return 0;
  960. data_len = btrfs_item_end(l->items + start);
  961. data_len = data_len - btrfs_item_offset(l->items + end);
  962. data_len += sizeof(struct btrfs_item) * nr;
  963. WARN_ON(data_len < 0);
  964. return data_len;
  965. }
  966. /*
  967. * The space between the end of the leaf items and
  968. * the start of the leaf data. IOW, how much room
  969. * the leaf has left for both items and data
  970. */
  971. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  972. {
  973. int nritems = btrfs_header_nritems(&leaf->header);
  974. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  975. }
  976. /*
  977. * push some data in the path leaf to the right, trying to free up at
  978. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  979. *
  980. * returns 1 if the push failed because the other node didn't have enough
  981. * room, 0 if everything worked out and < 0 if there were major errors.
  982. */
  983. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  984. *root, struct btrfs_path *path, int data_size)
  985. {
  986. struct buffer_head *left_buf = path->nodes[0];
  987. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  988. struct btrfs_leaf *right;
  989. struct buffer_head *right_buf;
  990. struct buffer_head *upper;
  991. struct btrfs_node *upper_node;
  992. int slot;
  993. int i;
  994. int free_space;
  995. int push_space = 0;
  996. int push_items = 0;
  997. struct btrfs_item *item;
  998. u32 left_nritems;
  999. u32 right_nritems;
  1000. int ret;
  1001. slot = path->slots[1];
  1002. if (!path->nodes[1]) {
  1003. return 1;
  1004. }
  1005. upper = path->nodes[1];
  1006. upper_node = btrfs_buffer_node(upper);
  1007. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1008. return 1;
  1009. }
  1010. right_buf = read_tree_block(root,
  1011. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1012. right = btrfs_buffer_leaf(right_buf);
  1013. free_space = btrfs_leaf_free_space(root, right);
  1014. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1015. btrfs_block_release(root, right_buf);
  1016. return 1;
  1017. }
  1018. /* cow and double check */
  1019. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1020. slot + 1, &right_buf);
  1021. if (ret) {
  1022. btrfs_block_release(root, right_buf);
  1023. return 1;
  1024. }
  1025. right = btrfs_buffer_leaf(right_buf);
  1026. free_space = btrfs_leaf_free_space(root, right);
  1027. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1028. btrfs_block_release(root, right_buf);
  1029. return 1;
  1030. }
  1031. left_nritems = btrfs_header_nritems(&left->header);
  1032. if (left_nritems == 0) {
  1033. btrfs_block_release(root, right_buf);
  1034. return 1;
  1035. }
  1036. for (i = left_nritems - 1; i >= 1; i--) {
  1037. item = left->items + i;
  1038. if (path->slots[0] == i)
  1039. push_space += data_size + sizeof(*item);
  1040. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1041. free_space)
  1042. break;
  1043. push_items++;
  1044. push_space += btrfs_item_size(item) + sizeof(*item);
  1045. }
  1046. if (push_items == 0) {
  1047. btrfs_block_release(root, right_buf);
  1048. return 1;
  1049. }
  1050. if (push_items == left_nritems)
  1051. WARN_ON(1);
  1052. right_nritems = btrfs_header_nritems(&right->header);
  1053. /* push left to right */
  1054. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1055. push_space -= leaf_data_end(root, left);
  1056. /* make room in the right data area */
  1057. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1058. leaf_data_end(root, right) - push_space,
  1059. btrfs_leaf_data(right) +
  1060. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1061. leaf_data_end(root, right));
  1062. /* copy from the left data area */
  1063. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1064. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1065. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1066. push_space);
  1067. btrfs_memmove(root, right, right->items + push_items, right->items,
  1068. right_nritems * sizeof(struct btrfs_item));
  1069. /* copy the items from left to right */
  1070. btrfs_memcpy(root, right, right->items, left->items +
  1071. left_nritems - push_items,
  1072. push_items * sizeof(struct btrfs_item));
  1073. /* update the item pointers */
  1074. right_nritems += push_items;
  1075. btrfs_set_header_nritems(&right->header, right_nritems);
  1076. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1077. for (i = 0; i < right_nritems; i++) {
  1078. btrfs_set_item_offset(right->items + i, push_space -
  1079. btrfs_item_size(right->items + i));
  1080. push_space = btrfs_item_offset(right->items + i);
  1081. }
  1082. left_nritems -= push_items;
  1083. btrfs_set_header_nritems(&left->header, left_nritems);
  1084. btrfs_mark_buffer_dirty(left_buf);
  1085. btrfs_mark_buffer_dirty(right_buf);
  1086. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1087. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1088. btrfs_mark_buffer_dirty(upper);
  1089. /* then fixup the leaf pointer in the path */
  1090. if (path->slots[0] >= left_nritems) {
  1091. path->slots[0] -= left_nritems;
  1092. btrfs_block_release(root, path->nodes[0]);
  1093. path->nodes[0] = right_buf;
  1094. path->slots[1] += 1;
  1095. } else {
  1096. btrfs_block_release(root, right_buf);
  1097. }
  1098. if (path->nodes[1])
  1099. check_node(root, path, 1);
  1100. return 0;
  1101. }
  1102. /*
  1103. * push some data in the path leaf to the left, trying to free up at
  1104. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1105. */
  1106. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1107. *root, struct btrfs_path *path, int data_size)
  1108. {
  1109. struct buffer_head *right_buf = path->nodes[0];
  1110. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1111. struct buffer_head *t;
  1112. struct btrfs_leaf *left;
  1113. int slot;
  1114. int i;
  1115. int free_space;
  1116. int push_space = 0;
  1117. int push_items = 0;
  1118. struct btrfs_item *item;
  1119. u32 old_left_nritems;
  1120. int ret = 0;
  1121. int wret;
  1122. slot = path->slots[1];
  1123. if (slot == 0) {
  1124. return 1;
  1125. }
  1126. if (!path->nodes[1]) {
  1127. return 1;
  1128. }
  1129. t = read_tree_block(root,
  1130. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1131. left = btrfs_buffer_leaf(t);
  1132. free_space = btrfs_leaf_free_space(root, left);
  1133. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1134. btrfs_block_release(root, t);
  1135. return 1;
  1136. }
  1137. /* cow and double check */
  1138. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1139. if (ret) {
  1140. /* we hit -ENOSPC, but it isn't fatal here */
  1141. return 1;
  1142. }
  1143. left = btrfs_buffer_leaf(t);
  1144. free_space = btrfs_leaf_free_space(root, left);
  1145. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1146. btrfs_block_release(root, t);
  1147. return 1;
  1148. }
  1149. if (btrfs_header_nritems(&right->header) == 0) {
  1150. btrfs_block_release(root, t);
  1151. return 1;
  1152. }
  1153. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1154. item = right->items + i;
  1155. if (path->slots[0] == i)
  1156. push_space += data_size + sizeof(*item);
  1157. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1158. free_space)
  1159. break;
  1160. push_items++;
  1161. push_space += btrfs_item_size(item) + sizeof(*item);
  1162. }
  1163. if (push_items == 0) {
  1164. btrfs_block_release(root, t);
  1165. return 1;
  1166. }
  1167. if (push_items == btrfs_header_nritems(&right->header))
  1168. WARN_ON(1);
  1169. /* push data from right to left */
  1170. btrfs_memcpy(root, left, left->items +
  1171. btrfs_header_nritems(&left->header),
  1172. right->items, push_items * sizeof(struct btrfs_item));
  1173. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1174. btrfs_item_offset(right->items + push_items -1);
  1175. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1176. leaf_data_end(root, left) - push_space,
  1177. btrfs_leaf_data(right) +
  1178. btrfs_item_offset(right->items + push_items - 1),
  1179. push_space);
  1180. old_left_nritems = btrfs_header_nritems(&left->header);
  1181. BUG_ON(old_left_nritems < 0);
  1182. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1183. u32 ioff = btrfs_item_offset(left->items + i);
  1184. btrfs_set_item_offset(left->items + i, ioff -
  1185. (BTRFS_LEAF_DATA_SIZE(root) -
  1186. btrfs_item_offset(left->items +
  1187. old_left_nritems - 1)));
  1188. }
  1189. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1190. /* fixup right node */
  1191. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1192. leaf_data_end(root, right);
  1193. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1194. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1195. btrfs_leaf_data(right) +
  1196. leaf_data_end(root, right), push_space);
  1197. btrfs_memmove(root, right, right->items, right->items + push_items,
  1198. (btrfs_header_nritems(&right->header) - push_items) *
  1199. sizeof(struct btrfs_item));
  1200. btrfs_set_header_nritems(&right->header,
  1201. btrfs_header_nritems(&right->header) -
  1202. push_items);
  1203. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1204. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1205. btrfs_set_item_offset(right->items + i, push_space -
  1206. btrfs_item_size(right->items + i));
  1207. push_space = btrfs_item_offset(right->items + i);
  1208. }
  1209. btrfs_mark_buffer_dirty(t);
  1210. btrfs_mark_buffer_dirty(right_buf);
  1211. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1212. if (wret)
  1213. ret = wret;
  1214. /* then fixup the leaf pointer in the path */
  1215. if (path->slots[0] < push_items) {
  1216. path->slots[0] += old_left_nritems;
  1217. btrfs_block_release(root, path->nodes[0]);
  1218. path->nodes[0] = t;
  1219. path->slots[1] -= 1;
  1220. } else {
  1221. btrfs_block_release(root, t);
  1222. path->slots[0] -= push_items;
  1223. }
  1224. BUG_ON(path->slots[0] < 0);
  1225. if (path->nodes[1])
  1226. check_node(root, path, 1);
  1227. return ret;
  1228. }
  1229. /*
  1230. * split the path's leaf in two, making sure there is at least data_size
  1231. * available for the resulting leaf level of the path.
  1232. *
  1233. * returns 0 if all went well and < 0 on failure.
  1234. */
  1235. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1236. *root, struct btrfs_key *ins_key,
  1237. struct btrfs_path *path, int data_size)
  1238. {
  1239. struct buffer_head *l_buf;
  1240. struct btrfs_leaf *l;
  1241. u32 nritems;
  1242. int mid;
  1243. int slot;
  1244. struct btrfs_leaf *right;
  1245. struct buffer_head *right_buffer;
  1246. int space_needed = data_size + sizeof(struct btrfs_item);
  1247. int data_copy_size;
  1248. int rt_data_off;
  1249. int i;
  1250. int ret = 0;
  1251. int wret;
  1252. int double_split = 0;
  1253. struct btrfs_disk_key disk_key;
  1254. /* first try to make some room by pushing left and right */
  1255. wret = push_leaf_left(trans, root, path, data_size);
  1256. if (wret < 0)
  1257. return wret;
  1258. if (wret) {
  1259. wret = push_leaf_right(trans, root, path, data_size);
  1260. if (wret < 0)
  1261. return wret;
  1262. }
  1263. l_buf = path->nodes[0];
  1264. l = btrfs_buffer_leaf(l_buf);
  1265. /* did the pushes work? */
  1266. if (btrfs_leaf_free_space(root, l) >=
  1267. sizeof(struct btrfs_item) + data_size)
  1268. return 0;
  1269. if (!path->nodes[1]) {
  1270. ret = insert_new_root(trans, root, path, 1);
  1271. if (ret)
  1272. return ret;
  1273. }
  1274. slot = path->slots[0];
  1275. nritems = btrfs_header_nritems(&l->header);
  1276. mid = (nritems + 1)/ 2;
  1277. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1278. if (IS_ERR(right_buffer))
  1279. return PTR_ERR(right_buffer);
  1280. right = btrfs_buffer_leaf(right_buffer);
  1281. memset(&right->header, 0, sizeof(right->header));
  1282. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1283. btrfs_set_header_generation(&right->header, trans->transid);
  1284. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1285. btrfs_set_header_level(&right->header, 0);
  1286. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1287. sizeof(right->header.fsid));
  1288. if (mid <= slot) {
  1289. if (nritems == 1 ||
  1290. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1291. BTRFS_LEAF_DATA_SIZE(root)) {
  1292. if (slot >= nritems) {
  1293. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1294. btrfs_set_header_nritems(&right->header, 0);
  1295. wret = insert_ptr(trans, root, path,
  1296. &disk_key,
  1297. bh_blocknr(right_buffer),
  1298. path->slots[1] + 1, 1);
  1299. if (wret)
  1300. ret = wret;
  1301. btrfs_block_release(root, path->nodes[0]);
  1302. path->nodes[0] = right_buffer;
  1303. path->slots[0] = 0;
  1304. path->slots[1] += 1;
  1305. return ret;
  1306. }
  1307. mid = slot;
  1308. double_split = 1;
  1309. }
  1310. } else {
  1311. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1312. BTRFS_LEAF_DATA_SIZE(root)) {
  1313. if (slot == 0) {
  1314. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1315. btrfs_set_header_nritems(&right->header, 0);
  1316. wret = insert_ptr(trans, root, path,
  1317. &disk_key,
  1318. bh_blocknr(right_buffer),
  1319. path->slots[1], 1);
  1320. if (wret)
  1321. ret = wret;
  1322. btrfs_block_release(root, path->nodes[0]);
  1323. path->nodes[0] = right_buffer;
  1324. path->slots[0] = 0;
  1325. if (path->slots[1] == 0) {
  1326. wret = fixup_low_keys(trans, root,
  1327. path, &disk_key, 1);
  1328. if (wret)
  1329. ret = wret;
  1330. }
  1331. return ret;
  1332. }
  1333. mid = slot;
  1334. double_split = 1;
  1335. }
  1336. }
  1337. btrfs_set_header_nritems(&right->header, nritems - mid);
  1338. data_copy_size = btrfs_item_end(l->items + mid) -
  1339. leaf_data_end(root, l);
  1340. btrfs_memcpy(root, right, right->items, l->items + mid,
  1341. (nritems - mid) * sizeof(struct btrfs_item));
  1342. btrfs_memcpy(root, right,
  1343. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1344. data_copy_size, btrfs_leaf_data(l) +
  1345. leaf_data_end(root, l), data_copy_size);
  1346. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1347. btrfs_item_end(l->items + mid);
  1348. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1349. u32 ioff = btrfs_item_offset(right->items + i);
  1350. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1351. }
  1352. btrfs_set_header_nritems(&l->header, mid);
  1353. ret = 0;
  1354. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1355. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1356. if (wret)
  1357. ret = wret;
  1358. btrfs_mark_buffer_dirty(right_buffer);
  1359. btrfs_mark_buffer_dirty(l_buf);
  1360. BUG_ON(path->slots[0] != slot);
  1361. if (mid <= slot) {
  1362. btrfs_block_release(root, path->nodes[0]);
  1363. path->nodes[0] = right_buffer;
  1364. path->slots[0] -= mid;
  1365. path->slots[1] += 1;
  1366. } else
  1367. btrfs_block_release(root, right_buffer);
  1368. BUG_ON(path->slots[0] < 0);
  1369. check_node(root, path, 1);
  1370. if (!double_split)
  1371. return ret;
  1372. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1373. if (IS_ERR(right_buffer))
  1374. return PTR_ERR(right_buffer);
  1375. right = btrfs_buffer_leaf(right_buffer);
  1376. memset(&right->header, 0, sizeof(right->header));
  1377. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1378. btrfs_set_header_generation(&right->header, trans->transid);
  1379. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1380. btrfs_set_header_level(&right->header, 0);
  1381. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1382. sizeof(right->header.fsid));
  1383. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1384. btrfs_set_header_nritems(&right->header, 0);
  1385. wret = insert_ptr(trans, root, path,
  1386. &disk_key,
  1387. bh_blocknr(right_buffer),
  1388. path->slots[1], 1);
  1389. if (wret)
  1390. ret = wret;
  1391. if (path->slots[1] == 0) {
  1392. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1393. if (wret)
  1394. ret = wret;
  1395. }
  1396. btrfs_block_release(root, path->nodes[0]);
  1397. path->nodes[0] = right_buffer;
  1398. path->slots[0] = 0;
  1399. check_node(root, path, 1);
  1400. check_leaf(root, path, 0);
  1401. return ret;
  1402. }
  1403. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1404. struct btrfs_root *root,
  1405. struct btrfs_path *path,
  1406. u32 new_size)
  1407. {
  1408. int ret = 0;
  1409. int slot;
  1410. int slot_orig;
  1411. struct btrfs_leaf *leaf;
  1412. struct buffer_head *leaf_buf;
  1413. u32 nritems;
  1414. unsigned int data_end;
  1415. unsigned int old_data_start;
  1416. unsigned int old_size;
  1417. unsigned int size_diff;
  1418. int i;
  1419. slot_orig = path->slots[0];
  1420. leaf_buf = path->nodes[0];
  1421. leaf = btrfs_buffer_leaf(leaf_buf);
  1422. nritems = btrfs_header_nritems(&leaf->header);
  1423. data_end = leaf_data_end(root, leaf);
  1424. slot = path->slots[0];
  1425. old_data_start = btrfs_item_offset(leaf->items + slot);
  1426. old_size = btrfs_item_size(leaf->items + slot);
  1427. BUG_ON(old_size <= new_size);
  1428. size_diff = old_size - new_size;
  1429. BUG_ON(slot < 0);
  1430. BUG_ON(slot >= nritems);
  1431. /*
  1432. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1433. */
  1434. /* first correct the data pointers */
  1435. for (i = slot; i < nritems; i++) {
  1436. u32 ioff = btrfs_item_offset(leaf->items + i);
  1437. btrfs_set_item_offset(leaf->items + i,
  1438. ioff + size_diff);
  1439. }
  1440. /* shift the data */
  1441. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1442. data_end + size_diff, btrfs_leaf_data(leaf) +
  1443. data_end, old_data_start + new_size - data_end);
  1444. btrfs_set_item_size(leaf->items + slot, new_size);
  1445. btrfs_mark_buffer_dirty(leaf_buf);
  1446. ret = 0;
  1447. if (btrfs_leaf_free_space(root, leaf) < 0)
  1448. BUG();
  1449. check_leaf(root, path, 0);
  1450. return ret;
  1451. }
  1452. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1453. *root, struct btrfs_path *path, u32 data_size)
  1454. {
  1455. int ret = 0;
  1456. int slot;
  1457. int slot_orig;
  1458. struct btrfs_leaf *leaf;
  1459. struct buffer_head *leaf_buf;
  1460. u32 nritems;
  1461. unsigned int data_end;
  1462. unsigned int old_data;
  1463. unsigned int old_size;
  1464. int i;
  1465. slot_orig = path->slots[0];
  1466. leaf_buf = path->nodes[0];
  1467. leaf = btrfs_buffer_leaf(leaf_buf);
  1468. nritems = btrfs_header_nritems(&leaf->header);
  1469. data_end = leaf_data_end(root, leaf);
  1470. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1471. BUG();
  1472. slot = path->slots[0];
  1473. old_data = btrfs_item_end(leaf->items + slot);
  1474. BUG_ON(slot < 0);
  1475. BUG_ON(slot >= nritems);
  1476. /*
  1477. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1478. */
  1479. /* first correct the data pointers */
  1480. for (i = slot; i < nritems; i++) {
  1481. u32 ioff = btrfs_item_offset(leaf->items + i);
  1482. btrfs_set_item_offset(leaf->items + i,
  1483. ioff - data_size);
  1484. }
  1485. /* shift the data */
  1486. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1487. data_end - data_size, btrfs_leaf_data(leaf) +
  1488. data_end, old_data - data_end);
  1489. data_end = old_data;
  1490. old_size = btrfs_item_size(leaf->items + slot);
  1491. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1492. btrfs_mark_buffer_dirty(leaf_buf);
  1493. ret = 0;
  1494. if (btrfs_leaf_free_space(root, leaf) < 0)
  1495. BUG();
  1496. check_leaf(root, path, 0);
  1497. return ret;
  1498. }
  1499. /*
  1500. * Given a key and some data, insert an item into the tree.
  1501. * This does all the path init required, making room in the tree if needed.
  1502. */
  1503. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1504. *root, struct btrfs_path *path, struct btrfs_key
  1505. *cpu_key, u32 data_size)
  1506. {
  1507. int ret = 0;
  1508. int slot;
  1509. int slot_orig;
  1510. struct btrfs_leaf *leaf;
  1511. struct buffer_head *leaf_buf;
  1512. u32 nritems;
  1513. unsigned int data_end;
  1514. struct btrfs_disk_key disk_key;
  1515. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1516. /* create a root if there isn't one */
  1517. if (!root->node)
  1518. BUG();
  1519. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1520. if (ret == 0) {
  1521. return -EEXIST;
  1522. }
  1523. if (ret < 0)
  1524. goto out;
  1525. slot_orig = path->slots[0];
  1526. leaf_buf = path->nodes[0];
  1527. leaf = btrfs_buffer_leaf(leaf_buf);
  1528. nritems = btrfs_header_nritems(&leaf->header);
  1529. data_end = leaf_data_end(root, leaf);
  1530. if (btrfs_leaf_free_space(root, leaf) <
  1531. sizeof(struct btrfs_item) + data_size) {
  1532. BUG();
  1533. }
  1534. slot = path->slots[0];
  1535. BUG_ON(slot < 0);
  1536. if (slot != nritems) {
  1537. int i;
  1538. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1539. /*
  1540. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1541. */
  1542. /* first correct the data pointers */
  1543. for (i = slot; i < nritems; i++) {
  1544. u32 ioff = btrfs_item_offset(leaf->items + i);
  1545. btrfs_set_item_offset(leaf->items + i,
  1546. ioff - data_size);
  1547. }
  1548. /* shift the items */
  1549. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1550. leaf->items + slot,
  1551. (nritems - slot) * sizeof(struct btrfs_item));
  1552. /* shift the data */
  1553. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1554. data_end - data_size, btrfs_leaf_data(leaf) +
  1555. data_end, old_data - data_end);
  1556. data_end = old_data;
  1557. }
  1558. /* setup the item for the new data */
  1559. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1560. sizeof(struct btrfs_disk_key));
  1561. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1562. btrfs_set_item_size(leaf->items + slot, data_size);
  1563. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1564. btrfs_mark_buffer_dirty(leaf_buf);
  1565. ret = 0;
  1566. if (slot == 0)
  1567. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1568. if (btrfs_leaf_free_space(root, leaf) < 0)
  1569. BUG();
  1570. check_leaf(root, path, 0);
  1571. out:
  1572. return ret;
  1573. }
  1574. /*
  1575. * Given a key and some data, insert an item into the tree.
  1576. * This does all the path init required, making room in the tree if needed.
  1577. */
  1578. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1579. *root, struct btrfs_key *cpu_key, void *data, u32
  1580. data_size)
  1581. {
  1582. int ret = 0;
  1583. struct btrfs_path *path;
  1584. u8 *ptr;
  1585. path = btrfs_alloc_path();
  1586. BUG_ON(!path);
  1587. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1588. if (!ret) {
  1589. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1590. path->slots[0], u8);
  1591. btrfs_memcpy(root, path->nodes[0]->b_data,
  1592. ptr, data, data_size);
  1593. btrfs_mark_buffer_dirty(path->nodes[0]);
  1594. }
  1595. btrfs_free_path(path);
  1596. return ret;
  1597. }
  1598. /*
  1599. * delete the pointer from a given node.
  1600. *
  1601. * If the delete empties a node, the node is removed from the tree,
  1602. * continuing all the way the root if required. The root is converted into
  1603. * a leaf if all the nodes are emptied.
  1604. */
  1605. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1606. struct btrfs_path *path, int level, int slot)
  1607. {
  1608. struct btrfs_node *node;
  1609. struct buffer_head *parent = path->nodes[level];
  1610. u32 nritems;
  1611. int ret = 0;
  1612. int wret;
  1613. node = btrfs_buffer_node(parent);
  1614. nritems = btrfs_header_nritems(&node->header);
  1615. if (slot != nritems -1) {
  1616. btrfs_memmove(root, node, node->ptrs + slot,
  1617. node->ptrs + slot + 1,
  1618. sizeof(struct btrfs_key_ptr) *
  1619. (nritems - slot - 1));
  1620. }
  1621. nritems--;
  1622. btrfs_set_header_nritems(&node->header, nritems);
  1623. if (nritems == 0 && parent == root->node) {
  1624. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1625. BUG_ON(btrfs_header_level(header) != 1);
  1626. /* just turn the root into a leaf and break */
  1627. btrfs_set_header_level(header, 0);
  1628. } else if (slot == 0) {
  1629. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1630. level + 1);
  1631. if (wret)
  1632. ret = wret;
  1633. }
  1634. btrfs_mark_buffer_dirty(parent);
  1635. return ret;
  1636. }
  1637. /*
  1638. * delete the item at the leaf level in path. If that empties
  1639. * the leaf, remove it from the tree
  1640. */
  1641. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1642. struct btrfs_path *path)
  1643. {
  1644. int slot;
  1645. struct btrfs_leaf *leaf;
  1646. struct buffer_head *leaf_buf;
  1647. int doff;
  1648. int dsize;
  1649. int ret = 0;
  1650. int wret;
  1651. u32 nritems;
  1652. leaf_buf = path->nodes[0];
  1653. leaf = btrfs_buffer_leaf(leaf_buf);
  1654. slot = path->slots[0];
  1655. doff = btrfs_item_offset(leaf->items + slot);
  1656. dsize = btrfs_item_size(leaf->items + slot);
  1657. nritems = btrfs_header_nritems(&leaf->header);
  1658. if (slot != nritems - 1) {
  1659. int i;
  1660. int data_end = leaf_data_end(root, leaf);
  1661. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1662. data_end + dsize,
  1663. btrfs_leaf_data(leaf) + data_end,
  1664. doff - data_end);
  1665. for (i = slot + 1; i < nritems; i++) {
  1666. u32 ioff = btrfs_item_offset(leaf->items + i);
  1667. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1668. }
  1669. btrfs_memmove(root, leaf, leaf->items + slot,
  1670. leaf->items + slot + 1,
  1671. sizeof(struct btrfs_item) *
  1672. (nritems - slot - 1));
  1673. }
  1674. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1675. nritems--;
  1676. /* delete the leaf if we've emptied it */
  1677. if (nritems == 0) {
  1678. if (leaf_buf == root->node) {
  1679. btrfs_set_header_level(&leaf->header, 0);
  1680. } else {
  1681. clean_tree_block(trans, root, leaf_buf);
  1682. wait_on_buffer(leaf_buf);
  1683. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1684. if (wret)
  1685. ret = wret;
  1686. wret = btrfs_free_extent(trans, root,
  1687. bh_blocknr(leaf_buf), 1, 1);
  1688. if (wret)
  1689. ret = wret;
  1690. }
  1691. } else {
  1692. int used = leaf_space_used(leaf, 0, nritems);
  1693. if (slot == 0) {
  1694. wret = fixup_low_keys(trans, root, path,
  1695. &leaf->items[0].key, 1);
  1696. if (wret)
  1697. ret = wret;
  1698. }
  1699. /* delete the leaf if it is mostly empty */
  1700. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1701. /* push_leaf_left fixes the path.
  1702. * make sure the path still points to our leaf
  1703. * for possible call to del_ptr below
  1704. */
  1705. slot = path->slots[1];
  1706. get_bh(leaf_buf);
  1707. wret = push_leaf_left(trans, root, path, 1);
  1708. if (wret < 0 && wret != -ENOSPC)
  1709. ret = wret;
  1710. if (path->nodes[0] == leaf_buf &&
  1711. btrfs_header_nritems(&leaf->header)) {
  1712. wret = push_leaf_right(trans, root, path, 1);
  1713. if (wret < 0 && wret != -ENOSPC)
  1714. ret = wret;
  1715. }
  1716. if (btrfs_header_nritems(&leaf->header) == 0) {
  1717. u64 blocknr = bh_blocknr(leaf_buf);
  1718. clean_tree_block(trans, root, leaf_buf);
  1719. wait_on_buffer(leaf_buf);
  1720. wret = del_ptr(trans, root, path, 1, slot);
  1721. if (wret)
  1722. ret = wret;
  1723. btrfs_block_release(root, leaf_buf);
  1724. wret = btrfs_free_extent(trans, root, blocknr,
  1725. 1, 1);
  1726. if (wret)
  1727. ret = wret;
  1728. } else {
  1729. btrfs_mark_buffer_dirty(leaf_buf);
  1730. btrfs_block_release(root, leaf_buf);
  1731. }
  1732. } else {
  1733. btrfs_mark_buffer_dirty(leaf_buf);
  1734. }
  1735. }
  1736. return ret;
  1737. }
  1738. /*
  1739. * walk up the tree as far as required to find the next leaf.
  1740. * returns 0 if it found something or 1 if there are no greater leaves.
  1741. * returns < 0 on io errors.
  1742. */
  1743. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1744. {
  1745. int slot;
  1746. int level = 1;
  1747. u64 blocknr;
  1748. struct buffer_head *c;
  1749. struct btrfs_node *c_node;
  1750. struct buffer_head *next = NULL;
  1751. while(level < BTRFS_MAX_LEVEL) {
  1752. if (!path->nodes[level])
  1753. return 1;
  1754. slot = path->slots[level] + 1;
  1755. c = path->nodes[level];
  1756. c_node = btrfs_buffer_node(c);
  1757. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1758. level++;
  1759. continue;
  1760. }
  1761. blocknr = btrfs_node_blockptr(c_node, slot);
  1762. if (next)
  1763. btrfs_block_release(root, next);
  1764. next = read_tree_block(root, blocknr);
  1765. break;
  1766. }
  1767. path->slots[level] = slot;
  1768. while(1) {
  1769. level--;
  1770. c = path->nodes[level];
  1771. btrfs_block_release(root, c);
  1772. path->nodes[level] = next;
  1773. path->slots[level] = 0;
  1774. if (!level)
  1775. break;
  1776. next = read_tree_block(root,
  1777. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1778. }
  1779. return 0;
  1780. }