prom.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /*
  2. * Procedures for creating, accessing and interpreting the device tree.
  3. *
  4. * Paul Mackerras August 1996.
  5. * Copyright (C) 1996-2005 Paul Mackerras.
  6. *
  7. * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8. * {engebret|bergner}@us.ibm.com
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #undef DEBUG
  16. #include <stdarg.h>
  17. #include <linux/kernel.h>
  18. #include <linux/string.h>
  19. #include <linux/init.h>
  20. #include <linux/threads.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/types.h>
  23. #include <linux/pci.h>
  24. #include <linux/stringify.h>
  25. #include <linux/delay.h>
  26. #include <linux/initrd.h>
  27. #include <linux/bitops.h>
  28. #include <linux/export.h>
  29. #include <linux/kexec.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/irq.h>
  32. #include <linux/memblock.h>
  33. #include <asm/prom.h>
  34. #include <asm/rtas.h>
  35. #include <asm/page.h>
  36. #include <asm/processor.h>
  37. #include <asm/irq.h>
  38. #include <asm/io.h>
  39. #include <asm/kdump.h>
  40. #include <asm/smp.h>
  41. #include <asm/system.h>
  42. #include <asm/mmu.h>
  43. #include <asm/paca.h>
  44. #include <asm/pgtable.h>
  45. #include <asm/pci.h>
  46. #include <asm/iommu.h>
  47. #include <asm/btext.h>
  48. #include <asm/sections.h>
  49. #include <asm/machdep.h>
  50. #include <asm/pSeries_reconfig.h>
  51. #include <asm/pci-bridge.h>
  52. #include <asm/phyp_dump.h>
  53. #include <asm/kexec.h>
  54. #include <asm/opal.h>
  55. #include <asm/fadump.h>
  56. #include <mm/mmu_decl.h>
  57. #ifdef DEBUG
  58. #define DBG(fmt...) printk(KERN_ERR fmt)
  59. #else
  60. #define DBG(fmt...)
  61. #endif
  62. #ifdef CONFIG_PPC64
  63. int __initdata iommu_is_off;
  64. int __initdata iommu_force_on;
  65. unsigned long tce_alloc_start, tce_alloc_end;
  66. u64 ppc64_rma_size;
  67. #endif
  68. static phys_addr_t first_memblock_size;
  69. static int __initdata boot_cpu_count;
  70. static int __init early_parse_mem(char *p)
  71. {
  72. if (!p)
  73. return 1;
  74. memory_limit = PAGE_ALIGN(memparse(p, &p));
  75. DBG("memory limit = 0x%llx\n", (unsigned long long)memory_limit);
  76. return 0;
  77. }
  78. early_param("mem", early_parse_mem);
  79. /*
  80. * overlaps_initrd - check for overlap with page aligned extension of
  81. * initrd.
  82. */
  83. static inline int overlaps_initrd(unsigned long start, unsigned long size)
  84. {
  85. #ifdef CONFIG_BLK_DEV_INITRD
  86. if (!initrd_start)
  87. return 0;
  88. return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
  89. start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
  90. #else
  91. return 0;
  92. #endif
  93. }
  94. /**
  95. * move_device_tree - move tree to an unused area, if needed.
  96. *
  97. * The device tree may be allocated beyond our memory limit, or inside the
  98. * crash kernel region for kdump, or within the page aligned range of initrd.
  99. * If so, move it out of the way.
  100. */
  101. static void __init move_device_tree(void)
  102. {
  103. unsigned long start, size;
  104. void *p;
  105. DBG("-> move_device_tree\n");
  106. start = __pa(initial_boot_params);
  107. size = be32_to_cpu(initial_boot_params->totalsize);
  108. if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
  109. overlaps_crashkernel(start, size) ||
  110. overlaps_initrd(start, size)) {
  111. p = __va(memblock_alloc(size, PAGE_SIZE));
  112. memcpy(p, initial_boot_params, size);
  113. initial_boot_params = (struct boot_param_header *)p;
  114. DBG("Moved device tree to 0x%p\n", p);
  115. }
  116. DBG("<- move_device_tree\n");
  117. }
  118. /*
  119. * ibm,pa-features is a per-cpu property that contains a string of
  120. * attribute descriptors, each of which has a 2 byte header plus up
  121. * to 254 bytes worth of processor attribute bits. First header
  122. * byte specifies the number of bytes following the header.
  123. * Second header byte is an "attribute-specifier" type, of which
  124. * zero is the only currently-defined value.
  125. * Implementation: Pass in the byte and bit offset for the feature
  126. * that we are interested in. The function will return -1 if the
  127. * pa-features property is missing, or a 1/0 to indicate if the feature
  128. * is supported/not supported. Note that the bit numbers are
  129. * big-endian to match the definition in PAPR.
  130. */
  131. static struct ibm_pa_feature {
  132. unsigned long cpu_features; /* CPU_FTR_xxx bit */
  133. unsigned long mmu_features; /* MMU_FTR_xxx bit */
  134. unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
  135. unsigned char pabyte; /* byte number in ibm,pa-features */
  136. unsigned char pabit; /* bit number (big-endian) */
  137. unsigned char invert; /* if 1, pa bit set => clear feature */
  138. } ibm_pa_features[] __initdata = {
  139. {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
  140. {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
  141. {0, MMU_FTR_SLB, 0, 0, 2, 0},
  142. {CPU_FTR_CTRL, 0, 0, 0, 3, 0},
  143. {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0},
  144. {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1},
  145. {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
  146. {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
  147. };
  148. static void __init scan_features(unsigned long node, unsigned char *ftrs,
  149. unsigned long tablelen,
  150. struct ibm_pa_feature *fp,
  151. unsigned long ft_size)
  152. {
  153. unsigned long i, len, bit;
  154. /* find descriptor with type == 0 */
  155. for (;;) {
  156. if (tablelen < 3)
  157. return;
  158. len = 2 + ftrs[0];
  159. if (tablelen < len)
  160. return; /* descriptor 0 not found */
  161. if (ftrs[1] == 0)
  162. break;
  163. tablelen -= len;
  164. ftrs += len;
  165. }
  166. /* loop over bits we know about */
  167. for (i = 0; i < ft_size; ++i, ++fp) {
  168. if (fp->pabyte >= ftrs[0])
  169. continue;
  170. bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
  171. if (bit ^ fp->invert) {
  172. cur_cpu_spec->cpu_features |= fp->cpu_features;
  173. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
  174. cur_cpu_spec->mmu_features |= fp->mmu_features;
  175. } else {
  176. cur_cpu_spec->cpu_features &= ~fp->cpu_features;
  177. cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
  178. cur_cpu_spec->mmu_features &= ~fp->mmu_features;
  179. }
  180. }
  181. }
  182. static void __init check_cpu_pa_features(unsigned long node)
  183. {
  184. unsigned char *pa_ftrs;
  185. unsigned long tablelen;
  186. pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
  187. if (pa_ftrs == NULL)
  188. return;
  189. scan_features(node, pa_ftrs, tablelen,
  190. ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
  191. }
  192. #ifdef CONFIG_PPC_STD_MMU_64
  193. static void __init check_cpu_slb_size(unsigned long node)
  194. {
  195. u32 *slb_size_ptr;
  196. slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
  197. if (slb_size_ptr != NULL) {
  198. mmu_slb_size = *slb_size_ptr;
  199. return;
  200. }
  201. slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
  202. if (slb_size_ptr != NULL) {
  203. mmu_slb_size = *slb_size_ptr;
  204. }
  205. }
  206. #else
  207. #define check_cpu_slb_size(node) do { } while(0)
  208. #endif
  209. static struct feature_property {
  210. const char *name;
  211. u32 min_value;
  212. unsigned long cpu_feature;
  213. unsigned long cpu_user_ftr;
  214. } feature_properties[] __initdata = {
  215. #ifdef CONFIG_ALTIVEC
  216. {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  217. {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  218. #endif /* CONFIG_ALTIVEC */
  219. #ifdef CONFIG_VSX
  220. /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
  221. {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
  222. #endif /* CONFIG_VSX */
  223. #ifdef CONFIG_PPC64
  224. {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
  225. {"ibm,purr", 1, CPU_FTR_PURR, 0},
  226. {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
  227. #endif /* CONFIG_PPC64 */
  228. };
  229. #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
  230. static inline void identical_pvr_fixup(unsigned long node)
  231. {
  232. unsigned int pvr;
  233. char *model = of_get_flat_dt_prop(node, "model", NULL);
  234. /*
  235. * Since 440GR(x)/440EP(x) processors have the same pvr,
  236. * we check the node path and set bit 28 in the cur_cpu_spec
  237. * pvr for EP(x) processor version. This bit is always 0 in
  238. * the "real" pvr. Then we call identify_cpu again with
  239. * the new logical pvr to enable FPU support.
  240. */
  241. if (model && strstr(model, "440EP")) {
  242. pvr = cur_cpu_spec->pvr_value | 0x8;
  243. identify_cpu(0, pvr);
  244. DBG("Using logical pvr %x for %s\n", pvr, model);
  245. }
  246. }
  247. #else
  248. #define identical_pvr_fixup(node) do { } while(0)
  249. #endif
  250. static void __init check_cpu_feature_properties(unsigned long node)
  251. {
  252. unsigned long i;
  253. struct feature_property *fp = feature_properties;
  254. const u32 *prop;
  255. for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
  256. prop = of_get_flat_dt_prop(node, fp->name, NULL);
  257. if (prop && *prop >= fp->min_value) {
  258. cur_cpu_spec->cpu_features |= fp->cpu_feature;
  259. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
  260. }
  261. }
  262. }
  263. static int __init early_init_dt_scan_cpus(unsigned long node,
  264. const char *uname, int depth,
  265. void *data)
  266. {
  267. char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  268. const u32 *prop;
  269. const u32 *intserv;
  270. int i, nthreads;
  271. unsigned long len;
  272. int found = -1;
  273. int found_thread = 0;
  274. /* We are scanning "cpu" nodes only */
  275. if (type == NULL || strcmp(type, "cpu") != 0)
  276. return 0;
  277. /* Get physical cpuid */
  278. intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
  279. if (intserv) {
  280. nthreads = len / sizeof(int);
  281. } else {
  282. intserv = of_get_flat_dt_prop(node, "reg", NULL);
  283. nthreads = 1;
  284. }
  285. /*
  286. * Now see if any of these threads match our boot cpu.
  287. * NOTE: This must match the parsing done in smp_setup_cpu_maps.
  288. */
  289. for (i = 0; i < nthreads; i++) {
  290. /*
  291. * version 2 of the kexec param format adds the phys cpuid of
  292. * booted proc.
  293. */
  294. if (initial_boot_params->version >= 2) {
  295. if (intserv[i] == initial_boot_params->boot_cpuid_phys) {
  296. found = boot_cpu_count;
  297. found_thread = i;
  298. }
  299. } else {
  300. /*
  301. * Check if it's the boot-cpu, set it's hw index now,
  302. * unfortunately this format did not support booting
  303. * off secondary threads.
  304. */
  305. if (of_get_flat_dt_prop(node,
  306. "linux,boot-cpu", NULL) != NULL)
  307. found = boot_cpu_count;
  308. }
  309. #ifdef CONFIG_SMP
  310. /* logical cpu id is always 0 on UP kernels */
  311. boot_cpu_count++;
  312. #endif
  313. }
  314. if (found >= 0) {
  315. DBG("boot cpu: logical %d physical %d\n", found,
  316. intserv[found_thread]);
  317. boot_cpuid = found;
  318. set_hard_smp_processor_id(found, intserv[found_thread]);
  319. /*
  320. * PAPR defines "logical" PVR values for cpus that
  321. * meet various levels of the architecture:
  322. * 0x0f000001 Architecture version 2.04
  323. * 0x0f000002 Architecture version 2.05
  324. * If the cpu-version property in the cpu node contains
  325. * such a value, we call identify_cpu again with the
  326. * logical PVR value in order to use the cpu feature
  327. * bits appropriate for the architecture level.
  328. *
  329. * A POWER6 partition in "POWER6 architected" mode
  330. * uses the 0x0f000002 PVR value; in POWER5+ mode
  331. * it uses 0x0f000001.
  332. */
  333. prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
  334. if (prop && (*prop & 0xff000000) == 0x0f000000)
  335. identify_cpu(0, *prop);
  336. identical_pvr_fixup(node);
  337. }
  338. check_cpu_feature_properties(node);
  339. check_cpu_pa_features(node);
  340. check_cpu_slb_size(node);
  341. #ifdef CONFIG_PPC_PSERIES
  342. if (nthreads > 1)
  343. cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
  344. else
  345. cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
  346. #endif
  347. return 0;
  348. }
  349. int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname,
  350. int depth, void *data)
  351. {
  352. unsigned long *lprop;
  353. /* Use common scan routine to determine if this is the chosen node */
  354. if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
  355. return 0;
  356. #ifdef CONFIG_PPC64
  357. /* check if iommu is forced on or off */
  358. if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
  359. iommu_is_off = 1;
  360. if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
  361. iommu_force_on = 1;
  362. #endif
  363. /* mem=x on the command line is the preferred mechanism */
  364. lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
  365. if (lprop)
  366. memory_limit = *lprop;
  367. #ifdef CONFIG_PPC64
  368. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
  369. if (lprop)
  370. tce_alloc_start = *lprop;
  371. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
  372. if (lprop)
  373. tce_alloc_end = *lprop;
  374. #endif
  375. #ifdef CONFIG_KEXEC
  376. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
  377. if (lprop)
  378. crashk_res.start = *lprop;
  379. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
  380. if (lprop)
  381. crashk_res.end = crashk_res.start + *lprop - 1;
  382. #endif
  383. /* break now */
  384. return 1;
  385. }
  386. #ifdef CONFIG_PPC_PSERIES
  387. /*
  388. * Interpret the ibm,dynamic-memory property in the
  389. * /ibm,dynamic-reconfiguration-memory node.
  390. * This contains a list of memory blocks along with NUMA affinity
  391. * information.
  392. */
  393. static int __init early_init_dt_scan_drconf_memory(unsigned long node)
  394. {
  395. __be32 *dm, *ls, *usm;
  396. unsigned long l, n, flags;
  397. u64 base, size, memblock_size;
  398. unsigned int is_kexec_kdump = 0, rngs;
  399. ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
  400. if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
  401. return 0;
  402. memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
  403. dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
  404. if (dm == NULL || l < sizeof(__be32))
  405. return 0;
  406. n = *dm++; /* number of entries */
  407. if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
  408. return 0;
  409. /* check if this is a kexec/kdump kernel. */
  410. usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
  411. &l);
  412. if (usm != NULL)
  413. is_kexec_kdump = 1;
  414. for (; n != 0; --n) {
  415. base = dt_mem_next_cell(dt_root_addr_cells, &dm);
  416. flags = dm[3];
  417. /* skip DRC index, pad, assoc. list index, flags */
  418. dm += 4;
  419. /* skip this block if the reserved bit is set in flags (0x80)
  420. or if the block is not assigned to this partition (0x8) */
  421. if ((flags & 0x80) || !(flags & 0x8))
  422. continue;
  423. size = memblock_size;
  424. rngs = 1;
  425. if (is_kexec_kdump) {
  426. /*
  427. * For each memblock in ibm,dynamic-memory, a corresponding
  428. * entry in linux,drconf-usable-memory property contains
  429. * a counter 'p' followed by 'p' (base, size) duple.
  430. * Now read the counter from
  431. * linux,drconf-usable-memory property
  432. */
  433. rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
  434. if (!rngs) /* there are no (base, size) duple */
  435. continue;
  436. }
  437. do {
  438. if (is_kexec_kdump) {
  439. base = dt_mem_next_cell(dt_root_addr_cells,
  440. &usm);
  441. size = dt_mem_next_cell(dt_root_size_cells,
  442. &usm);
  443. }
  444. if (iommu_is_off) {
  445. if (base >= 0x80000000ul)
  446. continue;
  447. if ((base + size) > 0x80000000ul)
  448. size = 0x80000000ul - base;
  449. }
  450. memblock_add(base, size);
  451. } while (--rngs);
  452. }
  453. memblock_dump_all();
  454. return 0;
  455. }
  456. #else
  457. #define early_init_dt_scan_drconf_memory(node) 0
  458. #endif /* CONFIG_PPC_PSERIES */
  459. static int __init early_init_dt_scan_memory_ppc(unsigned long node,
  460. const char *uname,
  461. int depth, void *data)
  462. {
  463. if (depth == 1 &&
  464. strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
  465. return early_init_dt_scan_drconf_memory(node);
  466. return early_init_dt_scan_memory(node, uname, depth, data);
  467. }
  468. void __init early_init_dt_add_memory_arch(u64 base, u64 size)
  469. {
  470. #ifdef CONFIG_PPC64
  471. if (iommu_is_off) {
  472. if (base >= 0x80000000ul)
  473. return;
  474. if ((base + size) > 0x80000000ul)
  475. size = 0x80000000ul - base;
  476. }
  477. #endif
  478. /* Keep track of the beginning of memory -and- the size of
  479. * the very first block in the device-tree as it represents
  480. * the RMA on ppc64 server
  481. */
  482. if (base < memstart_addr) {
  483. memstart_addr = base;
  484. first_memblock_size = size;
  485. }
  486. /* Add the chunk to the MEMBLOCK list */
  487. memblock_add(base, size);
  488. }
  489. void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
  490. {
  491. return __va(memblock_alloc(size, align));
  492. }
  493. #ifdef CONFIG_BLK_DEV_INITRD
  494. void __init early_init_dt_setup_initrd_arch(unsigned long start,
  495. unsigned long end)
  496. {
  497. initrd_start = (unsigned long)__va(start);
  498. initrd_end = (unsigned long)__va(end);
  499. initrd_below_start_ok = 1;
  500. }
  501. #endif
  502. static void __init early_reserve_mem(void)
  503. {
  504. u64 base, size;
  505. u64 *reserve_map;
  506. unsigned long self_base;
  507. unsigned long self_size;
  508. reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
  509. initial_boot_params->off_mem_rsvmap);
  510. /* before we do anything, lets reserve the dt blob */
  511. self_base = __pa((unsigned long)initial_boot_params);
  512. self_size = initial_boot_params->totalsize;
  513. memblock_reserve(self_base, self_size);
  514. #ifdef CONFIG_BLK_DEV_INITRD
  515. /* then reserve the initrd, if any */
  516. if (initrd_start && (initrd_end > initrd_start))
  517. memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
  518. _ALIGN_UP(initrd_end, PAGE_SIZE) -
  519. _ALIGN_DOWN(initrd_start, PAGE_SIZE));
  520. #endif /* CONFIG_BLK_DEV_INITRD */
  521. #ifdef CONFIG_PPC32
  522. /*
  523. * Handle the case where we might be booting from an old kexec
  524. * image that setup the mem_rsvmap as pairs of 32-bit values
  525. */
  526. if (*reserve_map > 0xffffffffull) {
  527. u32 base_32, size_32;
  528. u32 *reserve_map_32 = (u32 *)reserve_map;
  529. while (1) {
  530. base_32 = *(reserve_map_32++);
  531. size_32 = *(reserve_map_32++);
  532. if (size_32 == 0)
  533. break;
  534. /* skip if the reservation is for the blob */
  535. if (base_32 == self_base && size_32 == self_size)
  536. continue;
  537. DBG("reserving: %x -> %x\n", base_32, size_32);
  538. memblock_reserve(base_32, size_32);
  539. }
  540. return;
  541. }
  542. #endif
  543. while (1) {
  544. base = *(reserve_map++);
  545. size = *(reserve_map++);
  546. if (size == 0)
  547. break;
  548. DBG("reserving: %llx -> %llx\n", base, size);
  549. memblock_reserve(base, size);
  550. }
  551. }
  552. #ifdef CONFIG_PHYP_DUMP
  553. /**
  554. * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg
  555. *
  556. * Function to find the largest size we need to reserve
  557. * during early boot process.
  558. *
  559. * It either looks for boot param and returns that OR
  560. * returns larger of 256 or 5% rounded down to multiples of 256MB.
  561. *
  562. */
  563. static inline unsigned long phyp_dump_calculate_reserve_size(void)
  564. {
  565. unsigned long tmp;
  566. if (phyp_dump_info->reserve_bootvar)
  567. return phyp_dump_info->reserve_bootvar;
  568. /* divide by 20 to get 5% of value */
  569. tmp = memblock_end_of_DRAM();
  570. do_div(tmp, 20);
  571. /* round it down in multiples of 256 */
  572. tmp = tmp & ~0x0FFFFFFFUL;
  573. return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END);
  574. }
  575. /**
  576. * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory
  577. *
  578. * This routine may reserve memory regions in the kernel only
  579. * if the system is supported and a dump was taken in last
  580. * boot instance or if the hardware is supported and the
  581. * scratch area needs to be setup. In other instances it returns
  582. * without reserving anything. The memory in case of dump being
  583. * active is freed when the dump is collected (by userland tools).
  584. */
  585. static void __init phyp_dump_reserve_mem(void)
  586. {
  587. unsigned long base, size;
  588. unsigned long variable_reserve_size;
  589. if (!phyp_dump_info->phyp_dump_configured) {
  590. printk(KERN_ERR "Phyp-dump not supported on this hardware\n");
  591. return;
  592. }
  593. if (!phyp_dump_info->phyp_dump_at_boot) {
  594. printk(KERN_INFO "Phyp-dump disabled at boot time\n");
  595. return;
  596. }
  597. variable_reserve_size = phyp_dump_calculate_reserve_size();
  598. if (phyp_dump_info->phyp_dump_is_active) {
  599. /* Reserve *everything* above RMR.Area freed by userland tools*/
  600. base = variable_reserve_size;
  601. size = memblock_end_of_DRAM() - base;
  602. /* XXX crashed_ram_end is wrong, since it may be beyond
  603. * the memory_limit, it will need to be adjusted. */
  604. memblock_reserve(base, size);
  605. phyp_dump_info->init_reserve_start = base;
  606. phyp_dump_info->init_reserve_size = size;
  607. } else {
  608. size = phyp_dump_info->cpu_state_size +
  609. phyp_dump_info->hpte_region_size +
  610. variable_reserve_size;
  611. base = memblock_end_of_DRAM() - size;
  612. memblock_reserve(base, size);
  613. phyp_dump_info->init_reserve_start = base;
  614. phyp_dump_info->init_reserve_size = size;
  615. }
  616. }
  617. #else
  618. static inline void __init phyp_dump_reserve_mem(void) {}
  619. #endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */
  620. void __init early_init_devtree(void *params)
  621. {
  622. phys_addr_t limit;
  623. DBG(" -> early_init_devtree(%p)\n", params);
  624. /* Setup flat device-tree pointer */
  625. initial_boot_params = params;
  626. #ifdef CONFIG_PPC_RTAS
  627. /* Some machines might need RTAS info for debugging, grab it now. */
  628. of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
  629. #endif
  630. #ifdef CONFIG_PPC_POWERNV
  631. /* Some machines might need OPAL info for debugging, grab it now. */
  632. of_scan_flat_dt(early_init_dt_scan_opal, NULL);
  633. #endif
  634. #ifdef CONFIG_PHYP_DUMP
  635. /* scan tree to see if dump occurred during last boot */
  636. of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL);
  637. #endif
  638. #ifdef CONFIG_FA_DUMP
  639. /* scan tree to see if dump is active during last boot */
  640. of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
  641. #endif
  642. /* Pre-initialize the cmd_line with the content of boot_commmand_line,
  643. * which will be empty except when the content of the variable has
  644. * been overriden by a bootloading mechanism. This happens typically
  645. * with HAL takeover
  646. */
  647. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  648. /* Retrieve various informations from the /chosen node of the
  649. * device-tree, including the platform type, initrd location and
  650. * size, TCE reserve, and more ...
  651. */
  652. of_scan_flat_dt(early_init_dt_scan_chosen_ppc, cmd_line);
  653. /* Scan memory nodes and rebuild MEMBLOCKs */
  654. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  655. of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
  656. /* Save command line for /proc/cmdline and then parse parameters */
  657. strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
  658. parse_early_param();
  659. /* make sure we've parsed cmdline for mem= before this */
  660. if (memory_limit)
  661. first_memblock_size = min(first_memblock_size, memory_limit);
  662. setup_initial_memory_limit(memstart_addr, first_memblock_size);
  663. /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
  664. memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
  665. /* If relocatable, reserve first 32k for interrupt vectors etc. */
  666. if (PHYSICAL_START > MEMORY_START)
  667. memblock_reserve(MEMORY_START, 0x8000);
  668. reserve_kdump_trampoline();
  669. #ifdef CONFIG_FA_DUMP
  670. /*
  671. * If we fail to reserve memory for firmware-assisted dump then
  672. * fallback to kexec based kdump.
  673. */
  674. if (fadump_reserve_mem() == 0)
  675. #endif
  676. reserve_crashkernel();
  677. early_reserve_mem();
  678. phyp_dump_reserve_mem();
  679. /*
  680. * Ensure that total memory size is page-aligned, because otherwise
  681. * mark_bootmem() gets upset.
  682. */
  683. limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
  684. memblock_enforce_memory_limit(limit);
  685. memblock_allow_resize();
  686. memblock_dump_all();
  687. DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
  688. /* We may need to relocate the flat tree, do it now.
  689. * FIXME .. and the initrd too? */
  690. move_device_tree();
  691. allocate_pacas();
  692. DBG("Scanning CPUs ...\n");
  693. /* Retrieve CPU related informations from the flat tree
  694. * (altivec support, boot CPU ID, ...)
  695. */
  696. of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
  697. #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
  698. /* We'll later wait for secondaries to check in; there are
  699. * NCPUS-1 non-boot CPUs :-)
  700. */
  701. spinning_secondaries = boot_cpu_count - 1;
  702. #endif
  703. DBG(" <- early_init_devtree()\n");
  704. }
  705. /*******
  706. *
  707. * New implementation of the OF "find" APIs, return a refcounted
  708. * object, call of_node_put() when done. The device tree and list
  709. * are protected by a rw_lock.
  710. *
  711. * Note that property management will need some locking as well,
  712. * this isn't dealt with yet.
  713. *
  714. *******/
  715. /**
  716. * of_find_next_cache_node - Find a node's subsidiary cache
  717. * @np: node of type "cpu" or "cache"
  718. *
  719. * Returns a node pointer with refcount incremented, use
  720. * of_node_put() on it when done. Caller should hold a reference
  721. * to np.
  722. */
  723. struct device_node *of_find_next_cache_node(struct device_node *np)
  724. {
  725. struct device_node *child;
  726. const phandle *handle;
  727. handle = of_get_property(np, "l2-cache", NULL);
  728. if (!handle)
  729. handle = of_get_property(np, "next-level-cache", NULL);
  730. if (handle)
  731. return of_find_node_by_phandle(*handle);
  732. /* OF on pmac has nodes instead of properties named "l2-cache"
  733. * beneath CPU nodes.
  734. */
  735. if (!strcmp(np->type, "cpu"))
  736. for_each_child_of_node(np, child)
  737. if (!strcmp(child->type, "cache"))
  738. return child;
  739. return NULL;
  740. }
  741. #ifdef CONFIG_PPC_PSERIES
  742. /*
  743. * Fix up the uninitialized fields in a new device node:
  744. * name, type and pci-specific fields
  745. */
  746. static int of_finish_dynamic_node(struct device_node *node)
  747. {
  748. struct device_node *parent = of_get_parent(node);
  749. int err = 0;
  750. const phandle *ibm_phandle;
  751. node->name = of_get_property(node, "name", NULL);
  752. node->type = of_get_property(node, "device_type", NULL);
  753. if (!node->name)
  754. node->name = "<NULL>";
  755. if (!node->type)
  756. node->type = "<NULL>";
  757. if (!parent) {
  758. err = -ENODEV;
  759. goto out;
  760. }
  761. /* We don't support that function on PowerMac, at least
  762. * not yet
  763. */
  764. if (machine_is(powermac))
  765. return -ENODEV;
  766. /* fix up new node's phandle field */
  767. if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
  768. node->phandle = *ibm_phandle;
  769. out:
  770. of_node_put(parent);
  771. return err;
  772. }
  773. static int prom_reconfig_notifier(struct notifier_block *nb,
  774. unsigned long action, void *node)
  775. {
  776. int err;
  777. switch (action) {
  778. case PSERIES_RECONFIG_ADD:
  779. err = of_finish_dynamic_node(node);
  780. if (err < 0)
  781. printk(KERN_ERR "finish_node returned %d\n", err);
  782. break;
  783. default:
  784. err = 0;
  785. break;
  786. }
  787. return notifier_from_errno(err);
  788. }
  789. static struct notifier_block prom_reconfig_nb = {
  790. .notifier_call = prom_reconfig_notifier,
  791. .priority = 10, /* This one needs to run first */
  792. };
  793. static int __init prom_reconfig_setup(void)
  794. {
  795. return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
  796. }
  797. __initcall(prom_reconfig_setup);
  798. #endif
  799. /* Find the device node for a given logical cpu number, also returns the cpu
  800. * local thread number (index in ibm,interrupt-server#s) if relevant and
  801. * asked for (non NULL)
  802. */
  803. struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
  804. {
  805. int hardid;
  806. struct device_node *np;
  807. hardid = get_hard_smp_processor_id(cpu);
  808. for_each_node_by_type(np, "cpu") {
  809. const u32 *intserv;
  810. unsigned int plen, t;
  811. /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
  812. * fallback to "reg" property and assume no threads
  813. */
  814. intserv = of_get_property(np, "ibm,ppc-interrupt-server#s",
  815. &plen);
  816. if (intserv == NULL) {
  817. const u32 *reg = of_get_property(np, "reg", NULL);
  818. if (reg == NULL)
  819. continue;
  820. if (*reg == hardid) {
  821. if (thread)
  822. *thread = 0;
  823. return np;
  824. }
  825. } else {
  826. plen /= sizeof(u32);
  827. for (t = 0; t < plen; t++) {
  828. if (hardid == intserv[t]) {
  829. if (thread)
  830. *thread = t;
  831. return np;
  832. }
  833. }
  834. }
  835. }
  836. return NULL;
  837. }
  838. EXPORT_SYMBOL(of_get_cpu_node);
  839. #if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
  840. static struct debugfs_blob_wrapper flat_dt_blob;
  841. static int __init export_flat_device_tree(void)
  842. {
  843. struct dentry *d;
  844. flat_dt_blob.data = initial_boot_params;
  845. flat_dt_blob.size = initial_boot_params->totalsize;
  846. d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
  847. powerpc_debugfs_root, &flat_dt_blob);
  848. if (!d)
  849. return 1;
  850. return 0;
  851. }
  852. __initcall(export_flat_device_tree);
  853. #endif