sched.c 266 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_SMP
  261. static int root_task_group_empty(void)
  262. {
  263. return list_empty(&root_task_group.children);
  264. }
  265. #endif
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned long last_tick_seen;
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. u64 nr_migrations_in;
  460. struct cfs_rq cfs;
  461. struct rt_rq rt;
  462. #ifdef CONFIG_FAIR_GROUP_SCHED
  463. /* list of leaf cfs_rq on this cpu: */
  464. struct list_head leaf_cfs_rq_list;
  465. #endif
  466. #ifdef CONFIG_RT_GROUP_SCHED
  467. struct list_head leaf_rt_rq_list;
  468. #endif
  469. /*
  470. * This is part of a global counter where only the total sum
  471. * over all CPUs matters. A task can increase this counter on
  472. * one CPU and if it got migrated afterwards it may decrease
  473. * it on another CPU. Always updated under the runqueue lock:
  474. */
  475. unsigned long nr_uninterruptible;
  476. struct task_struct *curr, *idle;
  477. unsigned long next_balance;
  478. struct mm_struct *prev_mm;
  479. u64 clock;
  480. atomic_t nr_iowait;
  481. #ifdef CONFIG_SMP
  482. struct root_domain *rd;
  483. struct sched_domain *sd;
  484. unsigned char idle_at_tick;
  485. /* For active balancing */
  486. int post_schedule;
  487. int active_balance;
  488. int push_cpu;
  489. /* cpu of this runqueue: */
  490. int cpu;
  491. int online;
  492. unsigned long avg_load_per_task;
  493. struct task_struct *migration_thread;
  494. struct list_head migration_queue;
  495. u64 rt_avg;
  496. u64 age_stamp;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. *
  569. * Returns true if the current cpu runqueue is locked.
  570. * This interface allows printk to be called with the runqueue lock
  571. * held and know whether or not it is OK to wake up the klogd.
  572. */
  573. int runqueue_is_locked(void)
  574. {
  575. int cpu = get_cpu();
  576. struct rq *rq = cpu_rq(cpu);
  577. int ret;
  578. ret = spin_is_locked(&rq->lock);
  579. put_cpu();
  580. return ret;
  581. }
  582. /*
  583. * Debugging: various feature bits
  584. */
  585. #define SCHED_FEAT(name, enabled) \
  586. __SCHED_FEAT_##name ,
  587. enum {
  588. #include "sched_features.h"
  589. };
  590. #undef SCHED_FEAT
  591. #define SCHED_FEAT(name, enabled) \
  592. (1UL << __SCHED_FEAT_##name) * enabled |
  593. const_debug unsigned int sysctl_sched_features =
  594. #include "sched_features.h"
  595. 0;
  596. #undef SCHED_FEAT
  597. #ifdef CONFIG_SCHED_DEBUG
  598. #define SCHED_FEAT(name, enabled) \
  599. #name ,
  600. static __read_mostly char *sched_feat_names[] = {
  601. #include "sched_features.h"
  602. NULL
  603. };
  604. #undef SCHED_FEAT
  605. static int sched_feat_show(struct seq_file *m, void *v)
  606. {
  607. int i;
  608. for (i = 0; sched_feat_names[i]; i++) {
  609. if (!(sysctl_sched_features & (1UL << i)))
  610. seq_puts(m, "NO_");
  611. seq_printf(m, "%s ", sched_feat_names[i]);
  612. }
  613. seq_puts(m, "\n");
  614. return 0;
  615. }
  616. static ssize_t
  617. sched_feat_write(struct file *filp, const char __user *ubuf,
  618. size_t cnt, loff_t *ppos)
  619. {
  620. char buf[64];
  621. char *cmp = buf;
  622. int neg = 0;
  623. int i;
  624. if (cnt > 63)
  625. cnt = 63;
  626. if (copy_from_user(&buf, ubuf, cnt))
  627. return -EFAULT;
  628. buf[cnt] = 0;
  629. if (strncmp(buf, "NO_", 3) == 0) {
  630. neg = 1;
  631. cmp += 3;
  632. }
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. int len = strlen(sched_feat_names[i]);
  635. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  636. if (neg)
  637. sysctl_sched_features &= ~(1UL << i);
  638. else
  639. sysctl_sched_features |= (1UL << i);
  640. break;
  641. }
  642. }
  643. if (!sched_feat_names[i])
  644. return -EINVAL;
  645. filp->f_pos += cnt;
  646. return cnt;
  647. }
  648. static int sched_feat_open(struct inode *inode, struct file *filp)
  649. {
  650. return single_open(filp, sched_feat_show, NULL);
  651. }
  652. static struct file_operations sched_feat_fops = {
  653. .open = sched_feat_open,
  654. .write = sched_feat_write,
  655. .read = seq_read,
  656. .llseek = seq_lseek,
  657. .release = single_release,
  658. };
  659. static __init int sched_init_debug(void)
  660. {
  661. debugfs_create_file("sched_features", 0644, NULL, NULL,
  662. &sched_feat_fops);
  663. return 0;
  664. }
  665. late_initcall(sched_init_debug);
  666. #endif
  667. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  668. /*
  669. * Number of tasks to iterate in a single balance run.
  670. * Limited because this is done with IRQs disabled.
  671. */
  672. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  673. /*
  674. * ratelimit for updating the group shares.
  675. * default: 0.25ms
  676. */
  677. unsigned int sysctl_sched_shares_ratelimit = 250000;
  678. /*
  679. * Inject some fuzzyness into changing the per-cpu group shares
  680. * this avoids remote rq-locks at the expense of fairness.
  681. * default: 4
  682. */
  683. unsigned int sysctl_sched_shares_thresh = 4;
  684. /*
  685. * period over which we average the RT time consumption, measured
  686. * in ms.
  687. *
  688. * default: 1s
  689. */
  690. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  691. /*
  692. * period over which we measure -rt task cpu usage in us.
  693. * default: 1s
  694. */
  695. unsigned int sysctl_sched_rt_period = 1000000;
  696. static __read_mostly int scheduler_running;
  697. /*
  698. * part of the period that we allow rt tasks to run in us.
  699. * default: 0.95s
  700. */
  701. int sysctl_sched_rt_runtime = 950000;
  702. static inline u64 global_rt_period(void)
  703. {
  704. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  705. }
  706. static inline u64 global_rt_runtime(void)
  707. {
  708. if (sysctl_sched_rt_runtime < 0)
  709. return RUNTIME_INF;
  710. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  711. }
  712. #ifndef prepare_arch_switch
  713. # define prepare_arch_switch(next) do { } while (0)
  714. #endif
  715. #ifndef finish_arch_switch
  716. # define finish_arch_switch(prev) do { } while (0)
  717. #endif
  718. static inline int task_current(struct rq *rq, struct task_struct *p)
  719. {
  720. return rq->curr == p;
  721. }
  722. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  723. static inline int task_running(struct rq *rq, struct task_struct *p)
  724. {
  725. return task_current(rq, p);
  726. }
  727. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  728. {
  729. }
  730. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  731. {
  732. #ifdef CONFIG_DEBUG_SPINLOCK
  733. /* this is a valid case when another task releases the spinlock */
  734. rq->lock.owner = current;
  735. #endif
  736. /*
  737. * If we are tracking spinlock dependencies then we have to
  738. * fix up the runqueue lock - which gets 'carried over' from
  739. * prev into current:
  740. */
  741. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  742. spin_unlock_irq(&rq->lock);
  743. }
  744. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. #ifdef CONFIG_SMP
  748. return p->oncpu;
  749. #else
  750. return task_current(rq, p);
  751. #endif
  752. }
  753. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  754. {
  755. #ifdef CONFIG_SMP
  756. /*
  757. * We can optimise this out completely for !SMP, because the
  758. * SMP rebalancing from interrupt is the only thing that cares
  759. * here.
  760. */
  761. next->oncpu = 1;
  762. #endif
  763. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  764. spin_unlock_irq(&rq->lock);
  765. #else
  766. spin_unlock(&rq->lock);
  767. #endif
  768. }
  769. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  770. {
  771. #ifdef CONFIG_SMP
  772. /*
  773. * After ->oncpu is cleared, the task can be moved to a different CPU.
  774. * We must ensure this doesn't happen until the switch is completely
  775. * finished.
  776. */
  777. smp_wmb();
  778. prev->oncpu = 0;
  779. #endif
  780. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  781. local_irq_enable();
  782. #endif
  783. }
  784. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  785. /*
  786. * __task_rq_lock - lock the runqueue a given task resides on.
  787. * Must be called interrupts disabled.
  788. */
  789. static inline struct rq *__task_rq_lock(struct task_struct *p)
  790. __acquires(rq->lock)
  791. {
  792. for (;;) {
  793. struct rq *rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock(&rq->lock);
  798. }
  799. }
  800. /*
  801. * task_rq_lock - lock the runqueue a given task resides on and disable
  802. * interrupts. Note the ordering: we can safely lookup the task_rq without
  803. * explicitly disabling preemption.
  804. */
  805. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  806. __acquires(rq->lock)
  807. {
  808. struct rq *rq;
  809. for (;;) {
  810. local_irq_save(*flags);
  811. rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. }
  818. void task_rq_unlock_wait(struct task_struct *p)
  819. {
  820. struct rq *rq = task_rq(p);
  821. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  822. spin_unlock_wait(&rq->lock);
  823. }
  824. static void __task_rq_unlock(struct rq *rq)
  825. __releases(rq->lock)
  826. {
  827. spin_unlock(&rq->lock);
  828. }
  829. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  830. __releases(rq->lock)
  831. {
  832. spin_unlock_irqrestore(&rq->lock, *flags);
  833. }
  834. /*
  835. * this_rq_lock - lock this runqueue and disable interrupts.
  836. */
  837. static struct rq *this_rq_lock(void)
  838. __acquires(rq->lock)
  839. {
  840. struct rq *rq;
  841. local_irq_disable();
  842. rq = this_rq();
  843. spin_lock(&rq->lock);
  844. return rq;
  845. }
  846. #ifdef CONFIG_SCHED_HRTICK
  847. /*
  848. * Use HR-timers to deliver accurate preemption points.
  849. *
  850. * Its all a bit involved since we cannot program an hrt while holding the
  851. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  852. * reschedule event.
  853. *
  854. * When we get rescheduled we reprogram the hrtick_timer outside of the
  855. * rq->lock.
  856. */
  857. /*
  858. * Use hrtick when:
  859. * - enabled by features
  860. * - hrtimer is actually high res
  861. */
  862. static inline int hrtick_enabled(struct rq *rq)
  863. {
  864. if (!sched_feat(HRTICK))
  865. return 0;
  866. if (!cpu_active(cpu_of(rq)))
  867. return 0;
  868. return hrtimer_is_hres_active(&rq->hrtick_timer);
  869. }
  870. static void hrtick_clear(struct rq *rq)
  871. {
  872. if (hrtimer_active(&rq->hrtick_timer))
  873. hrtimer_cancel(&rq->hrtick_timer);
  874. }
  875. /*
  876. * High-resolution timer tick.
  877. * Runs from hardirq context with interrupts disabled.
  878. */
  879. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  880. {
  881. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  882. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  883. spin_lock(&rq->lock);
  884. update_rq_clock(rq);
  885. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  886. spin_unlock(&rq->lock);
  887. return HRTIMER_NORESTART;
  888. }
  889. #ifdef CONFIG_SMP
  890. /*
  891. * called from hardirq (IPI) context
  892. */
  893. static void __hrtick_start(void *arg)
  894. {
  895. struct rq *rq = arg;
  896. spin_lock(&rq->lock);
  897. hrtimer_restart(&rq->hrtick_timer);
  898. rq->hrtick_csd_pending = 0;
  899. spin_unlock(&rq->lock);
  900. }
  901. /*
  902. * Called to set the hrtick timer state.
  903. *
  904. * called with rq->lock held and irqs disabled
  905. */
  906. static void hrtick_start(struct rq *rq, u64 delay)
  907. {
  908. struct hrtimer *timer = &rq->hrtick_timer;
  909. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  910. hrtimer_set_expires(timer, time);
  911. if (rq == this_rq()) {
  912. hrtimer_restart(timer);
  913. } else if (!rq->hrtick_csd_pending) {
  914. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  915. rq->hrtick_csd_pending = 1;
  916. }
  917. }
  918. static int
  919. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  920. {
  921. int cpu = (int)(long)hcpu;
  922. switch (action) {
  923. case CPU_UP_CANCELED:
  924. case CPU_UP_CANCELED_FROZEN:
  925. case CPU_DOWN_PREPARE:
  926. case CPU_DOWN_PREPARE_FROZEN:
  927. case CPU_DEAD:
  928. case CPU_DEAD_FROZEN:
  929. hrtick_clear(cpu_rq(cpu));
  930. return NOTIFY_OK;
  931. }
  932. return NOTIFY_DONE;
  933. }
  934. static __init void init_hrtick(void)
  935. {
  936. hotcpu_notifier(hotplug_hrtick, 0);
  937. }
  938. #else
  939. /*
  940. * Called to set the hrtick timer state.
  941. *
  942. * called with rq->lock held and irqs disabled
  943. */
  944. static void hrtick_start(struct rq *rq, u64 delay)
  945. {
  946. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  947. HRTIMER_MODE_REL_PINNED, 0);
  948. }
  949. static inline void init_hrtick(void)
  950. {
  951. }
  952. #endif /* CONFIG_SMP */
  953. static void init_rq_hrtick(struct rq *rq)
  954. {
  955. #ifdef CONFIG_SMP
  956. rq->hrtick_csd_pending = 0;
  957. rq->hrtick_csd.flags = 0;
  958. rq->hrtick_csd.func = __hrtick_start;
  959. rq->hrtick_csd.info = rq;
  960. #endif
  961. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  962. rq->hrtick_timer.function = hrtick;
  963. }
  964. #else /* CONFIG_SCHED_HRTICK */
  965. static inline void hrtick_clear(struct rq *rq)
  966. {
  967. }
  968. static inline void init_rq_hrtick(struct rq *rq)
  969. {
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SCHED_HRTICK */
  975. /*
  976. * resched_task - mark a task 'to be rescheduled now'.
  977. *
  978. * On UP this means the setting of the need_resched flag, on SMP it
  979. * might also involve a cross-CPU call to trigger the scheduler on
  980. * the target CPU.
  981. */
  982. #ifdef CONFIG_SMP
  983. #ifndef tsk_is_polling
  984. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  985. #endif
  986. static void resched_task(struct task_struct *p)
  987. {
  988. int cpu;
  989. assert_spin_locked(&task_rq(p)->lock);
  990. if (test_tsk_need_resched(p))
  991. return;
  992. set_tsk_need_resched(p);
  993. cpu = task_cpu(p);
  994. if (cpu == smp_processor_id())
  995. return;
  996. /* NEED_RESCHED must be visible before we test polling */
  997. smp_mb();
  998. if (!tsk_is_polling(p))
  999. smp_send_reschedule(cpu);
  1000. }
  1001. static void resched_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. unsigned long flags;
  1005. if (!spin_trylock_irqsave(&rq->lock, flags))
  1006. return;
  1007. resched_task(cpu_curr(cpu));
  1008. spin_unlock_irqrestore(&rq->lock, flags);
  1009. }
  1010. #ifdef CONFIG_NO_HZ
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_need_resched(rq->idle);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif /* CONFIG_NO_HZ */
  1047. static u64 sched_avg_period(void)
  1048. {
  1049. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1050. }
  1051. static void sched_avg_update(struct rq *rq)
  1052. {
  1053. s64 period = sched_avg_period();
  1054. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1055. rq->age_stamp += period;
  1056. rq->rt_avg /= 2;
  1057. }
  1058. }
  1059. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1060. {
  1061. rq->rt_avg += rt_delta;
  1062. sched_avg_update(rq);
  1063. }
  1064. #else /* !CONFIG_SMP */
  1065. static void resched_task(struct task_struct *p)
  1066. {
  1067. assert_spin_locked(&task_rq(p)->lock);
  1068. set_tsk_need_resched(p);
  1069. }
  1070. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1071. {
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. /*
  1121. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1122. * of tasks with abnormal "nice" values across CPUs the contribution that
  1123. * each task makes to its run queue's load is weighted according to its
  1124. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1125. * scaled version of the new time slice allocation that they receive on time
  1126. * slice expiry etc.
  1127. */
  1128. #define WEIGHT_IDLEPRIO 3
  1129. #define WMULT_IDLEPRIO 1431655765
  1130. /*
  1131. * Nice levels are multiplicative, with a gentle 10% change for every
  1132. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1133. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1134. * that remained on nice 0.
  1135. *
  1136. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1137. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1138. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1139. * If a task goes up by ~10% and another task goes down by ~10% then
  1140. * the relative distance between them is ~25%.)
  1141. */
  1142. static const int prio_to_weight[40] = {
  1143. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1144. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1145. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1146. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1147. /* 0 */ 1024, 820, 655, 526, 423,
  1148. /* 5 */ 335, 272, 215, 172, 137,
  1149. /* 10 */ 110, 87, 70, 56, 45,
  1150. /* 15 */ 36, 29, 23, 18, 15,
  1151. };
  1152. /*
  1153. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1154. *
  1155. * In cases where the weight does not change often, we can use the
  1156. * precalculated inverse to speed up arithmetics by turning divisions
  1157. * into multiplications:
  1158. */
  1159. static const u32 prio_to_wmult[40] = {
  1160. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1161. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1162. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1163. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1164. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1165. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1166. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1167. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1168. };
  1169. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1170. /*
  1171. * runqueue iterator, to support SMP load-balancing between different
  1172. * scheduling classes, without having to expose their internal data
  1173. * structures to the load-balancing proper:
  1174. */
  1175. struct rq_iterator {
  1176. void *arg;
  1177. struct task_struct *(*start)(void *);
  1178. struct task_struct *(*next)(void *);
  1179. };
  1180. #ifdef CONFIG_SMP
  1181. static unsigned long
  1182. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1183. unsigned long max_load_move, struct sched_domain *sd,
  1184. enum cpu_idle_type idle, int *all_pinned,
  1185. int *this_best_prio, struct rq_iterator *iterator);
  1186. static int
  1187. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. struct sched_domain *sd, enum cpu_idle_type idle,
  1189. struct rq_iterator *iterator);
  1190. #endif
  1191. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1192. enum cpuacct_stat_index {
  1193. CPUACCT_STAT_USER, /* ... user mode */
  1194. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1195. CPUACCT_STAT_NSTATS,
  1196. };
  1197. #ifdef CONFIG_CGROUP_CPUACCT
  1198. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1199. static void cpuacct_update_stats(struct task_struct *tsk,
  1200. enum cpuacct_stat_index idx, cputime_t val);
  1201. #else
  1202. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1203. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val) {}
  1205. #endif
  1206. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_add(&rq->load, load);
  1209. }
  1210. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_sub(&rq->load, load);
  1213. }
  1214. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1215. typedef int (*tg_visitor)(struct task_group *, void *);
  1216. /*
  1217. * Iterate the full tree, calling @down when first entering a node and @up when
  1218. * leaving it for the final time.
  1219. */
  1220. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1221. {
  1222. struct task_group *parent, *child;
  1223. int ret;
  1224. rcu_read_lock();
  1225. parent = &root_task_group;
  1226. down:
  1227. ret = (*down)(parent, data);
  1228. if (ret)
  1229. goto out_unlock;
  1230. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1231. parent = child;
  1232. goto down;
  1233. up:
  1234. continue;
  1235. }
  1236. ret = (*up)(parent, data);
  1237. if (ret)
  1238. goto out_unlock;
  1239. child = parent;
  1240. parent = parent->parent;
  1241. if (parent)
  1242. goto up;
  1243. out_unlock:
  1244. rcu_read_unlock();
  1245. return ret;
  1246. }
  1247. static int tg_nop(struct task_group *tg, void *data)
  1248. {
  1249. return 0;
  1250. }
  1251. #endif
  1252. #ifdef CONFIG_SMP
  1253. /* Used instead of source_load when we know the type == 0 */
  1254. static unsigned long weighted_cpuload(const int cpu)
  1255. {
  1256. return cpu_rq(cpu)->load.weight;
  1257. }
  1258. /*
  1259. * Return a low guess at the load of a migration-source cpu weighted
  1260. * according to the scheduling class and "nice" value.
  1261. *
  1262. * We want to under-estimate the load of migration sources, to
  1263. * balance conservatively.
  1264. */
  1265. static unsigned long source_load(int cpu, int type)
  1266. {
  1267. struct rq *rq = cpu_rq(cpu);
  1268. unsigned long total = weighted_cpuload(cpu);
  1269. if (type == 0 || !sched_feat(LB_BIAS))
  1270. return total;
  1271. return min(rq->cpu_load[type-1], total);
  1272. }
  1273. /*
  1274. * Return a high guess at the load of a migration-target cpu weighted
  1275. * according to the scheduling class and "nice" value.
  1276. */
  1277. static unsigned long target_load(int cpu, int type)
  1278. {
  1279. struct rq *rq = cpu_rq(cpu);
  1280. unsigned long total = weighted_cpuload(cpu);
  1281. if (type == 0 || !sched_feat(LB_BIAS))
  1282. return total;
  1283. return max(rq->cpu_load[type-1], total);
  1284. }
  1285. static struct sched_group *group_of(int cpu)
  1286. {
  1287. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1288. if (!sd)
  1289. return NULL;
  1290. return sd->groups;
  1291. }
  1292. static unsigned long power_of(int cpu)
  1293. {
  1294. struct sched_group *group = group_of(cpu);
  1295. if (!group)
  1296. return SCHED_LOAD_SCALE;
  1297. return group->cpu_power;
  1298. }
  1299. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1300. static unsigned long cpu_avg_load_per_task(int cpu)
  1301. {
  1302. struct rq *rq = cpu_rq(cpu);
  1303. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1304. if (nr_running)
  1305. rq->avg_load_per_task = rq->load.weight / nr_running;
  1306. else
  1307. rq->avg_load_per_task = 0;
  1308. return rq->avg_load_per_task;
  1309. }
  1310. #ifdef CONFIG_FAIR_GROUP_SCHED
  1311. struct update_shares_data {
  1312. unsigned long rq_weight[NR_CPUS];
  1313. };
  1314. static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
  1315. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1316. /*
  1317. * Calculate and set the cpu's group shares.
  1318. */
  1319. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1320. unsigned long sd_shares,
  1321. unsigned long sd_rq_weight,
  1322. struct update_shares_data *usd)
  1323. {
  1324. unsigned long shares, rq_weight;
  1325. int boost = 0;
  1326. rq_weight = usd->rq_weight[cpu];
  1327. if (!rq_weight) {
  1328. boost = 1;
  1329. rq_weight = NICE_0_LOAD;
  1330. }
  1331. /*
  1332. * \Sum_j shares_j * rq_weight_i
  1333. * shares_i = -----------------------------
  1334. * \Sum_j rq_weight_j
  1335. */
  1336. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1337. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1338. if (abs(shares - tg->se[cpu]->load.weight) >
  1339. sysctl_sched_shares_thresh) {
  1340. struct rq *rq = cpu_rq(cpu);
  1341. unsigned long flags;
  1342. spin_lock_irqsave(&rq->lock, flags);
  1343. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1344. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1345. __set_se_shares(tg->se[cpu], shares);
  1346. spin_unlock_irqrestore(&rq->lock, flags);
  1347. }
  1348. }
  1349. /*
  1350. * Re-compute the task group their per cpu shares over the given domain.
  1351. * This needs to be done in a bottom-up fashion because the rq weight of a
  1352. * parent group depends on the shares of its child groups.
  1353. */
  1354. static int tg_shares_up(struct task_group *tg, void *data)
  1355. {
  1356. unsigned long weight, rq_weight = 0, shares = 0;
  1357. struct update_shares_data *usd;
  1358. struct sched_domain *sd = data;
  1359. unsigned long flags;
  1360. int i;
  1361. if (!tg->se[0])
  1362. return 0;
  1363. local_irq_save(flags);
  1364. usd = &__get_cpu_var(update_shares_data);
  1365. for_each_cpu(i, sched_domain_span(sd)) {
  1366. weight = tg->cfs_rq[i]->load.weight;
  1367. usd->rq_weight[i] = weight;
  1368. /*
  1369. * If there are currently no tasks on the cpu pretend there
  1370. * is one of average load so that when a new task gets to
  1371. * run here it will not get delayed by group starvation.
  1372. */
  1373. if (!weight)
  1374. weight = NICE_0_LOAD;
  1375. rq_weight += weight;
  1376. shares += tg->cfs_rq[i]->shares;
  1377. }
  1378. if ((!shares && rq_weight) || shares > tg->shares)
  1379. shares = tg->shares;
  1380. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1381. shares = tg->shares;
  1382. for_each_cpu(i, sched_domain_span(sd))
  1383. update_group_shares_cpu(tg, i, shares, rq_weight, usd);
  1384. local_irq_restore(flags);
  1385. return 0;
  1386. }
  1387. /*
  1388. * Compute the cpu's hierarchical load factor for each task group.
  1389. * This needs to be done in a top-down fashion because the load of a child
  1390. * group is a fraction of its parents load.
  1391. */
  1392. static int tg_load_down(struct task_group *tg, void *data)
  1393. {
  1394. unsigned long load;
  1395. long cpu = (long)data;
  1396. if (!tg->parent) {
  1397. load = cpu_rq(cpu)->load.weight;
  1398. } else {
  1399. load = tg->parent->cfs_rq[cpu]->h_load;
  1400. load *= tg->cfs_rq[cpu]->shares;
  1401. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1402. }
  1403. tg->cfs_rq[cpu]->h_load = load;
  1404. return 0;
  1405. }
  1406. static void update_shares(struct sched_domain *sd)
  1407. {
  1408. s64 elapsed;
  1409. u64 now;
  1410. if (root_task_group_empty())
  1411. return;
  1412. now = cpu_clock(raw_smp_processor_id());
  1413. elapsed = now - sd->last_update;
  1414. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1415. sd->last_update = now;
  1416. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1417. }
  1418. }
  1419. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1420. {
  1421. if (root_task_group_empty())
  1422. return;
  1423. spin_unlock(&rq->lock);
  1424. update_shares(sd);
  1425. spin_lock(&rq->lock);
  1426. }
  1427. static void update_h_load(long cpu)
  1428. {
  1429. if (root_task_group_empty())
  1430. return;
  1431. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1432. }
  1433. #else
  1434. static inline void update_shares(struct sched_domain *sd)
  1435. {
  1436. }
  1437. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1438. {
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_PREEMPT
  1442. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1443. /*
  1444. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1445. * way at the expense of forcing extra atomic operations in all
  1446. * invocations. This assures that the double_lock is acquired using the
  1447. * same underlying policy as the spinlock_t on this architecture, which
  1448. * reduces latency compared to the unfair variant below. However, it
  1449. * also adds more overhead and therefore may reduce throughput.
  1450. */
  1451. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1452. __releases(this_rq->lock)
  1453. __acquires(busiest->lock)
  1454. __acquires(this_rq->lock)
  1455. {
  1456. spin_unlock(&this_rq->lock);
  1457. double_rq_lock(this_rq, busiest);
  1458. return 1;
  1459. }
  1460. #else
  1461. /*
  1462. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1463. * latency by eliminating extra atomic operations when the locks are
  1464. * already in proper order on entry. This favors lower cpu-ids and will
  1465. * grant the double lock to lower cpus over higher ids under contention,
  1466. * regardless of entry order into the function.
  1467. */
  1468. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1469. __releases(this_rq->lock)
  1470. __acquires(busiest->lock)
  1471. __acquires(this_rq->lock)
  1472. {
  1473. int ret = 0;
  1474. if (unlikely(!spin_trylock(&busiest->lock))) {
  1475. if (busiest < this_rq) {
  1476. spin_unlock(&this_rq->lock);
  1477. spin_lock(&busiest->lock);
  1478. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1479. ret = 1;
  1480. } else
  1481. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. #include "sched_stats.h"
  1515. #include "sched_idletask.c"
  1516. #include "sched_fair.c"
  1517. #include "sched_rt.c"
  1518. #ifdef CONFIG_SCHED_DEBUG
  1519. # include "sched_debug.c"
  1520. #endif
  1521. #define sched_class_highest (&rt_sched_class)
  1522. #define for_each_class(class) \
  1523. for (class = sched_class_highest; class; class = class->next)
  1524. static void inc_nr_running(struct rq *rq)
  1525. {
  1526. rq->nr_running++;
  1527. }
  1528. static void dec_nr_running(struct rq *rq)
  1529. {
  1530. rq->nr_running--;
  1531. }
  1532. static void set_load_weight(struct task_struct *p)
  1533. {
  1534. if (task_has_rt_policy(p)) {
  1535. p->se.load.weight = prio_to_weight[0] * 2;
  1536. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1537. return;
  1538. }
  1539. /*
  1540. * SCHED_IDLE tasks get minimal weight:
  1541. */
  1542. if (p->policy == SCHED_IDLE) {
  1543. p->se.load.weight = WEIGHT_IDLEPRIO;
  1544. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1545. return;
  1546. }
  1547. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1548. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1549. }
  1550. static void update_avg(u64 *avg, u64 sample)
  1551. {
  1552. s64 diff = sample - *avg;
  1553. *avg += diff >> 3;
  1554. }
  1555. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1556. {
  1557. if (wakeup)
  1558. p->se.start_runtime = p->se.sum_exec_runtime;
  1559. sched_info_queued(p);
  1560. p->sched_class->enqueue_task(rq, p, wakeup);
  1561. p->se.on_rq = 1;
  1562. }
  1563. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1564. {
  1565. if (sleep) {
  1566. if (p->se.last_wakeup) {
  1567. update_avg(&p->se.avg_overlap,
  1568. p->se.sum_exec_runtime - p->se.last_wakeup);
  1569. p->se.last_wakeup = 0;
  1570. } else {
  1571. update_avg(&p->se.avg_wakeup,
  1572. sysctl_sched_wakeup_granularity);
  1573. }
  1574. }
  1575. sched_info_dequeued(p);
  1576. p->sched_class->dequeue_task(rq, p, sleep);
  1577. p->se.on_rq = 0;
  1578. }
  1579. /*
  1580. * __normal_prio - return the priority that is based on the static prio
  1581. */
  1582. static inline int __normal_prio(struct task_struct *p)
  1583. {
  1584. return p->static_prio;
  1585. }
  1586. /*
  1587. * Calculate the expected normal priority: i.e. priority
  1588. * without taking RT-inheritance into account. Might be
  1589. * boosted by interactivity modifiers. Changes upon fork,
  1590. * setprio syscalls, and whenever the interactivity
  1591. * estimator recalculates.
  1592. */
  1593. static inline int normal_prio(struct task_struct *p)
  1594. {
  1595. int prio;
  1596. if (task_has_rt_policy(p))
  1597. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1598. else
  1599. prio = __normal_prio(p);
  1600. return prio;
  1601. }
  1602. /*
  1603. * Calculate the current priority, i.e. the priority
  1604. * taken into account by the scheduler. This value might
  1605. * be boosted by RT tasks, or might be boosted by
  1606. * interactivity modifiers. Will be RT if the task got
  1607. * RT-boosted. If not then it returns p->normal_prio.
  1608. */
  1609. static int effective_prio(struct task_struct *p)
  1610. {
  1611. p->normal_prio = normal_prio(p);
  1612. /*
  1613. * If we are RT tasks or we were boosted to RT priority,
  1614. * keep the priority unchanged. Otherwise, update priority
  1615. * to the normal priority:
  1616. */
  1617. if (!rt_prio(p->prio))
  1618. return p->normal_prio;
  1619. return p->prio;
  1620. }
  1621. /*
  1622. * activate_task - move a task to the runqueue.
  1623. */
  1624. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1625. {
  1626. if (task_contributes_to_load(p))
  1627. rq->nr_uninterruptible--;
  1628. enqueue_task(rq, p, wakeup);
  1629. inc_nr_running(rq);
  1630. }
  1631. /*
  1632. * deactivate_task - remove a task from the runqueue.
  1633. */
  1634. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1635. {
  1636. if (task_contributes_to_load(p))
  1637. rq->nr_uninterruptible++;
  1638. dequeue_task(rq, p, sleep);
  1639. dec_nr_running(rq);
  1640. }
  1641. /**
  1642. * task_curr - is this task currently executing on a CPU?
  1643. * @p: the task in question.
  1644. */
  1645. inline int task_curr(const struct task_struct *p)
  1646. {
  1647. return cpu_curr(task_cpu(p)) == p;
  1648. }
  1649. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1650. {
  1651. set_task_rq(p, cpu);
  1652. #ifdef CONFIG_SMP
  1653. /*
  1654. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1655. * successfuly executed on another CPU. We must ensure that updates of
  1656. * per-task data have been completed by this moment.
  1657. */
  1658. smp_wmb();
  1659. task_thread_info(p)->cpu = cpu;
  1660. #endif
  1661. }
  1662. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1663. const struct sched_class *prev_class,
  1664. int oldprio, int running)
  1665. {
  1666. if (prev_class != p->sched_class) {
  1667. if (prev_class->switched_from)
  1668. prev_class->switched_from(rq, p, running);
  1669. p->sched_class->switched_to(rq, p, running);
  1670. } else
  1671. p->sched_class->prio_changed(rq, p, oldprio, running);
  1672. }
  1673. #ifdef CONFIG_SMP
  1674. /*
  1675. * Is this task likely cache-hot:
  1676. */
  1677. static int
  1678. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1679. {
  1680. s64 delta;
  1681. /*
  1682. * Buddy candidates are cache hot:
  1683. */
  1684. if (sched_feat(CACHE_HOT_BUDDY) &&
  1685. (&p->se == cfs_rq_of(&p->se)->next ||
  1686. &p->se == cfs_rq_of(&p->se)->last))
  1687. return 1;
  1688. if (p->sched_class != &fair_sched_class)
  1689. return 0;
  1690. if (sysctl_sched_migration_cost == -1)
  1691. return 1;
  1692. if (sysctl_sched_migration_cost == 0)
  1693. return 0;
  1694. delta = now - p->se.exec_start;
  1695. return delta < (s64)sysctl_sched_migration_cost;
  1696. }
  1697. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1698. {
  1699. int old_cpu = task_cpu(p);
  1700. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1701. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1702. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1703. u64 clock_offset;
  1704. clock_offset = old_rq->clock - new_rq->clock;
  1705. trace_sched_migrate_task(p, new_cpu);
  1706. #ifdef CONFIG_SCHEDSTATS
  1707. if (p->se.wait_start)
  1708. p->se.wait_start -= clock_offset;
  1709. if (p->se.sleep_start)
  1710. p->se.sleep_start -= clock_offset;
  1711. if (p->se.block_start)
  1712. p->se.block_start -= clock_offset;
  1713. #endif
  1714. if (old_cpu != new_cpu) {
  1715. p->se.nr_migrations++;
  1716. new_rq->nr_migrations_in++;
  1717. #ifdef CONFIG_SCHEDSTATS
  1718. if (task_hot(p, old_rq->clock, NULL))
  1719. schedstat_inc(p, se.nr_forced2_migrations);
  1720. #endif
  1721. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1722. 1, 1, NULL, 0);
  1723. }
  1724. p->se.vruntime -= old_cfsrq->min_vruntime -
  1725. new_cfsrq->min_vruntime;
  1726. __set_task_cpu(p, new_cpu);
  1727. }
  1728. struct migration_req {
  1729. struct list_head list;
  1730. struct task_struct *task;
  1731. int dest_cpu;
  1732. struct completion done;
  1733. };
  1734. /*
  1735. * The task's runqueue lock must be held.
  1736. * Returns true if you have to wait for migration thread.
  1737. */
  1738. static int
  1739. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1740. {
  1741. struct rq *rq = task_rq(p);
  1742. /*
  1743. * If the task is not on a runqueue (and not running), then
  1744. * it is sufficient to simply update the task's cpu field.
  1745. */
  1746. if (!p->se.on_rq && !task_running(rq, p)) {
  1747. set_task_cpu(p, dest_cpu);
  1748. return 0;
  1749. }
  1750. init_completion(&req->done);
  1751. req->task = p;
  1752. req->dest_cpu = dest_cpu;
  1753. list_add(&req->list, &rq->migration_queue);
  1754. return 1;
  1755. }
  1756. /*
  1757. * wait_task_context_switch - wait for a thread to complete at least one
  1758. * context switch.
  1759. *
  1760. * @p must not be current.
  1761. */
  1762. void wait_task_context_switch(struct task_struct *p)
  1763. {
  1764. unsigned long nvcsw, nivcsw, flags;
  1765. int running;
  1766. struct rq *rq;
  1767. nvcsw = p->nvcsw;
  1768. nivcsw = p->nivcsw;
  1769. for (;;) {
  1770. /*
  1771. * The runqueue is assigned before the actual context
  1772. * switch. We need to take the runqueue lock.
  1773. *
  1774. * We could check initially without the lock but it is
  1775. * very likely that we need to take the lock in every
  1776. * iteration.
  1777. */
  1778. rq = task_rq_lock(p, &flags);
  1779. running = task_running(rq, p);
  1780. task_rq_unlock(rq, &flags);
  1781. if (likely(!running))
  1782. break;
  1783. /*
  1784. * The switch count is incremented before the actual
  1785. * context switch. We thus wait for two switches to be
  1786. * sure at least one completed.
  1787. */
  1788. if ((p->nvcsw - nvcsw) > 1)
  1789. break;
  1790. if ((p->nivcsw - nivcsw) > 1)
  1791. break;
  1792. cpu_relax();
  1793. }
  1794. }
  1795. /*
  1796. * wait_task_inactive - wait for a thread to unschedule.
  1797. *
  1798. * If @match_state is nonzero, it's the @p->state value just checked and
  1799. * not expected to change. If it changes, i.e. @p might have woken up,
  1800. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1801. * we return a positive number (its total switch count). If a second call
  1802. * a short while later returns the same number, the caller can be sure that
  1803. * @p has remained unscheduled the whole time.
  1804. *
  1805. * The caller must ensure that the task *will* unschedule sometime soon,
  1806. * else this function might spin for a *long* time. This function can't
  1807. * be called with interrupts off, or it may introduce deadlock with
  1808. * smp_call_function() if an IPI is sent by the same process we are
  1809. * waiting to become inactive.
  1810. */
  1811. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1812. {
  1813. unsigned long flags;
  1814. int running, on_rq;
  1815. unsigned long ncsw;
  1816. struct rq *rq;
  1817. for (;;) {
  1818. /*
  1819. * We do the initial early heuristics without holding
  1820. * any task-queue locks at all. We'll only try to get
  1821. * the runqueue lock when things look like they will
  1822. * work out!
  1823. */
  1824. rq = task_rq(p);
  1825. /*
  1826. * If the task is actively running on another CPU
  1827. * still, just relax and busy-wait without holding
  1828. * any locks.
  1829. *
  1830. * NOTE! Since we don't hold any locks, it's not
  1831. * even sure that "rq" stays as the right runqueue!
  1832. * But we don't care, since "task_running()" will
  1833. * return false if the runqueue has changed and p
  1834. * is actually now running somewhere else!
  1835. */
  1836. while (task_running(rq, p)) {
  1837. if (match_state && unlikely(p->state != match_state))
  1838. return 0;
  1839. cpu_relax();
  1840. }
  1841. /*
  1842. * Ok, time to look more closely! We need the rq
  1843. * lock now, to be *sure*. If we're wrong, we'll
  1844. * just go back and repeat.
  1845. */
  1846. rq = task_rq_lock(p, &flags);
  1847. trace_sched_wait_task(rq, p);
  1848. running = task_running(rq, p);
  1849. on_rq = p->se.on_rq;
  1850. ncsw = 0;
  1851. if (!match_state || p->state == match_state)
  1852. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1853. task_rq_unlock(rq, &flags);
  1854. /*
  1855. * If it changed from the expected state, bail out now.
  1856. */
  1857. if (unlikely(!ncsw))
  1858. break;
  1859. /*
  1860. * Was it really running after all now that we
  1861. * checked with the proper locks actually held?
  1862. *
  1863. * Oops. Go back and try again..
  1864. */
  1865. if (unlikely(running)) {
  1866. cpu_relax();
  1867. continue;
  1868. }
  1869. /*
  1870. * It's not enough that it's not actively running,
  1871. * it must be off the runqueue _entirely_, and not
  1872. * preempted!
  1873. *
  1874. * So if it was still runnable (but just not actively
  1875. * running right now), it's preempted, and we should
  1876. * yield - it could be a while.
  1877. */
  1878. if (unlikely(on_rq)) {
  1879. schedule_timeout_uninterruptible(1);
  1880. continue;
  1881. }
  1882. /*
  1883. * Ahh, all good. It wasn't running, and it wasn't
  1884. * runnable, which means that it will never become
  1885. * running in the future either. We're all done!
  1886. */
  1887. break;
  1888. }
  1889. return ncsw;
  1890. }
  1891. /***
  1892. * kick_process - kick a running thread to enter/exit the kernel
  1893. * @p: the to-be-kicked thread
  1894. *
  1895. * Cause a process which is running on another CPU to enter
  1896. * kernel-mode, without any delay. (to get signals handled.)
  1897. *
  1898. * NOTE: this function doesnt have to take the runqueue lock,
  1899. * because all it wants to ensure is that the remote task enters
  1900. * the kernel. If the IPI races and the task has been migrated
  1901. * to another CPU then no harm is done and the purpose has been
  1902. * achieved as well.
  1903. */
  1904. void kick_process(struct task_struct *p)
  1905. {
  1906. int cpu;
  1907. preempt_disable();
  1908. cpu = task_cpu(p);
  1909. if ((cpu != smp_processor_id()) && task_curr(p))
  1910. smp_send_reschedule(cpu);
  1911. preempt_enable();
  1912. }
  1913. EXPORT_SYMBOL_GPL(kick_process);
  1914. #endif /* CONFIG_SMP */
  1915. /**
  1916. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1917. * @p: the task to evaluate
  1918. * @func: the function to be called
  1919. * @info: the function call argument
  1920. *
  1921. * Calls the function @func when the task is currently running. This might
  1922. * be on the current CPU, which just calls the function directly
  1923. */
  1924. void task_oncpu_function_call(struct task_struct *p,
  1925. void (*func) (void *info), void *info)
  1926. {
  1927. int cpu;
  1928. preempt_disable();
  1929. cpu = task_cpu(p);
  1930. if (task_curr(p))
  1931. smp_call_function_single(cpu, func, info, 1);
  1932. preempt_enable();
  1933. }
  1934. /***
  1935. * try_to_wake_up - wake up a thread
  1936. * @p: the to-be-woken-up thread
  1937. * @state: the mask of task states that can be woken
  1938. * @sync: do a synchronous wakeup?
  1939. *
  1940. * Put it on the run-queue if it's not already there. The "current"
  1941. * thread is always on the run-queue (except when the actual
  1942. * re-schedule is in progress), and as such you're allowed to do
  1943. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1944. * runnable without the overhead of this.
  1945. *
  1946. * returns failure only if the task is already active.
  1947. */
  1948. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1949. int wake_flags)
  1950. {
  1951. int cpu, orig_cpu, this_cpu, success = 0;
  1952. unsigned long flags;
  1953. struct rq *rq;
  1954. if (!sched_feat(SYNC_WAKEUPS))
  1955. wake_flags &= ~WF_SYNC;
  1956. this_cpu = get_cpu();
  1957. smp_wmb();
  1958. rq = task_rq_lock(p, &flags);
  1959. update_rq_clock(rq);
  1960. if (!(p->state & state))
  1961. goto out;
  1962. if (p->se.on_rq)
  1963. goto out_running;
  1964. cpu = task_cpu(p);
  1965. orig_cpu = cpu;
  1966. #ifdef CONFIG_SMP
  1967. if (unlikely(task_running(rq, p)))
  1968. goto out_activate;
  1969. /*
  1970. * In order to handle concurrent wakeups and release the rq->lock
  1971. * we put the task in TASK_WAKING state.
  1972. *
  1973. * First fix up the nr_uninterruptible count:
  1974. */
  1975. if (task_contributes_to_load(p))
  1976. rq->nr_uninterruptible--;
  1977. p->state = TASK_WAKING;
  1978. task_rq_unlock(rq, &flags);
  1979. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1980. if (cpu != orig_cpu)
  1981. set_task_cpu(p, cpu);
  1982. rq = task_rq_lock(p, &flags);
  1983. WARN_ON(p->state != TASK_WAKING);
  1984. cpu = task_cpu(p);
  1985. #ifdef CONFIG_SCHEDSTATS
  1986. schedstat_inc(rq, ttwu_count);
  1987. if (cpu == this_cpu)
  1988. schedstat_inc(rq, ttwu_local);
  1989. else {
  1990. struct sched_domain *sd;
  1991. for_each_domain(this_cpu, sd) {
  1992. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1993. schedstat_inc(sd, ttwu_wake_remote);
  1994. break;
  1995. }
  1996. }
  1997. }
  1998. #endif /* CONFIG_SCHEDSTATS */
  1999. out_activate:
  2000. #endif /* CONFIG_SMP */
  2001. schedstat_inc(p, se.nr_wakeups);
  2002. if (wake_flags & WF_SYNC)
  2003. schedstat_inc(p, se.nr_wakeups_sync);
  2004. if (orig_cpu != cpu)
  2005. schedstat_inc(p, se.nr_wakeups_migrate);
  2006. if (cpu == this_cpu)
  2007. schedstat_inc(p, se.nr_wakeups_local);
  2008. else
  2009. schedstat_inc(p, se.nr_wakeups_remote);
  2010. activate_task(rq, p, 1);
  2011. success = 1;
  2012. /*
  2013. * Only attribute actual wakeups done by this task.
  2014. */
  2015. if (!in_interrupt()) {
  2016. struct sched_entity *se = &current->se;
  2017. u64 sample = se->sum_exec_runtime;
  2018. if (se->last_wakeup)
  2019. sample -= se->last_wakeup;
  2020. else
  2021. sample -= se->start_runtime;
  2022. update_avg(&se->avg_wakeup, sample);
  2023. se->last_wakeup = se->sum_exec_runtime;
  2024. }
  2025. out_running:
  2026. trace_sched_wakeup(rq, p, success);
  2027. check_preempt_curr(rq, p, wake_flags);
  2028. p->state = TASK_RUNNING;
  2029. #ifdef CONFIG_SMP
  2030. if (p->sched_class->task_wake_up)
  2031. p->sched_class->task_wake_up(rq, p);
  2032. #endif
  2033. out:
  2034. task_rq_unlock(rq, &flags);
  2035. put_cpu();
  2036. return success;
  2037. }
  2038. /**
  2039. * wake_up_process - Wake up a specific process
  2040. * @p: The process to be woken up.
  2041. *
  2042. * Attempt to wake up the nominated process and move it to the set of runnable
  2043. * processes. Returns 1 if the process was woken up, 0 if it was already
  2044. * running.
  2045. *
  2046. * It may be assumed that this function implies a write memory barrier before
  2047. * changing the task state if and only if any tasks are woken up.
  2048. */
  2049. int wake_up_process(struct task_struct *p)
  2050. {
  2051. return try_to_wake_up(p, TASK_ALL, 0);
  2052. }
  2053. EXPORT_SYMBOL(wake_up_process);
  2054. int wake_up_state(struct task_struct *p, unsigned int state)
  2055. {
  2056. return try_to_wake_up(p, state, 0);
  2057. }
  2058. /*
  2059. * Perform scheduler related setup for a newly forked process p.
  2060. * p is forked by current.
  2061. *
  2062. * __sched_fork() is basic setup used by init_idle() too:
  2063. */
  2064. static void __sched_fork(struct task_struct *p)
  2065. {
  2066. p->se.exec_start = 0;
  2067. p->se.sum_exec_runtime = 0;
  2068. p->se.prev_sum_exec_runtime = 0;
  2069. p->se.nr_migrations = 0;
  2070. p->se.last_wakeup = 0;
  2071. p->se.avg_overlap = 0;
  2072. p->se.start_runtime = 0;
  2073. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2074. #ifdef CONFIG_SCHEDSTATS
  2075. p->se.wait_start = 0;
  2076. p->se.wait_max = 0;
  2077. p->se.wait_count = 0;
  2078. p->se.wait_sum = 0;
  2079. p->se.sleep_start = 0;
  2080. p->se.sleep_max = 0;
  2081. p->se.sum_sleep_runtime = 0;
  2082. p->se.block_start = 0;
  2083. p->se.block_max = 0;
  2084. p->se.exec_max = 0;
  2085. p->se.slice_max = 0;
  2086. p->se.nr_migrations_cold = 0;
  2087. p->se.nr_failed_migrations_affine = 0;
  2088. p->se.nr_failed_migrations_running = 0;
  2089. p->se.nr_failed_migrations_hot = 0;
  2090. p->se.nr_forced_migrations = 0;
  2091. p->se.nr_forced2_migrations = 0;
  2092. p->se.nr_wakeups = 0;
  2093. p->se.nr_wakeups_sync = 0;
  2094. p->se.nr_wakeups_migrate = 0;
  2095. p->se.nr_wakeups_local = 0;
  2096. p->se.nr_wakeups_remote = 0;
  2097. p->se.nr_wakeups_affine = 0;
  2098. p->se.nr_wakeups_affine_attempts = 0;
  2099. p->se.nr_wakeups_passive = 0;
  2100. p->se.nr_wakeups_idle = 0;
  2101. #endif
  2102. INIT_LIST_HEAD(&p->rt.run_list);
  2103. p->se.on_rq = 0;
  2104. INIT_LIST_HEAD(&p->se.group_node);
  2105. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2106. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2107. #endif
  2108. /*
  2109. * We mark the process as running here, but have not actually
  2110. * inserted it onto the runqueue yet. This guarantees that
  2111. * nobody will actually run it, and a signal or other external
  2112. * event cannot wake it up and insert it on the runqueue either.
  2113. */
  2114. p->state = TASK_RUNNING;
  2115. }
  2116. /*
  2117. * fork()/clone()-time setup:
  2118. */
  2119. void sched_fork(struct task_struct *p, int clone_flags)
  2120. {
  2121. int cpu = get_cpu();
  2122. __sched_fork(p);
  2123. /*
  2124. * Make sure we do not leak PI boosting priority to the child.
  2125. */
  2126. p->prio = current->normal_prio;
  2127. /*
  2128. * Revert to default priority/policy on fork if requested.
  2129. */
  2130. if (unlikely(p->sched_reset_on_fork)) {
  2131. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2132. p->policy = SCHED_NORMAL;
  2133. if (p->normal_prio < DEFAULT_PRIO)
  2134. p->prio = DEFAULT_PRIO;
  2135. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2136. p->static_prio = NICE_TO_PRIO(0);
  2137. set_load_weight(p);
  2138. }
  2139. /*
  2140. * We don't need the reset flag anymore after the fork. It has
  2141. * fulfilled its duty:
  2142. */
  2143. p->sched_reset_on_fork = 0;
  2144. }
  2145. if (!rt_prio(p->prio))
  2146. p->sched_class = &fair_sched_class;
  2147. #ifdef CONFIG_SMP
  2148. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
  2149. #endif
  2150. set_task_cpu(p, cpu);
  2151. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2152. if (likely(sched_info_on()))
  2153. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2154. #endif
  2155. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2156. p->oncpu = 0;
  2157. #endif
  2158. #ifdef CONFIG_PREEMPT
  2159. /* Want to start with kernel preemption disabled. */
  2160. task_thread_info(p)->preempt_count = 1;
  2161. #endif
  2162. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2163. put_cpu();
  2164. }
  2165. /*
  2166. * wake_up_new_task - wake up a newly created task for the first time.
  2167. *
  2168. * This function will do some initial scheduler statistics housekeeping
  2169. * that must be done for every newly created context, then puts the task
  2170. * on the runqueue and wakes it.
  2171. */
  2172. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2173. {
  2174. unsigned long flags;
  2175. struct rq *rq;
  2176. rq = task_rq_lock(p, &flags);
  2177. BUG_ON(p->state != TASK_RUNNING);
  2178. update_rq_clock(rq);
  2179. p->prio = effective_prio(p);
  2180. if (!p->sched_class->task_new || !current->se.on_rq) {
  2181. activate_task(rq, p, 0);
  2182. } else {
  2183. /*
  2184. * Let the scheduling class do new task startup
  2185. * management (if any):
  2186. */
  2187. p->sched_class->task_new(rq, p);
  2188. inc_nr_running(rq);
  2189. }
  2190. trace_sched_wakeup_new(rq, p, 1);
  2191. check_preempt_curr(rq, p, WF_FORK);
  2192. #ifdef CONFIG_SMP
  2193. if (p->sched_class->task_wake_up)
  2194. p->sched_class->task_wake_up(rq, p);
  2195. #endif
  2196. task_rq_unlock(rq, &flags);
  2197. }
  2198. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2199. /**
  2200. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2201. * @notifier: notifier struct to register
  2202. */
  2203. void preempt_notifier_register(struct preempt_notifier *notifier)
  2204. {
  2205. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2206. }
  2207. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2208. /**
  2209. * preempt_notifier_unregister - no longer interested in preemption notifications
  2210. * @notifier: notifier struct to unregister
  2211. *
  2212. * This is safe to call from within a preemption notifier.
  2213. */
  2214. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2215. {
  2216. hlist_del(&notifier->link);
  2217. }
  2218. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2219. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2220. {
  2221. struct preempt_notifier *notifier;
  2222. struct hlist_node *node;
  2223. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2224. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2225. }
  2226. static void
  2227. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2228. struct task_struct *next)
  2229. {
  2230. struct preempt_notifier *notifier;
  2231. struct hlist_node *node;
  2232. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2233. notifier->ops->sched_out(notifier, next);
  2234. }
  2235. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2236. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2237. {
  2238. }
  2239. static void
  2240. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2241. struct task_struct *next)
  2242. {
  2243. }
  2244. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2245. /**
  2246. * prepare_task_switch - prepare to switch tasks
  2247. * @rq: the runqueue preparing to switch
  2248. * @prev: the current task that is being switched out
  2249. * @next: the task we are going to switch to.
  2250. *
  2251. * This is called with the rq lock held and interrupts off. It must
  2252. * be paired with a subsequent finish_task_switch after the context
  2253. * switch.
  2254. *
  2255. * prepare_task_switch sets up locking and calls architecture specific
  2256. * hooks.
  2257. */
  2258. static inline void
  2259. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2260. struct task_struct *next)
  2261. {
  2262. fire_sched_out_preempt_notifiers(prev, next);
  2263. prepare_lock_switch(rq, next);
  2264. prepare_arch_switch(next);
  2265. }
  2266. /**
  2267. * finish_task_switch - clean up after a task-switch
  2268. * @rq: runqueue associated with task-switch
  2269. * @prev: the thread we just switched away from.
  2270. *
  2271. * finish_task_switch must be called after the context switch, paired
  2272. * with a prepare_task_switch call before the context switch.
  2273. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2274. * and do any other architecture-specific cleanup actions.
  2275. *
  2276. * Note that we may have delayed dropping an mm in context_switch(). If
  2277. * so, we finish that here outside of the runqueue lock. (Doing it
  2278. * with the lock held can cause deadlocks; see schedule() for
  2279. * details.)
  2280. */
  2281. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2282. __releases(rq->lock)
  2283. {
  2284. struct mm_struct *mm = rq->prev_mm;
  2285. long prev_state;
  2286. rq->prev_mm = NULL;
  2287. /*
  2288. * A task struct has one reference for the use as "current".
  2289. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2290. * schedule one last time. The schedule call will never return, and
  2291. * the scheduled task must drop that reference.
  2292. * The test for TASK_DEAD must occur while the runqueue locks are
  2293. * still held, otherwise prev could be scheduled on another cpu, die
  2294. * there before we look at prev->state, and then the reference would
  2295. * be dropped twice.
  2296. * Manfred Spraul <manfred@colorfullife.com>
  2297. */
  2298. prev_state = prev->state;
  2299. finish_arch_switch(prev);
  2300. perf_counter_task_sched_in(current, cpu_of(rq));
  2301. finish_lock_switch(rq, prev);
  2302. fire_sched_in_preempt_notifiers(current);
  2303. if (mm)
  2304. mmdrop(mm);
  2305. if (unlikely(prev_state == TASK_DEAD)) {
  2306. /*
  2307. * Remove function-return probe instances associated with this
  2308. * task and put them back on the free list.
  2309. */
  2310. kprobe_flush_task(prev);
  2311. put_task_struct(prev);
  2312. }
  2313. }
  2314. #ifdef CONFIG_SMP
  2315. /* assumes rq->lock is held */
  2316. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2317. {
  2318. if (prev->sched_class->pre_schedule)
  2319. prev->sched_class->pre_schedule(rq, prev);
  2320. }
  2321. /* rq->lock is NOT held, but preemption is disabled */
  2322. static inline void post_schedule(struct rq *rq)
  2323. {
  2324. if (rq->post_schedule) {
  2325. unsigned long flags;
  2326. spin_lock_irqsave(&rq->lock, flags);
  2327. if (rq->curr->sched_class->post_schedule)
  2328. rq->curr->sched_class->post_schedule(rq);
  2329. spin_unlock_irqrestore(&rq->lock, flags);
  2330. rq->post_schedule = 0;
  2331. }
  2332. }
  2333. #else
  2334. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2335. {
  2336. }
  2337. static inline void post_schedule(struct rq *rq)
  2338. {
  2339. }
  2340. #endif
  2341. /**
  2342. * schedule_tail - first thing a freshly forked thread must call.
  2343. * @prev: the thread we just switched away from.
  2344. */
  2345. asmlinkage void schedule_tail(struct task_struct *prev)
  2346. __releases(rq->lock)
  2347. {
  2348. struct rq *rq = this_rq();
  2349. finish_task_switch(rq, prev);
  2350. /*
  2351. * FIXME: do we need to worry about rq being invalidated by the
  2352. * task_switch?
  2353. */
  2354. post_schedule(rq);
  2355. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2356. /* In this case, finish_task_switch does not reenable preemption */
  2357. preempt_enable();
  2358. #endif
  2359. if (current->set_child_tid)
  2360. put_user(task_pid_vnr(current), current->set_child_tid);
  2361. }
  2362. /*
  2363. * context_switch - switch to the new MM and the new
  2364. * thread's register state.
  2365. */
  2366. static inline void
  2367. context_switch(struct rq *rq, struct task_struct *prev,
  2368. struct task_struct *next)
  2369. {
  2370. struct mm_struct *mm, *oldmm;
  2371. prepare_task_switch(rq, prev, next);
  2372. trace_sched_switch(rq, prev, next);
  2373. mm = next->mm;
  2374. oldmm = prev->active_mm;
  2375. /*
  2376. * For paravirt, this is coupled with an exit in switch_to to
  2377. * combine the page table reload and the switch backend into
  2378. * one hypercall.
  2379. */
  2380. arch_start_context_switch(prev);
  2381. if (unlikely(!mm)) {
  2382. next->active_mm = oldmm;
  2383. atomic_inc(&oldmm->mm_count);
  2384. enter_lazy_tlb(oldmm, next);
  2385. } else
  2386. switch_mm(oldmm, mm, next);
  2387. if (unlikely(!prev->mm)) {
  2388. prev->active_mm = NULL;
  2389. rq->prev_mm = oldmm;
  2390. }
  2391. /*
  2392. * Since the runqueue lock will be released by the next
  2393. * task (which is an invalid locking op but in the case
  2394. * of the scheduler it's an obvious special-case), so we
  2395. * do an early lockdep release here:
  2396. */
  2397. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2398. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2399. #endif
  2400. /* Here we just switch the register state and the stack. */
  2401. switch_to(prev, next, prev);
  2402. barrier();
  2403. /*
  2404. * this_rq must be evaluated again because prev may have moved
  2405. * CPUs since it called schedule(), thus the 'rq' on its stack
  2406. * frame will be invalid.
  2407. */
  2408. finish_task_switch(this_rq(), prev);
  2409. }
  2410. /*
  2411. * nr_running, nr_uninterruptible and nr_context_switches:
  2412. *
  2413. * externally visible scheduler statistics: current number of runnable
  2414. * threads, current number of uninterruptible-sleeping threads, total
  2415. * number of context switches performed since bootup.
  2416. */
  2417. unsigned long nr_running(void)
  2418. {
  2419. unsigned long i, sum = 0;
  2420. for_each_online_cpu(i)
  2421. sum += cpu_rq(i)->nr_running;
  2422. return sum;
  2423. }
  2424. unsigned long nr_uninterruptible(void)
  2425. {
  2426. unsigned long i, sum = 0;
  2427. for_each_possible_cpu(i)
  2428. sum += cpu_rq(i)->nr_uninterruptible;
  2429. /*
  2430. * Since we read the counters lockless, it might be slightly
  2431. * inaccurate. Do not allow it to go below zero though:
  2432. */
  2433. if (unlikely((long)sum < 0))
  2434. sum = 0;
  2435. return sum;
  2436. }
  2437. unsigned long long nr_context_switches(void)
  2438. {
  2439. int i;
  2440. unsigned long long sum = 0;
  2441. for_each_possible_cpu(i)
  2442. sum += cpu_rq(i)->nr_switches;
  2443. return sum;
  2444. }
  2445. unsigned long nr_iowait(void)
  2446. {
  2447. unsigned long i, sum = 0;
  2448. for_each_possible_cpu(i)
  2449. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2450. return sum;
  2451. }
  2452. /* Variables and functions for calc_load */
  2453. static atomic_long_t calc_load_tasks;
  2454. static unsigned long calc_load_update;
  2455. unsigned long avenrun[3];
  2456. EXPORT_SYMBOL(avenrun);
  2457. /**
  2458. * get_avenrun - get the load average array
  2459. * @loads: pointer to dest load array
  2460. * @offset: offset to add
  2461. * @shift: shift count to shift the result left
  2462. *
  2463. * These values are estimates at best, so no need for locking.
  2464. */
  2465. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2466. {
  2467. loads[0] = (avenrun[0] + offset) << shift;
  2468. loads[1] = (avenrun[1] + offset) << shift;
  2469. loads[2] = (avenrun[2] + offset) << shift;
  2470. }
  2471. static unsigned long
  2472. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2473. {
  2474. load *= exp;
  2475. load += active * (FIXED_1 - exp);
  2476. return load >> FSHIFT;
  2477. }
  2478. /*
  2479. * calc_load - update the avenrun load estimates 10 ticks after the
  2480. * CPUs have updated calc_load_tasks.
  2481. */
  2482. void calc_global_load(void)
  2483. {
  2484. unsigned long upd = calc_load_update + 10;
  2485. long active;
  2486. if (time_before(jiffies, upd))
  2487. return;
  2488. active = atomic_long_read(&calc_load_tasks);
  2489. active = active > 0 ? active * FIXED_1 : 0;
  2490. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2491. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2492. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2493. calc_load_update += LOAD_FREQ;
  2494. }
  2495. /*
  2496. * Either called from update_cpu_load() or from a cpu going idle
  2497. */
  2498. static void calc_load_account_active(struct rq *this_rq)
  2499. {
  2500. long nr_active, delta;
  2501. nr_active = this_rq->nr_running;
  2502. nr_active += (long) this_rq->nr_uninterruptible;
  2503. if (nr_active != this_rq->calc_load_active) {
  2504. delta = nr_active - this_rq->calc_load_active;
  2505. this_rq->calc_load_active = nr_active;
  2506. atomic_long_add(delta, &calc_load_tasks);
  2507. }
  2508. }
  2509. /*
  2510. * Externally visible per-cpu scheduler statistics:
  2511. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2512. */
  2513. u64 cpu_nr_migrations(int cpu)
  2514. {
  2515. return cpu_rq(cpu)->nr_migrations_in;
  2516. }
  2517. /*
  2518. * Update rq->cpu_load[] statistics. This function is usually called every
  2519. * scheduler tick (TICK_NSEC).
  2520. */
  2521. static void update_cpu_load(struct rq *this_rq)
  2522. {
  2523. unsigned long this_load = this_rq->load.weight;
  2524. int i, scale;
  2525. this_rq->nr_load_updates++;
  2526. /* Update our load: */
  2527. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2528. unsigned long old_load, new_load;
  2529. /* scale is effectively 1 << i now, and >> i divides by scale */
  2530. old_load = this_rq->cpu_load[i];
  2531. new_load = this_load;
  2532. /*
  2533. * Round up the averaging division if load is increasing. This
  2534. * prevents us from getting stuck on 9 if the load is 10, for
  2535. * example.
  2536. */
  2537. if (new_load > old_load)
  2538. new_load += scale-1;
  2539. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2540. }
  2541. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2542. this_rq->calc_load_update += LOAD_FREQ;
  2543. calc_load_account_active(this_rq);
  2544. }
  2545. }
  2546. #ifdef CONFIG_SMP
  2547. /*
  2548. * double_rq_lock - safely lock two runqueues
  2549. *
  2550. * Note this does not disable interrupts like task_rq_lock,
  2551. * you need to do so manually before calling.
  2552. */
  2553. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2554. __acquires(rq1->lock)
  2555. __acquires(rq2->lock)
  2556. {
  2557. BUG_ON(!irqs_disabled());
  2558. if (rq1 == rq2) {
  2559. spin_lock(&rq1->lock);
  2560. __acquire(rq2->lock); /* Fake it out ;) */
  2561. } else {
  2562. if (rq1 < rq2) {
  2563. spin_lock(&rq1->lock);
  2564. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2565. } else {
  2566. spin_lock(&rq2->lock);
  2567. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2568. }
  2569. }
  2570. update_rq_clock(rq1);
  2571. update_rq_clock(rq2);
  2572. }
  2573. /*
  2574. * double_rq_unlock - safely unlock two runqueues
  2575. *
  2576. * Note this does not restore interrupts like task_rq_unlock,
  2577. * you need to do so manually after calling.
  2578. */
  2579. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2580. __releases(rq1->lock)
  2581. __releases(rq2->lock)
  2582. {
  2583. spin_unlock(&rq1->lock);
  2584. if (rq1 != rq2)
  2585. spin_unlock(&rq2->lock);
  2586. else
  2587. __release(rq2->lock);
  2588. }
  2589. /*
  2590. * If dest_cpu is allowed for this process, migrate the task to it.
  2591. * This is accomplished by forcing the cpu_allowed mask to only
  2592. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2593. * the cpu_allowed mask is restored.
  2594. */
  2595. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2596. {
  2597. struct migration_req req;
  2598. unsigned long flags;
  2599. struct rq *rq;
  2600. rq = task_rq_lock(p, &flags);
  2601. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2602. || unlikely(!cpu_active(dest_cpu)))
  2603. goto out;
  2604. /* force the process onto the specified CPU */
  2605. if (migrate_task(p, dest_cpu, &req)) {
  2606. /* Need to wait for migration thread (might exit: take ref). */
  2607. struct task_struct *mt = rq->migration_thread;
  2608. get_task_struct(mt);
  2609. task_rq_unlock(rq, &flags);
  2610. wake_up_process(mt);
  2611. put_task_struct(mt);
  2612. wait_for_completion(&req.done);
  2613. return;
  2614. }
  2615. out:
  2616. task_rq_unlock(rq, &flags);
  2617. }
  2618. /*
  2619. * sched_exec - execve() is a valuable balancing opportunity, because at
  2620. * this point the task has the smallest effective memory and cache footprint.
  2621. */
  2622. void sched_exec(void)
  2623. {
  2624. int new_cpu, this_cpu = get_cpu();
  2625. new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
  2626. put_cpu();
  2627. if (new_cpu != this_cpu)
  2628. sched_migrate_task(current, new_cpu);
  2629. }
  2630. /*
  2631. * pull_task - move a task from a remote runqueue to the local runqueue.
  2632. * Both runqueues must be locked.
  2633. */
  2634. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2635. struct rq *this_rq, int this_cpu)
  2636. {
  2637. deactivate_task(src_rq, p, 0);
  2638. set_task_cpu(p, this_cpu);
  2639. activate_task(this_rq, p, 0);
  2640. /*
  2641. * Note that idle threads have a prio of MAX_PRIO, for this test
  2642. * to be always true for them.
  2643. */
  2644. check_preempt_curr(this_rq, p, 0);
  2645. }
  2646. /*
  2647. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2648. */
  2649. static
  2650. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2651. struct sched_domain *sd, enum cpu_idle_type idle,
  2652. int *all_pinned)
  2653. {
  2654. int tsk_cache_hot = 0;
  2655. /*
  2656. * We do not migrate tasks that are:
  2657. * 1) running (obviously), or
  2658. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2659. * 3) are cache-hot on their current CPU.
  2660. */
  2661. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2662. schedstat_inc(p, se.nr_failed_migrations_affine);
  2663. return 0;
  2664. }
  2665. *all_pinned = 0;
  2666. if (task_running(rq, p)) {
  2667. schedstat_inc(p, se.nr_failed_migrations_running);
  2668. return 0;
  2669. }
  2670. /*
  2671. * Aggressive migration if:
  2672. * 1) task is cache cold, or
  2673. * 2) too many balance attempts have failed.
  2674. */
  2675. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2676. if (!tsk_cache_hot ||
  2677. sd->nr_balance_failed > sd->cache_nice_tries) {
  2678. #ifdef CONFIG_SCHEDSTATS
  2679. if (tsk_cache_hot) {
  2680. schedstat_inc(sd, lb_hot_gained[idle]);
  2681. schedstat_inc(p, se.nr_forced_migrations);
  2682. }
  2683. #endif
  2684. return 1;
  2685. }
  2686. if (tsk_cache_hot) {
  2687. schedstat_inc(p, se.nr_failed_migrations_hot);
  2688. return 0;
  2689. }
  2690. return 1;
  2691. }
  2692. static unsigned long
  2693. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2694. unsigned long max_load_move, struct sched_domain *sd,
  2695. enum cpu_idle_type idle, int *all_pinned,
  2696. int *this_best_prio, struct rq_iterator *iterator)
  2697. {
  2698. int loops = 0, pulled = 0, pinned = 0;
  2699. struct task_struct *p;
  2700. long rem_load_move = max_load_move;
  2701. if (max_load_move == 0)
  2702. goto out;
  2703. pinned = 1;
  2704. /*
  2705. * Start the load-balancing iterator:
  2706. */
  2707. p = iterator->start(iterator->arg);
  2708. next:
  2709. if (!p || loops++ > sysctl_sched_nr_migrate)
  2710. goto out;
  2711. if ((p->se.load.weight >> 1) > rem_load_move ||
  2712. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2713. p = iterator->next(iterator->arg);
  2714. goto next;
  2715. }
  2716. pull_task(busiest, p, this_rq, this_cpu);
  2717. pulled++;
  2718. rem_load_move -= p->se.load.weight;
  2719. #ifdef CONFIG_PREEMPT
  2720. /*
  2721. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2722. * will stop after the first task is pulled to minimize the critical
  2723. * section.
  2724. */
  2725. if (idle == CPU_NEWLY_IDLE)
  2726. goto out;
  2727. #endif
  2728. /*
  2729. * We only want to steal up to the prescribed amount of weighted load.
  2730. */
  2731. if (rem_load_move > 0) {
  2732. if (p->prio < *this_best_prio)
  2733. *this_best_prio = p->prio;
  2734. p = iterator->next(iterator->arg);
  2735. goto next;
  2736. }
  2737. out:
  2738. /*
  2739. * Right now, this is one of only two places pull_task() is called,
  2740. * so we can safely collect pull_task() stats here rather than
  2741. * inside pull_task().
  2742. */
  2743. schedstat_add(sd, lb_gained[idle], pulled);
  2744. if (all_pinned)
  2745. *all_pinned = pinned;
  2746. return max_load_move - rem_load_move;
  2747. }
  2748. /*
  2749. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2750. * this_rq, as part of a balancing operation within domain "sd".
  2751. * Returns 1 if successful and 0 otherwise.
  2752. *
  2753. * Called with both runqueues locked.
  2754. */
  2755. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2756. unsigned long max_load_move,
  2757. struct sched_domain *sd, enum cpu_idle_type idle,
  2758. int *all_pinned)
  2759. {
  2760. const struct sched_class *class = sched_class_highest;
  2761. unsigned long total_load_moved = 0;
  2762. int this_best_prio = this_rq->curr->prio;
  2763. do {
  2764. total_load_moved +=
  2765. class->load_balance(this_rq, this_cpu, busiest,
  2766. max_load_move - total_load_moved,
  2767. sd, idle, all_pinned, &this_best_prio);
  2768. class = class->next;
  2769. #ifdef CONFIG_PREEMPT
  2770. /*
  2771. * NEWIDLE balancing is a source of latency, so preemptible
  2772. * kernels will stop after the first task is pulled to minimize
  2773. * the critical section.
  2774. */
  2775. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2776. break;
  2777. #endif
  2778. } while (class && max_load_move > total_load_moved);
  2779. return total_load_moved > 0;
  2780. }
  2781. static int
  2782. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2783. struct sched_domain *sd, enum cpu_idle_type idle,
  2784. struct rq_iterator *iterator)
  2785. {
  2786. struct task_struct *p = iterator->start(iterator->arg);
  2787. int pinned = 0;
  2788. while (p) {
  2789. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2790. pull_task(busiest, p, this_rq, this_cpu);
  2791. /*
  2792. * Right now, this is only the second place pull_task()
  2793. * is called, so we can safely collect pull_task()
  2794. * stats here rather than inside pull_task().
  2795. */
  2796. schedstat_inc(sd, lb_gained[idle]);
  2797. return 1;
  2798. }
  2799. p = iterator->next(iterator->arg);
  2800. }
  2801. return 0;
  2802. }
  2803. /*
  2804. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2805. * part of active balancing operations within "domain".
  2806. * Returns 1 if successful and 0 otherwise.
  2807. *
  2808. * Called with both runqueues locked.
  2809. */
  2810. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2811. struct sched_domain *sd, enum cpu_idle_type idle)
  2812. {
  2813. const struct sched_class *class;
  2814. for_each_class(class) {
  2815. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2816. return 1;
  2817. }
  2818. return 0;
  2819. }
  2820. /********** Helpers for find_busiest_group ************************/
  2821. /*
  2822. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2823. * during load balancing.
  2824. */
  2825. struct sd_lb_stats {
  2826. struct sched_group *busiest; /* Busiest group in this sd */
  2827. struct sched_group *this; /* Local group in this sd */
  2828. unsigned long total_load; /* Total load of all groups in sd */
  2829. unsigned long total_pwr; /* Total power of all groups in sd */
  2830. unsigned long avg_load; /* Average load across all groups in sd */
  2831. /** Statistics of this group */
  2832. unsigned long this_load;
  2833. unsigned long this_load_per_task;
  2834. unsigned long this_nr_running;
  2835. /* Statistics of the busiest group */
  2836. unsigned long max_load;
  2837. unsigned long busiest_load_per_task;
  2838. unsigned long busiest_nr_running;
  2839. int group_imb; /* Is there imbalance in this sd */
  2840. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2841. int power_savings_balance; /* Is powersave balance needed for this sd */
  2842. struct sched_group *group_min; /* Least loaded group in sd */
  2843. struct sched_group *group_leader; /* Group which relieves group_min */
  2844. unsigned long min_load_per_task; /* load_per_task in group_min */
  2845. unsigned long leader_nr_running; /* Nr running of group_leader */
  2846. unsigned long min_nr_running; /* Nr running of group_min */
  2847. #endif
  2848. };
  2849. /*
  2850. * sg_lb_stats - stats of a sched_group required for load_balancing
  2851. */
  2852. struct sg_lb_stats {
  2853. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2854. unsigned long group_load; /* Total load over the CPUs of the group */
  2855. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2856. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2857. unsigned long group_capacity;
  2858. int group_imb; /* Is there an imbalance in the group ? */
  2859. };
  2860. /**
  2861. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2862. * @group: The group whose first cpu is to be returned.
  2863. */
  2864. static inline unsigned int group_first_cpu(struct sched_group *group)
  2865. {
  2866. return cpumask_first(sched_group_cpus(group));
  2867. }
  2868. /**
  2869. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2870. * @sd: The sched_domain whose load_idx is to be obtained.
  2871. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2872. */
  2873. static inline int get_sd_load_idx(struct sched_domain *sd,
  2874. enum cpu_idle_type idle)
  2875. {
  2876. int load_idx;
  2877. switch (idle) {
  2878. case CPU_NOT_IDLE:
  2879. load_idx = sd->busy_idx;
  2880. break;
  2881. case CPU_NEWLY_IDLE:
  2882. load_idx = sd->newidle_idx;
  2883. break;
  2884. default:
  2885. load_idx = sd->idle_idx;
  2886. break;
  2887. }
  2888. return load_idx;
  2889. }
  2890. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2891. /**
  2892. * init_sd_power_savings_stats - Initialize power savings statistics for
  2893. * the given sched_domain, during load balancing.
  2894. *
  2895. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2896. * @sds: Variable containing the statistics for sd.
  2897. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2898. */
  2899. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2900. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2901. {
  2902. /*
  2903. * Busy processors will not participate in power savings
  2904. * balance.
  2905. */
  2906. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2907. sds->power_savings_balance = 0;
  2908. else {
  2909. sds->power_savings_balance = 1;
  2910. sds->min_nr_running = ULONG_MAX;
  2911. sds->leader_nr_running = 0;
  2912. }
  2913. }
  2914. /**
  2915. * update_sd_power_savings_stats - Update the power saving stats for a
  2916. * sched_domain while performing load balancing.
  2917. *
  2918. * @group: sched_group belonging to the sched_domain under consideration.
  2919. * @sds: Variable containing the statistics of the sched_domain
  2920. * @local_group: Does group contain the CPU for which we're performing
  2921. * load balancing ?
  2922. * @sgs: Variable containing the statistics of the group.
  2923. */
  2924. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2925. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2926. {
  2927. if (!sds->power_savings_balance)
  2928. return;
  2929. /*
  2930. * If the local group is idle or completely loaded
  2931. * no need to do power savings balance at this domain
  2932. */
  2933. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2934. !sds->this_nr_running))
  2935. sds->power_savings_balance = 0;
  2936. /*
  2937. * If a group is already running at full capacity or idle,
  2938. * don't include that group in power savings calculations
  2939. */
  2940. if (!sds->power_savings_balance ||
  2941. sgs->sum_nr_running >= sgs->group_capacity ||
  2942. !sgs->sum_nr_running)
  2943. return;
  2944. /*
  2945. * Calculate the group which has the least non-idle load.
  2946. * This is the group from where we need to pick up the load
  2947. * for saving power
  2948. */
  2949. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2950. (sgs->sum_nr_running == sds->min_nr_running &&
  2951. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2952. sds->group_min = group;
  2953. sds->min_nr_running = sgs->sum_nr_running;
  2954. sds->min_load_per_task = sgs->sum_weighted_load /
  2955. sgs->sum_nr_running;
  2956. }
  2957. /*
  2958. * Calculate the group which is almost near its
  2959. * capacity but still has some space to pick up some load
  2960. * from other group and save more power
  2961. */
  2962. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2963. return;
  2964. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2965. (sgs->sum_nr_running == sds->leader_nr_running &&
  2966. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2967. sds->group_leader = group;
  2968. sds->leader_nr_running = sgs->sum_nr_running;
  2969. }
  2970. }
  2971. /**
  2972. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2973. * @sds: Variable containing the statistics of the sched_domain
  2974. * under consideration.
  2975. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2976. * @imbalance: Variable to store the imbalance.
  2977. *
  2978. * Description:
  2979. * Check if we have potential to perform some power-savings balance.
  2980. * If yes, set the busiest group to be the least loaded group in the
  2981. * sched_domain, so that it's CPUs can be put to idle.
  2982. *
  2983. * Returns 1 if there is potential to perform power-savings balance.
  2984. * Else returns 0.
  2985. */
  2986. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2987. int this_cpu, unsigned long *imbalance)
  2988. {
  2989. if (!sds->power_savings_balance)
  2990. return 0;
  2991. if (sds->this != sds->group_leader ||
  2992. sds->group_leader == sds->group_min)
  2993. return 0;
  2994. *imbalance = sds->min_load_per_task;
  2995. sds->busiest = sds->group_min;
  2996. return 1;
  2997. }
  2998. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2999. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3000. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3001. {
  3002. return;
  3003. }
  3004. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3005. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3006. {
  3007. return;
  3008. }
  3009. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3010. int this_cpu, unsigned long *imbalance)
  3011. {
  3012. return 0;
  3013. }
  3014. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3015. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3016. {
  3017. return SCHED_LOAD_SCALE;
  3018. }
  3019. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3020. {
  3021. return default_scale_freq_power(sd, cpu);
  3022. }
  3023. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3024. {
  3025. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3026. unsigned long smt_gain = sd->smt_gain;
  3027. smt_gain /= weight;
  3028. return smt_gain;
  3029. }
  3030. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3031. {
  3032. return default_scale_smt_power(sd, cpu);
  3033. }
  3034. unsigned long scale_rt_power(int cpu)
  3035. {
  3036. struct rq *rq = cpu_rq(cpu);
  3037. u64 total, available;
  3038. sched_avg_update(rq);
  3039. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3040. available = total - rq->rt_avg;
  3041. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3042. total = SCHED_LOAD_SCALE;
  3043. total >>= SCHED_LOAD_SHIFT;
  3044. return div_u64(available, total);
  3045. }
  3046. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3047. {
  3048. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3049. unsigned long power = SCHED_LOAD_SCALE;
  3050. struct sched_group *sdg = sd->groups;
  3051. if (sched_feat(ARCH_POWER))
  3052. power *= arch_scale_freq_power(sd, cpu);
  3053. else
  3054. power *= default_scale_freq_power(sd, cpu);
  3055. power >>= SCHED_LOAD_SHIFT;
  3056. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3057. if (sched_feat(ARCH_POWER))
  3058. power *= arch_scale_smt_power(sd, cpu);
  3059. else
  3060. power *= default_scale_smt_power(sd, cpu);
  3061. power >>= SCHED_LOAD_SHIFT;
  3062. }
  3063. power *= scale_rt_power(cpu);
  3064. power >>= SCHED_LOAD_SHIFT;
  3065. if (!power)
  3066. power = 1;
  3067. sdg->cpu_power = power;
  3068. }
  3069. static void update_group_power(struct sched_domain *sd, int cpu)
  3070. {
  3071. struct sched_domain *child = sd->child;
  3072. struct sched_group *group, *sdg = sd->groups;
  3073. unsigned long power;
  3074. if (!child) {
  3075. update_cpu_power(sd, cpu);
  3076. return;
  3077. }
  3078. power = 0;
  3079. group = child->groups;
  3080. do {
  3081. power += group->cpu_power;
  3082. group = group->next;
  3083. } while (group != child->groups);
  3084. sdg->cpu_power = power;
  3085. }
  3086. /**
  3087. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3088. * @group: sched_group whose statistics are to be updated.
  3089. * @this_cpu: Cpu for which load balance is currently performed.
  3090. * @idle: Idle status of this_cpu
  3091. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3092. * @sd_idle: Idle status of the sched_domain containing group.
  3093. * @local_group: Does group contain this_cpu.
  3094. * @cpus: Set of cpus considered for load balancing.
  3095. * @balance: Should we balance.
  3096. * @sgs: variable to hold the statistics for this group.
  3097. */
  3098. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3099. struct sched_group *group, int this_cpu,
  3100. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3101. int local_group, const struct cpumask *cpus,
  3102. int *balance, struct sg_lb_stats *sgs)
  3103. {
  3104. unsigned long load, max_cpu_load, min_cpu_load;
  3105. int i;
  3106. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3107. unsigned long sum_avg_load_per_task;
  3108. unsigned long avg_load_per_task;
  3109. if (local_group) {
  3110. balance_cpu = group_first_cpu(group);
  3111. if (balance_cpu == this_cpu)
  3112. update_group_power(sd, this_cpu);
  3113. }
  3114. /* Tally up the load of all CPUs in the group */
  3115. sum_avg_load_per_task = avg_load_per_task = 0;
  3116. max_cpu_load = 0;
  3117. min_cpu_load = ~0UL;
  3118. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3119. struct rq *rq = cpu_rq(i);
  3120. if (*sd_idle && rq->nr_running)
  3121. *sd_idle = 0;
  3122. /* Bias balancing toward cpus of our domain */
  3123. if (local_group) {
  3124. if (idle_cpu(i) && !first_idle_cpu) {
  3125. first_idle_cpu = 1;
  3126. balance_cpu = i;
  3127. }
  3128. load = target_load(i, load_idx);
  3129. } else {
  3130. load = source_load(i, load_idx);
  3131. if (load > max_cpu_load)
  3132. max_cpu_load = load;
  3133. if (min_cpu_load > load)
  3134. min_cpu_load = load;
  3135. }
  3136. sgs->group_load += load;
  3137. sgs->sum_nr_running += rq->nr_running;
  3138. sgs->sum_weighted_load += weighted_cpuload(i);
  3139. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3140. }
  3141. /*
  3142. * First idle cpu or the first cpu(busiest) in this sched group
  3143. * is eligible for doing load balancing at this and above
  3144. * domains. In the newly idle case, we will allow all the cpu's
  3145. * to do the newly idle load balance.
  3146. */
  3147. if (idle != CPU_NEWLY_IDLE && local_group &&
  3148. balance_cpu != this_cpu && balance) {
  3149. *balance = 0;
  3150. return;
  3151. }
  3152. /* Adjust by relative CPU power of the group */
  3153. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3154. /*
  3155. * Consider the group unbalanced when the imbalance is larger
  3156. * than the average weight of two tasks.
  3157. *
  3158. * APZ: with cgroup the avg task weight can vary wildly and
  3159. * might not be a suitable number - should we keep a
  3160. * normalized nr_running number somewhere that negates
  3161. * the hierarchy?
  3162. */
  3163. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3164. group->cpu_power;
  3165. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3166. sgs->group_imb = 1;
  3167. sgs->group_capacity =
  3168. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3169. }
  3170. /**
  3171. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3172. * @sd: sched_domain whose statistics are to be updated.
  3173. * @this_cpu: Cpu for which load balance is currently performed.
  3174. * @idle: Idle status of this_cpu
  3175. * @sd_idle: Idle status of the sched_domain containing group.
  3176. * @cpus: Set of cpus considered for load balancing.
  3177. * @balance: Should we balance.
  3178. * @sds: variable to hold the statistics for this sched_domain.
  3179. */
  3180. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3181. enum cpu_idle_type idle, int *sd_idle,
  3182. const struct cpumask *cpus, int *balance,
  3183. struct sd_lb_stats *sds)
  3184. {
  3185. struct sched_domain *child = sd->child;
  3186. struct sched_group *group = sd->groups;
  3187. struct sg_lb_stats sgs;
  3188. int load_idx, prefer_sibling = 0;
  3189. if (child && child->flags & SD_PREFER_SIBLING)
  3190. prefer_sibling = 1;
  3191. init_sd_power_savings_stats(sd, sds, idle);
  3192. load_idx = get_sd_load_idx(sd, idle);
  3193. do {
  3194. int local_group;
  3195. local_group = cpumask_test_cpu(this_cpu,
  3196. sched_group_cpus(group));
  3197. memset(&sgs, 0, sizeof(sgs));
  3198. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3199. local_group, cpus, balance, &sgs);
  3200. if (local_group && balance && !(*balance))
  3201. return;
  3202. sds->total_load += sgs.group_load;
  3203. sds->total_pwr += group->cpu_power;
  3204. /*
  3205. * In case the child domain prefers tasks go to siblings
  3206. * first, lower the group capacity to one so that we'll try
  3207. * and move all the excess tasks away.
  3208. */
  3209. if (prefer_sibling)
  3210. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3211. if (local_group) {
  3212. sds->this_load = sgs.avg_load;
  3213. sds->this = group;
  3214. sds->this_nr_running = sgs.sum_nr_running;
  3215. sds->this_load_per_task = sgs.sum_weighted_load;
  3216. } else if (sgs.avg_load > sds->max_load &&
  3217. (sgs.sum_nr_running > sgs.group_capacity ||
  3218. sgs.group_imb)) {
  3219. sds->max_load = sgs.avg_load;
  3220. sds->busiest = group;
  3221. sds->busiest_nr_running = sgs.sum_nr_running;
  3222. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3223. sds->group_imb = sgs.group_imb;
  3224. }
  3225. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3226. group = group->next;
  3227. } while (group != sd->groups);
  3228. }
  3229. /**
  3230. * fix_small_imbalance - Calculate the minor imbalance that exists
  3231. * amongst the groups of a sched_domain, during
  3232. * load balancing.
  3233. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3234. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3235. * @imbalance: Variable to store the imbalance.
  3236. */
  3237. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3238. int this_cpu, unsigned long *imbalance)
  3239. {
  3240. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3241. unsigned int imbn = 2;
  3242. if (sds->this_nr_running) {
  3243. sds->this_load_per_task /= sds->this_nr_running;
  3244. if (sds->busiest_load_per_task >
  3245. sds->this_load_per_task)
  3246. imbn = 1;
  3247. } else
  3248. sds->this_load_per_task =
  3249. cpu_avg_load_per_task(this_cpu);
  3250. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3251. sds->busiest_load_per_task * imbn) {
  3252. *imbalance = sds->busiest_load_per_task;
  3253. return;
  3254. }
  3255. /*
  3256. * OK, we don't have enough imbalance to justify moving tasks,
  3257. * however we may be able to increase total CPU power used by
  3258. * moving them.
  3259. */
  3260. pwr_now += sds->busiest->cpu_power *
  3261. min(sds->busiest_load_per_task, sds->max_load);
  3262. pwr_now += sds->this->cpu_power *
  3263. min(sds->this_load_per_task, sds->this_load);
  3264. pwr_now /= SCHED_LOAD_SCALE;
  3265. /* Amount of load we'd subtract */
  3266. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3267. sds->busiest->cpu_power;
  3268. if (sds->max_load > tmp)
  3269. pwr_move += sds->busiest->cpu_power *
  3270. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3271. /* Amount of load we'd add */
  3272. if (sds->max_load * sds->busiest->cpu_power <
  3273. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3274. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3275. sds->this->cpu_power;
  3276. else
  3277. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3278. sds->this->cpu_power;
  3279. pwr_move += sds->this->cpu_power *
  3280. min(sds->this_load_per_task, sds->this_load + tmp);
  3281. pwr_move /= SCHED_LOAD_SCALE;
  3282. /* Move if we gain throughput */
  3283. if (pwr_move > pwr_now)
  3284. *imbalance = sds->busiest_load_per_task;
  3285. }
  3286. /**
  3287. * calculate_imbalance - Calculate the amount of imbalance present within the
  3288. * groups of a given sched_domain during load balance.
  3289. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3290. * @this_cpu: Cpu for which currently load balance is being performed.
  3291. * @imbalance: The variable to store the imbalance.
  3292. */
  3293. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3294. unsigned long *imbalance)
  3295. {
  3296. unsigned long max_pull;
  3297. /*
  3298. * In the presence of smp nice balancing, certain scenarios can have
  3299. * max load less than avg load(as we skip the groups at or below
  3300. * its cpu_power, while calculating max_load..)
  3301. */
  3302. if (sds->max_load < sds->avg_load) {
  3303. *imbalance = 0;
  3304. return fix_small_imbalance(sds, this_cpu, imbalance);
  3305. }
  3306. /* Don't want to pull so many tasks that a group would go idle */
  3307. max_pull = min(sds->max_load - sds->avg_load,
  3308. sds->max_load - sds->busiest_load_per_task);
  3309. /* How much load to actually move to equalise the imbalance */
  3310. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3311. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3312. / SCHED_LOAD_SCALE;
  3313. /*
  3314. * if *imbalance is less than the average load per runnable task
  3315. * there is no gaurantee that any tasks will be moved so we'll have
  3316. * a think about bumping its value to force at least one task to be
  3317. * moved
  3318. */
  3319. if (*imbalance < sds->busiest_load_per_task)
  3320. return fix_small_imbalance(sds, this_cpu, imbalance);
  3321. }
  3322. /******* find_busiest_group() helpers end here *********************/
  3323. /**
  3324. * find_busiest_group - Returns the busiest group within the sched_domain
  3325. * if there is an imbalance. If there isn't an imbalance, and
  3326. * the user has opted for power-savings, it returns a group whose
  3327. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3328. * such a group exists.
  3329. *
  3330. * Also calculates the amount of weighted load which should be moved
  3331. * to restore balance.
  3332. *
  3333. * @sd: The sched_domain whose busiest group is to be returned.
  3334. * @this_cpu: The cpu for which load balancing is currently being performed.
  3335. * @imbalance: Variable which stores amount of weighted load which should
  3336. * be moved to restore balance/put a group to idle.
  3337. * @idle: The idle status of this_cpu.
  3338. * @sd_idle: The idleness of sd
  3339. * @cpus: The set of CPUs under consideration for load-balancing.
  3340. * @balance: Pointer to a variable indicating if this_cpu
  3341. * is the appropriate cpu to perform load balancing at this_level.
  3342. *
  3343. * Returns: - the busiest group if imbalance exists.
  3344. * - If no imbalance and user has opted for power-savings balance,
  3345. * return the least loaded group whose CPUs can be
  3346. * put to idle by rebalancing its tasks onto our group.
  3347. */
  3348. static struct sched_group *
  3349. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3350. unsigned long *imbalance, enum cpu_idle_type idle,
  3351. int *sd_idle, const struct cpumask *cpus, int *balance)
  3352. {
  3353. struct sd_lb_stats sds;
  3354. memset(&sds, 0, sizeof(sds));
  3355. /*
  3356. * Compute the various statistics relavent for load balancing at
  3357. * this level.
  3358. */
  3359. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3360. balance, &sds);
  3361. /* Cases where imbalance does not exist from POV of this_cpu */
  3362. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3363. * at this level.
  3364. * 2) There is no busy sibling group to pull from.
  3365. * 3) This group is the busiest group.
  3366. * 4) This group is more busy than the avg busieness at this
  3367. * sched_domain.
  3368. * 5) The imbalance is within the specified limit.
  3369. * 6) Any rebalance would lead to ping-pong
  3370. */
  3371. if (balance && !(*balance))
  3372. goto ret;
  3373. if (!sds.busiest || sds.busiest_nr_running == 0)
  3374. goto out_balanced;
  3375. if (sds.this_load >= sds.max_load)
  3376. goto out_balanced;
  3377. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3378. if (sds.this_load >= sds.avg_load)
  3379. goto out_balanced;
  3380. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3381. goto out_balanced;
  3382. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3383. if (sds.group_imb)
  3384. sds.busiest_load_per_task =
  3385. min(sds.busiest_load_per_task, sds.avg_load);
  3386. /*
  3387. * We're trying to get all the cpus to the average_load, so we don't
  3388. * want to push ourselves above the average load, nor do we wish to
  3389. * reduce the max loaded cpu below the average load, as either of these
  3390. * actions would just result in more rebalancing later, and ping-pong
  3391. * tasks around. Thus we look for the minimum possible imbalance.
  3392. * Negative imbalances (*we* are more loaded than anyone else) will
  3393. * be counted as no imbalance for these purposes -- we can't fix that
  3394. * by pulling tasks to us. Be careful of negative numbers as they'll
  3395. * appear as very large values with unsigned longs.
  3396. */
  3397. if (sds.max_load <= sds.busiest_load_per_task)
  3398. goto out_balanced;
  3399. /* Looks like there is an imbalance. Compute it */
  3400. calculate_imbalance(&sds, this_cpu, imbalance);
  3401. return sds.busiest;
  3402. out_balanced:
  3403. /*
  3404. * There is no obvious imbalance. But check if we can do some balancing
  3405. * to save power.
  3406. */
  3407. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3408. return sds.busiest;
  3409. ret:
  3410. *imbalance = 0;
  3411. return NULL;
  3412. }
  3413. /*
  3414. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3415. */
  3416. static struct rq *
  3417. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3418. unsigned long imbalance, const struct cpumask *cpus)
  3419. {
  3420. struct rq *busiest = NULL, *rq;
  3421. unsigned long max_load = 0;
  3422. int i;
  3423. for_each_cpu(i, sched_group_cpus(group)) {
  3424. unsigned long power = power_of(i);
  3425. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3426. unsigned long wl;
  3427. if (!cpumask_test_cpu(i, cpus))
  3428. continue;
  3429. rq = cpu_rq(i);
  3430. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3431. wl /= power;
  3432. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3433. continue;
  3434. if (wl > max_load) {
  3435. max_load = wl;
  3436. busiest = rq;
  3437. }
  3438. }
  3439. return busiest;
  3440. }
  3441. /*
  3442. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3443. * so long as it is large enough.
  3444. */
  3445. #define MAX_PINNED_INTERVAL 512
  3446. /* Working cpumask for load_balance and load_balance_newidle. */
  3447. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3448. /*
  3449. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3450. * tasks if there is an imbalance.
  3451. */
  3452. static int load_balance(int this_cpu, struct rq *this_rq,
  3453. struct sched_domain *sd, enum cpu_idle_type idle,
  3454. int *balance)
  3455. {
  3456. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3457. struct sched_group *group;
  3458. unsigned long imbalance;
  3459. struct rq *busiest;
  3460. unsigned long flags;
  3461. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3462. cpumask_setall(cpus);
  3463. /*
  3464. * When power savings policy is enabled for the parent domain, idle
  3465. * sibling can pick up load irrespective of busy siblings. In this case,
  3466. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3467. * portraying it as CPU_NOT_IDLE.
  3468. */
  3469. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3470. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3471. sd_idle = 1;
  3472. schedstat_inc(sd, lb_count[idle]);
  3473. redo:
  3474. update_shares(sd);
  3475. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3476. cpus, balance);
  3477. if (*balance == 0)
  3478. goto out_balanced;
  3479. if (!group) {
  3480. schedstat_inc(sd, lb_nobusyg[idle]);
  3481. goto out_balanced;
  3482. }
  3483. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3484. if (!busiest) {
  3485. schedstat_inc(sd, lb_nobusyq[idle]);
  3486. goto out_balanced;
  3487. }
  3488. BUG_ON(busiest == this_rq);
  3489. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3490. ld_moved = 0;
  3491. if (busiest->nr_running > 1) {
  3492. /*
  3493. * Attempt to move tasks. If find_busiest_group has found
  3494. * an imbalance but busiest->nr_running <= 1, the group is
  3495. * still unbalanced. ld_moved simply stays zero, so it is
  3496. * correctly treated as an imbalance.
  3497. */
  3498. local_irq_save(flags);
  3499. double_rq_lock(this_rq, busiest);
  3500. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3501. imbalance, sd, idle, &all_pinned);
  3502. double_rq_unlock(this_rq, busiest);
  3503. local_irq_restore(flags);
  3504. /*
  3505. * some other cpu did the load balance for us.
  3506. */
  3507. if (ld_moved && this_cpu != smp_processor_id())
  3508. resched_cpu(this_cpu);
  3509. /* All tasks on this runqueue were pinned by CPU affinity */
  3510. if (unlikely(all_pinned)) {
  3511. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3512. if (!cpumask_empty(cpus))
  3513. goto redo;
  3514. goto out_balanced;
  3515. }
  3516. }
  3517. if (!ld_moved) {
  3518. schedstat_inc(sd, lb_failed[idle]);
  3519. sd->nr_balance_failed++;
  3520. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3521. spin_lock_irqsave(&busiest->lock, flags);
  3522. /* don't kick the migration_thread, if the curr
  3523. * task on busiest cpu can't be moved to this_cpu
  3524. */
  3525. if (!cpumask_test_cpu(this_cpu,
  3526. &busiest->curr->cpus_allowed)) {
  3527. spin_unlock_irqrestore(&busiest->lock, flags);
  3528. all_pinned = 1;
  3529. goto out_one_pinned;
  3530. }
  3531. if (!busiest->active_balance) {
  3532. busiest->active_balance = 1;
  3533. busiest->push_cpu = this_cpu;
  3534. active_balance = 1;
  3535. }
  3536. spin_unlock_irqrestore(&busiest->lock, flags);
  3537. if (active_balance)
  3538. wake_up_process(busiest->migration_thread);
  3539. /*
  3540. * We've kicked active balancing, reset the failure
  3541. * counter.
  3542. */
  3543. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3544. }
  3545. } else
  3546. sd->nr_balance_failed = 0;
  3547. if (likely(!active_balance)) {
  3548. /* We were unbalanced, so reset the balancing interval */
  3549. sd->balance_interval = sd->min_interval;
  3550. } else {
  3551. /*
  3552. * If we've begun active balancing, start to back off. This
  3553. * case may not be covered by the all_pinned logic if there
  3554. * is only 1 task on the busy runqueue (because we don't call
  3555. * move_tasks).
  3556. */
  3557. if (sd->balance_interval < sd->max_interval)
  3558. sd->balance_interval *= 2;
  3559. }
  3560. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3562. ld_moved = -1;
  3563. goto out;
  3564. out_balanced:
  3565. schedstat_inc(sd, lb_balanced[idle]);
  3566. sd->nr_balance_failed = 0;
  3567. out_one_pinned:
  3568. /* tune up the balancing interval */
  3569. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3570. (sd->balance_interval < sd->max_interval))
  3571. sd->balance_interval *= 2;
  3572. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3573. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3574. ld_moved = -1;
  3575. else
  3576. ld_moved = 0;
  3577. out:
  3578. if (ld_moved)
  3579. update_shares(sd);
  3580. return ld_moved;
  3581. }
  3582. /*
  3583. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3584. * tasks if there is an imbalance.
  3585. *
  3586. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3587. * this_rq is locked.
  3588. */
  3589. static int
  3590. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3591. {
  3592. struct sched_group *group;
  3593. struct rq *busiest = NULL;
  3594. unsigned long imbalance;
  3595. int ld_moved = 0;
  3596. int sd_idle = 0;
  3597. int all_pinned = 0;
  3598. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3599. cpumask_setall(cpus);
  3600. /*
  3601. * When power savings policy is enabled for the parent domain, idle
  3602. * sibling can pick up load irrespective of busy siblings. In this case,
  3603. * let the state of idle sibling percolate up as IDLE, instead of
  3604. * portraying it as CPU_NOT_IDLE.
  3605. */
  3606. if (sd->flags & SD_SHARE_CPUPOWER &&
  3607. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3608. sd_idle = 1;
  3609. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3610. redo:
  3611. update_shares_locked(this_rq, sd);
  3612. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3613. &sd_idle, cpus, NULL);
  3614. if (!group) {
  3615. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3616. goto out_balanced;
  3617. }
  3618. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3619. if (!busiest) {
  3620. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3621. goto out_balanced;
  3622. }
  3623. BUG_ON(busiest == this_rq);
  3624. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3625. ld_moved = 0;
  3626. if (busiest->nr_running > 1) {
  3627. /* Attempt to move tasks */
  3628. double_lock_balance(this_rq, busiest);
  3629. /* this_rq->clock is already updated */
  3630. update_rq_clock(busiest);
  3631. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3632. imbalance, sd, CPU_NEWLY_IDLE,
  3633. &all_pinned);
  3634. double_unlock_balance(this_rq, busiest);
  3635. if (unlikely(all_pinned)) {
  3636. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3637. if (!cpumask_empty(cpus))
  3638. goto redo;
  3639. }
  3640. }
  3641. if (!ld_moved) {
  3642. int active_balance = 0;
  3643. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3644. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3645. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3646. return -1;
  3647. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3648. return -1;
  3649. if (sd->nr_balance_failed++ < 2)
  3650. return -1;
  3651. /*
  3652. * The only task running in a non-idle cpu can be moved to this
  3653. * cpu in an attempt to completely freeup the other CPU
  3654. * package. The same method used to move task in load_balance()
  3655. * have been extended for load_balance_newidle() to speedup
  3656. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3657. *
  3658. * The package power saving logic comes from
  3659. * find_busiest_group(). If there are no imbalance, then
  3660. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3661. * f_b_g() will select a group from which a running task may be
  3662. * pulled to this cpu in order to make the other package idle.
  3663. * If there is no opportunity to make a package idle and if
  3664. * there are no imbalance, then f_b_g() will return NULL and no
  3665. * action will be taken in load_balance_newidle().
  3666. *
  3667. * Under normal task pull operation due to imbalance, there
  3668. * will be more than one task in the source run queue and
  3669. * move_tasks() will succeed. ld_moved will be true and this
  3670. * active balance code will not be triggered.
  3671. */
  3672. /* Lock busiest in correct order while this_rq is held */
  3673. double_lock_balance(this_rq, busiest);
  3674. /*
  3675. * don't kick the migration_thread, if the curr
  3676. * task on busiest cpu can't be moved to this_cpu
  3677. */
  3678. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3679. double_unlock_balance(this_rq, busiest);
  3680. all_pinned = 1;
  3681. return ld_moved;
  3682. }
  3683. if (!busiest->active_balance) {
  3684. busiest->active_balance = 1;
  3685. busiest->push_cpu = this_cpu;
  3686. active_balance = 1;
  3687. }
  3688. double_unlock_balance(this_rq, busiest);
  3689. /*
  3690. * Should not call ttwu while holding a rq->lock
  3691. */
  3692. spin_unlock(&this_rq->lock);
  3693. if (active_balance)
  3694. wake_up_process(busiest->migration_thread);
  3695. spin_lock(&this_rq->lock);
  3696. } else
  3697. sd->nr_balance_failed = 0;
  3698. update_shares_locked(this_rq, sd);
  3699. return ld_moved;
  3700. out_balanced:
  3701. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3702. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3703. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3704. return -1;
  3705. sd->nr_balance_failed = 0;
  3706. return 0;
  3707. }
  3708. /*
  3709. * idle_balance is called by schedule() if this_cpu is about to become
  3710. * idle. Attempts to pull tasks from other CPUs.
  3711. */
  3712. static void idle_balance(int this_cpu, struct rq *this_rq)
  3713. {
  3714. struct sched_domain *sd;
  3715. int pulled_task = 0;
  3716. unsigned long next_balance = jiffies + HZ;
  3717. for_each_domain(this_cpu, sd) {
  3718. unsigned long interval;
  3719. if (!(sd->flags & SD_LOAD_BALANCE))
  3720. continue;
  3721. if (sd->flags & SD_BALANCE_NEWIDLE)
  3722. /* If we've pulled tasks over stop searching: */
  3723. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3724. sd);
  3725. interval = msecs_to_jiffies(sd->balance_interval);
  3726. if (time_after(next_balance, sd->last_balance + interval))
  3727. next_balance = sd->last_balance + interval;
  3728. if (pulled_task)
  3729. break;
  3730. }
  3731. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3732. /*
  3733. * We are going idle. next_balance may be set based on
  3734. * a busy processor. So reset next_balance.
  3735. */
  3736. this_rq->next_balance = next_balance;
  3737. }
  3738. }
  3739. /*
  3740. * active_load_balance is run by migration threads. It pushes running tasks
  3741. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3742. * running on each physical CPU where possible, and avoids physical /
  3743. * logical imbalances.
  3744. *
  3745. * Called with busiest_rq locked.
  3746. */
  3747. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3748. {
  3749. int target_cpu = busiest_rq->push_cpu;
  3750. struct sched_domain *sd;
  3751. struct rq *target_rq;
  3752. /* Is there any task to move? */
  3753. if (busiest_rq->nr_running <= 1)
  3754. return;
  3755. target_rq = cpu_rq(target_cpu);
  3756. /*
  3757. * This condition is "impossible", if it occurs
  3758. * we need to fix it. Originally reported by
  3759. * Bjorn Helgaas on a 128-cpu setup.
  3760. */
  3761. BUG_ON(busiest_rq == target_rq);
  3762. /* move a task from busiest_rq to target_rq */
  3763. double_lock_balance(busiest_rq, target_rq);
  3764. update_rq_clock(busiest_rq);
  3765. update_rq_clock(target_rq);
  3766. /* Search for an sd spanning us and the target CPU. */
  3767. for_each_domain(target_cpu, sd) {
  3768. if ((sd->flags & SD_LOAD_BALANCE) &&
  3769. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3770. break;
  3771. }
  3772. if (likely(sd)) {
  3773. schedstat_inc(sd, alb_count);
  3774. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3775. sd, CPU_IDLE))
  3776. schedstat_inc(sd, alb_pushed);
  3777. else
  3778. schedstat_inc(sd, alb_failed);
  3779. }
  3780. double_unlock_balance(busiest_rq, target_rq);
  3781. }
  3782. #ifdef CONFIG_NO_HZ
  3783. static struct {
  3784. atomic_t load_balancer;
  3785. cpumask_var_t cpu_mask;
  3786. cpumask_var_t ilb_grp_nohz_mask;
  3787. } nohz ____cacheline_aligned = {
  3788. .load_balancer = ATOMIC_INIT(-1),
  3789. };
  3790. int get_nohz_load_balancer(void)
  3791. {
  3792. return atomic_read(&nohz.load_balancer);
  3793. }
  3794. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3795. /**
  3796. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3797. * @cpu: The cpu whose lowest level of sched domain is to
  3798. * be returned.
  3799. * @flag: The flag to check for the lowest sched_domain
  3800. * for the given cpu.
  3801. *
  3802. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3803. */
  3804. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3805. {
  3806. struct sched_domain *sd;
  3807. for_each_domain(cpu, sd)
  3808. if (sd && (sd->flags & flag))
  3809. break;
  3810. return sd;
  3811. }
  3812. /**
  3813. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3814. * @cpu: The cpu whose domains we're iterating over.
  3815. * @sd: variable holding the value of the power_savings_sd
  3816. * for cpu.
  3817. * @flag: The flag to filter the sched_domains to be iterated.
  3818. *
  3819. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3820. * set, starting from the lowest sched_domain to the highest.
  3821. */
  3822. #define for_each_flag_domain(cpu, sd, flag) \
  3823. for (sd = lowest_flag_domain(cpu, flag); \
  3824. (sd && (sd->flags & flag)); sd = sd->parent)
  3825. /**
  3826. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3827. * @ilb_group: group to be checked for semi-idleness
  3828. *
  3829. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3830. *
  3831. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3832. * and atleast one non-idle CPU. This helper function checks if the given
  3833. * sched_group is semi-idle or not.
  3834. */
  3835. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3836. {
  3837. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3838. sched_group_cpus(ilb_group));
  3839. /*
  3840. * A sched_group is semi-idle when it has atleast one busy cpu
  3841. * and atleast one idle cpu.
  3842. */
  3843. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3844. return 0;
  3845. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3846. return 0;
  3847. return 1;
  3848. }
  3849. /**
  3850. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3851. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3852. *
  3853. * Returns: Returns the id of the idle load balancer if it exists,
  3854. * Else, returns >= nr_cpu_ids.
  3855. *
  3856. * This algorithm picks the idle load balancer such that it belongs to a
  3857. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3858. * completely idle packages/cores just for the purpose of idle load balancing
  3859. * when there are other idle cpu's which are better suited for that job.
  3860. */
  3861. static int find_new_ilb(int cpu)
  3862. {
  3863. struct sched_domain *sd;
  3864. struct sched_group *ilb_group;
  3865. /*
  3866. * Have idle load balancer selection from semi-idle packages only
  3867. * when power-aware load balancing is enabled
  3868. */
  3869. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3870. goto out_done;
  3871. /*
  3872. * Optimize for the case when we have no idle CPUs or only one
  3873. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3874. */
  3875. if (cpumask_weight(nohz.cpu_mask) < 2)
  3876. goto out_done;
  3877. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3878. ilb_group = sd->groups;
  3879. do {
  3880. if (is_semi_idle_group(ilb_group))
  3881. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3882. ilb_group = ilb_group->next;
  3883. } while (ilb_group != sd->groups);
  3884. }
  3885. out_done:
  3886. return cpumask_first(nohz.cpu_mask);
  3887. }
  3888. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3889. static inline int find_new_ilb(int call_cpu)
  3890. {
  3891. return cpumask_first(nohz.cpu_mask);
  3892. }
  3893. #endif
  3894. /*
  3895. * This routine will try to nominate the ilb (idle load balancing)
  3896. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3897. * load balancing on behalf of all those cpus. If all the cpus in the system
  3898. * go into this tickless mode, then there will be no ilb owner (as there is
  3899. * no need for one) and all the cpus will sleep till the next wakeup event
  3900. * arrives...
  3901. *
  3902. * For the ilb owner, tick is not stopped. And this tick will be used
  3903. * for idle load balancing. ilb owner will still be part of
  3904. * nohz.cpu_mask..
  3905. *
  3906. * While stopping the tick, this cpu will become the ilb owner if there
  3907. * is no other owner. And will be the owner till that cpu becomes busy
  3908. * or if all cpus in the system stop their ticks at which point
  3909. * there is no need for ilb owner.
  3910. *
  3911. * When the ilb owner becomes busy, it nominates another owner, during the
  3912. * next busy scheduler_tick()
  3913. */
  3914. int select_nohz_load_balancer(int stop_tick)
  3915. {
  3916. int cpu = smp_processor_id();
  3917. if (stop_tick) {
  3918. cpu_rq(cpu)->in_nohz_recently = 1;
  3919. if (!cpu_active(cpu)) {
  3920. if (atomic_read(&nohz.load_balancer) != cpu)
  3921. return 0;
  3922. /*
  3923. * If we are going offline and still the leader,
  3924. * give up!
  3925. */
  3926. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3927. BUG();
  3928. return 0;
  3929. }
  3930. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3931. /* time for ilb owner also to sleep */
  3932. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3933. if (atomic_read(&nohz.load_balancer) == cpu)
  3934. atomic_set(&nohz.load_balancer, -1);
  3935. return 0;
  3936. }
  3937. if (atomic_read(&nohz.load_balancer) == -1) {
  3938. /* make me the ilb owner */
  3939. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3940. return 1;
  3941. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3942. int new_ilb;
  3943. if (!(sched_smt_power_savings ||
  3944. sched_mc_power_savings))
  3945. return 1;
  3946. /*
  3947. * Check to see if there is a more power-efficient
  3948. * ilb.
  3949. */
  3950. new_ilb = find_new_ilb(cpu);
  3951. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3952. atomic_set(&nohz.load_balancer, -1);
  3953. resched_cpu(new_ilb);
  3954. return 0;
  3955. }
  3956. return 1;
  3957. }
  3958. } else {
  3959. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3960. return 0;
  3961. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3962. if (atomic_read(&nohz.load_balancer) == cpu)
  3963. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3964. BUG();
  3965. }
  3966. return 0;
  3967. }
  3968. #endif
  3969. static DEFINE_SPINLOCK(balancing);
  3970. /*
  3971. * It checks each scheduling domain to see if it is due to be balanced,
  3972. * and initiates a balancing operation if so.
  3973. *
  3974. * Balancing parameters are set up in arch_init_sched_domains.
  3975. */
  3976. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3977. {
  3978. int balance = 1;
  3979. struct rq *rq = cpu_rq(cpu);
  3980. unsigned long interval;
  3981. struct sched_domain *sd;
  3982. /* Earliest time when we have to do rebalance again */
  3983. unsigned long next_balance = jiffies + 60*HZ;
  3984. int update_next_balance = 0;
  3985. int need_serialize;
  3986. for_each_domain(cpu, sd) {
  3987. if (!(sd->flags & SD_LOAD_BALANCE))
  3988. continue;
  3989. interval = sd->balance_interval;
  3990. if (idle != CPU_IDLE)
  3991. interval *= sd->busy_factor;
  3992. /* scale ms to jiffies */
  3993. interval = msecs_to_jiffies(interval);
  3994. if (unlikely(!interval))
  3995. interval = 1;
  3996. if (interval > HZ*NR_CPUS/10)
  3997. interval = HZ*NR_CPUS/10;
  3998. need_serialize = sd->flags & SD_SERIALIZE;
  3999. if (need_serialize) {
  4000. if (!spin_trylock(&balancing))
  4001. goto out;
  4002. }
  4003. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4004. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4005. /*
  4006. * We've pulled tasks over so either we're no
  4007. * longer idle, or one of our SMT siblings is
  4008. * not idle.
  4009. */
  4010. idle = CPU_NOT_IDLE;
  4011. }
  4012. sd->last_balance = jiffies;
  4013. }
  4014. if (need_serialize)
  4015. spin_unlock(&balancing);
  4016. out:
  4017. if (time_after(next_balance, sd->last_balance + interval)) {
  4018. next_balance = sd->last_balance + interval;
  4019. update_next_balance = 1;
  4020. }
  4021. /*
  4022. * Stop the load balance at this level. There is another
  4023. * CPU in our sched group which is doing load balancing more
  4024. * actively.
  4025. */
  4026. if (!balance)
  4027. break;
  4028. }
  4029. /*
  4030. * next_balance will be updated only when there is a need.
  4031. * When the cpu is attached to null domain for ex, it will not be
  4032. * updated.
  4033. */
  4034. if (likely(update_next_balance))
  4035. rq->next_balance = next_balance;
  4036. }
  4037. /*
  4038. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4039. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4040. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4041. */
  4042. static void run_rebalance_domains(struct softirq_action *h)
  4043. {
  4044. int this_cpu = smp_processor_id();
  4045. struct rq *this_rq = cpu_rq(this_cpu);
  4046. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4047. CPU_IDLE : CPU_NOT_IDLE;
  4048. rebalance_domains(this_cpu, idle);
  4049. #ifdef CONFIG_NO_HZ
  4050. /*
  4051. * If this cpu is the owner for idle load balancing, then do the
  4052. * balancing on behalf of the other idle cpus whose ticks are
  4053. * stopped.
  4054. */
  4055. if (this_rq->idle_at_tick &&
  4056. atomic_read(&nohz.load_balancer) == this_cpu) {
  4057. struct rq *rq;
  4058. int balance_cpu;
  4059. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4060. if (balance_cpu == this_cpu)
  4061. continue;
  4062. /*
  4063. * If this cpu gets work to do, stop the load balancing
  4064. * work being done for other cpus. Next load
  4065. * balancing owner will pick it up.
  4066. */
  4067. if (need_resched())
  4068. break;
  4069. rebalance_domains(balance_cpu, CPU_IDLE);
  4070. rq = cpu_rq(balance_cpu);
  4071. if (time_after(this_rq->next_balance, rq->next_balance))
  4072. this_rq->next_balance = rq->next_balance;
  4073. }
  4074. }
  4075. #endif
  4076. }
  4077. static inline int on_null_domain(int cpu)
  4078. {
  4079. return !rcu_dereference(cpu_rq(cpu)->sd);
  4080. }
  4081. /*
  4082. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4083. *
  4084. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4085. * idle load balancing owner or decide to stop the periodic load balancing,
  4086. * if the whole system is idle.
  4087. */
  4088. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4089. {
  4090. #ifdef CONFIG_NO_HZ
  4091. /*
  4092. * If we were in the nohz mode recently and busy at the current
  4093. * scheduler tick, then check if we need to nominate new idle
  4094. * load balancer.
  4095. */
  4096. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4097. rq->in_nohz_recently = 0;
  4098. if (atomic_read(&nohz.load_balancer) == cpu) {
  4099. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4100. atomic_set(&nohz.load_balancer, -1);
  4101. }
  4102. if (atomic_read(&nohz.load_balancer) == -1) {
  4103. int ilb = find_new_ilb(cpu);
  4104. if (ilb < nr_cpu_ids)
  4105. resched_cpu(ilb);
  4106. }
  4107. }
  4108. /*
  4109. * If this cpu is idle and doing idle load balancing for all the
  4110. * cpus with ticks stopped, is it time for that to stop?
  4111. */
  4112. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4113. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4114. resched_cpu(cpu);
  4115. return;
  4116. }
  4117. /*
  4118. * If this cpu is idle and the idle load balancing is done by
  4119. * someone else, then no need raise the SCHED_SOFTIRQ
  4120. */
  4121. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4122. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4123. return;
  4124. #endif
  4125. /* Don't need to rebalance while attached to NULL domain */
  4126. if (time_after_eq(jiffies, rq->next_balance) &&
  4127. likely(!on_null_domain(cpu)))
  4128. raise_softirq(SCHED_SOFTIRQ);
  4129. }
  4130. #else /* CONFIG_SMP */
  4131. /*
  4132. * on UP we do not need to balance between CPUs:
  4133. */
  4134. static inline void idle_balance(int cpu, struct rq *rq)
  4135. {
  4136. }
  4137. #endif
  4138. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4139. EXPORT_PER_CPU_SYMBOL(kstat);
  4140. /*
  4141. * Return any ns on the sched_clock that have not yet been accounted in
  4142. * @p in case that task is currently running.
  4143. *
  4144. * Called with task_rq_lock() held on @rq.
  4145. */
  4146. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4147. {
  4148. u64 ns = 0;
  4149. if (task_current(rq, p)) {
  4150. update_rq_clock(rq);
  4151. ns = rq->clock - p->se.exec_start;
  4152. if ((s64)ns < 0)
  4153. ns = 0;
  4154. }
  4155. return ns;
  4156. }
  4157. unsigned long long task_delta_exec(struct task_struct *p)
  4158. {
  4159. unsigned long flags;
  4160. struct rq *rq;
  4161. u64 ns = 0;
  4162. rq = task_rq_lock(p, &flags);
  4163. ns = do_task_delta_exec(p, rq);
  4164. task_rq_unlock(rq, &flags);
  4165. return ns;
  4166. }
  4167. /*
  4168. * Return accounted runtime for the task.
  4169. * In case the task is currently running, return the runtime plus current's
  4170. * pending runtime that have not been accounted yet.
  4171. */
  4172. unsigned long long task_sched_runtime(struct task_struct *p)
  4173. {
  4174. unsigned long flags;
  4175. struct rq *rq;
  4176. u64 ns = 0;
  4177. rq = task_rq_lock(p, &flags);
  4178. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4179. task_rq_unlock(rq, &flags);
  4180. return ns;
  4181. }
  4182. /*
  4183. * Return sum_exec_runtime for the thread group.
  4184. * In case the task is currently running, return the sum plus current's
  4185. * pending runtime that have not been accounted yet.
  4186. *
  4187. * Note that the thread group might have other running tasks as well,
  4188. * so the return value not includes other pending runtime that other
  4189. * running tasks might have.
  4190. */
  4191. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4192. {
  4193. struct task_cputime totals;
  4194. unsigned long flags;
  4195. struct rq *rq;
  4196. u64 ns;
  4197. rq = task_rq_lock(p, &flags);
  4198. thread_group_cputime(p, &totals);
  4199. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4200. task_rq_unlock(rq, &flags);
  4201. return ns;
  4202. }
  4203. /*
  4204. * Account user cpu time to a process.
  4205. * @p: the process that the cpu time gets accounted to
  4206. * @cputime: the cpu time spent in user space since the last update
  4207. * @cputime_scaled: cputime scaled by cpu frequency
  4208. */
  4209. void account_user_time(struct task_struct *p, cputime_t cputime,
  4210. cputime_t cputime_scaled)
  4211. {
  4212. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4213. cputime64_t tmp;
  4214. /* Add user time to process. */
  4215. p->utime = cputime_add(p->utime, cputime);
  4216. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4217. account_group_user_time(p, cputime);
  4218. /* Add user time to cpustat. */
  4219. tmp = cputime_to_cputime64(cputime);
  4220. if (TASK_NICE(p) > 0)
  4221. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4222. else
  4223. cpustat->user = cputime64_add(cpustat->user, tmp);
  4224. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4225. /* Account for user time used */
  4226. acct_update_integrals(p);
  4227. }
  4228. /*
  4229. * Account guest cpu time to a process.
  4230. * @p: the process that the cpu time gets accounted to
  4231. * @cputime: the cpu time spent in virtual machine since the last update
  4232. * @cputime_scaled: cputime scaled by cpu frequency
  4233. */
  4234. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4235. cputime_t cputime_scaled)
  4236. {
  4237. cputime64_t tmp;
  4238. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4239. tmp = cputime_to_cputime64(cputime);
  4240. /* Add guest time to process. */
  4241. p->utime = cputime_add(p->utime, cputime);
  4242. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4243. account_group_user_time(p, cputime);
  4244. p->gtime = cputime_add(p->gtime, cputime);
  4245. /* Add guest time to cpustat. */
  4246. cpustat->user = cputime64_add(cpustat->user, tmp);
  4247. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4248. }
  4249. /*
  4250. * Account system cpu time to a process.
  4251. * @p: the process that the cpu time gets accounted to
  4252. * @hardirq_offset: the offset to subtract from hardirq_count()
  4253. * @cputime: the cpu time spent in kernel space since the last update
  4254. * @cputime_scaled: cputime scaled by cpu frequency
  4255. */
  4256. void account_system_time(struct task_struct *p, int hardirq_offset,
  4257. cputime_t cputime, cputime_t cputime_scaled)
  4258. {
  4259. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4260. cputime64_t tmp;
  4261. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4262. account_guest_time(p, cputime, cputime_scaled);
  4263. return;
  4264. }
  4265. /* Add system time to process. */
  4266. p->stime = cputime_add(p->stime, cputime);
  4267. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4268. account_group_system_time(p, cputime);
  4269. /* Add system time to cpustat. */
  4270. tmp = cputime_to_cputime64(cputime);
  4271. if (hardirq_count() - hardirq_offset)
  4272. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4273. else if (softirq_count())
  4274. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4275. else
  4276. cpustat->system = cputime64_add(cpustat->system, tmp);
  4277. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4278. /* Account for system time used */
  4279. acct_update_integrals(p);
  4280. }
  4281. /*
  4282. * Account for involuntary wait time.
  4283. * @steal: the cpu time spent in involuntary wait
  4284. */
  4285. void account_steal_time(cputime_t cputime)
  4286. {
  4287. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4288. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4289. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4290. }
  4291. /*
  4292. * Account for idle time.
  4293. * @cputime: the cpu time spent in idle wait
  4294. */
  4295. void account_idle_time(cputime_t cputime)
  4296. {
  4297. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4298. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4299. struct rq *rq = this_rq();
  4300. if (atomic_read(&rq->nr_iowait) > 0)
  4301. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4302. else
  4303. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4304. }
  4305. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4306. /*
  4307. * Account a single tick of cpu time.
  4308. * @p: the process that the cpu time gets accounted to
  4309. * @user_tick: indicates if the tick is a user or a system tick
  4310. */
  4311. void account_process_tick(struct task_struct *p, int user_tick)
  4312. {
  4313. cputime_t one_jiffy = jiffies_to_cputime(1);
  4314. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4315. struct rq *rq = this_rq();
  4316. if (user_tick)
  4317. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4318. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4319. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4320. one_jiffy_scaled);
  4321. else
  4322. account_idle_time(one_jiffy);
  4323. }
  4324. /*
  4325. * Account multiple ticks of steal time.
  4326. * @p: the process from which the cpu time has been stolen
  4327. * @ticks: number of stolen ticks
  4328. */
  4329. void account_steal_ticks(unsigned long ticks)
  4330. {
  4331. account_steal_time(jiffies_to_cputime(ticks));
  4332. }
  4333. /*
  4334. * Account multiple ticks of idle time.
  4335. * @ticks: number of stolen ticks
  4336. */
  4337. void account_idle_ticks(unsigned long ticks)
  4338. {
  4339. account_idle_time(jiffies_to_cputime(ticks));
  4340. }
  4341. #endif
  4342. /*
  4343. * Use precise platform statistics if available:
  4344. */
  4345. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4346. cputime_t task_utime(struct task_struct *p)
  4347. {
  4348. return p->utime;
  4349. }
  4350. cputime_t task_stime(struct task_struct *p)
  4351. {
  4352. return p->stime;
  4353. }
  4354. #else
  4355. cputime_t task_utime(struct task_struct *p)
  4356. {
  4357. clock_t utime = cputime_to_clock_t(p->utime),
  4358. total = utime + cputime_to_clock_t(p->stime);
  4359. u64 temp;
  4360. /*
  4361. * Use CFS's precise accounting:
  4362. */
  4363. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4364. if (total) {
  4365. temp *= utime;
  4366. do_div(temp, total);
  4367. }
  4368. utime = (clock_t)temp;
  4369. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4370. return p->prev_utime;
  4371. }
  4372. cputime_t task_stime(struct task_struct *p)
  4373. {
  4374. clock_t stime;
  4375. /*
  4376. * Use CFS's precise accounting. (we subtract utime from
  4377. * the total, to make sure the total observed by userspace
  4378. * grows monotonically - apps rely on that):
  4379. */
  4380. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4381. cputime_to_clock_t(task_utime(p));
  4382. if (stime >= 0)
  4383. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4384. return p->prev_stime;
  4385. }
  4386. #endif
  4387. inline cputime_t task_gtime(struct task_struct *p)
  4388. {
  4389. return p->gtime;
  4390. }
  4391. /*
  4392. * This function gets called by the timer code, with HZ frequency.
  4393. * We call it with interrupts disabled.
  4394. *
  4395. * It also gets called by the fork code, when changing the parent's
  4396. * timeslices.
  4397. */
  4398. void scheduler_tick(void)
  4399. {
  4400. int cpu = smp_processor_id();
  4401. struct rq *rq = cpu_rq(cpu);
  4402. struct task_struct *curr = rq->curr;
  4403. sched_clock_tick();
  4404. spin_lock(&rq->lock);
  4405. update_rq_clock(rq);
  4406. update_cpu_load(rq);
  4407. curr->sched_class->task_tick(rq, curr, 0);
  4408. spin_unlock(&rq->lock);
  4409. perf_counter_task_tick(curr, cpu);
  4410. #ifdef CONFIG_SMP
  4411. rq->idle_at_tick = idle_cpu(cpu);
  4412. trigger_load_balance(rq, cpu);
  4413. #endif
  4414. }
  4415. notrace unsigned long get_parent_ip(unsigned long addr)
  4416. {
  4417. if (in_lock_functions(addr)) {
  4418. addr = CALLER_ADDR2;
  4419. if (in_lock_functions(addr))
  4420. addr = CALLER_ADDR3;
  4421. }
  4422. return addr;
  4423. }
  4424. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4425. defined(CONFIG_PREEMPT_TRACER))
  4426. void __kprobes add_preempt_count(int val)
  4427. {
  4428. #ifdef CONFIG_DEBUG_PREEMPT
  4429. /*
  4430. * Underflow?
  4431. */
  4432. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4433. return;
  4434. #endif
  4435. preempt_count() += val;
  4436. #ifdef CONFIG_DEBUG_PREEMPT
  4437. /*
  4438. * Spinlock count overflowing soon?
  4439. */
  4440. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4441. PREEMPT_MASK - 10);
  4442. #endif
  4443. if (preempt_count() == val)
  4444. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4445. }
  4446. EXPORT_SYMBOL(add_preempt_count);
  4447. void __kprobes sub_preempt_count(int val)
  4448. {
  4449. #ifdef CONFIG_DEBUG_PREEMPT
  4450. /*
  4451. * Underflow?
  4452. */
  4453. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4454. return;
  4455. /*
  4456. * Is the spinlock portion underflowing?
  4457. */
  4458. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4459. !(preempt_count() & PREEMPT_MASK)))
  4460. return;
  4461. #endif
  4462. if (preempt_count() == val)
  4463. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4464. preempt_count() -= val;
  4465. }
  4466. EXPORT_SYMBOL(sub_preempt_count);
  4467. #endif
  4468. /*
  4469. * Print scheduling while atomic bug:
  4470. */
  4471. static noinline void __schedule_bug(struct task_struct *prev)
  4472. {
  4473. struct pt_regs *regs = get_irq_regs();
  4474. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4475. prev->comm, prev->pid, preempt_count());
  4476. debug_show_held_locks(prev);
  4477. print_modules();
  4478. if (irqs_disabled())
  4479. print_irqtrace_events(prev);
  4480. if (regs)
  4481. show_regs(regs);
  4482. else
  4483. dump_stack();
  4484. }
  4485. /*
  4486. * Various schedule()-time debugging checks and statistics:
  4487. */
  4488. static inline void schedule_debug(struct task_struct *prev)
  4489. {
  4490. /*
  4491. * Test if we are atomic. Since do_exit() needs to call into
  4492. * schedule() atomically, we ignore that path for now.
  4493. * Otherwise, whine if we are scheduling when we should not be.
  4494. */
  4495. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4496. __schedule_bug(prev);
  4497. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4498. schedstat_inc(this_rq(), sched_count);
  4499. #ifdef CONFIG_SCHEDSTATS
  4500. if (unlikely(prev->lock_depth >= 0)) {
  4501. schedstat_inc(this_rq(), bkl_count);
  4502. schedstat_inc(prev, sched_info.bkl_count);
  4503. }
  4504. #endif
  4505. }
  4506. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4507. {
  4508. if (prev->state == TASK_RUNNING) {
  4509. u64 runtime = prev->se.sum_exec_runtime;
  4510. runtime -= prev->se.prev_sum_exec_runtime;
  4511. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4512. /*
  4513. * In order to avoid avg_overlap growing stale when we are
  4514. * indeed overlapping and hence not getting put to sleep, grow
  4515. * the avg_overlap on preemption.
  4516. *
  4517. * We use the average preemption runtime because that
  4518. * correlates to the amount of cache footprint a task can
  4519. * build up.
  4520. */
  4521. update_avg(&prev->se.avg_overlap, runtime);
  4522. }
  4523. prev->sched_class->put_prev_task(rq, prev);
  4524. }
  4525. /*
  4526. * Pick up the highest-prio task:
  4527. */
  4528. static inline struct task_struct *
  4529. pick_next_task(struct rq *rq)
  4530. {
  4531. const struct sched_class *class;
  4532. struct task_struct *p;
  4533. /*
  4534. * Optimization: we know that if all tasks are in
  4535. * the fair class we can call that function directly:
  4536. */
  4537. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4538. p = fair_sched_class.pick_next_task(rq);
  4539. if (likely(p))
  4540. return p;
  4541. }
  4542. class = sched_class_highest;
  4543. for ( ; ; ) {
  4544. p = class->pick_next_task(rq);
  4545. if (p)
  4546. return p;
  4547. /*
  4548. * Will never be NULL as the idle class always
  4549. * returns a non-NULL p:
  4550. */
  4551. class = class->next;
  4552. }
  4553. }
  4554. /*
  4555. * schedule() is the main scheduler function.
  4556. */
  4557. asmlinkage void __sched schedule(void)
  4558. {
  4559. struct task_struct *prev, *next;
  4560. unsigned long *switch_count;
  4561. struct rq *rq;
  4562. int cpu;
  4563. need_resched:
  4564. preempt_disable();
  4565. cpu = smp_processor_id();
  4566. rq = cpu_rq(cpu);
  4567. rcu_sched_qs(cpu);
  4568. prev = rq->curr;
  4569. switch_count = &prev->nivcsw;
  4570. release_kernel_lock(prev);
  4571. need_resched_nonpreemptible:
  4572. schedule_debug(prev);
  4573. if (sched_feat(HRTICK))
  4574. hrtick_clear(rq);
  4575. spin_lock_irq(&rq->lock);
  4576. update_rq_clock(rq);
  4577. clear_tsk_need_resched(prev);
  4578. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4579. if (unlikely(signal_pending_state(prev->state, prev)))
  4580. prev->state = TASK_RUNNING;
  4581. else
  4582. deactivate_task(rq, prev, 1);
  4583. switch_count = &prev->nvcsw;
  4584. }
  4585. pre_schedule(rq, prev);
  4586. if (unlikely(!rq->nr_running))
  4587. idle_balance(cpu, rq);
  4588. put_prev_task(rq, prev);
  4589. next = pick_next_task(rq);
  4590. if (likely(prev != next)) {
  4591. sched_info_switch(prev, next);
  4592. perf_counter_task_sched_out(prev, next, cpu);
  4593. rq->nr_switches++;
  4594. rq->curr = next;
  4595. ++*switch_count;
  4596. context_switch(rq, prev, next); /* unlocks the rq */
  4597. /*
  4598. * the context switch might have flipped the stack from under
  4599. * us, hence refresh the local variables.
  4600. */
  4601. cpu = smp_processor_id();
  4602. rq = cpu_rq(cpu);
  4603. } else
  4604. spin_unlock_irq(&rq->lock);
  4605. post_schedule(rq);
  4606. if (unlikely(reacquire_kernel_lock(current) < 0))
  4607. goto need_resched_nonpreemptible;
  4608. preempt_enable_no_resched();
  4609. if (need_resched())
  4610. goto need_resched;
  4611. }
  4612. EXPORT_SYMBOL(schedule);
  4613. #ifdef CONFIG_SMP
  4614. /*
  4615. * Look out! "owner" is an entirely speculative pointer
  4616. * access and not reliable.
  4617. */
  4618. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4619. {
  4620. unsigned int cpu;
  4621. struct rq *rq;
  4622. if (!sched_feat(OWNER_SPIN))
  4623. return 0;
  4624. #ifdef CONFIG_DEBUG_PAGEALLOC
  4625. /*
  4626. * Need to access the cpu field knowing that
  4627. * DEBUG_PAGEALLOC could have unmapped it if
  4628. * the mutex owner just released it and exited.
  4629. */
  4630. if (probe_kernel_address(&owner->cpu, cpu))
  4631. goto out;
  4632. #else
  4633. cpu = owner->cpu;
  4634. #endif
  4635. /*
  4636. * Even if the access succeeded (likely case),
  4637. * the cpu field may no longer be valid.
  4638. */
  4639. if (cpu >= nr_cpumask_bits)
  4640. goto out;
  4641. /*
  4642. * We need to validate that we can do a
  4643. * get_cpu() and that we have the percpu area.
  4644. */
  4645. if (!cpu_online(cpu))
  4646. goto out;
  4647. rq = cpu_rq(cpu);
  4648. for (;;) {
  4649. /*
  4650. * Owner changed, break to re-assess state.
  4651. */
  4652. if (lock->owner != owner)
  4653. break;
  4654. /*
  4655. * Is that owner really running on that cpu?
  4656. */
  4657. if (task_thread_info(rq->curr) != owner || need_resched())
  4658. return 0;
  4659. cpu_relax();
  4660. }
  4661. out:
  4662. return 1;
  4663. }
  4664. #endif
  4665. #ifdef CONFIG_PREEMPT
  4666. /*
  4667. * this is the entry point to schedule() from in-kernel preemption
  4668. * off of preempt_enable. Kernel preemptions off return from interrupt
  4669. * occur there and call schedule directly.
  4670. */
  4671. asmlinkage void __sched preempt_schedule(void)
  4672. {
  4673. struct thread_info *ti = current_thread_info();
  4674. /*
  4675. * If there is a non-zero preempt_count or interrupts are disabled,
  4676. * we do not want to preempt the current task. Just return..
  4677. */
  4678. if (likely(ti->preempt_count || irqs_disabled()))
  4679. return;
  4680. do {
  4681. add_preempt_count(PREEMPT_ACTIVE);
  4682. schedule();
  4683. sub_preempt_count(PREEMPT_ACTIVE);
  4684. /*
  4685. * Check again in case we missed a preemption opportunity
  4686. * between schedule and now.
  4687. */
  4688. barrier();
  4689. } while (need_resched());
  4690. }
  4691. EXPORT_SYMBOL(preempt_schedule);
  4692. /*
  4693. * this is the entry point to schedule() from kernel preemption
  4694. * off of irq context.
  4695. * Note, that this is called and return with irqs disabled. This will
  4696. * protect us against recursive calling from irq.
  4697. */
  4698. asmlinkage void __sched preempt_schedule_irq(void)
  4699. {
  4700. struct thread_info *ti = current_thread_info();
  4701. /* Catch callers which need to be fixed */
  4702. BUG_ON(ti->preempt_count || !irqs_disabled());
  4703. do {
  4704. add_preempt_count(PREEMPT_ACTIVE);
  4705. local_irq_enable();
  4706. schedule();
  4707. local_irq_disable();
  4708. sub_preempt_count(PREEMPT_ACTIVE);
  4709. /*
  4710. * Check again in case we missed a preemption opportunity
  4711. * between schedule and now.
  4712. */
  4713. barrier();
  4714. } while (need_resched());
  4715. }
  4716. #endif /* CONFIG_PREEMPT */
  4717. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4718. void *key)
  4719. {
  4720. return try_to_wake_up(curr->private, mode, wake_flags);
  4721. }
  4722. EXPORT_SYMBOL(default_wake_function);
  4723. /*
  4724. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4725. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4726. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4727. *
  4728. * There are circumstances in which we can try to wake a task which has already
  4729. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4730. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4731. */
  4732. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4733. int nr_exclusive, int wake_flags, void *key)
  4734. {
  4735. wait_queue_t *curr, *next;
  4736. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4737. unsigned flags = curr->flags;
  4738. if (curr->func(curr, mode, wake_flags, key) &&
  4739. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4740. break;
  4741. }
  4742. }
  4743. /**
  4744. * __wake_up - wake up threads blocked on a waitqueue.
  4745. * @q: the waitqueue
  4746. * @mode: which threads
  4747. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4748. * @key: is directly passed to the wakeup function
  4749. *
  4750. * It may be assumed that this function implies a write memory barrier before
  4751. * changing the task state if and only if any tasks are woken up.
  4752. */
  4753. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4754. int nr_exclusive, void *key)
  4755. {
  4756. unsigned long flags;
  4757. spin_lock_irqsave(&q->lock, flags);
  4758. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4759. spin_unlock_irqrestore(&q->lock, flags);
  4760. }
  4761. EXPORT_SYMBOL(__wake_up);
  4762. /*
  4763. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4764. */
  4765. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4766. {
  4767. __wake_up_common(q, mode, 1, 0, NULL);
  4768. }
  4769. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4770. {
  4771. __wake_up_common(q, mode, 1, 0, key);
  4772. }
  4773. /**
  4774. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4775. * @q: the waitqueue
  4776. * @mode: which threads
  4777. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4778. * @key: opaque value to be passed to wakeup targets
  4779. *
  4780. * The sync wakeup differs that the waker knows that it will schedule
  4781. * away soon, so while the target thread will be woken up, it will not
  4782. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4783. * with each other. This can prevent needless bouncing between CPUs.
  4784. *
  4785. * On UP it can prevent extra preemption.
  4786. *
  4787. * It may be assumed that this function implies a write memory barrier before
  4788. * changing the task state if and only if any tasks are woken up.
  4789. */
  4790. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4791. int nr_exclusive, void *key)
  4792. {
  4793. unsigned long flags;
  4794. int wake_flags = WF_SYNC;
  4795. if (unlikely(!q))
  4796. return;
  4797. if (unlikely(!nr_exclusive))
  4798. wake_flags = 0;
  4799. spin_lock_irqsave(&q->lock, flags);
  4800. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4801. spin_unlock_irqrestore(&q->lock, flags);
  4802. }
  4803. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4804. /*
  4805. * __wake_up_sync - see __wake_up_sync_key()
  4806. */
  4807. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4808. {
  4809. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4810. }
  4811. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4812. /**
  4813. * complete: - signals a single thread waiting on this completion
  4814. * @x: holds the state of this particular completion
  4815. *
  4816. * This will wake up a single thread waiting on this completion. Threads will be
  4817. * awakened in the same order in which they were queued.
  4818. *
  4819. * See also complete_all(), wait_for_completion() and related routines.
  4820. *
  4821. * It may be assumed that this function implies a write memory barrier before
  4822. * changing the task state if and only if any tasks are woken up.
  4823. */
  4824. void complete(struct completion *x)
  4825. {
  4826. unsigned long flags;
  4827. spin_lock_irqsave(&x->wait.lock, flags);
  4828. x->done++;
  4829. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4830. spin_unlock_irqrestore(&x->wait.lock, flags);
  4831. }
  4832. EXPORT_SYMBOL(complete);
  4833. /**
  4834. * complete_all: - signals all threads waiting on this completion
  4835. * @x: holds the state of this particular completion
  4836. *
  4837. * This will wake up all threads waiting on this particular completion event.
  4838. *
  4839. * It may be assumed that this function implies a write memory barrier before
  4840. * changing the task state if and only if any tasks are woken up.
  4841. */
  4842. void complete_all(struct completion *x)
  4843. {
  4844. unsigned long flags;
  4845. spin_lock_irqsave(&x->wait.lock, flags);
  4846. x->done += UINT_MAX/2;
  4847. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4848. spin_unlock_irqrestore(&x->wait.lock, flags);
  4849. }
  4850. EXPORT_SYMBOL(complete_all);
  4851. static inline long __sched
  4852. do_wait_for_common(struct completion *x, long timeout, int state)
  4853. {
  4854. if (!x->done) {
  4855. DECLARE_WAITQUEUE(wait, current);
  4856. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4857. __add_wait_queue_tail(&x->wait, &wait);
  4858. do {
  4859. if (signal_pending_state(state, current)) {
  4860. timeout = -ERESTARTSYS;
  4861. break;
  4862. }
  4863. __set_current_state(state);
  4864. spin_unlock_irq(&x->wait.lock);
  4865. timeout = schedule_timeout(timeout);
  4866. spin_lock_irq(&x->wait.lock);
  4867. } while (!x->done && timeout);
  4868. __remove_wait_queue(&x->wait, &wait);
  4869. if (!x->done)
  4870. return timeout;
  4871. }
  4872. x->done--;
  4873. return timeout ?: 1;
  4874. }
  4875. static long __sched
  4876. wait_for_common(struct completion *x, long timeout, int state)
  4877. {
  4878. might_sleep();
  4879. spin_lock_irq(&x->wait.lock);
  4880. timeout = do_wait_for_common(x, timeout, state);
  4881. spin_unlock_irq(&x->wait.lock);
  4882. return timeout;
  4883. }
  4884. /**
  4885. * wait_for_completion: - waits for completion of a task
  4886. * @x: holds the state of this particular completion
  4887. *
  4888. * This waits to be signaled for completion of a specific task. It is NOT
  4889. * interruptible and there is no timeout.
  4890. *
  4891. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4892. * and interrupt capability. Also see complete().
  4893. */
  4894. void __sched wait_for_completion(struct completion *x)
  4895. {
  4896. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4897. }
  4898. EXPORT_SYMBOL(wait_for_completion);
  4899. /**
  4900. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4901. * @x: holds the state of this particular completion
  4902. * @timeout: timeout value in jiffies
  4903. *
  4904. * This waits for either a completion of a specific task to be signaled or for a
  4905. * specified timeout to expire. The timeout is in jiffies. It is not
  4906. * interruptible.
  4907. */
  4908. unsigned long __sched
  4909. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4910. {
  4911. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4912. }
  4913. EXPORT_SYMBOL(wait_for_completion_timeout);
  4914. /**
  4915. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4916. * @x: holds the state of this particular completion
  4917. *
  4918. * This waits for completion of a specific task to be signaled. It is
  4919. * interruptible.
  4920. */
  4921. int __sched wait_for_completion_interruptible(struct completion *x)
  4922. {
  4923. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4924. if (t == -ERESTARTSYS)
  4925. return t;
  4926. return 0;
  4927. }
  4928. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4929. /**
  4930. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4931. * @x: holds the state of this particular completion
  4932. * @timeout: timeout value in jiffies
  4933. *
  4934. * This waits for either a completion of a specific task to be signaled or for a
  4935. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4936. */
  4937. unsigned long __sched
  4938. wait_for_completion_interruptible_timeout(struct completion *x,
  4939. unsigned long timeout)
  4940. {
  4941. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4942. }
  4943. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4944. /**
  4945. * wait_for_completion_killable: - waits for completion of a task (killable)
  4946. * @x: holds the state of this particular completion
  4947. *
  4948. * This waits to be signaled for completion of a specific task. It can be
  4949. * interrupted by a kill signal.
  4950. */
  4951. int __sched wait_for_completion_killable(struct completion *x)
  4952. {
  4953. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4954. if (t == -ERESTARTSYS)
  4955. return t;
  4956. return 0;
  4957. }
  4958. EXPORT_SYMBOL(wait_for_completion_killable);
  4959. /**
  4960. * try_wait_for_completion - try to decrement a completion without blocking
  4961. * @x: completion structure
  4962. *
  4963. * Returns: 0 if a decrement cannot be done without blocking
  4964. * 1 if a decrement succeeded.
  4965. *
  4966. * If a completion is being used as a counting completion,
  4967. * attempt to decrement the counter without blocking. This
  4968. * enables us to avoid waiting if the resource the completion
  4969. * is protecting is not available.
  4970. */
  4971. bool try_wait_for_completion(struct completion *x)
  4972. {
  4973. int ret = 1;
  4974. spin_lock_irq(&x->wait.lock);
  4975. if (!x->done)
  4976. ret = 0;
  4977. else
  4978. x->done--;
  4979. spin_unlock_irq(&x->wait.lock);
  4980. return ret;
  4981. }
  4982. EXPORT_SYMBOL(try_wait_for_completion);
  4983. /**
  4984. * completion_done - Test to see if a completion has any waiters
  4985. * @x: completion structure
  4986. *
  4987. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4988. * 1 if there are no waiters.
  4989. *
  4990. */
  4991. bool completion_done(struct completion *x)
  4992. {
  4993. int ret = 1;
  4994. spin_lock_irq(&x->wait.lock);
  4995. if (!x->done)
  4996. ret = 0;
  4997. spin_unlock_irq(&x->wait.lock);
  4998. return ret;
  4999. }
  5000. EXPORT_SYMBOL(completion_done);
  5001. static long __sched
  5002. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5003. {
  5004. unsigned long flags;
  5005. wait_queue_t wait;
  5006. init_waitqueue_entry(&wait, current);
  5007. __set_current_state(state);
  5008. spin_lock_irqsave(&q->lock, flags);
  5009. __add_wait_queue(q, &wait);
  5010. spin_unlock(&q->lock);
  5011. timeout = schedule_timeout(timeout);
  5012. spin_lock_irq(&q->lock);
  5013. __remove_wait_queue(q, &wait);
  5014. spin_unlock_irqrestore(&q->lock, flags);
  5015. return timeout;
  5016. }
  5017. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5018. {
  5019. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5020. }
  5021. EXPORT_SYMBOL(interruptible_sleep_on);
  5022. long __sched
  5023. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5024. {
  5025. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5026. }
  5027. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5028. void __sched sleep_on(wait_queue_head_t *q)
  5029. {
  5030. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5031. }
  5032. EXPORT_SYMBOL(sleep_on);
  5033. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5034. {
  5035. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5036. }
  5037. EXPORT_SYMBOL(sleep_on_timeout);
  5038. #ifdef CONFIG_RT_MUTEXES
  5039. /*
  5040. * rt_mutex_setprio - set the current priority of a task
  5041. * @p: task
  5042. * @prio: prio value (kernel-internal form)
  5043. *
  5044. * This function changes the 'effective' priority of a task. It does
  5045. * not touch ->normal_prio like __setscheduler().
  5046. *
  5047. * Used by the rt_mutex code to implement priority inheritance logic.
  5048. */
  5049. void rt_mutex_setprio(struct task_struct *p, int prio)
  5050. {
  5051. unsigned long flags;
  5052. int oldprio, on_rq, running;
  5053. struct rq *rq;
  5054. const struct sched_class *prev_class = p->sched_class;
  5055. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5056. rq = task_rq_lock(p, &flags);
  5057. update_rq_clock(rq);
  5058. oldprio = p->prio;
  5059. on_rq = p->se.on_rq;
  5060. running = task_current(rq, p);
  5061. if (on_rq)
  5062. dequeue_task(rq, p, 0);
  5063. if (running)
  5064. p->sched_class->put_prev_task(rq, p);
  5065. if (rt_prio(prio))
  5066. p->sched_class = &rt_sched_class;
  5067. else
  5068. p->sched_class = &fair_sched_class;
  5069. p->prio = prio;
  5070. if (running)
  5071. p->sched_class->set_curr_task(rq);
  5072. if (on_rq) {
  5073. enqueue_task(rq, p, 0);
  5074. check_class_changed(rq, p, prev_class, oldprio, running);
  5075. }
  5076. task_rq_unlock(rq, &flags);
  5077. }
  5078. #endif
  5079. void set_user_nice(struct task_struct *p, long nice)
  5080. {
  5081. int old_prio, delta, on_rq;
  5082. unsigned long flags;
  5083. struct rq *rq;
  5084. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5085. return;
  5086. /*
  5087. * We have to be careful, if called from sys_setpriority(),
  5088. * the task might be in the middle of scheduling on another CPU.
  5089. */
  5090. rq = task_rq_lock(p, &flags);
  5091. update_rq_clock(rq);
  5092. /*
  5093. * The RT priorities are set via sched_setscheduler(), but we still
  5094. * allow the 'normal' nice value to be set - but as expected
  5095. * it wont have any effect on scheduling until the task is
  5096. * SCHED_FIFO/SCHED_RR:
  5097. */
  5098. if (task_has_rt_policy(p)) {
  5099. p->static_prio = NICE_TO_PRIO(nice);
  5100. goto out_unlock;
  5101. }
  5102. on_rq = p->se.on_rq;
  5103. if (on_rq)
  5104. dequeue_task(rq, p, 0);
  5105. p->static_prio = NICE_TO_PRIO(nice);
  5106. set_load_weight(p);
  5107. old_prio = p->prio;
  5108. p->prio = effective_prio(p);
  5109. delta = p->prio - old_prio;
  5110. if (on_rq) {
  5111. enqueue_task(rq, p, 0);
  5112. /*
  5113. * If the task increased its priority or is running and
  5114. * lowered its priority, then reschedule its CPU:
  5115. */
  5116. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5117. resched_task(rq->curr);
  5118. }
  5119. out_unlock:
  5120. task_rq_unlock(rq, &flags);
  5121. }
  5122. EXPORT_SYMBOL(set_user_nice);
  5123. /*
  5124. * can_nice - check if a task can reduce its nice value
  5125. * @p: task
  5126. * @nice: nice value
  5127. */
  5128. int can_nice(const struct task_struct *p, const int nice)
  5129. {
  5130. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5131. int nice_rlim = 20 - nice;
  5132. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5133. capable(CAP_SYS_NICE));
  5134. }
  5135. #ifdef __ARCH_WANT_SYS_NICE
  5136. /*
  5137. * sys_nice - change the priority of the current process.
  5138. * @increment: priority increment
  5139. *
  5140. * sys_setpriority is a more generic, but much slower function that
  5141. * does similar things.
  5142. */
  5143. SYSCALL_DEFINE1(nice, int, increment)
  5144. {
  5145. long nice, retval;
  5146. /*
  5147. * Setpriority might change our priority at the same moment.
  5148. * We don't have to worry. Conceptually one call occurs first
  5149. * and we have a single winner.
  5150. */
  5151. if (increment < -40)
  5152. increment = -40;
  5153. if (increment > 40)
  5154. increment = 40;
  5155. nice = TASK_NICE(current) + increment;
  5156. if (nice < -20)
  5157. nice = -20;
  5158. if (nice > 19)
  5159. nice = 19;
  5160. if (increment < 0 && !can_nice(current, nice))
  5161. return -EPERM;
  5162. retval = security_task_setnice(current, nice);
  5163. if (retval)
  5164. return retval;
  5165. set_user_nice(current, nice);
  5166. return 0;
  5167. }
  5168. #endif
  5169. /**
  5170. * task_prio - return the priority value of a given task.
  5171. * @p: the task in question.
  5172. *
  5173. * This is the priority value as seen by users in /proc.
  5174. * RT tasks are offset by -200. Normal tasks are centered
  5175. * around 0, value goes from -16 to +15.
  5176. */
  5177. int task_prio(const struct task_struct *p)
  5178. {
  5179. return p->prio - MAX_RT_PRIO;
  5180. }
  5181. /**
  5182. * task_nice - return the nice value of a given task.
  5183. * @p: the task in question.
  5184. */
  5185. int task_nice(const struct task_struct *p)
  5186. {
  5187. return TASK_NICE(p);
  5188. }
  5189. EXPORT_SYMBOL(task_nice);
  5190. /**
  5191. * idle_cpu - is a given cpu idle currently?
  5192. * @cpu: the processor in question.
  5193. */
  5194. int idle_cpu(int cpu)
  5195. {
  5196. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5197. }
  5198. /**
  5199. * idle_task - return the idle task for a given cpu.
  5200. * @cpu: the processor in question.
  5201. */
  5202. struct task_struct *idle_task(int cpu)
  5203. {
  5204. return cpu_rq(cpu)->idle;
  5205. }
  5206. /**
  5207. * find_process_by_pid - find a process with a matching PID value.
  5208. * @pid: the pid in question.
  5209. */
  5210. static struct task_struct *find_process_by_pid(pid_t pid)
  5211. {
  5212. return pid ? find_task_by_vpid(pid) : current;
  5213. }
  5214. /* Actually do priority change: must hold rq lock. */
  5215. static void
  5216. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5217. {
  5218. BUG_ON(p->se.on_rq);
  5219. p->policy = policy;
  5220. switch (p->policy) {
  5221. case SCHED_NORMAL:
  5222. case SCHED_BATCH:
  5223. case SCHED_IDLE:
  5224. p->sched_class = &fair_sched_class;
  5225. break;
  5226. case SCHED_FIFO:
  5227. case SCHED_RR:
  5228. p->sched_class = &rt_sched_class;
  5229. break;
  5230. }
  5231. p->rt_priority = prio;
  5232. p->normal_prio = normal_prio(p);
  5233. /* we are holding p->pi_lock already */
  5234. p->prio = rt_mutex_getprio(p);
  5235. set_load_weight(p);
  5236. }
  5237. /*
  5238. * check the target process has a UID that matches the current process's
  5239. */
  5240. static bool check_same_owner(struct task_struct *p)
  5241. {
  5242. const struct cred *cred = current_cred(), *pcred;
  5243. bool match;
  5244. rcu_read_lock();
  5245. pcred = __task_cred(p);
  5246. match = (cred->euid == pcred->euid ||
  5247. cred->euid == pcred->uid);
  5248. rcu_read_unlock();
  5249. return match;
  5250. }
  5251. static int __sched_setscheduler(struct task_struct *p, int policy,
  5252. struct sched_param *param, bool user)
  5253. {
  5254. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5255. unsigned long flags;
  5256. const struct sched_class *prev_class = p->sched_class;
  5257. struct rq *rq;
  5258. int reset_on_fork;
  5259. /* may grab non-irq protected spin_locks */
  5260. BUG_ON(in_interrupt());
  5261. recheck:
  5262. /* double check policy once rq lock held */
  5263. if (policy < 0) {
  5264. reset_on_fork = p->sched_reset_on_fork;
  5265. policy = oldpolicy = p->policy;
  5266. } else {
  5267. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5268. policy &= ~SCHED_RESET_ON_FORK;
  5269. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5270. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5271. policy != SCHED_IDLE)
  5272. return -EINVAL;
  5273. }
  5274. /*
  5275. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5276. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5277. * SCHED_BATCH and SCHED_IDLE is 0.
  5278. */
  5279. if (param->sched_priority < 0 ||
  5280. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5281. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5282. return -EINVAL;
  5283. if (rt_policy(policy) != (param->sched_priority != 0))
  5284. return -EINVAL;
  5285. /*
  5286. * Allow unprivileged RT tasks to decrease priority:
  5287. */
  5288. if (user && !capable(CAP_SYS_NICE)) {
  5289. if (rt_policy(policy)) {
  5290. unsigned long rlim_rtprio;
  5291. if (!lock_task_sighand(p, &flags))
  5292. return -ESRCH;
  5293. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5294. unlock_task_sighand(p, &flags);
  5295. /* can't set/change the rt policy */
  5296. if (policy != p->policy && !rlim_rtprio)
  5297. return -EPERM;
  5298. /* can't increase priority */
  5299. if (param->sched_priority > p->rt_priority &&
  5300. param->sched_priority > rlim_rtprio)
  5301. return -EPERM;
  5302. }
  5303. /*
  5304. * Like positive nice levels, dont allow tasks to
  5305. * move out of SCHED_IDLE either:
  5306. */
  5307. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5308. return -EPERM;
  5309. /* can't change other user's priorities */
  5310. if (!check_same_owner(p))
  5311. return -EPERM;
  5312. /* Normal users shall not reset the sched_reset_on_fork flag */
  5313. if (p->sched_reset_on_fork && !reset_on_fork)
  5314. return -EPERM;
  5315. }
  5316. if (user) {
  5317. #ifdef CONFIG_RT_GROUP_SCHED
  5318. /*
  5319. * Do not allow realtime tasks into groups that have no runtime
  5320. * assigned.
  5321. */
  5322. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5323. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5324. return -EPERM;
  5325. #endif
  5326. retval = security_task_setscheduler(p, policy, param);
  5327. if (retval)
  5328. return retval;
  5329. }
  5330. /*
  5331. * make sure no PI-waiters arrive (or leave) while we are
  5332. * changing the priority of the task:
  5333. */
  5334. spin_lock_irqsave(&p->pi_lock, flags);
  5335. /*
  5336. * To be able to change p->policy safely, the apropriate
  5337. * runqueue lock must be held.
  5338. */
  5339. rq = __task_rq_lock(p);
  5340. /* recheck policy now with rq lock held */
  5341. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5342. policy = oldpolicy = -1;
  5343. __task_rq_unlock(rq);
  5344. spin_unlock_irqrestore(&p->pi_lock, flags);
  5345. goto recheck;
  5346. }
  5347. update_rq_clock(rq);
  5348. on_rq = p->se.on_rq;
  5349. running = task_current(rq, p);
  5350. if (on_rq)
  5351. deactivate_task(rq, p, 0);
  5352. if (running)
  5353. p->sched_class->put_prev_task(rq, p);
  5354. p->sched_reset_on_fork = reset_on_fork;
  5355. oldprio = p->prio;
  5356. __setscheduler(rq, p, policy, param->sched_priority);
  5357. if (running)
  5358. p->sched_class->set_curr_task(rq);
  5359. if (on_rq) {
  5360. activate_task(rq, p, 0);
  5361. check_class_changed(rq, p, prev_class, oldprio, running);
  5362. }
  5363. __task_rq_unlock(rq);
  5364. spin_unlock_irqrestore(&p->pi_lock, flags);
  5365. rt_mutex_adjust_pi(p);
  5366. return 0;
  5367. }
  5368. /**
  5369. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5370. * @p: the task in question.
  5371. * @policy: new policy.
  5372. * @param: structure containing the new RT priority.
  5373. *
  5374. * NOTE that the task may be already dead.
  5375. */
  5376. int sched_setscheduler(struct task_struct *p, int policy,
  5377. struct sched_param *param)
  5378. {
  5379. return __sched_setscheduler(p, policy, param, true);
  5380. }
  5381. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5382. /**
  5383. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5384. * @p: the task in question.
  5385. * @policy: new policy.
  5386. * @param: structure containing the new RT priority.
  5387. *
  5388. * Just like sched_setscheduler, only don't bother checking if the
  5389. * current context has permission. For example, this is needed in
  5390. * stop_machine(): we create temporary high priority worker threads,
  5391. * but our caller might not have that capability.
  5392. */
  5393. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5394. struct sched_param *param)
  5395. {
  5396. return __sched_setscheduler(p, policy, param, false);
  5397. }
  5398. static int
  5399. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5400. {
  5401. struct sched_param lparam;
  5402. struct task_struct *p;
  5403. int retval;
  5404. if (!param || pid < 0)
  5405. return -EINVAL;
  5406. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5407. return -EFAULT;
  5408. rcu_read_lock();
  5409. retval = -ESRCH;
  5410. p = find_process_by_pid(pid);
  5411. if (p != NULL)
  5412. retval = sched_setscheduler(p, policy, &lparam);
  5413. rcu_read_unlock();
  5414. return retval;
  5415. }
  5416. /**
  5417. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5418. * @pid: the pid in question.
  5419. * @policy: new policy.
  5420. * @param: structure containing the new RT priority.
  5421. */
  5422. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5423. struct sched_param __user *, param)
  5424. {
  5425. /* negative values for policy are not valid */
  5426. if (policy < 0)
  5427. return -EINVAL;
  5428. return do_sched_setscheduler(pid, policy, param);
  5429. }
  5430. /**
  5431. * sys_sched_setparam - set/change the RT priority of a thread
  5432. * @pid: the pid in question.
  5433. * @param: structure containing the new RT priority.
  5434. */
  5435. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5436. {
  5437. return do_sched_setscheduler(pid, -1, param);
  5438. }
  5439. /**
  5440. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5441. * @pid: the pid in question.
  5442. */
  5443. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5444. {
  5445. struct task_struct *p;
  5446. int retval;
  5447. if (pid < 0)
  5448. return -EINVAL;
  5449. retval = -ESRCH;
  5450. read_lock(&tasklist_lock);
  5451. p = find_process_by_pid(pid);
  5452. if (p) {
  5453. retval = security_task_getscheduler(p);
  5454. if (!retval)
  5455. retval = p->policy
  5456. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5457. }
  5458. read_unlock(&tasklist_lock);
  5459. return retval;
  5460. }
  5461. /**
  5462. * sys_sched_getparam - get the RT priority of a thread
  5463. * @pid: the pid in question.
  5464. * @param: structure containing the RT priority.
  5465. */
  5466. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5467. {
  5468. struct sched_param lp;
  5469. struct task_struct *p;
  5470. int retval;
  5471. if (!param || pid < 0)
  5472. return -EINVAL;
  5473. read_lock(&tasklist_lock);
  5474. p = find_process_by_pid(pid);
  5475. retval = -ESRCH;
  5476. if (!p)
  5477. goto out_unlock;
  5478. retval = security_task_getscheduler(p);
  5479. if (retval)
  5480. goto out_unlock;
  5481. lp.sched_priority = p->rt_priority;
  5482. read_unlock(&tasklist_lock);
  5483. /*
  5484. * This one might sleep, we cannot do it with a spinlock held ...
  5485. */
  5486. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5487. return retval;
  5488. out_unlock:
  5489. read_unlock(&tasklist_lock);
  5490. return retval;
  5491. }
  5492. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5493. {
  5494. cpumask_var_t cpus_allowed, new_mask;
  5495. struct task_struct *p;
  5496. int retval;
  5497. get_online_cpus();
  5498. read_lock(&tasklist_lock);
  5499. p = find_process_by_pid(pid);
  5500. if (!p) {
  5501. read_unlock(&tasklist_lock);
  5502. put_online_cpus();
  5503. return -ESRCH;
  5504. }
  5505. /*
  5506. * It is not safe to call set_cpus_allowed with the
  5507. * tasklist_lock held. We will bump the task_struct's
  5508. * usage count and then drop tasklist_lock.
  5509. */
  5510. get_task_struct(p);
  5511. read_unlock(&tasklist_lock);
  5512. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5513. retval = -ENOMEM;
  5514. goto out_put_task;
  5515. }
  5516. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5517. retval = -ENOMEM;
  5518. goto out_free_cpus_allowed;
  5519. }
  5520. retval = -EPERM;
  5521. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5522. goto out_unlock;
  5523. retval = security_task_setscheduler(p, 0, NULL);
  5524. if (retval)
  5525. goto out_unlock;
  5526. cpuset_cpus_allowed(p, cpus_allowed);
  5527. cpumask_and(new_mask, in_mask, cpus_allowed);
  5528. again:
  5529. retval = set_cpus_allowed_ptr(p, new_mask);
  5530. if (!retval) {
  5531. cpuset_cpus_allowed(p, cpus_allowed);
  5532. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5533. /*
  5534. * We must have raced with a concurrent cpuset
  5535. * update. Just reset the cpus_allowed to the
  5536. * cpuset's cpus_allowed
  5537. */
  5538. cpumask_copy(new_mask, cpus_allowed);
  5539. goto again;
  5540. }
  5541. }
  5542. out_unlock:
  5543. free_cpumask_var(new_mask);
  5544. out_free_cpus_allowed:
  5545. free_cpumask_var(cpus_allowed);
  5546. out_put_task:
  5547. put_task_struct(p);
  5548. put_online_cpus();
  5549. return retval;
  5550. }
  5551. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5552. struct cpumask *new_mask)
  5553. {
  5554. if (len < cpumask_size())
  5555. cpumask_clear(new_mask);
  5556. else if (len > cpumask_size())
  5557. len = cpumask_size();
  5558. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5559. }
  5560. /**
  5561. * sys_sched_setaffinity - set the cpu affinity of a process
  5562. * @pid: pid of the process
  5563. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5564. * @user_mask_ptr: user-space pointer to the new cpu mask
  5565. */
  5566. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5567. unsigned long __user *, user_mask_ptr)
  5568. {
  5569. cpumask_var_t new_mask;
  5570. int retval;
  5571. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5572. return -ENOMEM;
  5573. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5574. if (retval == 0)
  5575. retval = sched_setaffinity(pid, new_mask);
  5576. free_cpumask_var(new_mask);
  5577. return retval;
  5578. }
  5579. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5580. {
  5581. struct task_struct *p;
  5582. int retval;
  5583. get_online_cpus();
  5584. read_lock(&tasklist_lock);
  5585. retval = -ESRCH;
  5586. p = find_process_by_pid(pid);
  5587. if (!p)
  5588. goto out_unlock;
  5589. retval = security_task_getscheduler(p);
  5590. if (retval)
  5591. goto out_unlock;
  5592. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5593. out_unlock:
  5594. read_unlock(&tasklist_lock);
  5595. put_online_cpus();
  5596. return retval;
  5597. }
  5598. /**
  5599. * sys_sched_getaffinity - get the cpu affinity of a process
  5600. * @pid: pid of the process
  5601. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5602. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5603. */
  5604. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5605. unsigned long __user *, user_mask_ptr)
  5606. {
  5607. int ret;
  5608. cpumask_var_t mask;
  5609. if (len < cpumask_size())
  5610. return -EINVAL;
  5611. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5612. return -ENOMEM;
  5613. ret = sched_getaffinity(pid, mask);
  5614. if (ret == 0) {
  5615. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5616. ret = -EFAULT;
  5617. else
  5618. ret = cpumask_size();
  5619. }
  5620. free_cpumask_var(mask);
  5621. return ret;
  5622. }
  5623. /**
  5624. * sys_sched_yield - yield the current processor to other threads.
  5625. *
  5626. * This function yields the current CPU to other tasks. If there are no
  5627. * other threads running on this CPU then this function will return.
  5628. */
  5629. SYSCALL_DEFINE0(sched_yield)
  5630. {
  5631. struct rq *rq = this_rq_lock();
  5632. schedstat_inc(rq, yld_count);
  5633. current->sched_class->yield_task(rq);
  5634. /*
  5635. * Since we are going to call schedule() anyway, there's
  5636. * no need to preempt or enable interrupts:
  5637. */
  5638. __release(rq->lock);
  5639. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5640. _raw_spin_unlock(&rq->lock);
  5641. preempt_enable_no_resched();
  5642. schedule();
  5643. return 0;
  5644. }
  5645. static inline int should_resched(void)
  5646. {
  5647. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5648. }
  5649. static void __cond_resched(void)
  5650. {
  5651. add_preempt_count(PREEMPT_ACTIVE);
  5652. schedule();
  5653. sub_preempt_count(PREEMPT_ACTIVE);
  5654. }
  5655. int __sched _cond_resched(void)
  5656. {
  5657. if (should_resched()) {
  5658. __cond_resched();
  5659. return 1;
  5660. }
  5661. return 0;
  5662. }
  5663. EXPORT_SYMBOL(_cond_resched);
  5664. /*
  5665. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5666. * call schedule, and on return reacquire the lock.
  5667. *
  5668. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5669. * operations here to prevent schedule() from being called twice (once via
  5670. * spin_unlock(), once by hand).
  5671. */
  5672. int __cond_resched_lock(spinlock_t *lock)
  5673. {
  5674. int resched = should_resched();
  5675. int ret = 0;
  5676. lockdep_assert_held(lock);
  5677. if (spin_needbreak(lock) || resched) {
  5678. spin_unlock(lock);
  5679. if (resched)
  5680. __cond_resched();
  5681. else
  5682. cpu_relax();
  5683. ret = 1;
  5684. spin_lock(lock);
  5685. }
  5686. return ret;
  5687. }
  5688. EXPORT_SYMBOL(__cond_resched_lock);
  5689. int __sched __cond_resched_softirq(void)
  5690. {
  5691. BUG_ON(!in_softirq());
  5692. if (should_resched()) {
  5693. local_bh_enable();
  5694. __cond_resched();
  5695. local_bh_disable();
  5696. return 1;
  5697. }
  5698. return 0;
  5699. }
  5700. EXPORT_SYMBOL(__cond_resched_softirq);
  5701. /**
  5702. * yield - yield the current processor to other threads.
  5703. *
  5704. * This is a shortcut for kernel-space yielding - it marks the
  5705. * thread runnable and calls sys_sched_yield().
  5706. */
  5707. void __sched yield(void)
  5708. {
  5709. set_current_state(TASK_RUNNING);
  5710. sys_sched_yield();
  5711. }
  5712. EXPORT_SYMBOL(yield);
  5713. /*
  5714. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5715. * that process accounting knows that this is a task in IO wait state.
  5716. *
  5717. * But don't do that if it is a deliberate, throttling IO wait (this task
  5718. * has set its backing_dev_info: the queue against which it should throttle)
  5719. */
  5720. void __sched io_schedule(void)
  5721. {
  5722. struct rq *rq = raw_rq();
  5723. delayacct_blkio_start();
  5724. atomic_inc(&rq->nr_iowait);
  5725. current->in_iowait = 1;
  5726. schedule();
  5727. current->in_iowait = 0;
  5728. atomic_dec(&rq->nr_iowait);
  5729. delayacct_blkio_end();
  5730. }
  5731. EXPORT_SYMBOL(io_schedule);
  5732. long __sched io_schedule_timeout(long timeout)
  5733. {
  5734. struct rq *rq = raw_rq();
  5735. long ret;
  5736. delayacct_blkio_start();
  5737. atomic_inc(&rq->nr_iowait);
  5738. current->in_iowait = 1;
  5739. ret = schedule_timeout(timeout);
  5740. current->in_iowait = 0;
  5741. atomic_dec(&rq->nr_iowait);
  5742. delayacct_blkio_end();
  5743. return ret;
  5744. }
  5745. /**
  5746. * sys_sched_get_priority_max - return maximum RT priority.
  5747. * @policy: scheduling class.
  5748. *
  5749. * this syscall returns the maximum rt_priority that can be used
  5750. * by a given scheduling class.
  5751. */
  5752. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5753. {
  5754. int ret = -EINVAL;
  5755. switch (policy) {
  5756. case SCHED_FIFO:
  5757. case SCHED_RR:
  5758. ret = MAX_USER_RT_PRIO-1;
  5759. break;
  5760. case SCHED_NORMAL:
  5761. case SCHED_BATCH:
  5762. case SCHED_IDLE:
  5763. ret = 0;
  5764. break;
  5765. }
  5766. return ret;
  5767. }
  5768. /**
  5769. * sys_sched_get_priority_min - return minimum RT priority.
  5770. * @policy: scheduling class.
  5771. *
  5772. * this syscall returns the minimum rt_priority that can be used
  5773. * by a given scheduling class.
  5774. */
  5775. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5776. {
  5777. int ret = -EINVAL;
  5778. switch (policy) {
  5779. case SCHED_FIFO:
  5780. case SCHED_RR:
  5781. ret = 1;
  5782. break;
  5783. case SCHED_NORMAL:
  5784. case SCHED_BATCH:
  5785. case SCHED_IDLE:
  5786. ret = 0;
  5787. }
  5788. return ret;
  5789. }
  5790. /**
  5791. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5792. * @pid: pid of the process.
  5793. * @interval: userspace pointer to the timeslice value.
  5794. *
  5795. * this syscall writes the default timeslice value of a given process
  5796. * into the user-space timespec buffer. A value of '0' means infinity.
  5797. */
  5798. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5799. struct timespec __user *, interval)
  5800. {
  5801. struct task_struct *p;
  5802. unsigned int time_slice;
  5803. int retval;
  5804. struct timespec t;
  5805. if (pid < 0)
  5806. return -EINVAL;
  5807. retval = -ESRCH;
  5808. read_lock(&tasklist_lock);
  5809. p = find_process_by_pid(pid);
  5810. if (!p)
  5811. goto out_unlock;
  5812. retval = security_task_getscheduler(p);
  5813. if (retval)
  5814. goto out_unlock;
  5815. /*
  5816. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5817. * tasks that are on an otherwise idle runqueue:
  5818. */
  5819. time_slice = 0;
  5820. if (p->policy == SCHED_RR) {
  5821. time_slice = DEF_TIMESLICE;
  5822. } else if (p->policy != SCHED_FIFO) {
  5823. struct sched_entity *se = &p->se;
  5824. unsigned long flags;
  5825. struct rq *rq;
  5826. rq = task_rq_lock(p, &flags);
  5827. if (rq->cfs.load.weight)
  5828. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5829. task_rq_unlock(rq, &flags);
  5830. }
  5831. read_unlock(&tasklist_lock);
  5832. jiffies_to_timespec(time_slice, &t);
  5833. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5834. return retval;
  5835. out_unlock:
  5836. read_unlock(&tasklist_lock);
  5837. return retval;
  5838. }
  5839. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5840. void sched_show_task(struct task_struct *p)
  5841. {
  5842. unsigned long free = 0;
  5843. unsigned state;
  5844. state = p->state ? __ffs(p->state) + 1 : 0;
  5845. printk(KERN_INFO "%-13.13s %c", p->comm,
  5846. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5847. #if BITS_PER_LONG == 32
  5848. if (state == TASK_RUNNING)
  5849. printk(KERN_CONT " running ");
  5850. else
  5851. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5852. #else
  5853. if (state == TASK_RUNNING)
  5854. printk(KERN_CONT " running task ");
  5855. else
  5856. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5857. #endif
  5858. #ifdef CONFIG_DEBUG_STACK_USAGE
  5859. free = stack_not_used(p);
  5860. #endif
  5861. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5862. task_pid_nr(p), task_pid_nr(p->real_parent),
  5863. (unsigned long)task_thread_info(p)->flags);
  5864. show_stack(p, NULL);
  5865. }
  5866. void show_state_filter(unsigned long state_filter)
  5867. {
  5868. struct task_struct *g, *p;
  5869. #if BITS_PER_LONG == 32
  5870. printk(KERN_INFO
  5871. " task PC stack pid father\n");
  5872. #else
  5873. printk(KERN_INFO
  5874. " task PC stack pid father\n");
  5875. #endif
  5876. read_lock(&tasklist_lock);
  5877. do_each_thread(g, p) {
  5878. /*
  5879. * reset the NMI-timeout, listing all files on a slow
  5880. * console might take alot of time:
  5881. */
  5882. touch_nmi_watchdog();
  5883. if (!state_filter || (p->state & state_filter))
  5884. sched_show_task(p);
  5885. } while_each_thread(g, p);
  5886. touch_all_softlockup_watchdogs();
  5887. #ifdef CONFIG_SCHED_DEBUG
  5888. sysrq_sched_debug_show();
  5889. #endif
  5890. read_unlock(&tasklist_lock);
  5891. /*
  5892. * Only show locks if all tasks are dumped:
  5893. */
  5894. if (state_filter == -1)
  5895. debug_show_all_locks();
  5896. }
  5897. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5898. {
  5899. idle->sched_class = &idle_sched_class;
  5900. }
  5901. /**
  5902. * init_idle - set up an idle thread for a given CPU
  5903. * @idle: task in question
  5904. * @cpu: cpu the idle task belongs to
  5905. *
  5906. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5907. * flag, to make booting more robust.
  5908. */
  5909. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5910. {
  5911. struct rq *rq = cpu_rq(cpu);
  5912. unsigned long flags;
  5913. spin_lock_irqsave(&rq->lock, flags);
  5914. __sched_fork(idle);
  5915. idle->se.exec_start = sched_clock();
  5916. idle->prio = idle->normal_prio = MAX_PRIO;
  5917. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5918. __set_task_cpu(idle, cpu);
  5919. rq->curr = rq->idle = idle;
  5920. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5921. idle->oncpu = 1;
  5922. #endif
  5923. spin_unlock_irqrestore(&rq->lock, flags);
  5924. /* Set the preempt count _outside_ the spinlocks! */
  5925. #if defined(CONFIG_PREEMPT)
  5926. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5927. #else
  5928. task_thread_info(idle)->preempt_count = 0;
  5929. #endif
  5930. /*
  5931. * The idle tasks have their own, simple scheduling class:
  5932. */
  5933. idle->sched_class = &idle_sched_class;
  5934. ftrace_graph_init_task(idle);
  5935. }
  5936. /*
  5937. * In a system that switches off the HZ timer nohz_cpu_mask
  5938. * indicates which cpus entered this state. This is used
  5939. * in the rcu update to wait only for active cpus. For system
  5940. * which do not switch off the HZ timer nohz_cpu_mask should
  5941. * always be CPU_BITS_NONE.
  5942. */
  5943. cpumask_var_t nohz_cpu_mask;
  5944. /*
  5945. * Increase the granularity value when there are more CPUs,
  5946. * because with more CPUs the 'effective latency' as visible
  5947. * to users decreases. But the relationship is not linear,
  5948. * so pick a second-best guess by going with the log2 of the
  5949. * number of CPUs.
  5950. *
  5951. * This idea comes from the SD scheduler of Con Kolivas:
  5952. */
  5953. static inline void sched_init_granularity(void)
  5954. {
  5955. unsigned int factor = 1 + ilog2(num_online_cpus());
  5956. const unsigned long limit = 200000000;
  5957. sysctl_sched_min_granularity *= factor;
  5958. if (sysctl_sched_min_granularity > limit)
  5959. sysctl_sched_min_granularity = limit;
  5960. sysctl_sched_latency *= factor;
  5961. if (sysctl_sched_latency > limit)
  5962. sysctl_sched_latency = limit;
  5963. sysctl_sched_wakeup_granularity *= factor;
  5964. sysctl_sched_shares_ratelimit *= factor;
  5965. }
  5966. #ifdef CONFIG_SMP
  5967. /*
  5968. * This is how migration works:
  5969. *
  5970. * 1) we queue a struct migration_req structure in the source CPU's
  5971. * runqueue and wake up that CPU's migration thread.
  5972. * 2) we down() the locked semaphore => thread blocks.
  5973. * 3) migration thread wakes up (implicitly it forces the migrated
  5974. * thread off the CPU)
  5975. * 4) it gets the migration request and checks whether the migrated
  5976. * task is still in the wrong runqueue.
  5977. * 5) if it's in the wrong runqueue then the migration thread removes
  5978. * it and puts it into the right queue.
  5979. * 6) migration thread up()s the semaphore.
  5980. * 7) we wake up and the migration is done.
  5981. */
  5982. /*
  5983. * Change a given task's CPU affinity. Migrate the thread to a
  5984. * proper CPU and schedule it away if the CPU it's executing on
  5985. * is removed from the allowed bitmask.
  5986. *
  5987. * NOTE: the caller must have a valid reference to the task, the
  5988. * task must not exit() & deallocate itself prematurely. The
  5989. * call is not atomic; no spinlocks may be held.
  5990. */
  5991. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5992. {
  5993. struct migration_req req;
  5994. unsigned long flags;
  5995. struct rq *rq;
  5996. int ret = 0;
  5997. rq = task_rq_lock(p, &flags);
  5998. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5999. ret = -EINVAL;
  6000. goto out;
  6001. }
  6002. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6003. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6004. ret = -EINVAL;
  6005. goto out;
  6006. }
  6007. if (p->sched_class->set_cpus_allowed)
  6008. p->sched_class->set_cpus_allowed(p, new_mask);
  6009. else {
  6010. cpumask_copy(&p->cpus_allowed, new_mask);
  6011. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6012. }
  6013. /* Can the task run on the task's current CPU? If so, we're done */
  6014. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6015. goto out;
  6016. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6017. /* Need help from migration thread: drop lock and wait. */
  6018. struct task_struct *mt = rq->migration_thread;
  6019. get_task_struct(mt);
  6020. task_rq_unlock(rq, &flags);
  6021. wake_up_process(rq->migration_thread);
  6022. put_task_struct(mt);
  6023. wait_for_completion(&req.done);
  6024. tlb_migrate_finish(p->mm);
  6025. return 0;
  6026. }
  6027. out:
  6028. task_rq_unlock(rq, &flags);
  6029. return ret;
  6030. }
  6031. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6032. /*
  6033. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6034. * this because either it can't run here any more (set_cpus_allowed()
  6035. * away from this CPU, or CPU going down), or because we're
  6036. * attempting to rebalance this task on exec (sched_exec).
  6037. *
  6038. * So we race with normal scheduler movements, but that's OK, as long
  6039. * as the task is no longer on this CPU.
  6040. *
  6041. * Returns non-zero if task was successfully migrated.
  6042. */
  6043. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6044. {
  6045. struct rq *rq_dest, *rq_src;
  6046. int ret = 0, on_rq;
  6047. if (unlikely(!cpu_active(dest_cpu)))
  6048. return ret;
  6049. rq_src = cpu_rq(src_cpu);
  6050. rq_dest = cpu_rq(dest_cpu);
  6051. double_rq_lock(rq_src, rq_dest);
  6052. /* Already moved. */
  6053. if (task_cpu(p) != src_cpu)
  6054. goto done;
  6055. /* Affinity changed (again). */
  6056. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6057. goto fail;
  6058. on_rq = p->se.on_rq;
  6059. if (on_rq)
  6060. deactivate_task(rq_src, p, 0);
  6061. set_task_cpu(p, dest_cpu);
  6062. if (on_rq) {
  6063. activate_task(rq_dest, p, 0);
  6064. check_preempt_curr(rq_dest, p, 0);
  6065. }
  6066. done:
  6067. ret = 1;
  6068. fail:
  6069. double_rq_unlock(rq_src, rq_dest);
  6070. return ret;
  6071. }
  6072. #define RCU_MIGRATION_IDLE 0
  6073. #define RCU_MIGRATION_NEED_QS 1
  6074. #define RCU_MIGRATION_GOT_QS 2
  6075. #define RCU_MIGRATION_MUST_SYNC 3
  6076. /*
  6077. * migration_thread - this is a highprio system thread that performs
  6078. * thread migration by bumping thread off CPU then 'pushing' onto
  6079. * another runqueue.
  6080. */
  6081. static int migration_thread(void *data)
  6082. {
  6083. int badcpu;
  6084. int cpu = (long)data;
  6085. struct rq *rq;
  6086. rq = cpu_rq(cpu);
  6087. BUG_ON(rq->migration_thread != current);
  6088. set_current_state(TASK_INTERRUPTIBLE);
  6089. while (!kthread_should_stop()) {
  6090. struct migration_req *req;
  6091. struct list_head *head;
  6092. spin_lock_irq(&rq->lock);
  6093. if (cpu_is_offline(cpu)) {
  6094. spin_unlock_irq(&rq->lock);
  6095. break;
  6096. }
  6097. if (rq->active_balance) {
  6098. active_load_balance(rq, cpu);
  6099. rq->active_balance = 0;
  6100. }
  6101. head = &rq->migration_queue;
  6102. if (list_empty(head)) {
  6103. spin_unlock_irq(&rq->lock);
  6104. schedule();
  6105. set_current_state(TASK_INTERRUPTIBLE);
  6106. continue;
  6107. }
  6108. req = list_entry(head->next, struct migration_req, list);
  6109. list_del_init(head->next);
  6110. if (req->task != NULL) {
  6111. spin_unlock(&rq->lock);
  6112. __migrate_task(req->task, cpu, req->dest_cpu);
  6113. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6114. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6115. spin_unlock(&rq->lock);
  6116. } else {
  6117. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6118. spin_unlock(&rq->lock);
  6119. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6120. }
  6121. local_irq_enable();
  6122. complete(&req->done);
  6123. }
  6124. __set_current_state(TASK_RUNNING);
  6125. return 0;
  6126. }
  6127. #ifdef CONFIG_HOTPLUG_CPU
  6128. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6129. {
  6130. int ret;
  6131. local_irq_disable();
  6132. ret = __migrate_task(p, src_cpu, dest_cpu);
  6133. local_irq_enable();
  6134. return ret;
  6135. }
  6136. /*
  6137. * Figure out where task on dead CPU should go, use force if necessary.
  6138. */
  6139. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6140. {
  6141. int dest_cpu;
  6142. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6143. again:
  6144. /* Look for allowed, online CPU in same node. */
  6145. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6146. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6147. goto move;
  6148. /* Any allowed, online CPU? */
  6149. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6150. if (dest_cpu < nr_cpu_ids)
  6151. goto move;
  6152. /* No more Mr. Nice Guy. */
  6153. if (dest_cpu >= nr_cpu_ids) {
  6154. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6155. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6156. /*
  6157. * Don't tell them about moving exiting tasks or
  6158. * kernel threads (both mm NULL), since they never
  6159. * leave kernel.
  6160. */
  6161. if (p->mm && printk_ratelimit()) {
  6162. printk(KERN_INFO "process %d (%s) no "
  6163. "longer affine to cpu%d\n",
  6164. task_pid_nr(p), p->comm, dead_cpu);
  6165. }
  6166. }
  6167. move:
  6168. /* It can have affinity changed while we were choosing. */
  6169. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6170. goto again;
  6171. }
  6172. /*
  6173. * While a dead CPU has no uninterruptible tasks queued at this point,
  6174. * it might still have a nonzero ->nr_uninterruptible counter, because
  6175. * for performance reasons the counter is not stricly tracking tasks to
  6176. * their home CPUs. So we just add the counter to another CPU's counter,
  6177. * to keep the global sum constant after CPU-down:
  6178. */
  6179. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6180. {
  6181. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6182. unsigned long flags;
  6183. local_irq_save(flags);
  6184. double_rq_lock(rq_src, rq_dest);
  6185. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6186. rq_src->nr_uninterruptible = 0;
  6187. double_rq_unlock(rq_src, rq_dest);
  6188. local_irq_restore(flags);
  6189. }
  6190. /* Run through task list and migrate tasks from the dead cpu. */
  6191. static void migrate_live_tasks(int src_cpu)
  6192. {
  6193. struct task_struct *p, *t;
  6194. read_lock(&tasklist_lock);
  6195. do_each_thread(t, p) {
  6196. if (p == current)
  6197. continue;
  6198. if (task_cpu(p) == src_cpu)
  6199. move_task_off_dead_cpu(src_cpu, p);
  6200. } while_each_thread(t, p);
  6201. read_unlock(&tasklist_lock);
  6202. }
  6203. /*
  6204. * Schedules idle task to be the next runnable task on current CPU.
  6205. * It does so by boosting its priority to highest possible.
  6206. * Used by CPU offline code.
  6207. */
  6208. void sched_idle_next(void)
  6209. {
  6210. int this_cpu = smp_processor_id();
  6211. struct rq *rq = cpu_rq(this_cpu);
  6212. struct task_struct *p = rq->idle;
  6213. unsigned long flags;
  6214. /* cpu has to be offline */
  6215. BUG_ON(cpu_online(this_cpu));
  6216. /*
  6217. * Strictly not necessary since rest of the CPUs are stopped by now
  6218. * and interrupts disabled on the current cpu.
  6219. */
  6220. spin_lock_irqsave(&rq->lock, flags);
  6221. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6222. update_rq_clock(rq);
  6223. activate_task(rq, p, 0);
  6224. spin_unlock_irqrestore(&rq->lock, flags);
  6225. }
  6226. /*
  6227. * Ensures that the idle task is using init_mm right before its cpu goes
  6228. * offline.
  6229. */
  6230. void idle_task_exit(void)
  6231. {
  6232. struct mm_struct *mm = current->active_mm;
  6233. BUG_ON(cpu_online(smp_processor_id()));
  6234. if (mm != &init_mm)
  6235. switch_mm(mm, &init_mm, current);
  6236. mmdrop(mm);
  6237. }
  6238. /* called under rq->lock with disabled interrupts */
  6239. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6240. {
  6241. struct rq *rq = cpu_rq(dead_cpu);
  6242. /* Must be exiting, otherwise would be on tasklist. */
  6243. BUG_ON(!p->exit_state);
  6244. /* Cannot have done final schedule yet: would have vanished. */
  6245. BUG_ON(p->state == TASK_DEAD);
  6246. get_task_struct(p);
  6247. /*
  6248. * Drop lock around migration; if someone else moves it,
  6249. * that's OK. No task can be added to this CPU, so iteration is
  6250. * fine.
  6251. */
  6252. spin_unlock_irq(&rq->lock);
  6253. move_task_off_dead_cpu(dead_cpu, p);
  6254. spin_lock_irq(&rq->lock);
  6255. put_task_struct(p);
  6256. }
  6257. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6258. static void migrate_dead_tasks(unsigned int dead_cpu)
  6259. {
  6260. struct rq *rq = cpu_rq(dead_cpu);
  6261. struct task_struct *next;
  6262. for ( ; ; ) {
  6263. if (!rq->nr_running)
  6264. break;
  6265. update_rq_clock(rq);
  6266. next = pick_next_task(rq);
  6267. if (!next)
  6268. break;
  6269. next->sched_class->put_prev_task(rq, next);
  6270. migrate_dead(dead_cpu, next);
  6271. }
  6272. }
  6273. /*
  6274. * remove the tasks which were accounted by rq from calc_load_tasks.
  6275. */
  6276. static void calc_global_load_remove(struct rq *rq)
  6277. {
  6278. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6279. rq->calc_load_active = 0;
  6280. }
  6281. #endif /* CONFIG_HOTPLUG_CPU */
  6282. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6283. static struct ctl_table sd_ctl_dir[] = {
  6284. {
  6285. .procname = "sched_domain",
  6286. .mode = 0555,
  6287. },
  6288. {0, },
  6289. };
  6290. static struct ctl_table sd_ctl_root[] = {
  6291. {
  6292. .ctl_name = CTL_KERN,
  6293. .procname = "kernel",
  6294. .mode = 0555,
  6295. .child = sd_ctl_dir,
  6296. },
  6297. {0, },
  6298. };
  6299. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6300. {
  6301. struct ctl_table *entry =
  6302. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6303. return entry;
  6304. }
  6305. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6306. {
  6307. struct ctl_table *entry;
  6308. /*
  6309. * In the intermediate directories, both the child directory and
  6310. * procname are dynamically allocated and could fail but the mode
  6311. * will always be set. In the lowest directory the names are
  6312. * static strings and all have proc handlers.
  6313. */
  6314. for (entry = *tablep; entry->mode; entry++) {
  6315. if (entry->child)
  6316. sd_free_ctl_entry(&entry->child);
  6317. if (entry->proc_handler == NULL)
  6318. kfree(entry->procname);
  6319. }
  6320. kfree(*tablep);
  6321. *tablep = NULL;
  6322. }
  6323. static void
  6324. set_table_entry(struct ctl_table *entry,
  6325. const char *procname, void *data, int maxlen,
  6326. mode_t mode, proc_handler *proc_handler)
  6327. {
  6328. entry->procname = procname;
  6329. entry->data = data;
  6330. entry->maxlen = maxlen;
  6331. entry->mode = mode;
  6332. entry->proc_handler = proc_handler;
  6333. }
  6334. static struct ctl_table *
  6335. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6336. {
  6337. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6338. if (table == NULL)
  6339. return NULL;
  6340. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6341. sizeof(long), 0644, proc_doulongvec_minmax);
  6342. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6343. sizeof(long), 0644, proc_doulongvec_minmax);
  6344. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6345. sizeof(int), 0644, proc_dointvec_minmax);
  6346. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6347. sizeof(int), 0644, proc_dointvec_minmax);
  6348. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6349. sizeof(int), 0644, proc_dointvec_minmax);
  6350. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6351. sizeof(int), 0644, proc_dointvec_minmax);
  6352. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6353. sizeof(int), 0644, proc_dointvec_minmax);
  6354. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6355. sizeof(int), 0644, proc_dointvec_minmax);
  6356. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6357. sizeof(int), 0644, proc_dointvec_minmax);
  6358. set_table_entry(&table[9], "cache_nice_tries",
  6359. &sd->cache_nice_tries,
  6360. sizeof(int), 0644, proc_dointvec_minmax);
  6361. set_table_entry(&table[10], "flags", &sd->flags,
  6362. sizeof(int), 0644, proc_dointvec_minmax);
  6363. set_table_entry(&table[11], "name", sd->name,
  6364. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6365. /* &table[12] is terminator */
  6366. return table;
  6367. }
  6368. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6369. {
  6370. struct ctl_table *entry, *table;
  6371. struct sched_domain *sd;
  6372. int domain_num = 0, i;
  6373. char buf[32];
  6374. for_each_domain(cpu, sd)
  6375. domain_num++;
  6376. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6377. if (table == NULL)
  6378. return NULL;
  6379. i = 0;
  6380. for_each_domain(cpu, sd) {
  6381. snprintf(buf, 32, "domain%d", i);
  6382. entry->procname = kstrdup(buf, GFP_KERNEL);
  6383. entry->mode = 0555;
  6384. entry->child = sd_alloc_ctl_domain_table(sd);
  6385. entry++;
  6386. i++;
  6387. }
  6388. return table;
  6389. }
  6390. static struct ctl_table_header *sd_sysctl_header;
  6391. static void register_sched_domain_sysctl(void)
  6392. {
  6393. int i, cpu_num = num_online_cpus();
  6394. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6395. char buf[32];
  6396. WARN_ON(sd_ctl_dir[0].child);
  6397. sd_ctl_dir[0].child = entry;
  6398. if (entry == NULL)
  6399. return;
  6400. for_each_online_cpu(i) {
  6401. snprintf(buf, 32, "cpu%d", i);
  6402. entry->procname = kstrdup(buf, GFP_KERNEL);
  6403. entry->mode = 0555;
  6404. entry->child = sd_alloc_ctl_cpu_table(i);
  6405. entry++;
  6406. }
  6407. WARN_ON(sd_sysctl_header);
  6408. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6409. }
  6410. /* may be called multiple times per register */
  6411. static void unregister_sched_domain_sysctl(void)
  6412. {
  6413. if (sd_sysctl_header)
  6414. unregister_sysctl_table(sd_sysctl_header);
  6415. sd_sysctl_header = NULL;
  6416. if (sd_ctl_dir[0].child)
  6417. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6418. }
  6419. #else
  6420. static void register_sched_domain_sysctl(void)
  6421. {
  6422. }
  6423. static void unregister_sched_domain_sysctl(void)
  6424. {
  6425. }
  6426. #endif
  6427. static void set_rq_online(struct rq *rq)
  6428. {
  6429. if (!rq->online) {
  6430. const struct sched_class *class;
  6431. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6432. rq->online = 1;
  6433. for_each_class(class) {
  6434. if (class->rq_online)
  6435. class->rq_online(rq);
  6436. }
  6437. }
  6438. }
  6439. static void set_rq_offline(struct rq *rq)
  6440. {
  6441. if (rq->online) {
  6442. const struct sched_class *class;
  6443. for_each_class(class) {
  6444. if (class->rq_offline)
  6445. class->rq_offline(rq);
  6446. }
  6447. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6448. rq->online = 0;
  6449. }
  6450. }
  6451. /*
  6452. * migration_call - callback that gets triggered when a CPU is added.
  6453. * Here we can start up the necessary migration thread for the new CPU.
  6454. */
  6455. static int __cpuinit
  6456. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6457. {
  6458. struct task_struct *p;
  6459. int cpu = (long)hcpu;
  6460. unsigned long flags;
  6461. struct rq *rq;
  6462. switch (action) {
  6463. case CPU_UP_PREPARE:
  6464. case CPU_UP_PREPARE_FROZEN:
  6465. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6466. if (IS_ERR(p))
  6467. return NOTIFY_BAD;
  6468. kthread_bind(p, cpu);
  6469. /* Must be high prio: stop_machine expects to yield to it. */
  6470. rq = task_rq_lock(p, &flags);
  6471. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6472. task_rq_unlock(rq, &flags);
  6473. get_task_struct(p);
  6474. cpu_rq(cpu)->migration_thread = p;
  6475. rq->calc_load_update = calc_load_update;
  6476. break;
  6477. case CPU_ONLINE:
  6478. case CPU_ONLINE_FROZEN:
  6479. /* Strictly unnecessary, as first user will wake it. */
  6480. wake_up_process(cpu_rq(cpu)->migration_thread);
  6481. /* Update our root-domain */
  6482. rq = cpu_rq(cpu);
  6483. spin_lock_irqsave(&rq->lock, flags);
  6484. if (rq->rd) {
  6485. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6486. set_rq_online(rq);
  6487. }
  6488. spin_unlock_irqrestore(&rq->lock, flags);
  6489. break;
  6490. #ifdef CONFIG_HOTPLUG_CPU
  6491. case CPU_UP_CANCELED:
  6492. case CPU_UP_CANCELED_FROZEN:
  6493. if (!cpu_rq(cpu)->migration_thread)
  6494. break;
  6495. /* Unbind it from offline cpu so it can run. Fall thru. */
  6496. kthread_bind(cpu_rq(cpu)->migration_thread,
  6497. cpumask_any(cpu_online_mask));
  6498. kthread_stop(cpu_rq(cpu)->migration_thread);
  6499. put_task_struct(cpu_rq(cpu)->migration_thread);
  6500. cpu_rq(cpu)->migration_thread = NULL;
  6501. break;
  6502. case CPU_DEAD:
  6503. case CPU_DEAD_FROZEN:
  6504. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6505. migrate_live_tasks(cpu);
  6506. rq = cpu_rq(cpu);
  6507. kthread_stop(rq->migration_thread);
  6508. put_task_struct(rq->migration_thread);
  6509. rq->migration_thread = NULL;
  6510. /* Idle task back to normal (off runqueue, low prio) */
  6511. spin_lock_irq(&rq->lock);
  6512. update_rq_clock(rq);
  6513. deactivate_task(rq, rq->idle, 0);
  6514. rq->idle->static_prio = MAX_PRIO;
  6515. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6516. rq->idle->sched_class = &idle_sched_class;
  6517. migrate_dead_tasks(cpu);
  6518. spin_unlock_irq(&rq->lock);
  6519. cpuset_unlock();
  6520. migrate_nr_uninterruptible(rq);
  6521. BUG_ON(rq->nr_running != 0);
  6522. calc_global_load_remove(rq);
  6523. /*
  6524. * No need to migrate the tasks: it was best-effort if
  6525. * they didn't take sched_hotcpu_mutex. Just wake up
  6526. * the requestors.
  6527. */
  6528. spin_lock_irq(&rq->lock);
  6529. while (!list_empty(&rq->migration_queue)) {
  6530. struct migration_req *req;
  6531. req = list_entry(rq->migration_queue.next,
  6532. struct migration_req, list);
  6533. list_del_init(&req->list);
  6534. spin_unlock_irq(&rq->lock);
  6535. complete(&req->done);
  6536. spin_lock_irq(&rq->lock);
  6537. }
  6538. spin_unlock_irq(&rq->lock);
  6539. break;
  6540. case CPU_DYING:
  6541. case CPU_DYING_FROZEN:
  6542. /* Update our root-domain */
  6543. rq = cpu_rq(cpu);
  6544. spin_lock_irqsave(&rq->lock, flags);
  6545. if (rq->rd) {
  6546. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6547. set_rq_offline(rq);
  6548. }
  6549. spin_unlock_irqrestore(&rq->lock, flags);
  6550. break;
  6551. #endif
  6552. }
  6553. return NOTIFY_OK;
  6554. }
  6555. /*
  6556. * Register at high priority so that task migration (migrate_all_tasks)
  6557. * happens before everything else. This has to be lower priority than
  6558. * the notifier in the perf_counter subsystem, though.
  6559. */
  6560. static struct notifier_block __cpuinitdata migration_notifier = {
  6561. .notifier_call = migration_call,
  6562. .priority = 10
  6563. };
  6564. static int __init migration_init(void)
  6565. {
  6566. void *cpu = (void *)(long)smp_processor_id();
  6567. int err;
  6568. /* Start one for the boot CPU: */
  6569. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6570. BUG_ON(err == NOTIFY_BAD);
  6571. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6572. register_cpu_notifier(&migration_notifier);
  6573. return 0;
  6574. }
  6575. early_initcall(migration_init);
  6576. #endif
  6577. #ifdef CONFIG_SMP
  6578. #ifdef CONFIG_SCHED_DEBUG
  6579. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6580. struct cpumask *groupmask)
  6581. {
  6582. struct sched_group *group = sd->groups;
  6583. char str[256];
  6584. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6585. cpumask_clear(groupmask);
  6586. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6587. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6588. printk("does not load-balance\n");
  6589. if (sd->parent)
  6590. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6591. " has parent");
  6592. return -1;
  6593. }
  6594. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6595. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6596. printk(KERN_ERR "ERROR: domain->span does not contain "
  6597. "CPU%d\n", cpu);
  6598. }
  6599. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6600. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6601. " CPU%d\n", cpu);
  6602. }
  6603. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6604. do {
  6605. if (!group) {
  6606. printk("\n");
  6607. printk(KERN_ERR "ERROR: group is NULL\n");
  6608. break;
  6609. }
  6610. if (!group->cpu_power) {
  6611. printk(KERN_CONT "\n");
  6612. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6613. "set\n");
  6614. break;
  6615. }
  6616. if (!cpumask_weight(sched_group_cpus(group))) {
  6617. printk(KERN_CONT "\n");
  6618. printk(KERN_ERR "ERROR: empty group\n");
  6619. break;
  6620. }
  6621. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6622. printk(KERN_CONT "\n");
  6623. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6624. break;
  6625. }
  6626. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6627. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6628. printk(KERN_CONT " %s", str);
  6629. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6630. printk(KERN_CONT " (cpu_power = %d)",
  6631. group->cpu_power);
  6632. }
  6633. group = group->next;
  6634. } while (group != sd->groups);
  6635. printk(KERN_CONT "\n");
  6636. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6637. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6638. if (sd->parent &&
  6639. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6640. printk(KERN_ERR "ERROR: parent span is not a superset "
  6641. "of domain->span\n");
  6642. return 0;
  6643. }
  6644. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6645. {
  6646. cpumask_var_t groupmask;
  6647. int level = 0;
  6648. if (!sd) {
  6649. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6650. return;
  6651. }
  6652. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6653. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6654. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6655. return;
  6656. }
  6657. for (;;) {
  6658. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6659. break;
  6660. level++;
  6661. sd = sd->parent;
  6662. if (!sd)
  6663. break;
  6664. }
  6665. free_cpumask_var(groupmask);
  6666. }
  6667. #else /* !CONFIG_SCHED_DEBUG */
  6668. # define sched_domain_debug(sd, cpu) do { } while (0)
  6669. #endif /* CONFIG_SCHED_DEBUG */
  6670. static int sd_degenerate(struct sched_domain *sd)
  6671. {
  6672. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6673. return 1;
  6674. /* Following flags need at least 2 groups */
  6675. if (sd->flags & (SD_LOAD_BALANCE |
  6676. SD_BALANCE_NEWIDLE |
  6677. SD_BALANCE_FORK |
  6678. SD_BALANCE_EXEC |
  6679. SD_SHARE_CPUPOWER |
  6680. SD_SHARE_PKG_RESOURCES)) {
  6681. if (sd->groups != sd->groups->next)
  6682. return 0;
  6683. }
  6684. /* Following flags don't use groups */
  6685. if (sd->flags & (SD_WAKE_AFFINE))
  6686. return 0;
  6687. return 1;
  6688. }
  6689. static int
  6690. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6691. {
  6692. unsigned long cflags = sd->flags, pflags = parent->flags;
  6693. if (sd_degenerate(parent))
  6694. return 1;
  6695. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6696. return 0;
  6697. /* Flags needing groups don't count if only 1 group in parent */
  6698. if (parent->groups == parent->groups->next) {
  6699. pflags &= ~(SD_LOAD_BALANCE |
  6700. SD_BALANCE_NEWIDLE |
  6701. SD_BALANCE_FORK |
  6702. SD_BALANCE_EXEC |
  6703. SD_SHARE_CPUPOWER |
  6704. SD_SHARE_PKG_RESOURCES);
  6705. if (nr_node_ids == 1)
  6706. pflags &= ~SD_SERIALIZE;
  6707. }
  6708. if (~cflags & pflags)
  6709. return 0;
  6710. return 1;
  6711. }
  6712. static void free_rootdomain(struct root_domain *rd)
  6713. {
  6714. cpupri_cleanup(&rd->cpupri);
  6715. free_cpumask_var(rd->rto_mask);
  6716. free_cpumask_var(rd->online);
  6717. free_cpumask_var(rd->span);
  6718. kfree(rd);
  6719. }
  6720. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6721. {
  6722. struct root_domain *old_rd = NULL;
  6723. unsigned long flags;
  6724. spin_lock_irqsave(&rq->lock, flags);
  6725. if (rq->rd) {
  6726. old_rd = rq->rd;
  6727. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6728. set_rq_offline(rq);
  6729. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6730. /*
  6731. * If we dont want to free the old_rt yet then
  6732. * set old_rd to NULL to skip the freeing later
  6733. * in this function:
  6734. */
  6735. if (!atomic_dec_and_test(&old_rd->refcount))
  6736. old_rd = NULL;
  6737. }
  6738. atomic_inc(&rd->refcount);
  6739. rq->rd = rd;
  6740. cpumask_set_cpu(rq->cpu, rd->span);
  6741. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6742. set_rq_online(rq);
  6743. spin_unlock_irqrestore(&rq->lock, flags);
  6744. if (old_rd)
  6745. free_rootdomain(old_rd);
  6746. }
  6747. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6748. {
  6749. gfp_t gfp = GFP_KERNEL;
  6750. memset(rd, 0, sizeof(*rd));
  6751. if (bootmem)
  6752. gfp = GFP_NOWAIT;
  6753. if (!alloc_cpumask_var(&rd->span, gfp))
  6754. goto out;
  6755. if (!alloc_cpumask_var(&rd->online, gfp))
  6756. goto free_span;
  6757. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6758. goto free_online;
  6759. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6760. goto free_rto_mask;
  6761. return 0;
  6762. free_rto_mask:
  6763. free_cpumask_var(rd->rto_mask);
  6764. free_online:
  6765. free_cpumask_var(rd->online);
  6766. free_span:
  6767. free_cpumask_var(rd->span);
  6768. out:
  6769. return -ENOMEM;
  6770. }
  6771. static void init_defrootdomain(void)
  6772. {
  6773. init_rootdomain(&def_root_domain, true);
  6774. atomic_set(&def_root_domain.refcount, 1);
  6775. }
  6776. static struct root_domain *alloc_rootdomain(void)
  6777. {
  6778. struct root_domain *rd;
  6779. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6780. if (!rd)
  6781. return NULL;
  6782. if (init_rootdomain(rd, false) != 0) {
  6783. kfree(rd);
  6784. return NULL;
  6785. }
  6786. return rd;
  6787. }
  6788. /*
  6789. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6790. * hold the hotplug lock.
  6791. */
  6792. static void
  6793. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6794. {
  6795. struct rq *rq = cpu_rq(cpu);
  6796. struct sched_domain *tmp;
  6797. /* Remove the sched domains which do not contribute to scheduling. */
  6798. for (tmp = sd; tmp; ) {
  6799. struct sched_domain *parent = tmp->parent;
  6800. if (!parent)
  6801. break;
  6802. if (sd_parent_degenerate(tmp, parent)) {
  6803. tmp->parent = parent->parent;
  6804. if (parent->parent)
  6805. parent->parent->child = tmp;
  6806. } else
  6807. tmp = tmp->parent;
  6808. }
  6809. if (sd && sd_degenerate(sd)) {
  6810. sd = sd->parent;
  6811. if (sd)
  6812. sd->child = NULL;
  6813. }
  6814. sched_domain_debug(sd, cpu);
  6815. rq_attach_root(rq, rd);
  6816. rcu_assign_pointer(rq->sd, sd);
  6817. }
  6818. /* cpus with isolated domains */
  6819. static cpumask_var_t cpu_isolated_map;
  6820. /* Setup the mask of cpus configured for isolated domains */
  6821. static int __init isolated_cpu_setup(char *str)
  6822. {
  6823. cpulist_parse(str, cpu_isolated_map);
  6824. return 1;
  6825. }
  6826. __setup("isolcpus=", isolated_cpu_setup);
  6827. /*
  6828. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6829. * to a function which identifies what group(along with sched group) a CPU
  6830. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6831. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6832. *
  6833. * init_sched_build_groups will build a circular linked list of the groups
  6834. * covered by the given span, and will set each group's ->cpumask correctly,
  6835. * and ->cpu_power to 0.
  6836. */
  6837. static void
  6838. init_sched_build_groups(const struct cpumask *span,
  6839. const struct cpumask *cpu_map,
  6840. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6841. struct sched_group **sg,
  6842. struct cpumask *tmpmask),
  6843. struct cpumask *covered, struct cpumask *tmpmask)
  6844. {
  6845. struct sched_group *first = NULL, *last = NULL;
  6846. int i;
  6847. cpumask_clear(covered);
  6848. for_each_cpu(i, span) {
  6849. struct sched_group *sg;
  6850. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6851. int j;
  6852. if (cpumask_test_cpu(i, covered))
  6853. continue;
  6854. cpumask_clear(sched_group_cpus(sg));
  6855. sg->cpu_power = 0;
  6856. for_each_cpu(j, span) {
  6857. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6858. continue;
  6859. cpumask_set_cpu(j, covered);
  6860. cpumask_set_cpu(j, sched_group_cpus(sg));
  6861. }
  6862. if (!first)
  6863. first = sg;
  6864. if (last)
  6865. last->next = sg;
  6866. last = sg;
  6867. }
  6868. last->next = first;
  6869. }
  6870. #define SD_NODES_PER_DOMAIN 16
  6871. #ifdef CONFIG_NUMA
  6872. /**
  6873. * find_next_best_node - find the next node to include in a sched_domain
  6874. * @node: node whose sched_domain we're building
  6875. * @used_nodes: nodes already in the sched_domain
  6876. *
  6877. * Find the next node to include in a given scheduling domain. Simply
  6878. * finds the closest node not already in the @used_nodes map.
  6879. *
  6880. * Should use nodemask_t.
  6881. */
  6882. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6883. {
  6884. int i, n, val, min_val, best_node = 0;
  6885. min_val = INT_MAX;
  6886. for (i = 0; i < nr_node_ids; i++) {
  6887. /* Start at @node */
  6888. n = (node + i) % nr_node_ids;
  6889. if (!nr_cpus_node(n))
  6890. continue;
  6891. /* Skip already used nodes */
  6892. if (node_isset(n, *used_nodes))
  6893. continue;
  6894. /* Simple min distance search */
  6895. val = node_distance(node, n);
  6896. if (val < min_val) {
  6897. min_val = val;
  6898. best_node = n;
  6899. }
  6900. }
  6901. node_set(best_node, *used_nodes);
  6902. return best_node;
  6903. }
  6904. /**
  6905. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6906. * @node: node whose cpumask we're constructing
  6907. * @span: resulting cpumask
  6908. *
  6909. * Given a node, construct a good cpumask for its sched_domain to span. It
  6910. * should be one that prevents unnecessary balancing, but also spreads tasks
  6911. * out optimally.
  6912. */
  6913. static void sched_domain_node_span(int node, struct cpumask *span)
  6914. {
  6915. nodemask_t used_nodes;
  6916. int i;
  6917. cpumask_clear(span);
  6918. nodes_clear(used_nodes);
  6919. cpumask_or(span, span, cpumask_of_node(node));
  6920. node_set(node, used_nodes);
  6921. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6922. int next_node = find_next_best_node(node, &used_nodes);
  6923. cpumask_or(span, span, cpumask_of_node(next_node));
  6924. }
  6925. }
  6926. #endif /* CONFIG_NUMA */
  6927. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6928. /*
  6929. * The cpus mask in sched_group and sched_domain hangs off the end.
  6930. *
  6931. * ( See the the comments in include/linux/sched.h:struct sched_group
  6932. * and struct sched_domain. )
  6933. */
  6934. struct static_sched_group {
  6935. struct sched_group sg;
  6936. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6937. };
  6938. struct static_sched_domain {
  6939. struct sched_domain sd;
  6940. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6941. };
  6942. struct s_data {
  6943. #ifdef CONFIG_NUMA
  6944. int sd_allnodes;
  6945. cpumask_var_t domainspan;
  6946. cpumask_var_t covered;
  6947. cpumask_var_t notcovered;
  6948. #endif
  6949. cpumask_var_t nodemask;
  6950. cpumask_var_t this_sibling_map;
  6951. cpumask_var_t this_core_map;
  6952. cpumask_var_t send_covered;
  6953. cpumask_var_t tmpmask;
  6954. struct sched_group **sched_group_nodes;
  6955. struct root_domain *rd;
  6956. };
  6957. enum s_alloc {
  6958. sa_sched_groups = 0,
  6959. sa_rootdomain,
  6960. sa_tmpmask,
  6961. sa_send_covered,
  6962. sa_this_core_map,
  6963. sa_this_sibling_map,
  6964. sa_nodemask,
  6965. sa_sched_group_nodes,
  6966. #ifdef CONFIG_NUMA
  6967. sa_notcovered,
  6968. sa_covered,
  6969. sa_domainspan,
  6970. #endif
  6971. sa_none,
  6972. };
  6973. /*
  6974. * SMT sched-domains:
  6975. */
  6976. #ifdef CONFIG_SCHED_SMT
  6977. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6978. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6979. static int
  6980. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6981. struct sched_group **sg, struct cpumask *unused)
  6982. {
  6983. if (sg)
  6984. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6985. return cpu;
  6986. }
  6987. #endif /* CONFIG_SCHED_SMT */
  6988. /*
  6989. * multi-core sched-domains:
  6990. */
  6991. #ifdef CONFIG_SCHED_MC
  6992. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6993. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6994. #endif /* CONFIG_SCHED_MC */
  6995. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6996. static int
  6997. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6998. struct sched_group **sg, struct cpumask *mask)
  6999. {
  7000. int group;
  7001. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7002. group = cpumask_first(mask);
  7003. if (sg)
  7004. *sg = &per_cpu(sched_group_core, group).sg;
  7005. return group;
  7006. }
  7007. #elif defined(CONFIG_SCHED_MC)
  7008. static int
  7009. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7010. struct sched_group **sg, struct cpumask *unused)
  7011. {
  7012. if (sg)
  7013. *sg = &per_cpu(sched_group_core, cpu).sg;
  7014. return cpu;
  7015. }
  7016. #endif
  7017. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7018. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7019. static int
  7020. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7021. struct sched_group **sg, struct cpumask *mask)
  7022. {
  7023. int group;
  7024. #ifdef CONFIG_SCHED_MC
  7025. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7026. group = cpumask_first(mask);
  7027. #elif defined(CONFIG_SCHED_SMT)
  7028. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7029. group = cpumask_first(mask);
  7030. #else
  7031. group = cpu;
  7032. #endif
  7033. if (sg)
  7034. *sg = &per_cpu(sched_group_phys, group).sg;
  7035. return group;
  7036. }
  7037. #ifdef CONFIG_NUMA
  7038. /*
  7039. * The init_sched_build_groups can't handle what we want to do with node
  7040. * groups, so roll our own. Now each node has its own list of groups which
  7041. * gets dynamically allocated.
  7042. */
  7043. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7044. static struct sched_group ***sched_group_nodes_bycpu;
  7045. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7046. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7047. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7048. struct sched_group **sg,
  7049. struct cpumask *nodemask)
  7050. {
  7051. int group;
  7052. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7053. group = cpumask_first(nodemask);
  7054. if (sg)
  7055. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7056. return group;
  7057. }
  7058. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7059. {
  7060. struct sched_group *sg = group_head;
  7061. int j;
  7062. if (!sg)
  7063. return;
  7064. do {
  7065. for_each_cpu(j, sched_group_cpus(sg)) {
  7066. struct sched_domain *sd;
  7067. sd = &per_cpu(phys_domains, j).sd;
  7068. if (j != group_first_cpu(sd->groups)) {
  7069. /*
  7070. * Only add "power" once for each
  7071. * physical package.
  7072. */
  7073. continue;
  7074. }
  7075. sg->cpu_power += sd->groups->cpu_power;
  7076. }
  7077. sg = sg->next;
  7078. } while (sg != group_head);
  7079. }
  7080. static int build_numa_sched_groups(struct s_data *d,
  7081. const struct cpumask *cpu_map, int num)
  7082. {
  7083. struct sched_domain *sd;
  7084. struct sched_group *sg, *prev;
  7085. int n, j;
  7086. cpumask_clear(d->covered);
  7087. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7088. if (cpumask_empty(d->nodemask)) {
  7089. d->sched_group_nodes[num] = NULL;
  7090. goto out;
  7091. }
  7092. sched_domain_node_span(num, d->domainspan);
  7093. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7094. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7095. GFP_KERNEL, num);
  7096. if (!sg) {
  7097. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7098. num);
  7099. return -ENOMEM;
  7100. }
  7101. d->sched_group_nodes[num] = sg;
  7102. for_each_cpu(j, d->nodemask) {
  7103. sd = &per_cpu(node_domains, j).sd;
  7104. sd->groups = sg;
  7105. }
  7106. sg->cpu_power = 0;
  7107. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7108. sg->next = sg;
  7109. cpumask_or(d->covered, d->covered, d->nodemask);
  7110. prev = sg;
  7111. for (j = 0; j < nr_node_ids; j++) {
  7112. n = (num + j) % nr_node_ids;
  7113. cpumask_complement(d->notcovered, d->covered);
  7114. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7115. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7116. if (cpumask_empty(d->tmpmask))
  7117. break;
  7118. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7119. if (cpumask_empty(d->tmpmask))
  7120. continue;
  7121. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7122. GFP_KERNEL, num);
  7123. if (!sg) {
  7124. printk(KERN_WARNING
  7125. "Can not alloc domain group for node %d\n", j);
  7126. return -ENOMEM;
  7127. }
  7128. sg->cpu_power = 0;
  7129. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7130. sg->next = prev->next;
  7131. cpumask_or(d->covered, d->covered, d->tmpmask);
  7132. prev->next = sg;
  7133. prev = sg;
  7134. }
  7135. out:
  7136. return 0;
  7137. }
  7138. #endif /* CONFIG_NUMA */
  7139. #ifdef CONFIG_NUMA
  7140. /* Free memory allocated for various sched_group structures */
  7141. static void free_sched_groups(const struct cpumask *cpu_map,
  7142. struct cpumask *nodemask)
  7143. {
  7144. int cpu, i;
  7145. for_each_cpu(cpu, cpu_map) {
  7146. struct sched_group **sched_group_nodes
  7147. = sched_group_nodes_bycpu[cpu];
  7148. if (!sched_group_nodes)
  7149. continue;
  7150. for (i = 0; i < nr_node_ids; i++) {
  7151. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7152. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7153. if (cpumask_empty(nodemask))
  7154. continue;
  7155. if (sg == NULL)
  7156. continue;
  7157. sg = sg->next;
  7158. next_sg:
  7159. oldsg = sg;
  7160. sg = sg->next;
  7161. kfree(oldsg);
  7162. if (oldsg != sched_group_nodes[i])
  7163. goto next_sg;
  7164. }
  7165. kfree(sched_group_nodes);
  7166. sched_group_nodes_bycpu[cpu] = NULL;
  7167. }
  7168. }
  7169. #else /* !CONFIG_NUMA */
  7170. static void free_sched_groups(const struct cpumask *cpu_map,
  7171. struct cpumask *nodemask)
  7172. {
  7173. }
  7174. #endif /* CONFIG_NUMA */
  7175. /*
  7176. * Initialize sched groups cpu_power.
  7177. *
  7178. * cpu_power indicates the capacity of sched group, which is used while
  7179. * distributing the load between different sched groups in a sched domain.
  7180. * Typically cpu_power for all the groups in a sched domain will be same unless
  7181. * there are asymmetries in the topology. If there are asymmetries, group
  7182. * having more cpu_power will pickup more load compared to the group having
  7183. * less cpu_power.
  7184. */
  7185. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7186. {
  7187. struct sched_domain *child;
  7188. struct sched_group *group;
  7189. long power;
  7190. int weight;
  7191. WARN_ON(!sd || !sd->groups);
  7192. if (cpu != group_first_cpu(sd->groups))
  7193. return;
  7194. child = sd->child;
  7195. sd->groups->cpu_power = 0;
  7196. if (!child) {
  7197. power = SCHED_LOAD_SCALE;
  7198. weight = cpumask_weight(sched_domain_span(sd));
  7199. /*
  7200. * SMT siblings share the power of a single core.
  7201. * Usually multiple threads get a better yield out of
  7202. * that one core than a single thread would have,
  7203. * reflect that in sd->smt_gain.
  7204. */
  7205. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7206. power *= sd->smt_gain;
  7207. power /= weight;
  7208. power >>= SCHED_LOAD_SHIFT;
  7209. }
  7210. sd->groups->cpu_power += power;
  7211. return;
  7212. }
  7213. /*
  7214. * Add cpu_power of each child group to this groups cpu_power.
  7215. */
  7216. group = child->groups;
  7217. do {
  7218. sd->groups->cpu_power += group->cpu_power;
  7219. group = group->next;
  7220. } while (group != child->groups);
  7221. }
  7222. /*
  7223. * Initializers for schedule domains
  7224. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7225. */
  7226. #ifdef CONFIG_SCHED_DEBUG
  7227. # define SD_INIT_NAME(sd, type) sd->name = #type
  7228. #else
  7229. # define SD_INIT_NAME(sd, type) do { } while (0)
  7230. #endif
  7231. #define SD_INIT(sd, type) sd_init_##type(sd)
  7232. #define SD_INIT_FUNC(type) \
  7233. static noinline void sd_init_##type(struct sched_domain *sd) \
  7234. { \
  7235. memset(sd, 0, sizeof(*sd)); \
  7236. *sd = SD_##type##_INIT; \
  7237. sd->level = SD_LV_##type; \
  7238. SD_INIT_NAME(sd, type); \
  7239. }
  7240. SD_INIT_FUNC(CPU)
  7241. #ifdef CONFIG_NUMA
  7242. SD_INIT_FUNC(ALLNODES)
  7243. SD_INIT_FUNC(NODE)
  7244. #endif
  7245. #ifdef CONFIG_SCHED_SMT
  7246. SD_INIT_FUNC(SIBLING)
  7247. #endif
  7248. #ifdef CONFIG_SCHED_MC
  7249. SD_INIT_FUNC(MC)
  7250. #endif
  7251. static int default_relax_domain_level = -1;
  7252. static int __init setup_relax_domain_level(char *str)
  7253. {
  7254. unsigned long val;
  7255. val = simple_strtoul(str, NULL, 0);
  7256. if (val < SD_LV_MAX)
  7257. default_relax_domain_level = val;
  7258. return 1;
  7259. }
  7260. __setup("relax_domain_level=", setup_relax_domain_level);
  7261. static void set_domain_attribute(struct sched_domain *sd,
  7262. struct sched_domain_attr *attr)
  7263. {
  7264. int request;
  7265. if (!attr || attr->relax_domain_level < 0) {
  7266. if (default_relax_domain_level < 0)
  7267. return;
  7268. else
  7269. request = default_relax_domain_level;
  7270. } else
  7271. request = attr->relax_domain_level;
  7272. if (request < sd->level) {
  7273. /* turn off idle balance on this domain */
  7274. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7275. } else {
  7276. /* turn on idle balance on this domain */
  7277. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7278. }
  7279. }
  7280. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7281. const struct cpumask *cpu_map)
  7282. {
  7283. switch (what) {
  7284. case sa_sched_groups:
  7285. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7286. d->sched_group_nodes = NULL;
  7287. case sa_rootdomain:
  7288. free_rootdomain(d->rd); /* fall through */
  7289. case sa_tmpmask:
  7290. free_cpumask_var(d->tmpmask); /* fall through */
  7291. case sa_send_covered:
  7292. free_cpumask_var(d->send_covered); /* fall through */
  7293. case sa_this_core_map:
  7294. free_cpumask_var(d->this_core_map); /* fall through */
  7295. case sa_this_sibling_map:
  7296. free_cpumask_var(d->this_sibling_map); /* fall through */
  7297. case sa_nodemask:
  7298. free_cpumask_var(d->nodemask); /* fall through */
  7299. case sa_sched_group_nodes:
  7300. #ifdef CONFIG_NUMA
  7301. kfree(d->sched_group_nodes); /* fall through */
  7302. case sa_notcovered:
  7303. free_cpumask_var(d->notcovered); /* fall through */
  7304. case sa_covered:
  7305. free_cpumask_var(d->covered); /* fall through */
  7306. case sa_domainspan:
  7307. free_cpumask_var(d->domainspan); /* fall through */
  7308. #endif
  7309. case sa_none:
  7310. break;
  7311. }
  7312. }
  7313. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7314. const struct cpumask *cpu_map)
  7315. {
  7316. #ifdef CONFIG_NUMA
  7317. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7318. return sa_none;
  7319. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7320. return sa_domainspan;
  7321. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7322. return sa_covered;
  7323. /* Allocate the per-node list of sched groups */
  7324. d->sched_group_nodes = kcalloc(nr_node_ids,
  7325. sizeof(struct sched_group *), GFP_KERNEL);
  7326. if (!d->sched_group_nodes) {
  7327. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7328. return sa_notcovered;
  7329. }
  7330. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7331. #endif
  7332. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7333. return sa_sched_group_nodes;
  7334. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7335. return sa_nodemask;
  7336. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7337. return sa_this_sibling_map;
  7338. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7339. return sa_this_core_map;
  7340. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7341. return sa_send_covered;
  7342. d->rd = alloc_rootdomain();
  7343. if (!d->rd) {
  7344. printk(KERN_WARNING "Cannot alloc root domain\n");
  7345. return sa_tmpmask;
  7346. }
  7347. return sa_rootdomain;
  7348. }
  7349. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7350. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7351. {
  7352. struct sched_domain *sd = NULL;
  7353. #ifdef CONFIG_NUMA
  7354. struct sched_domain *parent;
  7355. d->sd_allnodes = 0;
  7356. if (cpumask_weight(cpu_map) >
  7357. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7358. sd = &per_cpu(allnodes_domains, i).sd;
  7359. SD_INIT(sd, ALLNODES);
  7360. set_domain_attribute(sd, attr);
  7361. cpumask_copy(sched_domain_span(sd), cpu_map);
  7362. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7363. d->sd_allnodes = 1;
  7364. }
  7365. parent = sd;
  7366. sd = &per_cpu(node_domains, i).sd;
  7367. SD_INIT(sd, NODE);
  7368. set_domain_attribute(sd, attr);
  7369. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7370. sd->parent = parent;
  7371. if (parent)
  7372. parent->child = sd;
  7373. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7374. #endif
  7375. return sd;
  7376. }
  7377. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7378. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7379. struct sched_domain *parent, int i)
  7380. {
  7381. struct sched_domain *sd;
  7382. sd = &per_cpu(phys_domains, i).sd;
  7383. SD_INIT(sd, CPU);
  7384. set_domain_attribute(sd, attr);
  7385. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7386. sd->parent = parent;
  7387. if (parent)
  7388. parent->child = sd;
  7389. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7390. return sd;
  7391. }
  7392. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7393. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7394. struct sched_domain *parent, int i)
  7395. {
  7396. struct sched_domain *sd = parent;
  7397. #ifdef CONFIG_SCHED_MC
  7398. sd = &per_cpu(core_domains, i).sd;
  7399. SD_INIT(sd, MC);
  7400. set_domain_attribute(sd, attr);
  7401. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7402. sd->parent = parent;
  7403. parent->child = sd;
  7404. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7405. #endif
  7406. return sd;
  7407. }
  7408. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7409. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7410. struct sched_domain *parent, int i)
  7411. {
  7412. struct sched_domain *sd = parent;
  7413. #ifdef CONFIG_SCHED_SMT
  7414. sd = &per_cpu(cpu_domains, i).sd;
  7415. SD_INIT(sd, SIBLING);
  7416. set_domain_attribute(sd, attr);
  7417. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7418. sd->parent = parent;
  7419. parent->child = sd;
  7420. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7421. #endif
  7422. return sd;
  7423. }
  7424. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7425. const struct cpumask *cpu_map, int cpu)
  7426. {
  7427. switch (l) {
  7428. #ifdef CONFIG_SCHED_SMT
  7429. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7430. cpumask_and(d->this_sibling_map, cpu_map,
  7431. topology_thread_cpumask(cpu));
  7432. if (cpu == cpumask_first(d->this_sibling_map))
  7433. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7434. &cpu_to_cpu_group,
  7435. d->send_covered, d->tmpmask);
  7436. break;
  7437. #endif
  7438. #ifdef CONFIG_SCHED_MC
  7439. case SD_LV_MC: /* set up multi-core groups */
  7440. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7441. if (cpu == cpumask_first(d->this_core_map))
  7442. init_sched_build_groups(d->this_core_map, cpu_map,
  7443. &cpu_to_core_group,
  7444. d->send_covered, d->tmpmask);
  7445. break;
  7446. #endif
  7447. case SD_LV_CPU: /* set up physical groups */
  7448. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7449. if (!cpumask_empty(d->nodemask))
  7450. init_sched_build_groups(d->nodemask, cpu_map,
  7451. &cpu_to_phys_group,
  7452. d->send_covered, d->tmpmask);
  7453. break;
  7454. #ifdef CONFIG_NUMA
  7455. case SD_LV_ALLNODES:
  7456. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7457. d->send_covered, d->tmpmask);
  7458. break;
  7459. #endif
  7460. default:
  7461. break;
  7462. }
  7463. }
  7464. /*
  7465. * Build sched domains for a given set of cpus and attach the sched domains
  7466. * to the individual cpus
  7467. */
  7468. static int __build_sched_domains(const struct cpumask *cpu_map,
  7469. struct sched_domain_attr *attr)
  7470. {
  7471. enum s_alloc alloc_state = sa_none;
  7472. struct s_data d;
  7473. struct sched_domain *sd;
  7474. int i;
  7475. #ifdef CONFIG_NUMA
  7476. d.sd_allnodes = 0;
  7477. #endif
  7478. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7479. if (alloc_state != sa_rootdomain)
  7480. goto error;
  7481. alloc_state = sa_sched_groups;
  7482. /*
  7483. * Set up domains for cpus specified by the cpu_map.
  7484. */
  7485. for_each_cpu(i, cpu_map) {
  7486. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7487. cpu_map);
  7488. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7489. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7490. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7491. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7492. }
  7493. for_each_cpu(i, cpu_map) {
  7494. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7495. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7496. }
  7497. /* Set up physical groups */
  7498. for (i = 0; i < nr_node_ids; i++)
  7499. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7500. #ifdef CONFIG_NUMA
  7501. /* Set up node groups */
  7502. if (d.sd_allnodes)
  7503. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7504. for (i = 0; i < nr_node_ids; i++)
  7505. if (build_numa_sched_groups(&d, cpu_map, i))
  7506. goto error;
  7507. #endif
  7508. /* Calculate CPU power for physical packages and nodes */
  7509. #ifdef CONFIG_SCHED_SMT
  7510. for_each_cpu(i, cpu_map) {
  7511. sd = &per_cpu(cpu_domains, i).sd;
  7512. init_sched_groups_power(i, sd);
  7513. }
  7514. #endif
  7515. #ifdef CONFIG_SCHED_MC
  7516. for_each_cpu(i, cpu_map) {
  7517. sd = &per_cpu(core_domains, i).sd;
  7518. init_sched_groups_power(i, sd);
  7519. }
  7520. #endif
  7521. for_each_cpu(i, cpu_map) {
  7522. sd = &per_cpu(phys_domains, i).sd;
  7523. init_sched_groups_power(i, sd);
  7524. }
  7525. #ifdef CONFIG_NUMA
  7526. for (i = 0; i < nr_node_ids; i++)
  7527. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7528. if (d.sd_allnodes) {
  7529. struct sched_group *sg;
  7530. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7531. d.tmpmask);
  7532. init_numa_sched_groups_power(sg);
  7533. }
  7534. #endif
  7535. /* Attach the domains */
  7536. for_each_cpu(i, cpu_map) {
  7537. #ifdef CONFIG_SCHED_SMT
  7538. sd = &per_cpu(cpu_domains, i).sd;
  7539. #elif defined(CONFIG_SCHED_MC)
  7540. sd = &per_cpu(core_domains, i).sd;
  7541. #else
  7542. sd = &per_cpu(phys_domains, i).sd;
  7543. #endif
  7544. cpu_attach_domain(sd, d.rd, i);
  7545. }
  7546. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7547. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7548. return 0;
  7549. error:
  7550. __free_domain_allocs(&d, alloc_state, cpu_map);
  7551. return -ENOMEM;
  7552. }
  7553. static int build_sched_domains(const struct cpumask *cpu_map)
  7554. {
  7555. return __build_sched_domains(cpu_map, NULL);
  7556. }
  7557. static struct cpumask *doms_cur; /* current sched domains */
  7558. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7559. static struct sched_domain_attr *dattr_cur;
  7560. /* attribues of custom domains in 'doms_cur' */
  7561. /*
  7562. * Special case: If a kmalloc of a doms_cur partition (array of
  7563. * cpumask) fails, then fallback to a single sched domain,
  7564. * as determined by the single cpumask fallback_doms.
  7565. */
  7566. static cpumask_var_t fallback_doms;
  7567. /*
  7568. * arch_update_cpu_topology lets virtualized architectures update the
  7569. * cpu core maps. It is supposed to return 1 if the topology changed
  7570. * or 0 if it stayed the same.
  7571. */
  7572. int __attribute__((weak)) arch_update_cpu_topology(void)
  7573. {
  7574. return 0;
  7575. }
  7576. /*
  7577. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7578. * For now this just excludes isolated cpus, but could be used to
  7579. * exclude other special cases in the future.
  7580. */
  7581. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7582. {
  7583. int err;
  7584. arch_update_cpu_topology();
  7585. ndoms_cur = 1;
  7586. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7587. if (!doms_cur)
  7588. doms_cur = fallback_doms;
  7589. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7590. dattr_cur = NULL;
  7591. err = build_sched_domains(doms_cur);
  7592. register_sched_domain_sysctl();
  7593. return err;
  7594. }
  7595. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7596. struct cpumask *tmpmask)
  7597. {
  7598. free_sched_groups(cpu_map, tmpmask);
  7599. }
  7600. /*
  7601. * Detach sched domains from a group of cpus specified in cpu_map
  7602. * These cpus will now be attached to the NULL domain
  7603. */
  7604. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7605. {
  7606. /* Save because hotplug lock held. */
  7607. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7608. int i;
  7609. for_each_cpu(i, cpu_map)
  7610. cpu_attach_domain(NULL, &def_root_domain, i);
  7611. synchronize_sched();
  7612. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7613. }
  7614. /* handle null as "default" */
  7615. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7616. struct sched_domain_attr *new, int idx_new)
  7617. {
  7618. struct sched_domain_attr tmp;
  7619. /* fast path */
  7620. if (!new && !cur)
  7621. return 1;
  7622. tmp = SD_ATTR_INIT;
  7623. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7624. new ? (new + idx_new) : &tmp,
  7625. sizeof(struct sched_domain_attr));
  7626. }
  7627. /*
  7628. * Partition sched domains as specified by the 'ndoms_new'
  7629. * cpumasks in the array doms_new[] of cpumasks. This compares
  7630. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7631. * It destroys each deleted domain and builds each new domain.
  7632. *
  7633. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7634. * The masks don't intersect (don't overlap.) We should setup one
  7635. * sched domain for each mask. CPUs not in any of the cpumasks will
  7636. * not be load balanced. If the same cpumask appears both in the
  7637. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7638. * it as it is.
  7639. *
  7640. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7641. * ownership of it and will kfree it when done with it. If the caller
  7642. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7643. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7644. * the single partition 'fallback_doms', it also forces the domains
  7645. * to be rebuilt.
  7646. *
  7647. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7648. * ndoms_new == 0 is a special case for destroying existing domains,
  7649. * and it will not create the default domain.
  7650. *
  7651. * Call with hotplug lock held
  7652. */
  7653. /* FIXME: Change to struct cpumask *doms_new[] */
  7654. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7655. struct sched_domain_attr *dattr_new)
  7656. {
  7657. int i, j, n;
  7658. int new_topology;
  7659. mutex_lock(&sched_domains_mutex);
  7660. /* always unregister in case we don't destroy any domains */
  7661. unregister_sched_domain_sysctl();
  7662. /* Let architecture update cpu core mappings. */
  7663. new_topology = arch_update_cpu_topology();
  7664. n = doms_new ? ndoms_new : 0;
  7665. /* Destroy deleted domains */
  7666. for (i = 0; i < ndoms_cur; i++) {
  7667. for (j = 0; j < n && !new_topology; j++) {
  7668. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7669. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7670. goto match1;
  7671. }
  7672. /* no match - a current sched domain not in new doms_new[] */
  7673. detach_destroy_domains(doms_cur + i);
  7674. match1:
  7675. ;
  7676. }
  7677. if (doms_new == NULL) {
  7678. ndoms_cur = 0;
  7679. doms_new = fallback_doms;
  7680. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7681. WARN_ON_ONCE(dattr_new);
  7682. }
  7683. /* Build new domains */
  7684. for (i = 0; i < ndoms_new; i++) {
  7685. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7686. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7687. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7688. goto match2;
  7689. }
  7690. /* no match - add a new doms_new */
  7691. __build_sched_domains(doms_new + i,
  7692. dattr_new ? dattr_new + i : NULL);
  7693. match2:
  7694. ;
  7695. }
  7696. /* Remember the new sched domains */
  7697. if (doms_cur != fallback_doms)
  7698. kfree(doms_cur);
  7699. kfree(dattr_cur); /* kfree(NULL) is safe */
  7700. doms_cur = doms_new;
  7701. dattr_cur = dattr_new;
  7702. ndoms_cur = ndoms_new;
  7703. register_sched_domain_sysctl();
  7704. mutex_unlock(&sched_domains_mutex);
  7705. }
  7706. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7707. static void arch_reinit_sched_domains(void)
  7708. {
  7709. get_online_cpus();
  7710. /* Destroy domains first to force the rebuild */
  7711. partition_sched_domains(0, NULL, NULL);
  7712. rebuild_sched_domains();
  7713. put_online_cpus();
  7714. }
  7715. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7716. {
  7717. unsigned int level = 0;
  7718. if (sscanf(buf, "%u", &level) != 1)
  7719. return -EINVAL;
  7720. /*
  7721. * level is always be positive so don't check for
  7722. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7723. * What happens on 0 or 1 byte write,
  7724. * need to check for count as well?
  7725. */
  7726. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7727. return -EINVAL;
  7728. if (smt)
  7729. sched_smt_power_savings = level;
  7730. else
  7731. sched_mc_power_savings = level;
  7732. arch_reinit_sched_domains();
  7733. return count;
  7734. }
  7735. #ifdef CONFIG_SCHED_MC
  7736. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7737. char *page)
  7738. {
  7739. return sprintf(page, "%u\n", sched_mc_power_savings);
  7740. }
  7741. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7742. const char *buf, size_t count)
  7743. {
  7744. return sched_power_savings_store(buf, count, 0);
  7745. }
  7746. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7747. sched_mc_power_savings_show,
  7748. sched_mc_power_savings_store);
  7749. #endif
  7750. #ifdef CONFIG_SCHED_SMT
  7751. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7752. char *page)
  7753. {
  7754. return sprintf(page, "%u\n", sched_smt_power_savings);
  7755. }
  7756. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7757. const char *buf, size_t count)
  7758. {
  7759. return sched_power_savings_store(buf, count, 1);
  7760. }
  7761. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7762. sched_smt_power_savings_show,
  7763. sched_smt_power_savings_store);
  7764. #endif
  7765. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7766. {
  7767. int err = 0;
  7768. #ifdef CONFIG_SCHED_SMT
  7769. if (smt_capable())
  7770. err = sysfs_create_file(&cls->kset.kobj,
  7771. &attr_sched_smt_power_savings.attr);
  7772. #endif
  7773. #ifdef CONFIG_SCHED_MC
  7774. if (!err && mc_capable())
  7775. err = sysfs_create_file(&cls->kset.kobj,
  7776. &attr_sched_mc_power_savings.attr);
  7777. #endif
  7778. return err;
  7779. }
  7780. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7781. #ifndef CONFIG_CPUSETS
  7782. /*
  7783. * Add online and remove offline CPUs from the scheduler domains.
  7784. * When cpusets are enabled they take over this function.
  7785. */
  7786. static int update_sched_domains(struct notifier_block *nfb,
  7787. unsigned long action, void *hcpu)
  7788. {
  7789. switch (action) {
  7790. case CPU_ONLINE:
  7791. case CPU_ONLINE_FROZEN:
  7792. case CPU_DEAD:
  7793. case CPU_DEAD_FROZEN:
  7794. partition_sched_domains(1, NULL, NULL);
  7795. return NOTIFY_OK;
  7796. default:
  7797. return NOTIFY_DONE;
  7798. }
  7799. }
  7800. #endif
  7801. static int update_runtime(struct notifier_block *nfb,
  7802. unsigned long action, void *hcpu)
  7803. {
  7804. int cpu = (int)(long)hcpu;
  7805. switch (action) {
  7806. case CPU_DOWN_PREPARE:
  7807. case CPU_DOWN_PREPARE_FROZEN:
  7808. disable_runtime(cpu_rq(cpu));
  7809. return NOTIFY_OK;
  7810. case CPU_DOWN_FAILED:
  7811. case CPU_DOWN_FAILED_FROZEN:
  7812. case CPU_ONLINE:
  7813. case CPU_ONLINE_FROZEN:
  7814. enable_runtime(cpu_rq(cpu));
  7815. return NOTIFY_OK;
  7816. default:
  7817. return NOTIFY_DONE;
  7818. }
  7819. }
  7820. void __init sched_init_smp(void)
  7821. {
  7822. cpumask_var_t non_isolated_cpus;
  7823. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7824. #if defined(CONFIG_NUMA)
  7825. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7826. GFP_KERNEL);
  7827. BUG_ON(sched_group_nodes_bycpu == NULL);
  7828. #endif
  7829. get_online_cpus();
  7830. mutex_lock(&sched_domains_mutex);
  7831. arch_init_sched_domains(cpu_online_mask);
  7832. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7833. if (cpumask_empty(non_isolated_cpus))
  7834. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7835. mutex_unlock(&sched_domains_mutex);
  7836. put_online_cpus();
  7837. #ifndef CONFIG_CPUSETS
  7838. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7839. hotcpu_notifier(update_sched_domains, 0);
  7840. #endif
  7841. /* RT runtime code needs to handle some hotplug events */
  7842. hotcpu_notifier(update_runtime, 0);
  7843. init_hrtick();
  7844. /* Move init over to a non-isolated CPU */
  7845. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7846. BUG();
  7847. sched_init_granularity();
  7848. free_cpumask_var(non_isolated_cpus);
  7849. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7850. init_sched_rt_class();
  7851. }
  7852. #else
  7853. void __init sched_init_smp(void)
  7854. {
  7855. sched_init_granularity();
  7856. }
  7857. #endif /* CONFIG_SMP */
  7858. const_debug unsigned int sysctl_timer_migration = 1;
  7859. int in_sched_functions(unsigned long addr)
  7860. {
  7861. return in_lock_functions(addr) ||
  7862. (addr >= (unsigned long)__sched_text_start
  7863. && addr < (unsigned long)__sched_text_end);
  7864. }
  7865. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7866. {
  7867. cfs_rq->tasks_timeline = RB_ROOT;
  7868. INIT_LIST_HEAD(&cfs_rq->tasks);
  7869. #ifdef CONFIG_FAIR_GROUP_SCHED
  7870. cfs_rq->rq = rq;
  7871. #endif
  7872. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7873. }
  7874. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7875. {
  7876. struct rt_prio_array *array;
  7877. int i;
  7878. array = &rt_rq->active;
  7879. for (i = 0; i < MAX_RT_PRIO; i++) {
  7880. INIT_LIST_HEAD(array->queue + i);
  7881. __clear_bit(i, array->bitmap);
  7882. }
  7883. /* delimiter for bitsearch: */
  7884. __set_bit(MAX_RT_PRIO, array->bitmap);
  7885. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7886. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7887. #ifdef CONFIG_SMP
  7888. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7889. #endif
  7890. #endif
  7891. #ifdef CONFIG_SMP
  7892. rt_rq->rt_nr_migratory = 0;
  7893. rt_rq->overloaded = 0;
  7894. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7895. #endif
  7896. rt_rq->rt_time = 0;
  7897. rt_rq->rt_throttled = 0;
  7898. rt_rq->rt_runtime = 0;
  7899. spin_lock_init(&rt_rq->rt_runtime_lock);
  7900. #ifdef CONFIG_RT_GROUP_SCHED
  7901. rt_rq->rt_nr_boosted = 0;
  7902. rt_rq->rq = rq;
  7903. #endif
  7904. }
  7905. #ifdef CONFIG_FAIR_GROUP_SCHED
  7906. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7907. struct sched_entity *se, int cpu, int add,
  7908. struct sched_entity *parent)
  7909. {
  7910. struct rq *rq = cpu_rq(cpu);
  7911. tg->cfs_rq[cpu] = cfs_rq;
  7912. init_cfs_rq(cfs_rq, rq);
  7913. cfs_rq->tg = tg;
  7914. if (add)
  7915. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7916. tg->se[cpu] = se;
  7917. /* se could be NULL for init_task_group */
  7918. if (!se)
  7919. return;
  7920. if (!parent)
  7921. se->cfs_rq = &rq->cfs;
  7922. else
  7923. se->cfs_rq = parent->my_q;
  7924. se->my_q = cfs_rq;
  7925. se->load.weight = tg->shares;
  7926. se->load.inv_weight = 0;
  7927. se->parent = parent;
  7928. }
  7929. #endif
  7930. #ifdef CONFIG_RT_GROUP_SCHED
  7931. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7932. struct sched_rt_entity *rt_se, int cpu, int add,
  7933. struct sched_rt_entity *parent)
  7934. {
  7935. struct rq *rq = cpu_rq(cpu);
  7936. tg->rt_rq[cpu] = rt_rq;
  7937. init_rt_rq(rt_rq, rq);
  7938. rt_rq->tg = tg;
  7939. rt_rq->rt_se = rt_se;
  7940. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7941. if (add)
  7942. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7943. tg->rt_se[cpu] = rt_se;
  7944. if (!rt_se)
  7945. return;
  7946. if (!parent)
  7947. rt_se->rt_rq = &rq->rt;
  7948. else
  7949. rt_se->rt_rq = parent->my_q;
  7950. rt_se->my_q = rt_rq;
  7951. rt_se->parent = parent;
  7952. INIT_LIST_HEAD(&rt_se->run_list);
  7953. }
  7954. #endif
  7955. void __init sched_init(void)
  7956. {
  7957. int i, j;
  7958. unsigned long alloc_size = 0, ptr;
  7959. #ifdef CONFIG_FAIR_GROUP_SCHED
  7960. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7961. #endif
  7962. #ifdef CONFIG_RT_GROUP_SCHED
  7963. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7964. #endif
  7965. #ifdef CONFIG_USER_SCHED
  7966. alloc_size *= 2;
  7967. #endif
  7968. #ifdef CONFIG_CPUMASK_OFFSTACK
  7969. alloc_size += num_possible_cpus() * cpumask_size();
  7970. #endif
  7971. /*
  7972. * As sched_init() is called before page_alloc is setup,
  7973. * we use alloc_bootmem().
  7974. */
  7975. if (alloc_size) {
  7976. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7977. #ifdef CONFIG_FAIR_GROUP_SCHED
  7978. init_task_group.se = (struct sched_entity **)ptr;
  7979. ptr += nr_cpu_ids * sizeof(void **);
  7980. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7981. ptr += nr_cpu_ids * sizeof(void **);
  7982. #ifdef CONFIG_USER_SCHED
  7983. root_task_group.se = (struct sched_entity **)ptr;
  7984. ptr += nr_cpu_ids * sizeof(void **);
  7985. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7986. ptr += nr_cpu_ids * sizeof(void **);
  7987. #endif /* CONFIG_USER_SCHED */
  7988. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7989. #ifdef CONFIG_RT_GROUP_SCHED
  7990. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7991. ptr += nr_cpu_ids * sizeof(void **);
  7992. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7993. ptr += nr_cpu_ids * sizeof(void **);
  7994. #ifdef CONFIG_USER_SCHED
  7995. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7996. ptr += nr_cpu_ids * sizeof(void **);
  7997. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7998. ptr += nr_cpu_ids * sizeof(void **);
  7999. #endif /* CONFIG_USER_SCHED */
  8000. #endif /* CONFIG_RT_GROUP_SCHED */
  8001. #ifdef CONFIG_CPUMASK_OFFSTACK
  8002. for_each_possible_cpu(i) {
  8003. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8004. ptr += cpumask_size();
  8005. }
  8006. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8007. }
  8008. #ifdef CONFIG_SMP
  8009. init_defrootdomain();
  8010. #endif
  8011. init_rt_bandwidth(&def_rt_bandwidth,
  8012. global_rt_period(), global_rt_runtime());
  8013. #ifdef CONFIG_RT_GROUP_SCHED
  8014. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8015. global_rt_period(), global_rt_runtime());
  8016. #ifdef CONFIG_USER_SCHED
  8017. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8018. global_rt_period(), RUNTIME_INF);
  8019. #endif /* CONFIG_USER_SCHED */
  8020. #endif /* CONFIG_RT_GROUP_SCHED */
  8021. #ifdef CONFIG_GROUP_SCHED
  8022. list_add(&init_task_group.list, &task_groups);
  8023. INIT_LIST_HEAD(&init_task_group.children);
  8024. #ifdef CONFIG_USER_SCHED
  8025. INIT_LIST_HEAD(&root_task_group.children);
  8026. init_task_group.parent = &root_task_group;
  8027. list_add(&init_task_group.siblings, &root_task_group.children);
  8028. #endif /* CONFIG_USER_SCHED */
  8029. #endif /* CONFIG_GROUP_SCHED */
  8030. for_each_possible_cpu(i) {
  8031. struct rq *rq;
  8032. rq = cpu_rq(i);
  8033. spin_lock_init(&rq->lock);
  8034. rq->nr_running = 0;
  8035. rq->calc_load_active = 0;
  8036. rq->calc_load_update = jiffies + LOAD_FREQ;
  8037. init_cfs_rq(&rq->cfs, rq);
  8038. init_rt_rq(&rq->rt, rq);
  8039. #ifdef CONFIG_FAIR_GROUP_SCHED
  8040. init_task_group.shares = init_task_group_load;
  8041. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8042. #ifdef CONFIG_CGROUP_SCHED
  8043. /*
  8044. * How much cpu bandwidth does init_task_group get?
  8045. *
  8046. * In case of task-groups formed thr' the cgroup filesystem, it
  8047. * gets 100% of the cpu resources in the system. This overall
  8048. * system cpu resource is divided among the tasks of
  8049. * init_task_group and its child task-groups in a fair manner,
  8050. * based on each entity's (task or task-group's) weight
  8051. * (se->load.weight).
  8052. *
  8053. * In other words, if init_task_group has 10 tasks of weight
  8054. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8055. * then A0's share of the cpu resource is:
  8056. *
  8057. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8058. *
  8059. * We achieve this by letting init_task_group's tasks sit
  8060. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8061. */
  8062. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8063. #elif defined CONFIG_USER_SCHED
  8064. root_task_group.shares = NICE_0_LOAD;
  8065. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8066. /*
  8067. * In case of task-groups formed thr' the user id of tasks,
  8068. * init_task_group represents tasks belonging to root user.
  8069. * Hence it forms a sibling of all subsequent groups formed.
  8070. * In this case, init_task_group gets only a fraction of overall
  8071. * system cpu resource, based on the weight assigned to root
  8072. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8073. * by letting tasks of init_task_group sit in a separate cfs_rq
  8074. * (init_tg_cfs_rq) and having one entity represent this group of
  8075. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8076. */
  8077. init_tg_cfs_entry(&init_task_group,
  8078. &per_cpu(init_tg_cfs_rq, i),
  8079. &per_cpu(init_sched_entity, i), i, 1,
  8080. root_task_group.se[i]);
  8081. #endif
  8082. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8083. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8084. #ifdef CONFIG_RT_GROUP_SCHED
  8085. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8086. #ifdef CONFIG_CGROUP_SCHED
  8087. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8088. #elif defined CONFIG_USER_SCHED
  8089. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8090. init_tg_rt_entry(&init_task_group,
  8091. &per_cpu(init_rt_rq, i),
  8092. &per_cpu(init_sched_rt_entity, i), i, 1,
  8093. root_task_group.rt_se[i]);
  8094. #endif
  8095. #endif
  8096. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8097. rq->cpu_load[j] = 0;
  8098. #ifdef CONFIG_SMP
  8099. rq->sd = NULL;
  8100. rq->rd = NULL;
  8101. rq->post_schedule = 0;
  8102. rq->active_balance = 0;
  8103. rq->next_balance = jiffies;
  8104. rq->push_cpu = 0;
  8105. rq->cpu = i;
  8106. rq->online = 0;
  8107. rq->migration_thread = NULL;
  8108. INIT_LIST_HEAD(&rq->migration_queue);
  8109. rq_attach_root(rq, &def_root_domain);
  8110. #endif
  8111. init_rq_hrtick(rq);
  8112. atomic_set(&rq->nr_iowait, 0);
  8113. }
  8114. set_load_weight(&init_task);
  8115. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8116. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8117. #endif
  8118. #ifdef CONFIG_SMP
  8119. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8120. #endif
  8121. #ifdef CONFIG_RT_MUTEXES
  8122. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8123. #endif
  8124. /*
  8125. * The boot idle thread does lazy MMU switching as well:
  8126. */
  8127. atomic_inc(&init_mm.mm_count);
  8128. enter_lazy_tlb(&init_mm, current);
  8129. /*
  8130. * Make us the idle thread. Technically, schedule() should not be
  8131. * called from this thread, however somewhere below it might be,
  8132. * but because we are the idle thread, we just pick up running again
  8133. * when this runqueue becomes "idle".
  8134. */
  8135. init_idle(current, smp_processor_id());
  8136. calc_load_update = jiffies + LOAD_FREQ;
  8137. /*
  8138. * During early bootup we pretend to be a normal task:
  8139. */
  8140. current->sched_class = &fair_sched_class;
  8141. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8142. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8143. #ifdef CONFIG_SMP
  8144. #ifdef CONFIG_NO_HZ
  8145. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8146. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8147. #endif
  8148. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8149. #endif /* SMP */
  8150. perf_counter_init();
  8151. scheduler_running = 1;
  8152. }
  8153. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8154. static inline int preempt_count_equals(int preempt_offset)
  8155. {
  8156. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8157. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8158. }
  8159. void __might_sleep(char *file, int line, int preempt_offset)
  8160. {
  8161. #ifdef in_atomic
  8162. static unsigned long prev_jiffy; /* ratelimiting */
  8163. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8164. system_state != SYSTEM_RUNNING || oops_in_progress)
  8165. return;
  8166. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8167. return;
  8168. prev_jiffy = jiffies;
  8169. printk(KERN_ERR
  8170. "BUG: sleeping function called from invalid context at %s:%d\n",
  8171. file, line);
  8172. printk(KERN_ERR
  8173. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8174. in_atomic(), irqs_disabled(),
  8175. current->pid, current->comm);
  8176. debug_show_held_locks(current);
  8177. if (irqs_disabled())
  8178. print_irqtrace_events(current);
  8179. dump_stack();
  8180. #endif
  8181. }
  8182. EXPORT_SYMBOL(__might_sleep);
  8183. #endif
  8184. #ifdef CONFIG_MAGIC_SYSRQ
  8185. static void normalize_task(struct rq *rq, struct task_struct *p)
  8186. {
  8187. int on_rq;
  8188. update_rq_clock(rq);
  8189. on_rq = p->se.on_rq;
  8190. if (on_rq)
  8191. deactivate_task(rq, p, 0);
  8192. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8193. if (on_rq) {
  8194. activate_task(rq, p, 0);
  8195. resched_task(rq->curr);
  8196. }
  8197. }
  8198. void normalize_rt_tasks(void)
  8199. {
  8200. struct task_struct *g, *p;
  8201. unsigned long flags;
  8202. struct rq *rq;
  8203. read_lock_irqsave(&tasklist_lock, flags);
  8204. do_each_thread(g, p) {
  8205. /*
  8206. * Only normalize user tasks:
  8207. */
  8208. if (!p->mm)
  8209. continue;
  8210. p->se.exec_start = 0;
  8211. #ifdef CONFIG_SCHEDSTATS
  8212. p->se.wait_start = 0;
  8213. p->se.sleep_start = 0;
  8214. p->se.block_start = 0;
  8215. #endif
  8216. if (!rt_task(p)) {
  8217. /*
  8218. * Renice negative nice level userspace
  8219. * tasks back to 0:
  8220. */
  8221. if (TASK_NICE(p) < 0 && p->mm)
  8222. set_user_nice(p, 0);
  8223. continue;
  8224. }
  8225. spin_lock(&p->pi_lock);
  8226. rq = __task_rq_lock(p);
  8227. normalize_task(rq, p);
  8228. __task_rq_unlock(rq);
  8229. spin_unlock(&p->pi_lock);
  8230. } while_each_thread(g, p);
  8231. read_unlock_irqrestore(&tasklist_lock, flags);
  8232. }
  8233. #endif /* CONFIG_MAGIC_SYSRQ */
  8234. #ifdef CONFIG_IA64
  8235. /*
  8236. * These functions are only useful for the IA64 MCA handling.
  8237. *
  8238. * They can only be called when the whole system has been
  8239. * stopped - every CPU needs to be quiescent, and no scheduling
  8240. * activity can take place. Using them for anything else would
  8241. * be a serious bug, and as a result, they aren't even visible
  8242. * under any other configuration.
  8243. */
  8244. /**
  8245. * curr_task - return the current task for a given cpu.
  8246. * @cpu: the processor in question.
  8247. *
  8248. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8249. */
  8250. struct task_struct *curr_task(int cpu)
  8251. {
  8252. return cpu_curr(cpu);
  8253. }
  8254. /**
  8255. * set_curr_task - set the current task for a given cpu.
  8256. * @cpu: the processor in question.
  8257. * @p: the task pointer to set.
  8258. *
  8259. * Description: This function must only be used when non-maskable interrupts
  8260. * are serviced on a separate stack. It allows the architecture to switch the
  8261. * notion of the current task on a cpu in a non-blocking manner. This function
  8262. * must be called with all CPU's synchronized, and interrupts disabled, the
  8263. * and caller must save the original value of the current task (see
  8264. * curr_task() above) and restore that value before reenabling interrupts and
  8265. * re-starting the system.
  8266. *
  8267. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8268. */
  8269. void set_curr_task(int cpu, struct task_struct *p)
  8270. {
  8271. cpu_curr(cpu) = p;
  8272. }
  8273. #endif
  8274. #ifdef CONFIG_FAIR_GROUP_SCHED
  8275. static void free_fair_sched_group(struct task_group *tg)
  8276. {
  8277. int i;
  8278. for_each_possible_cpu(i) {
  8279. if (tg->cfs_rq)
  8280. kfree(tg->cfs_rq[i]);
  8281. if (tg->se)
  8282. kfree(tg->se[i]);
  8283. }
  8284. kfree(tg->cfs_rq);
  8285. kfree(tg->se);
  8286. }
  8287. static
  8288. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8289. {
  8290. struct cfs_rq *cfs_rq;
  8291. struct sched_entity *se;
  8292. struct rq *rq;
  8293. int i;
  8294. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8295. if (!tg->cfs_rq)
  8296. goto err;
  8297. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8298. if (!tg->se)
  8299. goto err;
  8300. tg->shares = NICE_0_LOAD;
  8301. for_each_possible_cpu(i) {
  8302. rq = cpu_rq(i);
  8303. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8304. GFP_KERNEL, cpu_to_node(i));
  8305. if (!cfs_rq)
  8306. goto err;
  8307. se = kzalloc_node(sizeof(struct sched_entity),
  8308. GFP_KERNEL, cpu_to_node(i));
  8309. if (!se)
  8310. goto err;
  8311. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8312. }
  8313. return 1;
  8314. err:
  8315. return 0;
  8316. }
  8317. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8318. {
  8319. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8320. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8321. }
  8322. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8323. {
  8324. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8325. }
  8326. #else /* !CONFG_FAIR_GROUP_SCHED */
  8327. static inline void free_fair_sched_group(struct task_group *tg)
  8328. {
  8329. }
  8330. static inline
  8331. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8332. {
  8333. return 1;
  8334. }
  8335. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8336. {
  8337. }
  8338. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8339. {
  8340. }
  8341. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8342. #ifdef CONFIG_RT_GROUP_SCHED
  8343. static void free_rt_sched_group(struct task_group *tg)
  8344. {
  8345. int i;
  8346. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8347. for_each_possible_cpu(i) {
  8348. if (tg->rt_rq)
  8349. kfree(tg->rt_rq[i]);
  8350. if (tg->rt_se)
  8351. kfree(tg->rt_se[i]);
  8352. }
  8353. kfree(tg->rt_rq);
  8354. kfree(tg->rt_se);
  8355. }
  8356. static
  8357. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8358. {
  8359. struct rt_rq *rt_rq;
  8360. struct sched_rt_entity *rt_se;
  8361. struct rq *rq;
  8362. int i;
  8363. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8364. if (!tg->rt_rq)
  8365. goto err;
  8366. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8367. if (!tg->rt_se)
  8368. goto err;
  8369. init_rt_bandwidth(&tg->rt_bandwidth,
  8370. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8371. for_each_possible_cpu(i) {
  8372. rq = cpu_rq(i);
  8373. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8374. GFP_KERNEL, cpu_to_node(i));
  8375. if (!rt_rq)
  8376. goto err;
  8377. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8378. GFP_KERNEL, cpu_to_node(i));
  8379. if (!rt_se)
  8380. goto err;
  8381. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8382. }
  8383. return 1;
  8384. err:
  8385. return 0;
  8386. }
  8387. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8388. {
  8389. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8390. &cpu_rq(cpu)->leaf_rt_rq_list);
  8391. }
  8392. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8393. {
  8394. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8395. }
  8396. #else /* !CONFIG_RT_GROUP_SCHED */
  8397. static inline void free_rt_sched_group(struct task_group *tg)
  8398. {
  8399. }
  8400. static inline
  8401. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8402. {
  8403. return 1;
  8404. }
  8405. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8406. {
  8407. }
  8408. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8409. {
  8410. }
  8411. #endif /* CONFIG_RT_GROUP_SCHED */
  8412. #ifdef CONFIG_GROUP_SCHED
  8413. static void free_sched_group(struct task_group *tg)
  8414. {
  8415. free_fair_sched_group(tg);
  8416. free_rt_sched_group(tg);
  8417. kfree(tg);
  8418. }
  8419. /* allocate runqueue etc for a new task group */
  8420. struct task_group *sched_create_group(struct task_group *parent)
  8421. {
  8422. struct task_group *tg;
  8423. unsigned long flags;
  8424. int i;
  8425. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8426. if (!tg)
  8427. return ERR_PTR(-ENOMEM);
  8428. if (!alloc_fair_sched_group(tg, parent))
  8429. goto err;
  8430. if (!alloc_rt_sched_group(tg, parent))
  8431. goto err;
  8432. spin_lock_irqsave(&task_group_lock, flags);
  8433. for_each_possible_cpu(i) {
  8434. register_fair_sched_group(tg, i);
  8435. register_rt_sched_group(tg, i);
  8436. }
  8437. list_add_rcu(&tg->list, &task_groups);
  8438. WARN_ON(!parent); /* root should already exist */
  8439. tg->parent = parent;
  8440. INIT_LIST_HEAD(&tg->children);
  8441. list_add_rcu(&tg->siblings, &parent->children);
  8442. spin_unlock_irqrestore(&task_group_lock, flags);
  8443. return tg;
  8444. err:
  8445. free_sched_group(tg);
  8446. return ERR_PTR(-ENOMEM);
  8447. }
  8448. /* rcu callback to free various structures associated with a task group */
  8449. static void free_sched_group_rcu(struct rcu_head *rhp)
  8450. {
  8451. /* now it should be safe to free those cfs_rqs */
  8452. free_sched_group(container_of(rhp, struct task_group, rcu));
  8453. }
  8454. /* Destroy runqueue etc associated with a task group */
  8455. void sched_destroy_group(struct task_group *tg)
  8456. {
  8457. unsigned long flags;
  8458. int i;
  8459. spin_lock_irqsave(&task_group_lock, flags);
  8460. for_each_possible_cpu(i) {
  8461. unregister_fair_sched_group(tg, i);
  8462. unregister_rt_sched_group(tg, i);
  8463. }
  8464. list_del_rcu(&tg->list);
  8465. list_del_rcu(&tg->siblings);
  8466. spin_unlock_irqrestore(&task_group_lock, flags);
  8467. /* wait for possible concurrent references to cfs_rqs complete */
  8468. call_rcu(&tg->rcu, free_sched_group_rcu);
  8469. }
  8470. /* change task's runqueue when it moves between groups.
  8471. * The caller of this function should have put the task in its new group
  8472. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8473. * reflect its new group.
  8474. */
  8475. void sched_move_task(struct task_struct *tsk)
  8476. {
  8477. int on_rq, running;
  8478. unsigned long flags;
  8479. struct rq *rq;
  8480. rq = task_rq_lock(tsk, &flags);
  8481. update_rq_clock(rq);
  8482. running = task_current(rq, tsk);
  8483. on_rq = tsk->se.on_rq;
  8484. if (on_rq)
  8485. dequeue_task(rq, tsk, 0);
  8486. if (unlikely(running))
  8487. tsk->sched_class->put_prev_task(rq, tsk);
  8488. set_task_rq(tsk, task_cpu(tsk));
  8489. #ifdef CONFIG_FAIR_GROUP_SCHED
  8490. if (tsk->sched_class->moved_group)
  8491. tsk->sched_class->moved_group(tsk);
  8492. #endif
  8493. if (unlikely(running))
  8494. tsk->sched_class->set_curr_task(rq);
  8495. if (on_rq)
  8496. enqueue_task(rq, tsk, 0);
  8497. task_rq_unlock(rq, &flags);
  8498. }
  8499. #endif /* CONFIG_GROUP_SCHED */
  8500. #ifdef CONFIG_FAIR_GROUP_SCHED
  8501. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8502. {
  8503. struct cfs_rq *cfs_rq = se->cfs_rq;
  8504. int on_rq;
  8505. on_rq = se->on_rq;
  8506. if (on_rq)
  8507. dequeue_entity(cfs_rq, se, 0);
  8508. se->load.weight = shares;
  8509. se->load.inv_weight = 0;
  8510. if (on_rq)
  8511. enqueue_entity(cfs_rq, se, 0);
  8512. }
  8513. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8514. {
  8515. struct cfs_rq *cfs_rq = se->cfs_rq;
  8516. struct rq *rq = cfs_rq->rq;
  8517. unsigned long flags;
  8518. spin_lock_irqsave(&rq->lock, flags);
  8519. __set_se_shares(se, shares);
  8520. spin_unlock_irqrestore(&rq->lock, flags);
  8521. }
  8522. static DEFINE_MUTEX(shares_mutex);
  8523. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8524. {
  8525. int i;
  8526. unsigned long flags;
  8527. /*
  8528. * We can't change the weight of the root cgroup.
  8529. */
  8530. if (!tg->se[0])
  8531. return -EINVAL;
  8532. if (shares < MIN_SHARES)
  8533. shares = MIN_SHARES;
  8534. else if (shares > MAX_SHARES)
  8535. shares = MAX_SHARES;
  8536. mutex_lock(&shares_mutex);
  8537. if (tg->shares == shares)
  8538. goto done;
  8539. spin_lock_irqsave(&task_group_lock, flags);
  8540. for_each_possible_cpu(i)
  8541. unregister_fair_sched_group(tg, i);
  8542. list_del_rcu(&tg->siblings);
  8543. spin_unlock_irqrestore(&task_group_lock, flags);
  8544. /* wait for any ongoing reference to this group to finish */
  8545. synchronize_sched();
  8546. /*
  8547. * Now we are free to modify the group's share on each cpu
  8548. * w/o tripping rebalance_share or load_balance_fair.
  8549. */
  8550. tg->shares = shares;
  8551. for_each_possible_cpu(i) {
  8552. /*
  8553. * force a rebalance
  8554. */
  8555. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8556. set_se_shares(tg->se[i], shares);
  8557. }
  8558. /*
  8559. * Enable load balance activity on this group, by inserting it back on
  8560. * each cpu's rq->leaf_cfs_rq_list.
  8561. */
  8562. spin_lock_irqsave(&task_group_lock, flags);
  8563. for_each_possible_cpu(i)
  8564. register_fair_sched_group(tg, i);
  8565. list_add_rcu(&tg->siblings, &tg->parent->children);
  8566. spin_unlock_irqrestore(&task_group_lock, flags);
  8567. done:
  8568. mutex_unlock(&shares_mutex);
  8569. return 0;
  8570. }
  8571. unsigned long sched_group_shares(struct task_group *tg)
  8572. {
  8573. return tg->shares;
  8574. }
  8575. #endif
  8576. #ifdef CONFIG_RT_GROUP_SCHED
  8577. /*
  8578. * Ensure that the real time constraints are schedulable.
  8579. */
  8580. static DEFINE_MUTEX(rt_constraints_mutex);
  8581. static unsigned long to_ratio(u64 period, u64 runtime)
  8582. {
  8583. if (runtime == RUNTIME_INF)
  8584. return 1ULL << 20;
  8585. return div64_u64(runtime << 20, period);
  8586. }
  8587. /* Must be called with tasklist_lock held */
  8588. static inline int tg_has_rt_tasks(struct task_group *tg)
  8589. {
  8590. struct task_struct *g, *p;
  8591. do_each_thread(g, p) {
  8592. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8593. return 1;
  8594. } while_each_thread(g, p);
  8595. return 0;
  8596. }
  8597. struct rt_schedulable_data {
  8598. struct task_group *tg;
  8599. u64 rt_period;
  8600. u64 rt_runtime;
  8601. };
  8602. static int tg_schedulable(struct task_group *tg, void *data)
  8603. {
  8604. struct rt_schedulable_data *d = data;
  8605. struct task_group *child;
  8606. unsigned long total, sum = 0;
  8607. u64 period, runtime;
  8608. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8609. runtime = tg->rt_bandwidth.rt_runtime;
  8610. if (tg == d->tg) {
  8611. period = d->rt_period;
  8612. runtime = d->rt_runtime;
  8613. }
  8614. #ifdef CONFIG_USER_SCHED
  8615. if (tg == &root_task_group) {
  8616. period = global_rt_period();
  8617. runtime = global_rt_runtime();
  8618. }
  8619. #endif
  8620. /*
  8621. * Cannot have more runtime than the period.
  8622. */
  8623. if (runtime > period && runtime != RUNTIME_INF)
  8624. return -EINVAL;
  8625. /*
  8626. * Ensure we don't starve existing RT tasks.
  8627. */
  8628. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8629. return -EBUSY;
  8630. total = to_ratio(period, runtime);
  8631. /*
  8632. * Nobody can have more than the global setting allows.
  8633. */
  8634. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8635. return -EINVAL;
  8636. /*
  8637. * The sum of our children's runtime should not exceed our own.
  8638. */
  8639. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8640. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8641. runtime = child->rt_bandwidth.rt_runtime;
  8642. if (child == d->tg) {
  8643. period = d->rt_period;
  8644. runtime = d->rt_runtime;
  8645. }
  8646. sum += to_ratio(period, runtime);
  8647. }
  8648. if (sum > total)
  8649. return -EINVAL;
  8650. return 0;
  8651. }
  8652. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8653. {
  8654. struct rt_schedulable_data data = {
  8655. .tg = tg,
  8656. .rt_period = period,
  8657. .rt_runtime = runtime,
  8658. };
  8659. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8660. }
  8661. static int tg_set_bandwidth(struct task_group *tg,
  8662. u64 rt_period, u64 rt_runtime)
  8663. {
  8664. int i, err = 0;
  8665. mutex_lock(&rt_constraints_mutex);
  8666. read_lock(&tasklist_lock);
  8667. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8668. if (err)
  8669. goto unlock;
  8670. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8671. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8672. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8673. for_each_possible_cpu(i) {
  8674. struct rt_rq *rt_rq = tg->rt_rq[i];
  8675. spin_lock(&rt_rq->rt_runtime_lock);
  8676. rt_rq->rt_runtime = rt_runtime;
  8677. spin_unlock(&rt_rq->rt_runtime_lock);
  8678. }
  8679. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8680. unlock:
  8681. read_unlock(&tasklist_lock);
  8682. mutex_unlock(&rt_constraints_mutex);
  8683. return err;
  8684. }
  8685. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8686. {
  8687. u64 rt_runtime, rt_period;
  8688. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8689. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8690. if (rt_runtime_us < 0)
  8691. rt_runtime = RUNTIME_INF;
  8692. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8693. }
  8694. long sched_group_rt_runtime(struct task_group *tg)
  8695. {
  8696. u64 rt_runtime_us;
  8697. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8698. return -1;
  8699. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8700. do_div(rt_runtime_us, NSEC_PER_USEC);
  8701. return rt_runtime_us;
  8702. }
  8703. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8704. {
  8705. u64 rt_runtime, rt_period;
  8706. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8707. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8708. if (rt_period == 0)
  8709. return -EINVAL;
  8710. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8711. }
  8712. long sched_group_rt_period(struct task_group *tg)
  8713. {
  8714. u64 rt_period_us;
  8715. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8716. do_div(rt_period_us, NSEC_PER_USEC);
  8717. return rt_period_us;
  8718. }
  8719. static int sched_rt_global_constraints(void)
  8720. {
  8721. u64 runtime, period;
  8722. int ret = 0;
  8723. if (sysctl_sched_rt_period <= 0)
  8724. return -EINVAL;
  8725. runtime = global_rt_runtime();
  8726. period = global_rt_period();
  8727. /*
  8728. * Sanity check on the sysctl variables.
  8729. */
  8730. if (runtime > period && runtime != RUNTIME_INF)
  8731. return -EINVAL;
  8732. mutex_lock(&rt_constraints_mutex);
  8733. read_lock(&tasklist_lock);
  8734. ret = __rt_schedulable(NULL, 0, 0);
  8735. read_unlock(&tasklist_lock);
  8736. mutex_unlock(&rt_constraints_mutex);
  8737. return ret;
  8738. }
  8739. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8740. {
  8741. /* Don't accept realtime tasks when there is no way for them to run */
  8742. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8743. return 0;
  8744. return 1;
  8745. }
  8746. #else /* !CONFIG_RT_GROUP_SCHED */
  8747. static int sched_rt_global_constraints(void)
  8748. {
  8749. unsigned long flags;
  8750. int i;
  8751. if (sysctl_sched_rt_period <= 0)
  8752. return -EINVAL;
  8753. /*
  8754. * There's always some RT tasks in the root group
  8755. * -- migration, kstopmachine etc..
  8756. */
  8757. if (sysctl_sched_rt_runtime == 0)
  8758. return -EBUSY;
  8759. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8760. for_each_possible_cpu(i) {
  8761. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8762. spin_lock(&rt_rq->rt_runtime_lock);
  8763. rt_rq->rt_runtime = global_rt_runtime();
  8764. spin_unlock(&rt_rq->rt_runtime_lock);
  8765. }
  8766. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8767. return 0;
  8768. }
  8769. #endif /* CONFIG_RT_GROUP_SCHED */
  8770. int sched_rt_handler(struct ctl_table *table, int write,
  8771. struct file *filp, void __user *buffer, size_t *lenp,
  8772. loff_t *ppos)
  8773. {
  8774. int ret;
  8775. int old_period, old_runtime;
  8776. static DEFINE_MUTEX(mutex);
  8777. mutex_lock(&mutex);
  8778. old_period = sysctl_sched_rt_period;
  8779. old_runtime = sysctl_sched_rt_runtime;
  8780. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8781. if (!ret && write) {
  8782. ret = sched_rt_global_constraints();
  8783. if (ret) {
  8784. sysctl_sched_rt_period = old_period;
  8785. sysctl_sched_rt_runtime = old_runtime;
  8786. } else {
  8787. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8788. def_rt_bandwidth.rt_period =
  8789. ns_to_ktime(global_rt_period());
  8790. }
  8791. }
  8792. mutex_unlock(&mutex);
  8793. return ret;
  8794. }
  8795. #ifdef CONFIG_CGROUP_SCHED
  8796. /* return corresponding task_group object of a cgroup */
  8797. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8798. {
  8799. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8800. struct task_group, css);
  8801. }
  8802. static struct cgroup_subsys_state *
  8803. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8804. {
  8805. struct task_group *tg, *parent;
  8806. if (!cgrp->parent) {
  8807. /* This is early initialization for the top cgroup */
  8808. return &init_task_group.css;
  8809. }
  8810. parent = cgroup_tg(cgrp->parent);
  8811. tg = sched_create_group(parent);
  8812. if (IS_ERR(tg))
  8813. return ERR_PTR(-ENOMEM);
  8814. return &tg->css;
  8815. }
  8816. static void
  8817. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8818. {
  8819. struct task_group *tg = cgroup_tg(cgrp);
  8820. sched_destroy_group(tg);
  8821. }
  8822. static int
  8823. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8824. struct task_struct *tsk)
  8825. {
  8826. #ifdef CONFIG_RT_GROUP_SCHED
  8827. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8828. return -EINVAL;
  8829. #else
  8830. /* We don't support RT-tasks being in separate groups */
  8831. if (tsk->sched_class != &fair_sched_class)
  8832. return -EINVAL;
  8833. #endif
  8834. return 0;
  8835. }
  8836. static void
  8837. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8838. struct cgroup *old_cont, struct task_struct *tsk)
  8839. {
  8840. sched_move_task(tsk);
  8841. }
  8842. #ifdef CONFIG_FAIR_GROUP_SCHED
  8843. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8844. u64 shareval)
  8845. {
  8846. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8847. }
  8848. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8849. {
  8850. struct task_group *tg = cgroup_tg(cgrp);
  8851. return (u64) tg->shares;
  8852. }
  8853. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8854. #ifdef CONFIG_RT_GROUP_SCHED
  8855. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8856. s64 val)
  8857. {
  8858. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8859. }
  8860. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8861. {
  8862. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8863. }
  8864. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8865. u64 rt_period_us)
  8866. {
  8867. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8868. }
  8869. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8870. {
  8871. return sched_group_rt_period(cgroup_tg(cgrp));
  8872. }
  8873. #endif /* CONFIG_RT_GROUP_SCHED */
  8874. static struct cftype cpu_files[] = {
  8875. #ifdef CONFIG_FAIR_GROUP_SCHED
  8876. {
  8877. .name = "shares",
  8878. .read_u64 = cpu_shares_read_u64,
  8879. .write_u64 = cpu_shares_write_u64,
  8880. },
  8881. #endif
  8882. #ifdef CONFIG_RT_GROUP_SCHED
  8883. {
  8884. .name = "rt_runtime_us",
  8885. .read_s64 = cpu_rt_runtime_read,
  8886. .write_s64 = cpu_rt_runtime_write,
  8887. },
  8888. {
  8889. .name = "rt_period_us",
  8890. .read_u64 = cpu_rt_period_read_uint,
  8891. .write_u64 = cpu_rt_period_write_uint,
  8892. },
  8893. #endif
  8894. };
  8895. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8896. {
  8897. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8898. }
  8899. struct cgroup_subsys cpu_cgroup_subsys = {
  8900. .name = "cpu",
  8901. .create = cpu_cgroup_create,
  8902. .destroy = cpu_cgroup_destroy,
  8903. .can_attach = cpu_cgroup_can_attach,
  8904. .attach = cpu_cgroup_attach,
  8905. .populate = cpu_cgroup_populate,
  8906. .subsys_id = cpu_cgroup_subsys_id,
  8907. .early_init = 1,
  8908. };
  8909. #endif /* CONFIG_CGROUP_SCHED */
  8910. #ifdef CONFIG_CGROUP_CPUACCT
  8911. /*
  8912. * CPU accounting code for task groups.
  8913. *
  8914. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8915. * (balbir@in.ibm.com).
  8916. */
  8917. /* track cpu usage of a group of tasks and its child groups */
  8918. struct cpuacct {
  8919. struct cgroup_subsys_state css;
  8920. /* cpuusage holds pointer to a u64-type object on every cpu */
  8921. u64 *cpuusage;
  8922. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8923. struct cpuacct *parent;
  8924. };
  8925. struct cgroup_subsys cpuacct_subsys;
  8926. /* return cpu accounting group corresponding to this container */
  8927. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8928. {
  8929. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8930. struct cpuacct, css);
  8931. }
  8932. /* return cpu accounting group to which this task belongs */
  8933. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8934. {
  8935. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8936. struct cpuacct, css);
  8937. }
  8938. /* create a new cpu accounting group */
  8939. static struct cgroup_subsys_state *cpuacct_create(
  8940. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8941. {
  8942. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8943. int i;
  8944. if (!ca)
  8945. goto out;
  8946. ca->cpuusage = alloc_percpu(u64);
  8947. if (!ca->cpuusage)
  8948. goto out_free_ca;
  8949. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8950. if (percpu_counter_init(&ca->cpustat[i], 0))
  8951. goto out_free_counters;
  8952. if (cgrp->parent)
  8953. ca->parent = cgroup_ca(cgrp->parent);
  8954. return &ca->css;
  8955. out_free_counters:
  8956. while (--i >= 0)
  8957. percpu_counter_destroy(&ca->cpustat[i]);
  8958. free_percpu(ca->cpuusage);
  8959. out_free_ca:
  8960. kfree(ca);
  8961. out:
  8962. return ERR_PTR(-ENOMEM);
  8963. }
  8964. /* destroy an existing cpu accounting group */
  8965. static void
  8966. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8967. {
  8968. struct cpuacct *ca = cgroup_ca(cgrp);
  8969. int i;
  8970. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8971. percpu_counter_destroy(&ca->cpustat[i]);
  8972. free_percpu(ca->cpuusage);
  8973. kfree(ca);
  8974. }
  8975. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8976. {
  8977. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8978. u64 data;
  8979. #ifndef CONFIG_64BIT
  8980. /*
  8981. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8982. */
  8983. spin_lock_irq(&cpu_rq(cpu)->lock);
  8984. data = *cpuusage;
  8985. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8986. #else
  8987. data = *cpuusage;
  8988. #endif
  8989. return data;
  8990. }
  8991. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8992. {
  8993. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8994. #ifndef CONFIG_64BIT
  8995. /*
  8996. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8997. */
  8998. spin_lock_irq(&cpu_rq(cpu)->lock);
  8999. *cpuusage = val;
  9000. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9001. #else
  9002. *cpuusage = val;
  9003. #endif
  9004. }
  9005. /* return total cpu usage (in nanoseconds) of a group */
  9006. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9007. {
  9008. struct cpuacct *ca = cgroup_ca(cgrp);
  9009. u64 totalcpuusage = 0;
  9010. int i;
  9011. for_each_present_cpu(i)
  9012. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9013. return totalcpuusage;
  9014. }
  9015. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9016. u64 reset)
  9017. {
  9018. struct cpuacct *ca = cgroup_ca(cgrp);
  9019. int err = 0;
  9020. int i;
  9021. if (reset) {
  9022. err = -EINVAL;
  9023. goto out;
  9024. }
  9025. for_each_present_cpu(i)
  9026. cpuacct_cpuusage_write(ca, i, 0);
  9027. out:
  9028. return err;
  9029. }
  9030. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9031. struct seq_file *m)
  9032. {
  9033. struct cpuacct *ca = cgroup_ca(cgroup);
  9034. u64 percpu;
  9035. int i;
  9036. for_each_present_cpu(i) {
  9037. percpu = cpuacct_cpuusage_read(ca, i);
  9038. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9039. }
  9040. seq_printf(m, "\n");
  9041. return 0;
  9042. }
  9043. static const char *cpuacct_stat_desc[] = {
  9044. [CPUACCT_STAT_USER] = "user",
  9045. [CPUACCT_STAT_SYSTEM] = "system",
  9046. };
  9047. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9048. struct cgroup_map_cb *cb)
  9049. {
  9050. struct cpuacct *ca = cgroup_ca(cgrp);
  9051. int i;
  9052. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9053. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9054. val = cputime64_to_clock_t(val);
  9055. cb->fill(cb, cpuacct_stat_desc[i], val);
  9056. }
  9057. return 0;
  9058. }
  9059. static struct cftype files[] = {
  9060. {
  9061. .name = "usage",
  9062. .read_u64 = cpuusage_read,
  9063. .write_u64 = cpuusage_write,
  9064. },
  9065. {
  9066. .name = "usage_percpu",
  9067. .read_seq_string = cpuacct_percpu_seq_read,
  9068. },
  9069. {
  9070. .name = "stat",
  9071. .read_map = cpuacct_stats_show,
  9072. },
  9073. };
  9074. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9075. {
  9076. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9077. }
  9078. /*
  9079. * charge this task's execution time to its accounting group.
  9080. *
  9081. * called with rq->lock held.
  9082. */
  9083. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9084. {
  9085. struct cpuacct *ca;
  9086. int cpu;
  9087. if (unlikely(!cpuacct_subsys.active))
  9088. return;
  9089. cpu = task_cpu(tsk);
  9090. rcu_read_lock();
  9091. ca = task_ca(tsk);
  9092. for (; ca; ca = ca->parent) {
  9093. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9094. *cpuusage += cputime;
  9095. }
  9096. rcu_read_unlock();
  9097. }
  9098. /*
  9099. * Charge the system/user time to the task's accounting group.
  9100. */
  9101. static void cpuacct_update_stats(struct task_struct *tsk,
  9102. enum cpuacct_stat_index idx, cputime_t val)
  9103. {
  9104. struct cpuacct *ca;
  9105. if (unlikely(!cpuacct_subsys.active))
  9106. return;
  9107. rcu_read_lock();
  9108. ca = task_ca(tsk);
  9109. do {
  9110. percpu_counter_add(&ca->cpustat[idx], val);
  9111. ca = ca->parent;
  9112. } while (ca);
  9113. rcu_read_unlock();
  9114. }
  9115. struct cgroup_subsys cpuacct_subsys = {
  9116. .name = "cpuacct",
  9117. .create = cpuacct_create,
  9118. .destroy = cpuacct_destroy,
  9119. .populate = cpuacct_populate,
  9120. .subsys_id = cpuacct_subsys_id,
  9121. };
  9122. #endif /* CONFIG_CGROUP_CPUACCT */
  9123. #ifndef CONFIG_SMP
  9124. int rcu_expedited_torture_stats(char *page)
  9125. {
  9126. return 0;
  9127. }
  9128. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9129. void synchronize_sched_expedited(void)
  9130. {
  9131. }
  9132. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9133. #else /* #ifndef CONFIG_SMP */
  9134. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9135. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9136. #define RCU_EXPEDITED_STATE_POST -2
  9137. #define RCU_EXPEDITED_STATE_IDLE -1
  9138. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9139. int rcu_expedited_torture_stats(char *page)
  9140. {
  9141. int cnt = 0;
  9142. int cpu;
  9143. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9144. for_each_online_cpu(cpu) {
  9145. cnt += sprintf(&page[cnt], " %d:%d",
  9146. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9147. }
  9148. cnt += sprintf(&page[cnt], "\n");
  9149. return cnt;
  9150. }
  9151. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9152. static long synchronize_sched_expedited_count;
  9153. /*
  9154. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9155. * approach to force grace period to end quickly. This consumes
  9156. * significant time on all CPUs, and is thus not recommended for
  9157. * any sort of common-case code.
  9158. *
  9159. * Note that it is illegal to call this function while holding any
  9160. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9161. * observe this restriction will result in deadlock.
  9162. */
  9163. void synchronize_sched_expedited(void)
  9164. {
  9165. int cpu;
  9166. unsigned long flags;
  9167. bool need_full_sync = 0;
  9168. struct rq *rq;
  9169. struct migration_req *req;
  9170. long snap;
  9171. int trycount = 0;
  9172. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9173. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9174. get_online_cpus();
  9175. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9176. put_online_cpus();
  9177. if (trycount++ < 10)
  9178. udelay(trycount * num_online_cpus());
  9179. else {
  9180. synchronize_sched();
  9181. return;
  9182. }
  9183. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9184. smp_mb(); /* ensure test happens before caller kfree */
  9185. return;
  9186. }
  9187. get_online_cpus();
  9188. }
  9189. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9190. for_each_online_cpu(cpu) {
  9191. rq = cpu_rq(cpu);
  9192. req = &per_cpu(rcu_migration_req, cpu);
  9193. init_completion(&req->done);
  9194. req->task = NULL;
  9195. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9196. spin_lock_irqsave(&rq->lock, flags);
  9197. list_add(&req->list, &rq->migration_queue);
  9198. spin_unlock_irqrestore(&rq->lock, flags);
  9199. wake_up_process(rq->migration_thread);
  9200. }
  9201. for_each_online_cpu(cpu) {
  9202. rcu_expedited_state = cpu;
  9203. req = &per_cpu(rcu_migration_req, cpu);
  9204. rq = cpu_rq(cpu);
  9205. wait_for_completion(&req->done);
  9206. spin_lock_irqsave(&rq->lock, flags);
  9207. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9208. need_full_sync = 1;
  9209. req->dest_cpu = RCU_MIGRATION_IDLE;
  9210. spin_unlock_irqrestore(&rq->lock, flags);
  9211. }
  9212. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9213. mutex_unlock(&rcu_sched_expedited_mutex);
  9214. put_online_cpus();
  9215. if (need_full_sync)
  9216. synchronize_sched();
  9217. }
  9218. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9219. #endif /* #else #ifndef CONFIG_SMP */