sockmap.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* A BPF sock_map is used to store sock objects. This is primarly used
  13. * for doing socket redirect with BPF helper routines.
  14. *
  15. * A sock map may have BPF programs attached to it, currently a program
  16. * used to parse packets and a program to provide a verdict and redirect
  17. * decision on the packet are supported. Any programs attached to a sock
  18. * map are inherited by sock objects when they are added to the map. If
  19. * no BPF programs are attached the sock object may only be used for sock
  20. * redirect.
  21. *
  22. * A sock object may be in multiple maps, but can only inherit a single
  23. * parse or verdict program. If adding a sock object to a map would result
  24. * in having multiple parsing programs the update will return an EBUSY error.
  25. *
  26. * For reference this program is similar to devmap used in XDP context
  27. * reviewing these together may be useful. For an example please review
  28. * ./samples/bpf/sockmap/.
  29. */
  30. #include <linux/bpf.h>
  31. #include <net/sock.h>
  32. #include <linux/filter.h>
  33. #include <linux/errno.h>
  34. #include <linux/file.h>
  35. #include <linux/kernel.h>
  36. #include <linux/net.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/list.h>
  40. #include <linux/mm.h>
  41. #include <net/strparser.h>
  42. #include <net/tcp.h>
  43. #include <linux/ptr_ring.h>
  44. #include <net/inet_common.h>
  45. #include <linux/sched/signal.h>
  46. #define SOCK_CREATE_FLAG_MASK \
  47. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  48. struct bpf_sock_progs {
  49. struct bpf_prog *bpf_tx_msg;
  50. struct bpf_prog *bpf_parse;
  51. struct bpf_prog *bpf_verdict;
  52. };
  53. struct bpf_stab {
  54. struct bpf_map map;
  55. struct sock **sock_map;
  56. struct bpf_sock_progs progs;
  57. };
  58. struct bucket {
  59. struct hlist_head head;
  60. raw_spinlock_t lock;
  61. };
  62. struct bpf_htab {
  63. struct bpf_map map;
  64. struct bucket *buckets;
  65. atomic_t count;
  66. u32 n_buckets;
  67. u32 elem_size;
  68. struct bpf_sock_progs progs;
  69. struct rcu_head rcu;
  70. };
  71. struct htab_elem {
  72. struct rcu_head rcu;
  73. struct hlist_node hash_node;
  74. u32 hash;
  75. struct sock *sk;
  76. char key[0];
  77. };
  78. enum smap_psock_state {
  79. SMAP_TX_RUNNING,
  80. };
  81. struct smap_psock_map_entry {
  82. struct list_head list;
  83. struct sock **entry;
  84. struct htab_elem __rcu *hash_link;
  85. struct bpf_htab __rcu *htab;
  86. };
  87. struct smap_psock {
  88. struct rcu_head rcu;
  89. refcount_t refcnt;
  90. /* datapath variables */
  91. struct sk_buff_head rxqueue;
  92. bool strp_enabled;
  93. /* datapath error path cache across tx work invocations */
  94. int save_rem;
  95. int save_off;
  96. struct sk_buff *save_skb;
  97. /* datapath variables for tx_msg ULP */
  98. struct sock *sk_redir;
  99. int apply_bytes;
  100. int cork_bytes;
  101. int sg_size;
  102. int eval;
  103. struct sk_msg_buff *cork;
  104. struct list_head ingress;
  105. struct strparser strp;
  106. struct bpf_prog *bpf_tx_msg;
  107. struct bpf_prog *bpf_parse;
  108. struct bpf_prog *bpf_verdict;
  109. struct list_head maps;
  110. spinlock_t maps_lock;
  111. /* Back reference used when sock callback trigger sockmap operations */
  112. struct sock *sock;
  113. unsigned long state;
  114. struct work_struct tx_work;
  115. struct work_struct gc_work;
  116. struct proto *sk_proto;
  117. void (*save_close)(struct sock *sk, long timeout);
  118. void (*save_data_ready)(struct sock *sk);
  119. void (*save_write_space)(struct sock *sk);
  120. };
  121. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  122. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  123. int nonblock, int flags, int *addr_len);
  124. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
  125. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  126. int offset, size_t size, int flags);
  127. static void bpf_tcp_close(struct sock *sk, long timeout);
  128. static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
  129. {
  130. return rcu_dereference_sk_user_data(sk);
  131. }
  132. static bool bpf_tcp_stream_read(const struct sock *sk)
  133. {
  134. struct smap_psock *psock;
  135. bool empty = true;
  136. rcu_read_lock();
  137. psock = smap_psock_sk(sk);
  138. if (unlikely(!psock))
  139. goto out;
  140. empty = list_empty(&psock->ingress);
  141. out:
  142. rcu_read_unlock();
  143. return !empty;
  144. }
  145. enum {
  146. SOCKMAP_IPV4,
  147. SOCKMAP_IPV6,
  148. SOCKMAP_NUM_PROTS,
  149. };
  150. enum {
  151. SOCKMAP_BASE,
  152. SOCKMAP_TX,
  153. SOCKMAP_NUM_CONFIGS,
  154. };
  155. static struct proto *saved_tcpv6_prot __read_mostly;
  156. static DEFINE_SPINLOCK(tcpv6_prot_lock);
  157. static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS];
  158. static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],
  159. struct proto *base)
  160. {
  161. prot[SOCKMAP_BASE] = *base;
  162. prot[SOCKMAP_BASE].close = bpf_tcp_close;
  163. prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg;
  164. prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read;
  165. prot[SOCKMAP_TX] = prot[SOCKMAP_BASE];
  166. prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg;
  167. prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage;
  168. }
  169. static void update_sk_prot(struct sock *sk, struct smap_psock *psock)
  170. {
  171. int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4;
  172. int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE;
  173. sk->sk_prot = &bpf_tcp_prots[family][conf];
  174. }
  175. static int bpf_tcp_init(struct sock *sk)
  176. {
  177. struct smap_psock *psock;
  178. rcu_read_lock();
  179. psock = smap_psock_sk(sk);
  180. if (unlikely(!psock)) {
  181. rcu_read_unlock();
  182. return -EINVAL;
  183. }
  184. if (unlikely(psock->sk_proto)) {
  185. rcu_read_unlock();
  186. return -EBUSY;
  187. }
  188. psock->save_close = sk->sk_prot->close;
  189. psock->sk_proto = sk->sk_prot;
  190. /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */
  191. if (sk->sk_family == AF_INET6 &&
  192. unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
  193. spin_lock_bh(&tcpv6_prot_lock);
  194. if (likely(sk->sk_prot != saved_tcpv6_prot)) {
  195. build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot);
  196. smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
  197. }
  198. spin_unlock_bh(&tcpv6_prot_lock);
  199. }
  200. update_sk_prot(sk, psock);
  201. rcu_read_unlock();
  202. return 0;
  203. }
  204. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  205. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
  206. static void bpf_tcp_release(struct sock *sk)
  207. {
  208. struct smap_psock *psock;
  209. rcu_read_lock();
  210. psock = smap_psock_sk(sk);
  211. if (unlikely(!psock))
  212. goto out;
  213. if (psock->cork) {
  214. free_start_sg(psock->sock, psock->cork);
  215. kfree(psock->cork);
  216. psock->cork = NULL;
  217. }
  218. if (psock->sk_proto) {
  219. sk->sk_prot = psock->sk_proto;
  220. psock->sk_proto = NULL;
  221. }
  222. out:
  223. rcu_read_unlock();
  224. }
  225. static struct htab_elem *lookup_elem_raw(struct hlist_head *head,
  226. u32 hash, void *key, u32 key_size)
  227. {
  228. struct htab_elem *l;
  229. hlist_for_each_entry_rcu(l, head, hash_node) {
  230. if (l->hash == hash && !memcmp(&l->key, key, key_size))
  231. return l;
  232. }
  233. return NULL;
  234. }
  235. static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
  236. {
  237. return &htab->buckets[hash & (htab->n_buckets - 1)];
  238. }
  239. static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
  240. {
  241. return &__select_bucket(htab, hash)->head;
  242. }
  243. static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
  244. {
  245. atomic_dec(&htab->count);
  246. kfree_rcu(l, rcu);
  247. }
  248. static struct smap_psock_map_entry *psock_map_pop(struct sock *sk,
  249. struct smap_psock *psock)
  250. {
  251. struct smap_psock_map_entry *e;
  252. spin_lock_bh(&psock->maps_lock);
  253. e = list_first_entry_or_null(&psock->maps,
  254. struct smap_psock_map_entry,
  255. list);
  256. if (e)
  257. list_del(&e->list);
  258. spin_unlock_bh(&psock->maps_lock);
  259. return e;
  260. }
  261. static void bpf_tcp_close(struct sock *sk, long timeout)
  262. {
  263. void (*close_fun)(struct sock *sk, long timeout);
  264. struct smap_psock_map_entry *e;
  265. struct sk_msg_buff *md, *mtmp;
  266. struct smap_psock *psock;
  267. struct sock *osk;
  268. rcu_read_lock();
  269. psock = smap_psock_sk(sk);
  270. if (unlikely(!psock)) {
  271. rcu_read_unlock();
  272. return sk->sk_prot->close(sk, timeout);
  273. }
  274. /* The psock may be destroyed anytime after exiting the RCU critial
  275. * section so by the time we use close_fun the psock may no longer
  276. * be valid. However, bpf_tcp_close is called with the sock lock
  277. * held so the close hook and sk are still valid.
  278. */
  279. close_fun = psock->save_close;
  280. if (psock->cork) {
  281. free_start_sg(psock->sock, psock->cork);
  282. kfree(psock->cork);
  283. psock->cork = NULL;
  284. }
  285. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  286. list_del(&md->list);
  287. free_start_sg(psock->sock, md);
  288. kfree(md);
  289. }
  290. e = psock_map_pop(sk, psock);
  291. while (e) {
  292. if (e->entry) {
  293. osk = cmpxchg(e->entry, sk, NULL);
  294. if (osk == sk) {
  295. smap_release_sock(psock, sk);
  296. }
  297. } else {
  298. struct htab_elem *link = rcu_dereference(e->hash_link);
  299. struct bpf_htab *htab = rcu_dereference(e->htab);
  300. struct hlist_head *head;
  301. struct htab_elem *l;
  302. struct bucket *b;
  303. b = __select_bucket(htab, link->hash);
  304. head = &b->head;
  305. raw_spin_lock_bh(&b->lock);
  306. l = lookup_elem_raw(head,
  307. link->hash, link->key,
  308. htab->map.key_size);
  309. /* If another thread deleted this object skip deletion.
  310. * The refcnt on psock may or may not be zero.
  311. */
  312. if (l) {
  313. hlist_del_rcu(&link->hash_node);
  314. smap_release_sock(psock, link->sk);
  315. free_htab_elem(htab, link);
  316. }
  317. raw_spin_unlock_bh(&b->lock);
  318. }
  319. e = psock_map_pop(sk, psock);
  320. }
  321. rcu_read_unlock();
  322. close_fun(sk, timeout);
  323. }
  324. enum __sk_action {
  325. __SK_DROP = 0,
  326. __SK_PASS,
  327. __SK_REDIRECT,
  328. __SK_NONE,
  329. };
  330. static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
  331. .name = "bpf_tcp",
  332. .uid = TCP_ULP_BPF,
  333. .user_visible = false,
  334. .owner = NULL,
  335. .init = bpf_tcp_init,
  336. .release = bpf_tcp_release,
  337. };
  338. static int memcopy_from_iter(struct sock *sk,
  339. struct sk_msg_buff *md,
  340. struct iov_iter *from, int bytes)
  341. {
  342. struct scatterlist *sg = md->sg_data;
  343. int i = md->sg_curr, rc = -ENOSPC;
  344. do {
  345. int copy;
  346. char *to;
  347. if (md->sg_copybreak >= sg[i].length) {
  348. md->sg_copybreak = 0;
  349. if (++i == MAX_SKB_FRAGS)
  350. i = 0;
  351. if (i == md->sg_end)
  352. break;
  353. }
  354. copy = sg[i].length - md->sg_copybreak;
  355. to = sg_virt(&sg[i]) + md->sg_copybreak;
  356. md->sg_copybreak += copy;
  357. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  358. rc = copy_from_iter_nocache(to, copy, from);
  359. else
  360. rc = copy_from_iter(to, copy, from);
  361. if (rc != copy) {
  362. rc = -EFAULT;
  363. goto out;
  364. }
  365. bytes -= copy;
  366. if (!bytes)
  367. break;
  368. md->sg_copybreak = 0;
  369. if (++i == MAX_SKB_FRAGS)
  370. i = 0;
  371. } while (i != md->sg_end);
  372. out:
  373. md->sg_curr = i;
  374. return rc;
  375. }
  376. static int bpf_tcp_push(struct sock *sk, int apply_bytes,
  377. struct sk_msg_buff *md,
  378. int flags, bool uncharge)
  379. {
  380. bool apply = apply_bytes;
  381. struct scatterlist *sg;
  382. int offset, ret = 0;
  383. struct page *p;
  384. size_t size;
  385. while (1) {
  386. sg = md->sg_data + md->sg_start;
  387. size = (apply && apply_bytes < sg->length) ?
  388. apply_bytes : sg->length;
  389. offset = sg->offset;
  390. tcp_rate_check_app_limited(sk);
  391. p = sg_page(sg);
  392. retry:
  393. ret = do_tcp_sendpages(sk, p, offset, size, flags);
  394. if (ret != size) {
  395. if (ret > 0) {
  396. if (apply)
  397. apply_bytes -= ret;
  398. sg->offset += ret;
  399. sg->length -= ret;
  400. size -= ret;
  401. offset += ret;
  402. if (uncharge)
  403. sk_mem_uncharge(sk, ret);
  404. goto retry;
  405. }
  406. return ret;
  407. }
  408. if (apply)
  409. apply_bytes -= ret;
  410. sg->offset += ret;
  411. sg->length -= ret;
  412. if (uncharge)
  413. sk_mem_uncharge(sk, ret);
  414. if (!sg->length) {
  415. put_page(p);
  416. md->sg_start++;
  417. if (md->sg_start == MAX_SKB_FRAGS)
  418. md->sg_start = 0;
  419. sg_init_table(sg, 1);
  420. if (md->sg_start == md->sg_end)
  421. break;
  422. }
  423. if (apply && !apply_bytes)
  424. break;
  425. }
  426. return 0;
  427. }
  428. static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
  429. {
  430. struct scatterlist *sg = md->sg_data + md->sg_start;
  431. if (md->sg_copy[md->sg_start]) {
  432. md->data = md->data_end = 0;
  433. } else {
  434. md->data = sg_virt(sg);
  435. md->data_end = md->data + sg->length;
  436. }
  437. }
  438. static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  439. {
  440. struct scatterlist *sg = md->sg_data;
  441. int i = md->sg_start;
  442. do {
  443. int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
  444. sk_mem_uncharge(sk, uncharge);
  445. bytes -= uncharge;
  446. if (!bytes)
  447. break;
  448. i++;
  449. if (i == MAX_SKB_FRAGS)
  450. i = 0;
  451. } while (i != md->sg_end);
  452. }
  453. static void free_bytes_sg(struct sock *sk, int bytes,
  454. struct sk_msg_buff *md, bool charge)
  455. {
  456. struct scatterlist *sg = md->sg_data;
  457. int i = md->sg_start, free;
  458. while (bytes && sg[i].length) {
  459. free = sg[i].length;
  460. if (bytes < free) {
  461. sg[i].length -= bytes;
  462. sg[i].offset += bytes;
  463. if (charge)
  464. sk_mem_uncharge(sk, bytes);
  465. break;
  466. }
  467. if (charge)
  468. sk_mem_uncharge(sk, sg[i].length);
  469. put_page(sg_page(&sg[i]));
  470. bytes -= sg[i].length;
  471. sg[i].length = 0;
  472. sg[i].page_link = 0;
  473. sg[i].offset = 0;
  474. i++;
  475. if (i == MAX_SKB_FRAGS)
  476. i = 0;
  477. }
  478. md->sg_start = i;
  479. }
  480. static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
  481. {
  482. struct scatterlist *sg = md->sg_data;
  483. int i = start, free = 0;
  484. while (sg[i].length) {
  485. free += sg[i].length;
  486. sk_mem_uncharge(sk, sg[i].length);
  487. put_page(sg_page(&sg[i]));
  488. sg[i].length = 0;
  489. sg[i].page_link = 0;
  490. sg[i].offset = 0;
  491. i++;
  492. if (i == MAX_SKB_FRAGS)
  493. i = 0;
  494. }
  495. return free;
  496. }
  497. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
  498. {
  499. int free = free_sg(sk, md->sg_start, md);
  500. md->sg_start = md->sg_end;
  501. return free;
  502. }
  503. static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
  504. {
  505. return free_sg(sk, md->sg_curr, md);
  506. }
  507. static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
  508. {
  509. return ((_rc == SK_PASS) ?
  510. (md->sk_redir ? __SK_REDIRECT : __SK_PASS) :
  511. __SK_DROP);
  512. }
  513. static unsigned int smap_do_tx_msg(struct sock *sk,
  514. struct smap_psock *psock,
  515. struct sk_msg_buff *md)
  516. {
  517. struct bpf_prog *prog;
  518. unsigned int rc, _rc;
  519. preempt_disable();
  520. rcu_read_lock();
  521. /* If the policy was removed mid-send then default to 'accept' */
  522. prog = READ_ONCE(psock->bpf_tx_msg);
  523. if (unlikely(!prog)) {
  524. _rc = SK_PASS;
  525. goto verdict;
  526. }
  527. bpf_compute_data_pointers_sg(md);
  528. md->sk = sk;
  529. rc = (*prog->bpf_func)(md, prog->insnsi);
  530. psock->apply_bytes = md->apply_bytes;
  531. /* Moving return codes from UAPI namespace into internal namespace */
  532. _rc = bpf_map_msg_verdict(rc, md);
  533. /* The psock has a refcount on the sock but not on the map and because
  534. * we need to drop rcu read lock here its possible the map could be
  535. * removed between here and when we need it to execute the sock
  536. * redirect. So do the map lookup now for future use.
  537. */
  538. if (_rc == __SK_REDIRECT) {
  539. if (psock->sk_redir)
  540. sock_put(psock->sk_redir);
  541. psock->sk_redir = do_msg_redirect_map(md);
  542. if (!psock->sk_redir) {
  543. _rc = __SK_DROP;
  544. goto verdict;
  545. }
  546. sock_hold(psock->sk_redir);
  547. }
  548. verdict:
  549. rcu_read_unlock();
  550. preempt_enable();
  551. return _rc;
  552. }
  553. static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
  554. struct smap_psock *psock,
  555. struct sk_msg_buff *md, int flags)
  556. {
  557. bool apply = apply_bytes;
  558. size_t size, copied = 0;
  559. struct sk_msg_buff *r;
  560. int err = 0, i;
  561. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
  562. if (unlikely(!r))
  563. return -ENOMEM;
  564. lock_sock(sk);
  565. r->sg_start = md->sg_start;
  566. i = md->sg_start;
  567. do {
  568. size = (apply && apply_bytes < md->sg_data[i].length) ?
  569. apply_bytes : md->sg_data[i].length;
  570. if (!sk_wmem_schedule(sk, size)) {
  571. if (!copied)
  572. err = -ENOMEM;
  573. break;
  574. }
  575. sk_mem_charge(sk, size);
  576. r->sg_data[i] = md->sg_data[i];
  577. r->sg_data[i].length = size;
  578. md->sg_data[i].length -= size;
  579. md->sg_data[i].offset += size;
  580. copied += size;
  581. if (md->sg_data[i].length) {
  582. get_page(sg_page(&r->sg_data[i]));
  583. r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
  584. } else {
  585. i++;
  586. if (i == MAX_SKB_FRAGS)
  587. i = 0;
  588. r->sg_end = i;
  589. }
  590. if (apply) {
  591. apply_bytes -= size;
  592. if (!apply_bytes)
  593. break;
  594. }
  595. } while (i != md->sg_end);
  596. md->sg_start = i;
  597. if (!err) {
  598. list_add_tail(&r->list, &psock->ingress);
  599. sk->sk_data_ready(sk);
  600. } else {
  601. free_start_sg(sk, r);
  602. kfree(r);
  603. }
  604. release_sock(sk);
  605. return err;
  606. }
  607. static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
  608. struct sk_msg_buff *md,
  609. int flags)
  610. {
  611. bool ingress = !!(md->flags & BPF_F_INGRESS);
  612. struct smap_psock *psock;
  613. struct scatterlist *sg;
  614. int err = 0;
  615. sg = md->sg_data;
  616. rcu_read_lock();
  617. psock = smap_psock_sk(sk);
  618. if (unlikely(!psock))
  619. goto out_rcu;
  620. if (!refcount_inc_not_zero(&psock->refcnt))
  621. goto out_rcu;
  622. rcu_read_unlock();
  623. if (ingress) {
  624. err = bpf_tcp_ingress(sk, send, psock, md, flags);
  625. } else {
  626. lock_sock(sk);
  627. err = bpf_tcp_push(sk, send, md, flags, false);
  628. release_sock(sk);
  629. }
  630. smap_release_sock(psock, sk);
  631. if (unlikely(err))
  632. goto out;
  633. return 0;
  634. out_rcu:
  635. rcu_read_unlock();
  636. out:
  637. free_bytes_sg(NULL, send, md, false);
  638. return err;
  639. }
  640. static inline void bpf_md_init(struct smap_psock *psock)
  641. {
  642. if (!psock->apply_bytes) {
  643. psock->eval = __SK_NONE;
  644. if (psock->sk_redir) {
  645. sock_put(psock->sk_redir);
  646. psock->sk_redir = NULL;
  647. }
  648. }
  649. }
  650. static void apply_bytes_dec(struct smap_psock *psock, int i)
  651. {
  652. if (psock->apply_bytes) {
  653. if (psock->apply_bytes < i)
  654. psock->apply_bytes = 0;
  655. else
  656. psock->apply_bytes -= i;
  657. }
  658. }
  659. static int bpf_exec_tx_verdict(struct smap_psock *psock,
  660. struct sk_msg_buff *m,
  661. struct sock *sk,
  662. int *copied, int flags)
  663. {
  664. bool cork = false, enospc = (m->sg_start == m->sg_end);
  665. struct sock *redir;
  666. int err = 0;
  667. int send;
  668. more_data:
  669. if (psock->eval == __SK_NONE)
  670. psock->eval = smap_do_tx_msg(sk, psock, m);
  671. if (m->cork_bytes &&
  672. m->cork_bytes > psock->sg_size && !enospc) {
  673. psock->cork_bytes = m->cork_bytes - psock->sg_size;
  674. if (!psock->cork) {
  675. psock->cork = kcalloc(1,
  676. sizeof(struct sk_msg_buff),
  677. GFP_ATOMIC | __GFP_NOWARN);
  678. if (!psock->cork) {
  679. err = -ENOMEM;
  680. goto out_err;
  681. }
  682. }
  683. memcpy(psock->cork, m, sizeof(*m));
  684. goto out_err;
  685. }
  686. send = psock->sg_size;
  687. if (psock->apply_bytes && psock->apply_bytes < send)
  688. send = psock->apply_bytes;
  689. switch (psock->eval) {
  690. case __SK_PASS:
  691. err = bpf_tcp_push(sk, send, m, flags, true);
  692. if (unlikely(err)) {
  693. *copied -= free_start_sg(sk, m);
  694. break;
  695. }
  696. apply_bytes_dec(psock, send);
  697. psock->sg_size -= send;
  698. break;
  699. case __SK_REDIRECT:
  700. redir = psock->sk_redir;
  701. apply_bytes_dec(psock, send);
  702. if (psock->cork) {
  703. cork = true;
  704. psock->cork = NULL;
  705. }
  706. return_mem_sg(sk, send, m);
  707. release_sock(sk);
  708. err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
  709. lock_sock(sk);
  710. if (unlikely(err < 0)) {
  711. free_start_sg(sk, m);
  712. psock->sg_size = 0;
  713. if (!cork)
  714. *copied -= send;
  715. } else {
  716. psock->sg_size -= send;
  717. }
  718. if (cork) {
  719. free_start_sg(sk, m);
  720. psock->sg_size = 0;
  721. kfree(m);
  722. m = NULL;
  723. err = 0;
  724. }
  725. break;
  726. case __SK_DROP:
  727. default:
  728. free_bytes_sg(sk, send, m, true);
  729. apply_bytes_dec(psock, send);
  730. *copied -= send;
  731. psock->sg_size -= send;
  732. err = -EACCES;
  733. break;
  734. }
  735. if (likely(!err)) {
  736. bpf_md_init(psock);
  737. if (m &&
  738. m->sg_data[m->sg_start].page_link &&
  739. m->sg_data[m->sg_start].length)
  740. goto more_data;
  741. }
  742. out_err:
  743. return err;
  744. }
  745. static int bpf_wait_data(struct sock *sk,
  746. struct smap_psock *psk, int flags,
  747. long timeo, int *err)
  748. {
  749. int rc;
  750. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  751. add_wait_queue(sk_sleep(sk), &wait);
  752. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  753. rc = sk_wait_event(sk, &timeo,
  754. !list_empty(&psk->ingress) ||
  755. !skb_queue_empty(&sk->sk_receive_queue),
  756. &wait);
  757. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  758. remove_wait_queue(sk_sleep(sk), &wait);
  759. return rc;
  760. }
  761. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  762. int nonblock, int flags, int *addr_len)
  763. {
  764. struct iov_iter *iter = &msg->msg_iter;
  765. struct smap_psock *psock;
  766. int copied = 0;
  767. if (unlikely(flags & MSG_ERRQUEUE))
  768. return inet_recv_error(sk, msg, len, addr_len);
  769. rcu_read_lock();
  770. psock = smap_psock_sk(sk);
  771. if (unlikely(!psock))
  772. goto out;
  773. if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
  774. goto out;
  775. rcu_read_unlock();
  776. if (!skb_queue_empty(&sk->sk_receive_queue))
  777. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  778. lock_sock(sk);
  779. bytes_ready:
  780. while (copied != len) {
  781. struct scatterlist *sg;
  782. struct sk_msg_buff *md;
  783. int i;
  784. md = list_first_entry_or_null(&psock->ingress,
  785. struct sk_msg_buff, list);
  786. if (unlikely(!md))
  787. break;
  788. i = md->sg_start;
  789. do {
  790. struct page *page;
  791. int n, copy;
  792. sg = &md->sg_data[i];
  793. copy = sg->length;
  794. page = sg_page(sg);
  795. if (copied + copy > len)
  796. copy = len - copied;
  797. n = copy_page_to_iter(page, sg->offset, copy, iter);
  798. if (n != copy) {
  799. md->sg_start = i;
  800. release_sock(sk);
  801. smap_release_sock(psock, sk);
  802. return -EFAULT;
  803. }
  804. copied += copy;
  805. sg->offset += copy;
  806. sg->length -= copy;
  807. sk_mem_uncharge(sk, copy);
  808. if (!sg->length) {
  809. i++;
  810. if (i == MAX_SKB_FRAGS)
  811. i = 0;
  812. if (!md->skb)
  813. put_page(page);
  814. }
  815. if (copied == len)
  816. break;
  817. } while (i != md->sg_end);
  818. md->sg_start = i;
  819. if (!sg->length && md->sg_start == md->sg_end) {
  820. list_del(&md->list);
  821. if (md->skb)
  822. consume_skb(md->skb);
  823. kfree(md);
  824. }
  825. }
  826. if (!copied) {
  827. long timeo;
  828. int data;
  829. int err = 0;
  830. timeo = sock_rcvtimeo(sk, nonblock);
  831. data = bpf_wait_data(sk, psock, flags, timeo, &err);
  832. if (data) {
  833. if (!skb_queue_empty(&sk->sk_receive_queue)) {
  834. release_sock(sk);
  835. smap_release_sock(psock, sk);
  836. copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  837. return copied;
  838. }
  839. goto bytes_ready;
  840. }
  841. if (err)
  842. copied = err;
  843. }
  844. release_sock(sk);
  845. smap_release_sock(psock, sk);
  846. return copied;
  847. out:
  848. rcu_read_unlock();
  849. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  850. }
  851. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  852. {
  853. int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
  854. struct sk_msg_buff md = {0};
  855. unsigned int sg_copy = 0;
  856. struct smap_psock *psock;
  857. int copied = 0, err = 0;
  858. struct scatterlist *sg;
  859. long timeo;
  860. /* Its possible a sock event or user removed the psock _but_ the ops
  861. * have not been reprogrammed yet so we get here. In this case fallback
  862. * to tcp_sendmsg. Note this only works because we _only_ ever allow
  863. * a single ULP there is no hierarchy here.
  864. */
  865. rcu_read_lock();
  866. psock = smap_psock_sk(sk);
  867. if (unlikely(!psock)) {
  868. rcu_read_unlock();
  869. return tcp_sendmsg(sk, msg, size);
  870. }
  871. /* Increment the psock refcnt to ensure its not released while sending a
  872. * message. Required because sk lookup and bpf programs are used in
  873. * separate rcu critical sections. Its OK if we lose the map entry
  874. * but we can't lose the sock reference.
  875. */
  876. if (!refcount_inc_not_zero(&psock->refcnt)) {
  877. rcu_read_unlock();
  878. return tcp_sendmsg(sk, msg, size);
  879. }
  880. sg = md.sg_data;
  881. sg_init_marker(sg, MAX_SKB_FRAGS);
  882. rcu_read_unlock();
  883. lock_sock(sk);
  884. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  885. while (msg_data_left(msg)) {
  886. struct sk_msg_buff *m;
  887. bool enospc = false;
  888. int copy;
  889. if (sk->sk_err) {
  890. err = sk->sk_err;
  891. goto out_err;
  892. }
  893. copy = msg_data_left(msg);
  894. if (!sk_stream_memory_free(sk))
  895. goto wait_for_sndbuf;
  896. m = psock->cork_bytes ? psock->cork : &md;
  897. m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
  898. err = sk_alloc_sg(sk, copy, m->sg_data,
  899. m->sg_start, &m->sg_end, &sg_copy,
  900. m->sg_end - 1);
  901. if (err) {
  902. if (err != -ENOSPC)
  903. goto wait_for_memory;
  904. enospc = true;
  905. copy = sg_copy;
  906. }
  907. err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
  908. if (err < 0) {
  909. free_curr_sg(sk, m);
  910. goto out_err;
  911. }
  912. psock->sg_size += copy;
  913. copied += copy;
  914. sg_copy = 0;
  915. /* When bytes are being corked skip running BPF program and
  916. * applying verdict unless there is no more buffer space. In
  917. * the ENOSPC case simply run BPF prorgram with currently
  918. * accumulated data. We don't have much choice at this point
  919. * we could try extending the page frags or chaining complex
  920. * frags but even in these cases _eventually_ we will hit an
  921. * OOM scenario. More complex recovery schemes may be
  922. * implemented in the future, but BPF programs must handle
  923. * the case where apply_cork requests are not honored. The
  924. * canonical method to verify this is to check data length.
  925. */
  926. if (psock->cork_bytes) {
  927. if (copy > psock->cork_bytes)
  928. psock->cork_bytes = 0;
  929. else
  930. psock->cork_bytes -= copy;
  931. if (psock->cork_bytes && !enospc)
  932. goto out_cork;
  933. /* All cork bytes accounted for re-run filter */
  934. psock->eval = __SK_NONE;
  935. psock->cork_bytes = 0;
  936. }
  937. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  938. if (unlikely(err < 0))
  939. goto out_err;
  940. continue;
  941. wait_for_sndbuf:
  942. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  943. wait_for_memory:
  944. err = sk_stream_wait_memory(sk, &timeo);
  945. if (err)
  946. goto out_err;
  947. }
  948. out_err:
  949. if (err < 0)
  950. err = sk_stream_error(sk, msg->msg_flags, err);
  951. out_cork:
  952. release_sock(sk);
  953. smap_release_sock(psock, sk);
  954. return copied ? copied : err;
  955. }
  956. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  957. int offset, size_t size, int flags)
  958. {
  959. struct sk_msg_buff md = {0}, *m = NULL;
  960. int err = 0, copied = 0;
  961. struct smap_psock *psock;
  962. struct scatterlist *sg;
  963. bool enospc = false;
  964. rcu_read_lock();
  965. psock = smap_psock_sk(sk);
  966. if (unlikely(!psock))
  967. goto accept;
  968. if (!refcount_inc_not_zero(&psock->refcnt))
  969. goto accept;
  970. rcu_read_unlock();
  971. lock_sock(sk);
  972. if (psock->cork_bytes) {
  973. m = psock->cork;
  974. sg = &m->sg_data[m->sg_end];
  975. } else {
  976. m = &md;
  977. sg = m->sg_data;
  978. sg_init_marker(sg, MAX_SKB_FRAGS);
  979. }
  980. /* Catch case where ring is full and sendpage is stalled. */
  981. if (unlikely(m->sg_end == m->sg_start &&
  982. m->sg_data[m->sg_end].length))
  983. goto out_err;
  984. psock->sg_size += size;
  985. sg_set_page(sg, page, size, offset);
  986. get_page(page);
  987. m->sg_copy[m->sg_end] = true;
  988. sk_mem_charge(sk, size);
  989. m->sg_end++;
  990. copied = size;
  991. if (m->sg_end == MAX_SKB_FRAGS)
  992. m->sg_end = 0;
  993. if (m->sg_end == m->sg_start)
  994. enospc = true;
  995. if (psock->cork_bytes) {
  996. if (size > psock->cork_bytes)
  997. psock->cork_bytes = 0;
  998. else
  999. psock->cork_bytes -= size;
  1000. if (psock->cork_bytes && !enospc)
  1001. goto out_err;
  1002. /* All cork bytes accounted for re-run filter */
  1003. psock->eval = __SK_NONE;
  1004. psock->cork_bytes = 0;
  1005. }
  1006. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  1007. out_err:
  1008. release_sock(sk);
  1009. smap_release_sock(psock, sk);
  1010. return copied ? copied : err;
  1011. accept:
  1012. rcu_read_unlock();
  1013. return tcp_sendpage(sk, page, offset, size, flags);
  1014. }
  1015. static void bpf_tcp_msg_add(struct smap_psock *psock,
  1016. struct sock *sk,
  1017. struct bpf_prog *tx_msg)
  1018. {
  1019. struct bpf_prog *orig_tx_msg;
  1020. orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
  1021. if (orig_tx_msg)
  1022. bpf_prog_put(orig_tx_msg);
  1023. }
  1024. static int bpf_tcp_ulp_register(void)
  1025. {
  1026. build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot);
  1027. /* Once BPF TX ULP is registered it is never unregistered. It
  1028. * will be in the ULP list for the lifetime of the system. Doing
  1029. * duplicate registers is not a problem.
  1030. */
  1031. return tcp_register_ulp(&bpf_tcp_ulp_ops);
  1032. }
  1033. static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
  1034. {
  1035. struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
  1036. int rc;
  1037. if (unlikely(!prog))
  1038. return __SK_DROP;
  1039. skb_orphan(skb);
  1040. /* We need to ensure that BPF metadata for maps is also cleared
  1041. * when we orphan the skb so that we don't have the possibility
  1042. * to reference a stale map.
  1043. */
  1044. TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
  1045. skb->sk = psock->sock;
  1046. bpf_compute_data_pointers(skb);
  1047. preempt_disable();
  1048. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1049. preempt_enable();
  1050. skb->sk = NULL;
  1051. /* Moving return codes from UAPI namespace into internal namespace */
  1052. return rc == SK_PASS ?
  1053. (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) :
  1054. __SK_DROP;
  1055. }
  1056. static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
  1057. {
  1058. struct sock *sk = psock->sock;
  1059. int copied = 0, num_sg;
  1060. struct sk_msg_buff *r;
  1061. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
  1062. if (unlikely(!r))
  1063. return -EAGAIN;
  1064. if (!sk_rmem_schedule(sk, skb, skb->len)) {
  1065. kfree(r);
  1066. return -EAGAIN;
  1067. }
  1068. sg_init_table(r->sg_data, MAX_SKB_FRAGS);
  1069. num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
  1070. if (unlikely(num_sg < 0)) {
  1071. kfree(r);
  1072. return num_sg;
  1073. }
  1074. sk_mem_charge(sk, skb->len);
  1075. copied = skb->len;
  1076. r->sg_start = 0;
  1077. r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
  1078. r->skb = skb;
  1079. list_add_tail(&r->list, &psock->ingress);
  1080. sk->sk_data_ready(sk);
  1081. return copied;
  1082. }
  1083. static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
  1084. {
  1085. struct smap_psock *peer;
  1086. struct sock *sk;
  1087. __u32 in;
  1088. int rc;
  1089. rc = smap_verdict_func(psock, skb);
  1090. switch (rc) {
  1091. case __SK_REDIRECT:
  1092. sk = do_sk_redirect_map(skb);
  1093. if (!sk) {
  1094. kfree_skb(skb);
  1095. break;
  1096. }
  1097. peer = smap_psock_sk(sk);
  1098. in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1099. if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
  1100. !test_bit(SMAP_TX_RUNNING, &peer->state))) {
  1101. kfree_skb(skb);
  1102. break;
  1103. }
  1104. if (!in && sock_writeable(sk)) {
  1105. skb_set_owner_w(skb, sk);
  1106. skb_queue_tail(&peer->rxqueue, skb);
  1107. schedule_work(&peer->tx_work);
  1108. break;
  1109. } else if (in &&
  1110. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  1111. skb_queue_tail(&peer->rxqueue, skb);
  1112. schedule_work(&peer->tx_work);
  1113. break;
  1114. }
  1115. /* Fall through and free skb otherwise */
  1116. case __SK_DROP:
  1117. default:
  1118. kfree_skb(skb);
  1119. }
  1120. }
  1121. static void smap_report_sk_error(struct smap_psock *psock, int err)
  1122. {
  1123. struct sock *sk = psock->sock;
  1124. sk->sk_err = err;
  1125. sk->sk_error_report(sk);
  1126. }
  1127. static void smap_read_sock_strparser(struct strparser *strp,
  1128. struct sk_buff *skb)
  1129. {
  1130. struct smap_psock *psock;
  1131. rcu_read_lock();
  1132. psock = container_of(strp, struct smap_psock, strp);
  1133. smap_do_verdict(psock, skb);
  1134. rcu_read_unlock();
  1135. }
  1136. /* Called with lock held on socket */
  1137. static void smap_data_ready(struct sock *sk)
  1138. {
  1139. struct smap_psock *psock;
  1140. rcu_read_lock();
  1141. psock = smap_psock_sk(sk);
  1142. if (likely(psock)) {
  1143. write_lock_bh(&sk->sk_callback_lock);
  1144. strp_data_ready(&psock->strp);
  1145. write_unlock_bh(&sk->sk_callback_lock);
  1146. }
  1147. rcu_read_unlock();
  1148. }
  1149. static void smap_tx_work(struct work_struct *w)
  1150. {
  1151. struct smap_psock *psock;
  1152. struct sk_buff *skb;
  1153. int rem, off, n;
  1154. psock = container_of(w, struct smap_psock, tx_work);
  1155. /* lock sock to avoid losing sk_socket at some point during loop */
  1156. lock_sock(psock->sock);
  1157. if (psock->save_skb) {
  1158. skb = psock->save_skb;
  1159. rem = psock->save_rem;
  1160. off = psock->save_off;
  1161. psock->save_skb = NULL;
  1162. goto start;
  1163. }
  1164. while ((skb = skb_dequeue(&psock->rxqueue))) {
  1165. __u32 flags;
  1166. rem = skb->len;
  1167. off = 0;
  1168. start:
  1169. flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
  1170. do {
  1171. if (likely(psock->sock->sk_socket)) {
  1172. if (flags)
  1173. n = smap_do_ingress(psock, skb);
  1174. else
  1175. n = skb_send_sock_locked(psock->sock,
  1176. skb, off, rem);
  1177. } else {
  1178. n = -EINVAL;
  1179. }
  1180. if (n <= 0) {
  1181. if (n == -EAGAIN) {
  1182. /* Retry when space is available */
  1183. psock->save_skb = skb;
  1184. psock->save_rem = rem;
  1185. psock->save_off = off;
  1186. goto out;
  1187. }
  1188. /* Hard errors break pipe and stop xmit */
  1189. smap_report_sk_error(psock, n ? -n : EPIPE);
  1190. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1191. kfree_skb(skb);
  1192. goto out;
  1193. }
  1194. rem -= n;
  1195. off += n;
  1196. } while (rem);
  1197. if (!flags)
  1198. kfree_skb(skb);
  1199. }
  1200. out:
  1201. release_sock(psock->sock);
  1202. }
  1203. static void smap_write_space(struct sock *sk)
  1204. {
  1205. struct smap_psock *psock;
  1206. rcu_read_lock();
  1207. psock = smap_psock_sk(sk);
  1208. if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
  1209. schedule_work(&psock->tx_work);
  1210. rcu_read_unlock();
  1211. }
  1212. static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
  1213. {
  1214. if (!psock->strp_enabled)
  1215. return;
  1216. sk->sk_data_ready = psock->save_data_ready;
  1217. sk->sk_write_space = psock->save_write_space;
  1218. psock->save_data_ready = NULL;
  1219. psock->save_write_space = NULL;
  1220. strp_stop(&psock->strp);
  1221. psock->strp_enabled = false;
  1222. }
  1223. static void smap_destroy_psock(struct rcu_head *rcu)
  1224. {
  1225. struct smap_psock *psock = container_of(rcu,
  1226. struct smap_psock, rcu);
  1227. /* Now that a grace period has passed there is no longer
  1228. * any reference to this sock in the sockmap so we can
  1229. * destroy the psock, strparser, and bpf programs. But,
  1230. * because we use workqueue sync operations we can not
  1231. * do it in rcu context
  1232. */
  1233. schedule_work(&psock->gc_work);
  1234. }
  1235. static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
  1236. {
  1237. if (refcount_dec_and_test(&psock->refcnt)) {
  1238. tcp_cleanup_ulp(sock);
  1239. write_lock_bh(&sock->sk_callback_lock);
  1240. smap_stop_sock(psock, sock);
  1241. write_unlock_bh(&sock->sk_callback_lock);
  1242. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1243. rcu_assign_sk_user_data(sock, NULL);
  1244. call_rcu_sched(&psock->rcu, smap_destroy_psock);
  1245. }
  1246. }
  1247. static int smap_parse_func_strparser(struct strparser *strp,
  1248. struct sk_buff *skb)
  1249. {
  1250. struct smap_psock *psock;
  1251. struct bpf_prog *prog;
  1252. int rc;
  1253. rcu_read_lock();
  1254. psock = container_of(strp, struct smap_psock, strp);
  1255. prog = READ_ONCE(psock->bpf_parse);
  1256. if (unlikely(!prog)) {
  1257. rcu_read_unlock();
  1258. return skb->len;
  1259. }
  1260. /* Attach socket for bpf program to use if needed we can do this
  1261. * because strparser clones the skb before handing it to a upper
  1262. * layer, meaning skb_orphan has been called. We NULL sk on the
  1263. * way out to ensure we don't trigger a BUG_ON in skb/sk operations
  1264. * later and because we are not charging the memory of this skb to
  1265. * any socket yet.
  1266. */
  1267. skb->sk = psock->sock;
  1268. bpf_compute_data_pointers(skb);
  1269. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1270. skb->sk = NULL;
  1271. rcu_read_unlock();
  1272. return rc;
  1273. }
  1274. static int smap_read_sock_done(struct strparser *strp, int err)
  1275. {
  1276. return err;
  1277. }
  1278. static int smap_init_sock(struct smap_psock *psock,
  1279. struct sock *sk)
  1280. {
  1281. static const struct strp_callbacks cb = {
  1282. .rcv_msg = smap_read_sock_strparser,
  1283. .parse_msg = smap_parse_func_strparser,
  1284. .read_sock_done = smap_read_sock_done,
  1285. };
  1286. return strp_init(&psock->strp, sk, &cb);
  1287. }
  1288. static void smap_init_progs(struct smap_psock *psock,
  1289. struct bpf_prog *verdict,
  1290. struct bpf_prog *parse)
  1291. {
  1292. struct bpf_prog *orig_parse, *orig_verdict;
  1293. orig_parse = xchg(&psock->bpf_parse, parse);
  1294. orig_verdict = xchg(&psock->bpf_verdict, verdict);
  1295. if (orig_verdict)
  1296. bpf_prog_put(orig_verdict);
  1297. if (orig_parse)
  1298. bpf_prog_put(orig_parse);
  1299. }
  1300. static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
  1301. {
  1302. if (sk->sk_data_ready == smap_data_ready)
  1303. return;
  1304. psock->save_data_ready = sk->sk_data_ready;
  1305. psock->save_write_space = sk->sk_write_space;
  1306. sk->sk_data_ready = smap_data_ready;
  1307. sk->sk_write_space = smap_write_space;
  1308. psock->strp_enabled = true;
  1309. }
  1310. static void sock_map_remove_complete(struct bpf_stab *stab)
  1311. {
  1312. bpf_map_area_free(stab->sock_map);
  1313. kfree(stab);
  1314. }
  1315. static void smap_gc_work(struct work_struct *w)
  1316. {
  1317. struct smap_psock_map_entry *e, *tmp;
  1318. struct sk_msg_buff *md, *mtmp;
  1319. struct smap_psock *psock;
  1320. psock = container_of(w, struct smap_psock, gc_work);
  1321. /* no callback lock needed because we already detached sockmap ops */
  1322. if (psock->strp_enabled)
  1323. strp_done(&psock->strp);
  1324. cancel_work_sync(&psock->tx_work);
  1325. __skb_queue_purge(&psock->rxqueue);
  1326. /* At this point all strparser and xmit work must be complete */
  1327. if (psock->bpf_parse)
  1328. bpf_prog_put(psock->bpf_parse);
  1329. if (psock->bpf_verdict)
  1330. bpf_prog_put(psock->bpf_verdict);
  1331. if (psock->bpf_tx_msg)
  1332. bpf_prog_put(psock->bpf_tx_msg);
  1333. if (psock->cork) {
  1334. free_start_sg(psock->sock, psock->cork);
  1335. kfree(psock->cork);
  1336. }
  1337. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  1338. list_del(&md->list);
  1339. free_start_sg(psock->sock, md);
  1340. kfree(md);
  1341. }
  1342. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1343. list_del(&e->list);
  1344. kfree(e);
  1345. }
  1346. if (psock->sk_redir)
  1347. sock_put(psock->sk_redir);
  1348. sock_put(psock->sock);
  1349. kfree(psock);
  1350. }
  1351. static struct smap_psock *smap_init_psock(struct sock *sock, int node)
  1352. {
  1353. struct smap_psock *psock;
  1354. psock = kzalloc_node(sizeof(struct smap_psock),
  1355. GFP_ATOMIC | __GFP_NOWARN,
  1356. node);
  1357. if (!psock)
  1358. return ERR_PTR(-ENOMEM);
  1359. psock->eval = __SK_NONE;
  1360. psock->sock = sock;
  1361. skb_queue_head_init(&psock->rxqueue);
  1362. INIT_WORK(&psock->tx_work, smap_tx_work);
  1363. INIT_WORK(&psock->gc_work, smap_gc_work);
  1364. INIT_LIST_HEAD(&psock->maps);
  1365. INIT_LIST_HEAD(&psock->ingress);
  1366. refcount_set(&psock->refcnt, 1);
  1367. spin_lock_init(&psock->maps_lock);
  1368. rcu_assign_sk_user_data(sock, psock);
  1369. sock_hold(sock);
  1370. return psock;
  1371. }
  1372. static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
  1373. {
  1374. struct bpf_stab *stab;
  1375. u64 cost;
  1376. int err;
  1377. if (!capable(CAP_NET_ADMIN))
  1378. return ERR_PTR(-EPERM);
  1379. /* check sanity of attributes */
  1380. if (attr->max_entries == 0 || attr->key_size != 4 ||
  1381. attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1382. return ERR_PTR(-EINVAL);
  1383. err = bpf_tcp_ulp_register();
  1384. if (err && err != -EEXIST)
  1385. return ERR_PTR(err);
  1386. stab = kzalloc(sizeof(*stab), GFP_USER);
  1387. if (!stab)
  1388. return ERR_PTR(-ENOMEM);
  1389. bpf_map_init_from_attr(&stab->map, attr);
  1390. /* make sure page count doesn't overflow */
  1391. cost = (u64) stab->map.max_entries * sizeof(struct sock *);
  1392. err = -EINVAL;
  1393. if (cost >= U32_MAX - PAGE_SIZE)
  1394. goto free_stab;
  1395. stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1396. /* if map size is larger than memlock limit, reject it early */
  1397. err = bpf_map_precharge_memlock(stab->map.pages);
  1398. if (err)
  1399. goto free_stab;
  1400. err = -ENOMEM;
  1401. stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
  1402. sizeof(struct sock *),
  1403. stab->map.numa_node);
  1404. if (!stab->sock_map)
  1405. goto free_stab;
  1406. return &stab->map;
  1407. free_stab:
  1408. kfree(stab);
  1409. return ERR_PTR(err);
  1410. }
  1411. static void smap_list_map_remove(struct smap_psock *psock,
  1412. struct sock **entry)
  1413. {
  1414. struct smap_psock_map_entry *e, *tmp;
  1415. spin_lock_bh(&psock->maps_lock);
  1416. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1417. if (e->entry == entry)
  1418. list_del(&e->list);
  1419. }
  1420. spin_unlock_bh(&psock->maps_lock);
  1421. }
  1422. static void smap_list_hash_remove(struct smap_psock *psock,
  1423. struct htab_elem *hash_link)
  1424. {
  1425. struct smap_psock_map_entry *e, *tmp;
  1426. spin_lock_bh(&psock->maps_lock);
  1427. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1428. struct htab_elem *c = rcu_dereference(e->hash_link);
  1429. if (c == hash_link)
  1430. list_del(&e->list);
  1431. }
  1432. spin_unlock_bh(&psock->maps_lock);
  1433. }
  1434. static void sock_map_free(struct bpf_map *map)
  1435. {
  1436. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1437. int i;
  1438. synchronize_rcu();
  1439. /* At this point no update, lookup or delete operations can happen.
  1440. * However, be aware we can still get a socket state event updates,
  1441. * and data ready callabacks that reference the psock from sk_user_data
  1442. * Also psock worker threads are still in-flight. So smap_release_sock
  1443. * will only free the psock after cancel_sync on the worker threads
  1444. * and a grace period expire to ensure psock is really safe to remove.
  1445. */
  1446. rcu_read_lock();
  1447. for (i = 0; i < stab->map.max_entries; i++) {
  1448. struct smap_psock *psock;
  1449. struct sock *sock;
  1450. sock = xchg(&stab->sock_map[i], NULL);
  1451. if (!sock)
  1452. continue;
  1453. psock = smap_psock_sk(sock);
  1454. /* This check handles a racing sock event that can get the
  1455. * sk_callback_lock before this case but after xchg happens
  1456. * causing the refcnt to hit zero and sock user data (psock)
  1457. * to be null and queued for garbage collection.
  1458. */
  1459. if (likely(psock)) {
  1460. smap_list_map_remove(psock, &stab->sock_map[i]);
  1461. smap_release_sock(psock, sock);
  1462. }
  1463. }
  1464. rcu_read_unlock();
  1465. sock_map_remove_complete(stab);
  1466. }
  1467. static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  1468. {
  1469. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1470. u32 i = key ? *(u32 *)key : U32_MAX;
  1471. u32 *next = (u32 *)next_key;
  1472. if (i >= stab->map.max_entries) {
  1473. *next = 0;
  1474. return 0;
  1475. }
  1476. if (i == stab->map.max_entries - 1)
  1477. return -ENOENT;
  1478. *next = i + 1;
  1479. return 0;
  1480. }
  1481. struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
  1482. {
  1483. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1484. if (key >= map->max_entries)
  1485. return NULL;
  1486. return READ_ONCE(stab->sock_map[key]);
  1487. }
  1488. static int sock_map_delete_elem(struct bpf_map *map, void *key)
  1489. {
  1490. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1491. struct smap_psock *psock;
  1492. int k = *(u32 *)key;
  1493. struct sock *sock;
  1494. if (k >= map->max_entries)
  1495. return -EINVAL;
  1496. sock = xchg(&stab->sock_map[k], NULL);
  1497. if (!sock)
  1498. return -EINVAL;
  1499. psock = smap_psock_sk(sock);
  1500. if (!psock)
  1501. goto out;
  1502. if (psock->bpf_parse)
  1503. smap_stop_sock(psock, sock);
  1504. smap_list_map_remove(psock, &stab->sock_map[k]);
  1505. smap_release_sock(psock, sock);
  1506. out:
  1507. return 0;
  1508. }
  1509. /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
  1510. * done inside rcu critical sections. This ensures on updates that the psock
  1511. * will not be released via smap_release_sock() until concurrent updates/deletes
  1512. * complete. All operations operate on sock_map using cmpxchg and xchg
  1513. * operations to ensure we do not get stale references. Any reads into the
  1514. * map must be done with READ_ONCE() because of this.
  1515. *
  1516. * A psock is destroyed via call_rcu and after any worker threads are cancelled
  1517. * and syncd so we are certain all references from the update/lookup/delete
  1518. * operations as well as references in the data path are no longer in use.
  1519. *
  1520. * Psocks may exist in multiple maps, but only a single set of parse/verdict
  1521. * programs may be inherited from the maps it belongs to. A reference count
  1522. * is kept with the total number of references to the psock from all maps. The
  1523. * psock will not be released until this reaches zero. The psock and sock
  1524. * user data data use the sk_callback_lock to protect critical data structures
  1525. * from concurrent access. This allows us to avoid two updates from modifying
  1526. * the user data in sock and the lock is required anyways for modifying
  1527. * callbacks, we simply increase its scope slightly.
  1528. *
  1529. * Rules to follow,
  1530. * - psock must always be read inside RCU critical section
  1531. * - sk_user_data must only be modified inside sk_callback_lock and read
  1532. * inside RCU critical section.
  1533. * - psock->maps list must only be read & modified inside sk_callback_lock
  1534. * - sock_map must use READ_ONCE and (cmp)xchg operations
  1535. * - BPF verdict/parse programs must use READ_ONCE and xchg operations
  1536. */
  1537. static int __sock_map_ctx_update_elem(struct bpf_map *map,
  1538. struct bpf_sock_progs *progs,
  1539. struct sock *sock,
  1540. struct sock **map_link,
  1541. void *key)
  1542. {
  1543. struct bpf_prog *verdict, *parse, *tx_msg;
  1544. struct smap_psock_map_entry *e = NULL;
  1545. struct smap_psock *psock;
  1546. bool new = false;
  1547. int err = 0;
  1548. /* 1. If sock map has BPF programs those will be inherited by the
  1549. * sock being added. If the sock is already attached to BPF programs
  1550. * this results in an error.
  1551. */
  1552. verdict = READ_ONCE(progs->bpf_verdict);
  1553. parse = READ_ONCE(progs->bpf_parse);
  1554. tx_msg = READ_ONCE(progs->bpf_tx_msg);
  1555. if (parse && verdict) {
  1556. /* bpf prog refcnt may be zero if a concurrent attach operation
  1557. * removes the program after the above READ_ONCE() but before
  1558. * we increment the refcnt. If this is the case abort with an
  1559. * error.
  1560. */
  1561. verdict = bpf_prog_inc_not_zero(verdict);
  1562. if (IS_ERR(verdict))
  1563. return PTR_ERR(verdict);
  1564. parse = bpf_prog_inc_not_zero(parse);
  1565. if (IS_ERR(parse)) {
  1566. bpf_prog_put(verdict);
  1567. return PTR_ERR(parse);
  1568. }
  1569. }
  1570. if (tx_msg) {
  1571. tx_msg = bpf_prog_inc_not_zero(tx_msg);
  1572. if (IS_ERR(tx_msg)) {
  1573. if (parse && verdict) {
  1574. bpf_prog_put(parse);
  1575. bpf_prog_put(verdict);
  1576. }
  1577. return PTR_ERR(tx_msg);
  1578. }
  1579. }
  1580. psock = smap_psock_sk(sock);
  1581. /* 2. Do not allow inheriting programs if psock exists and has
  1582. * already inherited programs. This would create confusion on
  1583. * which parser/verdict program is running. If no psock exists
  1584. * create one. Inside sk_callback_lock to ensure concurrent create
  1585. * doesn't update user data.
  1586. */
  1587. if (psock) {
  1588. if (READ_ONCE(psock->bpf_parse) && parse) {
  1589. err = -EBUSY;
  1590. goto out_progs;
  1591. }
  1592. if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
  1593. err = -EBUSY;
  1594. goto out_progs;
  1595. }
  1596. if (!refcount_inc_not_zero(&psock->refcnt)) {
  1597. err = -EAGAIN;
  1598. goto out_progs;
  1599. }
  1600. } else {
  1601. psock = smap_init_psock(sock, map->numa_node);
  1602. if (IS_ERR(psock)) {
  1603. err = PTR_ERR(psock);
  1604. goto out_progs;
  1605. }
  1606. set_bit(SMAP_TX_RUNNING, &psock->state);
  1607. new = true;
  1608. }
  1609. if (map_link) {
  1610. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1611. if (!e) {
  1612. err = -ENOMEM;
  1613. goto out_progs;
  1614. }
  1615. }
  1616. /* 3. At this point we have a reference to a valid psock that is
  1617. * running. Attach any BPF programs needed.
  1618. */
  1619. if (tx_msg)
  1620. bpf_tcp_msg_add(psock, sock, tx_msg);
  1621. if (new) {
  1622. err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
  1623. if (err)
  1624. goto out_free;
  1625. }
  1626. if (parse && verdict && !psock->strp_enabled) {
  1627. err = smap_init_sock(psock, sock);
  1628. if (err)
  1629. goto out_free;
  1630. smap_init_progs(psock, verdict, parse);
  1631. write_lock_bh(&sock->sk_callback_lock);
  1632. smap_start_sock(psock, sock);
  1633. write_unlock_bh(&sock->sk_callback_lock);
  1634. }
  1635. /* 4. Place psock in sockmap for use and stop any programs on
  1636. * the old sock assuming its not the same sock we are replacing
  1637. * it with. Because we can only have a single set of programs if
  1638. * old_sock has a strp we can stop it.
  1639. */
  1640. if (map_link) {
  1641. e->entry = map_link;
  1642. spin_lock_bh(&psock->maps_lock);
  1643. list_add_tail(&e->list, &psock->maps);
  1644. spin_unlock_bh(&psock->maps_lock);
  1645. }
  1646. return err;
  1647. out_free:
  1648. smap_release_sock(psock, sock);
  1649. out_progs:
  1650. if (parse && verdict) {
  1651. bpf_prog_put(parse);
  1652. bpf_prog_put(verdict);
  1653. }
  1654. if (tx_msg)
  1655. bpf_prog_put(tx_msg);
  1656. kfree(e);
  1657. return err;
  1658. }
  1659. static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1660. struct bpf_map *map,
  1661. void *key, u64 flags)
  1662. {
  1663. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1664. struct bpf_sock_progs *progs = &stab->progs;
  1665. struct sock *osock, *sock;
  1666. u32 i = *(u32 *)key;
  1667. int err;
  1668. if (unlikely(flags > BPF_EXIST))
  1669. return -EINVAL;
  1670. if (unlikely(i >= stab->map.max_entries))
  1671. return -E2BIG;
  1672. sock = READ_ONCE(stab->sock_map[i]);
  1673. if (flags == BPF_EXIST && !sock)
  1674. return -ENOENT;
  1675. else if (flags == BPF_NOEXIST && sock)
  1676. return -EEXIST;
  1677. sock = skops->sk;
  1678. err = __sock_map_ctx_update_elem(map, progs, sock, &stab->sock_map[i],
  1679. key);
  1680. if (err)
  1681. goto out;
  1682. osock = xchg(&stab->sock_map[i], sock);
  1683. if (osock) {
  1684. struct smap_psock *opsock = smap_psock_sk(osock);
  1685. smap_list_map_remove(opsock, &stab->sock_map[i]);
  1686. smap_release_sock(opsock, osock);
  1687. }
  1688. out:
  1689. return err;
  1690. }
  1691. int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
  1692. {
  1693. struct bpf_sock_progs *progs;
  1694. struct bpf_prog *orig;
  1695. if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
  1696. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1697. progs = &stab->progs;
  1698. } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) {
  1699. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1700. progs = &htab->progs;
  1701. } else {
  1702. return -EINVAL;
  1703. }
  1704. switch (type) {
  1705. case BPF_SK_MSG_VERDICT:
  1706. orig = xchg(&progs->bpf_tx_msg, prog);
  1707. break;
  1708. case BPF_SK_SKB_STREAM_PARSER:
  1709. orig = xchg(&progs->bpf_parse, prog);
  1710. break;
  1711. case BPF_SK_SKB_STREAM_VERDICT:
  1712. orig = xchg(&progs->bpf_verdict, prog);
  1713. break;
  1714. default:
  1715. return -EOPNOTSUPP;
  1716. }
  1717. if (orig)
  1718. bpf_prog_put(orig);
  1719. return 0;
  1720. }
  1721. int sockmap_get_from_fd(const union bpf_attr *attr, int type,
  1722. struct bpf_prog *prog)
  1723. {
  1724. int ufd = attr->target_fd;
  1725. struct bpf_map *map;
  1726. struct fd f;
  1727. int err;
  1728. f = fdget(ufd);
  1729. map = __bpf_map_get(f);
  1730. if (IS_ERR(map))
  1731. return PTR_ERR(map);
  1732. err = sock_map_prog(map, prog, attr->attach_type);
  1733. fdput(f);
  1734. return err;
  1735. }
  1736. static void *sock_map_lookup(struct bpf_map *map, void *key)
  1737. {
  1738. return NULL;
  1739. }
  1740. static int sock_map_update_elem(struct bpf_map *map,
  1741. void *key, void *value, u64 flags)
  1742. {
  1743. struct bpf_sock_ops_kern skops;
  1744. u32 fd = *(u32 *)value;
  1745. struct socket *socket;
  1746. int err;
  1747. socket = sockfd_lookup(fd, &err);
  1748. if (!socket)
  1749. return err;
  1750. skops.sk = socket->sk;
  1751. if (!skops.sk) {
  1752. fput(socket->file);
  1753. return -EINVAL;
  1754. }
  1755. if (skops.sk->sk_type != SOCK_STREAM ||
  1756. skops.sk->sk_protocol != IPPROTO_TCP) {
  1757. fput(socket->file);
  1758. return -EOPNOTSUPP;
  1759. }
  1760. err = sock_map_ctx_update_elem(&skops, map, key, flags);
  1761. fput(socket->file);
  1762. return err;
  1763. }
  1764. static void sock_map_release(struct bpf_map *map)
  1765. {
  1766. struct bpf_sock_progs *progs;
  1767. struct bpf_prog *orig;
  1768. if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
  1769. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1770. progs = &stab->progs;
  1771. } else {
  1772. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1773. progs = &htab->progs;
  1774. }
  1775. orig = xchg(&progs->bpf_parse, NULL);
  1776. if (orig)
  1777. bpf_prog_put(orig);
  1778. orig = xchg(&progs->bpf_verdict, NULL);
  1779. if (orig)
  1780. bpf_prog_put(orig);
  1781. orig = xchg(&progs->bpf_tx_msg, NULL);
  1782. if (orig)
  1783. bpf_prog_put(orig);
  1784. }
  1785. static struct bpf_map *sock_hash_alloc(union bpf_attr *attr)
  1786. {
  1787. struct bpf_htab *htab;
  1788. int i, err;
  1789. u64 cost;
  1790. if (!capable(CAP_NET_ADMIN))
  1791. return ERR_PTR(-EPERM);
  1792. /* check sanity of attributes */
  1793. if (attr->max_entries == 0 || attr->value_size != 4 ||
  1794. attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1795. return ERR_PTR(-EINVAL);
  1796. if (attr->key_size > MAX_BPF_STACK)
  1797. /* eBPF programs initialize keys on stack, so they cannot be
  1798. * larger than max stack size
  1799. */
  1800. return ERR_PTR(-E2BIG);
  1801. err = bpf_tcp_ulp_register();
  1802. if (err && err != -EEXIST)
  1803. return ERR_PTR(err);
  1804. htab = kzalloc(sizeof(*htab), GFP_USER);
  1805. if (!htab)
  1806. return ERR_PTR(-ENOMEM);
  1807. bpf_map_init_from_attr(&htab->map, attr);
  1808. htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
  1809. htab->elem_size = sizeof(struct htab_elem) +
  1810. round_up(htab->map.key_size, 8);
  1811. err = -EINVAL;
  1812. if (htab->n_buckets == 0 ||
  1813. htab->n_buckets > U32_MAX / sizeof(struct bucket))
  1814. goto free_htab;
  1815. cost = (u64) htab->n_buckets * sizeof(struct bucket) +
  1816. (u64) htab->elem_size * htab->map.max_entries;
  1817. if (cost >= U32_MAX - PAGE_SIZE)
  1818. goto free_htab;
  1819. htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1820. err = bpf_map_precharge_memlock(htab->map.pages);
  1821. if (err)
  1822. goto free_htab;
  1823. err = -ENOMEM;
  1824. htab->buckets = bpf_map_area_alloc(
  1825. htab->n_buckets * sizeof(struct bucket),
  1826. htab->map.numa_node);
  1827. if (!htab->buckets)
  1828. goto free_htab;
  1829. for (i = 0; i < htab->n_buckets; i++) {
  1830. INIT_HLIST_HEAD(&htab->buckets[i].head);
  1831. raw_spin_lock_init(&htab->buckets[i].lock);
  1832. }
  1833. return &htab->map;
  1834. free_htab:
  1835. kfree(htab);
  1836. return ERR_PTR(err);
  1837. }
  1838. static void __bpf_htab_free(struct rcu_head *rcu)
  1839. {
  1840. struct bpf_htab *htab;
  1841. htab = container_of(rcu, struct bpf_htab, rcu);
  1842. bpf_map_area_free(htab->buckets);
  1843. kfree(htab);
  1844. }
  1845. static void sock_hash_free(struct bpf_map *map)
  1846. {
  1847. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1848. int i;
  1849. synchronize_rcu();
  1850. /* At this point no update, lookup or delete operations can happen.
  1851. * However, be aware we can still get a socket state event updates,
  1852. * and data ready callabacks that reference the psock from sk_user_data
  1853. * Also psock worker threads are still in-flight. So smap_release_sock
  1854. * will only free the psock after cancel_sync on the worker threads
  1855. * and a grace period expire to ensure psock is really safe to remove.
  1856. */
  1857. rcu_read_lock();
  1858. for (i = 0; i < htab->n_buckets; i++) {
  1859. struct bucket *b = __select_bucket(htab, i);
  1860. struct hlist_head *head;
  1861. struct hlist_node *n;
  1862. struct htab_elem *l;
  1863. raw_spin_lock_bh(&b->lock);
  1864. head = &b->head;
  1865. hlist_for_each_entry_safe(l, n, head, hash_node) {
  1866. struct sock *sock = l->sk;
  1867. struct smap_psock *psock;
  1868. hlist_del_rcu(&l->hash_node);
  1869. psock = smap_psock_sk(sock);
  1870. /* This check handles a racing sock event that can get
  1871. * the sk_callback_lock before this case but after xchg
  1872. * causing the refcnt to hit zero and sock user data
  1873. * (psock) to be null and queued for garbage collection.
  1874. */
  1875. if (likely(psock)) {
  1876. smap_list_hash_remove(psock, l);
  1877. smap_release_sock(psock, sock);
  1878. }
  1879. free_htab_elem(htab, l);
  1880. }
  1881. raw_spin_unlock_bh(&b->lock);
  1882. }
  1883. rcu_read_unlock();
  1884. call_rcu(&htab->rcu, __bpf_htab_free);
  1885. }
  1886. static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab,
  1887. void *key, u32 key_size, u32 hash,
  1888. struct sock *sk,
  1889. struct htab_elem *old_elem)
  1890. {
  1891. struct htab_elem *l_new;
  1892. if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
  1893. if (!old_elem) {
  1894. atomic_dec(&htab->count);
  1895. return ERR_PTR(-E2BIG);
  1896. }
  1897. }
  1898. l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
  1899. htab->map.numa_node);
  1900. if (!l_new)
  1901. return ERR_PTR(-ENOMEM);
  1902. memcpy(l_new->key, key, key_size);
  1903. l_new->sk = sk;
  1904. l_new->hash = hash;
  1905. return l_new;
  1906. }
  1907. static inline u32 htab_map_hash(const void *key, u32 key_len)
  1908. {
  1909. return jhash(key, key_len, 0);
  1910. }
  1911. static int sock_hash_get_next_key(struct bpf_map *map,
  1912. void *key, void *next_key)
  1913. {
  1914. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1915. struct htab_elem *l, *next_l;
  1916. struct hlist_head *h;
  1917. u32 hash, key_size;
  1918. int i = 0;
  1919. WARN_ON_ONCE(!rcu_read_lock_held());
  1920. key_size = map->key_size;
  1921. if (!key)
  1922. goto find_first_elem;
  1923. hash = htab_map_hash(key, key_size);
  1924. h = select_bucket(htab, hash);
  1925. l = lookup_elem_raw(h, hash, key, key_size);
  1926. if (!l)
  1927. goto find_first_elem;
  1928. next_l = hlist_entry_safe(
  1929. rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
  1930. struct htab_elem, hash_node);
  1931. if (next_l) {
  1932. memcpy(next_key, next_l->key, key_size);
  1933. return 0;
  1934. }
  1935. /* no more elements in this hash list, go to the next bucket */
  1936. i = hash & (htab->n_buckets - 1);
  1937. i++;
  1938. find_first_elem:
  1939. /* iterate over buckets */
  1940. for (; i < htab->n_buckets; i++) {
  1941. h = select_bucket(htab, i);
  1942. /* pick first element in the bucket */
  1943. next_l = hlist_entry_safe(
  1944. rcu_dereference_raw(hlist_first_rcu(h)),
  1945. struct htab_elem, hash_node);
  1946. if (next_l) {
  1947. /* if it's not empty, just return it */
  1948. memcpy(next_key, next_l->key, key_size);
  1949. return 0;
  1950. }
  1951. }
  1952. /* iterated over all buckets and all elements */
  1953. return -ENOENT;
  1954. }
  1955. static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1956. struct bpf_map *map,
  1957. void *key, u64 map_flags)
  1958. {
  1959. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  1960. struct bpf_sock_progs *progs = &htab->progs;
  1961. struct htab_elem *l_new = NULL, *l_old;
  1962. struct smap_psock_map_entry *e = NULL;
  1963. struct hlist_head *head;
  1964. struct smap_psock *psock;
  1965. u32 key_size, hash;
  1966. struct sock *sock;
  1967. struct bucket *b;
  1968. int err;
  1969. sock = skops->sk;
  1970. if (sock->sk_type != SOCK_STREAM ||
  1971. sock->sk_protocol != IPPROTO_TCP)
  1972. return -EOPNOTSUPP;
  1973. if (unlikely(map_flags > BPF_EXIST))
  1974. return -EINVAL;
  1975. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1976. if (!e)
  1977. return -ENOMEM;
  1978. WARN_ON_ONCE(!rcu_read_lock_held());
  1979. key_size = map->key_size;
  1980. hash = htab_map_hash(key, key_size);
  1981. b = __select_bucket(htab, hash);
  1982. head = &b->head;
  1983. err = __sock_map_ctx_update_elem(map, progs, sock, NULL, key);
  1984. if (err)
  1985. goto err;
  1986. /* bpf_map_update_elem() can be called in_irq() */
  1987. raw_spin_lock_bh(&b->lock);
  1988. l_old = lookup_elem_raw(head, hash, key, key_size);
  1989. if (l_old && map_flags == BPF_NOEXIST) {
  1990. err = -EEXIST;
  1991. goto bucket_err;
  1992. }
  1993. if (!l_old && map_flags == BPF_EXIST) {
  1994. err = -ENOENT;
  1995. goto bucket_err;
  1996. }
  1997. l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old);
  1998. if (IS_ERR(l_new)) {
  1999. err = PTR_ERR(l_new);
  2000. goto bucket_err;
  2001. }
  2002. psock = smap_psock_sk(sock);
  2003. if (unlikely(!psock)) {
  2004. err = -EINVAL;
  2005. goto bucket_err;
  2006. }
  2007. rcu_assign_pointer(e->hash_link, l_new);
  2008. rcu_assign_pointer(e->htab,
  2009. container_of(map, struct bpf_htab, map));
  2010. spin_lock_bh(&psock->maps_lock);
  2011. list_add_tail(&e->list, &psock->maps);
  2012. spin_unlock_bh(&psock->maps_lock);
  2013. /* add new element to the head of the list, so that
  2014. * concurrent search will find it before old elem
  2015. */
  2016. hlist_add_head_rcu(&l_new->hash_node, head);
  2017. if (l_old) {
  2018. psock = smap_psock_sk(l_old->sk);
  2019. hlist_del_rcu(&l_old->hash_node);
  2020. smap_list_hash_remove(psock, l_old);
  2021. smap_release_sock(psock, l_old->sk);
  2022. free_htab_elem(htab, l_old);
  2023. }
  2024. raw_spin_unlock_bh(&b->lock);
  2025. return 0;
  2026. bucket_err:
  2027. raw_spin_unlock_bh(&b->lock);
  2028. err:
  2029. kfree(e);
  2030. psock = smap_psock_sk(sock);
  2031. if (psock)
  2032. smap_release_sock(psock, sock);
  2033. return err;
  2034. }
  2035. static int sock_hash_update_elem(struct bpf_map *map,
  2036. void *key, void *value, u64 flags)
  2037. {
  2038. struct bpf_sock_ops_kern skops;
  2039. u32 fd = *(u32 *)value;
  2040. struct socket *socket;
  2041. int err;
  2042. socket = sockfd_lookup(fd, &err);
  2043. if (!socket)
  2044. return err;
  2045. skops.sk = socket->sk;
  2046. if (!skops.sk) {
  2047. fput(socket->file);
  2048. return -EINVAL;
  2049. }
  2050. err = sock_hash_ctx_update_elem(&skops, map, key, flags);
  2051. fput(socket->file);
  2052. return err;
  2053. }
  2054. static int sock_hash_delete_elem(struct bpf_map *map, void *key)
  2055. {
  2056. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  2057. struct hlist_head *head;
  2058. struct bucket *b;
  2059. struct htab_elem *l;
  2060. u32 hash, key_size;
  2061. int ret = -ENOENT;
  2062. key_size = map->key_size;
  2063. hash = htab_map_hash(key, key_size);
  2064. b = __select_bucket(htab, hash);
  2065. head = &b->head;
  2066. raw_spin_lock_bh(&b->lock);
  2067. l = lookup_elem_raw(head, hash, key, key_size);
  2068. if (l) {
  2069. struct sock *sock = l->sk;
  2070. struct smap_psock *psock;
  2071. hlist_del_rcu(&l->hash_node);
  2072. psock = smap_psock_sk(sock);
  2073. /* This check handles a racing sock event that can get the
  2074. * sk_callback_lock before this case but after xchg happens
  2075. * causing the refcnt to hit zero and sock user data (psock)
  2076. * to be null and queued for garbage collection.
  2077. */
  2078. if (likely(psock)) {
  2079. smap_list_hash_remove(psock, l);
  2080. smap_release_sock(psock, sock);
  2081. }
  2082. free_htab_elem(htab, l);
  2083. ret = 0;
  2084. }
  2085. raw_spin_unlock_bh(&b->lock);
  2086. return ret;
  2087. }
  2088. struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key)
  2089. {
  2090. struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
  2091. struct hlist_head *head;
  2092. struct htab_elem *l;
  2093. u32 key_size, hash;
  2094. struct bucket *b;
  2095. struct sock *sk;
  2096. key_size = map->key_size;
  2097. hash = htab_map_hash(key, key_size);
  2098. b = __select_bucket(htab, hash);
  2099. head = &b->head;
  2100. raw_spin_lock_bh(&b->lock);
  2101. l = lookup_elem_raw(head, hash, key, key_size);
  2102. sk = l ? l->sk : NULL;
  2103. raw_spin_unlock_bh(&b->lock);
  2104. return sk;
  2105. }
  2106. const struct bpf_map_ops sock_map_ops = {
  2107. .map_alloc = sock_map_alloc,
  2108. .map_free = sock_map_free,
  2109. .map_lookup_elem = sock_map_lookup,
  2110. .map_get_next_key = sock_map_get_next_key,
  2111. .map_update_elem = sock_map_update_elem,
  2112. .map_delete_elem = sock_map_delete_elem,
  2113. .map_release_uref = sock_map_release,
  2114. };
  2115. const struct bpf_map_ops sock_hash_ops = {
  2116. .map_alloc = sock_hash_alloc,
  2117. .map_free = sock_hash_free,
  2118. .map_lookup_elem = sock_map_lookup,
  2119. .map_get_next_key = sock_hash_get_next_key,
  2120. .map_update_elem = sock_hash_update_elem,
  2121. .map_delete_elem = sock_hash_delete_elem,
  2122. };
  2123. BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
  2124. struct bpf_map *, map, void *, key, u64, flags)
  2125. {
  2126. WARN_ON_ONCE(!rcu_read_lock_held());
  2127. return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
  2128. }
  2129. const struct bpf_func_proto bpf_sock_map_update_proto = {
  2130. .func = bpf_sock_map_update,
  2131. .gpl_only = false,
  2132. .pkt_access = true,
  2133. .ret_type = RET_INTEGER,
  2134. .arg1_type = ARG_PTR_TO_CTX,
  2135. .arg2_type = ARG_CONST_MAP_PTR,
  2136. .arg3_type = ARG_PTR_TO_MAP_KEY,
  2137. .arg4_type = ARG_ANYTHING,
  2138. };
  2139. BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock,
  2140. struct bpf_map *, map, void *, key, u64, flags)
  2141. {
  2142. WARN_ON_ONCE(!rcu_read_lock_held());
  2143. return sock_hash_ctx_update_elem(bpf_sock, map, key, flags);
  2144. }
  2145. const struct bpf_func_proto bpf_sock_hash_update_proto = {
  2146. .func = bpf_sock_hash_update,
  2147. .gpl_only = false,
  2148. .pkt_access = true,
  2149. .ret_type = RET_INTEGER,
  2150. .arg1_type = ARG_PTR_TO_CTX,
  2151. .arg2_type = ARG_CONST_MAP_PTR,
  2152. .arg3_type = ARG_PTR_TO_MAP_KEY,
  2153. .arg4_type = ARG_ANYTHING,
  2154. };