huge_memory.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. int wakeup;
  127. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  128. err = -ENOMEM;
  129. goto out;
  130. }
  131. mutex_lock(&khugepaged_mutex);
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. printk(KERN_ERR
  137. "khugepaged: kthread_run(khugepaged) failed\n");
  138. err = PTR_ERR(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. wakeup = !list_empty(&khugepaged_scan.mm_head);
  142. mutex_unlock(&khugepaged_mutex);
  143. if (wakeup)
  144. wake_up_interruptible(&khugepaged_wait);
  145. set_recommended_min_free_kbytes();
  146. } else
  147. /* wakeup to exit */
  148. wake_up_interruptible(&khugepaged_wait);
  149. out:
  150. return err;
  151. }
  152. #ifdef CONFIG_SYSFS
  153. static ssize_t double_flag_show(struct kobject *kobj,
  154. struct kobj_attribute *attr, char *buf,
  155. enum transparent_hugepage_flag enabled,
  156. enum transparent_hugepage_flag req_madv)
  157. {
  158. if (test_bit(enabled, &transparent_hugepage_flags)) {
  159. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  160. return sprintf(buf, "[always] madvise never\n");
  161. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  162. return sprintf(buf, "always [madvise] never\n");
  163. else
  164. return sprintf(buf, "always madvise [never]\n");
  165. }
  166. static ssize_t double_flag_store(struct kobject *kobj,
  167. struct kobj_attribute *attr,
  168. const char *buf, size_t count,
  169. enum transparent_hugepage_flag enabled,
  170. enum transparent_hugepage_flag req_madv)
  171. {
  172. if (!memcmp("always", buf,
  173. min(sizeof("always")-1, count))) {
  174. set_bit(enabled, &transparent_hugepage_flags);
  175. clear_bit(req_madv, &transparent_hugepage_flags);
  176. } else if (!memcmp("madvise", buf,
  177. min(sizeof("madvise")-1, count))) {
  178. clear_bit(enabled, &transparent_hugepage_flags);
  179. set_bit(req_madv, &transparent_hugepage_flags);
  180. } else if (!memcmp("never", buf,
  181. min(sizeof("never")-1, count))) {
  182. clear_bit(enabled, &transparent_hugepage_flags);
  183. clear_bit(req_madv, &transparent_hugepage_flags);
  184. } else
  185. return -EINVAL;
  186. return count;
  187. }
  188. static ssize_t enabled_show(struct kobject *kobj,
  189. struct kobj_attribute *attr, char *buf)
  190. {
  191. return double_flag_show(kobj, attr, buf,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. }
  195. static ssize_t enabled_store(struct kobject *kobj,
  196. struct kobj_attribute *attr,
  197. const char *buf, size_t count)
  198. {
  199. ssize_t ret;
  200. ret = double_flag_store(kobj, attr, buf, count,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. if (ret > 0) {
  204. int err = start_khugepaged();
  205. if (err)
  206. ret = err;
  207. }
  208. if (ret > 0 &&
  209. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  210. &transparent_hugepage_flags) ||
  211. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  212. &transparent_hugepage_flags)))
  213. set_recommended_min_free_kbytes();
  214. return ret;
  215. }
  216. static struct kobj_attribute enabled_attr =
  217. __ATTR(enabled, 0644, enabled_show, enabled_store);
  218. static ssize_t single_flag_show(struct kobject *kobj,
  219. struct kobj_attribute *attr, char *buf,
  220. enum transparent_hugepage_flag flag)
  221. {
  222. return sprintf(buf, "%d\n",
  223. !!test_bit(flag, &transparent_hugepage_flags));
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. unsigned long value;
  231. int ret;
  232. ret = kstrtoul(buf, 10, &value);
  233. if (ret < 0)
  234. return ret;
  235. if (value > 1)
  236. return -EINVAL;
  237. if (value)
  238. set_bit(flag, &transparent_hugepage_flags);
  239. else
  240. clear_bit(flag, &transparent_hugepage_flags);
  241. return count;
  242. }
  243. /*
  244. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  245. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  246. * memory just to allocate one more hugepage.
  247. */
  248. static ssize_t defrag_show(struct kobject *kobj,
  249. struct kobj_attribute *attr, char *buf)
  250. {
  251. return double_flag_show(kobj, attr, buf,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  253. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  254. }
  255. static ssize_t defrag_store(struct kobject *kobj,
  256. struct kobj_attribute *attr,
  257. const char *buf, size_t count)
  258. {
  259. return double_flag_store(kobj, attr, buf, count,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  261. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  262. }
  263. static struct kobj_attribute defrag_attr =
  264. __ATTR(defrag, 0644, defrag_show, defrag_store);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. #ifdef CONFIG_DEBUG_VM
  286. &debug_cow_attr.attr,
  287. #endif
  288. NULL,
  289. };
  290. static struct attribute_group hugepage_attr_group = {
  291. .attrs = hugepage_attr,
  292. };
  293. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. char *buf)
  296. {
  297. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  298. }
  299. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. const char *buf, size_t count)
  302. {
  303. unsigned long msecs;
  304. int err;
  305. err = strict_strtoul(buf, 10, &msecs);
  306. if (err || msecs > UINT_MAX)
  307. return -EINVAL;
  308. khugepaged_scan_sleep_millisecs = msecs;
  309. wake_up_interruptible(&khugepaged_wait);
  310. return count;
  311. }
  312. static struct kobj_attribute scan_sleep_millisecs_attr =
  313. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  314. scan_sleep_millisecs_store);
  315. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  316. struct kobj_attribute *attr,
  317. char *buf)
  318. {
  319. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  320. }
  321. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. const char *buf, size_t count)
  324. {
  325. unsigned long msecs;
  326. int err;
  327. err = strict_strtoul(buf, 10, &msecs);
  328. if (err || msecs > UINT_MAX)
  329. return -EINVAL;
  330. khugepaged_alloc_sleep_millisecs = msecs;
  331. wake_up_interruptible(&khugepaged_wait);
  332. return count;
  333. }
  334. static struct kobj_attribute alloc_sleep_millisecs_attr =
  335. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  336. alloc_sleep_millisecs_store);
  337. static ssize_t pages_to_scan_show(struct kobject *kobj,
  338. struct kobj_attribute *attr,
  339. char *buf)
  340. {
  341. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  342. }
  343. static ssize_t pages_to_scan_store(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. const char *buf, size_t count)
  346. {
  347. int err;
  348. unsigned long pages;
  349. err = strict_strtoul(buf, 10, &pages);
  350. if (err || !pages || pages > UINT_MAX)
  351. return -EINVAL;
  352. khugepaged_pages_to_scan = pages;
  353. return count;
  354. }
  355. static struct kobj_attribute pages_to_scan_attr =
  356. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  357. pages_to_scan_store);
  358. static ssize_t pages_collapsed_show(struct kobject *kobj,
  359. struct kobj_attribute *attr,
  360. char *buf)
  361. {
  362. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  363. }
  364. static struct kobj_attribute pages_collapsed_attr =
  365. __ATTR_RO(pages_collapsed);
  366. static ssize_t full_scans_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_full_scans);
  371. }
  372. static struct kobj_attribute full_scans_attr =
  373. __ATTR_RO(full_scans);
  374. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  375. struct kobj_attribute *attr, char *buf)
  376. {
  377. return single_flag_show(kobj, attr, buf,
  378. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  379. }
  380. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  381. struct kobj_attribute *attr,
  382. const char *buf, size_t count)
  383. {
  384. return single_flag_store(kobj, attr, buf, count,
  385. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  386. }
  387. static struct kobj_attribute khugepaged_defrag_attr =
  388. __ATTR(defrag, 0644, khugepaged_defrag_show,
  389. khugepaged_defrag_store);
  390. /*
  391. * max_ptes_none controls if khugepaged should collapse hugepages over
  392. * any unmapped ptes in turn potentially increasing the memory
  393. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  394. * reduce the available free memory in the system as it
  395. * runs. Increasing max_ptes_none will instead potentially reduce the
  396. * free memory in the system during the khugepaged scan.
  397. */
  398. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  403. }
  404. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. int err;
  409. unsigned long max_ptes_none;
  410. err = strict_strtoul(buf, 10, &max_ptes_none);
  411. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  412. return -EINVAL;
  413. khugepaged_max_ptes_none = max_ptes_none;
  414. return count;
  415. }
  416. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  417. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  418. khugepaged_max_ptes_none_store);
  419. static struct attribute *khugepaged_attr[] = {
  420. &khugepaged_defrag_attr.attr,
  421. &khugepaged_max_ptes_none_attr.attr,
  422. &pages_to_scan_attr.attr,
  423. &pages_collapsed_attr.attr,
  424. &full_scans_attr.attr,
  425. &scan_sleep_millisecs_attr.attr,
  426. &alloc_sleep_millisecs_attr.attr,
  427. NULL,
  428. };
  429. static struct attribute_group khugepaged_attr_group = {
  430. .attrs = khugepaged_attr,
  431. .name = "khugepaged",
  432. };
  433. #endif /* CONFIG_SYSFS */
  434. static int __init hugepage_init(void)
  435. {
  436. int err;
  437. #ifdef CONFIG_SYSFS
  438. static struct kobject *hugepage_kobj;
  439. #endif
  440. err = -EINVAL;
  441. if (!has_transparent_hugepage()) {
  442. transparent_hugepage_flags = 0;
  443. goto out;
  444. }
  445. #ifdef CONFIG_SYSFS
  446. err = -ENOMEM;
  447. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  448. if (unlikely(!hugepage_kobj)) {
  449. printk(KERN_ERR "hugepage: failed kobject create\n");
  450. goto out;
  451. }
  452. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  453. if (err) {
  454. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  455. goto out;
  456. }
  457. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  458. if (err) {
  459. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  460. goto out;
  461. }
  462. #endif
  463. err = khugepaged_slab_init();
  464. if (err)
  465. goto out;
  466. err = mm_slots_hash_init();
  467. if (err) {
  468. khugepaged_slab_free();
  469. goto out;
  470. }
  471. /*
  472. * By default disable transparent hugepages on smaller systems,
  473. * where the extra memory used could hurt more than TLB overhead
  474. * is likely to save. The admin can still enable it through /sys.
  475. */
  476. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  477. transparent_hugepage_flags = 0;
  478. start_khugepaged();
  479. set_recommended_min_free_kbytes();
  480. out:
  481. return err;
  482. }
  483. module_init(hugepage_init)
  484. static int __init setup_transparent_hugepage(char *str)
  485. {
  486. int ret = 0;
  487. if (!str)
  488. goto out;
  489. if (!strcmp(str, "always")) {
  490. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  491. &transparent_hugepage_flags);
  492. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  493. &transparent_hugepage_flags);
  494. ret = 1;
  495. } else if (!strcmp(str, "madvise")) {
  496. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  497. &transparent_hugepage_flags);
  498. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  499. &transparent_hugepage_flags);
  500. ret = 1;
  501. } else if (!strcmp(str, "never")) {
  502. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  503. &transparent_hugepage_flags);
  504. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  505. &transparent_hugepage_flags);
  506. ret = 1;
  507. }
  508. out:
  509. if (!ret)
  510. printk(KERN_WARNING
  511. "transparent_hugepage= cannot parse, ignored\n");
  512. return ret;
  513. }
  514. __setup("transparent_hugepage=", setup_transparent_hugepage);
  515. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  516. struct mm_struct *mm)
  517. {
  518. assert_spin_locked(&mm->page_table_lock);
  519. /* FIFO */
  520. if (!mm->pmd_huge_pte)
  521. INIT_LIST_HEAD(&pgtable->lru);
  522. else
  523. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  524. mm->pmd_huge_pte = pgtable;
  525. }
  526. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  527. {
  528. if (likely(vma->vm_flags & VM_WRITE))
  529. pmd = pmd_mkwrite(pmd);
  530. return pmd;
  531. }
  532. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  533. struct vm_area_struct *vma,
  534. unsigned long haddr, pmd_t *pmd,
  535. struct page *page)
  536. {
  537. int ret = 0;
  538. pgtable_t pgtable;
  539. VM_BUG_ON(!PageCompound(page));
  540. pgtable = pte_alloc_one(mm, haddr);
  541. if (unlikely(!pgtable)) {
  542. mem_cgroup_uncharge_page(page);
  543. put_page(page);
  544. return VM_FAULT_OOM;
  545. }
  546. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  547. __SetPageUptodate(page);
  548. spin_lock(&mm->page_table_lock);
  549. if (unlikely(!pmd_none(*pmd))) {
  550. spin_unlock(&mm->page_table_lock);
  551. mem_cgroup_uncharge_page(page);
  552. put_page(page);
  553. pte_free(mm, pgtable);
  554. } else {
  555. pmd_t entry;
  556. entry = mk_pmd(page, vma->vm_page_prot);
  557. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  558. entry = pmd_mkhuge(entry);
  559. /*
  560. * The spinlocking to take the lru_lock inside
  561. * page_add_new_anon_rmap() acts as a full memory
  562. * barrier to be sure clear_huge_page writes become
  563. * visible after the set_pmd_at() write.
  564. */
  565. page_add_new_anon_rmap(page, vma, haddr);
  566. set_pmd_at(mm, haddr, pmd, entry);
  567. prepare_pmd_huge_pte(pgtable, mm);
  568. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  569. spin_unlock(&mm->page_table_lock);
  570. }
  571. return ret;
  572. }
  573. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  574. {
  575. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  576. }
  577. static inline struct page *alloc_hugepage_vma(int defrag,
  578. struct vm_area_struct *vma,
  579. unsigned long haddr, int nd,
  580. gfp_t extra_gfp)
  581. {
  582. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  583. HPAGE_PMD_ORDER, vma, haddr, nd);
  584. }
  585. #ifndef CONFIG_NUMA
  586. static inline struct page *alloc_hugepage(int defrag)
  587. {
  588. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  589. HPAGE_PMD_ORDER);
  590. }
  591. #endif
  592. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  593. unsigned long address, pmd_t *pmd,
  594. unsigned int flags)
  595. {
  596. struct page *page;
  597. unsigned long haddr = address & HPAGE_PMD_MASK;
  598. pte_t *pte;
  599. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  600. if (unlikely(anon_vma_prepare(vma)))
  601. return VM_FAULT_OOM;
  602. if (unlikely(khugepaged_enter(vma)))
  603. return VM_FAULT_OOM;
  604. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  605. vma, haddr, numa_node_id(), 0);
  606. if (unlikely(!page)) {
  607. count_vm_event(THP_FAULT_FALLBACK);
  608. goto out;
  609. }
  610. count_vm_event(THP_FAULT_ALLOC);
  611. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  612. put_page(page);
  613. goto out;
  614. }
  615. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  616. }
  617. out:
  618. /*
  619. * Use __pte_alloc instead of pte_alloc_map, because we can't
  620. * run pte_offset_map on the pmd, if an huge pmd could
  621. * materialize from under us from a different thread.
  622. */
  623. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  624. return VM_FAULT_OOM;
  625. /* if an huge pmd materialized from under us just retry later */
  626. if (unlikely(pmd_trans_huge(*pmd)))
  627. return 0;
  628. /*
  629. * A regular pmd is established and it can't morph into a huge pmd
  630. * from under us anymore at this point because we hold the mmap_sem
  631. * read mode and khugepaged takes it in write mode. So now it's
  632. * safe to run pte_offset_map().
  633. */
  634. pte = pte_offset_map(pmd, address);
  635. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  636. }
  637. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  638. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  639. struct vm_area_struct *vma)
  640. {
  641. struct page *src_page;
  642. pmd_t pmd;
  643. pgtable_t pgtable;
  644. int ret;
  645. ret = -ENOMEM;
  646. pgtable = pte_alloc_one(dst_mm, addr);
  647. if (unlikely(!pgtable))
  648. goto out;
  649. spin_lock(&dst_mm->page_table_lock);
  650. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  651. ret = -EAGAIN;
  652. pmd = *src_pmd;
  653. if (unlikely(!pmd_trans_huge(pmd))) {
  654. pte_free(dst_mm, pgtable);
  655. goto out_unlock;
  656. }
  657. if (unlikely(pmd_trans_splitting(pmd))) {
  658. /* split huge page running from under us */
  659. spin_unlock(&src_mm->page_table_lock);
  660. spin_unlock(&dst_mm->page_table_lock);
  661. pte_free(dst_mm, pgtable);
  662. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  663. goto out;
  664. }
  665. src_page = pmd_page(pmd);
  666. VM_BUG_ON(!PageHead(src_page));
  667. get_page(src_page);
  668. page_dup_rmap(src_page);
  669. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  670. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  671. pmd = pmd_mkold(pmd_wrprotect(pmd));
  672. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  673. prepare_pmd_huge_pte(pgtable, dst_mm);
  674. ret = 0;
  675. out_unlock:
  676. spin_unlock(&src_mm->page_table_lock);
  677. spin_unlock(&dst_mm->page_table_lock);
  678. out:
  679. return ret;
  680. }
  681. /* no "address" argument so destroys page coloring of some arch */
  682. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  683. {
  684. pgtable_t pgtable;
  685. assert_spin_locked(&mm->page_table_lock);
  686. /* FIFO */
  687. pgtable = mm->pmd_huge_pte;
  688. if (list_empty(&pgtable->lru))
  689. mm->pmd_huge_pte = NULL;
  690. else {
  691. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  692. struct page, lru);
  693. list_del(&pgtable->lru);
  694. }
  695. return pgtable;
  696. }
  697. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  698. struct vm_area_struct *vma,
  699. unsigned long address,
  700. pmd_t *pmd, pmd_t orig_pmd,
  701. struct page *page,
  702. unsigned long haddr)
  703. {
  704. pgtable_t pgtable;
  705. pmd_t _pmd;
  706. int ret = 0, i;
  707. struct page **pages;
  708. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  709. GFP_KERNEL);
  710. if (unlikely(!pages)) {
  711. ret |= VM_FAULT_OOM;
  712. goto out;
  713. }
  714. for (i = 0; i < HPAGE_PMD_NR; i++) {
  715. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  716. __GFP_OTHER_NODE,
  717. vma, address, page_to_nid(page));
  718. if (unlikely(!pages[i] ||
  719. mem_cgroup_newpage_charge(pages[i], mm,
  720. GFP_KERNEL))) {
  721. if (pages[i])
  722. put_page(pages[i]);
  723. mem_cgroup_uncharge_start();
  724. while (--i >= 0) {
  725. mem_cgroup_uncharge_page(pages[i]);
  726. put_page(pages[i]);
  727. }
  728. mem_cgroup_uncharge_end();
  729. kfree(pages);
  730. ret |= VM_FAULT_OOM;
  731. goto out;
  732. }
  733. }
  734. for (i = 0; i < HPAGE_PMD_NR; i++) {
  735. copy_user_highpage(pages[i], page + i,
  736. haddr + PAGE_SIZE * i, vma);
  737. __SetPageUptodate(pages[i]);
  738. cond_resched();
  739. }
  740. spin_lock(&mm->page_table_lock);
  741. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  742. goto out_free_pages;
  743. VM_BUG_ON(!PageHead(page));
  744. pmdp_clear_flush_notify(vma, haddr, pmd);
  745. /* leave pmd empty until pte is filled */
  746. pgtable = get_pmd_huge_pte(mm);
  747. pmd_populate(mm, &_pmd, pgtable);
  748. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  749. pte_t *pte, entry;
  750. entry = mk_pte(pages[i], vma->vm_page_prot);
  751. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  752. page_add_new_anon_rmap(pages[i], vma, haddr);
  753. pte = pte_offset_map(&_pmd, haddr);
  754. VM_BUG_ON(!pte_none(*pte));
  755. set_pte_at(mm, haddr, pte, entry);
  756. pte_unmap(pte);
  757. }
  758. kfree(pages);
  759. mm->nr_ptes++;
  760. smp_wmb(); /* make pte visible before pmd */
  761. pmd_populate(mm, pmd, pgtable);
  762. page_remove_rmap(page);
  763. spin_unlock(&mm->page_table_lock);
  764. ret |= VM_FAULT_WRITE;
  765. put_page(page);
  766. out:
  767. return ret;
  768. out_free_pages:
  769. spin_unlock(&mm->page_table_lock);
  770. mem_cgroup_uncharge_start();
  771. for (i = 0; i < HPAGE_PMD_NR; i++) {
  772. mem_cgroup_uncharge_page(pages[i]);
  773. put_page(pages[i]);
  774. }
  775. mem_cgroup_uncharge_end();
  776. kfree(pages);
  777. goto out;
  778. }
  779. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  780. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  781. {
  782. int ret = 0;
  783. struct page *page, *new_page;
  784. unsigned long haddr;
  785. VM_BUG_ON(!vma->anon_vma);
  786. spin_lock(&mm->page_table_lock);
  787. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  788. goto out_unlock;
  789. page = pmd_page(orig_pmd);
  790. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  791. haddr = address & HPAGE_PMD_MASK;
  792. if (page_mapcount(page) == 1) {
  793. pmd_t entry;
  794. entry = pmd_mkyoung(orig_pmd);
  795. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  796. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  797. update_mmu_cache(vma, address, entry);
  798. ret |= VM_FAULT_WRITE;
  799. goto out_unlock;
  800. }
  801. get_page(page);
  802. spin_unlock(&mm->page_table_lock);
  803. if (transparent_hugepage_enabled(vma) &&
  804. !transparent_hugepage_debug_cow())
  805. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  806. vma, haddr, numa_node_id(), 0);
  807. else
  808. new_page = NULL;
  809. if (unlikely(!new_page)) {
  810. count_vm_event(THP_FAULT_FALLBACK);
  811. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  812. pmd, orig_pmd, page, haddr);
  813. put_page(page);
  814. goto out;
  815. }
  816. count_vm_event(THP_FAULT_ALLOC);
  817. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  818. put_page(new_page);
  819. put_page(page);
  820. ret |= VM_FAULT_OOM;
  821. goto out;
  822. }
  823. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  824. __SetPageUptodate(new_page);
  825. spin_lock(&mm->page_table_lock);
  826. put_page(page);
  827. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  828. mem_cgroup_uncharge_page(new_page);
  829. put_page(new_page);
  830. } else {
  831. pmd_t entry;
  832. VM_BUG_ON(!PageHead(page));
  833. entry = mk_pmd(new_page, vma->vm_page_prot);
  834. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  835. entry = pmd_mkhuge(entry);
  836. pmdp_clear_flush_notify(vma, haddr, pmd);
  837. page_add_new_anon_rmap(new_page, vma, haddr);
  838. set_pmd_at(mm, haddr, pmd, entry);
  839. update_mmu_cache(vma, address, entry);
  840. page_remove_rmap(page);
  841. put_page(page);
  842. ret |= VM_FAULT_WRITE;
  843. }
  844. out_unlock:
  845. spin_unlock(&mm->page_table_lock);
  846. out:
  847. return ret;
  848. }
  849. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  850. unsigned long addr,
  851. pmd_t *pmd,
  852. unsigned int flags)
  853. {
  854. struct page *page = NULL;
  855. assert_spin_locked(&mm->page_table_lock);
  856. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  857. goto out;
  858. page = pmd_page(*pmd);
  859. VM_BUG_ON(!PageHead(page));
  860. if (flags & FOLL_TOUCH) {
  861. pmd_t _pmd;
  862. /*
  863. * We should set the dirty bit only for FOLL_WRITE but
  864. * for now the dirty bit in the pmd is meaningless.
  865. * And if the dirty bit will become meaningful and
  866. * we'll only set it with FOLL_WRITE, an atomic
  867. * set_bit will be required on the pmd to set the
  868. * young bit, instead of the current set_pmd_at.
  869. */
  870. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  871. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  872. }
  873. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  874. VM_BUG_ON(!PageCompound(page));
  875. if (flags & FOLL_GET)
  876. get_page_foll(page);
  877. out:
  878. return page;
  879. }
  880. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  881. pmd_t *pmd)
  882. {
  883. int ret = 0;
  884. spin_lock(&tlb->mm->page_table_lock);
  885. if (likely(pmd_trans_huge(*pmd))) {
  886. if (unlikely(pmd_trans_splitting(*pmd))) {
  887. spin_unlock(&tlb->mm->page_table_lock);
  888. wait_split_huge_page(vma->anon_vma,
  889. pmd);
  890. } else {
  891. struct page *page;
  892. pgtable_t pgtable;
  893. pgtable = get_pmd_huge_pte(tlb->mm);
  894. page = pmd_page(*pmd);
  895. pmd_clear(pmd);
  896. page_remove_rmap(page);
  897. VM_BUG_ON(page_mapcount(page) < 0);
  898. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  899. VM_BUG_ON(!PageHead(page));
  900. spin_unlock(&tlb->mm->page_table_lock);
  901. tlb_remove_page(tlb, page);
  902. pte_free(tlb->mm, pgtable);
  903. ret = 1;
  904. }
  905. } else
  906. spin_unlock(&tlb->mm->page_table_lock);
  907. return ret;
  908. }
  909. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  910. unsigned long addr, unsigned long end,
  911. unsigned char *vec)
  912. {
  913. int ret = 0;
  914. spin_lock(&vma->vm_mm->page_table_lock);
  915. if (likely(pmd_trans_huge(*pmd))) {
  916. ret = !pmd_trans_splitting(*pmd);
  917. spin_unlock(&vma->vm_mm->page_table_lock);
  918. if (unlikely(!ret))
  919. wait_split_huge_page(vma->anon_vma, pmd);
  920. else {
  921. /*
  922. * All logical pages in the range are present
  923. * if backed by a huge page.
  924. */
  925. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  926. }
  927. } else
  928. spin_unlock(&vma->vm_mm->page_table_lock);
  929. return ret;
  930. }
  931. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  932. unsigned long old_addr,
  933. unsigned long new_addr, unsigned long old_end,
  934. pmd_t *old_pmd, pmd_t *new_pmd)
  935. {
  936. int ret = 0;
  937. pmd_t pmd;
  938. struct mm_struct *mm = vma->vm_mm;
  939. if ((old_addr & ~HPAGE_PMD_MASK) ||
  940. (new_addr & ~HPAGE_PMD_MASK) ||
  941. old_end - old_addr < HPAGE_PMD_SIZE ||
  942. (new_vma->vm_flags & VM_NOHUGEPAGE))
  943. goto out;
  944. /*
  945. * The destination pmd shouldn't be established, free_pgtables()
  946. * should have release it.
  947. */
  948. if (WARN_ON(!pmd_none(*new_pmd))) {
  949. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  950. goto out;
  951. }
  952. spin_lock(&mm->page_table_lock);
  953. if (likely(pmd_trans_huge(*old_pmd))) {
  954. if (pmd_trans_splitting(*old_pmd)) {
  955. spin_unlock(&mm->page_table_lock);
  956. wait_split_huge_page(vma->anon_vma, old_pmd);
  957. ret = -1;
  958. } else {
  959. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  960. VM_BUG_ON(!pmd_none(*new_pmd));
  961. set_pmd_at(mm, new_addr, new_pmd, pmd);
  962. spin_unlock(&mm->page_table_lock);
  963. ret = 1;
  964. }
  965. } else {
  966. spin_unlock(&mm->page_table_lock);
  967. }
  968. out:
  969. return ret;
  970. }
  971. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  972. unsigned long addr, pgprot_t newprot)
  973. {
  974. struct mm_struct *mm = vma->vm_mm;
  975. int ret = 0;
  976. spin_lock(&mm->page_table_lock);
  977. if (likely(pmd_trans_huge(*pmd))) {
  978. if (unlikely(pmd_trans_splitting(*pmd))) {
  979. spin_unlock(&mm->page_table_lock);
  980. wait_split_huge_page(vma->anon_vma, pmd);
  981. } else {
  982. pmd_t entry;
  983. entry = pmdp_get_and_clear(mm, addr, pmd);
  984. entry = pmd_modify(entry, newprot);
  985. set_pmd_at(mm, addr, pmd, entry);
  986. spin_unlock(&vma->vm_mm->page_table_lock);
  987. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  988. ret = 1;
  989. }
  990. } else
  991. spin_unlock(&vma->vm_mm->page_table_lock);
  992. return ret;
  993. }
  994. pmd_t *page_check_address_pmd(struct page *page,
  995. struct mm_struct *mm,
  996. unsigned long address,
  997. enum page_check_address_pmd_flag flag)
  998. {
  999. pgd_t *pgd;
  1000. pud_t *pud;
  1001. pmd_t *pmd, *ret = NULL;
  1002. if (address & ~HPAGE_PMD_MASK)
  1003. goto out;
  1004. pgd = pgd_offset(mm, address);
  1005. if (!pgd_present(*pgd))
  1006. goto out;
  1007. pud = pud_offset(pgd, address);
  1008. if (!pud_present(*pud))
  1009. goto out;
  1010. pmd = pmd_offset(pud, address);
  1011. if (pmd_none(*pmd))
  1012. goto out;
  1013. if (pmd_page(*pmd) != page)
  1014. goto out;
  1015. /*
  1016. * split_vma() may create temporary aliased mappings. There is
  1017. * no risk as long as all huge pmd are found and have their
  1018. * splitting bit set before __split_huge_page_refcount
  1019. * runs. Finding the same huge pmd more than once during the
  1020. * same rmap walk is not a problem.
  1021. */
  1022. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1023. pmd_trans_splitting(*pmd))
  1024. goto out;
  1025. if (pmd_trans_huge(*pmd)) {
  1026. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1027. !pmd_trans_splitting(*pmd));
  1028. ret = pmd;
  1029. }
  1030. out:
  1031. return ret;
  1032. }
  1033. static int __split_huge_page_splitting(struct page *page,
  1034. struct vm_area_struct *vma,
  1035. unsigned long address)
  1036. {
  1037. struct mm_struct *mm = vma->vm_mm;
  1038. pmd_t *pmd;
  1039. int ret = 0;
  1040. spin_lock(&mm->page_table_lock);
  1041. pmd = page_check_address_pmd(page, mm, address,
  1042. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1043. if (pmd) {
  1044. /*
  1045. * We can't temporarily set the pmd to null in order
  1046. * to split it, the pmd must remain marked huge at all
  1047. * times or the VM won't take the pmd_trans_huge paths
  1048. * and it won't wait on the anon_vma->root->mutex to
  1049. * serialize against split_huge_page*.
  1050. */
  1051. pmdp_splitting_flush_notify(vma, address, pmd);
  1052. ret = 1;
  1053. }
  1054. spin_unlock(&mm->page_table_lock);
  1055. return ret;
  1056. }
  1057. static void __split_huge_page_refcount(struct page *page)
  1058. {
  1059. int i;
  1060. unsigned long head_index = page->index;
  1061. struct zone *zone = page_zone(page);
  1062. int zonestat;
  1063. int tail_count = 0;
  1064. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1065. spin_lock_irq(&zone->lru_lock);
  1066. compound_lock(page);
  1067. /* complete memcg works before add pages to LRU */
  1068. mem_cgroup_split_huge_fixup(page);
  1069. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1070. struct page *page_tail = page + i;
  1071. /* tail_page->_mapcount cannot change */
  1072. BUG_ON(page_mapcount(page_tail) < 0);
  1073. tail_count += page_mapcount(page_tail);
  1074. /* check for overflow */
  1075. BUG_ON(tail_count < 0);
  1076. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1077. /*
  1078. * tail_page->_count is zero and not changing from
  1079. * under us. But get_page_unless_zero() may be running
  1080. * from under us on the tail_page. If we used
  1081. * atomic_set() below instead of atomic_add(), we
  1082. * would then run atomic_set() concurrently with
  1083. * get_page_unless_zero(), and atomic_set() is
  1084. * implemented in C not using locked ops. spin_unlock
  1085. * on x86 sometime uses locked ops because of PPro
  1086. * errata 66, 92, so unless somebody can guarantee
  1087. * atomic_set() here would be safe on all archs (and
  1088. * not only on x86), it's safer to use atomic_add().
  1089. */
  1090. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1091. &page_tail->_count);
  1092. /* after clearing PageTail the gup refcount can be released */
  1093. smp_mb();
  1094. /*
  1095. * retain hwpoison flag of the poisoned tail page:
  1096. * fix for the unsuitable process killed on Guest Machine(KVM)
  1097. * by the memory-failure.
  1098. */
  1099. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1100. page_tail->flags |= (page->flags &
  1101. ((1L << PG_referenced) |
  1102. (1L << PG_swapbacked) |
  1103. (1L << PG_mlocked) |
  1104. (1L << PG_uptodate)));
  1105. page_tail->flags |= (1L << PG_dirty);
  1106. /* clear PageTail before overwriting first_page */
  1107. smp_wmb();
  1108. /*
  1109. * __split_huge_page_splitting() already set the
  1110. * splitting bit in all pmd that could map this
  1111. * hugepage, that will ensure no CPU can alter the
  1112. * mapcount on the head page. The mapcount is only
  1113. * accounted in the head page and it has to be
  1114. * transferred to all tail pages in the below code. So
  1115. * for this code to be safe, the split the mapcount
  1116. * can't change. But that doesn't mean userland can't
  1117. * keep changing and reading the page contents while
  1118. * we transfer the mapcount, so the pmd splitting
  1119. * status is achieved setting a reserved bit in the
  1120. * pmd, not by clearing the present bit.
  1121. */
  1122. page_tail->_mapcount = page->_mapcount;
  1123. BUG_ON(page_tail->mapping);
  1124. page_tail->mapping = page->mapping;
  1125. page_tail->index = ++head_index;
  1126. BUG_ON(!PageAnon(page_tail));
  1127. BUG_ON(!PageUptodate(page_tail));
  1128. BUG_ON(!PageDirty(page_tail));
  1129. BUG_ON(!PageSwapBacked(page_tail));
  1130. lru_add_page_tail(zone, page, page_tail);
  1131. }
  1132. atomic_sub(tail_count, &page->_count);
  1133. BUG_ON(atomic_read(&page->_count) <= 0);
  1134. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1135. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1136. /*
  1137. * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
  1138. * so adjust those appropriately if this page is on the LRU.
  1139. */
  1140. if (PageLRU(page)) {
  1141. zonestat = NR_LRU_BASE + page_lru(page);
  1142. __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
  1143. }
  1144. ClearPageCompound(page);
  1145. compound_unlock(page);
  1146. spin_unlock_irq(&zone->lru_lock);
  1147. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1148. struct page *page_tail = page + i;
  1149. BUG_ON(page_count(page_tail) <= 0);
  1150. /*
  1151. * Tail pages may be freed if there wasn't any mapping
  1152. * like if add_to_swap() is running on a lru page that
  1153. * had its mapping zapped. And freeing these pages
  1154. * requires taking the lru_lock so we do the put_page
  1155. * of the tail pages after the split is complete.
  1156. */
  1157. put_page(page_tail);
  1158. }
  1159. /*
  1160. * Only the head page (now become a regular page) is required
  1161. * to be pinned by the caller.
  1162. */
  1163. BUG_ON(page_count(page) <= 0);
  1164. }
  1165. static int __split_huge_page_map(struct page *page,
  1166. struct vm_area_struct *vma,
  1167. unsigned long address)
  1168. {
  1169. struct mm_struct *mm = vma->vm_mm;
  1170. pmd_t *pmd, _pmd;
  1171. int ret = 0, i;
  1172. pgtable_t pgtable;
  1173. unsigned long haddr;
  1174. spin_lock(&mm->page_table_lock);
  1175. pmd = page_check_address_pmd(page, mm, address,
  1176. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1177. if (pmd) {
  1178. pgtable = get_pmd_huge_pte(mm);
  1179. pmd_populate(mm, &_pmd, pgtable);
  1180. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1181. i++, haddr += PAGE_SIZE) {
  1182. pte_t *pte, entry;
  1183. BUG_ON(PageCompound(page+i));
  1184. entry = mk_pte(page + i, vma->vm_page_prot);
  1185. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1186. if (!pmd_write(*pmd))
  1187. entry = pte_wrprotect(entry);
  1188. else
  1189. BUG_ON(page_mapcount(page) != 1);
  1190. if (!pmd_young(*pmd))
  1191. entry = pte_mkold(entry);
  1192. pte = pte_offset_map(&_pmd, haddr);
  1193. BUG_ON(!pte_none(*pte));
  1194. set_pte_at(mm, haddr, pte, entry);
  1195. pte_unmap(pte);
  1196. }
  1197. mm->nr_ptes++;
  1198. smp_wmb(); /* make pte visible before pmd */
  1199. /*
  1200. * Up to this point the pmd is present and huge and
  1201. * userland has the whole access to the hugepage
  1202. * during the split (which happens in place). If we
  1203. * overwrite the pmd with the not-huge version
  1204. * pointing to the pte here (which of course we could
  1205. * if all CPUs were bug free), userland could trigger
  1206. * a small page size TLB miss on the small sized TLB
  1207. * while the hugepage TLB entry is still established
  1208. * in the huge TLB. Some CPU doesn't like that. See
  1209. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1210. * Erratum 383 on page 93. Intel should be safe but is
  1211. * also warns that it's only safe if the permission
  1212. * and cache attributes of the two entries loaded in
  1213. * the two TLB is identical (which should be the case
  1214. * here). But it is generally safer to never allow
  1215. * small and huge TLB entries for the same virtual
  1216. * address to be loaded simultaneously. So instead of
  1217. * doing "pmd_populate(); flush_tlb_range();" we first
  1218. * mark the current pmd notpresent (atomically because
  1219. * here the pmd_trans_huge and pmd_trans_splitting
  1220. * must remain set at all times on the pmd until the
  1221. * split is complete for this pmd), then we flush the
  1222. * SMP TLB and finally we write the non-huge version
  1223. * of the pmd entry with pmd_populate.
  1224. */
  1225. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1226. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1227. pmd_populate(mm, pmd, pgtable);
  1228. ret = 1;
  1229. }
  1230. spin_unlock(&mm->page_table_lock);
  1231. return ret;
  1232. }
  1233. /* must be called with anon_vma->root->mutex hold */
  1234. static void __split_huge_page(struct page *page,
  1235. struct anon_vma *anon_vma)
  1236. {
  1237. int mapcount, mapcount2;
  1238. struct anon_vma_chain *avc;
  1239. BUG_ON(!PageHead(page));
  1240. BUG_ON(PageTail(page));
  1241. mapcount = 0;
  1242. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1243. struct vm_area_struct *vma = avc->vma;
  1244. unsigned long addr = vma_address(page, vma);
  1245. BUG_ON(is_vma_temporary_stack(vma));
  1246. if (addr == -EFAULT)
  1247. continue;
  1248. mapcount += __split_huge_page_splitting(page, vma, addr);
  1249. }
  1250. /*
  1251. * It is critical that new vmas are added to the tail of the
  1252. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1253. * and establishes a child pmd before
  1254. * __split_huge_page_splitting() freezes the parent pmd (so if
  1255. * we fail to prevent copy_huge_pmd() from running until the
  1256. * whole __split_huge_page() is complete), we will still see
  1257. * the newly established pmd of the child later during the
  1258. * walk, to be able to set it as pmd_trans_splitting too.
  1259. */
  1260. if (mapcount != page_mapcount(page))
  1261. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1262. mapcount, page_mapcount(page));
  1263. BUG_ON(mapcount != page_mapcount(page));
  1264. __split_huge_page_refcount(page);
  1265. mapcount2 = 0;
  1266. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1267. struct vm_area_struct *vma = avc->vma;
  1268. unsigned long addr = vma_address(page, vma);
  1269. BUG_ON(is_vma_temporary_stack(vma));
  1270. if (addr == -EFAULT)
  1271. continue;
  1272. mapcount2 += __split_huge_page_map(page, vma, addr);
  1273. }
  1274. if (mapcount != mapcount2)
  1275. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1276. mapcount, mapcount2, page_mapcount(page));
  1277. BUG_ON(mapcount != mapcount2);
  1278. }
  1279. int split_huge_page(struct page *page)
  1280. {
  1281. struct anon_vma *anon_vma;
  1282. int ret = 1;
  1283. BUG_ON(!PageAnon(page));
  1284. anon_vma = page_lock_anon_vma(page);
  1285. if (!anon_vma)
  1286. goto out;
  1287. ret = 0;
  1288. if (!PageCompound(page))
  1289. goto out_unlock;
  1290. BUG_ON(!PageSwapBacked(page));
  1291. __split_huge_page(page, anon_vma);
  1292. count_vm_event(THP_SPLIT);
  1293. BUG_ON(PageCompound(page));
  1294. out_unlock:
  1295. page_unlock_anon_vma(anon_vma);
  1296. out:
  1297. return ret;
  1298. }
  1299. #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
  1300. VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1301. int hugepage_madvise(struct vm_area_struct *vma,
  1302. unsigned long *vm_flags, int advice)
  1303. {
  1304. switch (advice) {
  1305. case MADV_HUGEPAGE:
  1306. /*
  1307. * Be somewhat over-protective like KSM for now!
  1308. */
  1309. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1310. return -EINVAL;
  1311. *vm_flags &= ~VM_NOHUGEPAGE;
  1312. *vm_flags |= VM_HUGEPAGE;
  1313. /*
  1314. * If the vma become good for khugepaged to scan,
  1315. * register it here without waiting a page fault that
  1316. * may not happen any time soon.
  1317. */
  1318. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1319. return -ENOMEM;
  1320. break;
  1321. case MADV_NOHUGEPAGE:
  1322. /*
  1323. * Be somewhat over-protective like KSM for now!
  1324. */
  1325. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1326. return -EINVAL;
  1327. *vm_flags &= ~VM_HUGEPAGE;
  1328. *vm_flags |= VM_NOHUGEPAGE;
  1329. /*
  1330. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1331. * this vma even if we leave the mm registered in khugepaged if
  1332. * it got registered before VM_NOHUGEPAGE was set.
  1333. */
  1334. break;
  1335. }
  1336. return 0;
  1337. }
  1338. static int __init khugepaged_slab_init(void)
  1339. {
  1340. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1341. sizeof(struct mm_slot),
  1342. __alignof__(struct mm_slot), 0, NULL);
  1343. if (!mm_slot_cache)
  1344. return -ENOMEM;
  1345. return 0;
  1346. }
  1347. static void __init khugepaged_slab_free(void)
  1348. {
  1349. kmem_cache_destroy(mm_slot_cache);
  1350. mm_slot_cache = NULL;
  1351. }
  1352. static inline struct mm_slot *alloc_mm_slot(void)
  1353. {
  1354. if (!mm_slot_cache) /* initialization failed */
  1355. return NULL;
  1356. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1357. }
  1358. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1359. {
  1360. kmem_cache_free(mm_slot_cache, mm_slot);
  1361. }
  1362. static int __init mm_slots_hash_init(void)
  1363. {
  1364. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1365. GFP_KERNEL);
  1366. if (!mm_slots_hash)
  1367. return -ENOMEM;
  1368. return 0;
  1369. }
  1370. #if 0
  1371. static void __init mm_slots_hash_free(void)
  1372. {
  1373. kfree(mm_slots_hash);
  1374. mm_slots_hash = NULL;
  1375. }
  1376. #endif
  1377. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1378. {
  1379. struct mm_slot *mm_slot;
  1380. struct hlist_head *bucket;
  1381. struct hlist_node *node;
  1382. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1383. % MM_SLOTS_HASH_HEADS];
  1384. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1385. if (mm == mm_slot->mm)
  1386. return mm_slot;
  1387. }
  1388. return NULL;
  1389. }
  1390. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1391. struct mm_slot *mm_slot)
  1392. {
  1393. struct hlist_head *bucket;
  1394. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1395. % MM_SLOTS_HASH_HEADS];
  1396. mm_slot->mm = mm;
  1397. hlist_add_head(&mm_slot->hash, bucket);
  1398. }
  1399. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1400. {
  1401. return atomic_read(&mm->mm_users) == 0;
  1402. }
  1403. int __khugepaged_enter(struct mm_struct *mm)
  1404. {
  1405. struct mm_slot *mm_slot;
  1406. int wakeup;
  1407. mm_slot = alloc_mm_slot();
  1408. if (!mm_slot)
  1409. return -ENOMEM;
  1410. /* __khugepaged_exit() must not run from under us */
  1411. VM_BUG_ON(khugepaged_test_exit(mm));
  1412. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1413. free_mm_slot(mm_slot);
  1414. return 0;
  1415. }
  1416. spin_lock(&khugepaged_mm_lock);
  1417. insert_to_mm_slots_hash(mm, mm_slot);
  1418. /*
  1419. * Insert just behind the scanning cursor, to let the area settle
  1420. * down a little.
  1421. */
  1422. wakeup = list_empty(&khugepaged_scan.mm_head);
  1423. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1424. spin_unlock(&khugepaged_mm_lock);
  1425. atomic_inc(&mm->mm_count);
  1426. if (wakeup)
  1427. wake_up_interruptible(&khugepaged_wait);
  1428. return 0;
  1429. }
  1430. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1431. {
  1432. unsigned long hstart, hend;
  1433. if (!vma->anon_vma)
  1434. /*
  1435. * Not yet faulted in so we will register later in the
  1436. * page fault if needed.
  1437. */
  1438. return 0;
  1439. if (vma->vm_ops)
  1440. /* khugepaged not yet working on file or special mappings */
  1441. return 0;
  1442. /*
  1443. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1444. * true too, verify it here.
  1445. */
  1446. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1447. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1448. hend = vma->vm_end & HPAGE_PMD_MASK;
  1449. if (hstart < hend)
  1450. return khugepaged_enter(vma);
  1451. return 0;
  1452. }
  1453. void __khugepaged_exit(struct mm_struct *mm)
  1454. {
  1455. struct mm_slot *mm_slot;
  1456. int free = 0;
  1457. spin_lock(&khugepaged_mm_lock);
  1458. mm_slot = get_mm_slot(mm);
  1459. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1460. hlist_del(&mm_slot->hash);
  1461. list_del(&mm_slot->mm_node);
  1462. free = 1;
  1463. }
  1464. spin_unlock(&khugepaged_mm_lock);
  1465. if (free) {
  1466. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1467. free_mm_slot(mm_slot);
  1468. mmdrop(mm);
  1469. } else if (mm_slot) {
  1470. /*
  1471. * This is required to serialize against
  1472. * khugepaged_test_exit() (which is guaranteed to run
  1473. * under mmap sem read mode). Stop here (after we
  1474. * return all pagetables will be destroyed) until
  1475. * khugepaged has finished working on the pagetables
  1476. * under the mmap_sem.
  1477. */
  1478. down_write(&mm->mmap_sem);
  1479. up_write(&mm->mmap_sem);
  1480. }
  1481. }
  1482. static void release_pte_page(struct page *page)
  1483. {
  1484. /* 0 stands for page_is_file_cache(page) == false */
  1485. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1486. unlock_page(page);
  1487. putback_lru_page(page);
  1488. }
  1489. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1490. {
  1491. while (--_pte >= pte) {
  1492. pte_t pteval = *_pte;
  1493. if (!pte_none(pteval))
  1494. release_pte_page(pte_page(pteval));
  1495. }
  1496. }
  1497. static void release_all_pte_pages(pte_t *pte)
  1498. {
  1499. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1500. }
  1501. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1502. unsigned long address,
  1503. pte_t *pte)
  1504. {
  1505. struct page *page;
  1506. pte_t *_pte;
  1507. int referenced = 0, isolated = 0, none = 0;
  1508. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1509. _pte++, address += PAGE_SIZE) {
  1510. pte_t pteval = *_pte;
  1511. if (pte_none(pteval)) {
  1512. if (++none <= khugepaged_max_ptes_none)
  1513. continue;
  1514. else {
  1515. release_pte_pages(pte, _pte);
  1516. goto out;
  1517. }
  1518. }
  1519. if (!pte_present(pteval) || !pte_write(pteval)) {
  1520. release_pte_pages(pte, _pte);
  1521. goto out;
  1522. }
  1523. page = vm_normal_page(vma, address, pteval);
  1524. if (unlikely(!page)) {
  1525. release_pte_pages(pte, _pte);
  1526. goto out;
  1527. }
  1528. VM_BUG_ON(PageCompound(page));
  1529. BUG_ON(!PageAnon(page));
  1530. VM_BUG_ON(!PageSwapBacked(page));
  1531. /* cannot use mapcount: can't collapse if there's a gup pin */
  1532. if (page_count(page) != 1) {
  1533. release_pte_pages(pte, _pte);
  1534. goto out;
  1535. }
  1536. /*
  1537. * We can do it before isolate_lru_page because the
  1538. * page can't be freed from under us. NOTE: PG_lock
  1539. * is needed to serialize against split_huge_page
  1540. * when invoked from the VM.
  1541. */
  1542. if (!trylock_page(page)) {
  1543. release_pte_pages(pte, _pte);
  1544. goto out;
  1545. }
  1546. /*
  1547. * Isolate the page to avoid collapsing an hugepage
  1548. * currently in use by the VM.
  1549. */
  1550. if (isolate_lru_page(page)) {
  1551. unlock_page(page);
  1552. release_pte_pages(pte, _pte);
  1553. goto out;
  1554. }
  1555. /* 0 stands for page_is_file_cache(page) == false */
  1556. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1557. VM_BUG_ON(!PageLocked(page));
  1558. VM_BUG_ON(PageLRU(page));
  1559. /* If there is no mapped pte young don't collapse the page */
  1560. if (pte_young(pteval) || PageReferenced(page) ||
  1561. mmu_notifier_test_young(vma->vm_mm, address))
  1562. referenced = 1;
  1563. }
  1564. if (unlikely(!referenced))
  1565. release_all_pte_pages(pte);
  1566. else
  1567. isolated = 1;
  1568. out:
  1569. return isolated;
  1570. }
  1571. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1572. struct vm_area_struct *vma,
  1573. unsigned long address,
  1574. spinlock_t *ptl)
  1575. {
  1576. pte_t *_pte;
  1577. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1578. pte_t pteval = *_pte;
  1579. struct page *src_page;
  1580. if (pte_none(pteval)) {
  1581. clear_user_highpage(page, address);
  1582. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1583. } else {
  1584. src_page = pte_page(pteval);
  1585. copy_user_highpage(page, src_page, address, vma);
  1586. VM_BUG_ON(page_mapcount(src_page) != 1);
  1587. VM_BUG_ON(page_count(src_page) != 2);
  1588. release_pte_page(src_page);
  1589. /*
  1590. * ptl mostly unnecessary, but preempt has to
  1591. * be disabled to update the per-cpu stats
  1592. * inside page_remove_rmap().
  1593. */
  1594. spin_lock(ptl);
  1595. /*
  1596. * paravirt calls inside pte_clear here are
  1597. * superfluous.
  1598. */
  1599. pte_clear(vma->vm_mm, address, _pte);
  1600. page_remove_rmap(src_page);
  1601. spin_unlock(ptl);
  1602. free_page_and_swap_cache(src_page);
  1603. }
  1604. address += PAGE_SIZE;
  1605. page++;
  1606. }
  1607. }
  1608. static void collapse_huge_page(struct mm_struct *mm,
  1609. unsigned long address,
  1610. struct page **hpage,
  1611. struct vm_area_struct *vma,
  1612. int node)
  1613. {
  1614. pgd_t *pgd;
  1615. pud_t *pud;
  1616. pmd_t *pmd, _pmd;
  1617. pte_t *pte;
  1618. pgtable_t pgtable;
  1619. struct page *new_page;
  1620. spinlock_t *ptl;
  1621. int isolated;
  1622. unsigned long hstart, hend;
  1623. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1624. #ifndef CONFIG_NUMA
  1625. up_read(&mm->mmap_sem);
  1626. VM_BUG_ON(!*hpage);
  1627. new_page = *hpage;
  1628. #else
  1629. VM_BUG_ON(*hpage);
  1630. /*
  1631. * Allocate the page while the vma is still valid and under
  1632. * the mmap_sem read mode so there is no memory allocation
  1633. * later when we take the mmap_sem in write mode. This is more
  1634. * friendly behavior (OTOH it may actually hide bugs) to
  1635. * filesystems in userland with daemons allocating memory in
  1636. * the userland I/O paths. Allocating memory with the
  1637. * mmap_sem in read mode is good idea also to allow greater
  1638. * scalability.
  1639. */
  1640. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1641. node, __GFP_OTHER_NODE);
  1642. /*
  1643. * After allocating the hugepage, release the mmap_sem read lock in
  1644. * preparation for taking it in write mode.
  1645. */
  1646. up_read(&mm->mmap_sem);
  1647. if (unlikely(!new_page)) {
  1648. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1649. *hpage = ERR_PTR(-ENOMEM);
  1650. return;
  1651. }
  1652. #endif
  1653. count_vm_event(THP_COLLAPSE_ALLOC);
  1654. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1655. #ifdef CONFIG_NUMA
  1656. put_page(new_page);
  1657. #endif
  1658. return;
  1659. }
  1660. /*
  1661. * Prevent all access to pagetables with the exception of
  1662. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1663. * handled by the anon_vma lock + PG_lock.
  1664. */
  1665. down_write(&mm->mmap_sem);
  1666. if (unlikely(khugepaged_test_exit(mm)))
  1667. goto out;
  1668. vma = find_vma(mm, address);
  1669. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1670. hend = vma->vm_end & HPAGE_PMD_MASK;
  1671. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1672. goto out;
  1673. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1674. (vma->vm_flags & VM_NOHUGEPAGE))
  1675. goto out;
  1676. if (!vma->anon_vma || vma->vm_ops)
  1677. goto out;
  1678. if (is_vma_temporary_stack(vma))
  1679. goto out;
  1680. /*
  1681. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1682. * true too, verify it here.
  1683. */
  1684. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1685. pgd = pgd_offset(mm, address);
  1686. if (!pgd_present(*pgd))
  1687. goto out;
  1688. pud = pud_offset(pgd, address);
  1689. if (!pud_present(*pud))
  1690. goto out;
  1691. pmd = pmd_offset(pud, address);
  1692. /* pmd can't go away or become huge under us */
  1693. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1694. goto out;
  1695. anon_vma_lock(vma->anon_vma);
  1696. pte = pte_offset_map(pmd, address);
  1697. ptl = pte_lockptr(mm, pmd);
  1698. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1699. /*
  1700. * After this gup_fast can't run anymore. This also removes
  1701. * any huge TLB entry from the CPU so we won't allow
  1702. * huge and small TLB entries for the same virtual address
  1703. * to avoid the risk of CPU bugs in that area.
  1704. */
  1705. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1706. spin_unlock(&mm->page_table_lock);
  1707. spin_lock(ptl);
  1708. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1709. spin_unlock(ptl);
  1710. if (unlikely(!isolated)) {
  1711. pte_unmap(pte);
  1712. spin_lock(&mm->page_table_lock);
  1713. BUG_ON(!pmd_none(*pmd));
  1714. set_pmd_at(mm, address, pmd, _pmd);
  1715. spin_unlock(&mm->page_table_lock);
  1716. anon_vma_unlock(vma->anon_vma);
  1717. goto out;
  1718. }
  1719. /*
  1720. * All pages are isolated and locked so anon_vma rmap
  1721. * can't run anymore.
  1722. */
  1723. anon_vma_unlock(vma->anon_vma);
  1724. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1725. pte_unmap(pte);
  1726. __SetPageUptodate(new_page);
  1727. pgtable = pmd_pgtable(_pmd);
  1728. VM_BUG_ON(page_count(pgtable) != 1);
  1729. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1730. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1731. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1732. _pmd = pmd_mkhuge(_pmd);
  1733. /*
  1734. * spin_lock() below is not the equivalent of smp_wmb(), so
  1735. * this is needed to avoid the copy_huge_page writes to become
  1736. * visible after the set_pmd_at() write.
  1737. */
  1738. smp_wmb();
  1739. spin_lock(&mm->page_table_lock);
  1740. BUG_ON(!pmd_none(*pmd));
  1741. page_add_new_anon_rmap(new_page, vma, address);
  1742. set_pmd_at(mm, address, pmd, _pmd);
  1743. update_mmu_cache(vma, address, _pmd);
  1744. prepare_pmd_huge_pte(pgtable, mm);
  1745. mm->nr_ptes--;
  1746. spin_unlock(&mm->page_table_lock);
  1747. #ifndef CONFIG_NUMA
  1748. *hpage = NULL;
  1749. #endif
  1750. khugepaged_pages_collapsed++;
  1751. out_up_write:
  1752. up_write(&mm->mmap_sem);
  1753. return;
  1754. out:
  1755. mem_cgroup_uncharge_page(new_page);
  1756. #ifdef CONFIG_NUMA
  1757. put_page(new_page);
  1758. #endif
  1759. goto out_up_write;
  1760. }
  1761. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1762. struct vm_area_struct *vma,
  1763. unsigned long address,
  1764. struct page **hpage)
  1765. {
  1766. pgd_t *pgd;
  1767. pud_t *pud;
  1768. pmd_t *pmd;
  1769. pte_t *pte, *_pte;
  1770. int ret = 0, referenced = 0, none = 0;
  1771. struct page *page;
  1772. unsigned long _address;
  1773. spinlock_t *ptl;
  1774. int node = -1;
  1775. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1776. pgd = pgd_offset(mm, address);
  1777. if (!pgd_present(*pgd))
  1778. goto out;
  1779. pud = pud_offset(pgd, address);
  1780. if (!pud_present(*pud))
  1781. goto out;
  1782. pmd = pmd_offset(pud, address);
  1783. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1784. goto out;
  1785. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1786. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1787. _pte++, _address += PAGE_SIZE) {
  1788. pte_t pteval = *_pte;
  1789. if (pte_none(pteval)) {
  1790. if (++none <= khugepaged_max_ptes_none)
  1791. continue;
  1792. else
  1793. goto out_unmap;
  1794. }
  1795. if (!pte_present(pteval) || !pte_write(pteval))
  1796. goto out_unmap;
  1797. page = vm_normal_page(vma, _address, pteval);
  1798. if (unlikely(!page))
  1799. goto out_unmap;
  1800. /*
  1801. * Chose the node of the first page. This could
  1802. * be more sophisticated and look at more pages,
  1803. * but isn't for now.
  1804. */
  1805. if (node == -1)
  1806. node = page_to_nid(page);
  1807. VM_BUG_ON(PageCompound(page));
  1808. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1809. goto out_unmap;
  1810. /* cannot use mapcount: can't collapse if there's a gup pin */
  1811. if (page_count(page) != 1)
  1812. goto out_unmap;
  1813. if (pte_young(pteval) || PageReferenced(page) ||
  1814. mmu_notifier_test_young(vma->vm_mm, address))
  1815. referenced = 1;
  1816. }
  1817. if (referenced)
  1818. ret = 1;
  1819. out_unmap:
  1820. pte_unmap_unlock(pte, ptl);
  1821. if (ret)
  1822. /* collapse_huge_page will return with the mmap_sem released */
  1823. collapse_huge_page(mm, address, hpage, vma, node);
  1824. out:
  1825. return ret;
  1826. }
  1827. static void collect_mm_slot(struct mm_slot *mm_slot)
  1828. {
  1829. struct mm_struct *mm = mm_slot->mm;
  1830. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1831. if (khugepaged_test_exit(mm)) {
  1832. /* free mm_slot */
  1833. hlist_del(&mm_slot->hash);
  1834. list_del(&mm_slot->mm_node);
  1835. /*
  1836. * Not strictly needed because the mm exited already.
  1837. *
  1838. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1839. */
  1840. /* khugepaged_mm_lock actually not necessary for the below */
  1841. free_mm_slot(mm_slot);
  1842. mmdrop(mm);
  1843. }
  1844. }
  1845. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1846. struct page **hpage)
  1847. __releases(&khugepaged_mm_lock)
  1848. __acquires(&khugepaged_mm_lock)
  1849. {
  1850. struct mm_slot *mm_slot;
  1851. struct mm_struct *mm;
  1852. struct vm_area_struct *vma;
  1853. int progress = 0;
  1854. VM_BUG_ON(!pages);
  1855. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1856. if (khugepaged_scan.mm_slot)
  1857. mm_slot = khugepaged_scan.mm_slot;
  1858. else {
  1859. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1860. struct mm_slot, mm_node);
  1861. khugepaged_scan.address = 0;
  1862. khugepaged_scan.mm_slot = mm_slot;
  1863. }
  1864. spin_unlock(&khugepaged_mm_lock);
  1865. mm = mm_slot->mm;
  1866. down_read(&mm->mmap_sem);
  1867. if (unlikely(khugepaged_test_exit(mm)))
  1868. vma = NULL;
  1869. else
  1870. vma = find_vma(mm, khugepaged_scan.address);
  1871. progress++;
  1872. for (; vma; vma = vma->vm_next) {
  1873. unsigned long hstart, hend;
  1874. cond_resched();
  1875. if (unlikely(khugepaged_test_exit(mm))) {
  1876. progress++;
  1877. break;
  1878. }
  1879. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1880. !khugepaged_always()) ||
  1881. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1882. skip:
  1883. progress++;
  1884. continue;
  1885. }
  1886. if (!vma->anon_vma || vma->vm_ops)
  1887. goto skip;
  1888. if (is_vma_temporary_stack(vma))
  1889. goto skip;
  1890. /*
  1891. * If is_pfn_mapping() is true is_learn_pfn_mapping()
  1892. * must be true too, verify it here.
  1893. */
  1894. VM_BUG_ON(is_linear_pfn_mapping(vma) ||
  1895. vma->vm_flags & VM_NO_THP);
  1896. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1897. hend = vma->vm_end & HPAGE_PMD_MASK;
  1898. if (hstart >= hend)
  1899. goto skip;
  1900. if (khugepaged_scan.address > hend)
  1901. goto skip;
  1902. if (khugepaged_scan.address < hstart)
  1903. khugepaged_scan.address = hstart;
  1904. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1905. while (khugepaged_scan.address < hend) {
  1906. int ret;
  1907. cond_resched();
  1908. if (unlikely(khugepaged_test_exit(mm)))
  1909. goto breakouterloop;
  1910. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1911. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1912. hend);
  1913. ret = khugepaged_scan_pmd(mm, vma,
  1914. khugepaged_scan.address,
  1915. hpage);
  1916. /* move to next address */
  1917. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1918. progress += HPAGE_PMD_NR;
  1919. if (ret)
  1920. /* we released mmap_sem so break loop */
  1921. goto breakouterloop_mmap_sem;
  1922. if (progress >= pages)
  1923. goto breakouterloop;
  1924. }
  1925. }
  1926. breakouterloop:
  1927. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1928. breakouterloop_mmap_sem:
  1929. spin_lock(&khugepaged_mm_lock);
  1930. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1931. /*
  1932. * Release the current mm_slot if this mm is about to die, or
  1933. * if we scanned all vmas of this mm.
  1934. */
  1935. if (khugepaged_test_exit(mm) || !vma) {
  1936. /*
  1937. * Make sure that if mm_users is reaching zero while
  1938. * khugepaged runs here, khugepaged_exit will find
  1939. * mm_slot not pointing to the exiting mm.
  1940. */
  1941. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1942. khugepaged_scan.mm_slot = list_entry(
  1943. mm_slot->mm_node.next,
  1944. struct mm_slot, mm_node);
  1945. khugepaged_scan.address = 0;
  1946. } else {
  1947. khugepaged_scan.mm_slot = NULL;
  1948. khugepaged_full_scans++;
  1949. }
  1950. collect_mm_slot(mm_slot);
  1951. }
  1952. return progress;
  1953. }
  1954. static int khugepaged_has_work(void)
  1955. {
  1956. return !list_empty(&khugepaged_scan.mm_head) &&
  1957. khugepaged_enabled();
  1958. }
  1959. static int khugepaged_wait_event(void)
  1960. {
  1961. return !list_empty(&khugepaged_scan.mm_head) ||
  1962. !khugepaged_enabled();
  1963. }
  1964. static void khugepaged_do_scan(struct page **hpage)
  1965. {
  1966. unsigned int progress = 0, pass_through_head = 0;
  1967. unsigned int pages = khugepaged_pages_to_scan;
  1968. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1969. while (progress < pages) {
  1970. cond_resched();
  1971. #ifndef CONFIG_NUMA
  1972. if (!*hpage) {
  1973. *hpage = alloc_hugepage(khugepaged_defrag());
  1974. if (unlikely(!*hpage)) {
  1975. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1976. break;
  1977. }
  1978. count_vm_event(THP_COLLAPSE_ALLOC);
  1979. }
  1980. #else
  1981. if (IS_ERR(*hpage))
  1982. break;
  1983. #endif
  1984. if (unlikely(kthread_should_stop() || freezing(current)))
  1985. break;
  1986. spin_lock(&khugepaged_mm_lock);
  1987. if (!khugepaged_scan.mm_slot)
  1988. pass_through_head++;
  1989. if (khugepaged_has_work() &&
  1990. pass_through_head < 2)
  1991. progress += khugepaged_scan_mm_slot(pages - progress,
  1992. hpage);
  1993. else
  1994. progress = pages;
  1995. spin_unlock(&khugepaged_mm_lock);
  1996. }
  1997. }
  1998. static void khugepaged_alloc_sleep(void)
  1999. {
  2000. wait_event_freezable_timeout(khugepaged_wait, false,
  2001. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2002. }
  2003. #ifndef CONFIG_NUMA
  2004. static struct page *khugepaged_alloc_hugepage(void)
  2005. {
  2006. struct page *hpage;
  2007. do {
  2008. hpage = alloc_hugepage(khugepaged_defrag());
  2009. if (!hpage) {
  2010. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2011. khugepaged_alloc_sleep();
  2012. } else
  2013. count_vm_event(THP_COLLAPSE_ALLOC);
  2014. } while (unlikely(!hpage) &&
  2015. likely(khugepaged_enabled()));
  2016. return hpage;
  2017. }
  2018. #endif
  2019. static void khugepaged_loop(void)
  2020. {
  2021. struct page *hpage;
  2022. #ifdef CONFIG_NUMA
  2023. hpage = NULL;
  2024. #endif
  2025. while (likely(khugepaged_enabled())) {
  2026. #ifndef CONFIG_NUMA
  2027. hpage = khugepaged_alloc_hugepage();
  2028. if (unlikely(!hpage))
  2029. break;
  2030. #else
  2031. if (IS_ERR(hpage)) {
  2032. khugepaged_alloc_sleep();
  2033. hpage = NULL;
  2034. }
  2035. #endif
  2036. khugepaged_do_scan(&hpage);
  2037. #ifndef CONFIG_NUMA
  2038. if (hpage)
  2039. put_page(hpage);
  2040. #endif
  2041. try_to_freeze();
  2042. if (unlikely(kthread_should_stop()))
  2043. break;
  2044. if (khugepaged_has_work()) {
  2045. if (!khugepaged_scan_sleep_millisecs)
  2046. continue;
  2047. wait_event_freezable_timeout(khugepaged_wait, false,
  2048. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2049. } else if (khugepaged_enabled())
  2050. wait_event_freezable(khugepaged_wait,
  2051. khugepaged_wait_event());
  2052. }
  2053. }
  2054. static int khugepaged(void *none)
  2055. {
  2056. struct mm_slot *mm_slot;
  2057. set_freezable();
  2058. set_user_nice(current, 19);
  2059. /* serialize with start_khugepaged() */
  2060. mutex_lock(&khugepaged_mutex);
  2061. for (;;) {
  2062. mutex_unlock(&khugepaged_mutex);
  2063. VM_BUG_ON(khugepaged_thread != current);
  2064. khugepaged_loop();
  2065. VM_BUG_ON(khugepaged_thread != current);
  2066. mutex_lock(&khugepaged_mutex);
  2067. if (!khugepaged_enabled())
  2068. break;
  2069. if (unlikely(kthread_should_stop()))
  2070. break;
  2071. }
  2072. spin_lock(&khugepaged_mm_lock);
  2073. mm_slot = khugepaged_scan.mm_slot;
  2074. khugepaged_scan.mm_slot = NULL;
  2075. if (mm_slot)
  2076. collect_mm_slot(mm_slot);
  2077. spin_unlock(&khugepaged_mm_lock);
  2078. khugepaged_thread = NULL;
  2079. mutex_unlock(&khugepaged_mutex);
  2080. return 0;
  2081. }
  2082. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2083. {
  2084. struct page *page;
  2085. spin_lock(&mm->page_table_lock);
  2086. if (unlikely(!pmd_trans_huge(*pmd))) {
  2087. spin_unlock(&mm->page_table_lock);
  2088. return;
  2089. }
  2090. page = pmd_page(*pmd);
  2091. VM_BUG_ON(!page_count(page));
  2092. get_page(page);
  2093. spin_unlock(&mm->page_table_lock);
  2094. split_huge_page(page);
  2095. put_page(page);
  2096. BUG_ON(pmd_trans_huge(*pmd));
  2097. }
  2098. static void split_huge_page_address(struct mm_struct *mm,
  2099. unsigned long address)
  2100. {
  2101. pgd_t *pgd;
  2102. pud_t *pud;
  2103. pmd_t *pmd;
  2104. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2105. pgd = pgd_offset(mm, address);
  2106. if (!pgd_present(*pgd))
  2107. return;
  2108. pud = pud_offset(pgd, address);
  2109. if (!pud_present(*pud))
  2110. return;
  2111. pmd = pmd_offset(pud, address);
  2112. if (!pmd_present(*pmd))
  2113. return;
  2114. /*
  2115. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2116. * materialize from under us.
  2117. */
  2118. split_huge_page_pmd(mm, pmd);
  2119. }
  2120. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2121. unsigned long start,
  2122. unsigned long end,
  2123. long adjust_next)
  2124. {
  2125. /*
  2126. * If the new start address isn't hpage aligned and it could
  2127. * previously contain an hugepage: check if we need to split
  2128. * an huge pmd.
  2129. */
  2130. if (start & ~HPAGE_PMD_MASK &&
  2131. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2132. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2133. split_huge_page_address(vma->vm_mm, start);
  2134. /*
  2135. * If the new end address isn't hpage aligned and it could
  2136. * previously contain an hugepage: check if we need to split
  2137. * an huge pmd.
  2138. */
  2139. if (end & ~HPAGE_PMD_MASK &&
  2140. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2141. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2142. split_huge_page_address(vma->vm_mm, end);
  2143. /*
  2144. * If we're also updating the vma->vm_next->vm_start, if the new
  2145. * vm_next->vm_start isn't page aligned and it could previously
  2146. * contain an hugepage: check if we need to split an huge pmd.
  2147. */
  2148. if (adjust_next > 0) {
  2149. struct vm_area_struct *next = vma->vm_next;
  2150. unsigned long nstart = next->vm_start;
  2151. nstart += adjust_next << PAGE_SHIFT;
  2152. if (nstart & ~HPAGE_PMD_MASK &&
  2153. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2154. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2155. split_huge_page_address(next->vm_mm, nstart);
  2156. }
  2157. }