intel_ringbuffer.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  329. /*
  330. * TLB invalidate requires a post-sync write.
  331. */
  332. flags |= PIPE_CONTROL_QW_WRITE;
  333. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  334. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  335. /* Workaround: we must issue a pipe_control with CS-stall bit
  336. * set before a pipe_control command that has the state cache
  337. * invalidate bit set. */
  338. gen7_render_ring_cs_stall_wa(ring);
  339. }
  340. ret = intel_ring_begin(ring, 4);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_advance(ring);
  348. if (!invalidate_domains && flush_domains)
  349. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  350. return 0;
  351. }
  352. static int
  353. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  354. u32 flags, u32 scratch_addr)
  355. {
  356. int ret;
  357. ret = intel_ring_begin(ring, 6);
  358. if (ret)
  359. return ret;
  360. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  361. intel_ring_emit(ring, flags);
  362. intel_ring_emit(ring, scratch_addr);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_emit(ring, 0);
  365. intel_ring_emit(ring, 0);
  366. intel_ring_advance(ring);
  367. return 0;
  368. }
  369. static int
  370. gen8_render_ring_flush(struct intel_engine_cs *ring,
  371. u32 invalidate_domains, u32 flush_domains)
  372. {
  373. u32 flags = 0;
  374. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  375. int ret;
  376. flags |= PIPE_CONTROL_CS_STALL;
  377. if (flush_domains) {
  378. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  379. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  380. }
  381. if (invalidate_domains) {
  382. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  383. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  387. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  388. flags |= PIPE_CONTROL_QW_WRITE;
  389. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  390. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  391. ret = gen8_emit_pipe_control(ring,
  392. PIPE_CONTROL_CS_STALL |
  393. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  394. 0);
  395. if (ret)
  396. return ret;
  397. }
  398. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  399. if (ret)
  400. return ret;
  401. if (!invalidate_domains && flush_domains)
  402. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  403. return 0;
  404. }
  405. static void ring_write_tail(struct intel_engine_cs *ring,
  406. u32 value)
  407. {
  408. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  409. I915_WRITE_TAIL(ring, value);
  410. }
  411. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  412. {
  413. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  414. u64 acthd;
  415. if (INTEL_INFO(ring->dev)->gen >= 8)
  416. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  417. RING_ACTHD_UDW(ring->mmio_base));
  418. else if (INTEL_INFO(ring->dev)->gen >= 4)
  419. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  420. else
  421. acthd = I915_READ(ACTHD);
  422. return acthd;
  423. }
  424. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  427. u32 addr;
  428. addr = dev_priv->status_page_dmah->busaddr;
  429. if (INTEL_INFO(ring->dev)->gen >= 4)
  430. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  431. I915_WRITE(HWS_PGA, addr);
  432. }
  433. static bool stop_ring(struct intel_engine_cs *ring)
  434. {
  435. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  436. if (!IS_GEN2(ring->dev)) {
  437. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  438. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  439. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  440. /* Sometimes we observe that the idle flag is not
  441. * set even though the ring is empty. So double
  442. * check before giving up.
  443. */
  444. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  445. return false;
  446. }
  447. }
  448. I915_WRITE_CTL(ring, 0);
  449. I915_WRITE_HEAD(ring, 0);
  450. ring->write_tail(ring, 0);
  451. if (!IS_GEN2(ring->dev)) {
  452. (void)I915_READ_CTL(ring);
  453. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  454. }
  455. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  456. }
  457. static int init_ring_common(struct intel_engine_cs *ring)
  458. {
  459. struct drm_device *dev = ring->dev;
  460. struct drm_i915_private *dev_priv = dev->dev_private;
  461. struct intel_ringbuffer *ringbuf = ring->buffer;
  462. struct drm_i915_gem_object *obj = ringbuf->obj;
  463. int ret = 0;
  464. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  465. if (!stop_ring(ring)) {
  466. /* G45 ring initialization often fails to reset head to zero */
  467. DRM_DEBUG_KMS("%s head not reset to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. ring->name,
  470. I915_READ_CTL(ring),
  471. I915_READ_HEAD(ring),
  472. I915_READ_TAIL(ring),
  473. I915_READ_START(ring));
  474. if (!stop_ring(ring)) {
  475. DRM_ERROR("failed to set %s head to zero "
  476. "ctl %08x head %08x tail %08x start %08x\n",
  477. ring->name,
  478. I915_READ_CTL(ring),
  479. I915_READ_HEAD(ring),
  480. I915_READ_TAIL(ring),
  481. I915_READ_START(ring));
  482. ret = -EIO;
  483. goto out;
  484. }
  485. }
  486. if (I915_NEED_GFX_HWS(dev))
  487. intel_ring_setup_status_page(ring);
  488. else
  489. ring_setup_phys_status_page(ring);
  490. /* Enforce ordering by reading HEAD register back */
  491. I915_READ_HEAD(ring);
  492. /* Initialize the ring. This must happen _after_ we've cleared the ring
  493. * registers with the above sequence (the readback of the HEAD registers
  494. * also enforces ordering), otherwise the hw might lose the new ring
  495. * register values. */
  496. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  497. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  498. if (I915_READ_HEAD(ring))
  499. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  500. ring->name, I915_READ_HEAD(ring));
  501. I915_WRITE_HEAD(ring, 0);
  502. (void)I915_READ_HEAD(ring);
  503. I915_WRITE_CTL(ring,
  504. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  505. | RING_VALID);
  506. /* If the head is still not zero, the ring is dead */
  507. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  508. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  509. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  510. DRM_ERROR("%s initialization failed "
  511. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  512. ring->name,
  513. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  514. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  515. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  516. ret = -EIO;
  517. goto out;
  518. }
  519. ringbuf->last_retired_head = -1;
  520. ringbuf->head = I915_READ_HEAD(ring);
  521. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  522. intel_ring_update_space(ringbuf);
  523. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  524. out:
  525. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  526. return ret;
  527. }
  528. void
  529. intel_fini_pipe_control(struct intel_engine_cs *ring)
  530. {
  531. struct drm_device *dev = ring->dev;
  532. if (ring->scratch.obj == NULL)
  533. return;
  534. if (INTEL_INFO(dev)->gen >= 5) {
  535. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  536. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  537. }
  538. drm_gem_object_unreference(&ring->scratch.obj->base);
  539. ring->scratch.obj = NULL;
  540. }
  541. int
  542. intel_init_pipe_control(struct intel_engine_cs *ring)
  543. {
  544. int ret;
  545. WARN_ON(ring->scratch.obj);
  546. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  547. if (ring->scratch.obj == NULL) {
  548. DRM_ERROR("Failed to allocate seqno page\n");
  549. ret = -ENOMEM;
  550. goto err;
  551. }
  552. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  553. if (ret)
  554. goto err_unref;
  555. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  556. if (ret)
  557. goto err_unref;
  558. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  559. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  560. if (ring->scratch.cpu_page == NULL) {
  561. ret = -ENOMEM;
  562. goto err_unpin;
  563. }
  564. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  565. ring->name, ring->scratch.gtt_offset);
  566. return 0;
  567. err_unpin:
  568. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  569. err_unref:
  570. drm_gem_object_unreference(&ring->scratch.obj->base);
  571. err:
  572. return ret;
  573. }
  574. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  575. struct intel_context *ctx)
  576. {
  577. int ret, i;
  578. struct drm_device *dev = ring->dev;
  579. struct drm_i915_private *dev_priv = dev->dev_private;
  580. struct i915_workarounds *w = &dev_priv->workarounds;
  581. if (WARN_ON_ONCE(w->count == 0))
  582. return 0;
  583. ring->gpu_caches_dirty = true;
  584. ret = intel_ring_flush_all_caches(ring);
  585. if (ret)
  586. return ret;
  587. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  588. if (ret)
  589. return ret;
  590. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  591. for (i = 0; i < w->count; i++) {
  592. intel_ring_emit(ring, w->reg[i].addr);
  593. intel_ring_emit(ring, w->reg[i].value);
  594. }
  595. intel_ring_emit(ring, MI_NOOP);
  596. intel_ring_advance(ring);
  597. ring->gpu_caches_dirty = true;
  598. ret = intel_ring_flush_all_caches(ring);
  599. if (ret)
  600. return ret;
  601. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  602. return 0;
  603. }
  604. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret;
  608. ret = intel_ring_workarounds_emit(ring, ctx);
  609. if (ret != 0)
  610. return ret;
  611. ret = i915_gem_render_state_init(ring);
  612. if (ret)
  613. DRM_ERROR("init render state: %d\n", ret);
  614. return ret;
  615. }
  616. static int wa_add(struct drm_i915_private *dev_priv,
  617. const u32 addr, const u32 mask, const u32 val)
  618. {
  619. const u32 idx = dev_priv->workarounds.count;
  620. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  621. return -ENOSPC;
  622. dev_priv->workarounds.reg[idx].addr = addr;
  623. dev_priv->workarounds.reg[idx].value = val;
  624. dev_priv->workarounds.reg[idx].mask = mask;
  625. dev_priv->workarounds.count++;
  626. return 0;
  627. }
  628. #define WA_REG(addr, mask, val) { \
  629. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  630. if (r) \
  631. return r; \
  632. }
  633. #define WA_SET_BIT_MASKED(addr, mask) \
  634. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  635. #define WA_CLR_BIT_MASKED(addr, mask) \
  636. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  637. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  638. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  639. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  640. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  641. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  642. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  643. {
  644. struct drm_device *dev = ring->dev;
  645. struct drm_i915_private *dev_priv = dev->dev_private;
  646. /* WaDisablePartialInstShootdown:bdw */
  647. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  648. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  649. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  650. STALL_DOP_GATING_DISABLE);
  651. /* WaDisableDopClockGating:bdw */
  652. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  653. DOP_CLOCK_GATING_DISABLE);
  654. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  655. GEN8_SAMPLER_POWER_BYPASS_DIS);
  656. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  657. * workaround for for a possible hang in the unlikely event a TLB
  658. * invalidation occurs during a PSD flush.
  659. */
  660. /* WaForceEnableNonCoherent:bdw */
  661. /* WaHdcDisableFetchWhenMasked:bdw */
  662. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  663. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  664. HDC_FORCE_NON_COHERENT |
  665. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  666. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  667. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  668. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  669. * polygons in the same 8x4 pixel/sample area to be processed without
  670. * stalling waiting for the earlier ones to write to Hierarchical Z
  671. * buffer."
  672. *
  673. * This optimization is off by default for Broadwell; turn it on.
  674. */
  675. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  676. /* Wa4x4STCOptimizationDisable:bdw */
  677. WA_SET_BIT_MASKED(CACHE_MODE_1,
  678. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  679. /*
  680. * BSpec recommends 8x4 when MSAA is used,
  681. * however in practice 16x4 seems fastest.
  682. *
  683. * Note that PS/WM thread counts depend on the WIZ hashing
  684. * disable bit, which we don't touch here, but it's good
  685. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  686. */
  687. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  688. GEN6_WIZ_HASHING_MASK,
  689. GEN6_WIZ_HASHING_16x4);
  690. return 0;
  691. }
  692. static int chv_init_workarounds(struct intel_engine_cs *ring)
  693. {
  694. struct drm_device *dev = ring->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. /* WaDisablePartialInstShootdown:chv */
  697. /* WaDisableThreadStallDopClockGating:chv */
  698. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  699. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  700. STALL_DOP_GATING_DISABLE);
  701. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  702. * workaround for a possible hang in the unlikely event a TLB
  703. * invalidation occurs during a PSD flush.
  704. */
  705. /* WaForceEnableNonCoherent:chv */
  706. /* WaHdcDisableFetchWhenMasked:chv */
  707. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  708. HDC_FORCE_NON_COHERENT |
  709. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  710. /* According to the CACHE_MODE_0 default value documentation, some
  711. * CHV platforms disable this optimization by default. Turn it on.
  712. */
  713. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  714. /* Wa4x4STCOptimizationDisable:chv */
  715. WA_SET_BIT_MASKED(CACHE_MODE_1,
  716. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  717. /* Improve HiZ throughput on CHV. */
  718. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  719. /*
  720. * BSpec recommends 8x4 when MSAA is used,
  721. * however in practice 16x4 seems fastest.
  722. *
  723. * Note that PS/WM thread counts depend on the WIZ hashing
  724. * disable bit, which we don't touch here, but it's good
  725. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  726. */
  727. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  728. GEN6_WIZ_HASHING_MASK,
  729. GEN6_WIZ_HASHING_16x4);
  730. return 0;
  731. }
  732. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  733. {
  734. struct drm_device *dev = ring->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. /* WaDisablePartialInstShootdown:skl */
  737. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  738. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  739. /* Syncing dependencies between camera and graphics */
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  742. if (INTEL_REVID(dev) >= SKL_REVID_A0 &&
  743. INTEL_REVID(dev) <= SKL_REVID_B0) {
  744. /*
  745. * WaDisableDgMirrorFixInHalfSliceChicken5:skl
  746. * This is a pre-production w/a.
  747. */
  748. I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
  749. I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
  750. ~GEN9_DG_MIRROR_FIX_ENABLE);
  751. }
  752. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  753. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  754. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  755. GEN9_ENABLE_YV12_BUGFIX);
  756. }
  757. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  758. /*
  759. *Use Force Non-Coherent whenever executing a 3D context. This
  760. * is a workaround for a possible hang in the unlikely event
  761. * a TLB invalidation occurs during a PSD flush.
  762. */
  763. /* WaForceEnableNonCoherent:skl */
  764. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  765. HDC_FORCE_NON_COHERENT);
  766. }
  767. /* Wa4x4STCOptimizationDisable:skl */
  768. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  769. return 0;
  770. }
  771. int init_workarounds_ring(struct intel_engine_cs *ring)
  772. {
  773. struct drm_device *dev = ring->dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. WARN_ON(ring->id != RCS);
  776. dev_priv->workarounds.count = 0;
  777. if (IS_BROADWELL(dev))
  778. return bdw_init_workarounds(ring);
  779. if (IS_CHERRYVIEW(dev))
  780. return chv_init_workarounds(ring);
  781. if (IS_GEN9(dev))
  782. return gen9_init_workarounds(ring);
  783. return 0;
  784. }
  785. static int init_render_ring(struct intel_engine_cs *ring)
  786. {
  787. struct drm_device *dev = ring->dev;
  788. struct drm_i915_private *dev_priv = dev->dev_private;
  789. int ret = init_ring_common(ring);
  790. if (ret)
  791. return ret;
  792. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  793. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  794. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  795. /* We need to disable the AsyncFlip performance optimisations in order
  796. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  797. * programmed to '1' on all products.
  798. *
  799. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  800. */
  801. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  802. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  803. /* Required for the hardware to program scanline values for waiting */
  804. /* WaEnableFlushTlbInvalidationMode:snb */
  805. if (INTEL_INFO(dev)->gen == 6)
  806. I915_WRITE(GFX_MODE,
  807. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  808. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  809. if (IS_GEN7(dev))
  810. I915_WRITE(GFX_MODE_GEN7,
  811. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  812. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  813. if (IS_GEN6(dev)) {
  814. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  815. * "If this bit is set, STCunit will have LRA as replacement
  816. * policy. [...] This bit must be reset. LRA replacement
  817. * policy is not supported."
  818. */
  819. I915_WRITE(CACHE_MODE_0,
  820. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  821. }
  822. if (INTEL_INFO(dev)->gen >= 6)
  823. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  824. if (HAS_L3_DPF(dev))
  825. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  826. return init_workarounds_ring(ring);
  827. }
  828. static void render_ring_cleanup(struct intel_engine_cs *ring)
  829. {
  830. struct drm_device *dev = ring->dev;
  831. struct drm_i915_private *dev_priv = dev->dev_private;
  832. if (dev_priv->semaphore_obj) {
  833. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  834. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  835. dev_priv->semaphore_obj = NULL;
  836. }
  837. intel_fini_pipe_control(ring);
  838. }
  839. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  840. unsigned int num_dwords)
  841. {
  842. #define MBOX_UPDATE_DWORDS 8
  843. struct drm_device *dev = signaller->dev;
  844. struct drm_i915_private *dev_priv = dev->dev_private;
  845. struct intel_engine_cs *waiter;
  846. int i, ret, num_rings;
  847. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  848. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  849. #undef MBOX_UPDATE_DWORDS
  850. ret = intel_ring_begin(signaller, num_dwords);
  851. if (ret)
  852. return ret;
  853. for_each_ring(waiter, dev_priv, i) {
  854. u32 seqno;
  855. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  856. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  857. continue;
  858. seqno = i915_gem_request_get_seqno(
  859. signaller->outstanding_lazy_request);
  860. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  861. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  862. PIPE_CONTROL_QW_WRITE |
  863. PIPE_CONTROL_FLUSH_ENABLE);
  864. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  865. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  866. intel_ring_emit(signaller, seqno);
  867. intel_ring_emit(signaller, 0);
  868. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  869. MI_SEMAPHORE_TARGET(waiter->id));
  870. intel_ring_emit(signaller, 0);
  871. }
  872. return 0;
  873. }
  874. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  875. unsigned int num_dwords)
  876. {
  877. #define MBOX_UPDATE_DWORDS 6
  878. struct drm_device *dev = signaller->dev;
  879. struct drm_i915_private *dev_priv = dev->dev_private;
  880. struct intel_engine_cs *waiter;
  881. int i, ret, num_rings;
  882. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  883. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  884. #undef MBOX_UPDATE_DWORDS
  885. ret = intel_ring_begin(signaller, num_dwords);
  886. if (ret)
  887. return ret;
  888. for_each_ring(waiter, dev_priv, i) {
  889. u32 seqno;
  890. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  891. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  892. continue;
  893. seqno = i915_gem_request_get_seqno(
  894. signaller->outstanding_lazy_request);
  895. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  896. MI_FLUSH_DW_OP_STOREDW);
  897. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  898. MI_FLUSH_DW_USE_GTT);
  899. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  900. intel_ring_emit(signaller, seqno);
  901. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  902. MI_SEMAPHORE_TARGET(waiter->id));
  903. intel_ring_emit(signaller, 0);
  904. }
  905. return 0;
  906. }
  907. static int gen6_signal(struct intel_engine_cs *signaller,
  908. unsigned int num_dwords)
  909. {
  910. struct drm_device *dev = signaller->dev;
  911. struct drm_i915_private *dev_priv = dev->dev_private;
  912. struct intel_engine_cs *useless;
  913. int i, ret, num_rings;
  914. #define MBOX_UPDATE_DWORDS 3
  915. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  916. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  917. #undef MBOX_UPDATE_DWORDS
  918. ret = intel_ring_begin(signaller, num_dwords);
  919. if (ret)
  920. return ret;
  921. for_each_ring(useless, dev_priv, i) {
  922. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  923. if (mbox_reg != GEN6_NOSYNC) {
  924. u32 seqno = i915_gem_request_get_seqno(
  925. signaller->outstanding_lazy_request);
  926. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  927. intel_ring_emit(signaller, mbox_reg);
  928. intel_ring_emit(signaller, seqno);
  929. }
  930. }
  931. /* If num_dwords was rounded, make sure the tail pointer is correct */
  932. if (num_rings % 2 == 0)
  933. intel_ring_emit(signaller, MI_NOOP);
  934. return 0;
  935. }
  936. /**
  937. * gen6_add_request - Update the semaphore mailbox registers
  938. *
  939. * @ring - ring that is adding a request
  940. * @seqno - return seqno stuck into the ring
  941. *
  942. * Update the mailbox registers in the *other* rings with the current seqno.
  943. * This acts like a signal in the canonical semaphore.
  944. */
  945. static int
  946. gen6_add_request(struct intel_engine_cs *ring)
  947. {
  948. int ret;
  949. if (ring->semaphore.signal)
  950. ret = ring->semaphore.signal(ring, 4);
  951. else
  952. ret = intel_ring_begin(ring, 4);
  953. if (ret)
  954. return ret;
  955. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  956. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  957. intel_ring_emit(ring,
  958. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  959. intel_ring_emit(ring, MI_USER_INTERRUPT);
  960. __intel_ring_advance(ring);
  961. return 0;
  962. }
  963. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  964. u32 seqno)
  965. {
  966. struct drm_i915_private *dev_priv = dev->dev_private;
  967. return dev_priv->last_seqno < seqno;
  968. }
  969. /**
  970. * intel_ring_sync - sync the waiter to the signaller on seqno
  971. *
  972. * @waiter - ring that is waiting
  973. * @signaller - ring which has, or will signal
  974. * @seqno - seqno which the waiter will block on
  975. */
  976. static int
  977. gen8_ring_sync(struct intel_engine_cs *waiter,
  978. struct intel_engine_cs *signaller,
  979. u32 seqno)
  980. {
  981. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  982. int ret;
  983. ret = intel_ring_begin(waiter, 4);
  984. if (ret)
  985. return ret;
  986. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  987. MI_SEMAPHORE_GLOBAL_GTT |
  988. MI_SEMAPHORE_POLL |
  989. MI_SEMAPHORE_SAD_GTE_SDD);
  990. intel_ring_emit(waiter, seqno);
  991. intel_ring_emit(waiter,
  992. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  993. intel_ring_emit(waiter,
  994. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  995. intel_ring_advance(waiter);
  996. return 0;
  997. }
  998. static int
  999. gen6_ring_sync(struct intel_engine_cs *waiter,
  1000. struct intel_engine_cs *signaller,
  1001. u32 seqno)
  1002. {
  1003. u32 dw1 = MI_SEMAPHORE_MBOX |
  1004. MI_SEMAPHORE_COMPARE |
  1005. MI_SEMAPHORE_REGISTER;
  1006. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1007. int ret;
  1008. /* Throughout all of the GEM code, seqno passed implies our current
  1009. * seqno is >= the last seqno executed. However for hardware the
  1010. * comparison is strictly greater than.
  1011. */
  1012. seqno -= 1;
  1013. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1014. ret = intel_ring_begin(waiter, 4);
  1015. if (ret)
  1016. return ret;
  1017. /* If seqno wrap happened, omit the wait with no-ops */
  1018. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1019. intel_ring_emit(waiter, dw1 | wait_mbox);
  1020. intel_ring_emit(waiter, seqno);
  1021. intel_ring_emit(waiter, 0);
  1022. intel_ring_emit(waiter, MI_NOOP);
  1023. } else {
  1024. intel_ring_emit(waiter, MI_NOOP);
  1025. intel_ring_emit(waiter, MI_NOOP);
  1026. intel_ring_emit(waiter, MI_NOOP);
  1027. intel_ring_emit(waiter, MI_NOOP);
  1028. }
  1029. intel_ring_advance(waiter);
  1030. return 0;
  1031. }
  1032. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1033. do { \
  1034. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1035. PIPE_CONTROL_DEPTH_STALL); \
  1036. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1037. intel_ring_emit(ring__, 0); \
  1038. intel_ring_emit(ring__, 0); \
  1039. } while (0)
  1040. static int
  1041. pc_render_add_request(struct intel_engine_cs *ring)
  1042. {
  1043. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1044. int ret;
  1045. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1046. * incoherent with writes to memory, i.e. completely fubar,
  1047. * so we need to use PIPE_NOTIFY instead.
  1048. *
  1049. * However, we also need to workaround the qword write
  1050. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1051. * memory before requesting an interrupt.
  1052. */
  1053. ret = intel_ring_begin(ring, 32);
  1054. if (ret)
  1055. return ret;
  1056. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1057. PIPE_CONTROL_WRITE_FLUSH |
  1058. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1059. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1060. intel_ring_emit(ring,
  1061. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1062. intel_ring_emit(ring, 0);
  1063. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1064. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1065. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1066. scratch_addr += 2 * CACHELINE_BYTES;
  1067. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1068. scratch_addr += 2 * CACHELINE_BYTES;
  1069. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1070. scratch_addr += 2 * CACHELINE_BYTES;
  1071. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1072. scratch_addr += 2 * CACHELINE_BYTES;
  1073. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1074. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1075. PIPE_CONTROL_WRITE_FLUSH |
  1076. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1077. PIPE_CONTROL_NOTIFY);
  1078. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1079. intel_ring_emit(ring,
  1080. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1081. intel_ring_emit(ring, 0);
  1082. __intel_ring_advance(ring);
  1083. return 0;
  1084. }
  1085. static u32
  1086. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1087. {
  1088. /* Workaround to force correct ordering between irq and seqno writes on
  1089. * ivb (and maybe also on snb) by reading from a CS register (like
  1090. * ACTHD) before reading the status page. */
  1091. if (!lazy_coherency) {
  1092. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1093. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1094. }
  1095. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1096. }
  1097. static u32
  1098. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1099. {
  1100. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1101. }
  1102. static void
  1103. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1104. {
  1105. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1106. }
  1107. static u32
  1108. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1109. {
  1110. return ring->scratch.cpu_page[0];
  1111. }
  1112. static void
  1113. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1114. {
  1115. ring->scratch.cpu_page[0] = seqno;
  1116. }
  1117. static bool
  1118. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1119. {
  1120. struct drm_device *dev = ring->dev;
  1121. struct drm_i915_private *dev_priv = dev->dev_private;
  1122. unsigned long flags;
  1123. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1124. return false;
  1125. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1126. if (ring->irq_refcount++ == 0)
  1127. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1128. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1129. return true;
  1130. }
  1131. static void
  1132. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1133. {
  1134. struct drm_device *dev = ring->dev;
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. unsigned long flags;
  1137. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1138. if (--ring->irq_refcount == 0)
  1139. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1140. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1141. }
  1142. static bool
  1143. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1144. {
  1145. struct drm_device *dev = ring->dev;
  1146. struct drm_i915_private *dev_priv = dev->dev_private;
  1147. unsigned long flags;
  1148. if (!intel_irqs_enabled(dev_priv))
  1149. return false;
  1150. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1151. if (ring->irq_refcount++ == 0) {
  1152. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1153. I915_WRITE(IMR, dev_priv->irq_mask);
  1154. POSTING_READ(IMR);
  1155. }
  1156. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1157. return true;
  1158. }
  1159. static void
  1160. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1161. {
  1162. struct drm_device *dev = ring->dev;
  1163. struct drm_i915_private *dev_priv = dev->dev_private;
  1164. unsigned long flags;
  1165. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1166. if (--ring->irq_refcount == 0) {
  1167. dev_priv->irq_mask |= ring->irq_enable_mask;
  1168. I915_WRITE(IMR, dev_priv->irq_mask);
  1169. POSTING_READ(IMR);
  1170. }
  1171. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1172. }
  1173. static bool
  1174. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1175. {
  1176. struct drm_device *dev = ring->dev;
  1177. struct drm_i915_private *dev_priv = dev->dev_private;
  1178. unsigned long flags;
  1179. if (!intel_irqs_enabled(dev_priv))
  1180. return false;
  1181. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1182. if (ring->irq_refcount++ == 0) {
  1183. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1184. I915_WRITE16(IMR, dev_priv->irq_mask);
  1185. POSTING_READ16(IMR);
  1186. }
  1187. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1188. return true;
  1189. }
  1190. static void
  1191. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1192. {
  1193. struct drm_device *dev = ring->dev;
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. unsigned long flags;
  1196. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1197. if (--ring->irq_refcount == 0) {
  1198. dev_priv->irq_mask |= ring->irq_enable_mask;
  1199. I915_WRITE16(IMR, dev_priv->irq_mask);
  1200. POSTING_READ16(IMR);
  1201. }
  1202. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1203. }
  1204. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1205. {
  1206. struct drm_device *dev = ring->dev;
  1207. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1208. u32 mmio = 0;
  1209. /* The ring status page addresses are no longer next to the rest of
  1210. * the ring registers as of gen7.
  1211. */
  1212. if (IS_GEN7(dev)) {
  1213. switch (ring->id) {
  1214. case RCS:
  1215. mmio = RENDER_HWS_PGA_GEN7;
  1216. break;
  1217. case BCS:
  1218. mmio = BLT_HWS_PGA_GEN7;
  1219. break;
  1220. /*
  1221. * VCS2 actually doesn't exist on Gen7. Only shut up
  1222. * gcc switch check warning
  1223. */
  1224. case VCS2:
  1225. case VCS:
  1226. mmio = BSD_HWS_PGA_GEN7;
  1227. break;
  1228. case VECS:
  1229. mmio = VEBOX_HWS_PGA_GEN7;
  1230. break;
  1231. }
  1232. } else if (IS_GEN6(ring->dev)) {
  1233. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1234. } else {
  1235. /* XXX: gen8 returns to sanity */
  1236. mmio = RING_HWS_PGA(ring->mmio_base);
  1237. }
  1238. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1239. POSTING_READ(mmio);
  1240. /*
  1241. * Flush the TLB for this page
  1242. *
  1243. * FIXME: These two bits have disappeared on gen8, so a question
  1244. * arises: do we still need this and if so how should we go about
  1245. * invalidating the TLB?
  1246. */
  1247. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1248. u32 reg = RING_INSTPM(ring->mmio_base);
  1249. /* ring should be idle before issuing a sync flush*/
  1250. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1251. I915_WRITE(reg,
  1252. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1253. INSTPM_SYNC_FLUSH));
  1254. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1255. 1000))
  1256. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1257. ring->name);
  1258. }
  1259. }
  1260. static int
  1261. bsd_ring_flush(struct intel_engine_cs *ring,
  1262. u32 invalidate_domains,
  1263. u32 flush_domains)
  1264. {
  1265. int ret;
  1266. ret = intel_ring_begin(ring, 2);
  1267. if (ret)
  1268. return ret;
  1269. intel_ring_emit(ring, MI_FLUSH);
  1270. intel_ring_emit(ring, MI_NOOP);
  1271. intel_ring_advance(ring);
  1272. return 0;
  1273. }
  1274. static int
  1275. i9xx_add_request(struct intel_engine_cs *ring)
  1276. {
  1277. int ret;
  1278. ret = intel_ring_begin(ring, 4);
  1279. if (ret)
  1280. return ret;
  1281. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1282. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1283. intel_ring_emit(ring,
  1284. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1285. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1286. __intel_ring_advance(ring);
  1287. return 0;
  1288. }
  1289. static bool
  1290. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1291. {
  1292. struct drm_device *dev = ring->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. unsigned long flags;
  1295. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1296. return false;
  1297. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1298. if (ring->irq_refcount++ == 0) {
  1299. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1300. I915_WRITE_IMR(ring,
  1301. ~(ring->irq_enable_mask |
  1302. GT_PARITY_ERROR(dev)));
  1303. else
  1304. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1305. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1306. }
  1307. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1308. return true;
  1309. }
  1310. static void
  1311. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1312. {
  1313. struct drm_device *dev = ring->dev;
  1314. struct drm_i915_private *dev_priv = dev->dev_private;
  1315. unsigned long flags;
  1316. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1317. if (--ring->irq_refcount == 0) {
  1318. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1319. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1320. else
  1321. I915_WRITE_IMR(ring, ~0);
  1322. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1323. }
  1324. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1325. }
  1326. static bool
  1327. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1328. {
  1329. struct drm_device *dev = ring->dev;
  1330. struct drm_i915_private *dev_priv = dev->dev_private;
  1331. unsigned long flags;
  1332. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1333. return false;
  1334. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1335. if (ring->irq_refcount++ == 0) {
  1336. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1337. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1338. }
  1339. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1340. return true;
  1341. }
  1342. static void
  1343. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1344. {
  1345. struct drm_device *dev = ring->dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. unsigned long flags;
  1348. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1349. if (--ring->irq_refcount == 0) {
  1350. I915_WRITE_IMR(ring, ~0);
  1351. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1352. }
  1353. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1354. }
  1355. static bool
  1356. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1357. {
  1358. struct drm_device *dev = ring->dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. unsigned long flags;
  1361. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1362. return false;
  1363. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1364. if (ring->irq_refcount++ == 0) {
  1365. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1366. I915_WRITE_IMR(ring,
  1367. ~(ring->irq_enable_mask |
  1368. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1369. } else {
  1370. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1371. }
  1372. POSTING_READ(RING_IMR(ring->mmio_base));
  1373. }
  1374. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1375. return true;
  1376. }
  1377. static void
  1378. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1379. {
  1380. struct drm_device *dev = ring->dev;
  1381. struct drm_i915_private *dev_priv = dev->dev_private;
  1382. unsigned long flags;
  1383. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1384. if (--ring->irq_refcount == 0) {
  1385. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1386. I915_WRITE_IMR(ring,
  1387. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1388. } else {
  1389. I915_WRITE_IMR(ring, ~0);
  1390. }
  1391. POSTING_READ(RING_IMR(ring->mmio_base));
  1392. }
  1393. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1394. }
  1395. static int
  1396. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1397. u64 offset, u32 length,
  1398. unsigned flags)
  1399. {
  1400. int ret;
  1401. ret = intel_ring_begin(ring, 2);
  1402. if (ret)
  1403. return ret;
  1404. intel_ring_emit(ring,
  1405. MI_BATCH_BUFFER_START |
  1406. MI_BATCH_GTT |
  1407. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1408. intel_ring_emit(ring, offset);
  1409. intel_ring_advance(ring);
  1410. return 0;
  1411. }
  1412. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1413. #define I830_BATCH_LIMIT (256*1024)
  1414. #define I830_TLB_ENTRIES (2)
  1415. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1416. static int
  1417. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1418. u64 offset, u32 len,
  1419. unsigned flags)
  1420. {
  1421. u32 cs_offset = ring->scratch.gtt_offset;
  1422. int ret;
  1423. ret = intel_ring_begin(ring, 6);
  1424. if (ret)
  1425. return ret;
  1426. /* Evict the invalid PTE TLBs */
  1427. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1428. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1429. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1430. intel_ring_emit(ring, cs_offset);
  1431. intel_ring_emit(ring, 0xdeadbeef);
  1432. intel_ring_emit(ring, MI_NOOP);
  1433. intel_ring_advance(ring);
  1434. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1435. if (len > I830_BATCH_LIMIT)
  1436. return -ENOSPC;
  1437. ret = intel_ring_begin(ring, 6 + 2);
  1438. if (ret)
  1439. return ret;
  1440. /* Blit the batch (which has now all relocs applied) to the
  1441. * stable batch scratch bo area (so that the CS never
  1442. * stumbles over its tlb invalidation bug) ...
  1443. */
  1444. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1445. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1446. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1447. intel_ring_emit(ring, cs_offset);
  1448. intel_ring_emit(ring, 4096);
  1449. intel_ring_emit(ring, offset);
  1450. intel_ring_emit(ring, MI_FLUSH);
  1451. intel_ring_emit(ring, MI_NOOP);
  1452. intel_ring_advance(ring);
  1453. /* ... and execute it. */
  1454. offset = cs_offset;
  1455. }
  1456. ret = intel_ring_begin(ring, 4);
  1457. if (ret)
  1458. return ret;
  1459. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1460. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1461. intel_ring_emit(ring, offset + len - 8);
  1462. intel_ring_emit(ring, MI_NOOP);
  1463. intel_ring_advance(ring);
  1464. return 0;
  1465. }
  1466. static int
  1467. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1468. u64 offset, u32 len,
  1469. unsigned flags)
  1470. {
  1471. int ret;
  1472. ret = intel_ring_begin(ring, 2);
  1473. if (ret)
  1474. return ret;
  1475. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1476. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1477. intel_ring_advance(ring);
  1478. return 0;
  1479. }
  1480. static void cleanup_status_page(struct intel_engine_cs *ring)
  1481. {
  1482. struct drm_i915_gem_object *obj;
  1483. obj = ring->status_page.obj;
  1484. if (obj == NULL)
  1485. return;
  1486. kunmap(sg_page(obj->pages->sgl));
  1487. i915_gem_object_ggtt_unpin(obj);
  1488. drm_gem_object_unreference(&obj->base);
  1489. ring->status_page.obj = NULL;
  1490. }
  1491. static int init_status_page(struct intel_engine_cs *ring)
  1492. {
  1493. struct drm_i915_gem_object *obj;
  1494. if ((obj = ring->status_page.obj) == NULL) {
  1495. unsigned flags;
  1496. int ret;
  1497. obj = i915_gem_alloc_object(ring->dev, 4096);
  1498. if (obj == NULL) {
  1499. DRM_ERROR("Failed to allocate status page\n");
  1500. return -ENOMEM;
  1501. }
  1502. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1503. if (ret)
  1504. goto err_unref;
  1505. flags = 0;
  1506. if (!HAS_LLC(ring->dev))
  1507. /* On g33, we cannot place HWS above 256MiB, so
  1508. * restrict its pinning to the low mappable arena.
  1509. * Though this restriction is not documented for
  1510. * gen4, gen5, or byt, they also behave similarly
  1511. * and hang if the HWS is placed at the top of the
  1512. * GTT. To generalise, it appears that all !llc
  1513. * platforms have issues with us placing the HWS
  1514. * above the mappable region (even though we never
  1515. * actualy map it).
  1516. */
  1517. flags |= PIN_MAPPABLE;
  1518. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1519. if (ret) {
  1520. err_unref:
  1521. drm_gem_object_unreference(&obj->base);
  1522. return ret;
  1523. }
  1524. ring->status_page.obj = obj;
  1525. }
  1526. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1527. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1528. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1529. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1530. ring->name, ring->status_page.gfx_addr);
  1531. return 0;
  1532. }
  1533. static int init_phys_status_page(struct intel_engine_cs *ring)
  1534. {
  1535. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1536. if (!dev_priv->status_page_dmah) {
  1537. dev_priv->status_page_dmah =
  1538. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1539. if (!dev_priv->status_page_dmah)
  1540. return -ENOMEM;
  1541. }
  1542. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1543. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1544. return 0;
  1545. }
  1546. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1547. {
  1548. iounmap(ringbuf->virtual_start);
  1549. ringbuf->virtual_start = NULL;
  1550. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1551. }
  1552. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1553. struct intel_ringbuffer *ringbuf)
  1554. {
  1555. struct drm_i915_private *dev_priv = to_i915(dev);
  1556. struct drm_i915_gem_object *obj = ringbuf->obj;
  1557. int ret;
  1558. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1559. if (ret)
  1560. return ret;
  1561. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1562. if (ret) {
  1563. i915_gem_object_ggtt_unpin(obj);
  1564. return ret;
  1565. }
  1566. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1567. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1568. if (ringbuf->virtual_start == NULL) {
  1569. i915_gem_object_ggtt_unpin(obj);
  1570. return -EINVAL;
  1571. }
  1572. return 0;
  1573. }
  1574. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1575. {
  1576. drm_gem_object_unreference(&ringbuf->obj->base);
  1577. ringbuf->obj = NULL;
  1578. }
  1579. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1580. struct intel_ringbuffer *ringbuf)
  1581. {
  1582. struct drm_i915_gem_object *obj;
  1583. obj = NULL;
  1584. if (!HAS_LLC(dev))
  1585. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1586. if (obj == NULL)
  1587. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1588. if (obj == NULL)
  1589. return -ENOMEM;
  1590. /* mark ring buffers as read-only from GPU side by default */
  1591. obj->gt_ro = 1;
  1592. ringbuf->obj = obj;
  1593. return 0;
  1594. }
  1595. static int intel_init_ring_buffer(struct drm_device *dev,
  1596. struct intel_engine_cs *ring)
  1597. {
  1598. struct intel_ringbuffer *ringbuf;
  1599. int ret;
  1600. WARN_ON(ring->buffer);
  1601. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1602. if (!ringbuf)
  1603. return -ENOMEM;
  1604. ring->buffer = ringbuf;
  1605. ring->dev = dev;
  1606. INIT_LIST_HEAD(&ring->active_list);
  1607. INIT_LIST_HEAD(&ring->request_list);
  1608. INIT_LIST_HEAD(&ring->execlist_queue);
  1609. ringbuf->size = 32 * PAGE_SIZE;
  1610. ringbuf->ring = ring;
  1611. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1612. init_waitqueue_head(&ring->irq_queue);
  1613. if (I915_NEED_GFX_HWS(dev)) {
  1614. ret = init_status_page(ring);
  1615. if (ret)
  1616. goto error;
  1617. } else {
  1618. BUG_ON(ring->id != RCS);
  1619. ret = init_phys_status_page(ring);
  1620. if (ret)
  1621. goto error;
  1622. }
  1623. WARN_ON(ringbuf->obj);
  1624. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1625. if (ret) {
  1626. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1627. ring->name, ret);
  1628. goto error;
  1629. }
  1630. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1631. if (ret) {
  1632. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1633. ring->name, ret);
  1634. intel_destroy_ringbuffer_obj(ringbuf);
  1635. goto error;
  1636. }
  1637. /* Workaround an erratum on the i830 which causes a hang if
  1638. * the TAIL pointer points to within the last 2 cachelines
  1639. * of the buffer.
  1640. */
  1641. ringbuf->effective_size = ringbuf->size;
  1642. if (IS_I830(dev) || IS_845G(dev))
  1643. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1644. ret = i915_cmd_parser_init_ring(ring);
  1645. if (ret)
  1646. goto error;
  1647. return 0;
  1648. error:
  1649. kfree(ringbuf);
  1650. ring->buffer = NULL;
  1651. return ret;
  1652. }
  1653. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1654. {
  1655. struct drm_i915_private *dev_priv;
  1656. struct intel_ringbuffer *ringbuf;
  1657. if (!intel_ring_initialized(ring))
  1658. return;
  1659. dev_priv = to_i915(ring->dev);
  1660. ringbuf = ring->buffer;
  1661. intel_stop_ring_buffer(ring);
  1662. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1663. intel_unpin_ringbuffer_obj(ringbuf);
  1664. intel_destroy_ringbuffer_obj(ringbuf);
  1665. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1666. if (ring->cleanup)
  1667. ring->cleanup(ring);
  1668. cleanup_status_page(ring);
  1669. i915_cmd_parser_fini_ring(ring);
  1670. kfree(ringbuf);
  1671. ring->buffer = NULL;
  1672. }
  1673. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1674. {
  1675. struct intel_ringbuffer *ringbuf = ring->buffer;
  1676. struct drm_i915_gem_request *request;
  1677. int ret;
  1678. if (intel_ring_space(ringbuf) >= n)
  1679. return 0;
  1680. list_for_each_entry(request, &ring->request_list, list) {
  1681. if (__intel_ring_space(request->postfix, ringbuf->tail,
  1682. ringbuf->size) >= n) {
  1683. break;
  1684. }
  1685. }
  1686. if (&request->list == &ring->request_list)
  1687. return -ENOSPC;
  1688. ret = i915_wait_request(request);
  1689. if (ret)
  1690. return ret;
  1691. i915_gem_retire_requests_ring(ring);
  1692. return 0;
  1693. }
  1694. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1695. {
  1696. struct drm_device *dev = ring->dev;
  1697. struct drm_i915_private *dev_priv = dev->dev_private;
  1698. struct intel_ringbuffer *ringbuf = ring->buffer;
  1699. unsigned long end;
  1700. int ret;
  1701. ret = intel_ring_wait_request(ring, n);
  1702. if (ret != -ENOSPC)
  1703. return ret;
  1704. /* force the tail write in case we have been skipping them */
  1705. __intel_ring_advance(ring);
  1706. /* With GEM the hangcheck timer should kick us out of the loop,
  1707. * leaving it early runs the risk of corrupting GEM state (due
  1708. * to running on almost untested codepaths). But on resume
  1709. * timers don't work yet, so prevent a complete hang in that
  1710. * case by choosing an insanely large timeout. */
  1711. end = jiffies + 60 * HZ;
  1712. ret = 0;
  1713. trace_i915_ring_wait_begin(ring);
  1714. do {
  1715. if (intel_ring_space(ringbuf) >= n)
  1716. break;
  1717. ringbuf->head = I915_READ_HEAD(ring);
  1718. if (intel_ring_space(ringbuf) >= n)
  1719. break;
  1720. msleep(1);
  1721. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1722. ret = -ERESTARTSYS;
  1723. break;
  1724. }
  1725. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1726. dev_priv->mm.interruptible);
  1727. if (ret)
  1728. break;
  1729. if (time_after(jiffies, end)) {
  1730. ret = -EBUSY;
  1731. break;
  1732. }
  1733. } while (1);
  1734. trace_i915_ring_wait_end(ring);
  1735. return ret;
  1736. }
  1737. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1738. {
  1739. uint32_t __iomem *virt;
  1740. struct intel_ringbuffer *ringbuf = ring->buffer;
  1741. int rem = ringbuf->size - ringbuf->tail;
  1742. if (ringbuf->space < rem) {
  1743. int ret = ring_wait_for_space(ring, rem);
  1744. if (ret)
  1745. return ret;
  1746. }
  1747. virt = ringbuf->virtual_start + ringbuf->tail;
  1748. rem /= 4;
  1749. while (rem--)
  1750. iowrite32(MI_NOOP, virt++);
  1751. ringbuf->tail = 0;
  1752. intel_ring_update_space(ringbuf);
  1753. return 0;
  1754. }
  1755. int intel_ring_idle(struct intel_engine_cs *ring)
  1756. {
  1757. struct drm_i915_gem_request *req;
  1758. int ret;
  1759. /* We need to add any requests required to flush the objects and ring */
  1760. if (ring->outstanding_lazy_request) {
  1761. ret = i915_add_request(ring);
  1762. if (ret)
  1763. return ret;
  1764. }
  1765. /* Wait upon the last request to be completed */
  1766. if (list_empty(&ring->request_list))
  1767. return 0;
  1768. req = list_entry(ring->request_list.prev,
  1769. struct drm_i915_gem_request,
  1770. list);
  1771. return i915_wait_request(req);
  1772. }
  1773. static int
  1774. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1775. {
  1776. int ret;
  1777. struct drm_i915_gem_request *request;
  1778. struct drm_i915_private *dev_private = ring->dev->dev_private;
  1779. if (ring->outstanding_lazy_request)
  1780. return 0;
  1781. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1782. if (request == NULL)
  1783. return -ENOMEM;
  1784. kref_init(&request->ref);
  1785. request->ring = ring;
  1786. request->uniq = dev_private->request_uniq++;
  1787. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1788. if (ret) {
  1789. kfree(request);
  1790. return ret;
  1791. }
  1792. ring->outstanding_lazy_request = request;
  1793. return 0;
  1794. }
  1795. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1796. int bytes)
  1797. {
  1798. struct intel_ringbuffer *ringbuf = ring->buffer;
  1799. int ret;
  1800. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1801. ret = intel_wrap_ring_buffer(ring);
  1802. if (unlikely(ret))
  1803. return ret;
  1804. }
  1805. if (unlikely(ringbuf->space < bytes)) {
  1806. ret = ring_wait_for_space(ring, bytes);
  1807. if (unlikely(ret))
  1808. return ret;
  1809. }
  1810. return 0;
  1811. }
  1812. int intel_ring_begin(struct intel_engine_cs *ring,
  1813. int num_dwords)
  1814. {
  1815. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1816. int ret;
  1817. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1818. dev_priv->mm.interruptible);
  1819. if (ret)
  1820. return ret;
  1821. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1822. if (ret)
  1823. return ret;
  1824. /* Preallocate the olr before touching the ring */
  1825. ret = intel_ring_alloc_request(ring);
  1826. if (ret)
  1827. return ret;
  1828. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1829. return 0;
  1830. }
  1831. /* Align the ring tail to a cacheline boundary */
  1832. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1833. {
  1834. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1835. int ret;
  1836. if (num_dwords == 0)
  1837. return 0;
  1838. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1839. ret = intel_ring_begin(ring, num_dwords);
  1840. if (ret)
  1841. return ret;
  1842. while (num_dwords--)
  1843. intel_ring_emit(ring, MI_NOOP);
  1844. intel_ring_advance(ring);
  1845. return 0;
  1846. }
  1847. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1848. {
  1849. struct drm_device *dev = ring->dev;
  1850. struct drm_i915_private *dev_priv = dev->dev_private;
  1851. BUG_ON(ring->outstanding_lazy_request);
  1852. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1853. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1854. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1855. if (HAS_VEBOX(dev))
  1856. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1857. }
  1858. ring->set_seqno(ring, seqno);
  1859. ring->hangcheck.seqno = seqno;
  1860. }
  1861. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1862. u32 value)
  1863. {
  1864. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1865. /* Every tail move must follow the sequence below */
  1866. /* Disable notification that the ring is IDLE. The GT
  1867. * will then assume that it is busy and bring it out of rc6.
  1868. */
  1869. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1870. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1871. /* Clear the context id. Here be magic! */
  1872. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1873. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1874. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1875. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1876. 50))
  1877. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1878. /* Now that the ring is fully powered up, update the tail */
  1879. I915_WRITE_TAIL(ring, value);
  1880. POSTING_READ(RING_TAIL(ring->mmio_base));
  1881. /* Let the ring send IDLE messages to the GT again,
  1882. * and so let it sleep to conserve power when idle.
  1883. */
  1884. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1885. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1886. }
  1887. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1888. u32 invalidate, u32 flush)
  1889. {
  1890. uint32_t cmd;
  1891. int ret;
  1892. ret = intel_ring_begin(ring, 4);
  1893. if (ret)
  1894. return ret;
  1895. cmd = MI_FLUSH_DW;
  1896. if (INTEL_INFO(ring->dev)->gen >= 8)
  1897. cmd += 1;
  1898. /*
  1899. * Bspec vol 1c.5 - video engine command streamer:
  1900. * "If ENABLED, all TLBs will be invalidated once the flush
  1901. * operation is complete. This bit is only valid when the
  1902. * Post-Sync Operation field is a value of 1h or 3h."
  1903. */
  1904. if (invalidate & I915_GEM_GPU_DOMAINS)
  1905. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1906. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1907. intel_ring_emit(ring, cmd);
  1908. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1909. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1910. intel_ring_emit(ring, 0); /* upper addr */
  1911. intel_ring_emit(ring, 0); /* value */
  1912. } else {
  1913. intel_ring_emit(ring, 0);
  1914. intel_ring_emit(ring, MI_NOOP);
  1915. }
  1916. intel_ring_advance(ring);
  1917. return 0;
  1918. }
  1919. static int
  1920. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1921. u64 offset, u32 len,
  1922. unsigned flags)
  1923. {
  1924. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1925. int ret;
  1926. ret = intel_ring_begin(ring, 4);
  1927. if (ret)
  1928. return ret;
  1929. /* FIXME(BDW): Address space and security selectors. */
  1930. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1931. intel_ring_emit(ring, lower_32_bits(offset));
  1932. intel_ring_emit(ring, upper_32_bits(offset));
  1933. intel_ring_emit(ring, MI_NOOP);
  1934. intel_ring_advance(ring);
  1935. return 0;
  1936. }
  1937. static int
  1938. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1939. u64 offset, u32 len,
  1940. unsigned flags)
  1941. {
  1942. int ret;
  1943. ret = intel_ring_begin(ring, 2);
  1944. if (ret)
  1945. return ret;
  1946. intel_ring_emit(ring,
  1947. MI_BATCH_BUFFER_START |
  1948. (flags & I915_DISPATCH_SECURE ?
  1949. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1950. /* bit0-7 is the length on GEN6+ */
  1951. intel_ring_emit(ring, offset);
  1952. intel_ring_advance(ring);
  1953. return 0;
  1954. }
  1955. static int
  1956. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1957. u64 offset, u32 len,
  1958. unsigned flags)
  1959. {
  1960. int ret;
  1961. ret = intel_ring_begin(ring, 2);
  1962. if (ret)
  1963. return ret;
  1964. intel_ring_emit(ring,
  1965. MI_BATCH_BUFFER_START |
  1966. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1967. /* bit0-7 is the length on GEN6+ */
  1968. intel_ring_emit(ring, offset);
  1969. intel_ring_advance(ring);
  1970. return 0;
  1971. }
  1972. /* Blitter support (SandyBridge+) */
  1973. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1974. u32 invalidate, u32 flush)
  1975. {
  1976. struct drm_device *dev = ring->dev;
  1977. struct drm_i915_private *dev_priv = dev->dev_private;
  1978. uint32_t cmd;
  1979. int ret;
  1980. ret = intel_ring_begin(ring, 4);
  1981. if (ret)
  1982. return ret;
  1983. cmd = MI_FLUSH_DW;
  1984. if (INTEL_INFO(ring->dev)->gen >= 8)
  1985. cmd += 1;
  1986. /*
  1987. * Bspec vol 1c.3 - blitter engine command streamer:
  1988. * "If ENABLED, all TLBs will be invalidated once the flush
  1989. * operation is complete. This bit is only valid when the
  1990. * Post-Sync Operation field is a value of 1h or 3h."
  1991. */
  1992. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1993. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1994. MI_FLUSH_DW_OP_STOREDW;
  1995. intel_ring_emit(ring, cmd);
  1996. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1997. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1998. intel_ring_emit(ring, 0); /* upper addr */
  1999. intel_ring_emit(ring, 0); /* value */
  2000. } else {
  2001. intel_ring_emit(ring, 0);
  2002. intel_ring_emit(ring, MI_NOOP);
  2003. }
  2004. intel_ring_advance(ring);
  2005. if (!invalidate && flush) {
  2006. if (IS_GEN7(dev))
  2007. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  2008. else if (IS_BROADWELL(dev))
  2009. dev_priv->fbc.need_sw_cache_clean = true;
  2010. }
  2011. return 0;
  2012. }
  2013. int intel_init_render_ring_buffer(struct drm_device *dev)
  2014. {
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2017. struct drm_i915_gem_object *obj;
  2018. int ret;
  2019. ring->name = "render ring";
  2020. ring->id = RCS;
  2021. ring->mmio_base = RENDER_RING_BASE;
  2022. if (INTEL_INFO(dev)->gen >= 8) {
  2023. if (i915_semaphore_is_enabled(dev)) {
  2024. obj = i915_gem_alloc_object(dev, 4096);
  2025. if (obj == NULL) {
  2026. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2027. i915.semaphores = 0;
  2028. } else {
  2029. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2030. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2031. if (ret != 0) {
  2032. drm_gem_object_unreference(&obj->base);
  2033. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2034. i915.semaphores = 0;
  2035. } else
  2036. dev_priv->semaphore_obj = obj;
  2037. }
  2038. }
  2039. ring->init_context = intel_rcs_ctx_init;
  2040. ring->add_request = gen6_add_request;
  2041. ring->flush = gen8_render_ring_flush;
  2042. ring->irq_get = gen8_ring_get_irq;
  2043. ring->irq_put = gen8_ring_put_irq;
  2044. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2045. ring->get_seqno = gen6_ring_get_seqno;
  2046. ring->set_seqno = ring_set_seqno;
  2047. if (i915_semaphore_is_enabled(dev)) {
  2048. WARN_ON(!dev_priv->semaphore_obj);
  2049. ring->semaphore.sync_to = gen8_ring_sync;
  2050. ring->semaphore.signal = gen8_rcs_signal;
  2051. GEN8_RING_SEMAPHORE_INIT;
  2052. }
  2053. } else if (INTEL_INFO(dev)->gen >= 6) {
  2054. ring->add_request = gen6_add_request;
  2055. ring->flush = gen7_render_ring_flush;
  2056. if (INTEL_INFO(dev)->gen == 6)
  2057. ring->flush = gen6_render_ring_flush;
  2058. ring->irq_get = gen6_ring_get_irq;
  2059. ring->irq_put = gen6_ring_put_irq;
  2060. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2061. ring->get_seqno = gen6_ring_get_seqno;
  2062. ring->set_seqno = ring_set_seqno;
  2063. if (i915_semaphore_is_enabled(dev)) {
  2064. ring->semaphore.sync_to = gen6_ring_sync;
  2065. ring->semaphore.signal = gen6_signal;
  2066. /*
  2067. * The current semaphore is only applied on pre-gen8
  2068. * platform. And there is no VCS2 ring on the pre-gen8
  2069. * platform. So the semaphore between RCS and VCS2 is
  2070. * initialized as INVALID. Gen8 will initialize the
  2071. * sema between VCS2 and RCS later.
  2072. */
  2073. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2074. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2075. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2076. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2077. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2078. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2079. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2080. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2081. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2082. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2083. }
  2084. } else if (IS_GEN5(dev)) {
  2085. ring->add_request = pc_render_add_request;
  2086. ring->flush = gen4_render_ring_flush;
  2087. ring->get_seqno = pc_render_get_seqno;
  2088. ring->set_seqno = pc_render_set_seqno;
  2089. ring->irq_get = gen5_ring_get_irq;
  2090. ring->irq_put = gen5_ring_put_irq;
  2091. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2092. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2093. } else {
  2094. ring->add_request = i9xx_add_request;
  2095. if (INTEL_INFO(dev)->gen < 4)
  2096. ring->flush = gen2_render_ring_flush;
  2097. else
  2098. ring->flush = gen4_render_ring_flush;
  2099. ring->get_seqno = ring_get_seqno;
  2100. ring->set_seqno = ring_set_seqno;
  2101. if (IS_GEN2(dev)) {
  2102. ring->irq_get = i8xx_ring_get_irq;
  2103. ring->irq_put = i8xx_ring_put_irq;
  2104. } else {
  2105. ring->irq_get = i9xx_ring_get_irq;
  2106. ring->irq_put = i9xx_ring_put_irq;
  2107. }
  2108. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2109. }
  2110. ring->write_tail = ring_write_tail;
  2111. if (IS_HASWELL(dev))
  2112. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2113. else if (IS_GEN8(dev))
  2114. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2115. else if (INTEL_INFO(dev)->gen >= 6)
  2116. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2117. else if (INTEL_INFO(dev)->gen >= 4)
  2118. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2119. else if (IS_I830(dev) || IS_845G(dev))
  2120. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2121. else
  2122. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2123. ring->init_hw = init_render_ring;
  2124. ring->cleanup = render_ring_cleanup;
  2125. /* Workaround batchbuffer to combat CS tlb bug. */
  2126. if (HAS_BROKEN_CS_TLB(dev)) {
  2127. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2128. if (obj == NULL) {
  2129. DRM_ERROR("Failed to allocate batch bo\n");
  2130. return -ENOMEM;
  2131. }
  2132. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2133. if (ret != 0) {
  2134. drm_gem_object_unreference(&obj->base);
  2135. DRM_ERROR("Failed to ping batch bo\n");
  2136. return ret;
  2137. }
  2138. ring->scratch.obj = obj;
  2139. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2140. }
  2141. ret = intel_init_ring_buffer(dev, ring);
  2142. if (ret)
  2143. return ret;
  2144. if (INTEL_INFO(dev)->gen >= 5) {
  2145. ret = intel_init_pipe_control(ring);
  2146. if (ret)
  2147. return ret;
  2148. }
  2149. return 0;
  2150. }
  2151. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2152. {
  2153. struct drm_i915_private *dev_priv = dev->dev_private;
  2154. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2155. ring->name = "bsd ring";
  2156. ring->id = VCS;
  2157. ring->write_tail = ring_write_tail;
  2158. if (INTEL_INFO(dev)->gen >= 6) {
  2159. ring->mmio_base = GEN6_BSD_RING_BASE;
  2160. /* gen6 bsd needs a special wa for tail updates */
  2161. if (IS_GEN6(dev))
  2162. ring->write_tail = gen6_bsd_ring_write_tail;
  2163. ring->flush = gen6_bsd_ring_flush;
  2164. ring->add_request = gen6_add_request;
  2165. ring->get_seqno = gen6_ring_get_seqno;
  2166. ring->set_seqno = ring_set_seqno;
  2167. if (INTEL_INFO(dev)->gen >= 8) {
  2168. ring->irq_enable_mask =
  2169. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2170. ring->irq_get = gen8_ring_get_irq;
  2171. ring->irq_put = gen8_ring_put_irq;
  2172. ring->dispatch_execbuffer =
  2173. gen8_ring_dispatch_execbuffer;
  2174. if (i915_semaphore_is_enabled(dev)) {
  2175. ring->semaphore.sync_to = gen8_ring_sync;
  2176. ring->semaphore.signal = gen8_xcs_signal;
  2177. GEN8_RING_SEMAPHORE_INIT;
  2178. }
  2179. } else {
  2180. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2181. ring->irq_get = gen6_ring_get_irq;
  2182. ring->irq_put = gen6_ring_put_irq;
  2183. ring->dispatch_execbuffer =
  2184. gen6_ring_dispatch_execbuffer;
  2185. if (i915_semaphore_is_enabled(dev)) {
  2186. ring->semaphore.sync_to = gen6_ring_sync;
  2187. ring->semaphore.signal = gen6_signal;
  2188. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2189. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2190. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2191. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2192. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2193. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2194. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2195. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2196. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2197. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2198. }
  2199. }
  2200. } else {
  2201. ring->mmio_base = BSD_RING_BASE;
  2202. ring->flush = bsd_ring_flush;
  2203. ring->add_request = i9xx_add_request;
  2204. ring->get_seqno = ring_get_seqno;
  2205. ring->set_seqno = ring_set_seqno;
  2206. if (IS_GEN5(dev)) {
  2207. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2208. ring->irq_get = gen5_ring_get_irq;
  2209. ring->irq_put = gen5_ring_put_irq;
  2210. } else {
  2211. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2212. ring->irq_get = i9xx_ring_get_irq;
  2213. ring->irq_put = i9xx_ring_put_irq;
  2214. }
  2215. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2216. }
  2217. ring->init_hw = init_ring_common;
  2218. return intel_init_ring_buffer(dev, ring);
  2219. }
  2220. /**
  2221. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2222. */
  2223. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2224. {
  2225. struct drm_i915_private *dev_priv = dev->dev_private;
  2226. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2227. ring->name = "bsd2 ring";
  2228. ring->id = VCS2;
  2229. ring->write_tail = ring_write_tail;
  2230. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2231. ring->flush = gen6_bsd_ring_flush;
  2232. ring->add_request = gen6_add_request;
  2233. ring->get_seqno = gen6_ring_get_seqno;
  2234. ring->set_seqno = ring_set_seqno;
  2235. ring->irq_enable_mask =
  2236. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2237. ring->irq_get = gen8_ring_get_irq;
  2238. ring->irq_put = gen8_ring_put_irq;
  2239. ring->dispatch_execbuffer =
  2240. gen8_ring_dispatch_execbuffer;
  2241. if (i915_semaphore_is_enabled(dev)) {
  2242. ring->semaphore.sync_to = gen8_ring_sync;
  2243. ring->semaphore.signal = gen8_xcs_signal;
  2244. GEN8_RING_SEMAPHORE_INIT;
  2245. }
  2246. ring->init_hw = init_ring_common;
  2247. return intel_init_ring_buffer(dev, ring);
  2248. }
  2249. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2250. {
  2251. struct drm_i915_private *dev_priv = dev->dev_private;
  2252. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2253. ring->name = "blitter ring";
  2254. ring->id = BCS;
  2255. ring->mmio_base = BLT_RING_BASE;
  2256. ring->write_tail = ring_write_tail;
  2257. ring->flush = gen6_ring_flush;
  2258. ring->add_request = gen6_add_request;
  2259. ring->get_seqno = gen6_ring_get_seqno;
  2260. ring->set_seqno = ring_set_seqno;
  2261. if (INTEL_INFO(dev)->gen >= 8) {
  2262. ring->irq_enable_mask =
  2263. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2264. ring->irq_get = gen8_ring_get_irq;
  2265. ring->irq_put = gen8_ring_put_irq;
  2266. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2267. if (i915_semaphore_is_enabled(dev)) {
  2268. ring->semaphore.sync_to = gen8_ring_sync;
  2269. ring->semaphore.signal = gen8_xcs_signal;
  2270. GEN8_RING_SEMAPHORE_INIT;
  2271. }
  2272. } else {
  2273. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2274. ring->irq_get = gen6_ring_get_irq;
  2275. ring->irq_put = gen6_ring_put_irq;
  2276. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2277. if (i915_semaphore_is_enabled(dev)) {
  2278. ring->semaphore.signal = gen6_signal;
  2279. ring->semaphore.sync_to = gen6_ring_sync;
  2280. /*
  2281. * The current semaphore is only applied on pre-gen8
  2282. * platform. And there is no VCS2 ring on the pre-gen8
  2283. * platform. So the semaphore between BCS and VCS2 is
  2284. * initialized as INVALID. Gen8 will initialize the
  2285. * sema between BCS and VCS2 later.
  2286. */
  2287. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2288. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2289. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2290. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2291. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2292. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2293. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2294. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2295. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2296. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2297. }
  2298. }
  2299. ring->init_hw = init_ring_common;
  2300. return intel_init_ring_buffer(dev, ring);
  2301. }
  2302. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2303. {
  2304. struct drm_i915_private *dev_priv = dev->dev_private;
  2305. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2306. ring->name = "video enhancement ring";
  2307. ring->id = VECS;
  2308. ring->mmio_base = VEBOX_RING_BASE;
  2309. ring->write_tail = ring_write_tail;
  2310. ring->flush = gen6_ring_flush;
  2311. ring->add_request = gen6_add_request;
  2312. ring->get_seqno = gen6_ring_get_seqno;
  2313. ring->set_seqno = ring_set_seqno;
  2314. if (INTEL_INFO(dev)->gen >= 8) {
  2315. ring->irq_enable_mask =
  2316. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2317. ring->irq_get = gen8_ring_get_irq;
  2318. ring->irq_put = gen8_ring_put_irq;
  2319. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2320. if (i915_semaphore_is_enabled(dev)) {
  2321. ring->semaphore.sync_to = gen8_ring_sync;
  2322. ring->semaphore.signal = gen8_xcs_signal;
  2323. GEN8_RING_SEMAPHORE_INIT;
  2324. }
  2325. } else {
  2326. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2327. ring->irq_get = hsw_vebox_get_irq;
  2328. ring->irq_put = hsw_vebox_put_irq;
  2329. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2330. if (i915_semaphore_is_enabled(dev)) {
  2331. ring->semaphore.sync_to = gen6_ring_sync;
  2332. ring->semaphore.signal = gen6_signal;
  2333. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2334. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2335. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2336. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2337. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2338. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2339. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2340. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2341. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2342. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2343. }
  2344. }
  2345. ring->init_hw = init_ring_common;
  2346. return intel_init_ring_buffer(dev, ring);
  2347. }
  2348. int
  2349. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2350. {
  2351. int ret;
  2352. if (!ring->gpu_caches_dirty)
  2353. return 0;
  2354. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2355. if (ret)
  2356. return ret;
  2357. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2358. ring->gpu_caches_dirty = false;
  2359. return 0;
  2360. }
  2361. int
  2362. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2363. {
  2364. uint32_t flush_domains;
  2365. int ret;
  2366. flush_domains = 0;
  2367. if (ring->gpu_caches_dirty)
  2368. flush_domains = I915_GEM_GPU_DOMAINS;
  2369. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2370. if (ret)
  2371. return ret;
  2372. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2373. ring->gpu_caches_dirty = false;
  2374. return 0;
  2375. }
  2376. void
  2377. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2378. {
  2379. int ret;
  2380. if (!intel_ring_initialized(ring))
  2381. return;
  2382. ret = intel_ring_idle(ring);
  2383. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2384. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2385. ring->name, ret);
  2386. stop_ring(ring);
  2387. }