xfs_file.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_da_format.h"
  28. #include "xfs_da_btree.h"
  29. #include "xfs_inode.h"
  30. #include "xfs_trans.h"
  31. #include "xfs_inode_item.h"
  32. #include "xfs_bmap.h"
  33. #include "xfs_bmap_util.h"
  34. #include "xfs_error.h"
  35. #include "xfs_dir2.h"
  36. #include "xfs_dir2_priv.h"
  37. #include "xfs_ioctl.h"
  38. #include "xfs_trace.h"
  39. #include "xfs_log.h"
  40. #include "xfs_dinode.h"
  41. #include "xfs_icache.h"
  42. #include <linux/aio.h>
  43. #include <linux/dcache.h>
  44. #include <linux/falloc.h>
  45. #include <linux/pagevec.h>
  46. static const struct vm_operations_struct xfs_file_vm_ops;
  47. /*
  48. * Locking primitives for read and write IO paths to ensure we consistently use
  49. * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  50. */
  51. static inline void
  52. xfs_rw_ilock(
  53. struct xfs_inode *ip,
  54. int type)
  55. {
  56. if (type & XFS_IOLOCK_EXCL)
  57. mutex_lock(&VFS_I(ip)->i_mutex);
  58. xfs_ilock(ip, type);
  59. }
  60. static inline void
  61. xfs_rw_iunlock(
  62. struct xfs_inode *ip,
  63. int type)
  64. {
  65. xfs_iunlock(ip, type);
  66. if (type & XFS_IOLOCK_EXCL)
  67. mutex_unlock(&VFS_I(ip)->i_mutex);
  68. }
  69. static inline void
  70. xfs_rw_ilock_demote(
  71. struct xfs_inode *ip,
  72. int type)
  73. {
  74. xfs_ilock_demote(ip, type);
  75. if (type & XFS_IOLOCK_EXCL)
  76. mutex_unlock(&VFS_I(ip)->i_mutex);
  77. }
  78. /*
  79. * xfs_iozero
  80. *
  81. * xfs_iozero clears the specified range of buffer supplied,
  82. * and marks all the affected blocks as valid and modified. If
  83. * an affected block is not allocated, it will be allocated. If
  84. * an affected block is not completely overwritten, and is not
  85. * valid before the operation, it will be read from disk before
  86. * being partially zeroed.
  87. */
  88. int
  89. xfs_iozero(
  90. struct xfs_inode *ip, /* inode */
  91. loff_t pos, /* offset in file */
  92. size_t count) /* size of data to zero */
  93. {
  94. struct page *page;
  95. struct address_space *mapping;
  96. int status;
  97. mapping = VFS_I(ip)->i_mapping;
  98. do {
  99. unsigned offset, bytes;
  100. void *fsdata;
  101. offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
  102. bytes = PAGE_CACHE_SIZE - offset;
  103. if (bytes > count)
  104. bytes = count;
  105. status = pagecache_write_begin(NULL, mapping, pos, bytes,
  106. AOP_FLAG_UNINTERRUPTIBLE,
  107. &page, &fsdata);
  108. if (status)
  109. break;
  110. zero_user(page, offset, bytes);
  111. status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
  112. page, fsdata);
  113. WARN_ON(status <= 0); /* can't return less than zero! */
  114. pos += bytes;
  115. count -= bytes;
  116. status = 0;
  117. } while (count);
  118. return (-status);
  119. }
  120. /*
  121. * Fsync operations on directories are much simpler than on regular files,
  122. * as there is no file data to flush, and thus also no need for explicit
  123. * cache flush operations, and there are no non-transaction metadata updates
  124. * on directories either.
  125. */
  126. STATIC int
  127. xfs_dir_fsync(
  128. struct file *file,
  129. loff_t start,
  130. loff_t end,
  131. int datasync)
  132. {
  133. struct xfs_inode *ip = XFS_I(file->f_mapping->host);
  134. struct xfs_mount *mp = ip->i_mount;
  135. xfs_lsn_t lsn = 0;
  136. trace_xfs_dir_fsync(ip);
  137. xfs_ilock(ip, XFS_ILOCK_SHARED);
  138. if (xfs_ipincount(ip))
  139. lsn = ip->i_itemp->ili_last_lsn;
  140. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  141. if (!lsn)
  142. return 0;
  143. return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  144. }
  145. STATIC int
  146. xfs_file_fsync(
  147. struct file *file,
  148. loff_t start,
  149. loff_t end,
  150. int datasync)
  151. {
  152. struct inode *inode = file->f_mapping->host;
  153. struct xfs_inode *ip = XFS_I(inode);
  154. struct xfs_mount *mp = ip->i_mount;
  155. int error = 0;
  156. int log_flushed = 0;
  157. xfs_lsn_t lsn = 0;
  158. trace_xfs_file_fsync(ip);
  159. error = filemap_write_and_wait_range(inode->i_mapping, start, end);
  160. if (error)
  161. return error;
  162. if (XFS_FORCED_SHUTDOWN(mp))
  163. return -EIO;
  164. xfs_iflags_clear(ip, XFS_ITRUNCATED);
  165. if (mp->m_flags & XFS_MOUNT_BARRIER) {
  166. /*
  167. * If we have an RT and/or log subvolume we need to make sure
  168. * to flush the write cache the device used for file data
  169. * first. This is to ensure newly written file data make
  170. * it to disk before logging the new inode size in case of
  171. * an extending write.
  172. */
  173. if (XFS_IS_REALTIME_INODE(ip))
  174. xfs_blkdev_issue_flush(mp->m_rtdev_targp);
  175. else if (mp->m_logdev_targp != mp->m_ddev_targp)
  176. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  177. }
  178. /*
  179. * All metadata updates are logged, which means that we just have
  180. * to flush the log up to the latest LSN that touched the inode.
  181. */
  182. xfs_ilock(ip, XFS_ILOCK_SHARED);
  183. if (xfs_ipincount(ip)) {
  184. if (!datasync ||
  185. (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
  186. lsn = ip->i_itemp->ili_last_lsn;
  187. }
  188. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  189. if (lsn)
  190. error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
  191. /*
  192. * If we only have a single device, and the log force about was
  193. * a no-op we might have to flush the data device cache here.
  194. * This can only happen for fdatasync/O_DSYNC if we were overwriting
  195. * an already allocated file and thus do not have any metadata to
  196. * commit.
  197. */
  198. if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
  199. mp->m_logdev_targp == mp->m_ddev_targp &&
  200. !XFS_IS_REALTIME_INODE(ip) &&
  201. !log_flushed)
  202. xfs_blkdev_issue_flush(mp->m_ddev_targp);
  203. return error;
  204. }
  205. STATIC ssize_t
  206. xfs_file_read_iter(
  207. struct kiocb *iocb,
  208. struct iov_iter *to)
  209. {
  210. struct file *file = iocb->ki_filp;
  211. struct inode *inode = file->f_mapping->host;
  212. struct xfs_inode *ip = XFS_I(inode);
  213. struct xfs_mount *mp = ip->i_mount;
  214. size_t size = iov_iter_count(to);
  215. ssize_t ret = 0;
  216. int ioflags = 0;
  217. xfs_fsize_t n;
  218. loff_t pos = iocb->ki_pos;
  219. XFS_STATS_INC(xs_read_calls);
  220. if (unlikely(file->f_flags & O_DIRECT))
  221. ioflags |= XFS_IO_ISDIRECT;
  222. if (file->f_mode & FMODE_NOCMTIME)
  223. ioflags |= XFS_IO_INVIS;
  224. if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
  225. xfs_buftarg_t *target =
  226. XFS_IS_REALTIME_INODE(ip) ?
  227. mp->m_rtdev_targp : mp->m_ddev_targp;
  228. /* DIO must be aligned to device logical sector size */
  229. if ((pos | size) & target->bt_logical_sectormask) {
  230. if (pos == i_size_read(inode))
  231. return 0;
  232. return -EINVAL;
  233. }
  234. }
  235. n = mp->m_super->s_maxbytes - pos;
  236. if (n <= 0 || size == 0)
  237. return 0;
  238. if (n < size)
  239. size = n;
  240. if (XFS_FORCED_SHUTDOWN(mp))
  241. return -EIO;
  242. /*
  243. * Locking is a bit tricky here. If we take an exclusive lock
  244. * for direct IO, we effectively serialise all new concurrent
  245. * read IO to this file and block it behind IO that is currently in
  246. * progress because IO in progress holds the IO lock shared. We only
  247. * need to hold the lock exclusive to blow away the page cache, so
  248. * only take lock exclusively if the page cache needs invalidation.
  249. * This allows the normal direct IO case of no page cache pages to
  250. * proceeed concurrently without serialisation.
  251. */
  252. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  253. if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
  254. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  255. xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
  256. if (inode->i_mapping->nrpages) {
  257. ret = filemap_write_and_wait_range(
  258. VFS_I(ip)->i_mapping,
  259. pos, pos + size - 1);
  260. if (ret) {
  261. xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
  262. return ret;
  263. }
  264. /*
  265. * Invalidate whole pages. This can return an error if
  266. * we fail to invalidate a page, but this should never
  267. * happen on XFS. Warn if it does fail.
  268. */
  269. ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
  270. pos >> PAGE_CACHE_SHIFT,
  271. (pos + size - 1) >> PAGE_CACHE_SHIFT);
  272. WARN_ON_ONCE(ret);
  273. ret = 0;
  274. }
  275. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  276. }
  277. trace_xfs_file_read(ip, size, pos, ioflags);
  278. ret = generic_file_read_iter(iocb, to);
  279. if (ret > 0)
  280. XFS_STATS_ADD(xs_read_bytes, ret);
  281. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  282. return ret;
  283. }
  284. STATIC ssize_t
  285. xfs_file_splice_read(
  286. struct file *infilp,
  287. loff_t *ppos,
  288. struct pipe_inode_info *pipe,
  289. size_t count,
  290. unsigned int flags)
  291. {
  292. struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
  293. int ioflags = 0;
  294. ssize_t ret;
  295. XFS_STATS_INC(xs_read_calls);
  296. if (infilp->f_mode & FMODE_NOCMTIME)
  297. ioflags |= XFS_IO_INVIS;
  298. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  299. return -EIO;
  300. xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
  301. trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
  302. ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
  303. if (ret > 0)
  304. XFS_STATS_ADD(xs_read_bytes, ret);
  305. xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
  306. return ret;
  307. }
  308. /*
  309. * This routine is called to handle zeroing any space in the last block of the
  310. * file that is beyond the EOF. We do this since the size is being increased
  311. * without writing anything to that block and we don't want to read the
  312. * garbage on the disk.
  313. */
  314. STATIC int /* error (positive) */
  315. xfs_zero_last_block(
  316. struct xfs_inode *ip,
  317. xfs_fsize_t offset,
  318. xfs_fsize_t isize)
  319. {
  320. struct xfs_mount *mp = ip->i_mount;
  321. xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
  322. int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
  323. int zero_len;
  324. int nimaps = 1;
  325. int error = 0;
  326. struct xfs_bmbt_irec imap;
  327. xfs_ilock(ip, XFS_ILOCK_EXCL);
  328. error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
  329. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  330. if (error)
  331. return error;
  332. ASSERT(nimaps > 0);
  333. /*
  334. * If the block underlying isize is just a hole, then there
  335. * is nothing to zero.
  336. */
  337. if (imap.br_startblock == HOLESTARTBLOCK)
  338. return 0;
  339. zero_len = mp->m_sb.sb_blocksize - zero_offset;
  340. if (isize + zero_len > offset)
  341. zero_len = offset - isize;
  342. return xfs_iozero(ip, isize, zero_len);
  343. }
  344. /*
  345. * Zero any on disk space between the current EOF and the new, larger EOF.
  346. *
  347. * This handles the normal case of zeroing the remainder of the last block in
  348. * the file and the unusual case of zeroing blocks out beyond the size of the
  349. * file. This second case only happens with fixed size extents and when the
  350. * system crashes before the inode size was updated but after blocks were
  351. * allocated.
  352. *
  353. * Expects the iolock to be held exclusive, and will take the ilock internally.
  354. */
  355. int /* error (positive) */
  356. xfs_zero_eof(
  357. struct xfs_inode *ip,
  358. xfs_off_t offset, /* starting I/O offset */
  359. xfs_fsize_t isize) /* current inode size */
  360. {
  361. struct xfs_mount *mp = ip->i_mount;
  362. xfs_fileoff_t start_zero_fsb;
  363. xfs_fileoff_t end_zero_fsb;
  364. xfs_fileoff_t zero_count_fsb;
  365. xfs_fileoff_t last_fsb;
  366. xfs_fileoff_t zero_off;
  367. xfs_fsize_t zero_len;
  368. int nimaps;
  369. int error = 0;
  370. struct xfs_bmbt_irec imap;
  371. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  372. ASSERT(offset > isize);
  373. /*
  374. * First handle zeroing the block on which isize resides.
  375. *
  376. * We only zero a part of that block so it is handled specially.
  377. */
  378. if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
  379. error = xfs_zero_last_block(ip, offset, isize);
  380. if (error)
  381. return error;
  382. }
  383. /*
  384. * Calculate the range between the new size and the old where blocks
  385. * needing to be zeroed may exist.
  386. *
  387. * To get the block where the last byte in the file currently resides,
  388. * we need to subtract one from the size and truncate back to a block
  389. * boundary. We subtract 1 in case the size is exactly on a block
  390. * boundary.
  391. */
  392. last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
  393. start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  394. end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
  395. ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
  396. if (last_fsb == end_zero_fsb) {
  397. /*
  398. * The size was only incremented on its last block.
  399. * We took care of that above, so just return.
  400. */
  401. return 0;
  402. }
  403. ASSERT(start_zero_fsb <= end_zero_fsb);
  404. while (start_zero_fsb <= end_zero_fsb) {
  405. nimaps = 1;
  406. zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
  407. xfs_ilock(ip, XFS_ILOCK_EXCL);
  408. error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
  409. &imap, &nimaps, 0);
  410. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  411. if (error)
  412. return error;
  413. ASSERT(nimaps > 0);
  414. if (imap.br_state == XFS_EXT_UNWRITTEN ||
  415. imap.br_startblock == HOLESTARTBLOCK) {
  416. start_zero_fsb = imap.br_startoff + imap.br_blockcount;
  417. ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
  418. continue;
  419. }
  420. /*
  421. * There are blocks we need to zero.
  422. */
  423. zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
  424. zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
  425. if ((zero_off + zero_len) > offset)
  426. zero_len = offset - zero_off;
  427. error = xfs_iozero(ip, zero_off, zero_len);
  428. if (error)
  429. return error;
  430. start_zero_fsb = imap.br_startoff + imap.br_blockcount;
  431. ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
  432. }
  433. return 0;
  434. }
  435. /*
  436. * Common pre-write limit and setup checks.
  437. *
  438. * Called with the iolocked held either shared and exclusive according to
  439. * @iolock, and returns with it held. Might upgrade the iolock to exclusive
  440. * if called for a direct write beyond i_size.
  441. */
  442. STATIC ssize_t
  443. xfs_file_aio_write_checks(
  444. struct file *file,
  445. loff_t *pos,
  446. size_t *count,
  447. int *iolock)
  448. {
  449. struct inode *inode = file->f_mapping->host;
  450. struct xfs_inode *ip = XFS_I(inode);
  451. int error = 0;
  452. restart:
  453. error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
  454. if (error)
  455. return error;
  456. /*
  457. * If the offset is beyond the size of the file, we need to zero any
  458. * blocks that fall between the existing EOF and the start of this
  459. * write. If zeroing is needed and we are currently holding the
  460. * iolock shared, we need to update it to exclusive which implies
  461. * having to redo all checks before.
  462. */
  463. if (*pos > i_size_read(inode)) {
  464. if (*iolock == XFS_IOLOCK_SHARED) {
  465. xfs_rw_iunlock(ip, *iolock);
  466. *iolock = XFS_IOLOCK_EXCL;
  467. xfs_rw_ilock(ip, *iolock);
  468. goto restart;
  469. }
  470. error = xfs_zero_eof(ip, *pos, i_size_read(inode));
  471. if (error)
  472. return error;
  473. }
  474. /*
  475. * Updating the timestamps will grab the ilock again from
  476. * xfs_fs_dirty_inode, so we have to call it after dropping the
  477. * lock above. Eventually we should look into a way to avoid
  478. * the pointless lock roundtrip.
  479. */
  480. if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
  481. error = file_update_time(file);
  482. if (error)
  483. return error;
  484. }
  485. /*
  486. * If we're writing the file then make sure to clear the setuid and
  487. * setgid bits if the process is not being run by root. This keeps
  488. * people from modifying setuid and setgid binaries.
  489. */
  490. return file_remove_suid(file);
  491. }
  492. /*
  493. * xfs_file_dio_aio_write - handle direct IO writes
  494. *
  495. * Lock the inode appropriately to prepare for and issue a direct IO write.
  496. * By separating it from the buffered write path we remove all the tricky to
  497. * follow locking changes and looping.
  498. *
  499. * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
  500. * until we're sure the bytes at the new EOF have been zeroed and/or the cached
  501. * pages are flushed out.
  502. *
  503. * In most cases the direct IO writes will be done holding IOLOCK_SHARED
  504. * allowing them to be done in parallel with reads and other direct IO writes.
  505. * However, if the IO is not aligned to filesystem blocks, the direct IO layer
  506. * needs to do sub-block zeroing and that requires serialisation against other
  507. * direct IOs to the same block. In this case we need to serialise the
  508. * submission of the unaligned IOs so that we don't get racing block zeroing in
  509. * the dio layer. To avoid the problem with aio, we also need to wait for
  510. * outstanding IOs to complete so that unwritten extent conversion is completed
  511. * before we try to map the overlapping block. This is currently implemented by
  512. * hitting it with a big hammer (i.e. inode_dio_wait()).
  513. *
  514. * Returns with locks held indicated by @iolock and errors indicated by
  515. * negative return values.
  516. */
  517. STATIC ssize_t
  518. xfs_file_dio_aio_write(
  519. struct kiocb *iocb,
  520. struct iov_iter *from)
  521. {
  522. struct file *file = iocb->ki_filp;
  523. struct address_space *mapping = file->f_mapping;
  524. struct inode *inode = mapping->host;
  525. struct xfs_inode *ip = XFS_I(inode);
  526. struct xfs_mount *mp = ip->i_mount;
  527. ssize_t ret = 0;
  528. int unaligned_io = 0;
  529. int iolock;
  530. size_t count = iov_iter_count(from);
  531. loff_t pos = iocb->ki_pos;
  532. struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
  533. mp->m_rtdev_targp : mp->m_ddev_targp;
  534. /* DIO must be aligned to device logical sector size */
  535. if ((pos | count) & target->bt_logical_sectormask)
  536. return -EINVAL;
  537. /* "unaligned" here means not aligned to a filesystem block */
  538. if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
  539. unaligned_io = 1;
  540. /*
  541. * We don't need to take an exclusive lock unless there page cache needs
  542. * to be invalidated or unaligned IO is being executed. We don't need to
  543. * consider the EOF extension case here because
  544. * xfs_file_aio_write_checks() will relock the inode as necessary for
  545. * EOF zeroing cases and fill out the new inode size as appropriate.
  546. */
  547. if (unaligned_io || mapping->nrpages)
  548. iolock = XFS_IOLOCK_EXCL;
  549. else
  550. iolock = XFS_IOLOCK_SHARED;
  551. xfs_rw_ilock(ip, iolock);
  552. /*
  553. * Recheck if there are cached pages that need invalidate after we got
  554. * the iolock to protect against other threads adding new pages while
  555. * we were waiting for the iolock.
  556. */
  557. if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
  558. xfs_rw_iunlock(ip, iolock);
  559. iolock = XFS_IOLOCK_EXCL;
  560. xfs_rw_ilock(ip, iolock);
  561. }
  562. ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
  563. if (ret)
  564. goto out;
  565. iov_iter_truncate(from, count);
  566. if (mapping->nrpages) {
  567. ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
  568. pos, pos + count - 1);
  569. if (ret)
  570. goto out;
  571. /*
  572. * Invalidate whole pages. This can return an error if
  573. * we fail to invalidate a page, but this should never
  574. * happen on XFS. Warn if it does fail.
  575. */
  576. ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
  577. pos >> PAGE_CACHE_SHIFT,
  578. (pos + count - 1) >> PAGE_CACHE_SHIFT);
  579. WARN_ON_ONCE(ret);
  580. ret = 0;
  581. }
  582. /*
  583. * If we are doing unaligned IO, wait for all other IO to drain,
  584. * otherwise demote the lock if we had to flush cached pages
  585. */
  586. if (unaligned_io)
  587. inode_dio_wait(inode);
  588. else if (iolock == XFS_IOLOCK_EXCL) {
  589. xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
  590. iolock = XFS_IOLOCK_SHARED;
  591. }
  592. trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
  593. ret = generic_file_direct_write(iocb, from, pos);
  594. out:
  595. xfs_rw_iunlock(ip, iolock);
  596. /* No fallback to buffered IO on errors for XFS. */
  597. ASSERT(ret < 0 || ret == count);
  598. return ret;
  599. }
  600. STATIC ssize_t
  601. xfs_file_buffered_aio_write(
  602. struct kiocb *iocb,
  603. struct iov_iter *from)
  604. {
  605. struct file *file = iocb->ki_filp;
  606. struct address_space *mapping = file->f_mapping;
  607. struct inode *inode = mapping->host;
  608. struct xfs_inode *ip = XFS_I(inode);
  609. ssize_t ret;
  610. int enospc = 0;
  611. int iolock = XFS_IOLOCK_EXCL;
  612. loff_t pos = iocb->ki_pos;
  613. size_t count = iov_iter_count(from);
  614. xfs_rw_ilock(ip, iolock);
  615. ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
  616. if (ret)
  617. goto out;
  618. iov_iter_truncate(from, count);
  619. /* We can write back this queue in page reclaim */
  620. current->backing_dev_info = mapping->backing_dev_info;
  621. write_retry:
  622. trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
  623. ret = generic_perform_write(file, from, pos);
  624. if (likely(ret >= 0))
  625. iocb->ki_pos = pos + ret;
  626. /*
  627. * If we hit a space limit, try to free up some lingering preallocated
  628. * space before returning an error. In the case of ENOSPC, first try to
  629. * write back all dirty inodes to free up some of the excess reserved
  630. * metadata space. This reduces the chances that the eofblocks scan
  631. * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
  632. * also behaves as a filter to prevent too many eofblocks scans from
  633. * running at the same time.
  634. */
  635. if (ret == -EDQUOT && !enospc) {
  636. enospc = xfs_inode_free_quota_eofblocks(ip);
  637. if (enospc)
  638. goto write_retry;
  639. } else if (ret == -ENOSPC && !enospc) {
  640. struct xfs_eofblocks eofb = {0};
  641. enospc = 1;
  642. xfs_flush_inodes(ip->i_mount);
  643. eofb.eof_scan_owner = ip->i_ino; /* for locking */
  644. eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
  645. xfs_icache_free_eofblocks(ip->i_mount, &eofb);
  646. goto write_retry;
  647. }
  648. current->backing_dev_info = NULL;
  649. out:
  650. xfs_rw_iunlock(ip, iolock);
  651. return ret;
  652. }
  653. STATIC ssize_t
  654. xfs_file_write_iter(
  655. struct kiocb *iocb,
  656. struct iov_iter *from)
  657. {
  658. struct file *file = iocb->ki_filp;
  659. struct address_space *mapping = file->f_mapping;
  660. struct inode *inode = mapping->host;
  661. struct xfs_inode *ip = XFS_I(inode);
  662. ssize_t ret;
  663. size_t ocount = iov_iter_count(from);
  664. XFS_STATS_INC(xs_write_calls);
  665. if (ocount == 0)
  666. return 0;
  667. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  668. return -EIO;
  669. if (unlikely(file->f_flags & O_DIRECT))
  670. ret = xfs_file_dio_aio_write(iocb, from);
  671. else
  672. ret = xfs_file_buffered_aio_write(iocb, from);
  673. if (ret > 0) {
  674. ssize_t err;
  675. XFS_STATS_ADD(xs_write_bytes, ret);
  676. /* Handle various SYNC-type writes */
  677. err = generic_write_sync(file, iocb->ki_pos - ret, ret);
  678. if (err < 0)
  679. ret = err;
  680. }
  681. return ret;
  682. }
  683. STATIC long
  684. xfs_file_fallocate(
  685. struct file *file,
  686. int mode,
  687. loff_t offset,
  688. loff_t len)
  689. {
  690. struct inode *inode = file_inode(file);
  691. struct xfs_inode *ip = XFS_I(inode);
  692. struct xfs_trans *tp;
  693. long error;
  694. loff_t new_size = 0;
  695. if (!S_ISREG(inode->i_mode))
  696. return -EINVAL;
  697. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  698. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
  699. return -EOPNOTSUPP;
  700. xfs_ilock(ip, XFS_IOLOCK_EXCL);
  701. if (mode & FALLOC_FL_PUNCH_HOLE) {
  702. error = xfs_free_file_space(ip, offset, len);
  703. if (error)
  704. goto out_unlock;
  705. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  706. unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
  707. if (offset & blksize_mask || len & blksize_mask) {
  708. error = -EINVAL;
  709. goto out_unlock;
  710. }
  711. /*
  712. * There is no need to overlap collapse range with EOF,
  713. * in which case it is effectively a truncate operation
  714. */
  715. if (offset + len >= i_size_read(inode)) {
  716. error = -EINVAL;
  717. goto out_unlock;
  718. }
  719. new_size = i_size_read(inode) - len;
  720. error = xfs_collapse_file_space(ip, offset, len);
  721. if (error)
  722. goto out_unlock;
  723. } else {
  724. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  725. offset + len > i_size_read(inode)) {
  726. new_size = offset + len;
  727. error = inode_newsize_ok(inode, new_size);
  728. if (error)
  729. goto out_unlock;
  730. }
  731. if (mode & FALLOC_FL_ZERO_RANGE)
  732. error = xfs_zero_file_space(ip, offset, len);
  733. else
  734. error = xfs_alloc_file_space(ip, offset, len,
  735. XFS_BMAPI_PREALLOC);
  736. if (error)
  737. goto out_unlock;
  738. }
  739. tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
  740. error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
  741. if (error) {
  742. xfs_trans_cancel(tp, 0);
  743. goto out_unlock;
  744. }
  745. xfs_ilock(ip, XFS_ILOCK_EXCL);
  746. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  747. ip->i_d.di_mode &= ~S_ISUID;
  748. if (ip->i_d.di_mode & S_IXGRP)
  749. ip->i_d.di_mode &= ~S_ISGID;
  750. if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
  751. ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  752. xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  753. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  754. if (file->f_flags & O_DSYNC)
  755. xfs_trans_set_sync(tp);
  756. error = xfs_trans_commit(tp, 0);
  757. if (error)
  758. goto out_unlock;
  759. /* Change file size if needed */
  760. if (new_size) {
  761. struct iattr iattr;
  762. iattr.ia_valid = ATTR_SIZE;
  763. iattr.ia_size = new_size;
  764. error = xfs_setattr_size(ip, &iattr);
  765. }
  766. out_unlock:
  767. xfs_iunlock(ip, XFS_IOLOCK_EXCL);
  768. return error;
  769. }
  770. STATIC int
  771. xfs_file_open(
  772. struct inode *inode,
  773. struct file *file)
  774. {
  775. if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
  776. return -EFBIG;
  777. if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
  778. return -EIO;
  779. return 0;
  780. }
  781. STATIC int
  782. xfs_dir_open(
  783. struct inode *inode,
  784. struct file *file)
  785. {
  786. struct xfs_inode *ip = XFS_I(inode);
  787. int mode;
  788. int error;
  789. error = xfs_file_open(inode, file);
  790. if (error)
  791. return error;
  792. /*
  793. * If there are any blocks, read-ahead block 0 as we're almost
  794. * certain to have the next operation be a read there.
  795. */
  796. mode = xfs_ilock_data_map_shared(ip);
  797. if (ip->i_d.di_nextents > 0)
  798. xfs_dir3_data_readahead(ip, 0, -1);
  799. xfs_iunlock(ip, mode);
  800. return 0;
  801. }
  802. STATIC int
  803. xfs_file_release(
  804. struct inode *inode,
  805. struct file *filp)
  806. {
  807. return xfs_release(XFS_I(inode));
  808. }
  809. STATIC int
  810. xfs_file_readdir(
  811. struct file *file,
  812. struct dir_context *ctx)
  813. {
  814. struct inode *inode = file_inode(file);
  815. xfs_inode_t *ip = XFS_I(inode);
  816. size_t bufsize;
  817. /*
  818. * The Linux API doesn't pass down the total size of the buffer
  819. * we read into down to the filesystem. With the filldir concept
  820. * it's not needed for correct information, but the XFS dir2 leaf
  821. * code wants an estimate of the buffer size to calculate it's
  822. * readahead window and size the buffers used for mapping to
  823. * physical blocks.
  824. *
  825. * Try to give it an estimate that's good enough, maybe at some
  826. * point we can change the ->readdir prototype to include the
  827. * buffer size. For now we use the current glibc buffer size.
  828. */
  829. bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
  830. return xfs_readdir(ip, ctx, bufsize);
  831. }
  832. STATIC int
  833. xfs_file_mmap(
  834. struct file *filp,
  835. struct vm_area_struct *vma)
  836. {
  837. vma->vm_ops = &xfs_file_vm_ops;
  838. file_accessed(filp);
  839. return 0;
  840. }
  841. /*
  842. * mmap()d file has taken write protection fault and is being made
  843. * writable. We can set the page state up correctly for a writable
  844. * page, which means we can do correct delalloc accounting (ENOSPC
  845. * checking!) and unwritten extent mapping.
  846. */
  847. STATIC int
  848. xfs_vm_page_mkwrite(
  849. struct vm_area_struct *vma,
  850. struct vm_fault *vmf)
  851. {
  852. return block_page_mkwrite(vma, vmf, xfs_get_blocks);
  853. }
  854. /*
  855. * This type is designed to indicate the type of offset we would like
  856. * to search from page cache for xfs_seek_hole_data().
  857. */
  858. enum {
  859. HOLE_OFF = 0,
  860. DATA_OFF,
  861. };
  862. /*
  863. * Lookup the desired type of offset from the given page.
  864. *
  865. * On success, return true and the offset argument will point to the
  866. * start of the region that was found. Otherwise this function will
  867. * return false and keep the offset argument unchanged.
  868. */
  869. STATIC bool
  870. xfs_lookup_buffer_offset(
  871. struct page *page,
  872. loff_t *offset,
  873. unsigned int type)
  874. {
  875. loff_t lastoff = page_offset(page);
  876. bool found = false;
  877. struct buffer_head *bh, *head;
  878. bh = head = page_buffers(page);
  879. do {
  880. /*
  881. * Unwritten extents that have data in the page
  882. * cache covering them can be identified by the
  883. * BH_Unwritten state flag. Pages with multiple
  884. * buffers might have a mix of holes, data and
  885. * unwritten extents - any buffer with valid
  886. * data in it should have BH_Uptodate flag set
  887. * on it.
  888. */
  889. if (buffer_unwritten(bh) ||
  890. buffer_uptodate(bh)) {
  891. if (type == DATA_OFF)
  892. found = true;
  893. } else {
  894. if (type == HOLE_OFF)
  895. found = true;
  896. }
  897. if (found) {
  898. *offset = lastoff;
  899. break;
  900. }
  901. lastoff += bh->b_size;
  902. } while ((bh = bh->b_this_page) != head);
  903. return found;
  904. }
  905. /*
  906. * This routine is called to find out and return a data or hole offset
  907. * from the page cache for unwritten extents according to the desired
  908. * type for xfs_seek_hole_data().
  909. *
  910. * The argument offset is used to tell where we start to search from the
  911. * page cache. Map is used to figure out the end points of the range to
  912. * lookup pages.
  913. *
  914. * Return true if the desired type of offset was found, and the argument
  915. * offset is filled with that address. Otherwise, return false and keep
  916. * offset unchanged.
  917. */
  918. STATIC bool
  919. xfs_find_get_desired_pgoff(
  920. struct inode *inode,
  921. struct xfs_bmbt_irec *map,
  922. unsigned int type,
  923. loff_t *offset)
  924. {
  925. struct xfs_inode *ip = XFS_I(inode);
  926. struct xfs_mount *mp = ip->i_mount;
  927. struct pagevec pvec;
  928. pgoff_t index;
  929. pgoff_t end;
  930. loff_t endoff;
  931. loff_t startoff = *offset;
  932. loff_t lastoff = startoff;
  933. bool found = false;
  934. pagevec_init(&pvec, 0);
  935. index = startoff >> PAGE_CACHE_SHIFT;
  936. endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
  937. end = endoff >> PAGE_CACHE_SHIFT;
  938. do {
  939. int want;
  940. unsigned nr_pages;
  941. unsigned int i;
  942. want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
  943. nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
  944. want);
  945. /*
  946. * No page mapped into given range. If we are searching holes
  947. * and if this is the first time we got into the loop, it means
  948. * that the given offset is landed in a hole, return it.
  949. *
  950. * If we have already stepped through some block buffers to find
  951. * holes but they all contains data. In this case, the last
  952. * offset is already updated and pointed to the end of the last
  953. * mapped page, if it does not reach the endpoint to search,
  954. * that means there should be a hole between them.
  955. */
  956. if (nr_pages == 0) {
  957. /* Data search found nothing */
  958. if (type == DATA_OFF)
  959. break;
  960. ASSERT(type == HOLE_OFF);
  961. if (lastoff == startoff || lastoff < endoff) {
  962. found = true;
  963. *offset = lastoff;
  964. }
  965. break;
  966. }
  967. /*
  968. * At lease we found one page. If this is the first time we
  969. * step into the loop, and if the first page index offset is
  970. * greater than the given search offset, a hole was found.
  971. */
  972. if (type == HOLE_OFF && lastoff == startoff &&
  973. lastoff < page_offset(pvec.pages[0])) {
  974. found = true;
  975. break;
  976. }
  977. for (i = 0; i < nr_pages; i++) {
  978. struct page *page = pvec.pages[i];
  979. loff_t b_offset;
  980. /*
  981. * At this point, the page may be truncated or
  982. * invalidated (changing page->mapping to NULL),
  983. * or even swizzled back from swapper_space to tmpfs
  984. * file mapping. However, page->index will not change
  985. * because we have a reference on the page.
  986. *
  987. * Searching done if the page index is out of range.
  988. * If the current offset is not reaches the end of
  989. * the specified search range, there should be a hole
  990. * between them.
  991. */
  992. if (page->index > end) {
  993. if (type == HOLE_OFF && lastoff < endoff) {
  994. *offset = lastoff;
  995. found = true;
  996. }
  997. goto out;
  998. }
  999. lock_page(page);
  1000. /*
  1001. * Page truncated or invalidated(page->mapping == NULL).
  1002. * We can freely skip it and proceed to check the next
  1003. * page.
  1004. */
  1005. if (unlikely(page->mapping != inode->i_mapping)) {
  1006. unlock_page(page);
  1007. continue;
  1008. }
  1009. if (!page_has_buffers(page)) {
  1010. unlock_page(page);
  1011. continue;
  1012. }
  1013. found = xfs_lookup_buffer_offset(page, &b_offset, type);
  1014. if (found) {
  1015. /*
  1016. * The found offset may be less than the start
  1017. * point to search if this is the first time to
  1018. * come here.
  1019. */
  1020. *offset = max_t(loff_t, startoff, b_offset);
  1021. unlock_page(page);
  1022. goto out;
  1023. }
  1024. /*
  1025. * We either searching data but nothing was found, or
  1026. * searching hole but found a data buffer. In either
  1027. * case, probably the next page contains the desired
  1028. * things, update the last offset to it so.
  1029. */
  1030. lastoff = page_offset(page) + PAGE_SIZE;
  1031. unlock_page(page);
  1032. }
  1033. /*
  1034. * The number of returned pages less than our desired, search
  1035. * done. In this case, nothing was found for searching data,
  1036. * but we found a hole behind the last offset.
  1037. */
  1038. if (nr_pages < want) {
  1039. if (type == HOLE_OFF) {
  1040. *offset = lastoff;
  1041. found = true;
  1042. }
  1043. break;
  1044. }
  1045. index = pvec.pages[i - 1]->index + 1;
  1046. pagevec_release(&pvec);
  1047. } while (index <= end);
  1048. out:
  1049. pagevec_release(&pvec);
  1050. return found;
  1051. }
  1052. STATIC loff_t
  1053. xfs_seek_hole_data(
  1054. struct file *file,
  1055. loff_t start,
  1056. int whence)
  1057. {
  1058. struct inode *inode = file->f_mapping->host;
  1059. struct xfs_inode *ip = XFS_I(inode);
  1060. struct xfs_mount *mp = ip->i_mount;
  1061. loff_t uninitialized_var(offset);
  1062. xfs_fsize_t isize;
  1063. xfs_fileoff_t fsbno;
  1064. xfs_filblks_t end;
  1065. uint lock;
  1066. int error;
  1067. if (XFS_FORCED_SHUTDOWN(mp))
  1068. return -EIO;
  1069. lock = xfs_ilock_data_map_shared(ip);
  1070. isize = i_size_read(inode);
  1071. if (start >= isize) {
  1072. error = -ENXIO;
  1073. goto out_unlock;
  1074. }
  1075. /*
  1076. * Try to read extents from the first block indicated
  1077. * by fsbno to the end block of the file.
  1078. */
  1079. fsbno = XFS_B_TO_FSBT(mp, start);
  1080. end = XFS_B_TO_FSB(mp, isize);
  1081. for (;;) {
  1082. struct xfs_bmbt_irec map[2];
  1083. int nmap = 2;
  1084. unsigned int i;
  1085. error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
  1086. XFS_BMAPI_ENTIRE);
  1087. if (error)
  1088. goto out_unlock;
  1089. /* No extents at given offset, must be beyond EOF */
  1090. if (nmap == 0) {
  1091. error = -ENXIO;
  1092. goto out_unlock;
  1093. }
  1094. for (i = 0; i < nmap; i++) {
  1095. offset = max_t(loff_t, start,
  1096. XFS_FSB_TO_B(mp, map[i].br_startoff));
  1097. /* Landed in the hole we wanted? */
  1098. if (whence == SEEK_HOLE &&
  1099. map[i].br_startblock == HOLESTARTBLOCK)
  1100. goto out;
  1101. /* Landed in the data extent we wanted? */
  1102. if (whence == SEEK_DATA &&
  1103. (map[i].br_startblock == DELAYSTARTBLOCK ||
  1104. (map[i].br_state == XFS_EXT_NORM &&
  1105. !isnullstartblock(map[i].br_startblock))))
  1106. goto out;
  1107. /*
  1108. * Landed in an unwritten extent, try to search
  1109. * for hole or data from page cache.
  1110. */
  1111. if (map[i].br_state == XFS_EXT_UNWRITTEN) {
  1112. if (xfs_find_get_desired_pgoff(inode, &map[i],
  1113. whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
  1114. &offset))
  1115. goto out;
  1116. }
  1117. }
  1118. /*
  1119. * We only received one extent out of the two requested. This
  1120. * means we've hit EOF and didn't find what we are looking for.
  1121. */
  1122. if (nmap == 1) {
  1123. /*
  1124. * If we were looking for a hole, set offset to
  1125. * the end of the file (i.e., there is an implicit
  1126. * hole at the end of any file).
  1127. */
  1128. if (whence == SEEK_HOLE) {
  1129. offset = isize;
  1130. break;
  1131. }
  1132. /*
  1133. * If we were looking for data, it's nowhere to be found
  1134. */
  1135. ASSERT(whence == SEEK_DATA);
  1136. error = -ENXIO;
  1137. goto out_unlock;
  1138. }
  1139. ASSERT(i > 1);
  1140. /*
  1141. * Nothing was found, proceed to the next round of search
  1142. * if the next reading offset is not at or beyond EOF.
  1143. */
  1144. fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
  1145. start = XFS_FSB_TO_B(mp, fsbno);
  1146. if (start >= isize) {
  1147. if (whence == SEEK_HOLE) {
  1148. offset = isize;
  1149. break;
  1150. }
  1151. ASSERT(whence == SEEK_DATA);
  1152. error = -ENXIO;
  1153. goto out_unlock;
  1154. }
  1155. }
  1156. out:
  1157. /*
  1158. * If at this point we have found the hole we wanted, the returned
  1159. * offset may be bigger than the file size as it may be aligned to
  1160. * page boundary for unwritten extents. We need to deal with this
  1161. * situation in particular.
  1162. */
  1163. if (whence == SEEK_HOLE)
  1164. offset = min_t(loff_t, offset, isize);
  1165. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  1166. out_unlock:
  1167. xfs_iunlock(ip, lock);
  1168. if (error)
  1169. return error;
  1170. return offset;
  1171. }
  1172. STATIC loff_t
  1173. xfs_file_llseek(
  1174. struct file *file,
  1175. loff_t offset,
  1176. int whence)
  1177. {
  1178. switch (whence) {
  1179. case SEEK_END:
  1180. case SEEK_CUR:
  1181. case SEEK_SET:
  1182. return generic_file_llseek(file, offset, whence);
  1183. case SEEK_HOLE:
  1184. case SEEK_DATA:
  1185. return xfs_seek_hole_data(file, offset, whence);
  1186. default:
  1187. return -EINVAL;
  1188. }
  1189. }
  1190. const struct file_operations xfs_file_operations = {
  1191. .llseek = xfs_file_llseek,
  1192. .read = new_sync_read,
  1193. .write = new_sync_write,
  1194. .read_iter = xfs_file_read_iter,
  1195. .write_iter = xfs_file_write_iter,
  1196. .splice_read = xfs_file_splice_read,
  1197. .splice_write = iter_file_splice_write,
  1198. .unlocked_ioctl = xfs_file_ioctl,
  1199. #ifdef CONFIG_COMPAT
  1200. .compat_ioctl = xfs_file_compat_ioctl,
  1201. #endif
  1202. .mmap = xfs_file_mmap,
  1203. .open = xfs_file_open,
  1204. .release = xfs_file_release,
  1205. .fsync = xfs_file_fsync,
  1206. .fallocate = xfs_file_fallocate,
  1207. };
  1208. const struct file_operations xfs_dir_file_operations = {
  1209. .open = xfs_dir_open,
  1210. .read = generic_read_dir,
  1211. .iterate = xfs_file_readdir,
  1212. .llseek = generic_file_llseek,
  1213. .unlocked_ioctl = xfs_file_ioctl,
  1214. #ifdef CONFIG_COMPAT
  1215. .compat_ioctl = xfs_file_compat_ioctl,
  1216. #endif
  1217. .fsync = xfs_dir_fsync,
  1218. };
  1219. static const struct vm_operations_struct xfs_file_vm_ops = {
  1220. .fault = filemap_fault,
  1221. .map_pages = filemap_map_pages,
  1222. .page_mkwrite = xfs_vm_page_mkwrite,
  1223. .remap_pages = generic_file_remap_pages,
  1224. };