i915_request.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <linux/prefetch.h>
  25. #include <linux/dma-fence-array.h>
  26. #include <linux/sched.h>
  27. #include <linux/sched/clock.h>
  28. #include <linux/sched/signal.h>
  29. #include "i915_drv.h"
  30. static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  31. {
  32. return "i915";
  33. }
  34. static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  35. {
  36. /*
  37. * The timeline struct (as part of the ppgtt underneath a context)
  38. * may be freed when the request is no longer in use by the GPU.
  39. * We could extend the life of a context to beyond that of all
  40. * fences, possibly keeping the hw resource around indefinitely,
  41. * or we just give them a false name. Since
  42. * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  43. * lie seems justifiable.
  44. */
  45. if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  46. return "signaled";
  47. return to_request(fence)->timeline->common->name;
  48. }
  49. static bool i915_fence_signaled(struct dma_fence *fence)
  50. {
  51. return i915_request_completed(to_request(fence));
  52. }
  53. static bool i915_fence_enable_signaling(struct dma_fence *fence)
  54. {
  55. return intel_engine_enable_signaling(to_request(fence), true);
  56. }
  57. static signed long i915_fence_wait(struct dma_fence *fence,
  58. bool interruptible,
  59. signed long timeout)
  60. {
  61. return i915_request_wait(to_request(fence), interruptible, timeout);
  62. }
  63. static void i915_fence_release(struct dma_fence *fence)
  64. {
  65. struct i915_request *rq = to_request(fence);
  66. /*
  67. * The request is put onto a RCU freelist (i.e. the address
  68. * is immediately reused), mark the fences as being freed now.
  69. * Otherwise the debugobjects for the fences are only marked as
  70. * freed when the slab cache itself is freed, and so we would get
  71. * caught trying to reuse dead objects.
  72. */
  73. i915_sw_fence_fini(&rq->submit);
  74. kmem_cache_free(rq->i915->requests, rq);
  75. }
  76. const struct dma_fence_ops i915_fence_ops = {
  77. .get_driver_name = i915_fence_get_driver_name,
  78. .get_timeline_name = i915_fence_get_timeline_name,
  79. .enable_signaling = i915_fence_enable_signaling,
  80. .signaled = i915_fence_signaled,
  81. .wait = i915_fence_wait,
  82. .release = i915_fence_release,
  83. };
  84. static inline void
  85. i915_request_remove_from_client(struct i915_request *request)
  86. {
  87. struct drm_i915_file_private *file_priv;
  88. file_priv = request->file_priv;
  89. if (!file_priv)
  90. return;
  91. spin_lock(&file_priv->mm.lock);
  92. if (request->file_priv) {
  93. list_del(&request->client_link);
  94. request->file_priv = NULL;
  95. }
  96. spin_unlock(&file_priv->mm.lock);
  97. }
  98. static struct i915_dependency *
  99. i915_dependency_alloc(struct drm_i915_private *i915)
  100. {
  101. return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
  102. }
  103. static void
  104. i915_dependency_free(struct drm_i915_private *i915,
  105. struct i915_dependency *dep)
  106. {
  107. kmem_cache_free(i915->dependencies, dep);
  108. }
  109. static void
  110. __i915_priotree_add_dependency(struct i915_priotree *pt,
  111. struct i915_priotree *signal,
  112. struct i915_dependency *dep,
  113. unsigned long flags)
  114. {
  115. INIT_LIST_HEAD(&dep->dfs_link);
  116. list_add(&dep->wait_link, &signal->waiters_list);
  117. list_add(&dep->signal_link, &pt->signalers_list);
  118. dep->signaler = signal;
  119. dep->flags = flags;
  120. }
  121. static int
  122. i915_priotree_add_dependency(struct drm_i915_private *i915,
  123. struct i915_priotree *pt,
  124. struct i915_priotree *signal)
  125. {
  126. struct i915_dependency *dep;
  127. dep = i915_dependency_alloc(i915);
  128. if (!dep)
  129. return -ENOMEM;
  130. __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
  131. return 0;
  132. }
  133. static void
  134. i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
  135. {
  136. struct i915_dependency *dep, *next;
  137. GEM_BUG_ON(!list_empty(&pt->link));
  138. /*
  139. * Everyone we depended upon (the fences we wait to be signaled)
  140. * should retire before us and remove themselves from our list.
  141. * However, retirement is run independently on each timeline and
  142. * so we may be called out-of-order.
  143. */
  144. list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
  145. GEM_BUG_ON(!i915_priotree_signaled(dep->signaler));
  146. GEM_BUG_ON(!list_empty(&dep->dfs_link));
  147. list_del(&dep->wait_link);
  148. if (dep->flags & I915_DEPENDENCY_ALLOC)
  149. i915_dependency_free(i915, dep);
  150. }
  151. /* Remove ourselves from everyone who depends upon us */
  152. list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
  153. GEM_BUG_ON(dep->signaler != pt);
  154. GEM_BUG_ON(!list_empty(&dep->dfs_link));
  155. list_del(&dep->signal_link);
  156. if (dep->flags & I915_DEPENDENCY_ALLOC)
  157. i915_dependency_free(i915, dep);
  158. }
  159. }
  160. static void
  161. i915_priotree_init(struct i915_priotree *pt)
  162. {
  163. INIT_LIST_HEAD(&pt->signalers_list);
  164. INIT_LIST_HEAD(&pt->waiters_list);
  165. INIT_LIST_HEAD(&pt->link);
  166. pt->priority = I915_PRIORITY_INVALID;
  167. }
  168. static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
  169. {
  170. struct intel_engine_cs *engine;
  171. enum intel_engine_id id;
  172. int ret;
  173. /* Carefully retire all requests without writing to the rings */
  174. ret = i915_gem_wait_for_idle(i915,
  175. I915_WAIT_INTERRUPTIBLE |
  176. I915_WAIT_LOCKED);
  177. if (ret)
  178. return ret;
  179. GEM_BUG_ON(i915->gt.active_requests);
  180. /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
  181. for_each_engine(engine, i915, id) {
  182. struct i915_gem_timeline *timeline;
  183. struct intel_timeline *tl = engine->timeline;
  184. GEM_TRACE("%s seqno %d (current %d) -> %d\n",
  185. engine->name,
  186. tl->seqno,
  187. intel_engine_get_seqno(engine),
  188. seqno);
  189. if (!i915_seqno_passed(seqno, tl->seqno)) {
  190. /* Flush any waiters before we reuse the seqno */
  191. intel_engine_disarm_breadcrumbs(engine);
  192. GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
  193. }
  194. /* Check we are idle before we fiddle with hw state! */
  195. GEM_BUG_ON(!intel_engine_is_idle(engine));
  196. GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
  197. /* Finally reset hw state */
  198. intel_engine_init_global_seqno(engine, seqno);
  199. tl->seqno = seqno;
  200. list_for_each_entry(timeline, &i915->gt.timelines, link)
  201. memset(timeline->engine[id].global_sync, 0,
  202. sizeof(timeline->engine[id].global_sync));
  203. }
  204. return 0;
  205. }
  206. int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
  207. {
  208. struct drm_i915_private *i915 = to_i915(dev);
  209. lockdep_assert_held(&i915->drm.struct_mutex);
  210. if (seqno == 0)
  211. return -EINVAL;
  212. /* HWS page needs to be set less than what we will inject to ring */
  213. return reset_all_global_seqno(i915, seqno - 1);
  214. }
  215. static int reserve_engine(struct intel_engine_cs *engine)
  216. {
  217. struct drm_i915_private *i915 = engine->i915;
  218. u32 active = ++engine->timeline->inflight_seqnos;
  219. u32 seqno = engine->timeline->seqno;
  220. int ret;
  221. /* Reservation is fine until we need to wrap around */
  222. if (unlikely(add_overflows(seqno, active))) {
  223. ret = reset_all_global_seqno(i915, 0);
  224. if (ret) {
  225. engine->timeline->inflight_seqnos--;
  226. return ret;
  227. }
  228. }
  229. if (!i915->gt.active_requests++)
  230. i915_gem_unpark(i915);
  231. return 0;
  232. }
  233. static void unreserve_engine(struct intel_engine_cs *engine)
  234. {
  235. struct drm_i915_private *i915 = engine->i915;
  236. if (!--i915->gt.active_requests)
  237. i915_gem_park(i915);
  238. GEM_BUG_ON(!engine->timeline->inflight_seqnos);
  239. engine->timeline->inflight_seqnos--;
  240. }
  241. void i915_gem_retire_noop(struct i915_gem_active *active,
  242. struct i915_request *request)
  243. {
  244. /* Space left intentionally blank */
  245. }
  246. static void advance_ring(struct i915_request *request)
  247. {
  248. unsigned int tail;
  249. /*
  250. * We know the GPU must have read the request to have
  251. * sent us the seqno + interrupt, so use the position
  252. * of tail of the request to update the last known position
  253. * of the GPU head.
  254. *
  255. * Note this requires that we are always called in request
  256. * completion order.
  257. */
  258. if (list_is_last(&request->ring_link, &request->ring->request_list)) {
  259. /*
  260. * We may race here with execlists resubmitting this request
  261. * as we retire it. The resubmission will move the ring->tail
  262. * forwards (to request->wa_tail). We either read the
  263. * current value that was written to hw, or the value that
  264. * is just about to be. Either works, if we miss the last two
  265. * noops - they are safe to be replayed on a reset.
  266. */
  267. tail = READ_ONCE(request->tail);
  268. } else {
  269. tail = request->postfix;
  270. }
  271. list_del(&request->ring_link);
  272. request->ring->head = tail;
  273. }
  274. static void free_capture_list(struct i915_request *request)
  275. {
  276. struct i915_capture_list *capture;
  277. capture = request->capture_list;
  278. while (capture) {
  279. struct i915_capture_list *next = capture->next;
  280. kfree(capture);
  281. capture = next;
  282. }
  283. }
  284. static void i915_request_retire(struct i915_request *request)
  285. {
  286. struct intel_engine_cs *engine = request->engine;
  287. struct i915_gem_active *active, *next;
  288. GEM_TRACE("%s fence %llx:%d, global_seqno %d, current %d\n",
  289. engine->name,
  290. request->fence.context, request->fence.seqno,
  291. request->global_seqno,
  292. intel_engine_get_seqno(engine));
  293. lockdep_assert_held(&request->i915->drm.struct_mutex);
  294. GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
  295. GEM_BUG_ON(!i915_request_completed(request));
  296. GEM_BUG_ON(!request->i915->gt.active_requests);
  297. trace_i915_request_retire(request);
  298. spin_lock_irq(&engine->timeline->lock);
  299. list_del_init(&request->link);
  300. spin_unlock_irq(&engine->timeline->lock);
  301. unreserve_engine(request->engine);
  302. advance_ring(request);
  303. free_capture_list(request);
  304. /*
  305. * Walk through the active list, calling retire on each. This allows
  306. * objects to track their GPU activity and mark themselves as idle
  307. * when their *last* active request is completed (updating state
  308. * tracking lists for eviction, active references for GEM, etc).
  309. *
  310. * As the ->retire() may free the node, we decouple it first and
  311. * pass along the auxiliary information (to avoid dereferencing
  312. * the node after the callback).
  313. */
  314. list_for_each_entry_safe(active, next, &request->active_list, link) {
  315. /*
  316. * In microbenchmarks or focusing upon time inside the kernel,
  317. * we may spend an inordinate amount of time simply handling
  318. * the retirement of requests and processing their callbacks.
  319. * Of which, this loop itself is particularly hot due to the
  320. * cache misses when jumping around the list of i915_gem_active.
  321. * So we try to keep this loop as streamlined as possible and
  322. * also prefetch the next i915_gem_active to try and hide
  323. * the likely cache miss.
  324. */
  325. prefetchw(next);
  326. INIT_LIST_HEAD(&active->link);
  327. RCU_INIT_POINTER(active->request, NULL);
  328. active->retire(active, request);
  329. }
  330. i915_request_remove_from_client(request);
  331. /* Retirement decays the ban score as it is a sign of ctx progress */
  332. atomic_dec_if_positive(&request->ctx->ban_score);
  333. /*
  334. * The backing object for the context is done after switching to the
  335. * *next* context. Therefore we cannot retire the previous context until
  336. * the next context has already started running. However, since we
  337. * cannot take the required locks at i915_request_submit() we
  338. * defer the unpinning of the active context to now, retirement of
  339. * the subsequent request.
  340. */
  341. if (engine->last_retired_context)
  342. engine->context_unpin(engine, engine->last_retired_context);
  343. engine->last_retired_context = request->ctx;
  344. spin_lock_irq(&request->lock);
  345. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags))
  346. dma_fence_signal_locked(&request->fence);
  347. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
  348. intel_engine_cancel_signaling(request);
  349. if (request->waitboost) {
  350. GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters));
  351. atomic_dec(&request->i915->gt_pm.rps.num_waiters);
  352. }
  353. spin_unlock_irq(&request->lock);
  354. i915_priotree_fini(request->i915, &request->priotree);
  355. i915_request_put(request);
  356. }
  357. void i915_request_retire_upto(struct i915_request *rq)
  358. {
  359. struct intel_engine_cs *engine = rq->engine;
  360. struct i915_request *tmp;
  361. lockdep_assert_held(&rq->i915->drm.struct_mutex);
  362. GEM_BUG_ON(!i915_request_completed(rq));
  363. if (list_empty(&rq->link))
  364. return;
  365. do {
  366. tmp = list_first_entry(&engine->timeline->requests,
  367. typeof(*tmp), link);
  368. i915_request_retire(tmp);
  369. } while (tmp != rq);
  370. }
  371. static u32 timeline_get_seqno(struct intel_timeline *tl)
  372. {
  373. return ++tl->seqno;
  374. }
  375. static void move_to_timeline(struct i915_request *request,
  376. struct intel_timeline *timeline)
  377. {
  378. GEM_BUG_ON(request->timeline == request->engine->timeline);
  379. lockdep_assert_held(&request->engine->timeline->lock);
  380. spin_lock(&request->timeline->lock);
  381. list_move_tail(&request->link, &timeline->requests);
  382. spin_unlock(&request->timeline->lock);
  383. }
  384. void __i915_request_submit(struct i915_request *request)
  385. {
  386. struct intel_engine_cs *engine = request->engine;
  387. u32 seqno;
  388. GEM_TRACE("%s fence %llx:%d -> global_seqno %d, current %d\n",
  389. engine->name,
  390. request->fence.context, request->fence.seqno,
  391. engine->timeline->seqno + 1,
  392. intel_engine_get_seqno(engine));
  393. GEM_BUG_ON(!irqs_disabled());
  394. lockdep_assert_held(&engine->timeline->lock);
  395. GEM_BUG_ON(request->global_seqno);
  396. seqno = timeline_get_seqno(engine->timeline);
  397. GEM_BUG_ON(!seqno);
  398. GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
  399. /* We may be recursing from the signal callback of another i915 fence */
  400. spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
  401. request->global_seqno = seqno;
  402. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
  403. intel_engine_enable_signaling(request, false);
  404. spin_unlock(&request->lock);
  405. engine->emit_breadcrumb(request,
  406. request->ring->vaddr + request->postfix);
  407. /* Transfer from per-context onto the global per-engine timeline */
  408. move_to_timeline(request, engine->timeline);
  409. trace_i915_request_execute(request);
  410. wake_up_all(&request->execute);
  411. }
  412. void i915_request_submit(struct i915_request *request)
  413. {
  414. struct intel_engine_cs *engine = request->engine;
  415. unsigned long flags;
  416. /* Will be called from irq-context when using foreign fences. */
  417. spin_lock_irqsave(&engine->timeline->lock, flags);
  418. __i915_request_submit(request);
  419. spin_unlock_irqrestore(&engine->timeline->lock, flags);
  420. }
  421. void __i915_request_unsubmit(struct i915_request *request)
  422. {
  423. struct intel_engine_cs *engine = request->engine;
  424. GEM_TRACE("%s fence %llx:%d <- global_seqno %d, current %d\n",
  425. engine->name,
  426. request->fence.context, request->fence.seqno,
  427. request->global_seqno,
  428. intel_engine_get_seqno(engine));
  429. GEM_BUG_ON(!irqs_disabled());
  430. lockdep_assert_held(&engine->timeline->lock);
  431. /*
  432. * Only unwind in reverse order, required so that the per-context list
  433. * is kept in seqno/ring order.
  434. */
  435. GEM_BUG_ON(!request->global_seqno);
  436. GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
  437. GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
  438. request->global_seqno));
  439. engine->timeline->seqno--;
  440. /* We may be recursing from the signal callback of another i915 fence */
  441. spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
  442. request->global_seqno = 0;
  443. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
  444. intel_engine_cancel_signaling(request);
  445. spin_unlock(&request->lock);
  446. /* Transfer back from the global per-engine timeline to per-context */
  447. move_to_timeline(request, request->timeline);
  448. /*
  449. * We don't need to wake_up any waiters on request->execute, they
  450. * will get woken by any other event or us re-adding this request
  451. * to the engine timeline (__i915_request_submit()). The waiters
  452. * should be quite adapt at finding that the request now has a new
  453. * global_seqno to the one they went to sleep on.
  454. */
  455. }
  456. void i915_request_unsubmit(struct i915_request *request)
  457. {
  458. struct intel_engine_cs *engine = request->engine;
  459. unsigned long flags;
  460. /* Will be called from irq-context when using foreign fences. */
  461. spin_lock_irqsave(&engine->timeline->lock, flags);
  462. __i915_request_unsubmit(request);
  463. spin_unlock_irqrestore(&engine->timeline->lock, flags);
  464. }
  465. static int __i915_sw_fence_call
  466. submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
  467. {
  468. struct i915_request *request =
  469. container_of(fence, typeof(*request), submit);
  470. switch (state) {
  471. case FENCE_COMPLETE:
  472. trace_i915_request_submit(request);
  473. /*
  474. * We need to serialize use of the submit_request() callback
  475. * with its hotplugging performed during an emergency
  476. * i915_gem_set_wedged(). We use the RCU mechanism to mark the
  477. * critical section in order to force i915_gem_set_wedged() to
  478. * wait until the submit_request() is completed before
  479. * proceeding.
  480. */
  481. rcu_read_lock();
  482. request->engine->submit_request(request);
  483. rcu_read_unlock();
  484. break;
  485. case FENCE_FREE:
  486. i915_request_put(request);
  487. break;
  488. }
  489. return NOTIFY_DONE;
  490. }
  491. /**
  492. * i915_request_alloc - allocate a request structure
  493. *
  494. * @engine: engine that we wish to issue the request on.
  495. * @ctx: context that the request will be associated with.
  496. *
  497. * Returns a pointer to the allocated request if successful,
  498. * or an error code if not.
  499. */
  500. struct i915_request *
  501. i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
  502. {
  503. struct drm_i915_private *i915 = engine->i915;
  504. struct i915_request *rq;
  505. struct intel_ring *ring;
  506. int ret;
  507. lockdep_assert_held(&i915->drm.struct_mutex);
  508. /*
  509. * Preempt contexts are reserved for exclusive use to inject a
  510. * preemption context switch. They are never to be used for any trivial
  511. * request!
  512. */
  513. GEM_BUG_ON(ctx == i915->preempt_context);
  514. /*
  515. * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
  516. * EIO if the GPU is already wedged.
  517. */
  518. if (i915_terminally_wedged(&i915->gpu_error))
  519. return ERR_PTR(-EIO);
  520. /*
  521. * Pinning the contexts may generate requests in order to acquire
  522. * GGTT space, so do this first before we reserve a seqno for
  523. * ourselves.
  524. */
  525. ring = engine->context_pin(engine, ctx);
  526. if (IS_ERR(ring))
  527. return ERR_CAST(ring);
  528. GEM_BUG_ON(!ring);
  529. ret = reserve_engine(engine);
  530. if (ret)
  531. goto err_unpin;
  532. ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
  533. if (ret)
  534. goto err_unreserve;
  535. /* Move the oldest request to the slab-cache (if not in use!) */
  536. rq = list_first_entry_or_null(&engine->timeline->requests,
  537. typeof(*rq), link);
  538. if (rq && i915_request_completed(rq))
  539. i915_request_retire(rq);
  540. /*
  541. * Beware: Dragons be flying overhead.
  542. *
  543. * We use RCU to look up requests in flight. The lookups may
  544. * race with the request being allocated from the slab freelist.
  545. * That is the request we are writing to here, may be in the process
  546. * of being read by __i915_gem_active_get_rcu(). As such,
  547. * we have to be very careful when overwriting the contents. During
  548. * the RCU lookup, we change chase the request->engine pointer,
  549. * read the request->global_seqno and increment the reference count.
  550. *
  551. * The reference count is incremented atomically. If it is zero,
  552. * the lookup knows the request is unallocated and complete. Otherwise,
  553. * it is either still in use, or has been reallocated and reset
  554. * with dma_fence_init(). This increment is safe for release as we
  555. * check that the request we have a reference to and matches the active
  556. * request.
  557. *
  558. * Before we increment the refcount, we chase the request->engine
  559. * pointer. We must not call kmem_cache_zalloc() or else we set
  560. * that pointer to NULL and cause a crash during the lookup. If
  561. * we see the request is completed (based on the value of the
  562. * old engine and seqno), the lookup is complete and reports NULL.
  563. * If we decide the request is not completed (new engine or seqno),
  564. * then we grab a reference and double check that it is still the
  565. * active request - which it won't be and restart the lookup.
  566. *
  567. * Do not use kmem_cache_zalloc() here!
  568. */
  569. rq = kmem_cache_alloc(i915->requests,
  570. GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
  571. if (unlikely(!rq)) {
  572. /* Ratelimit ourselves to prevent oom from malicious clients */
  573. ret = i915_gem_wait_for_idle(i915,
  574. I915_WAIT_LOCKED |
  575. I915_WAIT_INTERRUPTIBLE);
  576. if (ret)
  577. goto err_unreserve;
  578. /*
  579. * We've forced the client to stall and catch up with whatever
  580. * backlog there might have been. As we are assuming that we
  581. * caused the mempressure, now is an opportune time to
  582. * recover as much memory from the request pool as is possible.
  583. * Having already penalized the client to stall, we spend
  584. * a little extra time to re-optimise page allocation.
  585. */
  586. kmem_cache_shrink(i915->requests);
  587. rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
  588. rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
  589. if (!rq) {
  590. ret = -ENOMEM;
  591. goto err_unreserve;
  592. }
  593. }
  594. rq->timeline = i915_gem_context_lookup_timeline(ctx, engine);
  595. GEM_BUG_ON(rq->timeline == engine->timeline);
  596. spin_lock_init(&rq->lock);
  597. dma_fence_init(&rq->fence,
  598. &i915_fence_ops,
  599. &rq->lock,
  600. rq->timeline->fence_context,
  601. timeline_get_seqno(rq->timeline));
  602. /* We bump the ref for the fence chain */
  603. i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
  604. init_waitqueue_head(&rq->execute);
  605. i915_priotree_init(&rq->priotree);
  606. INIT_LIST_HEAD(&rq->active_list);
  607. rq->i915 = i915;
  608. rq->engine = engine;
  609. rq->ctx = ctx;
  610. rq->ring = ring;
  611. /* No zalloc, must clear what we need by hand */
  612. rq->global_seqno = 0;
  613. rq->signaling.wait.seqno = 0;
  614. rq->file_priv = NULL;
  615. rq->batch = NULL;
  616. rq->capture_list = NULL;
  617. rq->waitboost = false;
  618. /*
  619. * Reserve space in the ring buffer for all the commands required to
  620. * eventually emit this request. This is to guarantee that the
  621. * i915_request_add() call can't fail. Note that the reserve may need
  622. * to be redone if the request is not actually submitted straight
  623. * away, e.g. because a GPU scheduler has deferred it.
  624. */
  625. rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
  626. GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
  627. /*
  628. * Record the position of the start of the request so that
  629. * should we detect the updated seqno part-way through the
  630. * GPU processing the request, we never over-estimate the
  631. * position of the head.
  632. */
  633. rq->head = rq->ring->emit;
  634. /* Unconditionally invalidate GPU caches and TLBs. */
  635. ret = engine->emit_flush(rq, EMIT_INVALIDATE);
  636. if (ret)
  637. goto err_unwind;
  638. ret = engine->request_alloc(rq);
  639. if (ret)
  640. goto err_unwind;
  641. /* Check that we didn't interrupt ourselves with a new request */
  642. GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
  643. return rq;
  644. err_unwind:
  645. rq->ring->emit = rq->head;
  646. /* Make sure we didn't add ourselves to external state before freeing */
  647. GEM_BUG_ON(!list_empty(&rq->active_list));
  648. GEM_BUG_ON(!list_empty(&rq->priotree.signalers_list));
  649. GEM_BUG_ON(!list_empty(&rq->priotree.waiters_list));
  650. kmem_cache_free(i915->requests, rq);
  651. err_unreserve:
  652. unreserve_engine(engine);
  653. err_unpin:
  654. engine->context_unpin(engine, ctx);
  655. return ERR_PTR(ret);
  656. }
  657. static int
  658. i915_request_await_request(struct i915_request *to, struct i915_request *from)
  659. {
  660. int ret;
  661. GEM_BUG_ON(to == from);
  662. GEM_BUG_ON(to->timeline == from->timeline);
  663. if (i915_request_completed(from))
  664. return 0;
  665. if (to->engine->schedule) {
  666. ret = i915_priotree_add_dependency(to->i915,
  667. &to->priotree,
  668. &from->priotree);
  669. if (ret < 0)
  670. return ret;
  671. }
  672. if (to->engine == from->engine) {
  673. ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
  674. &from->submit,
  675. I915_FENCE_GFP);
  676. return ret < 0 ? ret : 0;
  677. }
  678. if (to->engine->semaphore.sync_to) {
  679. u32 seqno;
  680. GEM_BUG_ON(!from->engine->semaphore.signal);
  681. seqno = i915_request_global_seqno(from);
  682. if (!seqno)
  683. goto await_dma_fence;
  684. if (seqno <= to->timeline->global_sync[from->engine->id])
  685. return 0;
  686. trace_i915_gem_ring_sync_to(to, from);
  687. ret = to->engine->semaphore.sync_to(to, from);
  688. if (ret)
  689. return ret;
  690. to->timeline->global_sync[from->engine->id] = seqno;
  691. return 0;
  692. }
  693. await_dma_fence:
  694. ret = i915_sw_fence_await_dma_fence(&to->submit,
  695. &from->fence, 0,
  696. I915_FENCE_GFP);
  697. return ret < 0 ? ret : 0;
  698. }
  699. int
  700. i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
  701. {
  702. struct dma_fence **child = &fence;
  703. unsigned int nchild = 1;
  704. int ret;
  705. /*
  706. * Note that if the fence-array was created in signal-on-any mode,
  707. * we should *not* decompose it into its individual fences. However,
  708. * we don't currently store which mode the fence-array is operating
  709. * in. Fortunately, the only user of signal-on-any is private to
  710. * amdgpu and we should not see any incoming fence-array from
  711. * sync-file being in signal-on-any mode.
  712. */
  713. if (dma_fence_is_array(fence)) {
  714. struct dma_fence_array *array = to_dma_fence_array(fence);
  715. child = array->fences;
  716. nchild = array->num_fences;
  717. GEM_BUG_ON(!nchild);
  718. }
  719. do {
  720. fence = *child++;
  721. if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  722. continue;
  723. /*
  724. * Requests on the same timeline are explicitly ordered, along
  725. * with their dependencies, by i915_request_add() which ensures
  726. * that requests are submitted in-order through each ring.
  727. */
  728. if (fence->context == rq->fence.context)
  729. continue;
  730. /* Squash repeated waits to the same timelines */
  731. if (fence->context != rq->i915->mm.unordered_timeline &&
  732. intel_timeline_sync_is_later(rq->timeline, fence))
  733. continue;
  734. if (dma_fence_is_i915(fence))
  735. ret = i915_request_await_request(rq, to_request(fence));
  736. else
  737. ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
  738. I915_FENCE_TIMEOUT,
  739. I915_FENCE_GFP);
  740. if (ret < 0)
  741. return ret;
  742. /* Record the latest fence used against each timeline */
  743. if (fence->context != rq->i915->mm.unordered_timeline)
  744. intel_timeline_sync_set(rq->timeline, fence);
  745. } while (--nchild);
  746. return 0;
  747. }
  748. /**
  749. * i915_request_await_object - set this request to (async) wait upon a bo
  750. * @to: request we are wishing to use
  751. * @obj: object which may be in use on another ring.
  752. * @write: whether the wait is on behalf of a writer
  753. *
  754. * This code is meant to abstract object synchronization with the GPU.
  755. * Conceptually we serialise writes between engines inside the GPU.
  756. * We only allow one engine to write into a buffer at any time, but
  757. * multiple readers. To ensure each has a coherent view of memory, we must:
  758. *
  759. * - If there is an outstanding write request to the object, the new
  760. * request must wait for it to complete (either CPU or in hw, requests
  761. * on the same ring will be naturally ordered).
  762. *
  763. * - If we are a write request (pending_write_domain is set), the new
  764. * request must wait for outstanding read requests to complete.
  765. *
  766. * Returns 0 if successful, else propagates up the lower layer error.
  767. */
  768. int
  769. i915_request_await_object(struct i915_request *to,
  770. struct drm_i915_gem_object *obj,
  771. bool write)
  772. {
  773. struct dma_fence *excl;
  774. int ret = 0;
  775. if (write) {
  776. struct dma_fence **shared;
  777. unsigned int count, i;
  778. ret = reservation_object_get_fences_rcu(obj->resv,
  779. &excl, &count, &shared);
  780. if (ret)
  781. return ret;
  782. for (i = 0; i < count; i++) {
  783. ret = i915_request_await_dma_fence(to, shared[i]);
  784. if (ret)
  785. break;
  786. dma_fence_put(shared[i]);
  787. }
  788. for (; i < count; i++)
  789. dma_fence_put(shared[i]);
  790. kfree(shared);
  791. } else {
  792. excl = reservation_object_get_excl_rcu(obj->resv);
  793. }
  794. if (excl) {
  795. if (ret == 0)
  796. ret = i915_request_await_dma_fence(to, excl);
  797. dma_fence_put(excl);
  798. }
  799. return ret;
  800. }
  801. /*
  802. * NB: This function is not allowed to fail. Doing so would mean the the
  803. * request is not being tracked for completion but the work itself is
  804. * going to happen on the hardware. This would be a Bad Thing(tm).
  805. */
  806. void __i915_request_add(struct i915_request *request, bool flush_caches)
  807. {
  808. struct intel_engine_cs *engine = request->engine;
  809. struct intel_ring *ring = request->ring;
  810. struct intel_timeline *timeline = request->timeline;
  811. struct i915_request *prev;
  812. u32 *cs;
  813. int err;
  814. GEM_TRACE("%s fence %llx:%d\n",
  815. engine->name, request->fence.context, request->fence.seqno);
  816. lockdep_assert_held(&request->i915->drm.struct_mutex);
  817. trace_i915_request_add(request);
  818. /*
  819. * Make sure that no request gazumped us - if it was allocated after
  820. * our i915_request_alloc() and called __i915_request_add() before
  821. * us, the timeline will hold its seqno which is later than ours.
  822. */
  823. GEM_BUG_ON(timeline->seqno != request->fence.seqno);
  824. /*
  825. * To ensure that this call will not fail, space for its emissions
  826. * should already have been reserved in the ring buffer. Let the ring
  827. * know that it is time to use that space up.
  828. */
  829. request->reserved_space = 0;
  830. /*
  831. * Emit any outstanding flushes - execbuf can fail to emit the flush
  832. * after having emitted the batchbuffer command. Hence we need to fix
  833. * things up similar to emitting the lazy request. The difference here
  834. * is that the flush _must_ happen before the next request, no matter
  835. * what.
  836. */
  837. if (flush_caches) {
  838. err = engine->emit_flush(request, EMIT_FLUSH);
  839. /* Not allowed to fail! */
  840. WARN(err, "engine->emit_flush() failed: %d!\n", err);
  841. }
  842. /*
  843. * Record the position of the start of the breadcrumb so that
  844. * should we detect the updated seqno part-way through the
  845. * GPU processing the request, we never over-estimate the
  846. * position of the ring's HEAD.
  847. */
  848. cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
  849. GEM_BUG_ON(IS_ERR(cs));
  850. request->postfix = intel_ring_offset(request, cs);
  851. /*
  852. * Seal the request and mark it as pending execution. Note that
  853. * we may inspect this state, without holding any locks, during
  854. * hangcheck. Hence we apply the barrier to ensure that we do not
  855. * see a more recent value in the hws than we are tracking.
  856. */
  857. prev = i915_gem_active_raw(&timeline->last_request,
  858. &request->i915->drm.struct_mutex);
  859. if (prev && !i915_request_completed(prev)) {
  860. i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
  861. &request->submitq);
  862. if (engine->schedule)
  863. __i915_priotree_add_dependency(&request->priotree,
  864. &prev->priotree,
  865. &request->dep,
  866. 0);
  867. }
  868. spin_lock_irq(&timeline->lock);
  869. list_add_tail(&request->link, &timeline->requests);
  870. spin_unlock_irq(&timeline->lock);
  871. GEM_BUG_ON(timeline->seqno != request->fence.seqno);
  872. i915_gem_active_set(&timeline->last_request, request);
  873. list_add_tail(&request->ring_link, &ring->request_list);
  874. request->emitted_jiffies = jiffies;
  875. /*
  876. * Let the backend know a new request has arrived that may need
  877. * to adjust the existing execution schedule due to a high priority
  878. * request - i.e. we may want to preempt the current request in order
  879. * to run a high priority dependency chain *before* we can execute this
  880. * request.
  881. *
  882. * This is called before the request is ready to run so that we can
  883. * decide whether to preempt the entire chain so that it is ready to
  884. * run at the earliest possible convenience.
  885. */
  886. rcu_read_lock();
  887. if (engine->schedule)
  888. engine->schedule(request, request->ctx->priority);
  889. rcu_read_unlock();
  890. local_bh_disable();
  891. i915_sw_fence_commit(&request->submit);
  892. local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
  893. /*
  894. * In typical scenarios, we do not expect the previous request on
  895. * the timeline to be still tracked by timeline->last_request if it
  896. * has been completed. If the completed request is still here, that
  897. * implies that request retirement is a long way behind submission,
  898. * suggesting that we haven't been retiring frequently enough from
  899. * the combination of retire-before-alloc, waiters and the background
  900. * retirement worker. So if the last request on this timeline was
  901. * already completed, do a catch up pass, flushing the retirement queue
  902. * up to this client. Since we have now moved the heaviest operations
  903. * during retirement onto secondary workers, such as freeing objects
  904. * or contexts, retiring a bunch of requests is mostly list management
  905. * (and cache misses), and so we should not be overly penalizing this
  906. * client by performing excess work, though we may still performing
  907. * work on behalf of others -- but instead we should benefit from
  908. * improved resource management. (Well, that's the theory at least.)
  909. */
  910. if (prev && i915_request_completed(prev))
  911. i915_request_retire_upto(prev);
  912. }
  913. static unsigned long local_clock_us(unsigned int *cpu)
  914. {
  915. unsigned long t;
  916. /*
  917. * Cheaply and approximately convert from nanoseconds to microseconds.
  918. * The result and subsequent calculations are also defined in the same
  919. * approximate microseconds units. The principal source of timing
  920. * error here is from the simple truncation.
  921. *
  922. * Note that local_clock() is only defined wrt to the current CPU;
  923. * the comparisons are no longer valid if we switch CPUs. Instead of
  924. * blocking preemption for the entire busywait, we can detect the CPU
  925. * switch and use that as indicator of system load and a reason to
  926. * stop busywaiting, see busywait_stop().
  927. */
  928. *cpu = get_cpu();
  929. t = local_clock() >> 10;
  930. put_cpu();
  931. return t;
  932. }
  933. static bool busywait_stop(unsigned long timeout, unsigned int cpu)
  934. {
  935. unsigned int this_cpu;
  936. if (time_after(local_clock_us(&this_cpu), timeout))
  937. return true;
  938. return this_cpu != cpu;
  939. }
  940. static bool __i915_spin_request(const struct i915_request *rq,
  941. u32 seqno, int state, unsigned long timeout_us)
  942. {
  943. struct intel_engine_cs *engine = rq->engine;
  944. unsigned int irq, cpu;
  945. GEM_BUG_ON(!seqno);
  946. /*
  947. * Only wait for the request if we know it is likely to complete.
  948. *
  949. * We don't track the timestamps around requests, nor the average
  950. * request length, so we do not have a good indicator that this
  951. * request will complete within the timeout. What we do know is the
  952. * order in which requests are executed by the engine and so we can
  953. * tell if the request has started. If the request hasn't started yet,
  954. * it is a fair assumption that it will not complete within our
  955. * relatively short timeout.
  956. */
  957. if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
  958. return false;
  959. /*
  960. * When waiting for high frequency requests, e.g. during synchronous
  961. * rendering split between the CPU and GPU, the finite amount of time
  962. * required to set up the irq and wait upon it limits the response
  963. * rate. By busywaiting on the request completion for a short while we
  964. * can service the high frequency waits as quick as possible. However,
  965. * if it is a slow request, we want to sleep as quickly as possible.
  966. * The tradeoff between waiting and sleeping is roughly the time it
  967. * takes to sleep on a request, on the order of a microsecond.
  968. */
  969. irq = atomic_read(&engine->irq_count);
  970. timeout_us += local_clock_us(&cpu);
  971. do {
  972. if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
  973. return seqno == i915_request_global_seqno(rq);
  974. /*
  975. * Seqno are meant to be ordered *before* the interrupt. If
  976. * we see an interrupt without a corresponding seqno advance,
  977. * assume we won't see one in the near future but require
  978. * the engine->seqno_barrier() to fixup coherency.
  979. */
  980. if (atomic_read(&engine->irq_count) != irq)
  981. break;
  982. if (signal_pending_state(state, current))
  983. break;
  984. if (busywait_stop(timeout_us, cpu))
  985. break;
  986. cpu_relax();
  987. } while (!need_resched());
  988. return false;
  989. }
  990. static bool __i915_wait_request_check_and_reset(struct i915_request *request)
  991. {
  992. if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
  993. return false;
  994. __set_current_state(TASK_RUNNING);
  995. i915_reset(request->i915);
  996. return true;
  997. }
  998. /**
  999. * i915_request_wait - wait until execution of request has finished
  1000. * @rq: the request to wait upon
  1001. * @flags: how to wait
  1002. * @timeout: how long to wait in jiffies
  1003. *
  1004. * i915_request_wait() waits for the request to be completed, for a
  1005. * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
  1006. * unbounded wait).
  1007. *
  1008. * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
  1009. * in via the flags, and vice versa if the struct_mutex is not held, the caller
  1010. * must not specify that the wait is locked.
  1011. *
  1012. * Returns the remaining time (in jiffies) if the request completed, which may
  1013. * be zero or -ETIME if the request is unfinished after the timeout expires.
  1014. * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
  1015. * pending before the request completes.
  1016. */
  1017. long i915_request_wait(struct i915_request *rq,
  1018. unsigned int flags,
  1019. long timeout)
  1020. {
  1021. const int state = flags & I915_WAIT_INTERRUPTIBLE ?
  1022. TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
  1023. wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
  1024. DEFINE_WAIT_FUNC(reset, default_wake_function);
  1025. DEFINE_WAIT_FUNC(exec, default_wake_function);
  1026. struct intel_wait wait;
  1027. might_sleep();
  1028. #if IS_ENABLED(CONFIG_LOCKDEP)
  1029. GEM_BUG_ON(debug_locks &&
  1030. !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
  1031. !!(flags & I915_WAIT_LOCKED));
  1032. #endif
  1033. GEM_BUG_ON(timeout < 0);
  1034. if (i915_request_completed(rq))
  1035. return timeout;
  1036. if (!timeout)
  1037. return -ETIME;
  1038. trace_i915_request_wait_begin(rq, flags);
  1039. add_wait_queue(&rq->execute, &exec);
  1040. if (flags & I915_WAIT_LOCKED)
  1041. add_wait_queue(errq, &reset);
  1042. intel_wait_init(&wait, rq);
  1043. restart:
  1044. do {
  1045. set_current_state(state);
  1046. if (intel_wait_update_request(&wait, rq))
  1047. break;
  1048. if (flags & I915_WAIT_LOCKED &&
  1049. __i915_wait_request_check_and_reset(rq))
  1050. continue;
  1051. if (signal_pending_state(state, current)) {
  1052. timeout = -ERESTARTSYS;
  1053. goto complete;
  1054. }
  1055. if (!timeout) {
  1056. timeout = -ETIME;
  1057. goto complete;
  1058. }
  1059. timeout = io_schedule_timeout(timeout);
  1060. } while (1);
  1061. GEM_BUG_ON(!intel_wait_has_seqno(&wait));
  1062. GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
  1063. /* Optimistic short spin before touching IRQs */
  1064. if (__i915_spin_request(rq, wait.seqno, state, 5))
  1065. goto complete;
  1066. set_current_state(state);
  1067. if (intel_engine_add_wait(rq->engine, &wait))
  1068. /*
  1069. * In order to check that we haven't missed the interrupt
  1070. * as we enabled it, we need to kick ourselves to do a
  1071. * coherent check on the seqno before we sleep.
  1072. */
  1073. goto wakeup;
  1074. if (flags & I915_WAIT_LOCKED)
  1075. __i915_wait_request_check_and_reset(rq);
  1076. for (;;) {
  1077. if (signal_pending_state(state, current)) {
  1078. timeout = -ERESTARTSYS;
  1079. break;
  1080. }
  1081. if (!timeout) {
  1082. timeout = -ETIME;
  1083. break;
  1084. }
  1085. timeout = io_schedule_timeout(timeout);
  1086. if (intel_wait_complete(&wait) &&
  1087. intel_wait_check_request(&wait, rq))
  1088. break;
  1089. set_current_state(state);
  1090. wakeup:
  1091. /*
  1092. * Carefully check if the request is complete, giving time
  1093. * for the seqno to be visible following the interrupt.
  1094. * We also have to check in case we are kicked by the GPU
  1095. * reset in order to drop the struct_mutex.
  1096. */
  1097. if (__i915_request_irq_complete(rq))
  1098. break;
  1099. /*
  1100. * If the GPU is hung, and we hold the lock, reset the GPU
  1101. * and then check for completion. On a full reset, the engine's
  1102. * HW seqno will be advanced passed us and we are complete.
  1103. * If we do a partial reset, we have to wait for the GPU to
  1104. * resume and update the breadcrumb.
  1105. *
  1106. * If we don't hold the mutex, we can just wait for the worker
  1107. * to come along and update the breadcrumb (either directly
  1108. * itself, or indirectly by recovering the GPU).
  1109. */
  1110. if (flags & I915_WAIT_LOCKED &&
  1111. __i915_wait_request_check_and_reset(rq))
  1112. continue;
  1113. /* Only spin if we know the GPU is processing this request */
  1114. if (__i915_spin_request(rq, wait.seqno, state, 2))
  1115. break;
  1116. if (!intel_wait_check_request(&wait, rq)) {
  1117. intel_engine_remove_wait(rq->engine, &wait);
  1118. goto restart;
  1119. }
  1120. }
  1121. intel_engine_remove_wait(rq->engine, &wait);
  1122. complete:
  1123. __set_current_state(TASK_RUNNING);
  1124. if (flags & I915_WAIT_LOCKED)
  1125. remove_wait_queue(errq, &reset);
  1126. remove_wait_queue(&rq->execute, &exec);
  1127. trace_i915_request_wait_end(rq);
  1128. return timeout;
  1129. }
  1130. static void engine_retire_requests(struct intel_engine_cs *engine)
  1131. {
  1132. struct i915_request *request, *next;
  1133. u32 seqno = intel_engine_get_seqno(engine);
  1134. LIST_HEAD(retire);
  1135. spin_lock_irq(&engine->timeline->lock);
  1136. list_for_each_entry_safe(request, next,
  1137. &engine->timeline->requests, link) {
  1138. if (!i915_seqno_passed(seqno, request->global_seqno))
  1139. break;
  1140. list_move_tail(&request->link, &retire);
  1141. }
  1142. spin_unlock_irq(&engine->timeline->lock);
  1143. list_for_each_entry_safe(request, next, &retire, link)
  1144. i915_request_retire(request);
  1145. }
  1146. void i915_retire_requests(struct drm_i915_private *i915)
  1147. {
  1148. struct intel_engine_cs *engine;
  1149. enum intel_engine_id id;
  1150. lockdep_assert_held(&i915->drm.struct_mutex);
  1151. if (!i915->gt.active_requests)
  1152. return;
  1153. for_each_engine(engine, i915, id)
  1154. engine_retire_requests(engine);
  1155. }
  1156. #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
  1157. #include "selftests/mock_request.c"
  1158. #include "selftests/i915_request.c"
  1159. #endif