page_alloc.c 207 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. int watermark_scale_factor = 10;
  229. static unsigned long __meminitdata nr_kernel_pages;
  230. static unsigned long __meminitdata nr_all_pages;
  231. static unsigned long __meminitdata dma_reserve;
  232. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  233. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __initdata required_kernelcore;
  236. static unsigned long __initdata required_movablecore;
  237. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  238. static bool mirrored_kernelcore;
  239. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  240. int movable_zone;
  241. EXPORT_SYMBOL(movable_zone);
  242. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  243. #if MAX_NUMNODES > 1
  244. int nr_node_ids __read_mostly = MAX_NUMNODES;
  245. int nr_online_nodes __read_mostly = 1;
  246. EXPORT_SYMBOL(nr_node_ids);
  247. EXPORT_SYMBOL(nr_online_nodes);
  248. #endif
  249. int page_group_by_mobility_disabled __read_mostly;
  250. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  251. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  252. {
  253. pgdat->first_deferred_pfn = ULONG_MAX;
  254. }
  255. /* Returns true if the struct page for the pfn is uninitialised */
  256. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  257. {
  258. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  259. return true;
  260. return false;
  261. }
  262. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  263. {
  264. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  265. return true;
  266. return false;
  267. }
  268. /*
  269. * Returns false when the remaining initialisation should be deferred until
  270. * later in the boot cycle when it can be parallelised.
  271. */
  272. static inline bool update_defer_init(pg_data_t *pgdat,
  273. unsigned long pfn, unsigned long zone_end,
  274. unsigned long *nr_initialised)
  275. {
  276. unsigned long max_initialise;
  277. /* Always populate low zones for address-contrained allocations */
  278. if (zone_end < pgdat_end_pfn(pgdat))
  279. return true;
  280. /*
  281. * Initialise at least 2G of a node but also take into account that
  282. * two large system hashes that can take up 1GB for 0.25TB/node.
  283. */
  284. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  285. (pgdat->node_spanned_pages >> 8));
  286. (*nr_initialised)++;
  287. if ((*nr_initialised > max_initialise) &&
  288. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  289. pgdat->first_deferred_pfn = pfn;
  290. return false;
  291. }
  292. return true;
  293. }
  294. #else
  295. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  296. {
  297. }
  298. static inline bool early_page_uninitialised(unsigned long pfn)
  299. {
  300. return false;
  301. }
  302. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  303. {
  304. return false;
  305. }
  306. static inline bool update_defer_init(pg_data_t *pgdat,
  307. unsigned long pfn, unsigned long zone_end,
  308. unsigned long *nr_initialised)
  309. {
  310. return true;
  311. }
  312. #endif
  313. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  314. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  315. unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. return __pfn_to_section(pfn)->pageblock_flags;
  319. #else
  320. return page_zone(page)->pageblock_flags;
  321. #endif /* CONFIG_SPARSEMEM */
  322. }
  323. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  324. {
  325. #ifdef CONFIG_SPARSEMEM
  326. pfn &= (PAGES_PER_SECTION-1);
  327. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  328. #else
  329. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  330. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. /**
  334. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  335. * @page: The page within the block of interest
  336. * @pfn: The target page frame number
  337. * @end_bitidx: The last bit of interest to retrieve
  338. * @mask: mask of bits that the caller is interested in
  339. *
  340. * Return: pageblock_bits flags
  341. */
  342. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  343. unsigned long pfn,
  344. unsigned long end_bitidx,
  345. unsigned long mask)
  346. {
  347. unsigned long *bitmap;
  348. unsigned long bitidx, word_bitidx;
  349. unsigned long word;
  350. bitmap = get_pageblock_bitmap(page, pfn);
  351. bitidx = pfn_to_bitidx(page, pfn);
  352. word_bitidx = bitidx / BITS_PER_LONG;
  353. bitidx &= (BITS_PER_LONG-1);
  354. word = bitmap[word_bitidx];
  355. bitidx += end_bitidx;
  356. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  357. }
  358. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  359. unsigned long end_bitidx,
  360. unsigned long mask)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  363. }
  364. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  365. {
  366. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  367. }
  368. /**
  369. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  370. * @page: The page within the block of interest
  371. * @flags: The flags to set
  372. * @pfn: The target page frame number
  373. * @end_bitidx: The last bit of interest
  374. * @mask: mask of bits that the caller is interested in
  375. */
  376. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  377. unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. unsigned long *bitmap;
  382. unsigned long bitidx, word_bitidx;
  383. unsigned long old_word, word;
  384. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  385. bitmap = get_pageblock_bitmap(page, pfn);
  386. bitidx = pfn_to_bitidx(page, pfn);
  387. word_bitidx = bitidx / BITS_PER_LONG;
  388. bitidx &= (BITS_PER_LONG-1);
  389. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  390. bitidx += end_bitidx;
  391. mask <<= (BITS_PER_LONG - bitidx - 1);
  392. flags <<= (BITS_PER_LONG - bitidx - 1);
  393. word = READ_ONCE(bitmap[word_bitidx]);
  394. for (;;) {
  395. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  396. if (word == old_word)
  397. break;
  398. word = old_word;
  399. }
  400. }
  401. void set_pageblock_migratetype(struct page *page, int migratetype)
  402. {
  403. if (unlikely(page_group_by_mobility_disabled &&
  404. migratetype < MIGRATE_PCPTYPES))
  405. migratetype = MIGRATE_UNMOVABLE;
  406. set_pageblock_flags_group(page, (unsigned long)migratetype,
  407. PB_migrate, PB_migrate_end);
  408. }
  409. #ifdef CONFIG_DEBUG_VM
  410. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  411. {
  412. int ret = 0;
  413. unsigned seq;
  414. unsigned long pfn = page_to_pfn(page);
  415. unsigned long sp, start_pfn;
  416. do {
  417. seq = zone_span_seqbegin(zone);
  418. start_pfn = zone->zone_start_pfn;
  419. sp = zone->spanned_pages;
  420. if (!zone_spans_pfn(zone, pfn))
  421. ret = 1;
  422. } while (zone_span_seqretry(zone, seq));
  423. if (ret)
  424. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  425. pfn, zone_to_nid(zone), zone->name,
  426. start_pfn, start_pfn + sp);
  427. return ret;
  428. }
  429. static int page_is_consistent(struct zone *zone, struct page *page)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(page)))
  432. return 0;
  433. if (zone != page_zone(page))
  434. return 0;
  435. return 1;
  436. }
  437. /*
  438. * Temporary debugging check for pages not lying within a given zone.
  439. */
  440. static int bad_range(struct zone *zone, struct page *page)
  441. {
  442. if (page_outside_zone_boundaries(zone, page))
  443. return 1;
  444. if (!page_is_consistent(zone, page))
  445. return 1;
  446. return 0;
  447. }
  448. #else
  449. static inline int bad_range(struct zone *zone, struct page *page)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. static void bad_page(struct page *page, const char *reason,
  455. unsigned long bad_flags)
  456. {
  457. static unsigned long resume;
  458. static unsigned long nr_shown;
  459. static unsigned long nr_unshown;
  460. /*
  461. * Allow a burst of 60 reports, then keep quiet for that minute;
  462. * or allow a steady drip of one report per second.
  463. */
  464. if (nr_shown == 60) {
  465. if (time_before(jiffies, resume)) {
  466. nr_unshown++;
  467. goto out;
  468. }
  469. if (nr_unshown) {
  470. pr_alert(
  471. "BUG: Bad page state: %lu messages suppressed\n",
  472. nr_unshown);
  473. nr_unshown = 0;
  474. }
  475. nr_shown = 0;
  476. }
  477. if (nr_shown++ == 0)
  478. resume = jiffies + 60 * HZ;
  479. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  480. current->comm, page_to_pfn(page));
  481. __dump_page(page, reason);
  482. bad_flags &= page->flags;
  483. if (bad_flags)
  484. pr_alert("bad because of flags: %#lx(%pGp)\n",
  485. bad_flags, &bad_flags);
  486. dump_page_owner(page);
  487. print_modules();
  488. dump_stack();
  489. out:
  490. /* Leave bad fields for debug, except PageBuddy could make trouble */
  491. page_mapcount_reset(page); /* remove PageBuddy */
  492. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  493. }
  494. /*
  495. * Higher-order pages are called "compound pages". They are structured thusly:
  496. *
  497. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  498. *
  499. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  500. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  501. *
  502. * The first tail page's ->compound_dtor holds the offset in array of compound
  503. * page destructors. See compound_page_dtors.
  504. *
  505. * The first tail page's ->compound_order holds the order of allocation.
  506. * This usage means that zero-order pages may not be compound.
  507. */
  508. void free_compound_page(struct page *page)
  509. {
  510. __free_pages_ok(page, compound_order(page));
  511. }
  512. void prep_compound_page(struct page *page, unsigned int order)
  513. {
  514. int i;
  515. int nr_pages = 1 << order;
  516. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  517. set_compound_order(page, order);
  518. __SetPageHead(page);
  519. for (i = 1; i < nr_pages; i++) {
  520. struct page *p = page + i;
  521. set_page_count(p, 0);
  522. p->mapping = TAIL_MAPPING;
  523. set_compound_head(p, page);
  524. }
  525. atomic_set(compound_mapcount_ptr(page), -1);
  526. }
  527. #ifdef CONFIG_DEBUG_PAGEALLOC
  528. unsigned int _debug_guardpage_minorder;
  529. bool _debug_pagealloc_enabled __read_mostly
  530. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  531. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  532. bool _debug_guardpage_enabled __read_mostly;
  533. static int __init early_debug_pagealloc(char *buf)
  534. {
  535. if (!buf)
  536. return -EINVAL;
  537. return kstrtobool(buf, &_debug_pagealloc_enabled);
  538. }
  539. early_param("debug_pagealloc", early_debug_pagealloc);
  540. static bool need_debug_guardpage(void)
  541. {
  542. /* If we don't use debug_pagealloc, we don't need guard page */
  543. if (!debug_pagealloc_enabled())
  544. return false;
  545. return true;
  546. }
  547. static void init_debug_guardpage(void)
  548. {
  549. if (!debug_pagealloc_enabled())
  550. return;
  551. _debug_guardpage_enabled = true;
  552. }
  553. struct page_ext_operations debug_guardpage_ops = {
  554. .need = need_debug_guardpage,
  555. .init = init_debug_guardpage,
  556. };
  557. static int __init debug_guardpage_minorder_setup(char *buf)
  558. {
  559. unsigned long res;
  560. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  561. pr_err("Bad debug_guardpage_minorder value\n");
  562. return 0;
  563. }
  564. _debug_guardpage_minorder = res;
  565. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  566. return 0;
  567. }
  568. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  569. static inline void set_page_guard(struct zone *zone, struct page *page,
  570. unsigned int order, int migratetype)
  571. {
  572. struct page_ext *page_ext;
  573. if (!debug_guardpage_enabled())
  574. return;
  575. page_ext = lookup_page_ext(page);
  576. if (unlikely(!page_ext))
  577. return;
  578. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  579. INIT_LIST_HEAD(&page->lru);
  580. set_page_private(page, order);
  581. /* Guard pages are not available for any usage */
  582. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  583. }
  584. static inline void clear_page_guard(struct zone *zone, struct page *page,
  585. unsigned int order, int migratetype)
  586. {
  587. struct page_ext *page_ext;
  588. if (!debug_guardpage_enabled())
  589. return;
  590. page_ext = lookup_page_ext(page);
  591. if (unlikely(!page_ext))
  592. return;
  593. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  594. set_page_private(page, 0);
  595. if (!is_migrate_isolate(migratetype))
  596. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  597. }
  598. #else
  599. struct page_ext_operations debug_guardpage_ops = { NULL, };
  600. static inline void set_page_guard(struct zone *zone, struct page *page,
  601. unsigned int order, int migratetype) {}
  602. static inline void clear_page_guard(struct zone *zone, struct page *page,
  603. unsigned int order, int migratetype) {}
  604. #endif
  605. static inline void set_page_order(struct page *page, unsigned int order)
  606. {
  607. set_page_private(page, order);
  608. __SetPageBuddy(page);
  609. }
  610. static inline void rmv_page_order(struct page *page)
  611. {
  612. __ClearPageBuddy(page);
  613. set_page_private(page, 0);
  614. }
  615. /*
  616. * This function checks whether a page is free && is the buddy
  617. * we can do coalesce a page and its buddy if
  618. * (a) the buddy is not in a hole &&
  619. * (b) the buddy is in the buddy system &&
  620. * (c) a page and its buddy have the same order &&
  621. * (d) a page and its buddy are in the same zone.
  622. *
  623. * For recording whether a page is in the buddy system, we set ->_mapcount
  624. * PAGE_BUDDY_MAPCOUNT_VALUE.
  625. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  626. * serialized by zone->lock.
  627. *
  628. * For recording page's order, we use page_private(page).
  629. */
  630. static inline int page_is_buddy(struct page *page, struct page *buddy,
  631. unsigned int order)
  632. {
  633. if (!pfn_valid_within(page_to_pfn(buddy)))
  634. return 0;
  635. if (page_is_guard(buddy) && page_order(buddy) == order) {
  636. if (page_zone_id(page) != page_zone_id(buddy))
  637. return 0;
  638. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  639. return 1;
  640. }
  641. if (PageBuddy(buddy) && page_order(buddy) == order) {
  642. /*
  643. * zone check is done late to avoid uselessly
  644. * calculating zone/node ids for pages that could
  645. * never merge.
  646. */
  647. if (page_zone_id(page) != page_zone_id(buddy))
  648. return 0;
  649. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  650. return 1;
  651. }
  652. return 0;
  653. }
  654. /*
  655. * Freeing function for a buddy system allocator.
  656. *
  657. * The concept of a buddy system is to maintain direct-mapped table
  658. * (containing bit values) for memory blocks of various "orders".
  659. * The bottom level table contains the map for the smallest allocatable
  660. * units of memory (here, pages), and each level above it describes
  661. * pairs of units from the levels below, hence, "buddies".
  662. * At a high level, all that happens here is marking the table entry
  663. * at the bottom level available, and propagating the changes upward
  664. * as necessary, plus some accounting needed to play nicely with other
  665. * parts of the VM system.
  666. * At each level, we keep a list of pages, which are heads of continuous
  667. * free pages of length of (1 << order) and marked with _mapcount
  668. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  669. * field.
  670. * So when we are allocating or freeing one, we can derive the state of the
  671. * other. That is, if we allocate a small block, and both were
  672. * free, the remainder of the region must be split into blocks.
  673. * If a block is freed, and its buddy is also free, then this
  674. * triggers coalescing into a block of larger size.
  675. *
  676. * -- nyc
  677. */
  678. static inline void __free_one_page(struct page *page,
  679. unsigned long pfn,
  680. struct zone *zone, unsigned int order,
  681. int migratetype)
  682. {
  683. unsigned long page_idx;
  684. unsigned long combined_idx;
  685. unsigned long uninitialized_var(buddy_idx);
  686. struct page *buddy;
  687. unsigned int max_order;
  688. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  689. VM_BUG_ON(!zone_is_initialized(zone));
  690. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  691. VM_BUG_ON(migratetype == -1);
  692. if (likely(!is_migrate_isolate(migratetype)))
  693. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  694. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  695. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  696. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  697. continue_merging:
  698. while (order < max_order - 1) {
  699. buddy_idx = __find_buddy_index(page_idx, order);
  700. buddy = page + (buddy_idx - page_idx);
  701. if (!page_is_buddy(page, buddy, order))
  702. goto done_merging;
  703. /*
  704. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  705. * merge with it and move up one order.
  706. */
  707. if (page_is_guard(buddy)) {
  708. clear_page_guard(zone, buddy, order, migratetype);
  709. } else {
  710. list_del(&buddy->lru);
  711. zone->free_area[order].nr_free--;
  712. rmv_page_order(buddy);
  713. }
  714. combined_idx = buddy_idx & page_idx;
  715. page = page + (combined_idx - page_idx);
  716. page_idx = combined_idx;
  717. order++;
  718. }
  719. if (max_order < MAX_ORDER) {
  720. /* If we are here, it means order is >= pageblock_order.
  721. * We want to prevent merge between freepages on isolate
  722. * pageblock and normal pageblock. Without this, pageblock
  723. * isolation could cause incorrect freepage or CMA accounting.
  724. *
  725. * We don't want to hit this code for the more frequent
  726. * low-order merging.
  727. */
  728. if (unlikely(has_isolate_pageblock(zone))) {
  729. int buddy_mt;
  730. buddy_idx = __find_buddy_index(page_idx, order);
  731. buddy = page + (buddy_idx - page_idx);
  732. buddy_mt = get_pageblock_migratetype(buddy);
  733. if (migratetype != buddy_mt
  734. && (is_migrate_isolate(migratetype) ||
  735. is_migrate_isolate(buddy_mt)))
  736. goto done_merging;
  737. }
  738. max_order++;
  739. goto continue_merging;
  740. }
  741. done_merging:
  742. set_page_order(page, order);
  743. /*
  744. * If this is not the largest possible page, check if the buddy
  745. * of the next-highest order is free. If it is, it's possible
  746. * that pages are being freed that will coalesce soon. In case,
  747. * that is happening, add the free page to the tail of the list
  748. * so it's less likely to be used soon and more likely to be merged
  749. * as a higher order page
  750. */
  751. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  752. struct page *higher_page, *higher_buddy;
  753. combined_idx = buddy_idx & page_idx;
  754. higher_page = page + (combined_idx - page_idx);
  755. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  756. higher_buddy = higher_page + (buddy_idx - combined_idx);
  757. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  758. list_add_tail(&page->lru,
  759. &zone->free_area[order].free_list[migratetype]);
  760. goto out;
  761. }
  762. }
  763. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  764. out:
  765. zone->free_area[order].nr_free++;
  766. }
  767. /*
  768. * A bad page could be due to a number of fields. Instead of multiple branches,
  769. * try and check multiple fields with one check. The caller must do a detailed
  770. * check if necessary.
  771. */
  772. static inline bool page_expected_state(struct page *page,
  773. unsigned long check_flags)
  774. {
  775. if (unlikely(atomic_read(&page->_mapcount) != -1))
  776. return false;
  777. if (unlikely((unsigned long)page->mapping |
  778. page_ref_count(page) |
  779. #ifdef CONFIG_MEMCG
  780. (unsigned long)page->mem_cgroup |
  781. #endif
  782. (page->flags & check_flags)))
  783. return false;
  784. return true;
  785. }
  786. static void free_pages_check_bad(struct page *page)
  787. {
  788. const char *bad_reason;
  789. unsigned long bad_flags;
  790. bad_reason = NULL;
  791. bad_flags = 0;
  792. if (unlikely(atomic_read(&page->_mapcount) != -1))
  793. bad_reason = "nonzero mapcount";
  794. if (unlikely(page->mapping != NULL))
  795. bad_reason = "non-NULL mapping";
  796. if (unlikely(page_ref_count(page) != 0))
  797. bad_reason = "nonzero _refcount";
  798. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  799. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  800. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  801. }
  802. #ifdef CONFIG_MEMCG
  803. if (unlikely(page->mem_cgroup))
  804. bad_reason = "page still charged to cgroup";
  805. #endif
  806. bad_page(page, bad_reason, bad_flags);
  807. }
  808. static inline int free_pages_check(struct page *page)
  809. {
  810. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  811. return 0;
  812. /* Something has gone sideways, find it */
  813. free_pages_check_bad(page);
  814. return 1;
  815. }
  816. static int free_tail_pages_check(struct page *head_page, struct page *page)
  817. {
  818. int ret = 1;
  819. /*
  820. * We rely page->lru.next never has bit 0 set, unless the page
  821. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  822. */
  823. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  824. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  825. ret = 0;
  826. goto out;
  827. }
  828. switch (page - head_page) {
  829. case 1:
  830. /* the first tail page: ->mapping is compound_mapcount() */
  831. if (unlikely(compound_mapcount(page))) {
  832. bad_page(page, "nonzero compound_mapcount", 0);
  833. goto out;
  834. }
  835. break;
  836. case 2:
  837. /*
  838. * the second tail page: ->mapping is
  839. * page_deferred_list().next -- ignore value.
  840. */
  841. break;
  842. default:
  843. if (page->mapping != TAIL_MAPPING) {
  844. bad_page(page, "corrupted mapping in tail page", 0);
  845. goto out;
  846. }
  847. break;
  848. }
  849. if (unlikely(!PageTail(page))) {
  850. bad_page(page, "PageTail not set", 0);
  851. goto out;
  852. }
  853. if (unlikely(compound_head(page) != head_page)) {
  854. bad_page(page, "compound_head not consistent", 0);
  855. goto out;
  856. }
  857. ret = 0;
  858. out:
  859. page->mapping = NULL;
  860. clear_compound_head(page);
  861. return ret;
  862. }
  863. static __always_inline bool free_pages_prepare(struct page *page,
  864. unsigned int order, bool check_free)
  865. {
  866. int bad = 0;
  867. VM_BUG_ON_PAGE(PageTail(page), page);
  868. trace_mm_page_free(page, order);
  869. kmemcheck_free_shadow(page, order);
  870. /*
  871. * Check tail pages before head page information is cleared to
  872. * avoid checking PageCompound for order-0 pages.
  873. */
  874. if (unlikely(order)) {
  875. bool compound = PageCompound(page);
  876. int i;
  877. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  878. for (i = 1; i < (1 << order); i++) {
  879. if (compound)
  880. bad += free_tail_pages_check(page, page + i);
  881. if (unlikely(free_pages_check(page + i))) {
  882. bad++;
  883. continue;
  884. }
  885. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  886. }
  887. }
  888. if (PageAnonHead(page))
  889. page->mapping = NULL;
  890. if (check_free)
  891. bad += free_pages_check(page);
  892. if (bad)
  893. return false;
  894. page_cpupid_reset_last(page);
  895. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  896. reset_page_owner(page, order);
  897. if (!PageHighMem(page)) {
  898. debug_check_no_locks_freed(page_address(page),
  899. PAGE_SIZE << order);
  900. debug_check_no_obj_freed(page_address(page),
  901. PAGE_SIZE << order);
  902. }
  903. arch_free_page(page, order);
  904. kernel_poison_pages(page, 1 << order, 0);
  905. kernel_map_pages(page, 1 << order, 0);
  906. kasan_free_pages(page, order);
  907. return true;
  908. }
  909. #ifdef CONFIG_DEBUG_VM
  910. static inline bool free_pcp_prepare(struct page *page)
  911. {
  912. return free_pages_prepare(page, 0, true);
  913. }
  914. static inline bool bulkfree_pcp_prepare(struct page *page)
  915. {
  916. return false;
  917. }
  918. #else
  919. static bool free_pcp_prepare(struct page *page)
  920. {
  921. return free_pages_prepare(page, 0, false);
  922. }
  923. static bool bulkfree_pcp_prepare(struct page *page)
  924. {
  925. return free_pages_check(page);
  926. }
  927. #endif /* CONFIG_DEBUG_VM */
  928. /*
  929. * Frees a number of pages from the PCP lists
  930. * Assumes all pages on list are in same zone, and of same order.
  931. * count is the number of pages to free.
  932. *
  933. * If the zone was previously in an "all pages pinned" state then look to
  934. * see if this freeing clears that state.
  935. *
  936. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  937. * pinned" detection logic.
  938. */
  939. static void free_pcppages_bulk(struct zone *zone, int count,
  940. struct per_cpu_pages *pcp)
  941. {
  942. int migratetype = 0;
  943. int batch_free = 0;
  944. unsigned long nr_scanned;
  945. bool isolated_pageblocks;
  946. spin_lock(&zone->lock);
  947. isolated_pageblocks = has_isolate_pageblock(zone);
  948. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  949. if (nr_scanned)
  950. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  951. while (count) {
  952. struct page *page;
  953. struct list_head *list;
  954. /*
  955. * Remove pages from lists in a round-robin fashion. A
  956. * batch_free count is maintained that is incremented when an
  957. * empty list is encountered. This is so more pages are freed
  958. * off fuller lists instead of spinning excessively around empty
  959. * lists
  960. */
  961. do {
  962. batch_free++;
  963. if (++migratetype == MIGRATE_PCPTYPES)
  964. migratetype = 0;
  965. list = &pcp->lists[migratetype];
  966. } while (list_empty(list));
  967. /* This is the only non-empty list. Free them all. */
  968. if (batch_free == MIGRATE_PCPTYPES)
  969. batch_free = count;
  970. do {
  971. int mt; /* migratetype of the to-be-freed page */
  972. page = list_last_entry(list, struct page, lru);
  973. /* must delete as __free_one_page list manipulates */
  974. list_del(&page->lru);
  975. mt = get_pcppage_migratetype(page);
  976. /* MIGRATE_ISOLATE page should not go to pcplists */
  977. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  978. /* Pageblock could have been isolated meanwhile */
  979. if (unlikely(isolated_pageblocks))
  980. mt = get_pageblock_migratetype(page);
  981. if (bulkfree_pcp_prepare(page))
  982. continue;
  983. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  984. trace_mm_page_pcpu_drain(page, 0, mt);
  985. } while (--count && --batch_free && !list_empty(list));
  986. }
  987. spin_unlock(&zone->lock);
  988. }
  989. static void free_one_page(struct zone *zone,
  990. struct page *page, unsigned long pfn,
  991. unsigned int order,
  992. int migratetype)
  993. {
  994. unsigned long nr_scanned;
  995. spin_lock(&zone->lock);
  996. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  997. if (nr_scanned)
  998. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  999. if (unlikely(has_isolate_pageblock(zone) ||
  1000. is_migrate_isolate(migratetype))) {
  1001. migratetype = get_pfnblock_migratetype(page, pfn);
  1002. }
  1003. __free_one_page(page, pfn, zone, order, migratetype);
  1004. spin_unlock(&zone->lock);
  1005. }
  1006. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1007. unsigned long zone, int nid)
  1008. {
  1009. set_page_links(page, zone, nid, pfn);
  1010. init_page_count(page);
  1011. page_mapcount_reset(page);
  1012. page_cpupid_reset_last(page);
  1013. INIT_LIST_HEAD(&page->lru);
  1014. #ifdef WANT_PAGE_VIRTUAL
  1015. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1016. if (!is_highmem_idx(zone))
  1017. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1018. #endif
  1019. }
  1020. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1021. int nid)
  1022. {
  1023. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1024. }
  1025. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1026. static void init_reserved_page(unsigned long pfn)
  1027. {
  1028. pg_data_t *pgdat;
  1029. int nid, zid;
  1030. if (!early_page_uninitialised(pfn))
  1031. return;
  1032. nid = early_pfn_to_nid(pfn);
  1033. pgdat = NODE_DATA(nid);
  1034. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1035. struct zone *zone = &pgdat->node_zones[zid];
  1036. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1037. break;
  1038. }
  1039. __init_single_pfn(pfn, zid, nid);
  1040. }
  1041. #else
  1042. static inline void init_reserved_page(unsigned long pfn)
  1043. {
  1044. }
  1045. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1046. /*
  1047. * Initialised pages do not have PageReserved set. This function is
  1048. * called for each range allocated by the bootmem allocator and
  1049. * marks the pages PageReserved. The remaining valid pages are later
  1050. * sent to the buddy page allocator.
  1051. */
  1052. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1053. {
  1054. unsigned long start_pfn = PFN_DOWN(start);
  1055. unsigned long end_pfn = PFN_UP(end);
  1056. for (; start_pfn < end_pfn; start_pfn++) {
  1057. if (pfn_valid(start_pfn)) {
  1058. struct page *page = pfn_to_page(start_pfn);
  1059. init_reserved_page(start_pfn);
  1060. /* Avoid false-positive PageTail() */
  1061. INIT_LIST_HEAD(&page->lru);
  1062. SetPageReserved(page);
  1063. }
  1064. }
  1065. }
  1066. static void __free_pages_ok(struct page *page, unsigned int order)
  1067. {
  1068. unsigned long flags;
  1069. int migratetype;
  1070. unsigned long pfn = page_to_pfn(page);
  1071. if (!free_pages_prepare(page, order, true))
  1072. return;
  1073. migratetype = get_pfnblock_migratetype(page, pfn);
  1074. local_irq_save(flags);
  1075. __count_vm_events(PGFREE, 1 << order);
  1076. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1077. local_irq_restore(flags);
  1078. }
  1079. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1080. {
  1081. unsigned int nr_pages = 1 << order;
  1082. struct page *p = page;
  1083. unsigned int loop;
  1084. prefetchw(p);
  1085. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1086. prefetchw(p + 1);
  1087. __ClearPageReserved(p);
  1088. set_page_count(p, 0);
  1089. }
  1090. __ClearPageReserved(p);
  1091. set_page_count(p, 0);
  1092. page_zone(page)->managed_pages += nr_pages;
  1093. set_page_refcounted(page);
  1094. __free_pages(page, order);
  1095. }
  1096. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1097. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1098. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1099. int __meminit early_pfn_to_nid(unsigned long pfn)
  1100. {
  1101. static DEFINE_SPINLOCK(early_pfn_lock);
  1102. int nid;
  1103. spin_lock(&early_pfn_lock);
  1104. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1105. if (nid < 0)
  1106. nid = 0;
  1107. spin_unlock(&early_pfn_lock);
  1108. return nid;
  1109. }
  1110. #endif
  1111. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1112. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1113. struct mminit_pfnnid_cache *state)
  1114. {
  1115. int nid;
  1116. nid = __early_pfn_to_nid(pfn, state);
  1117. if (nid >= 0 && nid != node)
  1118. return false;
  1119. return true;
  1120. }
  1121. /* Only safe to use early in boot when initialisation is single-threaded */
  1122. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1123. {
  1124. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1125. }
  1126. #else
  1127. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1128. {
  1129. return true;
  1130. }
  1131. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1132. struct mminit_pfnnid_cache *state)
  1133. {
  1134. return true;
  1135. }
  1136. #endif
  1137. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1138. unsigned int order)
  1139. {
  1140. if (early_page_uninitialised(pfn))
  1141. return;
  1142. return __free_pages_boot_core(page, order);
  1143. }
  1144. /*
  1145. * Check that the whole (or subset of) a pageblock given by the interval of
  1146. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1147. * with the migration of free compaction scanner. The scanners then need to
  1148. * use only pfn_valid_within() check for arches that allow holes within
  1149. * pageblocks.
  1150. *
  1151. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1152. *
  1153. * It's possible on some configurations to have a setup like node0 node1 node0
  1154. * i.e. it's possible that all pages within a zones range of pages do not
  1155. * belong to a single zone. We assume that a border between node0 and node1
  1156. * can occur within a single pageblock, but not a node0 node1 node0
  1157. * interleaving within a single pageblock. It is therefore sufficient to check
  1158. * the first and last page of a pageblock and avoid checking each individual
  1159. * page in a pageblock.
  1160. */
  1161. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1162. unsigned long end_pfn, struct zone *zone)
  1163. {
  1164. struct page *start_page;
  1165. struct page *end_page;
  1166. /* end_pfn is one past the range we are checking */
  1167. end_pfn--;
  1168. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1169. return NULL;
  1170. start_page = pfn_to_page(start_pfn);
  1171. if (page_zone(start_page) != zone)
  1172. return NULL;
  1173. end_page = pfn_to_page(end_pfn);
  1174. /* This gives a shorter code than deriving page_zone(end_page) */
  1175. if (page_zone_id(start_page) != page_zone_id(end_page))
  1176. return NULL;
  1177. return start_page;
  1178. }
  1179. void set_zone_contiguous(struct zone *zone)
  1180. {
  1181. unsigned long block_start_pfn = zone->zone_start_pfn;
  1182. unsigned long block_end_pfn;
  1183. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1184. for (; block_start_pfn < zone_end_pfn(zone);
  1185. block_start_pfn = block_end_pfn,
  1186. block_end_pfn += pageblock_nr_pages) {
  1187. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1188. if (!__pageblock_pfn_to_page(block_start_pfn,
  1189. block_end_pfn, zone))
  1190. return;
  1191. }
  1192. /* We confirm that there is no hole */
  1193. zone->contiguous = true;
  1194. }
  1195. void clear_zone_contiguous(struct zone *zone)
  1196. {
  1197. zone->contiguous = false;
  1198. }
  1199. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1200. static void __init deferred_free_range(struct page *page,
  1201. unsigned long pfn, int nr_pages)
  1202. {
  1203. int i;
  1204. if (!page)
  1205. return;
  1206. /* Free a large naturally-aligned chunk if possible */
  1207. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1208. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1209. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1210. __free_pages_boot_core(page, MAX_ORDER-1);
  1211. return;
  1212. }
  1213. for (i = 0; i < nr_pages; i++, page++)
  1214. __free_pages_boot_core(page, 0);
  1215. }
  1216. /* Completion tracking for deferred_init_memmap() threads */
  1217. static atomic_t pgdat_init_n_undone __initdata;
  1218. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1219. static inline void __init pgdat_init_report_one_done(void)
  1220. {
  1221. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1222. complete(&pgdat_init_all_done_comp);
  1223. }
  1224. /* Initialise remaining memory on a node */
  1225. static int __init deferred_init_memmap(void *data)
  1226. {
  1227. pg_data_t *pgdat = data;
  1228. int nid = pgdat->node_id;
  1229. struct mminit_pfnnid_cache nid_init_state = { };
  1230. unsigned long start = jiffies;
  1231. unsigned long nr_pages = 0;
  1232. unsigned long walk_start, walk_end;
  1233. int i, zid;
  1234. struct zone *zone;
  1235. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1236. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1237. if (first_init_pfn == ULONG_MAX) {
  1238. pgdat_init_report_one_done();
  1239. return 0;
  1240. }
  1241. /* Bind memory initialisation thread to a local node if possible */
  1242. if (!cpumask_empty(cpumask))
  1243. set_cpus_allowed_ptr(current, cpumask);
  1244. /* Sanity check boundaries */
  1245. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1246. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1247. pgdat->first_deferred_pfn = ULONG_MAX;
  1248. /* Only the highest zone is deferred so find it */
  1249. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1250. zone = pgdat->node_zones + zid;
  1251. if (first_init_pfn < zone_end_pfn(zone))
  1252. break;
  1253. }
  1254. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1255. unsigned long pfn, end_pfn;
  1256. struct page *page = NULL;
  1257. struct page *free_base_page = NULL;
  1258. unsigned long free_base_pfn = 0;
  1259. int nr_to_free = 0;
  1260. end_pfn = min(walk_end, zone_end_pfn(zone));
  1261. pfn = first_init_pfn;
  1262. if (pfn < walk_start)
  1263. pfn = walk_start;
  1264. if (pfn < zone->zone_start_pfn)
  1265. pfn = zone->zone_start_pfn;
  1266. for (; pfn < end_pfn; pfn++) {
  1267. if (!pfn_valid_within(pfn))
  1268. goto free_range;
  1269. /*
  1270. * Ensure pfn_valid is checked every
  1271. * MAX_ORDER_NR_PAGES for memory holes
  1272. */
  1273. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1274. if (!pfn_valid(pfn)) {
  1275. page = NULL;
  1276. goto free_range;
  1277. }
  1278. }
  1279. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1280. page = NULL;
  1281. goto free_range;
  1282. }
  1283. /* Minimise pfn page lookups and scheduler checks */
  1284. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1285. page++;
  1286. } else {
  1287. nr_pages += nr_to_free;
  1288. deferred_free_range(free_base_page,
  1289. free_base_pfn, nr_to_free);
  1290. free_base_page = NULL;
  1291. free_base_pfn = nr_to_free = 0;
  1292. page = pfn_to_page(pfn);
  1293. cond_resched();
  1294. }
  1295. if (page->flags) {
  1296. VM_BUG_ON(page_zone(page) != zone);
  1297. goto free_range;
  1298. }
  1299. __init_single_page(page, pfn, zid, nid);
  1300. if (!free_base_page) {
  1301. free_base_page = page;
  1302. free_base_pfn = pfn;
  1303. nr_to_free = 0;
  1304. }
  1305. nr_to_free++;
  1306. /* Where possible, batch up pages for a single free */
  1307. continue;
  1308. free_range:
  1309. /* Free the current block of pages to allocator */
  1310. nr_pages += nr_to_free;
  1311. deferred_free_range(free_base_page, free_base_pfn,
  1312. nr_to_free);
  1313. free_base_page = NULL;
  1314. free_base_pfn = nr_to_free = 0;
  1315. }
  1316. first_init_pfn = max(end_pfn, first_init_pfn);
  1317. }
  1318. /* Sanity check that the next zone really is unpopulated */
  1319. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1320. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1321. jiffies_to_msecs(jiffies - start));
  1322. pgdat_init_report_one_done();
  1323. return 0;
  1324. }
  1325. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1326. void __init page_alloc_init_late(void)
  1327. {
  1328. struct zone *zone;
  1329. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1330. int nid;
  1331. /* There will be num_node_state(N_MEMORY) threads */
  1332. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1333. for_each_node_state(nid, N_MEMORY) {
  1334. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1335. }
  1336. /* Block until all are initialised */
  1337. wait_for_completion(&pgdat_init_all_done_comp);
  1338. /* Reinit limits that are based on free pages after the kernel is up */
  1339. files_maxfiles_init();
  1340. #endif
  1341. for_each_populated_zone(zone)
  1342. set_zone_contiguous(zone);
  1343. }
  1344. #ifdef CONFIG_CMA
  1345. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1346. void __init init_cma_reserved_pageblock(struct page *page)
  1347. {
  1348. unsigned i = pageblock_nr_pages;
  1349. struct page *p = page;
  1350. do {
  1351. __ClearPageReserved(p);
  1352. set_page_count(p, 0);
  1353. } while (++p, --i);
  1354. set_pageblock_migratetype(page, MIGRATE_CMA);
  1355. if (pageblock_order >= MAX_ORDER) {
  1356. i = pageblock_nr_pages;
  1357. p = page;
  1358. do {
  1359. set_page_refcounted(p);
  1360. __free_pages(p, MAX_ORDER - 1);
  1361. p += MAX_ORDER_NR_PAGES;
  1362. } while (i -= MAX_ORDER_NR_PAGES);
  1363. } else {
  1364. set_page_refcounted(page);
  1365. __free_pages(page, pageblock_order);
  1366. }
  1367. adjust_managed_page_count(page, pageblock_nr_pages);
  1368. }
  1369. #endif
  1370. /*
  1371. * The order of subdivision here is critical for the IO subsystem.
  1372. * Please do not alter this order without good reasons and regression
  1373. * testing. Specifically, as large blocks of memory are subdivided,
  1374. * the order in which smaller blocks are delivered depends on the order
  1375. * they're subdivided in this function. This is the primary factor
  1376. * influencing the order in which pages are delivered to the IO
  1377. * subsystem according to empirical testing, and this is also justified
  1378. * by considering the behavior of a buddy system containing a single
  1379. * large block of memory acted on by a series of small allocations.
  1380. * This behavior is a critical factor in sglist merging's success.
  1381. *
  1382. * -- nyc
  1383. */
  1384. static inline void expand(struct zone *zone, struct page *page,
  1385. int low, int high, struct free_area *area,
  1386. int migratetype)
  1387. {
  1388. unsigned long size = 1 << high;
  1389. while (high > low) {
  1390. area--;
  1391. high--;
  1392. size >>= 1;
  1393. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1394. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1395. debug_guardpage_enabled() &&
  1396. high < debug_guardpage_minorder()) {
  1397. /*
  1398. * Mark as guard pages (or page), that will allow to
  1399. * merge back to allocator when buddy will be freed.
  1400. * Corresponding page table entries will not be touched,
  1401. * pages will stay not present in virtual address space
  1402. */
  1403. set_page_guard(zone, &page[size], high, migratetype);
  1404. continue;
  1405. }
  1406. list_add(&page[size].lru, &area->free_list[migratetype]);
  1407. area->nr_free++;
  1408. set_page_order(&page[size], high);
  1409. }
  1410. }
  1411. static void check_new_page_bad(struct page *page)
  1412. {
  1413. const char *bad_reason = NULL;
  1414. unsigned long bad_flags = 0;
  1415. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1416. bad_reason = "nonzero mapcount";
  1417. if (unlikely(page->mapping != NULL))
  1418. bad_reason = "non-NULL mapping";
  1419. if (unlikely(page_ref_count(page) != 0))
  1420. bad_reason = "nonzero _count";
  1421. if (unlikely(page->flags & __PG_HWPOISON)) {
  1422. bad_reason = "HWPoisoned (hardware-corrupted)";
  1423. bad_flags = __PG_HWPOISON;
  1424. /* Don't complain about hwpoisoned pages */
  1425. page_mapcount_reset(page); /* remove PageBuddy */
  1426. return;
  1427. }
  1428. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1429. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1430. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1431. }
  1432. #ifdef CONFIG_MEMCG
  1433. if (unlikely(page->mem_cgroup))
  1434. bad_reason = "page still charged to cgroup";
  1435. #endif
  1436. bad_page(page, bad_reason, bad_flags);
  1437. }
  1438. /*
  1439. * This page is about to be returned from the page allocator
  1440. */
  1441. static inline int check_new_page(struct page *page)
  1442. {
  1443. if (likely(page_expected_state(page,
  1444. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1445. return 0;
  1446. check_new_page_bad(page);
  1447. return 1;
  1448. }
  1449. static inline bool free_pages_prezeroed(bool poisoned)
  1450. {
  1451. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1452. page_poisoning_enabled() && poisoned;
  1453. }
  1454. #ifdef CONFIG_DEBUG_VM
  1455. static bool check_pcp_refill(struct page *page)
  1456. {
  1457. return false;
  1458. }
  1459. static bool check_new_pcp(struct page *page)
  1460. {
  1461. return check_new_page(page);
  1462. }
  1463. #else
  1464. static bool check_pcp_refill(struct page *page)
  1465. {
  1466. return check_new_page(page);
  1467. }
  1468. static bool check_new_pcp(struct page *page)
  1469. {
  1470. return false;
  1471. }
  1472. #endif /* CONFIG_DEBUG_VM */
  1473. static bool check_new_pages(struct page *page, unsigned int order)
  1474. {
  1475. int i;
  1476. for (i = 0; i < (1 << order); i++) {
  1477. struct page *p = page + i;
  1478. if (unlikely(check_new_page(p)))
  1479. return true;
  1480. }
  1481. return false;
  1482. }
  1483. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1484. unsigned int alloc_flags)
  1485. {
  1486. int i;
  1487. bool poisoned = true;
  1488. for (i = 0; i < (1 << order); i++) {
  1489. struct page *p = page + i;
  1490. if (poisoned)
  1491. poisoned &= page_is_poisoned(p);
  1492. }
  1493. set_page_private(page, 0);
  1494. set_page_refcounted(page);
  1495. arch_alloc_page(page, order);
  1496. kernel_map_pages(page, 1 << order, 1);
  1497. kernel_poison_pages(page, 1 << order, 1);
  1498. kasan_alloc_pages(page, order);
  1499. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1500. for (i = 0; i < (1 << order); i++)
  1501. clear_highpage(page + i);
  1502. if (order && (gfp_flags & __GFP_COMP))
  1503. prep_compound_page(page, order);
  1504. set_page_owner(page, order, gfp_flags);
  1505. /*
  1506. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1507. * allocate the page. The expectation is that the caller is taking
  1508. * steps that will free more memory. The caller should avoid the page
  1509. * being used for !PFMEMALLOC purposes.
  1510. */
  1511. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1512. set_page_pfmemalloc(page);
  1513. else
  1514. clear_page_pfmemalloc(page);
  1515. }
  1516. /*
  1517. * Go through the free lists for the given migratetype and remove
  1518. * the smallest available page from the freelists
  1519. */
  1520. static inline
  1521. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1522. int migratetype)
  1523. {
  1524. unsigned int current_order;
  1525. struct free_area *area;
  1526. struct page *page;
  1527. /* Find a page of the appropriate size in the preferred list */
  1528. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1529. area = &(zone->free_area[current_order]);
  1530. page = list_first_entry_or_null(&area->free_list[migratetype],
  1531. struct page, lru);
  1532. if (!page)
  1533. continue;
  1534. list_del(&page->lru);
  1535. rmv_page_order(page);
  1536. area->nr_free--;
  1537. expand(zone, page, order, current_order, area, migratetype);
  1538. set_pcppage_migratetype(page, migratetype);
  1539. return page;
  1540. }
  1541. return NULL;
  1542. }
  1543. /*
  1544. * This array describes the order lists are fallen back to when
  1545. * the free lists for the desirable migrate type are depleted
  1546. */
  1547. static int fallbacks[MIGRATE_TYPES][4] = {
  1548. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1549. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1550. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1551. #ifdef CONFIG_CMA
  1552. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1553. #endif
  1554. #ifdef CONFIG_MEMORY_ISOLATION
  1555. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1556. #endif
  1557. };
  1558. #ifdef CONFIG_CMA
  1559. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1560. unsigned int order)
  1561. {
  1562. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1563. }
  1564. #else
  1565. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1566. unsigned int order) { return NULL; }
  1567. #endif
  1568. /*
  1569. * Move the free pages in a range to the free lists of the requested type.
  1570. * Note that start_page and end_pages are not aligned on a pageblock
  1571. * boundary. If alignment is required, use move_freepages_block()
  1572. */
  1573. int move_freepages(struct zone *zone,
  1574. struct page *start_page, struct page *end_page,
  1575. int migratetype)
  1576. {
  1577. struct page *page;
  1578. unsigned int order;
  1579. int pages_moved = 0;
  1580. #ifndef CONFIG_HOLES_IN_ZONE
  1581. /*
  1582. * page_zone is not safe to call in this context when
  1583. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1584. * anyway as we check zone boundaries in move_freepages_block().
  1585. * Remove at a later date when no bug reports exist related to
  1586. * grouping pages by mobility
  1587. */
  1588. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1589. #endif
  1590. for (page = start_page; page <= end_page;) {
  1591. /* Make sure we are not inadvertently changing nodes */
  1592. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1593. if (!pfn_valid_within(page_to_pfn(page))) {
  1594. page++;
  1595. continue;
  1596. }
  1597. if (!PageBuddy(page)) {
  1598. page++;
  1599. continue;
  1600. }
  1601. order = page_order(page);
  1602. list_move(&page->lru,
  1603. &zone->free_area[order].free_list[migratetype]);
  1604. page += 1 << order;
  1605. pages_moved += 1 << order;
  1606. }
  1607. return pages_moved;
  1608. }
  1609. int move_freepages_block(struct zone *zone, struct page *page,
  1610. int migratetype)
  1611. {
  1612. unsigned long start_pfn, end_pfn;
  1613. struct page *start_page, *end_page;
  1614. start_pfn = page_to_pfn(page);
  1615. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1616. start_page = pfn_to_page(start_pfn);
  1617. end_page = start_page + pageblock_nr_pages - 1;
  1618. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1619. /* Do not cross zone boundaries */
  1620. if (!zone_spans_pfn(zone, start_pfn))
  1621. start_page = page;
  1622. if (!zone_spans_pfn(zone, end_pfn))
  1623. return 0;
  1624. return move_freepages(zone, start_page, end_page, migratetype);
  1625. }
  1626. static void change_pageblock_range(struct page *pageblock_page,
  1627. int start_order, int migratetype)
  1628. {
  1629. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1630. while (nr_pageblocks--) {
  1631. set_pageblock_migratetype(pageblock_page, migratetype);
  1632. pageblock_page += pageblock_nr_pages;
  1633. }
  1634. }
  1635. /*
  1636. * When we are falling back to another migratetype during allocation, try to
  1637. * steal extra free pages from the same pageblocks to satisfy further
  1638. * allocations, instead of polluting multiple pageblocks.
  1639. *
  1640. * If we are stealing a relatively large buddy page, it is likely there will
  1641. * be more free pages in the pageblock, so try to steal them all. For
  1642. * reclaimable and unmovable allocations, we steal regardless of page size,
  1643. * as fragmentation caused by those allocations polluting movable pageblocks
  1644. * is worse than movable allocations stealing from unmovable and reclaimable
  1645. * pageblocks.
  1646. */
  1647. static bool can_steal_fallback(unsigned int order, int start_mt)
  1648. {
  1649. /*
  1650. * Leaving this order check is intended, although there is
  1651. * relaxed order check in next check. The reason is that
  1652. * we can actually steal whole pageblock if this condition met,
  1653. * but, below check doesn't guarantee it and that is just heuristic
  1654. * so could be changed anytime.
  1655. */
  1656. if (order >= pageblock_order)
  1657. return true;
  1658. if (order >= pageblock_order / 2 ||
  1659. start_mt == MIGRATE_RECLAIMABLE ||
  1660. start_mt == MIGRATE_UNMOVABLE ||
  1661. page_group_by_mobility_disabled)
  1662. return true;
  1663. return false;
  1664. }
  1665. /*
  1666. * This function implements actual steal behaviour. If order is large enough,
  1667. * we can steal whole pageblock. If not, we first move freepages in this
  1668. * pageblock and check whether half of pages are moved or not. If half of
  1669. * pages are moved, we can change migratetype of pageblock and permanently
  1670. * use it's pages as requested migratetype in the future.
  1671. */
  1672. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1673. int start_type)
  1674. {
  1675. unsigned int current_order = page_order(page);
  1676. int pages;
  1677. /* Take ownership for orders >= pageblock_order */
  1678. if (current_order >= pageblock_order) {
  1679. change_pageblock_range(page, current_order, start_type);
  1680. return;
  1681. }
  1682. pages = move_freepages_block(zone, page, start_type);
  1683. /* Claim the whole block if over half of it is free */
  1684. if (pages >= (1 << (pageblock_order-1)) ||
  1685. page_group_by_mobility_disabled)
  1686. set_pageblock_migratetype(page, start_type);
  1687. }
  1688. /*
  1689. * Check whether there is a suitable fallback freepage with requested order.
  1690. * If only_stealable is true, this function returns fallback_mt only if
  1691. * we can steal other freepages all together. This would help to reduce
  1692. * fragmentation due to mixed migratetype pages in one pageblock.
  1693. */
  1694. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1695. int migratetype, bool only_stealable, bool *can_steal)
  1696. {
  1697. int i;
  1698. int fallback_mt;
  1699. if (area->nr_free == 0)
  1700. return -1;
  1701. *can_steal = false;
  1702. for (i = 0;; i++) {
  1703. fallback_mt = fallbacks[migratetype][i];
  1704. if (fallback_mt == MIGRATE_TYPES)
  1705. break;
  1706. if (list_empty(&area->free_list[fallback_mt]))
  1707. continue;
  1708. if (can_steal_fallback(order, migratetype))
  1709. *can_steal = true;
  1710. if (!only_stealable)
  1711. return fallback_mt;
  1712. if (*can_steal)
  1713. return fallback_mt;
  1714. }
  1715. return -1;
  1716. }
  1717. /*
  1718. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1719. * there are no empty page blocks that contain a page with a suitable order
  1720. */
  1721. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1722. unsigned int alloc_order)
  1723. {
  1724. int mt;
  1725. unsigned long max_managed, flags;
  1726. /*
  1727. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1728. * Check is race-prone but harmless.
  1729. */
  1730. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1731. if (zone->nr_reserved_highatomic >= max_managed)
  1732. return;
  1733. spin_lock_irqsave(&zone->lock, flags);
  1734. /* Recheck the nr_reserved_highatomic limit under the lock */
  1735. if (zone->nr_reserved_highatomic >= max_managed)
  1736. goto out_unlock;
  1737. /* Yoink! */
  1738. mt = get_pageblock_migratetype(page);
  1739. if (mt != MIGRATE_HIGHATOMIC &&
  1740. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1741. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1742. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1743. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1744. }
  1745. out_unlock:
  1746. spin_unlock_irqrestore(&zone->lock, flags);
  1747. }
  1748. /*
  1749. * Used when an allocation is about to fail under memory pressure. This
  1750. * potentially hurts the reliability of high-order allocations when under
  1751. * intense memory pressure but failed atomic allocations should be easier
  1752. * to recover from than an OOM.
  1753. */
  1754. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1755. {
  1756. struct zonelist *zonelist = ac->zonelist;
  1757. unsigned long flags;
  1758. struct zoneref *z;
  1759. struct zone *zone;
  1760. struct page *page;
  1761. int order;
  1762. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1763. ac->nodemask) {
  1764. /* Preserve at least one pageblock */
  1765. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1766. continue;
  1767. spin_lock_irqsave(&zone->lock, flags);
  1768. for (order = 0; order < MAX_ORDER; order++) {
  1769. struct free_area *area = &(zone->free_area[order]);
  1770. page = list_first_entry_or_null(
  1771. &area->free_list[MIGRATE_HIGHATOMIC],
  1772. struct page, lru);
  1773. if (!page)
  1774. continue;
  1775. /*
  1776. * It should never happen but changes to locking could
  1777. * inadvertently allow a per-cpu drain to add pages
  1778. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1779. * and watch for underflows.
  1780. */
  1781. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1782. zone->nr_reserved_highatomic);
  1783. /*
  1784. * Convert to ac->migratetype and avoid the normal
  1785. * pageblock stealing heuristics. Minimally, the caller
  1786. * is doing the work and needs the pages. More
  1787. * importantly, if the block was always converted to
  1788. * MIGRATE_UNMOVABLE or another type then the number
  1789. * of pageblocks that cannot be completely freed
  1790. * may increase.
  1791. */
  1792. set_pageblock_migratetype(page, ac->migratetype);
  1793. move_freepages_block(zone, page, ac->migratetype);
  1794. spin_unlock_irqrestore(&zone->lock, flags);
  1795. return;
  1796. }
  1797. spin_unlock_irqrestore(&zone->lock, flags);
  1798. }
  1799. }
  1800. /* Remove an element from the buddy allocator from the fallback list */
  1801. static inline struct page *
  1802. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1803. {
  1804. struct free_area *area;
  1805. unsigned int current_order;
  1806. struct page *page;
  1807. int fallback_mt;
  1808. bool can_steal;
  1809. /* Find the largest possible block of pages in the other list */
  1810. for (current_order = MAX_ORDER-1;
  1811. current_order >= order && current_order <= MAX_ORDER-1;
  1812. --current_order) {
  1813. area = &(zone->free_area[current_order]);
  1814. fallback_mt = find_suitable_fallback(area, current_order,
  1815. start_migratetype, false, &can_steal);
  1816. if (fallback_mt == -1)
  1817. continue;
  1818. page = list_first_entry(&area->free_list[fallback_mt],
  1819. struct page, lru);
  1820. if (can_steal)
  1821. steal_suitable_fallback(zone, page, start_migratetype);
  1822. /* Remove the page from the freelists */
  1823. area->nr_free--;
  1824. list_del(&page->lru);
  1825. rmv_page_order(page);
  1826. expand(zone, page, order, current_order, area,
  1827. start_migratetype);
  1828. /*
  1829. * The pcppage_migratetype may differ from pageblock's
  1830. * migratetype depending on the decisions in
  1831. * find_suitable_fallback(). This is OK as long as it does not
  1832. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1833. * fallback only via special __rmqueue_cma_fallback() function
  1834. */
  1835. set_pcppage_migratetype(page, start_migratetype);
  1836. trace_mm_page_alloc_extfrag(page, order, current_order,
  1837. start_migratetype, fallback_mt);
  1838. return page;
  1839. }
  1840. return NULL;
  1841. }
  1842. /*
  1843. * Do the hard work of removing an element from the buddy allocator.
  1844. * Call me with the zone->lock already held.
  1845. */
  1846. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1847. int migratetype)
  1848. {
  1849. struct page *page;
  1850. page = __rmqueue_smallest(zone, order, migratetype);
  1851. if (unlikely(!page)) {
  1852. if (migratetype == MIGRATE_MOVABLE)
  1853. page = __rmqueue_cma_fallback(zone, order);
  1854. if (!page)
  1855. page = __rmqueue_fallback(zone, order, migratetype);
  1856. }
  1857. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1858. return page;
  1859. }
  1860. /*
  1861. * Obtain a specified number of elements from the buddy allocator, all under
  1862. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1863. * Returns the number of new pages which were placed at *list.
  1864. */
  1865. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1866. unsigned long count, struct list_head *list,
  1867. int migratetype, bool cold)
  1868. {
  1869. int i;
  1870. spin_lock(&zone->lock);
  1871. for (i = 0; i < count; ++i) {
  1872. struct page *page = __rmqueue(zone, order, migratetype);
  1873. if (unlikely(page == NULL))
  1874. break;
  1875. if (unlikely(check_pcp_refill(page)))
  1876. continue;
  1877. /*
  1878. * Split buddy pages returned by expand() are received here
  1879. * in physical page order. The page is added to the callers and
  1880. * list and the list head then moves forward. From the callers
  1881. * perspective, the linked list is ordered by page number in
  1882. * some conditions. This is useful for IO devices that can
  1883. * merge IO requests if the physical pages are ordered
  1884. * properly.
  1885. */
  1886. if (likely(!cold))
  1887. list_add(&page->lru, list);
  1888. else
  1889. list_add_tail(&page->lru, list);
  1890. list = &page->lru;
  1891. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1892. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1893. -(1 << order));
  1894. }
  1895. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1896. spin_unlock(&zone->lock);
  1897. return i;
  1898. }
  1899. #ifdef CONFIG_NUMA
  1900. /*
  1901. * Called from the vmstat counter updater to drain pagesets of this
  1902. * currently executing processor on remote nodes after they have
  1903. * expired.
  1904. *
  1905. * Note that this function must be called with the thread pinned to
  1906. * a single processor.
  1907. */
  1908. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1909. {
  1910. unsigned long flags;
  1911. int to_drain, batch;
  1912. local_irq_save(flags);
  1913. batch = READ_ONCE(pcp->batch);
  1914. to_drain = min(pcp->count, batch);
  1915. if (to_drain > 0) {
  1916. free_pcppages_bulk(zone, to_drain, pcp);
  1917. pcp->count -= to_drain;
  1918. }
  1919. local_irq_restore(flags);
  1920. }
  1921. #endif
  1922. /*
  1923. * Drain pcplists of the indicated processor and zone.
  1924. *
  1925. * The processor must either be the current processor and the
  1926. * thread pinned to the current processor or a processor that
  1927. * is not online.
  1928. */
  1929. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1930. {
  1931. unsigned long flags;
  1932. struct per_cpu_pageset *pset;
  1933. struct per_cpu_pages *pcp;
  1934. local_irq_save(flags);
  1935. pset = per_cpu_ptr(zone->pageset, cpu);
  1936. pcp = &pset->pcp;
  1937. if (pcp->count) {
  1938. free_pcppages_bulk(zone, pcp->count, pcp);
  1939. pcp->count = 0;
  1940. }
  1941. local_irq_restore(flags);
  1942. }
  1943. /*
  1944. * Drain pcplists of all zones on the indicated processor.
  1945. *
  1946. * The processor must either be the current processor and the
  1947. * thread pinned to the current processor or a processor that
  1948. * is not online.
  1949. */
  1950. static void drain_pages(unsigned int cpu)
  1951. {
  1952. struct zone *zone;
  1953. for_each_populated_zone(zone) {
  1954. drain_pages_zone(cpu, zone);
  1955. }
  1956. }
  1957. /*
  1958. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1959. *
  1960. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1961. * the single zone's pages.
  1962. */
  1963. void drain_local_pages(struct zone *zone)
  1964. {
  1965. int cpu = smp_processor_id();
  1966. if (zone)
  1967. drain_pages_zone(cpu, zone);
  1968. else
  1969. drain_pages(cpu);
  1970. }
  1971. /*
  1972. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1973. *
  1974. * When zone parameter is non-NULL, spill just the single zone's pages.
  1975. *
  1976. * Note that this code is protected against sending an IPI to an offline
  1977. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1978. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1979. * nothing keeps CPUs from showing up after we populated the cpumask and
  1980. * before the call to on_each_cpu_mask().
  1981. */
  1982. void drain_all_pages(struct zone *zone)
  1983. {
  1984. int cpu;
  1985. /*
  1986. * Allocate in the BSS so we wont require allocation in
  1987. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1988. */
  1989. static cpumask_t cpus_with_pcps;
  1990. /*
  1991. * We don't care about racing with CPU hotplug event
  1992. * as offline notification will cause the notified
  1993. * cpu to drain that CPU pcps and on_each_cpu_mask
  1994. * disables preemption as part of its processing
  1995. */
  1996. for_each_online_cpu(cpu) {
  1997. struct per_cpu_pageset *pcp;
  1998. struct zone *z;
  1999. bool has_pcps = false;
  2000. if (zone) {
  2001. pcp = per_cpu_ptr(zone->pageset, cpu);
  2002. if (pcp->pcp.count)
  2003. has_pcps = true;
  2004. } else {
  2005. for_each_populated_zone(z) {
  2006. pcp = per_cpu_ptr(z->pageset, cpu);
  2007. if (pcp->pcp.count) {
  2008. has_pcps = true;
  2009. break;
  2010. }
  2011. }
  2012. }
  2013. if (has_pcps)
  2014. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2015. else
  2016. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2017. }
  2018. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2019. zone, 1);
  2020. }
  2021. #ifdef CONFIG_HIBERNATION
  2022. void mark_free_pages(struct zone *zone)
  2023. {
  2024. unsigned long pfn, max_zone_pfn;
  2025. unsigned long flags;
  2026. unsigned int order, t;
  2027. struct page *page;
  2028. if (zone_is_empty(zone))
  2029. return;
  2030. spin_lock_irqsave(&zone->lock, flags);
  2031. max_zone_pfn = zone_end_pfn(zone);
  2032. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2033. if (pfn_valid(pfn)) {
  2034. page = pfn_to_page(pfn);
  2035. if (page_zone(page) != zone)
  2036. continue;
  2037. if (!swsusp_page_is_forbidden(page))
  2038. swsusp_unset_page_free(page);
  2039. }
  2040. for_each_migratetype_order(order, t) {
  2041. list_for_each_entry(page,
  2042. &zone->free_area[order].free_list[t], lru) {
  2043. unsigned long i;
  2044. pfn = page_to_pfn(page);
  2045. for (i = 0; i < (1UL << order); i++)
  2046. swsusp_set_page_free(pfn_to_page(pfn + i));
  2047. }
  2048. }
  2049. spin_unlock_irqrestore(&zone->lock, flags);
  2050. }
  2051. #endif /* CONFIG_PM */
  2052. /*
  2053. * Free a 0-order page
  2054. * cold == true ? free a cold page : free a hot page
  2055. */
  2056. void free_hot_cold_page(struct page *page, bool cold)
  2057. {
  2058. struct zone *zone = page_zone(page);
  2059. struct per_cpu_pages *pcp;
  2060. unsigned long flags;
  2061. unsigned long pfn = page_to_pfn(page);
  2062. int migratetype;
  2063. if (!free_pcp_prepare(page))
  2064. return;
  2065. migratetype = get_pfnblock_migratetype(page, pfn);
  2066. set_pcppage_migratetype(page, migratetype);
  2067. local_irq_save(flags);
  2068. __count_vm_event(PGFREE);
  2069. /*
  2070. * We only track unmovable, reclaimable and movable on pcp lists.
  2071. * Free ISOLATE pages back to the allocator because they are being
  2072. * offlined but treat RESERVE as movable pages so we can get those
  2073. * areas back if necessary. Otherwise, we may have to free
  2074. * excessively into the page allocator
  2075. */
  2076. if (migratetype >= MIGRATE_PCPTYPES) {
  2077. if (unlikely(is_migrate_isolate(migratetype))) {
  2078. free_one_page(zone, page, pfn, 0, migratetype);
  2079. goto out;
  2080. }
  2081. migratetype = MIGRATE_MOVABLE;
  2082. }
  2083. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2084. if (!cold)
  2085. list_add(&page->lru, &pcp->lists[migratetype]);
  2086. else
  2087. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2088. pcp->count++;
  2089. if (pcp->count >= pcp->high) {
  2090. unsigned long batch = READ_ONCE(pcp->batch);
  2091. free_pcppages_bulk(zone, batch, pcp);
  2092. pcp->count -= batch;
  2093. }
  2094. out:
  2095. local_irq_restore(flags);
  2096. }
  2097. /*
  2098. * Free a list of 0-order pages
  2099. */
  2100. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2101. {
  2102. struct page *page, *next;
  2103. list_for_each_entry_safe(page, next, list, lru) {
  2104. trace_mm_page_free_batched(page, cold);
  2105. free_hot_cold_page(page, cold);
  2106. }
  2107. }
  2108. /*
  2109. * split_page takes a non-compound higher-order page, and splits it into
  2110. * n (1<<order) sub-pages: page[0..n]
  2111. * Each sub-page must be freed individually.
  2112. *
  2113. * Note: this is probably too low level an operation for use in drivers.
  2114. * Please consult with lkml before using this in your driver.
  2115. */
  2116. void split_page(struct page *page, unsigned int order)
  2117. {
  2118. int i;
  2119. gfp_t gfp_mask;
  2120. VM_BUG_ON_PAGE(PageCompound(page), page);
  2121. VM_BUG_ON_PAGE(!page_count(page), page);
  2122. #ifdef CONFIG_KMEMCHECK
  2123. /*
  2124. * Split shadow pages too, because free(page[0]) would
  2125. * otherwise free the whole shadow.
  2126. */
  2127. if (kmemcheck_page_is_tracked(page))
  2128. split_page(virt_to_page(page[0].shadow), order);
  2129. #endif
  2130. gfp_mask = get_page_owner_gfp(page);
  2131. set_page_owner(page, 0, gfp_mask);
  2132. for (i = 1; i < (1 << order); i++) {
  2133. set_page_refcounted(page + i);
  2134. set_page_owner(page + i, 0, gfp_mask);
  2135. }
  2136. }
  2137. EXPORT_SYMBOL_GPL(split_page);
  2138. int __isolate_free_page(struct page *page, unsigned int order)
  2139. {
  2140. unsigned long watermark;
  2141. struct zone *zone;
  2142. int mt;
  2143. BUG_ON(!PageBuddy(page));
  2144. zone = page_zone(page);
  2145. mt = get_pageblock_migratetype(page);
  2146. if (!is_migrate_isolate(mt)) {
  2147. /* Obey watermarks as if the page was being allocated */
  2148. watermark = low_wmark_pages(zone) + (1 << order);
  2149. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  2150. return 0;
  2151. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2152. }
  2153. /* Remove page from free list */
  2154. list_del(&page->lru);
  2155. zone->free_area[order].nr_free--;
  2156. rmv_page_order(page);
  2157. set_page_owner(page, order, __GFP_MOVABLE);
  2158. /* Set the pageblock if the isolated page is at least a pageblock */
  2159. if (order >= pageblock_order - 1) {
  2160. struct page *endpage = page + (1 << order) - 1;
  2161. for (; page < endpage; page += pageblock_nr_pages) {
  2162. int mt = get_pageblock_migratetype(page);
  2163. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2164. set_pageblock_migratetype(page,
  2165. MIGRATE_MOVABLE);
  2166. }
  2167. }
  2168. return 1UL << order;
  2169. }
  2170. /*
  2171. * Similar to split_page except the page is already free. As this is only
  2172. * being used for migration, the migratetype of the block also changes.
  2173. * As this is called with interrupts disabled, the caller is responsible
  2174. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  2175. * are enabled.
  2176. *
  2177. * Note: this is probably too low level an operation for use in drivers.
  2178. * Please consult with lkml before using this in your driver.
  2179. */
  2180. int split_free_page(struct page *page)
  2181. {
  2182. unsigned int order;
  2183. int nr_pages;
  2184. order = page_order(page);
  2185. nr_pages = __isolate_free_page(page, order);
  2186. if (!nr_pages)
  2187. return 0;
  2188. /* Split into individual pages */
  2189. set_page_refcounted(page);
  2190. split_page(page, order);
  2191. return nr_pages;
  2192. }
  2193. /*
  2194. * Update NUMA hit/miss statistics
  2195. *
  2196. * Must be called with interrupts disabled.
  2197. *
  2198. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2199. * zone is the local node. This is useful for daemons who allocate
  2200. * memory on behalf of other processes.
  2201. */
  2202. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2203. gfp_t flags)
  2204. {
  2205. #ifdef CONFIG_NUMA
  2206. int local_nid = numa_node_id();
  2207. enum zone_stat_item local_stat = NUMA_LOCAL;
  2208. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2209. local_stat = NUMA_OTHER;
  2210. local_nid = preferred_zone->node;
  2211. }
  2212. if (z->node == local_nid) {
  2213. __inc_zone_state(z, NUMA_HIT);
  2214. __inc_zone_state(z, local_stat);
  2215. } else {
  2216. __inc_zone_state(z, NUMA_MISS);
  2217. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2218. }
  2219. #endif
  2220. }
  2221. /*
  2222. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2223. */
  2224. static inline
  2225. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2226. struct zone *zone, unsigned int order,
  2227. gfp_t gfp_flags, unsigned int alloc_flags,
  2228. int migratetype)
  2229. {
  2230. unsigned long flags;
  2231. struct page *page;
  2232. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2233. if (likely(order == 0)) {
  2234. struct per_cpu_pages *pcp;
  2235. struct list_head *list;
  2236. local_irq_save(flags);
  2237. do {
  2238. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2239. list = &pcp->lists[migratetype];
  2240. if (list_empty(list)) {
  2241. pcp->count += rmqueue_bulk(zone, 0,
  2242. pcp->batch, list,
  2243. migratetype, cold);
  2244. if (unlikely(list_empty(list)))
  2245. goto failed;
  2246. }
  2247. if (cold)
  2248. page = list_last_entry(list, struct page, lru);
  2249. else
  2250. page = list_first_entry(list, struct page, lru);
  2251. __dec_zone_state(zone, NR_ALLOC_BATCH);
  2252. list_del(&page->lru);
  2253. pcp->count--;
  2254. } while (check_new_pcp(page));
  2255. } else {
  2256. /*
  2257. * We most definitely don't want callers attempting to
  2258. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2259. */
  2260. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2261. spin_lock_irqsave(&zone->lock, flags);
  2262. do {
  2263. page = NULL;
  2264. if (alloc_flags & ALLOC_HARDER) {
  2265. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2266. if (page)
  2267. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2268. }
  2269. if (!page)
  2270. page = __rmqueue(zone, order, migratetype);
  2271. } while (page && check_new_pages(page, order));
  2272. spin_unlock(&zone->lock);
  2273. if (!page)
  2274. goto failed;
  2275. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2276. __mod_zone_freepage_state(zone, -(1 << order),
  2277. get_pcppage_migratetype(page));
  2278. }
  2279. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2280. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2281. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2282. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2283. zone_statistics(preferred_zone, zone, gfp_flags);
  2284. local_irq_restore(flags);
  2285. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2286. return page;
  2287. failed:
  2288. local_irq_restore(flags);
  2289. return NULL;
  2290. }
  2291. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2292. static struct {
  2293. struct fault_attr attr;
  2294. bool ignore_gfp_highmem;
  2295. bool ignore_gfp_reclaim;
  2296. u32 min_order;
  2297. } fail_page_alloc = {
  2298. .attr = FAULT_ATTR_INITIALIZER,
  2299. .ignore_gfp_reclaim = true,
  2300. .ignore_gfp_highmem = true,
  2301. .min_order = 1,
  2302. };
  2303. static int __init setup_fail_page_alloc(char *str)
  2304. {
  2305. return setup_fault_attr(&fail_page_alloc.attr, str);
  2306. }
  2307. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2308. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2309. {
  2310. if (order < fail_page_alloc.min_order)
  2311. return false;
  2312. if (gfp_mask & __GFP_NOFAIL)
  2313. return false;
  2314. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2315. return false;
  2316. if (fail_page_alloc.ignore_gfp_reclaim &&
  2317. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2318. return false;
  2319. return should_fail(&fail_page_alloc.attr, 1 << order);
  2320. }
  2321. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2322. static int __init fail_page_alloc_debugfs(void)
  2323. {
  2324. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2325. struct dentry *dir;
  2326. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2327. &fail_page_alloc.attr);
  2328. if (IS_ERR(dir))
  2329. return PTR_ERR(dir);
  2330. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2331. &fail_page_alloc.ignore_gfp_reclaim))
  2332. goto fail;
  2333. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2334. &fail_page_alloc.ignore_gfp_highmem))
  2335. goto fail;
  2336. if (!debugfs_create_u32("min-order", mode, dir,
  2337. &fail_page_alloc.min_order))
  2338. goto fail;
  2339. return 0;
  2340. fail:
  2341. debugfs_remove_recursive(dir);
  2342. return -ENOMEM;
  2343. }
  2344. late_initcall(fail_page_alloc_debugfs);
  2345. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2346. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2347. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2348. {
  2349. return false;
  2350. }
  2351. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2352. /*
  2353. * Return true if free base pages are above 'mark'. For high-order checks it
  2354. * will return true of the order-0 watermark is reached and there is at least
  2355. * one free page of a suitable size. Checking now avoids taking the zone lock
  2356. * to check in the allocation paths if no pages are free.
  2357. */
  2358. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2359. int classzone_idx, unsigned int alloc_flags,
  2360. long free_pages)
  2361. {
  2362. long min = mark;
  2363. int o;
  2364. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2365. /* free_pages may go negative - that's OK */
  2366. free_pages -= (1 << order) - 1;
  2367. if (alloc_flags & ALLOC_HIGH)
  2368. min -= min / 2;
  2369. /*
  2370. * If the caller does not have rights to ALLOC_HARDER then subtract
  2371. * the high-atomic reserves. This will over-estimate the size of the
  2372. * atomic reserve but it avoids a search.
  2373. */
  2374. if (likely(!alloc_harder))
  2375. free_pages -= z->nr_reserved_highatomic;
  2376. else
  2377. min -= min / 4;
  2378. #ifdef CONFIG_CMA
  2379. /* If allocation can't use CMA areas don't use free CMA pages */
  2380. if (!(alloc_flags & ALLOC_CMA))
  2381. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2382. #endif
  2383. /*
  2384. * Check watermarks for an order-0 allocation request. If these
  2385. * are not met, then a high-order request also cannot go ahead
  2386. * even if a suitable page happened to be free.
  2387. */
  2388. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2389. return false;
  2390. /* If this is an order-0 request then the watermark is fine */
  2391. if (!order)
  2392. return true;
  2393. /* For a high-order request, check at least one suitable page is free */
  2394. for (o = order; o < MAX_ORDER; o++) {
  2395. struct free_area *area = &z->free_area[o];
  2396. int mt;
  2397. if (!area->nr_free)
  2398. continue;
  2399. if (alloc_harder)
  2400. return true;
  2401. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2402. if (!list_empty(&area->free_list[mt]))
  2403. return true;
  2404. }
  2405. #ifdef CONFIG_CMA
  2406. if ((alloc_flags & ALLOC_CMA) &&
  2407. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2408. return true;
  2409. }
  2410. #endif
  2411. }
  2412. return false;
  2413. }
  2414. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2415. int classzone_idx, unsigned int alloc_flags)
  2416. {
  2417. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2418. zone_page_state(z, NR_FREE_PAGES));
  2419. }
  2420. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2421. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2422. {
  2423. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2424. long cma_pages = 0;
  2425. #ifdef CONFIG_CMA
  2426. /* If allocation can't use CMA areas don't use free CMA pages */
  2427. if (!(alloc_flags & ALLOC_CMA))
  2428. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2429. #endif
  2430. /*
  2431. * Fast check for order-0 only. If this fails then the reserves
  2432. * need to be calculated. There is a corner case where the check
  2433. * passes but only the high-order atomic reserve are free. If
  2434. * the caller is !atomic then it'll uselessly search the free
  2435. * list. That corner case is then slower but it is harmless.
  2436. */
  2437. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2438. return true;
  2439. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2440. free_pages);
  2441. }
  2442. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2443. unsigned long mark, int classzone_idx)
  2444. {
  2445. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2446. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2447. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2448. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2449. free_pages);
  2450. }
  2451. #ifdef CONFIG_NUMA
  2452. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2453. {
  2454. return local_zone->node == zone->node;
  2455. }
  2456. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2457. {
  2458. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2459. RECLAIM_DISTANCE;
  2460. }
  2461. #else /* CONFIG_NUMA */
  2462. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2463. {
  2464. return true;
  2465. }
  2466. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2467. {
  2468. return true;
  2469. }
  2470. #endif /* CONFIG_NUMA */
  2471. static void reset_alloc_batches(struct zone *preferred_zone)
  2472. {
  2473. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2474. do {
  2475. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2476. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2477. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2478. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2479. } while (zone++ != preferred_zone);
  2480. }
  2481. /*
  2482. * get_page_from_freelist goes through the zonelist trying to allocate
  2483. * a page.
  2484. */
  2485. static struct page *
  2486. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2487. const struct alloc_context *ac)
  2488. {
  2489. struct zoneref *z = ac->preferred_zoneref;
  2490. struct zone *zone;
  2491. bool fair_skipped = false;
  2492. bool apply_fair = (alloc_flags & ALLOC_FAIR);
  2493. zonelist_scan:
  2494. /*
  2495. * Scan zonelist, looking for a zone with enough free.
  2496. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2497. */
  2498. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2499. ac->nodemask) {
  2500. struct page *page;
  2501. unsigned long mark;
  2502. if (cpusets_enabled() &&
  2503. (alloc_flags & ALLOC_CPUSET) &&
  2504. !__cpuset_zone_allowed(zone, gfp_mask))
  2505. continue;
  2506. /*
  2507. * Distribute pages in proportion to the individual
  2508. * zone size to ensure fair page aging. The zone a
  2509. * page was allocated in should have no effect on the
  2510. * time the page has in memory before being reclaimed.
  2511. */
  2512. if (apply_fair) {
  2513. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2514. fair_skipped = true;
  2515. continue;
  2516. }
  2517. if (!zone_local(ac->preferred_zoneref->zone, zone)) {
  2518. if (fair_skipped)
  2519. goto reset_fair;
  2520. apply_fair = false;
  2521. }
  2522. }
  2523. /*
  2524. * When allocating a page cache page for writing, we
  2525. * want to get it from a zone that is within its dirty
  2526. * limit, such that no single zone holds more than its
  2527. * proportional share of globally allowed dirty pages.
  2528. * The dirty limits take into account the zone's
  2529. * lowmem reserves and high watermark so that kswapd
  2530. * should be able to balance it without having to
  2531. * write pages from its LRU list.
  2532. *
  2533. * This may look like it could increase pressure on
  2534. * lower zones by failing allocations in higher zones
  2535. * before they are full. But the pages that do spill
  2536. * over are limited as the lower zones are protected
  2537. * by this very same mechanism. It should not become
  2538. * a practical burden to them.
  2539. *
  2540. * XXX: For now, allow allocations to potentially
  2541. * exceed the per-zone dirty limit in the slowpath
  2542. * (spread_dirty_pages unset) before going into reclaim,
  2543. * which is important when on a NUMA setup the allowed
  2544. * zones are together not big enough to reach the
  2545. * global limit. The proper fix for these situations
  2546. * will require awareness of zones in the
  2547. * dirty-throttling and the flusher threads.
  2548. */
  2549. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2550. continue;
  2551. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2552. if (!zone_watermark_fast(zone, order, mark,
  2553. ac_classzone_idx(ac), alloc_flags)) {
  2554. int ret;
  2555. /* Checked here to keep the fast path fast */
  2556. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2557. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2558. goto try_this_zone;
  2559. if (zone_reclaim_mode == 0 ||
  2560. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2561. continue;
  2562. ret = zone_reclaim(zone, gfp_mask, order);
  2563. switch (ret) {
  2564. case ZONE_RECLAIM_NOSCAN:
  2565. /* did not scan */
  2566. continue;
  2567. case ZONE_RECLAIM_FULL:
  2568. /* scanned but unreclaimable */
  2569. continue;
  2570. default:
  2571. /* did we reclaim enough */
  2572. if (zone_watermark_ok(zone, order, mark,
  2573. ac_classzone_idx(ac), alloc_flags))
  2574. goto try_this_zone;
  2575. continue;
  2576. }
  2577. }
  2578. try_this_zone:
  2579. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2580. gfp_mask, alloc_flags, ac->migratetype);
  2581. if (page) {
  2582. prep_new_page(page, order, gfp_mask, alloc_flags);
  2583. /*
  2584. * If this is a high-order atomic allocation then check
  2585. * if the pageblock should be reserved for the future
  2586. */
  2587. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2588. reserve_highatomic_pageblock(page, zone, order);
  2589. return page;
  2590. }
  2591. }
  2592. /*
  2593. * The first pass makes sure allocations are spread fairly within the
  2594. * local node. However, the local node might have free pages left
  2595. * after the fairness batches are exhausted, and remote zones haven't
  2596. * even been considered yet. Try once more without fairness, and
  2597. * include remote zones now, before entering the slowpath and waking
  2598. * kswapd: prefer spilling to a remote zone over swapping locally.
  2599. */
  2600. if (fair_skipped) {
  2601. reset_fair:
  2602. apply_fair = false;
  2603. fair_skipped = false;
  2604. reset_alloc_batches(ac->preferred_zoneref->zone);
  2605. z = ac->preferred_zoneref;
  2606. goto zonelist_scan;
  2607. }
  2608. return NULL;
  2609. }
  2610. /*
  2611. * Large machines with many possible nodes should not always dump per-node
  2612. * meminfo in irq context.
  2613. */
  2614. static inline bool should_suppress_show_mem(void)
  2615. {
  2616. bool ret = false;
  2617. #if NODES_SHIFT > 8
  2618. ret = in_interrupt();
  2619. #endif
  2620. return ret;
  2621. }
  2622. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2623. DEFAULT_RATELIMIT_INTERVAL,
  2624. DEFAULT_RATELIMIT_BURST);
  2625. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2626. {
  2627. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2628. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2629. debug_guardpage_minorder() > 0)
  2630. return;
  2631. /*
  2632. * This documents exceptions given to allocations in certain
  2633. * contexts that are allowed to allocate outside current's set
  2634. * of allowed nodes.
  2635. */
  2636. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2637. if (test_thread_flag(TIF_MEMDIE) ||
  2638. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2639. filter &= ~SHOW_MEM_FILTER_NODES;
  2640. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2641. filter &= ~SHOW_MEM_FILTER_NODES;
  2642. if (fmt) {
  2643. struct va_format vaf;
  2644. va_list args;
  2645. va_start(args, fmt);
  2646. vaf.fmt = fmt;
  2647. vaf.va = &args;
  2648. pr_warn("%pV", &vaf);
  2649. va_end(args);
  2650. }
  2651. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2652. current->comm, order, gfp_mask, &gfp_mask);
  2653. dump_stack();
  2654. if (!should_suppress_show_mem())
  2655. show_mem(filter);
  2656. }
  2657. static inline struct page *
  2658. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2659. const struct alloc_context *ac, unsigned long *did_some_progress)
  2660. {
  2661. struct oom_control oc = {
  2662. .zonelist = ac->zonelist,
  2663. .nodemask = ac->nodemask,
  2664. .gfp_mask = gfp_mask,
  2665. .order = order,
  2666. };
  2667. struct page *page;
  2668. *did_some_progress = 0;
  2669. /*
  2670. * Acquire the oom lock. If that fails, somebody else is
  2671. * making progress for us.
  2672. */
  2673. if (!mutex_trylock(&oom_lock)) {
  2674. *did_some_progress = 1;
  2675. schedule_timeout_uninterruptible(1);
  2676. return NULL;
  2677. }
  2678. /*
  2679. * Go through the zonelist yet one more time, keep very high watermark
  2680. * here, this is only to catch a parallel oom killing, we must fail if
  2681. * we're still under heavy pressure.
  2682. */
  2683. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2684. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2685. if (page)
  2686. goto out;
  2687. if (!(gfp_mask & __GFP_NOFAIL)) {
  2688. /* Coredumps can quickly deplete all memory reserves */
  2689. if (current->flags & PF_DUMPCORE)
  2690. goto out;
  2691. /* The OOM killer will not help higher order allocs */
  2692. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2693. goto out;
  2694. /* The OOM killer does not needlessly kill tasks for lowmem */
  2695. if (ac->high_zoneidx < ZONE_NORMAL)
  2696. goto out;
  2697. if (pm_suspended_storage())
  2698. goto out;
  2699. /*
  2700. * XXX: GFP_NOFS allocations should rather fail than rely on
  2701. * other request to make a forward progress.
  2702. * We are in an unfortunate situation where out_of_memory cannot
  2703. * do much for this context but let's try it to at least get
  2704. * access to memory reserved if the current task is killed (see
  2705. * out_of_memory). Once filesystems are ready to handle allocation
  2706. * failures more gracefully we should just bail out here.
  2707. */
  2708. /* The OOM killer may not free memory on a specific node */
  2709. if (gfp_mask & __GFP_THISNODE)
  2710. goto out;
  2711. }
  2712. /* Exhausted what can be done so it's blamo time */
  2713. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2714. *did_some_progress = 1;
  2715. if (gfp_mask & __GFP_NOFAIL) {
  2716. page = get_page_from_freelist(gfp_mask, order,
  2717. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2718. /*
  2719. * fallback to ignore cpuset restriction if our nodes
  2720. * are depleted
  2721. */
  2722. if (!page)
  2723. page = get_page_from_freelist(gfp_mask, order,
  2724. ALLOC_NO_WATERMARKS, ac);
  2725. }
  2726. }
  2727. out:
  2728. mutex_unlock(&oom_lock);
  2729. return page;
  2730. }
  2731. /*
  2732. * Maximum number of compaction retries wit a progress before OOM
  2733. * killer is consider as the only way to move forward.
  2734. */
  2735. #define MAX_COMPACT_RETRIES 16
  2736. #ifdef CONFIG_COMPACTION
  2737. /* Try memory compaction for high-order allocations before reclaim */
  2738. static struct page *
  2739. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2740. unsigned int alloc_flags, const struct alloc_context *ac,
  2741. enum migrate_mode mode, enum compact_result *compact_result)
  2742. {
  2743. struct page *page;
  2744. int contended_compaction;
  2745. if (!order)
  2746. return NULL;
  2747. current->flags |= PF_MEMALLOC;
  2748. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2749. mode, &contended_compaction);
  2750. current->flags &= ~PF_MEMALLOC;
  2751. if (*compact_result <= COMPACT_INACTIVE)
  2752. return NULL;
  2753. /*
  2754. * At least in one zone compaction wasn't deferred or skipped, so let's
  2755. * count a compaction stall
  2756. */
  2757. count_vm_event(COMPACTSTALL);
  2758. page = get_page_from_freelist(gfp_mask, order,
  2759. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2760. if (page) {
  2761. struct zone *zone = page_zone(page);
  2762. zone->compact_blockskip_flush = false;
  2763. compaction_defer_reset(zone, order, true);
  2764. count_vm_event(COMPACTSUCCESS);
  2765. return page;
  2766. }
  2767. /*
  2768. * It's bad if compaction run occurs and fails. The most likely reason
  2769. * is that pages exist, but not enough to satisfy watermarks.
  2770. */
  2771. count_vm_event(COMPACTFAIL);
  2772. /*
  2773. * In all zones where compaction was attempted (and not
  2774. * deferred or skipped), lock contention has been detected.
  2775. * For THP allocation we do not want to disrupt the others
  2776. * so we fallback to base pages instead.
  2777. */
  2778. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2779. *compact_result = COMPACT_CONTENDED;
  2780. /*
  2781. * If compaction was aborted due to need_resched(), we do not
  2782. * want to further increase allocation latency, unless it is
  2783. * khugepaged trying to collapse.
  2784. */
  2785. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2786. && !(current->flags & PF_KTHREAD))
  2787. *compact_result = COMPACT_CONTENDED;
  2788. cond_resched();
  2789. return NULL;
  2790. }
  2791. static inline bool
  2792. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2793. enum compact_result compact_result, enum migrate_mode *migrate_mode,
  2794. int compaction_retries)
  2795. {
  2796. int max_retries = MAX_COMPACT_RETRIES;
  2797. if (!order)
  2798. return false;
  2799. /*
  2800. * compaction considers all the zone as desperately out of memory
  2801. * so it doesn't really make much sense to retry except when the
  2802. * failure could be caused by weak migration mode.
  2803. */
  2804. if (compaction_failed(compact_result)) {
  2805. if (*migrate_mode == MIGRATE_ASYNC) {
  2806. *migrate_mode = MIGRATE_SYNC_LIGHT;
  2807. return true;
  2808. }
  2809. return false;
  2810. }
  2811. /*
  2812. * make sure the compaction wasn't deferred or didn't bail out early
  2813. * due to locks contention before we declare that we should give up.
  2814. * But do not retry if the given zonelist is not suitable for
  2815. * compaction.
  2816. */
  2817. if (compaction_withdrawn(compact_result))
  2818. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2819. /*
  2820. * !costly requests are much more important than __GFP_REPEAT
  2821. * costly ones because they are de facto nofail and invoke OOM
  2822. * killer to move on while costly can fail and users are ready
  2823. * to cope with that. 1/4 retries is rather arbitrary but we
  2824. * would need much more detailed feedback from compaction to
  2825. * make a better decision.
  2826. */
  2827. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2828. max_retries /= 4;
  2829. if (compaction_retries <= max_retries)
  2830. return true;
  2831. return false;
  2832. }
  2833. #else
  2834. static inline struct page *
  2835. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2836. unsigned int alloc_flags, const struct alloc_context *ac,
  2837. enum migrate_mode mode, enum compact_result *compact_result)
  2838. {
  2839. *compact_result = COMPACT_SKIPPED;
  2840. return NULL;
  2841. }
  2842. static inline bool
  2843. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2844. enum compact_result compact_result,
  2845. enum migrate_mode *migrate_mode,
  2846. int compaction_retries)
  2847. {
  2848. struct zone *zone;
  2849. struct zoneref *z;
  2850. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2851. return false;
  2852. /*
  2853. * There are setups with compaction disabled which would prefer to loop
  2854. * inside the allocator rather than hit the oom killer prematurely.
  2855. * Let's give them a good hope and keep retrying while the order-0
  2856. * watermarks are OK.
  2857. */
  2858. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2859. ac->nodemask) {
  2860. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2861. ac_classzone_idx(ac), alloc_flags))
  2862. return true;
  2863. }
  2864. return false;
  2865. }
  2866. #endif /* CONFIG_COMPACTION */
  2867. /* Perform direct synchronous page reclaim */
  2868. static int
  2869. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2870. const struct alloc_context *ac)
  2871. {
  2872. struct reclaim_state reclaim_state;
  2873. int progress;
  2874. cond_resched();
  2875. /* We now go into synchronous reclaim */
  2876. cpuset_memory_pressure_bump();
  2877. current->flags |= PF_MEMALLOC;
  2878. lockdep_set_current_reclaim_state(gfp_mask);
  2879. reclaim_state.reclaimed_slab = 0;
  2880. current->reclaim_state = &reclaim_state;
  2881. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2882. ac->nodemask);
  2883. current->reclaim_state = NULL;
  2884. lockdep_clear_current_reclaim_state();
  2885. current->flags &= ~PF_MEMALLOC;
  2886. cond_resched();
  2887. return progress;
  2888. }
  2889. /* The really slow allocator path where we enter direct reclaim */
  2890. static inline struct page *
  2891. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2892. unsigned int alloc_flags, const struct alloc_context *ac,
  2893. unsigned long *did_some_progress)
  2894. {
  2895. struct page *page = NULL;
  2896. bool drained = false;
  2897. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2898. if (unlikely(!(*did_some_progress)))
  2899. return NULL;
  2900. retry:
  2901. page = get_page_from_freelist(gfp_mask, order,
  2902. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2903. /*
  2904. * If an allocation failed after direct reclaim, it could be because
  2905. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2906. * Shrink them them and try again
  2907. */
  2908. if (!page && !drained) {
  2909. unreserve_highatomic_pageblock(ac);
  2910. drain_all_pages(NULL);
  2911. drained = true;
  2912. goto retry;
  2913. }
  2914. return page;
  2915. }
  2916. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2917. {
  2918. struct zoneref *z;
  2919. struct zone *zone;
  2920. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2921. ac->high_zoneidx, ac->nodemask)
  2922. wakeup_kswapd(zone, order, ac_classzone_idx(ac));
  2923. }
  2924. static inline unsigned int
  2925. gfp_to_alloc_flags(gfp_t gfp_mask)
  2926. {
  2927. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2928. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2929. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2930. /*
  2931. * The caller may dip into page reserves a bit more if the caller
  2932. * cannot run direct reclaim, or if the caller has realtime scheduling
  2933. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2934. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2935. */
  2936. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2937. if (gfp_mask & __GFP_ATOMIC) {
  2938. /*
  2939. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2940. * if it can't schedule.
  2941. */
  2942. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2943. alloc_flags |= ALLOC_HARDER;
  2944. /*
  2945. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2946. * comment for __cpuset_node_allowed().
  2947. */
  2948. alloc_flags &= ~ALLOC_CPUSET;
  2949. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2950. alloc_flags |= ALLOC_HARDER;
  2951. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2952. if (gfp_mask & __GFP_MEMALLOC)
  2953. alloc_flags |= ALLOC_NO_WATERMARKS;
  2954. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2955. alloc_flags |= ALLOC_NO_WATERMARKS;
  2956. else if (!in_interrupt() &&
  2957. ((current->flags & PF_MEMALLOC) ||
  2958. unlikely(test_thread_flag(TIF_MEMDIE))))
  2959. alloc_flags |= ALLOC_NO_WATERMARKS;
  2960. }
  2961. #ifdef CONFIG_CMA
  2962. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2963. alloc_flags |= ALLOC_CMA;
  2964. #endif
  2965. return alloc_flags;
  2966. }
  2967. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2968. {
  2969. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2970. }
  2971. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2972. {
  2973. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2974. }
  2975. /*
  2976. * Maximum number of reclaim retries without any progress before OOM killer
  2977. * is consider as the only way to move forward.
  2978. */
  2979. #define MAX_RECLAIM_RETRIES 16
  2980. /*
  2981. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2982. * for the given allocation request.
  2983. * The reclaim feedback represented by did_some_progress (any progress during
  2984. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2985. * any progress in a row) is considered as well as the reclaimable pages on the
  2986. * applicable zone list (with a backoff mechanism which is a function of
  2987. * no_progress_loops).
  2988. *
  2989. * Returns true if a retry is viable or false to enter the oom path.
  2990. */
  2991. static inline bool
  2992. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2993. struct alloc_context *ac, int alloc_flags,
  2994. bool did_some_progress, int no_progress_loops)
  2995. {
  2996. struct zone *zone;
  2997. struct zoneref *z;
  2998. /*
  2999. * Make sure we converge to OOM if we cannot make any progress
  3000. * several times in the row.
  3001. */
  3002. if (no_progress_loops > MAX_RECLAIM_RETRIES)
  3003. return false;
  3004. /*
  3005. * Keep reclaiming pages while there is a chance this will lead somewhere.
  3006. * If none of the target zones can satisfy our allocation request even
  3007. * if all reclaimable pages are considered then we are screwed and have
  3008. * to go OOM.
  3009. */
  3010. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3011. ac->nodemask) {
  3012. unsigned long available;
  3013. unsigned long reclaimable;
  3014. available = reclaimable = zone_reclaimable_pages(zone);
  3015. available -= DIV_ROUND_UP(no_progress_loops * available,
  3016. MAX_RECLAIM_RETRIES);
  3017. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3018. /*
  3019. * Would the allocation succeed if we reclaimed the whole
  3020. * available?
  3021. */
  3022. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  3023. ac_classzone_idx(ac), alloc_flags, available)) {
  3024. /*
  3025. * If we didn't make any progress and have a lot of
  3026. * dirty + writeback pages then we should wait for
  3027. * an IO to complete to slow down the reclaim and
  3028. * prevent from pre mature OOM
  3029. */
  3030. if (!did_some_progress) {
  3031. unsigned long writeback;
  3032. unsigned long dirty;
  3033. writeback = zone_page_state_snapshot(zone,
  3034. NR_WRITEBACK);
  3035. dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
  3036. if (2*(writeback + dirty) > reclaimable) {
  3037. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3038. return true;
  3039. }
  3040. }
  3041. /*
  3042. * Memory allocation/reclaim might be called from a WQ
  3043. * context and the current implementation of the WQ
  3044. * concurrency control doesn't recognize that
  3045. * a particular WQ is congested if the worker thread is
  3046. * looping without ever sleeping. Therefore we have to
  3047. * do a short sleep here rather than calling
  3048. * cond_resched().
  3049. */
  3050. if (current->flags & PF_WQ_WORKER)
  3051. schedule_timeout_uninterruptible(1);
  3052. else
  3053. cond_resched();
  3054. return true;
  3055. }
  3056. }
  3057. return false;
  3058. }
  3059. static inline struct page *
  3060. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3061. struct alloc_context *ac)
  3062. {
  3063. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3064. struct page *page = NULL;
  3065. unsigned int alloc_flags;
  3066. unsigned long did_some_progress;
  3067. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  3068. enum compact_result compact_result;
  3069. int compaction_retries = 0;
  3070. int no_progress_loops = 0;
  3071. /*
  3072. * In the slowpath, we sanity check order to avoid ever trying to
  3073. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3074. * be using allocators in order of preference for an area that is
  3075. * too large.
  3076. */
  3077. if (order >= MAX_ORDER) {
  3078. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3079. return NULL;
  3080. }
  3081. /*
  3082. * We also sanity check to catch abuse of atomic reserves being used by
  3083. * callers that are not in atomic context.
  3084. */
  3085. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3086. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3087. gfp_mask &= ~__GFP_ATOMIC;
  3088. retry:
  3089. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3090. wake_all_kswapds(order, ac);
  3091. /*
  3092. * OK, we're below the kswapd watermark and have kicked background
  3093. * reclaim. Now things get more complex, so set up alloc_flags according
  3094. * to how we want to proceed.
  3095. */
  3096. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3097. /*
  3098. * Reset the zonelist iterators if memory policies can be ignored.
  3099. * These allocations are high priority and system rather than user
  3100. * orientated.
  3101. */
  3102. if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
  3103. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3104. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3105. ac->high_zoneidx, ac->nodemask);
  3106. }
  3107. /* This is the last chance, in general, before the goto nopage. */
  3108. page = get_page_from_freelist(gfp_mask, order,
  3109. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  3110. if (page)
  3111. goto got_pg;
  3112. /* Allocate without watermarks if the context allows */
  3113. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  3114. page = get_page_from_freelist(gfp_mask, order,
  3115. ALLOC_NO_WATERMARKS, ac);
  3116. if (page)
  3117. goto got_pg;
  3118. }
  3119. /* Caller is not willing to reclaim, we can't balance anything */
  3120. if (!can_direct_reclaim) {
  3121. /*
  3122. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3123. * of any new users that actually allow this type of allocation
  3124. * to fail.
  3125. */
  3126. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3127. goto nopage;
  3128. }
  3129. /* Avoid recursion of direct reclaim */
  3130. if (current->flags & PF_MEMALLOC) {
  3131. /*
  3132. * __GFP_NOFAIL request from this context is rather bizarre
  3133. * because we cannot reclaim anything and only can loop waiting
  3134. * for somebody to do a work for us.
  3135. */
  3136. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3137. cond_resched();
  3138. goto retry;
  3139. }
  3140. goto nopage;
  3141. }
  3142. /* Avoid allocations with no watermarks from looping endlessly */
  3143. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3144. goto nopage;
  3145. /*
  3146. * Try direct compaction. The first pass is asynchronous. Subsequent
  3147. * attempts after direct reclaim are synchronous
  3148. */
  3149. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3150. migration_mode,
  3151. &compact_result);
  3152. if (page)
  3153. goto got_pg;
  3154. /* Checks for THP-specific high-order allocations */
  3155. if (is_thp_gfp_mask(gfp_mask)) {
  3156. /*
  3157. * If compaction is deferred for high-order allocations, it is
  3158. * because sync compaction recently failed. If this is the case
  3159. * and the caller requested a THP allocation, we do not want
  3160. * to heavily disrupt the system, so we fail the allocation
  3161. * instead of entering direct reclaim.
  3162. */
  3163. if (compact_result == COMPACT_DEFERRED)
  3164. goto nopage;
  3165. /*
  3166. * Compaction is contended so rather back off than cause
  3167. * excessive stalls.
  3168. */
  3169. if(compact_result == COMPACT_CONTENDED)
  3170. goto nopage;
  3171. }
  3172. if (order && compaction_made_progress(compact_result))
  3173. compaction_retries++;
  3174. /* Try direct reclaim and then allocating */
  3175. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3176. &did_some_progress);
  3177. if (page)
  3178. goto got_pg;
  3179. /* Do not loop if specifically requested */
  3180. if (gfp_mask & __GFP_NORETRY)
  3181. goto noretry;
  3182. /*
  3183. * Do not retry costly high order allocations unless they are
  3184. * __GFP_REPEAT
  3185. */
  3186. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3187. goto noretry;
  3188. /*
  3189. * Costly allocations might have made a progress but this doesn't mean
  3190. * their order will become available due to high fragmentation so
  3191. * always increment the no progress counter for them
  3192. */
  3193. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3194. no_progress_loops = 0;
  3195. else
  3196. no_progress_loops++;
  3197. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3198. did_some_progress > 0, no_progress_loops))
  3199. goto retry;
  3200. /*
  3201. * It doesn't make any sense to retry for the compaction if the order-0
  3202. * reclaim is not able to make any progress because the current
  3203. * implementation of the compaction depends on the sufficient amount
  3204. * of free memory (see __compaction_suitable)
  3205. */
  3206. if (did_some_progress > 0 &&
  3207. should_compact_retry(ac, order, alloc_flags,
  3208. compact_result, &migration_mode,
  3209. compaction_retries))
  3210. goto retry;
  3211. /* Reclaim has failed us, start killing things */
  3212. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3213. if (page)
  3214. goto got_pg;
  3215. /* Retry as long as the OOM killer is making progress */
  3216. if (did_some_progress) {
  3217. no_progress_loops = 0;
  3218. goto retry;
  3219. }
  3220. noretry:
  3221. /*
  3222. * High-order allocations do not necessarily loop after direct reclaim
  3223. * and reclaim/compaction depends on compaction being called after
  3224. * reclaim so call directly if necessary.
  3225. * It can become very expensive to allocate transparent hugepages at
  3226. * fault, so use asynchronous memory compaction for THP unless it is
  3227. * khugepaged trying to collapse. All other requests should tolerate
  3228. * at least light sync migration.
  3229. */
  3230. if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
  3231. migration_mode = MIGRATE_ASYNC;
  3232. else
  3233. migration_mode = MIGRATE_SYNC_LIGHT;
  3234. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  3235. ac, migration_mode,
  3236. &compact_result);
  3237. if (page)
  3238. goto got_pg;
  3239. nopage:
  3240. warn_alloc_failed(gfp_mask, order, NULL);
  3241. got_pg:
  3242. return page;
  3243. }
  3244. /*
  3245. * This is the 'heart' of the zoned buddy allocator.
  3246. */
  3247. struct page *
  3248. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3249. struct zonelist *zonelist, nodemask_t *nodemask)
  3250. {
  3251. struct page *page;
  3252. unsigned int cpuset_mems_cookie;
  3253. unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
  3254. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3255. struct alloc_context ac = {
  3256. .high_zoneidx = gfp_zone(gfp_mask),
  3257. .zonelist = zonelist,
  3258. .nodemask = nodemask,
  3259. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3260. };
  3261. if (cpusets_enabled()) {
  3262. alloc_mask |= __GFP_HARDWALL;
  3263. alloc_flags |= ALLOC_CPUSET;
  3264. if (!ac.nodemask)
  3265. ac.nodemask = &cpuset_current_mems_allowed;
  3266. }
  3267. gfp_mask &= gfp_allowed_mask;
  3268. lockdep_trace_alloc(gfp_mask);
  3269. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3270. if (should_fail_alloc_page(gfp_mask, order))
  3271. return NULL;
  3272. /*
  3273. * Check the zones suitable for the gfp_mask contain at least one
  3274. * valid zone. It's possible to have an empty zonelist as a result
  3275. * of __GFP_THISNODE and a memoryless node
  3276. */
  3277. if (unlikely(!zonelist->_zonerefs->zone))
  3278. return NULL;
  3279. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3280. alloc_flags |= ALLOC_CMA;
  3281. retry_cpuset:
  3282. cpuset_mems_cookie = read_mems_allowed_begin();
  3283. /* Dirty zone balancing only done in the fast path */
  3284. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3285. /*
  3286. * The preferred zone is used for statistics but crucially it is
  3287. * also used as the starting point for the zonelist iterator. It
  3288. * may get reset for allocations that ignore memory policies.
  3289. */
  3290. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3291. ac.high_zoneidx, ac.nodemask);
  3292. if (!ac.preferred_zoneref) {
  3293. page = NULL;
  3294. goto no_zone;
  3295. }
  3296. /* First allocation attempt */
  3297. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3298. if (likely(page))
  3299. goto out;
  3300. /*
  3301. * Runtime PM, block IO and its error handling path can deadlock
  3302. * because I/O on the device might not complete.
  3303. */
  3304. alloc_mask = memalloc_noio_flags(gfp_mask);
  3305. ac.spread_dirty_pages = false;
  3306. /*
  3307. * Restore the original nodemask if it was potentially replaced with
  3308. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3309. */
  3310. if (cpusets_enabled())
  3311. ac.nodemask = nodemask;
  3312. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3313. no_zone:
  3314. /*
  3315. * When updating a task's mems_allowed, it is possible to race with
  3316. * parallel threads in such a way that an allocation can fail while
  3317. * the mask is being updated. If a page allocation is about to fail,
  3318. * check if the cpuset changed during allocation and if so, retry.
  3319. */
  3320. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3321. alloc_mask = gfp_mask;
  3322. goto retry_cpuset;
  3323. }
  3324. out:
  3325. if (kmemcheck_enabled && page)
  3326. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3327. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3328. return page;
  3329. }
  3330. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3331. /*
  3332. * Common helper functions.
  3333. */
  3334. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3335. {
  3336. struct page *page;
  3337. /*
  3338. * __get_free_pages() returns a 32-bit address, which cannot represent
  3339. * a highmem page
  3340. */
  3341. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3342. page = alloc_pages(gfp_mask, order);
  3343. if (!page)
  3344. return 0;
  3345. return (unsigned long) page_address(page);
  3346. }
  3347. EXPORT_SYMBOL(__get_free_pages);
  3348. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3349. {
  3350. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3351. }
  3352. EXPORT_SYMBOL(get_zeroed_page);
  3353. void __free_pages(struct page *page, unsigned int order)
  3354. {
  3355. if (put_page_testzero(page)) {
  3356. if (order == 0)
  3357. free_hot_cold_page(page, false);
  3358. else
  3359. __free_pages_ok(page, order);
  3360. }
  3361. }
  3362. EXPORT_SYMBOL(__free_pages);
  3363. void free_pages(unsigned long addr, unsigned int order)
  3364. {
  3365. if (addr != 0) {
  3366. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3367. __free_pages(virt_to_page((void *)addr), order);
  3368. }
  3369. }
  3370. EXPORT_SYMBOL(free_pages);
  3371. /*
  3372. * Page Fragment:
  3373. * An arbitrary-length arbitrary-offset area of memory which resides
  3374. * within a 0 or higher order page. Multiple fragments within that page
  3375. * are individually refcounted, in the page's reference counter.
  3376. *
  3377. * The page_frag functions below provide a simple allocation framework for
  3378. * page fragments. This is used by the network stack and network device
  3379. * drivers to provide a backing region of memory for use as either an
  3380. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3381. */
  3382. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3383. gfp_t gfp_mask)
  3384. {
  3385. struct page *page = NULL;
  3386. gfp_t gfp = gfp_mask;
  3387. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3388. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3389. __GFP_NOMEMALLOC;
  3390. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3391. PAGE_FRAG_CACHE_MAX_ORDER);
  3392. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3393. #endif
  3394. if (unlikely(!page))
  3395. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3396. nc->va = page ? page_address(page) : NULL;
  3397. return page;
  3398. }
  3399. void *__alloc_page_frag(struct page_frag_cache *nc,
  3400. unsigned int fragsz, gfp_t gfp_mask)
  3401. {
  3402. unsigned int size = PAGE_SIZE;
  3403. struct page *page;
  3404. int offset;
  3405. if (unlikely(!nc->va)) {
  3406. refill:
  3407. page = __page_frag_refill(nc, gfp_mask);
  3408. if (!page)
  3409. return NULL;
  3410. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3411. /* if size can vary use size else just use PAGE_SIZE */
  3412. size = nc->size;
  3413. #endif
  3414. /* Even if we own the page, we do not use atomic_set().
  3415. * This would break get_page_unless_zero() users.
  3416. */
  3417. page_ref_add(page, size - 1);
  3418. /* reset page count bias and offset to start of new frag */
  3419. nc->pfmemalloc = page_is_pfmemalloc(page);
  3420. nc->pagecnt_bias = size;
  3421. nc->offset = size;
  3422. }
  3423. offset = nc->offset - fragsz;
  3424. if (unlikely(offset < 0)) {
  3425. page = virt_to_page(nc->va);
  3426. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3427. goto refill;
  3428. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3429. /* if size can vary use size else just use PAGE_SIZE */
  3430. size = nc->size;
  3431. #endif
  3432. /* OK, page count is 0, we can safely set it */
  3433. set_page_count(page, size);
  3434. /* reset page count bias and offset to start of new frag */
  3435. nc->pagecnt_bias = size;
  3436. offset = size - fragsz;
  3437. }
  3438. nc->pagecnt_bias--;
  3439. nc->offset = offset;
  3440. return nc->va + offset;
  3441. }
  3442. EXPORT_SYMBOL(__alloc_page_frag);
  3443. /*
  3444. * Frees a page fragment allocated out of either a compound or order 0 page.
  3445. */
  3446. void __free_page_frag(void *addr)
  3447. {
  3448. struct page *page = virt_to_head_page(addr);
  3449. if (unlikely(put_page_testzero(page)))
  3450. __free_pages_ok(page, compound_order(page));
  3451. }
  3452. EXPORT_SYMBOL(__free_page_frag);
  3453. /*
  3454. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  3455. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  3456. * equivalent to alloc_pages.
  3457. *
  3458. * It should be used when the caller would like to use kmalloc, but since the
  3459. * allocation is large, it has to fall back to the page allocator.
  3460. */
  3461. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  3462. {
  3463. struct page *page;
  3464. page = alloc_pages(gfp_mask, order);
  3465. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3466. __free_pages(page, order);
  3467. page = NULL;
  3468. }
  3469. return page;
  3470. }
  3471. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  3472. {
  3473. struct page *page;
  3474. page = alloc_pages_node(nid, gfp_mask, order);
  3475. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3476. __free_pages(page, order);
  3477. page = NULL;
  3478. }
  3479. return page;
  3480. }
  3481. /*
  3482. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  3483. * alloc_kmem_pages.
  3484. */
  3485. void __free_kmem_pages(struct page *page, unsigned int order)
  3486. {
  3487. memcg_kmem_uncharge(page, order);
  3488. __free_pages(page, order);
  3489. }
  3490. void free_kmem_pages(unsigned long addr, unsigned int order)
  3491. {
  3492. if (addr != 0) {
  3493. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3494. __free_kmem_pages(virt_to_page((void *)addr), order);
  3495. }
  3496. }
  3497. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3498. size_t size)
  3499. {
  3500. if (addr) {
  3501. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3502. unsigned long used = addr + PAGE_ALIGN(size);
  3503. split_page(virt_to_page((void *)addr), order);
  3504. while (used < alloc_end) {
  3505. free_page(used);
  3506. used += PAGE_SIZE;
  3507. }
  3508. }
  3509. return (void *)addr;
  3510. }
  3511. /**
  3512. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3513. * @size: the number of bytes to allocate
  3514. * @gfp_mask: GFP flags for the allocation
  3515. *
  3516. * This function is similar to alloc_pages(), except that it allocates the
  3517. * minimum number of pages to satisfy the request. alloc_pages() can only
  3518. * allocate memory in power-of-two pages.
  3519. *
  3520. * This function is also limited by MAX_ORDER.
  3521. *
  3522. * Memory allocated by this function must be released by free_pages_exact().
  3523. */
  3524. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3525. {
  3526. unsigned int order = get_order(size);
  3527. unsigned long addr;
  3528. addr = __get_free_pages(gfp_mask, order);
  3529. return make_alloc_exact(addr, order, size);
  3530. }
  3531. EXPORT_SYMBOL(alloc_pages_exact);
  3532. /**
  3533. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3534. * pages on a node.
  3535. * @nid: the preferred node ID where memory should be allocated
  3536. * @size: the number of bytes to allocate
  3537. * @gfp_mask: GFP flags for the allocation
  3538. *
  3539. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3540. * back.
  3541. */
  3542. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3543. {
  3544. unsigned int order = get_order(size);
  3545. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3546. if (!p)
  3547. return NULL;
  3548. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3549. }
  3550. /**
  3551. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3552. * @virt: the value returned by alloc_pages_exact.
  3553. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3554. *
  3555. * Release the memory allocated by a previous call to alloc_pages_exact.
  3556. */
  3557. void free_pages_exact(void *virt, size_t size)
  3558. {
  3559. unsigned long addr = (unsigned long)virt;
  3560. unsigned long end = addr + PAGE_ALIGN(size);
  3561. while (addr < end) {
  3562. free_page(addr);
  3563. addr += PAGE_SIZE;
  3564. }
  3565. }
  3566. EXPORT_SYMBOL(free_pages_exact);
  3567. /**
  3568. * nr_free_zone_pages - count number of pages beyond high watermark
  3569. * @offset: The zone index of the highest zone
  3570. *
  3571. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3572. * high watermark within all zones at or below a given zone index. For each
  3573. * zone, the number of pages is calculated as:
  3574. * managed_pages - high_pages
  3575. */
  3576. static unsigned long nr_free_zone_pages(int offset)
  3577. {
  3578. struct zoneref *z;
  3579. struct zone *zone;
  3580. /* Just pick one node, since fallback list is circular */
  3581. unsigned long sum = 0;
  3582. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3583. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3584. unsigned long size = zone->managed_pages;
  3585. unsigned long high = high_wmark_pages(zone);
  3586. if (size > high)
  3587. sum += size - high;
  3588. }
  3589. return sum;
  3590. }
  3591. /**
  3592. * nr_free_buffer_pages - count number of pages beyond high watermark
  3593. *
  3594. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3595. * watermark within ZONE_DMA and ZONE_NORMAL.
  3596. */
  3597. unsigned long nr_free_buffer_pages(void)
  3598. {
  3599. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3600. }
  3601. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3602. /**
  3603. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3604. *
  3605. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3606. * high watermark within all zones.
  3607. */
  3608. unsigned long nr_free_pagecache_pages(void)
  3609. {
  3610. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3611. }
  3612. static inline void show_node(struct zone *zone)
  3613. {
  3614. if (IS_ENABLED(CONFIG_NUMA))
  3615. printk("Node %d ", zone_to_nid(zone));
  3616. }
  3617. long si_mem_available(void)
  3618. {
  3619. long available;
  3620. unsigned long pagecache;
  3621. unsigned long wmark_low = 0;
  3622. unsigned long pages[NR_LRU_LISTS];
  3623. struct zone *zone;
  3624. int lru;
  3625. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3626. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3627. for_each_zone(zone)
  3628. wmark_low += zone->watermark[WMARK_LOW];
  3629. /*
  3630. * Estimate the amount of memory available for userspace allocations,
  3631. * without causing swapping.
  3632. */
  3633. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3634. /*
  3635. * Not all the page cache can be freed, otherwise the system will
  3636. * start swapping. Assume at least half of the page cache, or the
  3637. * low watermark worth of cache, needs to stay.
  3638. */
  3639. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3640. pagecache -= min(pagecache / 2, wmark_low);
  3641. available += pagecache;
  3642. /*
  3643. * Part of the reclaimable slab consists of items that are in use,
  3644. * and cannot be freed. Cap this estimate at the low watermark.
  3645. */
  3646. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3647. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3648. if (available < 0)
  3649. available = 0;
  3650. return available;
  3651. }
  3652. EXPORT_SYMBOL_GPL(si_mem_available);
  3653. void si_meminfo(struct sysinfo *val)
  3654. {
  3655. val->totalram = totalram_pages;
  3656. val->sharedram = global_page_state(NR_SHMEM);
  3657. val->freeram = global_page_state(NR_FREE_PAGES);
  3658. val->bufferram = nr_blockdev_pages();
  3659. val->totalhigh = totalhigh_pages;
  3660. val->freehigh = nr_free_highpages();
  3661. val->mem_unit = PAGE_SIZE;
  3662. }
  3663. EXPORT_SYMBOL(si_meminfo);
  3664. #ifdef CONFIG_NUMA
  3665. void si_meminfo_node(struct sysinfo *val, int nid)
  3666. {
  3667. int zone_type; /* needs to be signed */
  3668. unsigned long managed_pages = 0;
  3669. unsigned long managed_highpages = 0;
  3670. unsigned long free_highpages = 0;
  3671. pg_data_t *pgdat = NODE_DATA(nid);
  3672. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3673. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3674. val->totalram = managed_pages;
  3675. val->sharedram = node_page_state(nid, NR_SHMEM);
  3676. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3677. #ifdef CONFIG_HIGHMEM
  3678. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3679. struct zone *zone = &pgdat->node_zones[zone_type];
  3680. if (is_highmem(zone)) {
  3681. managed_highpages += zone->managed_pages;
  3682. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3683. }
  3684. }
  3685. val->totalhigh = managed_highpages;
  3686. val->freehigh = free_highpages;
  3687. #else
  3688. val->totalhigh = managed_highpages;
  3689. val->freehigh = free_highpages;
  3690. #endif
  3691. val->mem_unit = PAGE_SIZE;
  3692. }
  3693. #endif
  3694. /*
  3695. * Determine whether the node should be displayed or not, depending on whether
  3696. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3697. */
  3698. bool skip_free_areas_node(unsigned int flags, int nid)
  3699. {
  3700. bool ret = false;
  3701. unsigned int cpuset_mems_cookie;
  3702. if (!(flags & SHOW_MEM_FILTER_NODES))
  3703. goto out;
  3704. do {
  3705. cpuset_mems_cookie = read_mems_allowed_begin();
  3706. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3707. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3708. out:
  3709. return ret;
  3710. }
  3711. #define K(x) ((x) << (PAGE_SHIFT-10))
  3712. static void show_migration_types(unsigned char type)
  3713. {
  3714. static const char types[MIGRATE_TYPES] = {
  3715. [MIGRATE_UNMOVABLE] = 'U',
  3716. [MIGRATE_MOVABLE] = 'M',
  3717. [MIGRATE_RECLAIMABLE] = 'E',
  3718. [MIGRATE_HIGHATOMIC] = 'H',
  3719. #ifdef CONFIG_CMA
  3720. [MIGRATE_CMA] = 'C',
  3721. #endif
  3722. #ifdef CONFIG_MEMORY_ISOLATION
  3723. [MIGRATE_ISOLATE] = 'I',
  3724. #endif
  3725. };
  3726. char tmp[MIGRATE_TYPES + 1];
  3727. char *p = tmp;
  3728. int i;
  3729. for (i = 0; i < MIGRATE_TYPES; i++) {
  3730. if (type & (1 << i))
  3731. *p++ = types[i];
  3732. }
  3733. *p = '\0';
  3734. printk("(%s) ", tmp);
  3735. }
  3736. /*
  3737. * Show free area list (used inside shift_scroll-lock stuff)
  3738. * We also calculate the percentage fragmentation. We do this by counting the
  3739. * memory on each free list with the exception of the first item on the list.
  3740. *
  3741. * Bits in @filter:
  3742. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3743. * cpuset.
  3744. */
  3745. void show_free_areas(unsigned int filter)
  3746. {
  3747. unsigned long free_pcp = 0;
  3748. int cpu;
  3749. struct zone *zone;
  3750. for_each_populated_zone(zone) {
  3751. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3752. continue;
  3753. for_each_online_cpu(cpu)
  3754. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3755. }
  3756. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3757. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3758. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3759. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3760. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3761. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3762. global_page_state(NR_ACTIVE_ANON),
  3763. global_page_state(NR_INACTIVE_ANON),
  3764. global_page_state(NR_ISOLATED_ANON),
  3765. global_page_state(NR_ACTIVE_FILE),
  3766. global_page_state(NR_INACTIVE_FILE),
  3767. global_page_state(NR_ISOLATED_FILE),
  3768. global_page_state(NR_UNEVICTABLE),
  3769. global_page_state(NR_FILE_DIRTY),
  3770. global_page_state(NR_WRITEBACK),
  3771. global_page_state(NR_UNSTABLE_NFS),
  3772. global_page_state(NR_SLAB_RECLAIMABLE),
  3773. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3774. global_page_state(NR_FILE_MAPPED),
  3775. global_page_state(NR_SHMEM),
  3776. global_page_state(NR_PAGETABLE),
  3777. global_page_state(NR_BOUNCE),
  3778. global_page_state(NR_FREE_PAGES),
  3779. free_pcp,
  3780. global_page_state(NR_FREE_CMA_PAGES));
  3781. for_each_populated_zone(zone) {
  3782. int i;
  3783. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3784. continue;
  3785. free_pcp = 0;
  3786. for_each_online_cpu(cpu)
  3787. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3788. show_node(zone);
  3789. printk("%s"
  3790. " free:%lukB"
  3791. " min:%lukB"
  3792. " low:%lukB"
  3793. " high:%lukB"
  3794. " active_anon:%lukB"
  3795. " inactive_anon:%lukB"
  3796. " active_file:%lukB"
  3797. " inactive_file:%lukB"
  3798. " unevictable:%lukB"
  3799. " isolated(anon):%lukB"
  3800. " isolated(file):%lukB"
  3801. " present:%lukB"
  3802. " managed:%lukB"
  3803. " mlocked:%lukB"
  3804. " dirty:%lukB"
  3805. " writeback:%lukB"
  3806. " mapped:%lukB"
  3807. " shmem:%lukB"
  3808. " slab_reclaimable:%lukB"
  3809. " slab_unreclaimable:%lukB"
  3810. " kernel_stack:%lukB"
  3811. " pagetables:%lukB"
  3812. " unstable:%lukB"
  3813. " bounce:%lukB"
  3814. " free_pcp:%lukB"
  3815. " local_pcp:%ukB"
  3816. " free_cma:%lukB"
  3817. " writeback_tmp:%lukB"
  3818. " pages_scanned:%lu"
  3819. " all_unreclaimable? %s"
  3820. "\n",
  3821. zone->name,
  3822. K(zone_page_state(zone, NR_FREE_PAGES)),
  3823. K(min_wmark_pages(zone)),
  3824. K(low_wmark_pages(zone)),
  3825. K(high_wmark_pages(zone)),
  3826. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3827. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3828. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3829. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3830. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3831. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3832. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3833. K(zone->present_pages),
  3834. K(zone->managed_pages),
  3835. K(zone_page_state(zone, NR_MLOCK)),
  3836. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3837. K(zone_page_state(zone, NR_WRITEBACK)),
  3838. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3839. K(zone_page_state(zone, NR_SHMEM)),
  3840. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3841. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3842. zone_page_state(zone, NR_KERNEL_STACK) *
  3843. THREAD_SIZE / 1024,
  3844. K(zone_page_state(zone, NR_PAGETABLE)),
  3845. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3846. K(zone_page_state(zone, NR_BOUNCE)),
  3847. K(free_pcp),
  3848. K(this_cpu_read(zone->pageset->pcp.count)),
  3849. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3850. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3851. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3852. (!zone_reclaimable(zone) ? "yes" : "no")
  3853. );
  3854. printk("lowmem_reserve[]:");
  3855. for (i = 0; i < MAX_NR_ZONES; i++)
  3856. printk(" %ld", zone->lowmem_reserve[i]);
  3857. printk("\n");
  3858. }
  3859. for_each_populated_zone(zone) {
  3860. unsigned int order;
  3861. unsigned long nr[MAX_ORDER], flags, total = 0;
  3862. unsigned char types[MAX_ORDER];
  3863. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3864. continue;
  3865. show_node(zone);
  3866. printk("%s: ", zone->name);
  3867. spin_lock_irqsave(&zone->lock, flags);
  3868. for (order = 0; order < MAX_ORDER; order++) {
  3869. struct free_area *area = &zone->free_area[order];
  3870. int type;
  3871. nr[order] = area->nr_free;
  3872. total += nr[order] << order;
  3873. types[order] = 0;
  3874. for (type = 0; type < MIGRATE_TYPES; type++) {
  3875. if (!list_empty(&area->free_list[type]))
  3876. types[order] |= 1 << type;
  3877. }
  3878. }
  3879. spin_unlock_irqrestore(&zone->lock, flags);
  3880. for (order = 0; order < MAX_ORDER; order++) {
  3881. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3882. if (nr[order])
  3883. show_migration_types(types[order]);
  3884. }
  3885. printk("= %lukB\n", K(total));
  3886. }
  3887. hugetlb_show_meminfo();
  3888. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3889. show_swap_cache_info();
  3890. }
  3891. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3892. {
  3893. zoneref->zone = zone;
  3894. zoneref->zone_idx = zone_idx(zone);
  3895. }
  3896. /*
  3897. * Builds allocation fallback zone lists.
  3898. *
  3899. * Add all populated zones of a node to the zonelist.
  3900. */
  3901. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3902. int nr_zones)
  3903. {
  3904. struct zone *zone;
  3905. enum zone_type zone_type = MAX_NR_ZONES;
  3906. do {
  3907. zone_type--;
  3908. zone = pgdat->node_zones + zone_type;
  3909. if (populated_zone(zone)) {
  3910. zoneref_set_zone(zone,
  3911. &zonelist->_zonerefs[nr_zones++]);
  3912. check_highest_zone(zone_type);
  3913. }
  3914. } while (zone_type);
  3915. return nr_zones;
  3916. }
  3917. /*
  3918. * zonelist_order:
  3919. * 0 = automatic detection of better ordering.
  3920. * 1 = order by ([node] distance, -zonetype)
  3921. * 2 = order by (-zonetype, [node] distance)
  3922. *
  3923. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3924. * the same zonelist. So only NUMA can configure this param.
  3925. */
  3926. #define ZONELIST_ORDER_DEFAULT 0
  3927. #define ZONELIST_ORDER_NODE 1
  3928. #define ZONELIST_ORDER_ZONE 2
  3929. /* zonelist order in the kernel.
  3930. * set_zonelist_order() will set this to NODE or ZONE.
  3931. */
  3932. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3933. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3934. #ifdef CONFIG_NUMA
  3935. /* The value user specified ....changed by config */
  3936. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3937. /* string for sysctl */
  3938. #define NUMA_ZONELIST_ORDER_LEN 16
  3939. char numa_zonelist_order[16] = "default";
  3940. /*
  3941. * interface for configure zonelist ordering.
  3942. * command line option "numa_zonelist_order"
  3943. * = "[dD]efault - default, automatic configuration.
  3944. * = "[nN]ode - order by node locality, then by zone within node
  3945. * = "[zZ]one - order by zone, then by locality within zone
  3946. */
  3947. static int __parse_numa_zonelist_order(char *s)
  3948. {
  3949. if (*s == 'd' || *s == 'D') {
  3950. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3951. } else if (*s == 'n' || *s == 'N') {
  3952. user_zonelist_order = ZONELIST_ORDER_NODE;
  3953. } else if (*s == 'z' || *s == 'Z') {
  3954. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3955. } else {
  3956. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3957. return -EINVAL;
  3958. }
  3959. return 0;
  3960. }
  3961. static __init int setup_numa_zonelist_order(char *s)
  3962. {
  3963. int ret;
  3964. if (!s)
  3965. return 0;
  3966. ret = __parse_numa_zonelist_order(s);
  3967. if (ret == 0)
  3968. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3969. return ret;
  3970. }
  3971. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3972. /*
  3973. * sysctl handler for numa_zonelist_order
  3974. */
  3975. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3976. void __user *buffer, size_t *length,
  3977. loff_t *ppos)
  3978. {
  3979. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3980. int ret;
  3981. static DEFINE_MUTEX(zl_order_mutex);
  3982. mutex_lock(&zl_order_mutex);
  3983. if (write) {
  3984. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3985. ret = -EINVAL;
  3986. goto out;
  3987. }
  3988. strcpy(saved_string, (char *)table->data);
  3989. }
  3990. ret = proc_dostring(table, write, buffer, length, ppos);
  3991. if (ret)
  3992. goto out;
  3993. if (write) {
  3994. int oldval = user_zonelist_order;
  3995. ret = __parse_numa_zonelist_order((char *)table->data);
  3996. if (ret) {
  3997. /*
  3998. * bogus value. restore saved string
  3999. */
  4000. strncpy((char *)table->data, saved_string,
  4001. NUMA_ZONELIST_ORDER_LEN);
  4002. user_zonelist_order = oldval;
  4003. } else if (oldval != user_zonelist_order) {
  4004. mutex_lock(&zonelists_mutex);
  4005. build_all_zonelists(NULL, NULL);
  4006. mutex_unlock(&zonelists_mutex);
  4007. }
  4008. }
  4009. out:
  4010. mutex_unlock(&zl_order_mutex);
  4011. return ret;
  4012. }
  4013. #define MAX_NODE_LOAD (nr_online_nodes)
  4014. static int node_load[MAX_NUMNODES];
  4015. /**
  4016. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4017. * @node: node whose fallback list we're appending
  4018. * @used_node_mask: nodemask_t of already used nodes
  4019. *
  4020. * We use a number of factors to determine which is the next node that should
  4021. * appear on a given node's fallback list. The node should not have appeared
  4022. * already in @node's fallback list, and it should be the next closest node
  4023. * according to the distance array (which contains arbitrary distance values
  4024. * from each node to each node in the system), and should also prefer nodes
  4025. * with no CPUs, since presumably they'll have very little allocation pressure
  4026. * on them otherwise.
  4027. * It returns -1 if no node is found.
  4028. */
  4029. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4030. {
  4031. int n, val;
  4032. int min_val = INT_MAX;
  4033. int best_node = NUMA_NO_NODE;
  4034. const struct cpumask *tmp = cpumask_of_node(0);
  4035. /* Use the local node if we haven't already */
  4036. if (!node_isset(node, *used_node_mask)) {
  4037. node_set(node, *used_node_mask);
  4038. return node;
  4039. }
  4040. for_each_node_state(n, N_MEMORY) {
  4041. /* Don't want a node to appear more than once */
  4042. if (node_isset(n, *used_node_mask))
  4043. continue;
  4044. /* Use the distance array to find the distance */
  4045. val = node_distance(node, n);
  4046. /* Penalize nodes under us ("prefer the next node") */
  4047. val += (n < node);
  4048. /* Give preference to headless and unused nodes */
  4049. tmp = cpumask_of_node(n);
  4050. if (!cpumask_empty(tmp))
  4051. val += PENALTY_FOR_NODE_WITH_CPUS;
  4052. /* Slight preference for less loaded node */
  4053. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4054. val += node_load[n];
  4055. if (val < min_val) {
  4056. min_val = val;
  4057. best_node = n;
  4058. }
  4059. }
  4060. if (best_node >= 0)
  4061. node_set(best_node, *used_node_mask);
  4062. return best_node;
  4063. }
  4064. /*
  4065. * Build zonelists ordered by node and zones within node.
  4066. * This results in maximum locality--normal zone overflows into local
  4067. * DMA zone, if any--but risks exhausting DMA zone.
  4068. */
  4069. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4070. {
  4071. int j;
  4072. struct zonelist *zonelist;
  4073. zonelist = &pgdat->node_zonelists[0];
  4074. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4075. ;
  4076. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4077. zonelist->_zonerefs[j].zone = NULL;
  4078. zonelist->_zonerefs[j].zone_idx = 0;
  4079. }
  4080. /*
  4081. * Build gfp_thisnode zonelists
  4082. */
  4083. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4084. {
  4085. int j;
  4086. struct zonelist *zonelist;
  4087. zonelist = &pgdat->node_zonelists[1];
  4088. j = build_zonelists_node(pgdat, zonelist, 0);
  4089. zonelist->_zonerefs[j].zone = NULL;
  4090. zonelist->_zonerefs[j].zone_idx = 0;
  4091. }
  4092. /*
  4093. * Build zonelists ordered by zone and nodes within zones.
  4094. * This results in conserving DMA zone[s] until all Normal memory is
  4095. * exhausted, but results in overflowing to remote node while memory
  4096. * may still exist in local DMA zone.
  4097. */
  4098. static int node_order[MAX_NUMNODES];
  4099. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4100. {
  4101. int pos, j, node;
  4102. int zone_type; /* needs to be signed */
  4103. struct zone *z;
  4104. struct zonelist *zonelist;
  4105. zonelist = &pgdat->node_zonelists[0];
  4106. pos = 0;
  4107. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4108. for (j = 0; j < nr_nodes; j++) {
  4109. node = node_order[j];
  4110. z = &NODE_DATA(node)->node_zones[zone_type];
  4111. if (populated_zone(z)) {
  4112. zoneref_set_zone(z,
  4113. &zonelist->_zonerefs[pos++]);
  4114. check_highest_zone(zone_type);
  4115. }
  4116. }
  4117. }
  4118. zonelist->_zonerefs[pos].zone = NULL;
  4119. zonelist->_zonerefs[pos].zone_idx = 0;
  4120. }
  4121. #if defined(CONFIG_64BIT)
  4122. /*
  4123. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4124. * penalty to every machine in case the specialised case applies. Default
  4125. * to Node-ordering on 64-bit NUMA machines
  4126. */
  4127. static int default_zonelist_order(void)
  4128. {
  4129. return ZONELIST_ORDER_NODE;
  4130. }
  4131. #else
  4132. /*
  4133. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4134. * by the kernel. If processes running on node 0 deplete the low memory zone
  4135. * then reclaim will occur more frequency increasing stalls and potentially
  4136. * be easier to OOM if a large percentage of the zone is under writeback or
  4137. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4138. * Hence, default to zone ordering on 32-bit.
  4139. */
  4140. static int default_zonelist_order(void)
  4141. {
  4142. return ZONELIST_ORDER_ZONE;
  4143. }
  4144. #endif /* CONFIG_64BIT */
  4145. static void set_zonelist_order(void)
  4146. {
  4147. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4148. current_zonelist_order = default_zonelist_order();
  4149. else
  4150. current_zonelist_order = user_zonelist_order;
  4151. }
  4152. static void build_zonelists(pg_data_t *pgdat)
  4153. {
  4154. int i, node, load;
  4155. nodemask_t used_mask;
  4156. int local_node, prev_node;
  4157. struct zonelist *zonelist;
  4158. unsigned int order = current_zonelist_order;
  4159. /* initialize zonelists */
  4160. for (i = 0; i < MAX_ZONELISTS; i++) {
  4161. zonelist = pgdat->node_zonelists + i;
  4162. zonelist->_zonerefs[0].zone = NULL;
  4163. zonelist->_zonerefs[0].zone_idx = 0;
  4164. }
  4165. /* NUMA-aware ordering of nodes */
  4166. local_node = pgdat->node_id;
  4167. load = nr_online_nodes;
  4168. prev_node = local_node;
  4169. nodes_clear(used_mask);
  4170. memset(node_order, 0, sizeof(node_order));
  4171. i = 0;
  4172. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4173. /*
  4174. * We don't want to pressure a particular node.
  4175. * So adding penalty to the first node in same
  4176. * distance group to make it round-robin.
  4177. */
  4178. if (node_distance(local_node, node) !=
  4179. node_distance(local_node, prev_node))
  4180. node_load[node] = load;
  4181. prev_node = node;
  4182. load--;
  4183. if (order == ZONELIST_ORDER_NODE)
  4184. build_zonelists_in_node_order(pgdat, node);
  4185. else
  4186. node_order[i++] = node; /* remember order */
  4187. }
  4188. if (order == ZONELIST_ORDER_ZONE) {
  4189. /* calculate node order -- i.e., DMA last! */
  4190. build_zonelists_in_zone_order(pgdat, i);
  4191. }
  4192. build_thisnode_zonelists(pgdat);
  4193. }
  4194. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4195. /*
  4196. * Return node id of node used for "local" allocations.
  4197. * I.e., first node id of first zone in arg node's generic zonelist.
  4198. * Used for initializing percpu 'numa_mem', which is used primarily
  4199. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4200. */
  4201. int local_memory_node(int node)
  4202. {
  4203. struct zoneref *z;
  4204. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4205. gfp_zone(GFP_KERNEL),
  4206. NULL);
  4207. return z->zone->node;
  4208. }
  4209. #endif
  4210. #else /* CONFIG_NUMA */
  4211. static void set_zonelist_order(void)
  4212. {
  4213. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4214. }
  4215. static void build_zonelists(pg_data_t *pgdat)
  4216. {
  4217. int node, local_node;
  4218. enum zone_type j;
  4219. struct zonelist *zonelist;
  4220. local_node = pgdat->node_id;
  4221. zonelist = &pgdat->node_zonelists[0];
  4222. j = build_zonelists_node(pgdat, zonelist, 0);
  4223. /*
  4224. * Now we build the zonelist so that it contains the zones
  4225. * of all the other nodes.
  4226. * We don't want to pressure a particular node, so when
  4227. * building the zones for node N, we make sure that the
  4228. * zones coming right after the local ones are those from
  4229. * node N+1 (modulo N)
  4230. */
  4231. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4232. if (!node_online(node))
  4233. continue;
  4234. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4235. }
  4236. for (node = 0; node < local_node; node++) {
  4237. if (!node_online(node))
  4238. continue;
  4239. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4240. }
  4241. zonelist->_zonerefs[j].zone = NULL;
  4242. zonelist->_zonerefs[j].zone_idx = 0;
  4243. }
  4244. #endif /* CONFIG_NUMA */
  4245. /*
  4246. * Boot pageset table. One per cpu which is going to be used for all
  4247. * zones and all nodes. The parameters will be set in such a way
  4248. * that an item put on a list will immediately be handed over to
  4249. * the buddy list. This is safe since pageset manipulation is done
  4250. * with interrupts disabled.
  4251. *
  4252. * The boot_pagesets must be kept even after bootup is complete for
  4253. * unused processors and/or zones. They do play a role for bootstrapping
  4254. * hotplugged processors.
  4255. *
  4256. * zoneinfo_show() and maybe other functions do
  4257. * not check if the processor is online before following the pageset pointer.
  4258. * Other parts of the kernel may not check if the zone is available.
  4259. */
  4260. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4261. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4262. static void setup_zone_pageset(struct zone *zone);
  4263. /*
  4264. * Global mutex to protect against size modification of zonelists
  4265. * as well as to serialize pageset setup for the new populated zone.
  4266. */
  4267. DEFINE_MUTEX(zonelists_mutex);
  4268. /* return values int ....just for stop_machine() */
  4269. static int __build_all_zonelists(void *data)
  4270. {
  4271. int nid;
  4272. int cpu;
  4273. pg_data_t *self = data;
  4274. #ifdef CONFIG_NUMA
  4275. memset(node_load, 0, sizeof(node_load));
  4276. #endif
  4277. if (self && !node_online(self->node_id)) {
  4278. build_zonelists(self);
  4279. }
  4280. for_each_online_node(nid) {
  4281. pg_data_t *pgdat = NODE_DATA(nid);
  4282. build_zonelists(pgdat);
  4283. }
  4284. /*
  4285. * Initialize the boot_pagesets that are going to be used
  4286. * for bootstrapping processors. The real pagesets for
  4287. * each zone will be allocated later when the per cpu
  4288. * allocator is available.
  4289. *
  4290. * boot_pagesets are used also for bootstrapping offline
  4291. * cpus if the system is already booted because the pagesets
  4292. * are needed to initialize allocators on a specific cpu too.
  4293. * F.e. the percpu allocator needs the page allocator which
  4294. * needs the percpu allocator in order to allocate its pagesets
  4295. * (a chicken-egg dilemma).
  4296. */
  4297. for_each_possible_cpu(cpu) {
  4298. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4299. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4300. /*
  4301. * We now know the "local memory node" for each node--
  4302. * i.e., the node of the first zone in the generic zonelist.
  4303. * Set up numa_mem percpu variable for on-line cpus. During
  4304. * boot, only the boot cpu should be on-line; we'll init the
  4305. * secondary cpus' numa_mem as they come on-line. During
  4306. * node/memory hotplug, we'll fixup all on-line cpus.
  4307. */
  4308. if (cpu_online(cpu))
  4309. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4310. #endif
  4311. }
  4312. return 0;
  4313. }
  4314. static noinline void __init
  4315. build_all_zonelists_init(void)
  4316. {
  4317. __build_all_zonelists(NULL);
  4318. mminit_verify_zonelist();
  4319. cpuset_init_current_mems_allowed();
  4320. }
  4321. /*
  4322. * Called with zonelists_mutex held always
  4323. * unless system_state == SYSTEM_BOOTING.
  4324. *
  4325. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4326. * [we're only called with non-NULL zone through __meminit paths] and
  4327. * (2) call of __init annotated helper build_all_zonelists_init
  4328. * [protected by SYSTEM_BOOTING].
  4329. */
  4330. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4331. {
  4332. set_zonelist_order();
  4333. if (system_state == SYSTEM_BOOTING) {
  4334. build_all_zonelists_init();
  4335. } else {
  4336. #ifdef CONFIG_MEMORY_HOTPLUG
  4337. if (zone)
  4338. setup_zone_pageset(zone);
  4339. #endif
  4340. /* we have to stop all cpus to guarantee there is no user
  4341. of zonelist */
  4342. stop_machine(__build_all_zonelists, pgdat, NULL);
  4343. /* cpuset refresh routine should be here */
  4344. }
  4345. vm_total_pages = nr_free_pagecache_pages();
  4346. /*
  4347. * Disable grouping by mobility if the number of pages in the
  4348. * system is too low to allow the mechanism to work. It would be
  4349. * more accurate, but expensive to check per-zone. This check is
  4350. * made on memory-hotadd so a system can start with mobility
  4351. * disabled and enable it later
  4352. */
  4353. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4354. page_group_by_mobility_disabled = 1;
  4355. else
  4356. page_group_by_mobility_disabled = 0;
  4357. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4358. nr_online_nodes,
  4359. zonelist_order_name[current_zonelist_order],
  4360. page_group_by_mobility_disabled ? "off" : "on",
  4361. vm_total_pages);
  4362. #ifdef CONFIG_NUMA
  4363. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4364. #endif
  4365. }
  4366. /*
  4367. * Helper functions to size the waitqueue hash table.
  4368. * Essentially these want to choose hash table sizes sufficiently
  4369. * large so that collisions trying to wait on pages are rare.
  4370. * But in fact, the number of active page waitqueues on typical
  4371. * systems is ridiculously low, less than 200. So this is even
  4372. * conservative, even though it seems large.
  4373. *
  4374. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4375. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4376. */
  4377. #define PAGES_PER_WAITQUEUE 256
  4378. #ifndef CONFIG_MEMORY_HOTPLUG
  4379. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4380. {
  4381. unsigned long size = 1;
  4382. pages /= PAGES_PER_WAITQUEUE;
  4383. while (size < pages)
  4384. size <<= 1;
  4385. /*
  4386. * Once we have dozens or even hundreds of threads sleeping
  4387. * on IO we've got bigger problems than wait queue collision.
  4388. * Limit the size of the wait table to a reasonable size.
  4389. */
  4390. size = min(size, 4096UL);
  4391. return max(size, 4UL);
  4392. }
  4393. #else
  4394. /*
  4395. * A zone's size might be changed by hot-add, so it is not possible to determine
  4396. * a suitable size for its wait_table. So we use the maximum size now.
  4397. *
  4398. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4399. *
  4400. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4401. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4402. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4403. *
  4404. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4405. * or more by the traditional way. (See above). It equals:
  4406. *
  4407. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4408. * ia64(16K page size) : = ( 8G + 4M)byte.
  4409. * powerpc (64K page size) : = (32G +16M)byte.
  4410. */
  4411. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4412. {
  4413. return 4096UL;
  4414. }
  4415. #endif
  4416. /*
  4417. * This is an integer logarithm so that shifts can be used later
  4418. * to extract the more random high bits from the multiplicative
  4419. * hash function before the remainder is taken.
  4420. */
  4421. static inline unsigned long wait_table_bits(unsigned long size)
  4422. {
  4423. return ffz(~size);
  4424. }
  4425. /*
  4426. * Initially all pages are reserved - free ones are freed
  4427. * up by free_all_bootmem() once the early boot process is
  4428. * done. Non-atomic initialization, single-pass.
  4429. */
  4430. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4431. unsigned long start_pfn, enum memmap_context context)
  4432. {
  4433. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4434. unsigned long end_pfn = start_pfn + size;
  4435. pg_data_t *pgdat = NODE_DATA(nid);
  4436. unsigned long pfn;
  4437. unsigned long nr_initialised = 0;
  4438. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4439. struct memblock_region *r = NULL, *tmp;
  4440. #endif
  4441. if (highest_memmap_pfn < end_pfn - 1)
  4442. highest_memmap_pfn = end_pfn - 1;
  4443. /*
  4444. * Honor reservation requested by the driver for this ZONE_DEVICE
  4445. * memory
  4446. */
  4447. if (altmap && start_pfn == altmap->base_pfn)
  4448. start_pfn += altmap->reserve;
  4449. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4450. /*
  4451. * There can be holes in boot-time mem_map[]s handed to this
  4452. * function. They do not exist on hotplugged memory.
  4453. */
  4454. if (context != MEMMAP_EARLY)
  4455. goto not_early;
  4456. if (!early_pfn_valid(pfn))
  4457. continue;
  4458. if (!early_pfn_in_nid(pfn, nid))
  4459. continue;
  4460. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4461. break;
  4462. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4463. /*
  4464. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4465. * from zone_movable_pfn[nid] to end of each node should be
  4466. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4467. */
  4468. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4469. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4470. continue;
  4471. /*
  4472. * Check given memblock attribute by firmware which can affect
  4473. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4474. * mirrored, it's an overlapped memmap init. skip it.
  4475. */
  4476. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4477. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4478. for_each_memblock(memory, tmp)
  4479. if (pfn < memblock_region_memory_end_pfn(tmp))
  4480. break;
  4481. r = tmp;
  4482. }
  4483. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4484. memblock_is_mirror(r)) {
  4485. /* already initialized as NORMAL */
  4486. pfn = memblock_region_memory_end_pfn(r);
  4487. continue;
  4488. }
  4489. }
  4490. #endif
  4491. not_early:
  4492. /*
  4493. * Mark the block movable so that blocks are reserved for
  4494. * movable at startup. This will force kernel allocations
  4495. * to reserve their blocks rather than leaking throughout
  4496. * the address space during boot when many long-lived
  4497. * kernel allocations are made.
  4498. *
  4499. * bitmap is created for zone's valid pfn range. but memmap
  4500. * can be created for invalid pages (for alignment)
  4501. * check here not to call set_pageblock_migratetype() against
  4502. * pfn out of zone.
  4503. */
  4504. if (!(pfn & (pageblock_nr_pages - 1))) {
  4505. struct page *page = pfn_to_page(pfn);
  4506. __init_single_page(page, pfn, zone, nid);
  4507. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4508. } else {
  4509. __init_single_pfn(pfn, zone, nid);
  4510. }
  4511. }
  4512. }
  4513. static void __meminit zone_init_free_lists(struct zone *zone)
  4514. {
  4515. unsigned int order, t;
  4516. for_each_migratetype_order(order, t) {
  4517. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4518. zone->free_area[order].nr_free = 0;
  4519. }
  4520. }
  4521. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4522. #define memmap_init(size, nid, zone, start_pfn) \
  4523. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4524. #endif
  4525. static int zone_batchsize(struct zone *zone)
  4526. {
  4527. #ifdef CONFIG_MMU
  4528. int batch;
  4529. /*
  4530. * The per-cpu-pages pools are set to around 1000th of the
  4531. * size of the zone. But no more than 1/2 of a meg.
  4532. *
  4533. * OK, so we don't know how big the cache is. So guess.
  4534. */
  4535. batch = zone->managed_pages / 1024;
  4536. if (batch * PAGE_SIZE > 512 * 1024)
  4537. batch = (512 * 1024) / PAGE_SIZE;
  4538. batch /= 4; /* We effectively *= 4 below */
  4539. if (batch < 1)
  4540. batch = 1;
  4541. /*
  4542. * Clamp the batch to a 2^n - 1 value. Having a power
  4543. * of 2 value was found to be more likely to have
  4544. * suboptimal cache aliasing properties in some cases.
  4545. *
  4546. * For example if 2 tasks are alternately allocating
  4547. * batches of pages, one task can end up with a lot
  4548. * of pages of one half of the possible page colors
  4549. * and the other with pages of the other colors.
  4550. */
  4551. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4552. return batch;
  4553. #else
  4554. /* The deferral and batching of frees should be suppressed under NOMMU
  4555. * conditions.
  4556. *
  4557. * The problem is that NOMMU needs to be able to allocate large chunks
  4558. * of contiguous memory as there's no hardware page translation to
  4559. * assemble apparent contiguous memory from discontiguous pages.
  4560. *
  4561. * Queueing large contiguous runs of pages for batching, however,
  4562. * causes the pages to actually be freed in smaller chunks. As there
  4563. * can be a significant delay between the individual batches being
  4564. * recycled, this leads to the once large chunks of space being
  4565. * fragmented and becoming unavailable for high-order allocations.
  4566. */
  4567. return 0;
  4568. #endif
  4569. }
  4570. /*
  4571. * pcp->high and pcp->batch values are related and dependent on one another:
  4572. * ->batch must never be higher then ->high.
  4573. * The following function updates them in a safe manner without read side
  4574. * locking.
  4575. *
  4576. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4577. * those fields changing asynchronously (acording the the above rule).
  4578. *
  4579. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4580. * outside of boot time (or some other assurance that no concurrent updaters
  4581. * exist).
  4582. */
  4583. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4584. unsigned long batch)
  4585. {
  4586. /* start with a fail safe value for batch */
  4587. pcp->batch = 1;
  4588. smp_wmb();
  4589. /* Update high, then batch, in order */
  4590. pcp->high = high;
  4591. smp_wmb();
  4592. pcp->batch = batch;
  4593. }
  4594. /* a companion to pageset_set_high() */
  4595. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4596. {
  4597. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4598. }
  4599. static void pageset_init(struct per_cpu_pageset *p)
  4600. {
  4601. struct per_cpu_pages *pcp;
  4602. int migratetype;
  4603. memset(p, 0, sizeof(*p));
  4604. pcp = &p->pcp;
  4605. pcp->count = 0;
  4606. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4607. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4608. }
  4609. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4610. {
  4611. pageset_init(p);
  4612. pageset_set_batch(p, batch);
  4613. }
  4614. /*
  4615. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4616. * to the value high for the pageset p.
  4617. */
  4618. static void pageset_set_high(struct per_cpu_pageset *p,
  4619. unsigned long high)
  4620. {
  4621. unsigned long batch = max(1UL, high / 4);
  4622. if ((high / 4) > (PAGE_SHIFT * 8))
  4623. batch = PAGE_SHIFT * 8;
  4624. pageset_update(&p->pcp, high, batch);
  4625. }
  4626. static void pageset_set_high_and_batch(struct zone *zone,
  4627. struct per_cpu_pageset *pcp)
  4628. {
  4629. if (percpu_pagelist_fraction)
  4630. pageset_set_high(pcp,
  4631. (zone->managed_pages /
  4632. percpu_pagelist_fraction));
  4633. else
  4634. pageset_set_batch(pcp, zone_batchsize(zone));
  4635. }
  4636. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4637. {
  4638. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4639. pageset_init(pcp);
  4640. pageset_set_high_and_batch(zone, pcp);
  4641. }
  4642. static void __meminit setup_zone_pageset(struct zone *zone)
  4643. {
  4644. int cpu;
  4645. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4646. for_each_possible_cpu(cpu)
  4647. zone_pageset_init(zone, cpu);
  4648. }
  4649. /*
  4650. * Allocate per cpu pagesets and initialize them.
  4651. * Before this call only boot pagesets were available.
  4652. */
  4653. void __init setup_per_cpu_pageset(void)
  4654. {
  4655. struct zone *zone;
  4656. for_each_populated_zone(zone)
  4657. setup_zone_pageset(zone);
  4658. }
  4659. static noinline __init_refok
  4660. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4661. {
  4662. int i;
  4663. size_t alloc_size;
  4664. /*
  4665. * The per-page waitqueue mechanism uses hashed waitqueues
  4666. * per zone.
  4667. */
  4668. zone->wait_table_hash_nr_entries =
  4669. wait_table_hash_nr_entries(zone_size_pages);
  4670. zone->wait_table_bits =
  4671. wait_table_bits(zone->wait_table_hash_nr_entries);
  4672. alloc_size = zone->wait_table_hash_nr_entries
  4673. * sizeof(wait_queue_head_t);
  4674. if (!slab_is_available()) {
  4675. zone->wait_table = (wait_queue_head_t *)
  4676. memblock_virt_alloc_node_nopanic(
  4677. alloc_size, zone->zone_pgdat->node_id);
  4678. } else {
  4679. /*
  4680. * This case means that a zone whose size was 0 gets new memory
  4681. * via memory hot-add.
  4682. * But it may be the case that a new node was hot-added. In
  4683. * this case vmalloc() will not be able to use this new node's
  4684. * memory - this wait_table must be initialized to use this new
  4685. * node itself as well.
  4686. * To use this new node's memory, further consideration will be
  4687. * necessary.
  4688. */
  4689. zone->wait_table = vmalloc(alloc_size);
  4690. }
  4691. if (!zone->wait_table)
  4692. return -ENOMEM;
  4693. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4694. init_waitqueue_head(zone->wait_table + i);
  4695. return 0;
  4696. }
  4697. static __meminit void zone_pcp_init(struct zone *zone)
  4698. {
  4699. /*
  4700. * per cpu subsystem is not up at this point. The following code
  4701. * relies on the ability of the linker to provide the
  4702. * offset of a (static) per cpu variable into the per cpu area.
  4703. */
  4704. zone->pageset = &boot_pageset;
  4705. if (populated_zone(zone))
  4706. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4707. zone->name, zone->present_pages,
  4708. zone_batchsize(zone));
  4709. }
  4710. int __meminit init_currently_empty_zone(struct zone *zone,
  4711. unsigned long zone_start_pfn,
  4712. unsigned long size)
  4713. {
  4714. struct pglist_data *pgdat = zone->zone_pgdat;
  4715. int ret;
  4716. ret = zone_wait_table_init(zone, size);
  4717. if (ret)
  4718. return ret;
  4719. pgdat->nr_zones = zone_idx(zone) + 1;
  4720. zone->zone_start_pfn = zone_start_pfn;
  4721. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4722. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4723. pgdat->node_id,
  4724. (unsigned long)zone_idx(zone),
  4725. zone_start_pfn, (zone_start_pfn + size));
  4726. zone_init_free_lists(zone);
  4727. return 0;
  4728. }
  4729. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4730. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4731. /*
  4732. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4733. */
  4734. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4735. struct mminit_pfnnid_cache *state)
  4736. {
  4737. unsigned long start_pfn, end_pfn;
  4738. int nid;
  4739. if (state->last_start <= pfn && pfn < state->last_end)
  4740. return state->last_nid;
  4741. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4742. if (nid != -1) {
  4743. state->last_start = start_pfn;
  4744. state->last_end = end_pfn;
  4745. state->last_nid = nid;
  4746. }
  4747. return nid;
  4748. }
  4749. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4750. /**
  4751. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4752. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4753. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4754. *
  4755. * If an architecture guarantees that all ranges registered contain no holes
  4756. * and may be freed, this this function may be used instead of calling
  4757. * memblock_free_early_nid() manually.
  4758. */
  4759. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4760. {
  4761. unsigned long start_pfn, end_pfn;
  4762. int i, this_nid;
  4763. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4764. start_pfn = min(start_pfn, max_low_pfn);
  4765. end_pfn = min(end_pfn, max_low_pfn);
  4766. if (start_pfn < end_pfn)
  4767. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4768. (end_pfn - start_pfn) << PAGE_SHIFT,
  4769. this_nid);
  4770. }
  4771. }
  4772. /**
  4773. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4774. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4775. *
  4776. * If an architecture guarantees that all ranges registered contain no holes and may
  4777. * be freed, this function may be used instead of calling memory_present() manually.
  4778. */
  4779. void __init sparse_memory_present_with_active_regions(int nid)
  4780. {
  4781. unsigned long start_pfn, end_pfn;
  4782. int i, this_nid;
  4783. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4784. memory_present(this_nid, start_pfn, end_pfn);
  4785. }
  4786. /**
  4787. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4788. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4789. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4790. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4791. *
  4792. * It returns the start and end page frame of a node based on information
  4793. * provided by memblock_set_node(). If called for a node
  4794. * with no available memory, a warning is printed and the start and end
  4795. * PFNs will be 0.
  4796. */
  4797. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4798. unsigned long *start_pfn, unsigned long *end_pfn)
  4799. {
  4800. unsigned long this_start_pfn, this_end_pfn;
  4801. int i;
  4802. *start_pfn = -1UL;
  4803. *end_pfn = 0;
  4804. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4805. *start_pfn = min(*start_pfn, this_start_pfn);
  4806. *end_pfn = max(*end_pfn, this_end_pfn);
  4807. }
  4808. if (*start_pfn == -1UL)
  4809. *start_pfn = 0;
  4810. }
  4811. /*
  4812. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4813. * assumption is made that zones within a node are ordered in monotonic
  4814. * increasing memory addresses so that the "highest" populated zone is used
  4815. */
  4816. static void __init find_usable_zone_for_movable(void)
  4817. {
  4818. int zone_index;
  4819. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4820. if (zone_index == ZONE_MOVABLE)
  4821. continue;
  4822. if (arch_zone_highest_possible_pfn[zone_index] >
  4823. arch_zone_lowest_possible_pfn[zone_index])
  4824. break;
  4825. }
  4826. VM_BUG_ON(zone_index == -1);
  4827. movable_zone = zone_index;
  4828. }
  4829. /*
  4830. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4831. * because it is sized independent of architecture. Unlike the other zones,
  4832. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4833. * in each node depending on the size of each node and how evenly kernelcore
  4834. * is distributed. This helper function adjusts the zone ranges
  4835. * provided by the architecture for a given node by using the end of the
  4836. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4837. * zones within a node are in order of monotonic increases memory addresses
  4838. */
  4839. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4840. unsigned long zone_type,
  4841. unsigned long node_start_pfn,
  4842. unsigned long node_end_pfn,
  4843. unsigned long *zone_start_pfn,
  4844. unsigned long *zone_end_pfn)
  4845. {
  4846. /* Only adjust if ZONE_MOVABLE is on this node */
  4847. if (zone_movable_pfn[nid]) {
  4848. /* Size ZONE_MOVABLE */
  4849. if (zone_type == ZONE_MOVABLE) {
  4850. *zone_start_pfn = zone_movable_pfn[nid];
  4851. *zone_end_pfn = min(node_end_pfn,
  4852. arch_zone_highest_possible_pfn[movable_zone]);
  4853. /* Check if this whole range is within ZONE_MOVABLE */
  4854. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4855. *zone_start_pfn = *zone_end_pfn;
  4856. }
  4857. }
  4858. /*
  4859. * Return the number of pages a zone spans in a node, including holes
  4860. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4861. */
  4862. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4863. unsigned long zone_type,
  4864. unsigned long node_start_pfn,
  4865. unsigned long node_end_pfn,
  4866. unsigned long *zone_start_pfn,
  4867. unsigned long *zone_end_pfn,
  4868. unsigned long *ignored)
  4869. {
  4870. /* When hotadd a new node from cpu_up(), the node should be empty */
  4871. if (!node_start_pfn && !node_end_pfn)
  4872. return 0;
  4873. /* Get the start and end of the zone */
  4874. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4875. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4876. adjust_zone_range_for_zone_movable(nid, zone_type,
  4877. node_start_pfn, node_end_pfn,
  4878. zone_start_pfn, zone_end_pfn);
  4879. /* Check that this node has pages within the zone's required range */
  4880. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4881. return 0;
  4882. /* Move the zone boundaries inside the node if necessary */
  4883. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4884. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4885. /* Return the spanned pages */
  4886. return *zone_end_pfn - *zone_start_pfn;
  4887. }
  4888. /*
  4889. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4890. * then all holes in the requested range will be accounted for.
  4891. */
  4892. unsigned long __meminit __absent_pages_in_range(int nid,
  4893. unsigned long range_start_pfn,
  4894. unsigned long range_end_pfn)
  4895. {
  4896. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4897. unsigned long start_pfn, end_pfn;
  4898. int i;
  4899. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4900. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4901. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4902. nr_absent -= end_pfn - start_pfn;
  4903. }
  4904. return nr_absent;
  4905. }
  4906. /**
  4907. * absent_pages_in_range - Return number of page frames in holes within a range
  4908. * @start_pfn: The start PFN to start searching for holes
  4909. * @end_pfn: The end PFN to stop searching for holes
  4910. *
  4911. * It returns the number of pages frames in memory holes within a range.
  4912. */
  4913. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4914. unsigned long end_pfn)
  4915. {
  4916. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4917. }
  4918. /* Return the number of page frames in holes in a zone on a node */
  4919. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4920. unsigned long zone_type,
  4921. unsigned long node_start_pfn,
  4922. unsigned long node_end_pfn,
  4923. unsigned long *ignored)
  4924. {
  4925. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4926. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4927. unsigned long zone_start_pfn, zone_end_pfn;
  4928. unsigned long nr_absent;
  4929. /* When hotadd a new node from cpu_up(), the node should be empty */
  4930. if (!node_start_pfn && !node_end_pfn)
  4931. return 0;
  4932. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4933. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4934. adjust_zone_range_for_zone_movable(nid, zone_type,
  4935. node_start_pfn, node_end_pfn,
  4936. &zone_start_pfn, &zone_end_pfn);
  4937. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4938. /*
  4939. * ZONE_MOVABLE handling.
  4940. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4941. * and vice versa.
  4942. */
  4943. if (zone_movable_pfn[nid]) {
  4944. if (mirrored_kernelcore) {
  4945. unsigned long start_pfn, end_pfn;
  4946. struct memblock_region *r;
  4947. for_each_memblock(memory, r) {
  4948. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4949. zone_start_pfn, zone_end_pfn);
  4950. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4951. zone_start_pfn, zone_end_pfn);
  4952. if (zone_type == ZONE_MOVABLE &&
  4953. memblock_is_mirror(r))
  4954. nr_absent += end_pfn - start_pfn;
  4955. if (zone_type == ZONE_NORMAL &&
  4956. !memblock_is_mirror(r))
  4957. nr_absent += end_pfn - start_pfn;
  4958. }
  4959. } else {
  4960. if (zone_type == ZONE_NORMAL)
  4961. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4962. }
  4963. }
  4964. return nr_absent;
  4965. }
  4966. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4967. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4968. unsigned long zone_type,
  4969. unsigned long node_start_pfn,
  4970. unsigned long node_end_pfn,
  4971. unsigned long *zone_start_pfn,
  4972. unsigned long *zone_end_pfn,
  4973. unsigned long *zones_size)
  4974. {
  4975. unsigned int zone;
  4976. *zone_start_pfn = node_start_pfn;
  4977. for (zone = 0; zone < zone_type; zone++)
  4978. *zone_start_pfn += zones_size[zone];
  4979. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4980. return zones_size[zone_type];
  4981. }
  4982. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4983. unsigned long zone_type,
  4984. unsigned long node_start_pfn,
  4985. unsigned long node_end_pfn,
  4986. unsigned long *zholes_size)
  4987. {
  4988. if (!zholes_size)
  4989. return 0;
  4990. return zholes_size[zone_type];
  4991. }
  4992. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4993. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4994. unsigned long node_start_pfn,
  4995. unsigned long node_end_pfn,
  4996. unsigned long *zones_size,
  4997. unsigned long *zholes_size)
  4998. {
  4999. unsigned long realtotalpages = 0, totalpages = 0;
  5000. enum zone_type i;
  5001. for (i = 0; i < MAX_NR_ZONES; i++) {
  5002. struct zone *zone = pgdat->node_zones + i;
  5003. unsigned long zone_start_pfn, zone_end_pfn;
  5004. unsigned long size, real_size;
  5005. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5006. node_start_pfn,
  5007. node_end_pfn,
  5008. &zone_start_pfn,
  5009. &zone_end_pfn,
  5010. zones_size);
  5011. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5012. node_start_pfn, node_end_pfn,
  5013. zholes_size);
  5014. if (size)
  5015. zone->zone_start_pfn = zone_start_pfn;
  5016. else
  5017. zone->zone_start_pfn = 0;
  5018. zone->spanned_pages = size;
  5019. zone->present_pages = real_size;
  5020. totalpages += size;
  5021. realtotalpages += real_size;
  5022. }
  5023. pgdat->node_spanned_pages = totalpages;
  5024. pgdat->node_present_pages = realtotalpages;
  5025. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5026. realtotalpages);
  5027. }
  5028. #ifndef CONFIG_SPARSEMEM
  5029. /*
  5030. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5031. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5032. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5033. * round what is now in bits to nearest long in bits, then return it in
  5034. * bytes.
  5035. */
  5036. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5037. {
  5038. unsigned long usemapsize;
  5039. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5040. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5041. usemapsize = usemapsize >> pageblock_order;
  5042. usemapsize *= NR_PAGEBLOCK_BITS;
  5043. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5044. return usemapsize / 8;
  5045. }
  5046. static void __init setup_usemap(struct pglist_data *pgdat,
  5047. struct zone *zone,
  5048. unsigned long zone_start_pfn,
  5049. unsigned long zonesize)
  5050. {
  5051. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5052. zone->pageblock_flags = NULL;
  5053. if (usemapsize)
  5054. zone->pageblock_flags =
  5055. memblock_virt_alloc_node_nopanic(usemapsize,
  5056. pgdat->node_id);
  5057. }
  5058. #else
  5059. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5060. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5061. #endif /* CONFIG_SPARSEMEM */
  5062. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5063. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5064. void __paginginit set_pageblock_order(void)
  5065. {
  5066. unsigned int order;
  5067. /* Check that pageblock_nr_pages has not already been setup */
  5068. if (pageblock_order)
  5069. return;
  5070. if (HPAGE_SHIFT > PAGE_SHIFT)
  5071. order = HUGETLB_PAGE_ORDER;
  5072. else
  5073. order = MAX_ORDER - 1;
  5074. /*
  5075. * Assume the largest contiguous order of interest is a huge page.
  5076. * This value may be variable depending on boot parameters on IA64 and
  5077. * powerpc.
  5078. */
  5079. pageblock_order = order;
  5080. }
  5081. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5082. /*
  5083. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5084. * is unused as pageblock_order is set at compile-time. See
  5085. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5086. * the kernel config
  5087. */
  5088. void __paginginit set_pageblock_order(void)
  5089. {
  5090. }
  5091. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5092. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5093. unsigned long present_pages)
  5094. {
  5095. unsigned long pages = spanned_pages;
  5096. /*
  5097. * Provide a more accurate estimation if there are holes within
  5098. * the zone and SPARSEMEM is in use. If there are holes within the
  5099. * zone, each populated memory region may cost us one or two extra
  5100. * memmap pages due to alignment because memmap pages for each
  5101. * populated regions may not naturally algined on page boundary.
  5102. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5103. */
  5104. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5105. IS_ENABLED(CONFIG_SPARSEMEM))
  5106. pages = present_pages;
  5107. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5108. }
  5109. /*
  5110. * Set up the zone data structures:
  5111. * - mark all pages reserved
  5112. * - mark all memory queues empty
  5113. * - clear the memory bitmaps
  5114. *
  5115. * NOTE: pgdat should get zeroed by caller.
  5116. */
  5117. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5118. {
  5119. enum zone_type j;
  5120. int nid = pgdat->node_id;
  5121. int ret;
  5122. pgdat_resize_init(pgdat);
  5123. #ifdef CONFIG_NUMA_BALANCING
  5124. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5125. pgdat->numabalancing_migrate_nr_pages = 0;
  5126. pgdat->numabalancing_migrate_next_window = jiffies;
  5127. #endif
  5128. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5129. spin_lock_init(&pgdat->split_queue_lock);
  5130. INIT_LIST_HEAD(&pgdat->split_queue);
  5131. pgdat->split_queue_len = 0;
  5132. #endif
  5133. init_waitqueue_head(&pgdat->kswapd_wait);
  5134. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5135. #ifdef CONFIG_COMPACTION
  5136. init_waitqueue_head(&pgdat->kcompactd_wait);
  5137. #endif
  5138. pgdat_page_ext_init(pgdat);
  5139. for (j = 0; j < MAX_NR_ZONES; j++) {
  5140. struct zone *zone = pgdat->node_zones + j;
  5141. unsigned long size, realsize, freesize, memmap_pages;
  5142. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5143. size = zone->spanned_pages;
  5144. realsize = freesize = zone->present_pages;
  5145. /*
  5146. * Adjust freesize so that it accounts for how much memory
  5147. * is used by this zone for memmap. This affects the watermark
  5148. * and per-cpu initialisations
  5149. */
  5150. memmap_pages = calc_memmap_size(size, realsize);
  5151. if (!is_highmem_idx(j)) {
  5152. if (freesize >= memmap_pages) {
  5153. freesize -= memmap_pages;
  5154. if (memmap_pages)
  5155. printk(KERN_DEBUG
  5156. " %s zone: %lu pages used for memmap\n",
  5157. zone_names[j], memmap_pages);
  5158. } else
  5159. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5160. zone_names[j], memmap_pages, freesize);
  5161. }
  5162. /* Account for reserved pages */
  5163. if (j == 0 && freesize > dma_reserve) {
  5164. freesize -= dma_reserve;
  5165. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5166. zone_names[0], dma_reserve);
  5167. }
  5168. if (!is_highmem_idx(j))
  5169. nr_kernel_pages += freesize;
  5170. /* Charge for highmem memmap if there are enough kernel pages */
  5171. else if (nr_kernel_pages > memmap_pages * 2)
  5172. nr_kernel_pages -= memmap_pages;
  5173. nr_all_pages += freesize;
  5174. /*
  5175. * Set an approximate value for lowmem here, it will be adjusted
  5176. * when the bootmem allocator frees pages into the buddy system.
  5177. * And all highmem pages will be managed by the buddy system.
  5178. */
  5179. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5180. #ifdef CONFIG_NUMA
  5181. zone->node = nid;
  5182. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  5183. / 100;
  5184. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  5185. #endif
  5186. zone->name = zone_names[j];
  5187. spin_lock_init(&zone->lock);
  5188. spin_lock_init(&zone->lru_lock);
  5189. zone_seqlock_init(zone);
  5190. zone->zone_pgdat = pgdat;
  5191. zone_pcp_init(zone);
  5192. /* For bootup, initialized properly in watermark setup */
  5193. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  5194. lruvec_init(&zone->lruvec);
  5195. if (!size)
  5196. continue;
  5197. set_pageblock_order();
  5198. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5199. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5200. BUG_ON(ret);
  5201. memmap_init(size, nid, j, zone_start_pfn);
  5202. }
  5203. }
  5204. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  5205. {
  5206. unsigned long __maybe_unused start = 0;
  5207. unsigned long __maybe_unused offset = 0;
  5208. /* Skip empty nodes */
  5209. if (!pgdat->node_spanned_pages)
  5210. return;
  5211. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5212. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5213. offset = pgdat->node_start_pfn - start;
  5214. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5215. if (!pgdat->node_mem_map) {
  5216. unsigned long size, end;
  5217. struct page *map;
  5218. /*
  5219. * The zone's endpoints aren't required to be MAX_ORDER
  5220. * aligned but the node_mem_map endpoints must be in order
  5221. * for the buddy allocator to function correctly.
  5222. */
  5223. end = pgdat_end_pfn(pgdat);
  5224. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5225. size = (end - start) * sizeof(struct page);
  5226. map = alloc_remap(pgdat->node_id, size);
  5227. if (!map)
  5228. map = memblock_virt_alloc_node_nopanic(size,
  5229. pgdat->node_id);
  5230. pgdat->node_mem_map = map + offset;
  5231. }
  5232. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5233. /*
  5234. * With no DISCONTIG, the global mem_map is just set as node 0's
  5235. */
  5236. if (pgdat == NODE_DATA(0)) {
  5237. mem_map = NODE_DATA(0)->node_mem_map;
  5238. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5239. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5240. mem_map -= offset;
  5241. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5242. }
  5243. #endif
  5244. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5245. }
  5246. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5247. unsigned long node_start_pfn, unsigned long *zholes_size)
  5248. {
  5249. pg_data_t *pgdat = NODE_DATA(nid);
  5250. unsigned long start_pfn = 0;
  5251. unsigned long end_pfn = 0;
  5252. /* pg_data_t should be reset to zero when it's allocated */
  5253. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  5254. reset_deferred_meminit(pgdat);
  5255. pgdat->node_id = nid;
  5256. pgdat->node_start_pfn = node_start_pfn;
  5257. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5258. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5259. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5260. (u64)start_pfn << PAGE_SHIFT,
  5261. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5262. #else
  5263. start_pfn = node_start_pfn;
  5264. #endif
  5265. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5266. zones_size, zholes_size);
  5267. alloc_node_mem_map(pgdat);
  5268. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5269. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5270. nid, (unsigned long)pgdat,
  5271. (unsigned long)pgdat->node_mem_map);
  5272. #endif
  5273. free_area_init_core(pgdat);
  5274. }
  5275. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5276. #if MAX_NUMNODES > 1
  5277. /*
  5278. * Figure out the number of possible node ids.
  5279. */
  5280. void __init setup_nr_node_ids(void)
  5281. {
  5282. unsigned int highest;
  5283. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5284. nr_node_ids = highest + 1;
  5285. }
  5286. #endif
  5287. /**
  5288. * node_map_pfn_alignment - determine the maximum internode alignment
  5289. *
  5290. * This function should be called after node map is populated and sorted.
  5291. * It calculates the maximum power of two alignment which can distinguish
  5292. * all the nodes.
  5293. *
  5294. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5295. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5296. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5297. * shifted, 1GiB is enough and this function will indicate so.
  5298. *
  5299. * This is used to test whether pfn -> nid mapping of the chosen memory
  5300. * model has fine enough granularity to avoid incorrect mapping for the
  5301. * populated node map.
  5302. *
  5303. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5304. * requirement (single node).
  5305. */
  5306. unsigned long __init node_map_pfn_alignment(void)
  5307. {
  5308. unsigned long accl_mask = 0, last_end = 0;
  5309. unsigned long start, end, mask;
  5310. int last_nid = -1;
  5311. int i, nid;
  5312. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5313. if (!start || last_nid < 0 || last_nid == nid) {
  5314. last_nid = nid;
  5315. last_end = end;
  5316. continue;
  5317. }
  5318. /*
  5319. * Start with a mask granular enough to pin-point to the
  5320. * start pfn and tick off bits one-by-one until it becomes
  5321. * too coarse to separate the current node from the last.
  5322. */
  5323. mask = ~((1 << __ffs(start)) - 1);
  5324. while (mask && last_end <= (start & (mask << 1)))
  5325. mask <<= 1;
  5326. /* accumulate all internode masks */
  5327. accl_mask |= mask;
  5328. }
  5329. /* convert mask to number of pages */
  5330. return ~accl_mask + 1;
  5331. }
  5332. /* Find the lowest pfn for a node */
  5333. static unsigned long __init find_min_pfn_for_node(int nid)
  5334. {
  5335. unsigned long min_pfn = ULONG_MAX;
  5336. unsigned long start_pfn;
  5337. int i;
  5338. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5339. min_pfn = min(min_pfn, start_pfn);
  5340. if (min_pfn == ULONG_MAX) {
  5341. pr_warn("Could not find start_pfn for node %d\n", nid);
  5342. return 0;
  5343. }
  5344. return min_pfn;
  5345. }
  5346. /**
  5347. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5348. *
  5349. * It returns the minimum PFN based on information provided via
  5350. * memblock_set_node().
  5351. */
  5352. unsigned long __init find_min_pfn_with_active_regions(void)
  5353. {
  5354. return find_min_pfn_for_node(MAX_NUMNODES);
  5355. }
  5356. /*
  5357. * early_calculate_totalpages()
  5358. * Sum pages in active regions for movable zone.
  5359. * Populate N_MEMORY for calculating usable_nodes.
  5360. */
  5361. static unsigned long __init early_calculate_totalpages(void)
  5362. {
  5363. unsigned long totalpages = 0;
  5364. unsigned long start_pfn, end_pfn;
  5365. int i, nid;
  5366. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5367. unsigned long pages = end_pfn - start_pfn;
  5368. totalpages += pages;
  5369. if (pages)
  5370. node_set_state(nid, N_MEMORY);
  5371. }
  5372. return totalpages;
  5373. }
  5374. /*
  5375. * Find the PFN the Movable zone begins in each node. Kernel memory
  5376. * is spread evenly between nodes as long as the nodes have enough
  5377. * memory. When they don't, some nodes will have more kernelcore than
  5378. * others
  5379. */
  5380. static void __init find_zone_movable_pfns_for_nodes(void)
  5381. {
  5382. int i, nid;
  5383. unsigned long usable_startpfn;
  5384. unsigned long kernelcore_node, kernelcore_remaining;
  5385. /* save the state before borrow the nodemask */
  5386. nodemask_t saved_node_state = node_states[N_MEMORY];
  5387. unsigned long totalpages = early_calculate_totalpages();
  5388. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5389. struct memblock_region *r;
  5390. /* Need to find movable_zone earlier when movable_node is specified. */
  5391. find_usable_zone_for_movable();
  5392. /*
  5393. * If movable_node is specified, ignore kernelcore and movablecore
  5394. * options.
  5395. */
  5396. if (movable_node_is_enabled()) {
  5397. for_each_memblock(memory, r) {
  5398. if (!memblock_is_hotpluggable(r))
  5399. continue;
  5400. nid = r->nid;
  5401. usable_startpfn = PFN_DOWN(r->base);
  5402. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5403. min(usable_startpfn, zone_movable_pfn[nid]) :
  5404. usable_startpfn;
  5405. }
  5406. goto out2;
  5407. }
  5408. /*
  5409. * If kernelcore=mirror is specified, ignore movablecore option
  5410. */
  5411. if (mirrored_kernelcore) {
  5412. bool mem_below_4gb_not_mirrored = false;
  5413. for_each_memblock(memory, r) {
  5414. if (memblock_is_mirror(r))
  5415. continue;
  5416. nid = r->nid;
  5417. usable_startpfn = memblock_region_memory_base_pfn(r);
  5418. if (usable_startpfn < 0x100000) {
  5419. mem_below_4gb_not_mirrored = true;
  5420. continue;
  5421. }
  5422. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5423. min(usable_startpfn, zone_movable_pfn[nid]) :
  5424. usable_startpfn;
  5425. }
  5426. if (mem_below_4gb_not_mirrored)
  5427. pr_warn("This configuration results in unmirrored kernel memory.");
  5428. goto out2;
  5429. }
  5430. /*
  5431. * If movablecore=nn[KMG] was specified, calculate what size of
  5432. * kernelcore that corresponds so that memory usable for
  5433. * any allocation type is evenly spread. If both kernelcore
  5434. * and movablecore are specified, then the value of kernelcore
  5435. * will be used for required_kernelcore if it's greater than
  5436. * what movablecore would have allowed.
  5437. */
  5438. if (required_movablecore) {
  5439. unsigned long corepages;
  5440. /*
  5441. * Round-up so that ZONE_MOVABLE is at least as large as what
  5442. * was requested by the user
  5443. */
  5444. required_movablecore =
  5445. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5446. required_movablecore = min(totalpages, required_movablecore);
  5447. corepages = totalpages - required_movablecore;
  5448. required_kernelcore = max(required_kernelcore, corepages);
  5449. }
  5450. /*
  5451. * If kernelcore was not specified or kernelcore size is larger
  5452. * than totalpages, there is no ZONE_MOVABLE.
  5453. */
  5454. if (!required_kernelcore || required_kernelcore >= totalpages)
  5455. goto out;
  5456. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5457. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5458. restart:
  5459. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5460. kernelcore_node = required_kernelcore / usable_nodes;
  5461. for_each_node_state(nid, N_MEMORY) {
  5462. unsigned long start_pfn, end_pfn;
  5463. /*
  5464. * Recalculate kernelcore_node if the division per node
  5465. * now exceeds what is necessary to satisfy the requested
  5466. * amount of memory for the kernel
  5467. */
  5468. if (required_kernelcore < kernelcore_node)
  5469. kernelcore_node = required_kernelcore / usable_nodes;
  5470. /*
  5471. * As the map is walked, we track how much memory is usable
  5472. * by the kernel using kernelcore_remaining. When it is
  5473. * 0, the rest of the node is usable by ZONE_MOVABLE
  5474. */
  5475. kernelcore_remaining = kernelcore_node;
  5476. /* Go through each range of PFNs within this node */
  5477. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5478. unsigned long size_pages;
  5479. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5480. if (start_pfn >= end_pfn)
  5481. continue;
  5482. /* Account for what is only usable for kernelcore */
  5483. if (start_pfn < usable_startpfn) {
  5484. unsigned long kernel_pages;
  5485. kernel_pages = min(end_pfn, usable_startpfn)
  5486. - start_pfn;
  5487. kernelcore_remaining -= min(kernel_pages,
  5488. kernelcore_remaining);
  5489. required_kernelcore -= min(kernel_pages,
  5490. required_kernelcore);
  5491. /* Continue if range is now fully accounted */
  5492. if (end_pfn <= usable_startpfn) {
  5493. /*
  5494. * Push zone_movable_pfn to the end so
  5495. * that if we have to rebalance
  5496. * kernelcore across nodes, we will
  5497. * not double account here
  5498. */
  5499. zone_movable_pfn[nid] = end_pfn;
  5500. continue;
  5501. }
  5502. start_pfn = usable_startpfn;
  5503. }
  5504. /*
  5505. * The usable PFN range for ZONE_MOVABLE is from
  5506. * start_pfn->end_pfn. Calculate size_pages as the
  5507. * number of pages used as kernelcore
  5508. */
  5509. size_pages = end_pfn - start_pfn;
  5510. if (size_pages > kernelcore_remaining)
  5511. size_pages = kernelcore_remaining;
  5512. zone_movable_pfn[nid] = start_pfn + size_pages;
  5513. /*
  5514. * Some kernelcore has been met, update counts and
  5515. * break if the kernelcore for this node has been
  5516. * satisfied
  5517. */
  5518. required_kernelcore -= min(required_kernelcore,
  5519. size_pages);
  5520. kernelcore_remaining -= size_pages;
  5521. if (!kernelcore_remaining)
  5522. break;
  5523. }
  5524. }
  5525. /*
  5526. * If there is still required_kernelcore, we do another pass with one
  5527. * less node in the count. This will push zone_movable_pfn[nid] further
  5528. * along on the nodes that still have memory until kernelcore is
  5529. * satisfied
  5530. */
  5531. usable_nodes--;
  5532. if (usable_nodes && required_kernelcore > usable_nodes)
  5533. goto restart;
  5534. out2:
  5535. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5536. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5537. zone_movable_pfn[nid] =
  5538. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5539. out:
  5540. /* restore the node_state */
  5541. node_states[N_MEMORY] = saved_node_state;
  5542. }
  5543. /* Any regular or high memory on that node ? */
  5544. static void check_for_memory(pg_data_t *pgdat, int nid)
  5545. {
  5546. enum zone_type zone_type;
  5547. if (N_MEMORY == N_NORMAL_MEMORY)
  5548. return;
  5549. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5550. struct zone *zone = &pgdat->node_zones[zone_type];
  5551. if (populated_zone(zone)) {
  5552. node_set_state(nid, N_HIGH_MEMORY);
  5553. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5554. zone_type <= ZONE_NORMAL)
  5555. node_set_state(nid, N_NORMAL_MEMORY);
  5556. break;
  5557. }
  5558. }
  5559. }
  5560. /**
  5561. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5562. * @max_zone_pfn: an array of max PFNs for each zone
  5563. *
  5564. * This will call free_area_init_node() for each active node in the system.
  5565. * Using the page ranges provided by memblock_set_node(), the size of each
  5566. * zone in each node and their holes is calculated. If the maximum PFN
  5567. * between two adjacent zones match, it is assumed that the zone is empty.
  5568. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5569. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5570. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5571. * at arch_max_dma_pfn.
  5572. */
  5573. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5574. {
  5575. unsigned long start_pfn, end_pfn;
  5576. int i, nid;
  5577. /* Record where the zone boundaries are */
  5578. memset(arch_zone_lowest_possible_pfn, 0,
  5579. sizeof(arch_zone_lowest_possible_pfn));
  5580. memset(arch_zone_highest_possible_pfn, 0,
  5581. sizeof(arch_zone_highest_possible_pfn));
  5582. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5583. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5584. for (i = 1; i < MAX_NR_ZONES; i++) {
  5585. if (i == ZONE_MOVABLE)
  5586. continue;
  5587. arch_zone_lowest_possible_pfn[i] =
  5588. arch_zone_highest_possible_pfn[i-1];
  5589. arch_zone_highest_possible_pfn[i] =
  5590. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5591. }
  5592. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5593. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5594. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5595. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5596. find_zone_movable_pfns_for_nodes();
  5597. /* Print out the zone ranges */
  5598. pr_info("Zone ranges:\n");
  5599. for (i = 0; i < MAX_NR_ZONES; i++) {
  5600. if (i == ZONE_MOVABLE)
  5601. continue;
  5602. pr_info(" %-8s ", zone_names[i]);
  5603. if (arch_zone_lowest_possible_pfn[i] ==
  5604. arch_zone_highest_possible_pfn[i])
  5605. pr_cont("empty\n");
  5606. else
  5607. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5608. (u64)arch_zone_lowest_possible_pfn[i]
  5609. << PAGE_SHIFT,
  5610. ((u64)arch_zone_highest_possible_pfn[i]
  5611. << PAGE_SHIFT) - 1);
  5612. }
  5613. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5614. pr_info("Movable zone start for each node\n");
  5615. for (i = 0; i < MAX_NUMNODES; i++) {
  5616. if (zone_movable_pfn[i])
  5617. pr_info(" Node %d: %#018Lx\n", i,
  5618. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5619. }
  5620. /* Print out the early node map */
  5621. pr_info("Early memory node ranges\n");
  5622. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5623. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5624. (u64)start_pfn << PAGE_SHIFT,
  5625. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5626. /* Initialise every node */
  5627. mminit_verify_pageflags_layout();
  5628. setup_nr_node_ids();
  5629. for_each_online_node(nid) {
  5630. pg_data_t *pgdat = NODE_DATA(nid);
  5631. free_area_init_node(nid, NULL,
  5632. find_min_pfn_for_node(nid), NULL);
  5633. /* Any memory on that node */
  5634. if (pgdat->node_present_pages)
  5635. node_set_state(nid, N_MEMORY);
  5636. check_for_memory(pgdat, nid);
  5637. }
  5638. }
  5639. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5640. {
  5641. unsigned long long coremem;
  5642. if (!p)
  5643. return -EINVAL;
  5644. coremem = memparse(p, &p);
  5645. *core = coremem >> PAGE_SHIFT;
  5646. /* Paranoid check that UL is enough for the coremem value */
  5647. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5648. return 0;
  5649. }
  5650. /*
  5651. * kernelcore=size sets the amount of memory for use for allocations that
  5652. * cannot be reclaimed or migrated.
  5653. */
  5654. static int __init cmdline_parse_kernelcore(char *p)
  5655. {
  5656. /* parse kernelcore=mirror */
  5657. if (parse_option_str(p, "mirror")) {
  5658. mirrored_kernelcore = true;
  5659. return 0;
  5660. }
  5661. return cmdline_parse_core(p, &required_kernelcore);
  5662. }
  5663. /*
  5664. * movablecore=size sets the amount of memory for use for allocations that
  5665. * can be reclaimed or migrated.
  5666. */
  5667. static int __init cmdline_parse_movablecore(char *p)
  5668. {
  5669. return cmdline_parse_core(p, &required_movablecore);
  5670. }
  5671. early_param("kernelcore", cmdline_parse_kernelcore);
  5672. early_param("movablecore", cmdline_parse_movablecore);
  5673. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5674. void adjust_managed_page_count(struct page *page, long count)
  5675. {
  5676. spin_lock(&managed_page_count_lock);
  5677. page_zone(page)->managed_pages += count;
  5678. totalram_pages += count;
  5679. #ifdef CONFIG_HIGHMEM
  5680. if (PageHighMem(page))
  5681. totalhigh_pages += count;
  5682. #endif
  5683. spin_unlock(&managed_page_count_lock);
  5684. }
  5685. EXPORT_SYMBOL(adjust_managed_page_count);
  5686. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5687. {
  5688. void *pos;
  5689. unsigned long pages = 0;
  5690. start = (void *)PAGE_ALIGN((unsigned long)start);
  5691. end = (void *)((unsigned long)end & PAGE_MASK);
  5692. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5693. if ((unsigned int)poison <= 0xFF)
  5694. memset(pos, poison, PAGE_SIZE);
  5695. free_reserved_page(virt_to_page(pos));
  5696. }
  5697. if (pages && s)
  5698. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5699. s, pages << (PAGE_SHIFT - 10), start, end);
  5700. return pages;
  5701. }
  5702. EXPORT_SYMBOL(free_reserved_area);
  5703. #ifdef CONFIG_HIGHMEM
  5704. void free_highmem_page(struct page *page)
  5705. {
  5706. __free_reserved_page(page);
  5707. totalram_pages++;
  5708. page_zone(page)->managed_pages++;
  5709. totalhigh_pages++;
  5710. }
  5711. #endif
  5712. void __init mem_init_print_info(const char *str)
  5713. {
  5714. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5715. unsigned long init_code_size, init_data_size;
  5716. physpages = get_num_physpages();
  5717. codesize = _etext - _stext;
  5718. datasize = _edata - _sdata;
  5719. rosize = __end_rodata - __start_rodata;
  5720. bss_size = __bss_stop - __bss_start;
  5721. init_data_size = __init_end - __init_begin;
  5722. init_code_size = _einittext - _sinittext;
  5723. /*
  5724. * Detect special cases and adjust section sizes accordingly:
  5725. * 1) .init.* may be embedded into .data sections
  5726. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5727. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5728. * 3) .rodata.* may be embedded into .text or .data sections.
  5729. */
  5730. #define adj_init_size(start, end, size, pos, adj) \
  5731. do { \
  5732. if (start <= pos && pos < end && size > adj) \
  5733. size -= adj; \
  5734. } while (0)
  5735. adj_init_size(__init_begin, __init_end, init_data_size,
  5736. _sinittext, init_code_size);
  5737. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5738. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5739. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5740. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5741. #undef adj_init_size
  5742. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5743. #ifdef CONFIG_HIGHMEM
  5744. ", %luK highmem"
  5745. #endif
  5746. "%s%s)\n",
  5747. nr_free_pages() << (PAGE_SHIFT - 10),
  5748. physpages << (PAGE_SHIFT - 10),
  5749. codesize >> 10, datasize >> 10, rosize >> 10,
  5750. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5751. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5752. totalcma_pages << (PAGE_SHIFT - 10),
  5753. #ifdef CONFIG_HIGHMEM
  5754. totalhigh_pages << (PAGE_SHIFT - 10),
  5755. #endif
  5756. str ? ", " : "", str ? str : "");
  5757. }
  5758. /**
  5759. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5760. * @new_dma_reserve: The number of pages to mark reserved
  5761. *
  5762. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5763. * In the DMA zone, a significant percentage may be consumed by kernel image
  5764. * and other unfreeable allocations which can skew the watermarks badly. This
  5765. * function may optionally be used to account for unfreeable pages in the
  5766. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5767. * smaller per-cpu batchsize.
  5768. */
  5769. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5770. {
  5771. dma_reserve = new_dma_reserve;
  5772. }
  5773. void __init free_area_init(unsigned long *zones_size)
  5774. {
  5775. free_area_init_node(0, zones_size,
  5776. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5777. }
  5778. static int page_alloc_cpu_notify(struct notifier_block *self,
  5779. unsigned long action, void *hcpu)
  5780. {
  5781. int cpu = (unsigned long)hcpu;
  5782. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5783. lru_add_drain_cpu(cpu);
  5784. drain_pages(cpu);
  5785. /*
  5786. * Spill the event counters of the dead processor
  5787. * into the current processors event counters.
  5788. * This artificially elevates the count of the current
  5789. * processor.
  5790. */
  5791. vm_events_fold_cpu(cpu);
  5792. /*
  5793. * Zero the differential counters of the dead processor
  5794. * so that the vm statistics are consistent.
  5795. *
  5796. * This is only okay since the processor is dead and cannot
  5797. * race with what we are doing.
  5798. */
  5799. cpu_vm_stats_fold(cpu);
  5800. }
  5801. return NOTIFY_OK;
  5802. }
  5803. void __init page_alloc_init(void)
  5804. {
  5805. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5806. }
  5807. /*
  5808. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5809. * or min_free_kbytes changes.
  5810. */
  5811. static void calculate_totalreserve_pages(void)
  5812. {
  5813. struct pglist_data *pgdat;
  5814. unsigned long reserve_pages = 0;
  5815. enum zone_type i, j;
  5816. for_each_online_pgdat(pgdat) {
  5817. for (i = 0; i < MAX_NR_ZONES; i++) {
  5818. struct zone *zone = pgdat->node_zones + i;
  5819. long max = 0;
  5820. /* Find valid and maximum lowmem_reserve in the zone */
  5821. for (j = i; j < MAX_NR_ZONES; j++) {
  5822. if (zone->lowmem_reserve[j] > max)
  5823. max = zone->lowmem_reserve[j];
  5824. }
  5825. /* we treat the high watermark as reserved pages. */
  5826. max += high_wmark_pages(zone);
  5827. if (max > zone->managed_pages)
  5828. max = zone->managed_pages;
  5829. zone->totalreserve_pages = max;
  5830. reserve_pages += max;
  5831. }
  5832. }
  5833. totalreserve_pages = reserve_pages;
  5834. }
  5835. /*
  5836. * setup_per_zone_lowmem_reserve - called whenever
  5837. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5838. * has a correct pages reserved value, so an adequate number of
  5839. * pages are left in the zone after a successful __alloc_pages().
  5840. */
  5841. static void setup_per_zone_lowmem_reserve(void)
  5842. {
  5843. struct pglist_data *pgdat;
  5844. enum zone_type j, idx;
  5845. for_each_online_pgdat(pgdat) {
  5846. for (j = 0; j < MAX_NR_ZONES; j++) {
  5847. struct zone *zone = pgdat->node_zones + j;
  5848. unsigned long managed_pages = zone->managed_pages;
  5849. zone->lowmem_reserve[j] = 0;
  5850. idx = j;
  5851. while (idx) {
  5852. struct zone *lower_zone;
  5853. idx--;
  5854. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5855. sysctl_lowmem_reserve_ratio[idx] = 1;
  5856. lower_zone = pgdat->node_zones + idx;
  5857. lower_zone->lowmem_reserve[j] = managed_pages /
  5858. sysctl_lowmem_reserve_ratio[idx];
  5859. managed_pages += lower_zone->managed_pages;
  5860. }
  5861. }
  5862. }
  5863. /* update totalreserve_pages */
  5864. calculate_totalreserve_pages();
  5865. }
  5866. static void __setup_per_zone_wmarks(void)
  5867. {
  5868. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5869. unsigned long lowmem_pages = 0;
  5870. struct zone *zone;
  5871. unsigned long flags;
  5872. /* Calculate total number of !ZONE_HIGHMEM pages */
  5873. for_each_zone(zone) {
  5874. if (!is_highmem(zone))
  5875. lowmem_pages += zone->managed_pages;
  5876. }
  5877. for_each_zone(zone) {
  5878. u64 tmp;
  5879. spin_lock_irqsave(&zone->lock, flags);
  5880. tmp = (u64)pages_min * zone->managed_pages;
  5881. do_div(tmp, lowmem_pages);
  5882. if (is_highmem(zone)) {
  5883. /*
  5884. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5885. * need highmem pages, so cap pages_min to a small
  5886. * value here.
  5887. *
  5888. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5889. * deltas control asynch page reclaim, and so should
  5890. * not be capped for highmem.
  5891. */
  5892. unsigned long min_pages;
  5893. min_pages = zone->managed_pages / 1024;
  5894. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5895. zone->watermark[WMARK_MIN] = min_pages;
  5896. } else {
  5897. /*
  5898. * If it's a lowmem zone, reserve a number of pages
  5899. * proportionate to the zone's size.
  5900. */
  5901. zone->watermark[WMARK_MIN] = tmp;
  5902. }
  5903. /*
  5904. * Set the kswapd watermarks distance according to the
  5905. * scale factor in proportion to available memory, but
  5906. * ensure a minimum size on small systems.
  5907. */
  5908. tmp = max_t(u64, tmp >> 2,
  5909. mult_frac(zone->managed_pages,
  5910. watermark_scale_factor, 10000));
  5911. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5912. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5913. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5914. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5915. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5916. spin_unlock_irqrestore(&zone->lock, flags);
  5917. }
  5918. /* update totalreserve_pages */
  5919. calculate_totalreserve_pages();
  5920. }
  5921. /**
  5922. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5923. * or when memory is hot-{added|removed}
  5924. *
  5925. * Ensures that the watermark[min,low,high] values for each zone are set
  5926. * correctly with respect to min_free_kbytes.
  5927. */
  5928. void setup_per_zone_wmarks(void)
  5929. {
  5930. mutex_lock(&zonelists_mutex);
  5931. __setup_per_zone_wmarks();
  5932. mutex_unlock(&zonelists_mutex);
  5933. }
  5934. /*
  5935. * Initialise min_free_kbytes.
  5936. *
  5937. * For small machines we want it small (128k min). For large machines
  5938. * we want it large (64MB max). But it is not linear, because network
  5939. * bandwidth does not increase linearly with machine size. We use
  5940. *
  5941. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5942. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5943. *
  5944. * which yields
  5945. *
  5946. * 16MB: 512k
  5947. * 32MB: 724k
  5948. * 64MB: 1024k
  5949. * 128MB: 1448k
  5950. * 256MB: 2048k
  5951. * 512MB: 2896k
  5952. * 1024MB: 4096k
  5953. * 2048MB: 5792k
  5954. * 4096MB: 8192k
  5955. * 8192MB: 11584k
  5956. * 16384MB: 16384k
  5957. */
  5958. int __meminit init_per_zone_wmark_min(void)
  5959. {
  5960. unsigned long lowmem_kbytes;
  5961. int new_min_free_kbytes;
  5962. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5963. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5964. if (new_min_free_kbytes > user_min_free_kbytes) {
  5965. min_free_kbytes = new_min_free_kbytes;
  5966. if (min_free_kbytes < 128)
  5967. min_free_kbytes = 128;
  5968. if (min_free_kbytes > 65536)
  5969. min_free_kbytes = 65536;
  5970. } else {
  5971. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5972. new_min_free_kbytes, user_min_free_kbytes);
  5973. }
  5974. setup_per_zone_wmarks();
  5975. refresh_zone_stat_thresholds();
  5976. setup_per_zone_lowmem_reserve();
  5977. return 0;
  5978. }
  5979. core_initcall(init_per_zone_wmark_min)
  5980. /*
  5981. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5982. * that we can call two helper functions whenever min_free_kbytes
  5983. * changes.
  5984. */
  5985. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5986. void __user *buffer, size_t *length, loff_t *ppos)
  5987. {
  5988. int rc;
  5989. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5990. if (rc)
  5991. return rc;
  5992. if (write) {
  5993. user_min_free_kbytes = min_free_kbytes;
  5994. setup_per_zone_wmarks();
  5995. }
  5996. return 0;
  5997. }
  5998. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5999. void __user *buffer, size_t *length, loff_t *ppos)
  6000. {
  6001. int rc;
  6002. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6003. if (rc)
  6004. return rc;
  6005. if (write)
  6006. setup_per_zone_wmarks();
  6007. return 0;
  6008. }
  6009. #ifdef CONFIG_NUMA
  6010. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6011. void __user *buffer, size_t *length, loff_t *ppos)
  6012. {
  6013. struct zone *zone;
  6014. int rc;
  6015. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6016. if (rc)
  6017. return rc;
  6018. for_each_zone(zone)
  6019. zone->min_unmapped_pages = (zone->managed_pages *
  6020. sysctl_min_unmapped_ratio) / 100;
  6021. return 0;
  6022. }
  6023. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6024. void __user *buffer, size_t *length, loff_t *ppos)
  6025. {
  6026. struct zone *zone;
  6027. int rc;
  6028. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6029. if (rc)
  6030. return rc;
  6031. for_each_zone(zone)
  6032. zone->min_slab_pages = (zone->managed_pages *
  6033. sysctl_min_slab_ratio) / 100;
  6034. return 0;
  6035. }
  6036. #endif
  6037. /*
  6038. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6039. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6040. * whenever sysctl_lowmem_reserve_ratio changes.
  6041. *
  6042. * The reserve ratio obviously has absolutely no relation with the
  6043. * minimum watermarks. The lowmem reserve ratio can only make sense
  6044. * if in function of the boot time zone sizes.
  6045. */
  6046. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6047. void __user *buffer, size_t *length, loff_t *ppos)
  6048. {
  6049. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6050. setup_per_zone_lowmem_reserve();
  6051. return 0;
  6052. }
  6053. /*
  6054. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6055. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6056. * pagelist can have before it gets flushed back to buddy allocator.
  6057. */
  6058. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6059. void __user *buffer, size_t *length, loff_t *ppos)
  6060. {
  6061. struct zone *zone;
  6062. int old_percpu_pagelist_fraction;
  6063. int ret;
  6064. mutex_lock(&pcp_batch_high_lock);
  6065. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6066. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6067. if (!write || ret < 0)
  6068. goto out;
  6069. /* Sanity checking to avoid pcp imbalance */
  6070. if (percpu_pagelist_fraction &&
  6071. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6072. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6073. ret = -EINVAL;
  6074. goto out;
  6075. }
  6076. /* No change? */
  6077. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6078. goto out;
  6079. for_each_populated_zone(zone) {
  6080. unsigned int cpu;
  6081. for_each_possible_cpu(cpu)
  6082. pageset_set_high_and_batch(zone,
  6083. per_cpu_ptr(zone->pageset, cpu));
  6084. }
  6085. out:
  6086. mutex_unlock(&pcp_batch_high_lock);
  6087. return ret;
  6088. }
  6089. #ifdef CONFIG_NUMA
  6090. int hashdist = HASHDIST_DEFAULT;
  6091. static int __init set_hashdist(char *str)
  6092. {
  6093. if (!str)
  6094. return 0;
  6095. hashdist = simple_strtoul(str, &str, 0);
  6096. return 1;
  6097. }
  6098. __setup("hashdist=", set_hashdist);
  6099. #endif
  6100. /*
  6101. * allocate a large system hash table from bootmem
  6102. * - it is assumed that the hash table must contain an exact power-of-2
  6103. * quantity of entries
  6104. * - limit is the number of hash buckets, not the total allocation size
  6105. */
  6106. void *__init alloc_large_system_hash(const char *tablename,
  6107. unsigned long bucketsize,
  6108. unsigned long numentries,
  6109. int scale,
  6110. int flags,
  6111. unsigned int *_hash_shift,
  6112. unsigned int *_hash_mask,
  6113. unsigned long low_limit,
  6114. unsigned long high_limit)
  6115. {
  6116. unsigned long long max = high_limit;
  6117. unsigned long log2qty, size;
  6118. void *table = NULL;
  6119. /* allow the kernel cmdline to have a say */
  6120. if (!numentries) {
  6121. /* round applicable memory size up to nearest megabyte */
  6122. numentries = nr_kernel_pages;
  6123. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6124. if (PAGE_SHIFT < 20)
  6125. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6126. /* limit to 1 bucket per 2^scale bytes of low memory */
  6127. if (scale > PAGE_SHIFT)
  6128. numentries >>= (scale - PAGE_SHIFT);
  6129. else
  6130. numentries <<= (PAGE_SHIFT - scale);
  6131. /* Make sure we've got at least a 0-order allocation.. */
  6132. if (unlikely(flags & HASH_SMALL)) {
  6133. /* Makes no sense without HASH_EARLY */
  6134. WARN_ON(!(flags & HASH_EARLY));
  6135. if (!(numentries >> *_hash_shift)) {
  6136. numentries = 1UL << *_hash_shift;
  6137. BUG_ON(!numentries);
  6138. }
  6139. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6140. numentries = PAGE_SIZE / bucketsize;
  6141. }
  6142. numentries = roundup_pow_of_two(numentries);
  6143. /* limit allocation size to 1/16 total memory by default */
  6144. if (max == 0) {
  6145. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6146. do_div(max, bucketsize);
  6147. }
  6148. max = min(max, 0x80000000ULL);
  6149. if (numentries < low_limit)
  6150. numentries = low_limit;
  6151. if (numentries > max)
  6152. numentries = max;
  6153. log2qty = ilog2(numentries);
  6154. do {
  6155. size = bucketsize << log2qty;
  6156. if (flags & HASH_EARLY)
  6157. table = memblock_virt_alloc_nopanic(size, 0);
  6158. else if (hashdist)
  6159. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6160. else {
  6161. /*
  6162. * If bucketsize is not a power-of-two, we may free
  6163. * some pages at the end of hash table which
  6164. * alloc_pages_exact() automatically does
  6165. */
  6166. if (get_order(size) < MAX_ORDER) {
  6167. table = alloc_pages_exact(size, GFP_ATOMIC);
  6168. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6169. }
  6170. }
  6171. } while (!table && size > PAGE_SIZE && --log2qty);
  6172. if (!table)
  6173. panic("Failed to allocate %s hash table\n", tablename);
  6174. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6175. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6176. if (_hash_shift)
  6177. *_hash_shift = log2qty;
  6178. if (_hash_mask)
  6179. *_hash_mask = (1 << log2qty) - 1;
  6180. return table;
  6181. }
  6182. /*
  6183. * This function checks whether pageblock includes unmovable pages or not.
  6184. * If @count is not zero, it is okay to include less @count unmovable pages
  6185. *
  6186. * PageLRU check without isolation or lru_lock could race so that
  6187. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6188. * expect this function should be exact.
  6189. */
  6190. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6191. bool skip_hwpoisoned_pages)
  6192. {
  6193. unsigned long pfn, iter, found;
  6194. int mt;
  6195. /*
  6196. * For avoiding noise data, lru_add_drain_all() should be called
  6197. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6198. */
  6199. if (zone_idx(zone) == ZONE_MOVABLE)
  6200. return false;
  6201. mt = get_pageblock_migratetype(page);
  6202. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6203. return false;
  6204. pfn = page_to_pfn(page);
  6205. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6206. unsigned long check = pfn + iter;
  6207. if (!pfn_valid_within(check))
  6208. continue;
  6209. page = pfn_to_page(check);
  6210. /*
  6211. * Hugepages are not in LRU lists, but they're movable.
  6212. * We need not scan over tail pages bacause we don't
  6213. * handle each tail page individually in migration.
  6214. */
  6215. if (PageHuge(page)) {
  6216. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6217. continue;
  6218. }
  6219. /*
  6220. * We can't use page_count without pin a page
  6221. * because another CPU can free compound page.
  6222. * This check already skips compound tails of THP
  6223. * because their page->_refcount is zero at all time.
  6224. */
  6225. if (!page_ref_count(page)) {
  6226. if (PageBuddy(page))
  6227. iter += (1 << page_order(page)) - 1;
  6228. continue;
  6229. }
  6230. /*
  6231. * The HWPoisoned page may be not in buddy system, and
  6232. * page_count() is not 0.
  6233. */
  6234. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6235. continue;
  6236. if (!PageLRU(page))
  6237. found++;
  6238. /*
  6239. * If there are RECLAIMABLE pages, we need to check
  6240. * it. But now, memory offline itself doesn't call
  6241. * shrink_node_slabs() and it still to be fixed.
  6242. */
  6243. /*
  6244. * If the page is not RAM, page_count()should be 0.
  6245. * we don't need more check. This is an _used_ not-movable page.
  6246. *
  6247. * The problematic thing here is PG_reserved pages. PG_reserved
  6248. * is set to both of a memory hole page and a _used_ kernel
  6249. * page at boot.
  6250. */
  6251. if (found > count)
  6252. return true;
  6253. }
  6254. return false;
  6255. }
  6256. bool is_pageblock_removable_nolock(struct page *page)
  6257. {
  6258. struct zone *zone;
  6259. unsigned long pfn;
  6260. /*
  6261. * We have to be careful here because we are iterating over memory
  6262. * sections which are not zone aware so we might end up outside of
  6263. * the zone but still within the section.
  6264. * We have to take care about the node as well. If the node is offline
  6265. * its NODE_DATA will be NULL - see page_zone.
  6266. */
  6267. if (!node_online(page_to_nid(page)))
  6268. return false;
  6269. zone = page_zone(page);
  6270. pfn = page_to_pfn(page);
  6271. if (!zone_spans_pfn(zone, pfn))
  6272. return false;
  6273. return !has_unmovable_pages(zone, page, 0, true);
  6274. }
  6275. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6276. static unsigned long pfn_max_align_down(unsigned long pfn)
  6277. {
  6278. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6279. pageblock_nr_pages) - 1);
  6280. }
  6281. static unsigned long pfn_max_align_up(unsigned long pfn)
  6282. {
  6283. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6284. pageblock_nr_pages));
  6285. }
  6286. /* [start, end) must belong to a single zone. */
  6287. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6288. unsigned long start, unsigned long end)
  6289. {
  6290. /* This function is based on compact_zone() from compaction.c. */
  6291. unsigned long nr_reclaimed;
  6292. unsigned long pfn = start;
  6293. unsigned int tries = 0;
  6294. int ret = 0;
  6295. migrate_prep();
  6296. while (pfn < end || !list_empty(&cc->migratepages)) {
  6297. if (fatal_signal_pending(current)) {
  6298. ret = -EINTR;
  6299. break;
  6300. }
  6301. if (list_empty(&cc->migratepages)) {
  6302. cc->nr_migratepages = 0;
  6303. pfn = isolate_migratepages_range(cc, pfn, end);
  6304. if (!pfn) {
  6305. ret = -EINTR;
  6306. break;
  6307. }
  6308. tries = 0;
  6309. } else if (++tries == 5) {
  6310. ret = ret < 0 ? ret : -EBUSY;
  6311. break;
  6312. }
  6313. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6314. &cc->migratepages);
  6315. cc->nr_migratepages -= nr_reclaimed;
  6316. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6317. NULL, 0, cc->mode, MR_CMA);
  6318. }
  6319. if (ret < 0) {
  6320. putback_movable_pages(&cc->migratepages);
  6321. return ret;
  6322. }
  6323. return 0;
  6324. }
  6325. /**
  6326. * alloc_contig_range() -- tries to allocate given range of pages
  6327. * @start: start PFN to allocate
  6328. * @end: one-past-the-last PFN to allocate
  6329. * @migratetype: migratetype of the underlaying pageblocks (either
  6330. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6331. * in range must have the same migratetype and it must
  6332. * be either of the two.
  6333. *
  6334. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6335. * aligned, however it's the caller's responsibility to guarantee that
  6336. * we are the only thread that changes migrate type of pageblocks the
  6337. * pages fall in.
  6338. *
  6339. * The PFN range must belong to a single zone.
  6340. *
  6341. * Returns zero on success or negative error code. On success all
  6342. * pages which PFN is in [start, end) are allocated for the caller and
  6343. * need to be freed with free_contig_range().
  6344. */
  6345. int alloc_contig_range(unsigned long start, unsigned long end,
  6346. unsigned migratetype)
  6347. {
  6348. unsigned long outer_start, outer_end;
  6349. unsigned int order;
  6350. int ret = 0;
  6351. struct compact_control cc = {
  6352. .nr_migratepages = 0,
  6353. .order = -1,
  6354. .zone = page_zone(pfn_to_page(start)),
  6355. .mode = MIGRATE_SYNC,
  6356. .ignore_skip_hint = true,
  6357. };
  6358. INIT_LIST_HEAD(&cc.migratepages);
  6359. /*
  6360. * What we do here is we mark all pageblocks in range as
  6361. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6362. * have different sizes, and due to the way page allocator
  6363. * work, we align the range to biggest of the two pages so
  6364. * that page allocator won't try to merge buddies from
  6365. * different pageblocks and change MIGRATE_ISOLATE to some
  6366. * other migration type.
  6367. *
  6368. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6369. * migrate the pages from an unaligned range (ie. pages that
  6370. * we are interested in). This will put all the pages in
  6371. * range back to page allocator as MIGRATE_ISOLATE.
  6372. *
  6373. * When this is done, we take the pages in range from page
  6374. * allocator removing them from the buddy system. This way
  6375. * page allocator will never consider using them.
  6376. *
  6377. * This lets us mark the pageblocks back as
  6378. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6379. * aligned range but not in the unaligned, original range are
  6380. * put back to page allocator so that buddy can use them.
  6381. */
  6382. ret = start_isolate_page_range(pfn_max_align_down(start),
  6383. pfn_max_align_up(end), migratetype,
  6384. false);
  6385. if (ret)
  6386. return ret;
  6387. /*
  6388. * In case of -EBUSY, we'd like to know which page causes problem.
  6389. * So, just fall through. We will check it in test_pages_isolated().
  6390. */
  6391. ret = __alloc_contig_migrate_range(&cc, start, end);
  6392. if (ret && ret != -EBUSY)
  6393. goto done;
  6394. /*
  6395. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6396. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6397. * more, all pages in [start, end) are free in page allocator.
  6398. * What we are going to do is to allocate all pages from
  6399. * [start, end) (that is remove them from page allocator).
  6400. *
  6401. * The only problem is that pages at the beginning and at the
  6402. * end of interesting range may be not aligned with pages that
  6403. * page allocator holds, ie. they can be part of higher order
  6404. * pages. Because of this, we reserve the bigger range and
  6405. * once this is done free the pages we are not interested in.
  6406. *
  6407. * We don't have to hold zone->lock here because the pages are
  6408. * isolated thus they won't get removed from buddy.
  6409. */
  6410. lru_add_drain_all();
  6411. drain_all_pages(cc.zone);
  6412. order = 0;
  6413. outer_start = start;
  6414. while (!PageBuddy(pfn_to_page(outer_start))) {
  6415. if (++order >= MAX_ORDER) {
  6416. outer_start = start;
  6417. break;
  6418. }
  6419. outer_start &= ~0UL << order;
  6420. }
  6421. if (outer_start != start) {
  6422. order = page_order(pfn_to_page(outer_start));
  6423. /*
  6424. * outer_start page could be small order buddy page and
  6425. * it doesn't include start page. Adjust outer_start
  6426. * in this case to report failed page properly
  6427. * on tracepoint in test_pages_isolated()
  6428. */
  6429. if (outer_start + (1UL << order) <= start)
  6430. outer_start = start;
  6431. }
  6432. /* Make sure the range is really isolated. */
  6433. if (test_pages_isolated(outer_start, end, false)) {
  6434. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6435. __func__, outer_start, end);
  6436. ret = -EBUSY;
  6437. goto done;
  6438. }
  6439. /* Grab isolated pages from freelists. */
  6440. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6441. if (!outer_end) {
  6442. ret = -EBUSY;
  6443. goto done;
  6444. }
  6445. /* Free head and tail (if any) */
  6446. if (start != outer_start)
  6447. free_contig_range(outer_start, start - outer_start);
  6448. if (end != outer_end)
  6449. free_contig_range(end, outer_end - end);
  6450. done:
  6451. undo_isolate_page_range(pfn_max_align_down(start),
  6452. pfn_max_align_up(end), migratetype);
  6453. return ret;
  6454. }
  6455. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6456. {
  6457. unsigned int count = 0;
  6458. for (; nr_pages--; pfn++) {
  6459. struct page *page = pfn_to_page(pfn);
  6460. count += page_count(page) != 1;
  6461. __free_page(page);
  6462. }
  6463. WARN(count != 0, "%d pages are still in use!\n", count);
  6464. }
  6465. #endif
  6466. #ifdef CONFIG_MEMORY_HOTPLUG
  6467. /*
  6468. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6469. * page high values need to be recalulated.
  6470. */
  6471. void __meminit zone_pcp_update(struct zone *zone)
  6472. {
  6473. unsigned cpu;
  6474. mutex_lock(&pcp_batch_high_lock);
  6475. for_each_possible_cpu(cpu)
  6476. pageset_set_high_and_batch(zone,
  6477. per_cpu_ptr(zone->pageset, cpu));
  6478. mutex_unlock(&pcp_batch_high_lock);
  6479. }
  6480. #endif
  6481. void zone_pcp_reset(struct zone *zone)
  6482. {
  6483. unsigned long flags;
  6484. int cpu;
  6485. struct per_cpu_pageset *pset;
  6486. /* avoid races with drain_pages() */
  6487. local_irq_save(flags);
  6488. if (zone->pageset != &boot_pageset) {
  6489. for_each_online_cpu(cpu) {
  6490. pset = per_cpu_ptr(zone->pageset, cpu);
  6491. drain_zonestat(zone, pset);
  6492. }
  6493. free_percpu(zone->pageset);
  6494. zone->pageset = &boot_pageset;
  6495. }
  6496. local_irq_restore(flags);
  6497. }
  6498. #ifdef CONFIG_MEMORY_HOTREMOVE
  6499. /*
  6500. * All pages in the range must be in a single zone and isolated
  6501. * before calling this.
  6502. */
  6503. void
  6504. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6505. {
  6506. struct page *page;
  6507. struct zone *zone;
  6508. unsigned int order, i;
  6509. unsigned long pfn;
  6510. unsigned long flags;
  6511. /* find the first valid pfn */
  6512. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6513. if (pfn_valid(pfn))
  6514. break;
  6515. if (pfn == end_pfn)
  6516. return;
  6517. zone = page_zone(pfn_to_page(pfn));
  6518. spin_lock_irqsave(&zone->lock, flags);
  6519. pfn = start_pfn;
  6520. while (pfn < end_pfn) {
  6521. if (!pfn_valid(pfn)) {
  6522. pfn++;
  6523. continue;
  6524. }
  6525. page = pfn_to_page(pfn);
  6526. /*
  6527. * The HWPoisoned page may be not in buddy system, and
  6528. * page_count() is not 0.
  6529. */
  6530. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6531. pfn++;
  6532. SetPageReserved(page);
  6533. continue;
  6534. }
  6535. BUG_ON(page_count(page));
  6536. BUG_ON(!PageBuddy(page));
  6537. order = page_order(page);
  6538. #ifdef CONFIG_DEBUG_VM
  6539. pr_info("remove from free list %lx %d %lx\n",
  6540. pfn, 1 << order, end_pfn);
  6541. #endif
  6542. list_del(&page->lru);
  6543. rmv_page_order(page);
  6544. zone->free_area[order].nr_free--;
  6545. for (i = 0; i < (1 << order); i++)
  6546. SetPageReserved((page+i));
  6547. pfn += (1 << order);
  6548. }
  6549. spin_unlock_irqrestore(&zone->lock, flags);
  6550. }
  6551. #endif
  6552. bool is_free_buddy_page(struct page *page)
  6553. {
  6554. struct zone *zone = page_zone(page);
  6555. unsigned long pfn = page_to_pfn(page);
  6556. unsigned long flags;
  6557. unsigned int order;
  6558. spin_lock_irqsave(&zone->lock, flags);
  6559. for (order = 0; order < MAX_ORDER; order++) {
  6560. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6561. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6562. break;
  6563. }
  6564. spin_unlock_irqrestore(&zone->lock, flags);
  6565. return order < MAX_ORDER;
  6566. }