mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. /*
  2. * kernel/locking/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/locking/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. #include "mcs_spinlock.h"
  29. /*
  30. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  31. * which forces all calls into the slowpath:
  32. */
  33. #ifdef CONFIG_DEBUG_MUTEXES
  34. # include "mutex-debug.h"
  35. # include <asm-generic/mutex-null.h>
  36. /*
  37. * Must be 0 for the debug case so we do not do the unlock outside of the
  38. * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  39. * case.
  40. */
  41. # undef __mutex_slowpath_needs_to_unlock
  42. # define __mutex_slowpath_needs_to_unlock() 0
  43. #else
  44. # include "mutex.h"
  45. # include <asm/mutex.h>
  46. #endif
  47. void
  48. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  49. {
  50. atomic_set(&lock->count, 1);
  51. spin_lock_init(&lock->wait_lock);
  52. INIT_LIST_HEAD(&lock->wait_list);
  53. mutex_clear_owner(lock);
  54. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  55. osq_lock_init(&lock->osq);
  56. #endif
  57. debug_mutex_init(lock, name, key);
  58. }
  59. EXPORT_SYMBOL(__mutex_init);
  60. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  61. /*
  62. * We split the mutex lock/unlock logic into separate fastpath and
  63. * slowpath functions, to reduce the register pressure on the fastpath.
  64. * We also put the fastpath first in the kernel image, to make sure the
  65. * branch is predicted by the CPU as default-untaken.
  66. */
  67. __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  68. /**
  69. * mutex_lock - acquire the mutex
  70. * @lock: the mutex to be acquired
  71. *
  72. * Lock the mutex exclusively for this task. If the mutex is not
  73. * available right now, it will sleep until it can get it.
  74. *
  75. * The mutex must later on be released by the same task that
  76. * acquired it. Recursive locking is not allowed. The task
  77. * may not exit without first unlocking the mutex. Also, kernel
  78. * memory where the mutex resides mutex must not be freed with
  79. * the mutex still locked. The mutex must first be initialized
  80. * (or statically defined) before it can be locked. memset()-ing
  81. * the mutex to 0 is not allowed.
  82. *
  83. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  84. * checks that will enforce the restrictions and will also do
  85. * deadlock debugging. )
  86. *
  87. * This function is similar to (but not equivalent to) down().
  88. */
  89. void __sched mutex_lock(struct mutex *lock)
  90. {
  91. might_sleep();
  92. /*
  93. * The locking fastpath is the 1->0 transition from
  94. * 'unlocked' into 'locked' state.
  95. */
  96. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  97. mutex_set_owner(lock);
  98. }
  99. EXPORT_SYMBOL(mutex_lock);
  100. #endif
  101. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  102. struct ww_acquire_ctx *ww_ctx)
  103. {
  104. #ifdef CONFIG_DEBUG_MUTEXES
  105. /*
  106. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  107. * but released with a normal mutex_unlock in this call.
  108. *
  109. * This should never happen, always use ww_mutex_unlock.
  110. */
  111. DEBUG_LOCKS_WARN_ON(ww->ctx);
  112. /*
  113. * Not quite done after calling ww_acquire_done() ?
  114. */
  115. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  116. if (ww_ctx->contending_lock) {
  117. /*
  118. * After -EDEADLK you tried to
  119. * acquire a different ww_mutex? Bad!
  120. */
  121. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  122. /*
  123. * You called ww_mutex_lock after receiving -EDEADLK,
  124. * but 'forgot' to unlock everything else first?
  125. */
  126. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  127. ww_ctx->contending_lock = NULL;
  128. }
  129. /*
  130. * Naughty, using a different class will lead to undefined behavior!
  131. */
  132. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  133. #endif
  134. ww_ctx->acquired++;
  135. }
  136. /*
  137. * after acquiring lock with fastpath or when we lost out in contested
  138. * slowpath, set ctx and wake up any waiters so they can recheck.
  139. *
  140. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  141. * as the fastpath and opportunistic spinning are disabled in that case.
  142. */
  143. static __always_inline void
  144. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  145. struct ww_acquire_ctx *ctx)
  146. {
  147. unsigned long flags;
  148. struct mutex_waiter *cur;
  149. ww_mutex_lock_acquired(lock, ctx);
  150. lock->ctx = ctx;
  151. /*
  152. * The lock->ctx update should be visible on all cores before
  153. * the atomic read is done, otherwise contended waiters might be
  154. * missed. The contended waiters will either see ww_ctx == NULL
  155. * and keep spinning, or it will acquire wait_lock, add itself
  156. * to waiter list and sleep.
  157. */
  158. smp_mb(); /* ^^^ */
  159. /*
  160. * Check if lock is contended, if not there is nobody to wake up
  161. */
  162. if (likely(atomic_read(&lock->base.count) == 0))
  163. return;
  164. /*
  165. * Uh oh, we raced in fastpath, wake up everyone in this case,
  166. * so they can see the new lock->ctx.
  167. */
  168. spin_lock_mutex(&lock->base.wait_lock, flags);
  169. list_for_each_entry(cur, &lock->base.wait_list, list) {
  170. debug_mutex_wake_waiter(&lock->base, cur);
  171. wake_up_process(cur->task);
  172. }
  173. spin_unlock_mutex(&lock->base.wait_lock, flags);
  174. }
  175. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  176. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  177. {
  178. if (lock->owner != owner)
  179. return false;
  180. /*
  181. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  182. * lock->owner still matches owner, if that fails, owner might
  183. * point to free()d memory, if it still matches, the rcu_read_lock()
  184. * ensures the memory stays valid.
  185. */
  186. barrier();
  187. return owner->on_cpu;
  188. }
  189. /*
  190. * Look out! "owner" is an entirely speculative pointer
  191. * access and not reliable.
  192. */
  193. static noinline
  194. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  195. {
  196. rcu_read_lock();
  197. while (owner_running(lock, owner)) {
  198. if (need_resched())
  199. break;
  200. cpu_relax_lowlatency();
  201. }
  202. rcu_read_unlock();
  203. /*
  204. * We break out the loop above on need_resched() and when the
  205. * owner changed, which is a sign for heavy contention. Return
  206. * success only when lock->owner is NULL.
  207. */
  208. return lock->owner == NULL;
  209. }
  210. /*
  211. * Initial check for entering the mutex spinning loop
  212. */
  213. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  214. {
  215. struct task_struct *owner;
  216. int retval = 1;
  217. if (need_resched())
  218. return 0;
  219. rcu_read_lock();
  220. owner = ACCESS_ONCE(lock->owner);
  221. if (owner)
  222. retval = owner->on_cpu;
  223. rcu_read_unlock();
  224. /*
  225. * if lock->owner is not set, the mutex owner may have just acquired
  226. * it and not set the owner yet or the mutex has been released.
  227. */
  228. return retval;
  229. }
  230. /*
  231. * Atomically try to take the lock when it is available
  232. */
  233. static inline bool mutex_try_to_acquire(struct mutex *lock)
  234. {
  235. return !mutex_is_locked(lock) &&
  236. (atomic_cmpxchg(&lock->count, 1, 0) == 1);
  237. }
  238. /*
  239. * Optimistic spinning.
  240. *
  241. * We try to spin for acquisition when we find that the lock owner
  242. * is currently running on a (different) CPU and while we don't
  243. * need to reschedule. The rationale is that if the lock owner is
  244. * running, it is likely to release the lock soon.
  245. *
  246. * Since this needs the lock owner, and this mutex implementation
  247. * doesn't track the owner atomically in the lock field, we need to
  248. * track it non-atomically.
  249. *
  250. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  251. * to serialize everything.
  252. *
  253. * The mutex spinners are queued up using MCS lock so that only one
  254. * spinner can compete for the mutex. However, if mutex spinning isn't
  255. * going to happen, there is no point in going through the lock/unlock
  256. * overhead.
  257. *
  258. * Returns true when the lock was taken, otherwise false, indicating
  259. * that we need to jump to the slowpath and sleep.
  260. */
  261. static bool mutex_optimistic_spin(struct mutex *lock,
  262. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  263. {
  264. struct task_struct *task = current;
  265. if (!mutex_can_spin_on_owner(lock))
  266. goto done;
  267. /*
  268. * In order to avoid a stampede of mutex spinners trying to
  269. * acquire the mutex all at once, the spinners need to take a
  270. * MCS (queued) lock first before spinning on the owner field.
  271. */
  272. if (!osq_lock(&lock->osq))
  273. goto done;
  274. while (true) {
  275. struct task_struct *owner;
  276. if (use_ww_ctx && ww_ctx->acquired > 0) {
  277. struct ww_mutex *ww;
  278. ww = container_of(lock, struct ww_mutex, base);
  279. /*
  280. * If ww->ctx is set the contents are undefined, only
  281. * by acquiring wait_lock there is a guarantee that
  282. * they are not invalid when reading.
  283. *
  284. * As such, when deadlock detection needs to be
  285. * performed the optimistic spinning cannot be done.
  286. */
  287. if (ACCESS_ONCE(ww->ctx))
  288. break;
  289. }
  290. /*
  291. * If there's an owner, wait for it to either
  292. * release the lock or go to sleep.
  293. */
  294. owner = ACCESS_ONCE(lock->owner);
  295. if (owner && !mutex_spin_on_owner(lock, owner))
  296. break;
  297. /* Try to acquire the mutex if it is unlocked. */
  298. if (mutex_try_to_acquire(lock)) {
  299. lock_acquired(&lock->dep_map, ip);
  300. if (use_ww_ctx) {
  301. struct ww_mutex *ww;
  302. ww = container_of(lock, struct ww_mutex, base);
  303. ww_mutex_set_context_fastpath(ww, ww_ctx);
  304. }
  305. mutex_set_owner(lock);
  306. osq_unlock(&lock->osq);
  307. return true;
  308. }
  309. /*
  310. * When there's no owner, we might have preempted between the
  311. * owner acquiring the lock and setting the owner field. If
  312. * we're an RT task that will live-lock because we won't let
  313. * the owner complete.
  314. */
  315. if (!owner && (need_resched() || rt_task(task)))
  316. break;
  317. /*
  318. * The cpu_relax() call is a compiler barrier which forces
  319. * everything in this loop to be re-loaded. We don't need
  320. * memory barriers as we'll eventually observe the right
  321. * values at the cost of a few extra spins.
  322. */
  323. cpu_relax_lowlatency();
  324. }
  325. osq_unlock(&lock->osq);
  326. done:
  327. /*
  328. * If we fell out of the spin path because of need_resched(),
  329. * reschedule now, before we try-lock the mutex. This avoids getting
  330. * scheduled out right after we obtained the mutex.
  331. */
  332. if (need_resched()) {
  333. /*
  334. * We _should_ have TASK_RUNNING here, but just in case
  335. * we do not, make it so, otherwise we might get stuck.
  336. */
  337. __set_current_state(TASK_RUNNING);
  338. schedule_preempt_disabled();
  339. }
  340. return false;
  341. }
  342. #else
  343. static bool mutex_optimistic_spin(struct mutex *lock,
  344. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  345. {
  346. return false;
  347. }
  348. #endif
  349. __visible __used noinline
  350. void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  351. /**
  352. * mutex_unlock - release the mutex
  353. * @lock: the mutex to be released
  354. *
  355. * Unlock a mutex that has been locked by this task previously.
  356. *
  357. * This function must not be used in interrupt context. Unlocking
  358. * of a not locked mutex is not allowed.
  359. *
  360. * This function is similar to (but not equivalent to) up().
  361. */
  362. void __sched mutex_unlock(struct mutex *lock)
  363. {
  364. /*
  365. * The unlocking fastpath is the 0->1 transition from 'locked'
  366. * into 'unlocked' state:
  367. */
  368. #ifndef CONFIG_DEBUG_MUTEXES
  369. /*
  370. * When debugging is enabled we must not clear the owner before time,
  371. * the slow path will always be taken, and that clears the owner field
  372. * after verifying that it was indeed current.
  373. */
  374. mutex_clear_owner(lock);
  375. #endif
  376. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  377. }
  378. EXPORT_SYMBOL(mutex_unlock);
  379. /**
  380. * ww_mutex_unlock - release the w/w mutex
  381. * @lock: the mutex to be released
  382. *
  383. * Unlock a mutex that has been locked by this task previously with any of the
  384. * ww_mutex_lock* functions (with or without an acquire context). It is
  385. * forbidden to release the locks after releasing the acquire context.
  386. *
  387. * This function must not be used in interrupt context. Unlocking
  388. * of a unlocked mutex is not allowed.
  389. */
  390. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  391. {
  392. /*
  393. * The unlocking fastpath is the 0->1 transition from 'locked'
  394. * into 'unlocked' state:
  395. */
  396. if (lock->ctx) {
  397. #ifdef CONFIG_DEBUG_MUTEXES
  398. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  399. #endif
  400. if (lock->ctx->acquired > 0)
  401. lock->ctx->acquired--;
  402. lock->ctx = NULL;
  403. }
  404. #ifndef CONFIG_DEBUG_MUTEXES
  405. /*
  406. * When debugging is enabled we must not clear the owner before time,
  407. * the slow path will always be taken, and that clears the owner field
  408. * after verifying that it was indeed current.
  409. */
  410. mutex_clear_owner(&lock->base);
  411. #endif
  412. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  413. }
  414. EXPORT_SYMBOL(ww_mutex_unlock);
  415. static inline int __sched
  416. __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  417. {
  418. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  419. struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
  420. if (!hold_ctx)
  421. return 0;
  422. if (unlikely(ctx == hold_ctx))
  423. return -EALREADY;
  424. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  425. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  426. #ifdef CONFIG_DEBUG_MUTEXES
  427. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  428. ctx->contending_lock = ww;
  429. #endif
  430. return -EDEADLK;
  431. }
  432. return 0;
  433. }
  434. /*
  435. * Lock a mutex (possibly interruptible), slowpath:
  436. */
  437. static __always_inline int __sched
  438. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  439. struct lockdep_map *nest_lock, unsigned long ip,
  440. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  441. {
  442. struct task_struct *task = current;
  443. struct mutex_waiter waiter;
  444. unsigned long flags;
  445. int ret;
  446. preempt_disable();
  447. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  448. if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
  449. /* got the lock, yay! */
  450. preempt_enable();
  451. return 0;
  452. }
  453. spin_lock_mutex(&lock->wait_lock, flags);
  454. /*
  455. * Once more, try to acquire the lock. Only try-lock the mutex if
  456. * it is unlocked to reduce unnecessary xchg() operations.
  457. */
  458. if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
  459. goto skip_wait;
  460. debug_mutex_lock_common(lock, &waiter);
  461. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  462. /* add waiting tasks to the end of the waitqueue (FIFO): */
  463. list_add_tail(&waiter.list, &lock->wait_list);
  464. waiter.task = task;
  465. lock_contended(&lock->dep_map, ip);
  466. for (;;) {
  467. /*
  468. * Lets try to take the lock again - this is needed even if
  469. * we get here for the first time (shortly after failing to
  470. * acquire the lock), to make sure that we get a wakeup once
  471. * it's unlocked. Later on, if we sleep, this is the
  472. * operation that gives us the lock. We xchg it to -1, so
  473. * that when we release the lock, we properly wake up the
  474. * other waiters. We only attempt the xchg if the count is
  475. * non-negative in order to avoid unnecessary xchg operations:
  476. */
  477. if (atomic_read(&lock->count) >= 0 &&
  478. (atomic_xchg(&lock->count, -1) == 1))
  479. break;
  480. /*
  481. * got a signal? (This code gets eliminated in the
  482. * TASK_UNINTERRUPTIBLE case.)
  483. */
  484. if (unlikely(signal_pending_state(state, task))) {
  485. ret = -EINTR;
  486. goto err;
  487. }
  488. if (use_ww_ctx && ww_ctx->acquired > 0) {
  489. ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
  490. if (ret)
  491. goto err;
  492. }
  493. __set_task_state(task, state);
  494. /* didn't get the lock, go to sleep: */
  495. spin_unlock_mutex(&lock->wait_lock, flags);
  496. schedule_preempt_disabled();
  497. spin_lock_mutex(&lock->wait_lock, flags);
  498. }
  499. mutex_remove_waiter(lock, &waiter, current_thread_info());
  500. /* set it to 0 if there are no waiters left: */
  501. if (likely(list_empty(&lock->wait_list)))
  502. atomic_set(&lock->count, 0);
  503. debug_mutex_free_waiter(&waiter);
  504. skip_wait:
  505. /* got the lock - cleanup and rejoice! */
  506. lock_acquired(&lock->dep_map, ip);
  507. mutex_set_owner(lock);
  508. if (use_ww_ctx) {
  509. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  510. struct mutex_waiter *cur;
  511. /*
  512. * This branch gets optimized out for the common case,
  513. * and is only important for ww_mutex_lock.
  514. */
  515. ww_mutex_lock_acquired(ww, ww_ctx);
  516. ww->ctx = ww_ctx;
  517. /*
  518. * Give any possible sleeping processes the chance to wake up,
  519. * so they can recheck if they have to back off.
  520. */
  521. list_for_each_entry(cur, &lock->wait_list, list) {
  522. debug_mutex_wake_waiter(lock, cur);
  523. wake_up_process(cur->task);
  524. }
  525. }
  526. spin_unlock_mutex(&lock->wait_lock, flags);
  527. preempt_enable();
  528. return 0;
  529. err:
  530. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  531. spin_unlock_mutex(&lock->wait_lock, flags);
  532. debug_mutex_free_waiter(&waiter);
  533. mutex_release(&lock->dep_map, 1, ip);
  534. preempt_enable();
  535. return ret;
  536. }
  537. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  538. void __sched
  539. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  540. {
  541. might_sleep();
  542. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  543. subclass, NULL, _RET_IP_, NULL, 0);
  544. }
  545. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  546. void __sched
  547. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  548. {
  549. might_sleep();
  550. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  551. 0, nest, _RET_IP_, NULL, 0);
  552. }
  553. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  554. int __sched
  555. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  556. {
  557. might_sleep();
  558. return __mutex_lock_common(lock, TASK_KILLABLE,
  559. subclass, NULL, _RET_IP_, NULL, 0);
  560. }
  561. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  562. int __sched
  563. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  564. {
  565. might_sleep();
  566. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  567. subclass, NULL, _RET_IP_, NULL, 0);
  568. }
  569. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  570. static inline int
  571. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  572. {
  573. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  574. unsigned tmp;
  575. if (ctx->deadlock_inject_countdown-- == 0) {
  576. tmp = ctx->deadlock_inject_interval;
  577. if (tmp > UINT_MAX/4)
  578. tmp = UINT_MAX;
  579. else
  580. tmp = tmp*2 + tmp + tmp/2;
  581. ctx->deadlock_inject_interval = tmp;
  582. ctx->deadlock_inject_countdown = tmp;
  583. ctx->contending_lock = lock;
  584. ww_mutex_unlock(lock);
  585. return -EDEADLK;
  586. }
  587. #endif
  588. return 0;
  589. }
  590. int __sched
  591. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  592. {
  593. int ret;
  594. might_sleep();
  595. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  596. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  597. if (!ret && ctx->acquired > 1)
  598. return ww_mutex_deadlock_injection(lock, ctx);
  599. return ret;
  600. }
  601. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  602. int __sched
  603. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  604. {
  605. int ret;
  606. might_sleep();
  607. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  608. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  609. if (!ret && ctx->acquired > 1)
  610. return ww_mutex_deadlock_injection(lock, ctx);
  611. return ret;
  612. }
  613. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  614. #endif
  615. /*
  616. * Release the lock, slowpath:
  617. */
  618. static inline void
  619. __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
  620. {
  621. unsigned long flags;
  622. /*
  623. * As a performance measurement, release the lock before doing other
  624. * wakeup related duties to follow. This allows other tasks to acquire
  625. * the lock sooner, while still handling cleanups in past unlock calls.
  626. * This can be done as we do not enforce strict equivalence between the
  627. * mutex counter and wait_list.
  628. *
  629. *
  630. * Some architectures leave the lock unlocked in the fastpath failure
  631. * case, others need to leave it locked. In the later case we have to
  632. * unlock it here - as the lock counter is currently 0 or negative.
  633. */
  634. if (__mutex_slowpath_needs_to_unlock())
  635. atomic_set(&lock->count, 1);
  636. spin_lock_mutex(&lock->wait_lock, flags);
  637. mutex_release(&lock->dep_map, nested, _RET_IP_);
  638. debug_mutex_unlock(lock);
  639. if (!list_empty(&lock->wait_list)) {
  640. /* get the first entry from the wait-list: */
  641. struct mutex_waiter *waiter =
  642. list_entry(lock->wait_list.next,
  643. struct mutex_waiter, list);
  644. debug_mutex_wake_waiter(lock, waiter);
  645. wake_up_process(waiter->task);
  646. }
  647. spin_unlock_mutex(&lock->wait_lock, flags);
  648. }
  649. /*
  650. * Release the lock, slowpath:
  651. */
  652. __visible void
  653. __mutex_unlock_slowpath(atomic_t *lock_count)
  654. {
  655. struct mutex *lock = container_of(lock_count, struct mutex, count);
  656. __mutex_unlock_common_slowpath(lock, 1);
  657. }
  658. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  659. /*
  660. * Here come the less common (and hence less performance-critical) APIs:
  661. * mutex_lock_interruptible() and mutex_trylock().
  662. */
  663. static noinline int __sched
  664. __mutex_lock_killable_slowpath(struct mutex *lock);
  665. static noinline int __sched
  666. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  667. /**
  668. * mutex_lock_interruptible - acquire the mutex, interruptible
  669. * @lock: the mutex to be acquired
  670. *
  671. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  672. * been acquired or sleep until the mutex becomes available. If a
  673. * signal arrives while waiting for the lock then this function
  674. * returns -EINTR.
  675. *
  676. * This function is similar to (but not equivalent to) down_interruptible().
  677. */
  678. int __sched mutex_lock_interruptible(struct mutex *lock)
  679. {
  680. int ret;
  681. might_sleep();
  682. ret = __mutex_fastpath_lock_retval(&lock->count);
  683. if (likely(!ret)) {
  684. mutex_set_owner(lock);
  685. return 0;
  686. } else
  687. return __mutex_lock_interruptible_slowpath(lock);
  688. }
  689. EXPORT_SYMBOL(mutex_lock_interruptible);
  690. int __sched mutex_lock_killable(struct mutex *lock)
  691. {
  692. int ret;
  693. might_sleep();
  694. ret = __mutex_fastpath_lock_retval(&lock->count);
  695. if (likely(!ret)) {
  696. mutex_set_owner(lock);
  697. return 0;
  698. } else
  699. return __mutex_lock_killable_slowpath(lock);
  700. }
  701. EXPORT_SYMBOL(mutex_lock_killable);
  702. __visible void __sched
  703. __mutex_lock_slowpath(atomic_t *lock_count)
  704. {
  705. struct mutex *lock = container_of(lock_count, struct mutex, count);
  706. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  707. NULL, _RET_IP_, NULL, 0);
  708. }
  709. static noinline int __sched
  710. __mutex_lock_killable_slowpath(struct mutex *lock)
  711. {
  712. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  713. NULL, _RET_IP_, NULL, 0);
  714. }
  715. static noinline int __sched
  716. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  717. {
  718. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  719. NULL, _RET_IP_, NULL, 0);
  720. }
  721. static noinline int __sched
  722. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  723. {
  724. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  725. NULL, _RET_IP_, ctx, 1);
  726. }
  727. static noinline int __sched
  728. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  729. struct ww_acquire_ctx *ctx)
  730. {
  731. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  732. NULL, _RET_IP_, ctx, 1);
  733. }
  734. #endif
  735. /*
  736. * Spinlock based trylock, we take the spinlock and check whether we
  737. * can get the lock:
  738. */
  739. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  740. {
  741. struct mutex *lock = container_of(lock_count, struct mutex, count);
  742. unsigned long flags;
  743. int prev;
  744. /* No need to trylock if the mutex is locked. */
  745. if (mutex_is_locked(lock))
  746. return 0;
  747. spin_lock_mutex(&lock->wait_lock, flags);
  748. prev = atomic_xchg(&lock->count, -1);
  749. if (likely(prev == 1)) {
  750. mutex_set_owner(lock);
  751. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  752. }
  753. /* Set it back to 0 if there are no waiters: */
  754. if (likely(list_empty(&lock->wait_list)))
  755. atomic_set(&lock->count, 0);
  756. spin_unlock_mutex(&lock->wait_lock, flags);
  757. return prev == 1;
  758. }
  759. /**
  760. * mutex_trylock - try to acquire the mutex, without waiting
  761. * @lock: the mutex to be acquired
  762. *
  763. * Try to acquire the mutex atomically. Returns 1 if the mutex
  764. * has been acquired successfully, and 0 on contention.
  765. *
  766. * NOTE: this function follows the spin_trylock() convention, so
  767. * it is negated from the down_trylock() return values! Be careful
  768. * about this when converting semaphore users to mutexes.
  769. *
  770. * This function must not be used in interrupt context. The
  771. * mutex must be released by the same task that acquired it.
  772. */
  773. int __sched mutex_trylock(struct mutex *lock)
  774. {
  775. int ret;
  776. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  777. if (ret)
  778. mutex_set_owner(lock);
  779. return ret;
  780. }
  781. EXPORT_SYMBOL(mutex_trylock);
  782. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  783. int __sched
  784. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  785. {
  786. int ret;
  787. might_sleep();
  788. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  789. if (likely(!ret)) {
  790. ww_mutex_set_context_fastpath(lock, ctx);
  791. mutex_set_owner(&lock->base);
  792. } else
  793. ret = __ww_mutex_lock_slowpath(lock, ctx);
  794. return ret;
  795. }
  796. EXPORT_SYMBOL(__ww_mutex_lock);
  797. int __sched
  798. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  799. {
  800. int ret;
  801. might_sleep();
  802. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  803. if (likely(!ret)) {
  804. ww_mutex_set_context_fastpath(lock, ctx);
  805. mutex_set_owner(&lock->base);
  806. } else
  807. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  808. return ret;
  809. }
  810. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  811. #endif
  812. /**
  813. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  814. * @cnt: the atomic which we are to dec
  815. * @lock: the mutex to return holding if we dec to 0
  816. *
  817. * return true and hold lock if we dec to 0, return false otherwise
  818. */
  819. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  820. {
  821. /* dec if we can't possibly hit 0 */
  822. if (atomic_add_unless(cnt, -1, 1))
  823. return 0;
  824. /* we might hit 0, so take the lock */
  825. mutex_lock(lock);
  826. if (!atomic_dec_and_test(cnt)) {
  827. /* when we actually did the dec, we didn't hit 0 */
  828. mutex_unlock(lock);
  829. return 0;
  830. }
  831. /* we hit 0, and we hold the lock */
  832. return 1;
  833. }
  834. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);