intel_ringbuffer.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  329. /*
  330. * TLB invalidate requires a post-sync write.
  331. */
  332. flags |= PIPE_CONTROL_QW_WRITE;
  333. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  334. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  335. /* Workaround: we must issue a pipe_control with CS-stall bit
  336. * set before a pipe_control command that has the state cache
  337. * invalidate bit set. */
  338. gen7_render_ring_cs_stall_wa(ring);
  339. }
  340. ret = intel_ring_begin(ring, 4);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_advance(ring);
  348. if (!invalidate_domains && flush_domains)
  349. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  350. return 0;
  351. }
  352. static int
  353. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  354. u32 flags, u32 scratch_addr)
  355. {
  356. int ret;
  357. ret = intel_ring_begin(ring, 6);
  358. if (ret)
  359. return ret;
  360. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  361. intel_ring_emit(ring, flags);
  362. intel_ring_emit(ring, scratch_addr);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_emit(ring, 0);
  365. intel_ring_emit(ring, 0);
  366. intel_ring_advance(ring);
  367. return 0;
  368. }
  369. static int
  370. gen8_render_ring_flush(struct intel_engine_cs *ring,
  371. u32 invalidate_domains, u32 flush_domains)
  372. {
  373. u32 flags = 0;
  374. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  375. int ret;
  376. flags |= PIPE_CONTROL_CS_STALL;
  377. if (flush_domains) {
  378. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  379. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  380. }
  381. if (invalidate_domains) {
  382. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  383. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  387. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  388. flags |= PIPE_CONTROL_QW_WRITE;
  389. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  390. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  391. ret = gen8_emit_pipe_control(ring,
  392. PIPE_CONTROL_CS_STALL |
  393. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  394. 0);
  395. if (ret)
  396. return ret;
  397. }
  398. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  399. if (ret)
  400. return ret;
  401. if (!invalidate_domains && flush_domains)
  402. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  403. return 0;
  404. }
  405. static void ring_write_tail(struct intel_engine_cs *ring,
  406. u32 value)
  407. {
  408. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  409. I915_WRITE_TAIL(ring, value);
  410. }
  411. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  412. {
  413. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  414. u64 acthd;
  415. if (INTEL_INFO(ring->dev)->gen >= 8)
  416. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  417. RING_ACTHD_UDW(ring->mmio_base));
  418. else if (INTEL_INFO(ring->dev)->gen >= 4)
  419. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  420. else
  421. acthd = I915_READ(ACTHD);
  422. return acthd;
  423. }
  424. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  427. u32 addr;
  428. addr = dev_priv->status_page_dmah->busaddr;
  429. if (INTEL_INFO(ring->dev)->gen >= 4)
  430. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  431. I915_WRITE(HWS_PGA, addr);
  432. }
  433. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  434. {
  435. struct drm_device *dev = ring->dev;
  436. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  437. u32 mmio = 0;
  438. /* The ring status page addresses are no longer next to the rest of
  439. * the ring registers as of gen7.
  440. */
  441. if (IS_GEN7(dev)) {
  442. switch (ring->id) {
  443. case RCS:
  444. mmio = RENDER_HWS_PGA_GEN7;
  445. break;
  446. case BCS:
  447. mmio = BLT_HWS_PGA_GEN7;
  448. break;
  449. /*
  450. * VCS2 actually doesn't exist on Gen7. Only shut up
  451. * gcc switch check warning
  452. */
  453. case VCS2:
  454. case VCS:
  455. mmio = BSD_HWS_PGA_GEN7;
  456. break;
  457. case VECS:
  458. mmio = VEBOX_HWS_PGA_GEN7;
  459. break;
  460. }
  461. } else if (IS_GEN6(ring->dev)) {
  462. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  463. } else {
  464. /* XXX: gen8 returns to sanity */
  465. mmio = RING_HWS_PGA(ring->mmio_base);
  466. }
  467. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  468. POSTING_READ(mmio);
  469. /*
  470. * Flush the TLB for this page
  471. *
  472. * FIXME: These two bits have disappeared on gen8, so a question
  473. * arises: do we still need this and if so how should we go about
  474. * invalidating the TLB?
  475. */
  476. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  477. u32 reg = RING_INSTPM(ring->mmio_base);
  478. /* ring should be idle before issuing a sync flush*/
  479. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  480. I915_WRITE(reg,
  481. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  482. INSTPM_SYNC_FLUSH));
  483. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  484. 1000))
  485. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  486. ring->name);
  487. }
  488. }
  489. static bool stop_ring(struct intel_engine_cs *ring)
  490. {
  491. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  492. if (!IS_GEN2(ring->dev)) {
  493. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  494. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  495. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  496. /* Sometimes we observe that the idle flag is not
  497. * set even though the ring is empty. So double
  498. * check before giving up.
  499. */
  500. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  501. return false;
  502. }
  503. }
  504. I915_WRITE_CTL(ring, 0);
  505. I915_WRITE_HEAD(ring, 0);
  506. ring->write_tail(ring, 0);
  507. if (!IS_GEN2(ring->dev)) {
  508. (void)I915_READ_CTL(ring);
  509. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  510. }
  511. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  512. }
  513. static int init_ring_common(struct intel_engine_cs *ring)
  514. {
  515. struct drm_device *dev = ring->dev;
  516. struct drm_i915_private *dev_priv = dev->dev_private;
  517. struct intel_ringbuffer *ringbuf = ring->buffer;
  518. struct drm_i915_gem_object *obj = ringbuf->obj;
  519. int ret = 0;
  520. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  521. if (!stop_ring(ring)) {
  522. /* G45 ring initialization often fails to reset head to zero */
  523. DRM_DEBUG_KMS("%s head not reset to zero "
  524. "ctl %08x head %08x tail %08x start %08x\n",
  525. ring->name,
  526. I915_READ_CTL(ring),
  527. I915_READ_HEAD(ring),
  528. I915_READ_TAIL(ring),
  529. I915_READ_START(ring));
  530. if (!stop_ring(ring)) {
  531. DRM_ERROR("failed to set %s head to zero "
  532. "ctl %08x head %08x tail %08x start %08x\n",
  533. ring->name,
  534. I915_READ_CTL(ring),
  535. I915_READ_HEAD(ring),
  536. I915_READ_TAIL(ring),
  537. I915_READ_START(ring));
  538. ret = -EIO;
  539. goto out;
  540. }
  541. }
  542. if (I915_NEED_GFX_HWS(dev))
  543. intel_ring_setup_status_page(ring);
  544. else
  545. ring_setup_phys_status_page(ring);
  546. /* Enforce ordering by reading HEAD register back */
  547. I915_READ_HEAD(ring);
  548. /* Initialize the ring. This must happen _after_ we've cleared the ring
  549. * registers with the above sequence (the readback of the HEAD registers
  550. * also enforces ordering), otherwise the hw might lose the new ring
  551. * register values. */
  552. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  553. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  554. if (I915_READ_HEAD(ring))
  555. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  556. ring->name, I915_READ_HEAD(ring));
  557. I915_WRITE_HEAD(ring, 0);
  558. (void)I915_READ_HEAD(ring);
  559. I915_WRITE_CTL(ring,
  560. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  561. | RING_VALID);
  562. /* If the head is still not zero, the ring is dead */
  563. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  564. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  565. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  566. DRM_ERROR("%s initialization failed "
  567. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  568. ring->name,
  569. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  570. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  571. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  572. ret = -EIO;
  573. goto out;
  574. }
  575. ringbuf->last_retired_head = -1;
  576. ringbuf->head = I915_READ_HEAD(ring);
  577. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  578. intel_ring_update_space(ringbuf);
  579. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  580. out:
  581. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  582. return ret;
  583. }
  584. void
  585. intel_fini_pipe_control(struct intel_engine_cs *ring)
  586. {
  587. struct drm_device *dev = ring->dev;
  588. if (ring->scratch.obj == NULL)
  589. return;
  590. if (INTEL_INFO(dev)->gen >= 5) {
  591. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  592. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  593. }
  594. drm_gem_object_unreference(&ring->scratch.obj->base);
  595. ring->scratch.obj = NULL;
  596. }
  597. int
  598. intel_init_pipe_control(struct intel_engine_cs *ring)
  599. {
  600. int ret;
  601. WARN_ON(ring->scratch.obj);
  602. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  603. if (ring->scratch.obj == NULL) {
  604. DRM_ERROR("Failed to allocate seqno page\n");
  605. ret = -ENOMEM;
  606. goto err;
  607. }
  608. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  609. if (ret)
  610. goto err_unref;
  611. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  612. if (ret)
  613. goto err_unref;
  614. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  615. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  616. if (ring->scratch.cpu_page == NULL) {
  617. ret = -ENOMEM;
  618. goto err_unpin;
  619. }
  620. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  621. ring->name, ring->scratch.gtt_offset);
  622. return 0;
  623. err_unpin:
  624. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  625. err_unref:
  626. drm_gem_object_unreference(&ring->scratch.obj->base);
  627. err:
  628. return ret;
  629. }
  630. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  631. struct intel_context *ctx)
  632. {
  633. int ret, i;
  634. struct drm_device *dev = ring->dev;
  635. struct drm_i915_private *dev_priv = dev->dev_private;
  636. struct i915_workarounds *w = &dev_priv->workarounds;
  637. if (WARN_ON_ONCE(w->count == 0))
  638. return 0;
  639. ring->gpu_caches_dirty = true;
  640. ret = intel_ring_flush_all_caches(ring);
  641. if (ret)
  642. return ret;
  643. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  644. if (ret)
  645. return ret;
  646. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  647. for (i = 0; i < w->count; i++) {
  648. intel_ring_emit(ring, w->reg[i].addr);
  649. intel_ring_emit(ring, w->reg[i].value);
  650. }
  651. intel_ring_emit(ring, MI_NOOP);
  652. intel_ring_advance(ring);
  653. ring->gpu_caches_dirty = true;
  654. ret = intel_ring_flush_all_caches(ring);
  655. if (ret)
  656. return ret;
  657. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  658. return 0;
  659. }
  660. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  661. struct intel_context *ctx)
  662. {
  663. int ret;
  664. ret = intel_ring_workarounds_emit(ring, ctx);
  665. if (ret != 0)
  666. return ret;
  667. ret = i915_gem_render_state_init(ring);
  668. if (ret)
  669. DRM_ERROR("init render state: %d\n", ret);
  670. return ret;
  671. }
  672. static int wa_add(struct drm_i915_private *dev_priv,
  673. const u32 addr, const u32 mask, const u32 val)
  674. {
  675. const u32 idx = dev_priv->workarounds.count;
  676. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  677. return -ENOSPC;
  678. dev_priv->workarounds.reg[idx].addr = addr;
  679. dev_priv->workarounds.reg[idx].value = val;
  680. dev_priv->workarounds.reg[idx].mask = mask;
  681. dev_priv->workarounds.count++;
  682. return 0;
  683. }
  684. #define WA_REG(addr, mask, val) { \
  685. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  686. if (r) \
  687. return r; \
  688. }
  689. #define WA_SET_BIT_MASKED(addr, mask) \
  690. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  691. #define WA_CLR_BIT_MASKED(addr, mask) \
  692. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  693. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  694. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  695. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  696. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  697. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  698. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  699. {
  700. struct drm_device *dev = ring->dev;
  701. struct drm_i915_private *dev_priv = dev->dev_private;
  702. /* WaDisablePartialInstShootdown:bdw */
  703. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  704. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  705. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  706. STALL_DOP_GATING_DISABLE);
  707. /* WaDisableDopClockGating:bdw */
  708. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  709. DOP_CLOCK_GATING_DISABLE);
  710. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  711. GEN8_SAMPLER_POWER_BYPASS_DIS);
  712. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  713. * workaround for for a possible hang in the unlikely event a TLB
  714. * invalidation occurs during a PSD flush.
  715. */
  716. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  717. /* WaForceEnableNonCoherent:bdw */
  718. HDC_FORCE_NON_COHERENT |
  719. /* WaForceContextSaveRestoreNonCoherent:bdw */
  720. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  721. /* WaHdcDisableFetchWhenMasked:bdw */
  722. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  723. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  724. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  725. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  726. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  727. * polygons in the same 8x4 pixel/sample area to be processed without
  728. * stalling waiting for the earlier ones to write to Hierarchical Z
  729. * buffer."
  730. *
  731. * This optimization is off by default for Broadwell; turn it on.
  732. */
  733. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  734. /* Wa4x4STCOptimizationDisable:bdw */
  735. WA_SET_BIT_MASKED(CACHE_MODE_1,
  736. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  737. /*
  738. * BSpec recommends 8x4 when MSAA is used,
  739. * however in practice 16x4 seems fastest.
  740. *
  741. * Note that PS/WM thread counts depend on the WIZ hashing
  742. * disable bit, which we don't touch here, but it's good
  743. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  744. */
  745. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  746. GEN6_WIZ_HASHING_MASK,
  747. GEN6_WIZ_HASHING_16x4);
  748. return 0;
  749. }
  750. static int chv_init_workarounds(struct intel_engine_cs *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. struct drm_i915_private *dev_priv = dev->dev_private;
  754. /* WaDisablePartialInstShootdown:chv */
  755. /* WaDisableThreadStallDopClockGating:chv */
  756. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  757. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  758. STALL_DOP_GATING_DISABLE);
  759. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  760. * workaround for a possible hang in the unlikely event a TLB
  761. * invalidation occurs during a PSD flush.
  762. */
  763. /* WaForceEnableNonCoherent:chv */
  764. /* WaHdcDisableFetchWhenMasked:chv */
  765. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  766. HDC_FORCE_NON_COHERENT |
  767. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  768. /* According to the CACHE_MODE_0 default value documentation, some
  769. * CHV platforms disable this optimization by default. Turn it on.
  770. */
  771. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  772. /* Wa4x4STCOptimizationDisable:chv */
  773. WA_SET_BIT_MASKED(CACHE_MODE_1,
  774. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  775. /* Improve HiZ throughput on CHV. */
  776. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  777. /*
  778. * BSpec recommends 8x4 when MSAA is used,
  779. * however in practice 16x4 seems fastest.
  780. *
  781. * Note that PS/WM thread counts depend on the WIZ hashing
  782. * disable bit, which we don't touch here, but it's good
  783. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  784. */
  785. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  786. GEN6_WIZ_HASHING_MASK,
  787. GEN6_WIZ_HASHING_16x4);
  788. return 0;
  789. }
  790. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  791. {
  792. struct drm_device *dev = ring->dev;
  793. struct drm_i915_private *dev_priv = dev->dev_private;
  794. /* WaDisablePartialInstShootdown:skl */
  795. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  796. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  797. /* Syncing dependencies between camera and graphics */
  798. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  799. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  800. if (INTEL_REVID(dev) >= SKL_REVID_A0 &&
  801. INTEL_REVID(dev) <= SKL_REVID_B0) {
  802. /*
  803. * WaDisableDgMirrorFixInHalfSliceChicken5:skl
  804. * This is a pre-production w/a.
  805. */
  806. I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
  807. I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
  808. ~GEN9_DG_MIRROR_FIX_ENABLE);
  809. }
  810. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  811. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  812. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  813. GEN9_ENABLE_YV12_BUGFIX);
  814. }
  815. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  816. /*
  817. *Use Force Non-Coherent whenever executing a 3D context. This
  818. * is a workaround for a possible hang in the unlikely event
  819. * a TLB invalidation occurs during a PSD flush.
  820. */
  821. /* WaForceEnableNonCoherent:skl */
  822. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  823. HDC_FORCE_NON_COHERENT);
  824. }
  825. /* Wa4x4STCOptimizationDisable:skl */
  826. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  827. /* WaDisablePartialResolveInVc:skl */
  828. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  829. /* WaCcsTlbPrefetchDisable:skl */
  830. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  831. GEN9_CCS_TLB_PREFETCH_ENABLE);
  832. return 0;
  833. }
  834. static int skl_init_workarounds(struct intel_engine_cs *ring)
  835. {
  836. gen9_init_workarounds(ring);
  837. return 0;
  838. }
  839. int init_workarounds_ring(struct intel_engine_cs *ring)
  840. {
  841. struct drm_device *dev = ring->dev;
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. WARN_ON(ring->id != RCS);
  844. dev_priv->workarounds.count = 0;
  845. if (IS_BROADWELL(dev))
  846. return bdw_init_workarounds(ring);
  847. if (IS_CHERRYVIEW(dev))
  848. return chv_init_workarounds(ring);
  849. if (IS_SKYLAKE(dev))
  850. return skl_init_workarounds(ring);
  851. else if (IS_GEN9(dev))
  852. return gen9_init_workarounds(ring);
  853. return 0;
  854. }
  855. static int init_render_ring(struct intel_engine_cs *ring)
  856. {
  857. struct drm_device *dev = ring->dev;
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. int ret = init_ring_common(ring);
  860. if (ret)
  861. return ret;
  862. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  863. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  864. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  865. /* We need to disable the AsyncFlip performance optimisations in order
  866. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  867. * programmed to '1' on all products.
  868. *
  869. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  870. */
  871. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  872. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  873. /* Required for the hardware to program scanline values for waiting */
  874. /* WaEnableFlushTlbInvalidationMode:snb */
  875. if (INTEL_INFO(dev)->gen == 6)
  876. I915_WRITE(GFX_MODE,
  877. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  878. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  879. if (IS_GEN7(dev))
  880. I915_WRITE(GFX_MODE_GEN7,
  881. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  882. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  883. if (IS_GEN6(dev)) {
  884. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  885. * "If this bit is set, STCunit will have LRA as replacement
  886. * policy. [...] This bit must be reset. LRA replacement
  887. * policy is not supported."
  888. */
  889. I915_WRITE(CACHE_MODE_0,
  890. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  891. }
  892. if (INTEL_INFO(dev)->gen >= 6)
  893. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  894. if (HAS_L3_DPF(dev))
  895. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  896. return init_workarounds_ring(ring);
  897. }
  898. static void render_ring_cleanup(struct intel_engine_cs *ring)
  899. {
  900. struct drm_device *dev = ring->dev;
  901. struct drm_i915_private *dev_priv = dev->dev_private;
  902. if (dev_priv->semaphore_obj) {
  903. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  904. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  905. dev_priv->semaphore_obj = NULL;
  906. }
  907. intel_fini_pipe_control(ring);
  908. }
  909. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  910. unsigned int num_dwords)
  911. {
  912. #define MBOX_UPDATE_DWORDS 8
  913. struct drm_device *dev = signaller->dev;
  914. struct drm_i915_private *dev_priv = dev->dev_private;
  915. struct intel_engine_cs *waiter;
  916. int i, ret, num_rings;
  917. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  918. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  919. #undef MBOX_UPDATE_DWORDS
  920. ret = intel_ring_begin(signaller, num_dwords);
  921. if (ret)
  922. return ret;
  923. for_each_ring(waiter, dev_priv, i) {
  924. u32 seqno;
  925. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  926. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  927. continue;
  928. seqno = i915_gem_request_get_seqno(
  929. signaller->outstanding_lazy_request);
  930. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  931. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  932. PIPE_CONTROL_QW_WRITE |
  933. PIPE_CONTROL_FLUSH_ENABLE);
  934. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  935. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  936. intel_ring_emit(signaller, seqno);
  937. intel_ring_emit(signaller, 0);
  938. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  939. MI_SEMAPHORE_TARGET(waiter->id));
  940. intel_ring_emit(signaller, 0);
  941. }
  942. return 0;
  943. }
  944. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  945. unsigned int num_dwords)
  946. {
  947. #define MBOX_UPDATE_DWORDS 6
  948. struct drm_device *dev = signaller->dev;
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. struct intel_engine_cs *waiter;
  951. int i, ret, num_rings;
  952. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  953. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  954. #undef MBOX_UPDATE_DWORDS
  955. ret = intel_ring_begin(signaller, num_dwords);
  956. if (ret)
  957. return ret;
  958. for_each_ring(waiter, dev_priv, i) {
  959. u32 seqno;
  960. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  961. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  962. continue;
  963. seqno = i915_gem_request_get_seqno(
  964. signaller->outstanding_lazy_request);
  965. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  966. MI_FLUSH_DW_OP_STOREDW);
  967. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  968. MI_FLUSH_DW_USE_GTT);
  969. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  970. intel_ring_emit(signaller, seqno);
  971. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  972. MI_SEMAPHORE_TARGET(waiter->id));
  973. intel_ring_emit(signaller, 0);
  974. }
  975. return 0;
  976. }
  977. static int gen6_signal(struct intel_engine_cs *signaller,
  978. unsigned int num_dwords)
  979. {
  980. struct drm_device *dev = signaller->dev;
  981. struct drm_i915_private *dev_priv = dev->dev_private;
  982. struct intel_engine_cs *useless;
  983. int i, ret, num_rings;
  984. #define MBOX_UPDATE_DWORDS 3
  985. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  986. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  987. #undef MBOX_UPDATE_DWORDS
  988. ret = intel_ring_begin(signaller, num_dwords);
  989. if (ret)
  990. return ret;
  991. for_each_ring(useless, dev_priv, i) {
  992. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  993. if (mbox_reg != GEN6_NOSYNC) {
  994. u32 seqno = i915_gem_request_get_seqno(
  995. signaller->outstanding_lazy_request);
  996. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  997. intel_ring_emit(signaller, mbox_reg);
  998. intel_ring_emit(signaller, seqno);
  999. }
  1000. }
  1001. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1002. if (num_rings % 2 == 0)
  1003. intel_ring_emit(signaller, MI_NOOP);
  1004. return 0;
  1005. }
  1006. /**
  1007. * gen6_add_request - Update the semaphore mailbox registers
  1008. *
  1009. * @ring - ring that is adding a request
  1010. * @seqno - return seqno stuck into the ring
  1011. *
  1012. * Update the mailbox registers in the *other* rings with the current seqno.
  1013. * This acts like a signal in the canonical semaphore.
  1014. */
  1015. static int
  1016. gen6_add_request(struct intel_engine_cs *ring)
  1017. {
  1018. int ret;
  1019. if (ring->semaphore.signal)
  1020. ret = ring->semaphore.signal(ring, 4);
  1021. else
  1022. ret = intel_ring_begin(ring, 4);
  1023. if (ret)
  1024. return ret;
  1025. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1026. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1027. intel_ring_emit(ring,
  1028. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1029. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1030. __intel_ring_advance(ring);
  1031. return 0;
  1032. }
  1033. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1034. u32 seqno)
  1035. {
  1036. struct drm_i915_private *dev_priv = dev->dev_private;
  1037. return dev_priv->last_seqno < seqno;
  1038. }
  1039. /**
  1040. * intel_ring_sync - sync the waiter to the signaller on seqno
  1041. *
  1042. * @waiter - ring that is waiting
  1043. * @signaller - ring which has, or will signal
  1044. * @seqno - seqno which the waiter will block on
  1045. */
  1046. static int
  1047. gen8_ring_sync(struct intel_engine_cs *waiter,
  1048. struct intel_engine_cs *signaller,
  1049. u32 seqno)
  1050. {
  1051. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1052. int ret;
  1053. ret = intel_ring_begin(waiter, 4);
  1054. if (ret)
  1055. return ret;
  1056. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1057. MI_SEMAPHORE_GLOBAL_GTT |
  1058. MI_SEMAPHORE_POLL |
  1059. MI_SEMAPHORE_SAD_GTE_SDD);
  1060. intel_ring_emit(waiter, seqno);
  1061. intel_ring_emit(waiter,
  1062. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1063. intel_ring_emit(waiter,
  1064. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1065. intel_ring_advance(waiter);
  1066. return 0;
  1067. }
  1068. static int
  1069. gen6_ring_sync(struct intel_engine_cs *waiter,
  1070. struct intel_engine_cs *signaller,
  1071. u32 seqno)
  1072. {
  1073. u32 dw1 = MI_SEMAPHORE_MBOX |
  1074. MI_SEMAPHORE_COMPARE |
  1075. MI_SEMAPHORE_REGISTER;
  1076. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1077. int ret;
  1078. /* Throughout all of the GEM code, seqno passed implies our current
  1079. * seqno is >= the last seqno executed. However for hardware the
  1080. * comparison is strictly greater than.
  1081. */
  1082. seqno -= 1;
  1083. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1084. ret = intel_ring_begin(waiter, 4);
  1085. if (ret)
  1086. return ret;
  1087. /* If seqno wrap happened, omit the wait with no-ops */
  1088. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1089. intel_ring_emit(waiter, dw1 | wait_mbox);
  1090. intel_ring_emit(waiter, seqno);
  1091. intel_ring_emit(waiter, 0);
  1092. intel_ring_emit(waiter, MI_NOOP);
  1093. } else {
  1094. intel_ring_emit(waiter, MI_NOOP);
  1095. intel_ring_emit(waiter, MI_NOOP);
  1096. intel_ring_emit(waiter, MI_NOOP);
  1097. intel_ring_emit(waiter, MI_NOOP);
  1098. }
  1099. intel_ring_advance(waiter);
  1100. return 0;
  1101. }
  1102. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1103. do { \
  1104. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1105. PIPE_CONTROL_DEPTH_STALL); \
  1106. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1107. intel_ring_emit(ring__, 0); \
  1108. intel_ring_emit(ring__, 0); \
  1109. } while (0)
  1110. static int
  1111. pc_render_add_request(struct intel_engine_cs *ring)
  1112. {
  1113. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1114. int ret;
  1115. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1116. * incoherent with writes to memory, i.e. completely fubar,
  1117. * so we need to use PIPE_NOTIFY instead.
  1118. *
  1119. * However, we also need to workaround the qword write
  1120. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1121. * memory before requesting an interrupt.
  1122. */
  1123. ret = intel_ring_begin(ring, 32);
  1124. if (ret)
  1125. return ret;
  1126. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1127. PIPE_CONTROL_WRITE_FLUSH |
  1128. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1129. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1130. intel_ring_emit(ring,
  1131. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1132. intel_ring_emit(ring, 0);
  1133. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1134. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1135. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1136. scratch_addr += 2 * CACHELINE_BYTES;
  1137. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1138. scratch_addr += 2 * CACHELINE_BYTES;
  1139. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1140. scratch_addr += 2 * CACHELINE_BYTES;
  1141. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1142. scratch_addr += 2 * CACHELINE_BYTES;
  1143. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1144. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1145. PIPE_CONTROL_WRITE_FLUSH |
  1146. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1147. PIPE_CONTROL_NOTIFY);
  1148. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1149. intel_ring_emit(ring,
  1150. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1151. intel_ring_emit(ring, 0);
  1152. __intel_ring_advance(ring);
  1153. return 0;
  1154. }
  1155. static u32
  1156. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1157. {
  1158. /* Workaround to force correct ordering between irq and seqno writes on
  1159. * ivb (and maybe also on snb) by reading from a CS register (like
  1160. * ACTHD) before reading the status page. */
  1161. if (!lazy_coherency) {
  1162. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1163. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1164. }
  1165. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1166. }
  1167. static u32
  1168. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1169. {
  1170. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1171. }
  1172. static void
  1173. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1174. {
  1175. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1176. }
  1177. static u32
  1178. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1179. {
  1180. return ring->scratch.cpu_page[0];
  1181. }
  1182. static void
  1183. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1184. {
  1185. ring->scratch.cpu_page[0] = seqno;
  1186. }
  1187. static bool
  1188. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1189. {
  1190. struct drm_device *dev = ring->dev;
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. unsigned long flags;
  1193. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1194. return false;
  1195. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1196. if (ring->irq_refcount++ == 0)
  1197. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1198. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1199. return true;
  1200. }
  1201. static void
  1202. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1203. {
  1204. struct drm_device *dev = ring->dev;
  1205. struct drm_i915_private *dev_priv = dev->dev_private;
  1206. unsigned long flags;
  1207. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1208. if (--ring->irq_refcount == 0)
  1209. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1210. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1211. }
  1212. static bool
  1213. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1214. {
  1215. struct drm_device *dev = ring->dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. unsigned long flags;
  1218. if (!intel_irqs_enabled(dev_priv))
  1219. return false;
  1220. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1221. if (ring->irq_refcount++ == 0) {
  1222. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1223. I915_WRITE(IMR, dev_priv->irq_mask);
  1224. POSTING_READ(IMR);
  1225. }
  1226. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1227. return true;
  1228. }
  1229. static void
  1230. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1231. {
  1232. struct drm_device *dev = ring->dev;
  1233. struct drm_i915_private *dev_priv = dev->dev_private;
  1234. unsigned long flags;
  1235. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1236. if (--ring->irq_refcount == 0) {
  1237. dev_priv->irq_mask |= ring->irq_enable_mask;
  1238. I915_WRITE(IMR, dev_priv->irq_mask);
  1239. POSTING_READ(IMR);
  1240. }
  1241. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1242. }
  1243. static bool
  1244. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1245. {
  1246. struct drm_device *dev = ring->dev;
  1247. struct drm_i915_private *dev_priv = dev->dev_private;
  1248. unsigned long flags;
  1249. if (!intel_irqs_enabled(dev_priv))
  1250. return false;
  1251. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1252. if (ring->irq_refcount++ == 0) {
  1253. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1254. I915_WRITE16(IMR, dev_priv->irq_mask);
  1255. POSTING_READ16(IMR);
  1256. }
  1257. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1258. return true;
  1259. }
  1260. static void
  1261. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1262. {
  1263. struct drm_device *dev = ring->dev;
  1264. struct drm_i915_private *dev_priv = dev->dev_private;
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1267. if (--ring->irq_refcount == 0) {
  1268. dev_priv->irq_mask |= ring->irq_enable_mask;
  1269. I915_WRITE16(IMR, dev_priv->irq_mask);
  1270. POSTING_READ16(IMR);
  1271. }
  1272. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1273. }
  1274. static int
  1275. bsd_ring_flush(struct intel_engine_cs *ring,
  1276. u32 invalidate_domains,
  1277. u32 flush_domains)
  1278. {
  1279. int ret;
  1280. ret = intel_ring_begin(ring, 2);
  1281. if (ret)
  1282. return ret;
  1283. intel_ring_emit(ring, MI_FLUSH);
  1284. intel_ring_emit(ring, MI_NOOP);
  1285. intel_ring_advance(ring);
  1286. return 0;
  1287. }
  1288. static int
  1289. i9xx_add_request(struct intel_engine_cs *ring)
  1290. {
  1291. int ret;
  1292. ret = intel_ring_begin(ring, 4);
  1293. if (ret)
  1294. return ret;
  1295. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1296. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1297. intel_ring_emit(ring,
  1298. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1299. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1300. __intel_ring_advance(ring);
  1301. return 0;
  1302. }
  1303. static bool
  1304. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1305. {
  1306. struct drm_device *dev = ring->dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. unsigned long flags;
  1309. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1310. return false;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (ring->irq_refcount++ == 0) {
  1313. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1314. I915_WRITE_IMR(ring,
  1315. ~(ring->irq_enable_mask |
  1316. GT_PARITY_ERROR(dev)));
  1317. else
  1318. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1319. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1320. }
  1321. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1322. return true;
  1323. }
  1324. static void
  1325. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1326. {
  1327. struct drm_device *dev = ring->dev;
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. unsigned long flags;
  1330. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1331. if (--ring->irq_refcount == 0) {
  1332. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1333. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1334. else
  1335. I915_WRITE_IMR(ring, ~0);
  1336. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1337. }
  1338. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1339. }
  1340. static bool
  1341. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1342. {
  1343. struct drm_device *dev = ring->dev;
  1344. struct drm_i915_private *dev_priv = dev->dev_private;
  1345. unsigned long flags;
  1346. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1347. return false;
  1348. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1349. if (ring->irq_refcount++ == 0) {
  1350. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1351. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1352. }
  1353. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1354. return true;
  1355. }
  1356. static void
  1357. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1358. {
  1359. struct drm_device *dev = ring->dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. unsigned long flags;
  1362. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1363. if (--ring->irq_refcount == 0) {
  1364. I915_WRITE_IMR(ring, ~0);
  1365. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1366. }
  1367. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1368. }
  1369. static bool
  1370. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1371. {
  1372. struct drm_device *dev = ring->dev;
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. unsigned long flags;
  1375. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1376. return false;
  1377. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1378. if (ring->irq_refcount++ == 0) {
  1379. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1380. I915_WRITE_IMR(ring,
  1381. ~(ring->irq_enable_mask |
  1382. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1383. } else {
  1384. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1385. }
  1386. POSTING_READ(RING_IMR(ring->mmio_base));
  1387. }
  1388. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1389. return true;
  1390. }
  1391. static void
  1392. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1393. {
  1394. struct drm_device *dev = ring->dev;
  1395. struct drm_i915_private *dev_priv = dev->dev_private;
  1396. unsigned long flags;
  1397. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1398. if (--ring->irq_refcount == 0) {
  1399. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1400. I915_WRITE_IMR(ring,
  1401. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1402. } else {
  1403. I915_WRITE_IMR(ring, ~0);
  1404. }
  1405. POSTING_READ(RING_IMR(ring->mmio_base));
  1406. }
  1407. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1408. }
  1409. static int
  1410. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1411. u64 offset, u32 length,
  1412. unsigned flags)
  1413. {
  1414. int ret;
  1415. ret = intel_ring_begin(ring, 2);
  1416. if (ret)
  1417. return ret;
  1418. intel_ring_emit(ring,
  1419. MI_BATCH_BUFFER_START |
  1420. MI_BATCH_GTT |
  1421. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1422. intel_ring_emit(ring, offset);
  1423. intel_ring_advance(ring);
  1424. return 0;
  1425. }
  1426. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1427. #define I830_BATCH_LIMIT (256*1024)
  1428. #define I830_TLB_ENTRIES (2)
  1429. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1430. static int
  1431. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1432. u64 offset, u32 len,
  1433. unsigned flags)
  1434. {
  1435. u32 cs_offset = ring->scratch.gtt_offset;
  1436. int ret;
  1437. ret = intel_ring_begin(ring, 6);
  1438. if (ret)
  1439. return ret;
  1440. /* Evict the invalid PTE TLBs */
  1441. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1442. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1443. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1444. intel_ring_emit(ring, cs_offset);
  1445. intel_ring_emit(ring, 0xdeadbeef);
  1446. intel_ring_emit(ring, MI_NOOP);
  1447. intel_ring_advance(ring);
  1448. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1449. if (len > I830_BATCH_LIMIT)
  1450. return -ENOSPC;
  1451. ret = intel_ring_begin(ring, 6 + 2);
  1452. if (ret)
  1453. return ret;
  1454. /* Blit the batch (which has now all relocs applied) to the
  1455. * stable batch scratch bo area (so that the CS never
  1456. * stumbles over its tlb invalidation bug) ...
  1457. */
  1458. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1459. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1460. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1461. intel_ring_emit(ring, cs_offset);
  1462. intel_ring_emit(ring, 4096);
  1463. intel_ring_emit(ring, offset);
  1464. intel_ring_emit(ring, MI_FLUSH);
  1465. intel_ring_emit(ring, MI_NOOP);
  1466. intel_ring_advance(ring);
  1467. /* ... and execute it. */
  1468. offset = cs_offset;
  1469. }
  1470. ret = intel_ring_begin(ring, 4);
  1471. if (ret)
  1472. return ret;
  1473. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1474. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1475. intel_ring_emit(ring, offset + len - 8);
  1476. intel_ring_emit(ring, MI_NOOP);
  1477. intel_ring_advance(ring);
  1478. return 0;
  1479. }
  1480. static int
  1481. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1482. u64 offset, u32 len,
  1483. unsigned flags)
  1484. {
  1485. int ret;
  1486. ret = intel_ring_begin(ring, 2);
  1487. if (ret)
  1488. return ret;
  1489. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1490. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1491. intel_ring_advance(ring);
  1492. return 0;
  1493. }
  1494. static void cleanup_status_page(struct intel_engine_cs *ring)
  1495. {
  1496. struct drm_i915_gem_object *obj;
  1497. obj = ring->status_page.obj;
  1498. if (obj == NULL)
  1499. return;
  1500. kunmap(sg_page(obj->pages->sgl));
  1501. i915_gem_object_ggtt_unpin(obj);
  1502. drm_gem_object_unreference(&obj->base);
  1503. ring->status_page.obj = NULL;
  1504. }
  1505. static int init_status_page(struct intel_engine_cs *ring)
  1506. {
  1507. struct drm_i915_gem_object *obj;
  1508. if ((obj = ring->status_page.obj) == NULL) {
  1509. unsigned flags;
  1510. int ret;
  1511. obj = i915_gem_alloc_object(ring->dev, 4096);
  1512. if (obj == NULL) {
  1513. DRM_ERROR("Failed to allocate status page\n");
  1514. return -ENOMEM;
  1515. }
  1516. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1517. if (ret)
  1518. goto err_unref;
  1519. flags = 0;
  1520. if (!HAS_LLC(ring->dev))
  1521. /* On g33, we cannot place HWS above 256MiB, so
  1522. * restrict its pinning to the low mappable arena.
  1523. * Though this restriction is not documented for
  1524. * gen4, gen5, or byt, they also behave similarly
  1525. * and hang if the HWS is placed at the top of the
  1526. * GTT. To generalise, it appears that all !llc
  1527. * platforms have issues with us placing the HWS
  1528. * above the mappable region (even though we never
  1529. * actualy map it).
  1530. */
  1531. flags |= PIN_MAPPABLE;
  1532. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1533. if (ret) {
  1534. err_unref:
  1535. drm_gem_object_unreference(&obj->base);
  1536. return ret;
  1537. }
  1538. ring->status_page.obj = obj;
  1539. }
  1540. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1541. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1542. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1543. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1544. ring->name, ring->status_page.gfx_addr);
  1545. return 0;
  1546. }
  1547. static int init_phys_status_page(struct intel_engine_cs *ring)
  1548. {
  1549. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1550. if (!dev_priv->status_page_dmah) {
  1551. dev_priv->status_page_dmah =
  1552. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1553. if (!dev_priv->status_page_dmah)
  1554. return -ENOMEM;
  1555. }
  1556. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1557. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1558. return 0;
  1559. }
  1560. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1561. {
  1562. iounmap(ringbuf->virtual_start);
  1563. ringbuf->virtual_start = NULL;
  1564. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1565. }
  1566. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1567. struct intel_ringbuffer *ringbuf)
  1568. {
  1569. struct drm_i915_private *dev_priv = to_i915(dev);
  1570. struct drm_i915_gem_object *obj = ringbuf->obj;
  1571. int ret;
  1572. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1573. if (ret)
  1574. return ret;
  1575. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1576. if (ret) {
  1577. i915_gem_object_ggtt_unpin(obj);
  1578. return ret;
  1579. }
  1580. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1581. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1582. if (ringbuf->virtual_start == NULL) {
  1583. i915_gem_object_ggtt_unpin(obj);
  1584. return -EINVAL;
  1585. }
  1586. return 0;
  1587. }
  1588. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1589. {
  1590. drm_gem_object_unreference(&ringbuf->obj->base);
  1591. ringbuf->obj = NULL;
  1592. }
  1593. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1594. struct intel_ringbuffer *ringbuf)
  1595. {
  1596. struct drm_i915_gem_object *obj;
  1597. obj = NULL;
  1598. if (!HAS_LLC(dev))
  1599. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1600. if (obj == NULL)
  1601. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1602. if (obj == NULL)
  1603. return -ENOMEM;
  1604. /* mark ring buffers as read-only from GPU side by default */
  1605. obj->gt_ro = 1;
  1606. ringbuf->obj = obj;
  1607. return 0;
  1608. }
  1609. static int intel_init_ring_buffer(struct drm_device *dev,
  1610. struct intel_engine_cs *ring)
  1611. {
  1612. struct intel_ringbuffer *ringbuf;
  1613. int ret;
  1614. WARN_ON(ring->buffer);
  1615. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1616. if (!ringbuf)
  1617. return -ENOMEM;
  1618. ring->buffer = ringbuf;
  1619. ring->dev = dev;
  1620. INIT_LIST_HEAD(&ring->active_list);
  1621. INIT_LIST_HEAD(&ring->request_list);
  1622. INIT_LIST_HEAD(&ring->execlist_queue);
  1623. ringbuf->size = 32 * PAGE_SIZE;
  1624. ringbuf->ring = ring;
  1625. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1626. init_waitqueue_head(&ring->irq_queue);
  1627. if (I915_NEED_GFX_HWS(dev)) {
  1628. ret = init_status_page(ring);
  1629. if (ret)
  1630. goto error;
  1631. } else {
  1632. BUG_ON(ring->id != RCS);
  1633. ret = init_phys_status_page(ring);
  1634. if (ret)
  1635. goto error;
  1636. }
  1637. WARN_ON(ringbuf->obj);
  1638. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1639. if (ret) {
  1640. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1641. ring->name, ret);
  1642. goto error;
  1643. }
  1644. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1645. if (ret) {
  1646. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1647. ring->name, ret);
  1648. intel_destroy_ringbuffer_obj(ringbuf);
  1649. goto error;
  1650. }
  1651. /* Workaround an erratum on the i830 which causes a hang if
  1652. * the TAIL pointer points to within the last 2 cachelines
  1653. * of the buffer.
  1654. */
  1655. ringbuf->effective_size = ringbuf->size;
  1656. if (IS_I830(dev) || IS_845G(dev))
  1657. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1658. ret = i915_cmd_parser_init_ring(ring);
  1659. if (ret)
  1660. goto error;
  1661. return 0;
  1662. error:
  1663. kfree(ringbuf);
  1664. ring->buffer = NULL;
  1665. return ret;
  1666. }
  1667. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1668. {
  1669. struct drm_i915_private *dev_priv;
  1670. struct intel_ringbuffer *ringbuf;
  1671. if (!intel_ring_initialized(ring))
  1672. return;
  1673. dev_priv = to_i915(ring->dev);
  1674. ringbuf = ring->buffer;
  1675. intel_stop_ring_buffer(ring);
  1676. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1677. intel_unpin_ringbuffer_obj(ringbuf);
  1678. intel_destroy_ringbuffer_obj(ringbuf);
  1679. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1680. if (ring->cleanup)
  1681. ring->cleanup(ring);
  1682. cleanup_status_page(ring);
  1683. i915_cmd_parser_fini_ring(ring);
  1684. kfree(ringbuf);
  1685. ring->buffer = NULL;
  1686. }
  1687. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1688. {
  1689. struct intel_ringbuffer *ringbuf = ring->buffer;
  1690. struct drm_i915_gem_request *request;
  1691. int ret;
  1692. if (intel_ring_space(ringbuf) >= n)
  1693. return 0;
  1694. list_for_each_entry(request, &ring->request_list, list) {
  1695. if (__intel_ring_space(request->postfix, ringbuf->tail,
  1696. ringbuf->size) >= n) {
  1697. break;
  1698. }
  1699. }
  1700. if (&request->list == &ring->request_list)
  1701. return -ENOSPC;
  1702. ret = i915_wait_request(request);
  1703. if (ret)
  1704. return ret;
  1705. i915_gem_retire_requests_ring(ring);
  1706. return 0;
  1707. }
  1708. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1709. {
  1710. struct drm_device *dev = ring->dev;
  1711. struct drm_i915_private *dev_priv = dev->dev_private;
  1712. struct intel_ringbuffer *ringbuf = ring->buffer;
  1713. unsigned long end;
  1714. int ret;
  1715. ret = intel_ring_wait_request(ring, n);
  1716. if (ret != -ENOSPC)
  1717. return ret;
  1718. /* force the tail write in case we have been skipping them */
  1719. __intel_ring_advance(ring);
  1720. /* With GEM the hangcheck timer should kick us out of the loop,
  1721. * leaving it early runs the risk of corrupting GEM state (due
  1722. * to running on almost untested codepaths). But on resume
  1723. * timers don't work yet, so prevent a complete hang in that
  1724. * case by choosing an insanely large timeout. */
  1725. end = jiffies + 60 * HZ;
  1726. ret = 0;
  1727. trace_i915_ring_wait_begin(ring);
  1728. do {
  1729. if (intel_ring_space(ringbuf) >= n)
  1730. break;
  1731. ringbuf->head = I915_READ_HEAD(ring);
  1732. if (intel_ring_space(ringbuf) >= n)
  1733. break;
  1734. msleep(1);
  1735. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1736. ret = -ERESTARTSYS;
  1737. break;
  1738. }
  1739. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1740. dev_priv->mm.interruptible);
  1741. if (ret)
  1742. break;
  1743. if (time_after(jiffies, end)) {
  1744. ret = -EBUSY;
  1745. break;
  1746. }
  1747. } while (1);
  1748. trace_i915_ring_wait_end(ring);
  1749. return ret;
  1750. }
  1751. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1752. {
  1753. uint32_t __iomem *virt;
  1754. struct intel_ringbuffer *ringbuf = ring->buffer;
  1755. int rem = ringbuf->size - ringbuf->tail;
  1756. if (ringbuf->space < rem) {
  1757. int ret = ring_wait_for_space(ring, rem);
  1758. if (ret)
  1759. return ret;
  1760. }
  1761. virt = ringbuf->virtual_start + ringbuf->tail;
  1762. rem /= 4;
  1763. while (rem--)
  1764. iowrite32(MI_NOOP, virt++);
  1765. ringbuf->tail = 0;
  1766. intel_ring_update_space(ringbuf);
  1767. return 0;
  1768. }
  1769. int intel_ring_idle(struct intel_engine_cs *ring)
  1770. {
  1771. struct drm_i915_gem_request *req;
  1772. int ret;
  1773. /* We need to add any requests required to flush the objects and ring */
  1774. if (ring->outstanding_lazy_request) {
  1775. ret = i915_add_request(ring);
  1776. if (ret)
  1777. return ret;
  1778. }
  1779. /* Wait upon the last request to be completed */
  1780. if (list_empty(&ring->request_list))
  1781. return 0;
  1782. req = list_entry(ring->request_list.prev,
  1783. struct drm_i915_gem_request,
  1784. list);
  1785. return i915_wait_request(req);
  1786. }
  1787. static int
  1788. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1789. {
  1790. int ret;
  1791. struct drm_i915_gem_request *request;
  1792. struct drm_i915_private *dev_private = ring->dev->dev_private;
  1793. if (ring->outstanding_lazy_request)
  1794. return 0;
  1795. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1796. if (request == NULL)
  1797. return -ENOMEM;
  1798. kref_init(&request->ref);
  1799. request->ring = ring;
  1800. request->uniq = dev_private->request_uniq++;
  1801. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1802. if (ret) {
  1803. kfree(request);
  1804. return ret;
  1805. }
  1806. ring->outstanding_lazy_request = request;
  1807. return 0;
  1808. }
  1809. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1810. int bytes)
  1811. {
  1812. struct intel_ringbuffer *ringbuf = ring->buffer;
  1813. int ret;
  1814. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1815. ret = intel_wrap_ring_buffer(ring);
  1816. if (unlikely(ret))
  1817. return ret;
  1818. }
  1819. if (unlikely(ringbuf->space < bytes)) {
  1820. ret = ring_wait_for_space(ring, bytes);
  1821. if (unlikely(ret))
  1822. return ret;
  1823. }
  1824. return 0;
  1825. }
  1826. int intel_ring_begin(struct intel_engine_cs *ring,
  1827. int num_dwords)
  1828. {
  1829. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1830. int ret;
  1831. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1832. dev_priv->mm.interruptible);
  1833. if (ret)
  1834. return ret;
  1835. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1836. if (ret)
  1837. return ret;
  1838. /* Preallocate the olr before touching the ring */
  1839. ret = intel_ring_alloc_request(ring);
  1840. if (ret)
  1841. return ret;
  1842. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1843. return 0;
  1844. }
  1845. /* Align the ring tail to a cacheline boundary */
  1846. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1847. {
  1848. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1849. int ret;
  1850. if (num_dwords == 0)
  1851. return 0;
  1852. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1853. ret = intel_ring_begin(ring, num_dwords);
  1854. if (ret)
  1855. return ret;
  1856. while (num_dwords--)
  1857. intel_ring_emit(ring, MI_NOOP);
  1858. intel_ring_advance(ring);
  1859. return 0;
  1860. }
  1861. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1862. {
  1863. struct drm_device *dev = ring->dev;
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. BUG_ON(ring->outstanding_lazy_request);
  1866. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1867. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1868. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1869. if (HAS_VEBOX(dev))
  1870. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1871. }
  1872. ring->set_seqno(ring, seqno);
  1873. ring->hangcheck.seqno = seqno;
  1874. }
  1875. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1876. u32 value)
  1877. {
  1878. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1879. /* Every tail move must follow the sequence below */
  1880. /* Disable notification that the ring is IDLE. The GT
  1881. * will then assume that it is busy and bring it out of rc6.
  1882. */
  1883. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1884. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1885. /* Clear the context id. Here be magic! */
  1886. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1887. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1888. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1889. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1890. 50))
  1891. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1892. /* Now that the ring is fully powered up, update the tail */
  1893. I915_WRITE_TAIL(ring, value);
  1894. POSTING_READ(RING_TAIL(ring->mmio_base));
  1895. /* Let the ring send IDLE messages to the GT again,
  1896. * and so let it sleep to conserve power when idle.
  1897. */
  1898. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1899. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1900. }
  1901. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1902. u32 invalidate, u32 flush)
  1903. {
  1904. uint32_t cmd;
  1905. int ret;
  1906. ret = intel_ring_begin(ring, 4);
  1907. if (ret)
  1908. return ret;
  1909. cmd = MI_FLUSH_DW;
  1910. if (INTEL_INFO(ring->dev)->gen >= 8)
  1911. cmd += 1;
  1912. /*
  1913. * Bspec vol 1c.5 - video engine command streamer:
  1914. * "If ENABLED, all TLBs will be invalidated once the flush
  1915. * operation is complete. This bit is only valid when the
  1916. * Post-Sync Operation field is a value of 1h or 3h."
  1917. */
  1918. if (invalidate & I915_GEM_GPU_DOMAINS)
  1919. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1920. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1921. intel_ring_emit(ring, cmd);
  1922. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1923. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1924. intel_ring_emit(ring, 0); /* upper addr */
  1925. intel_ring_emit(ring, 0); /* value */
  1926. } else {
  1927. intel_ring_emit(ring, 0);
  1928. intel_ring_emit(ring, MI_NOOP);
  1929. }
  1930. intel_ring_advance(ring);
  1931. return 0;
  1932. }
  1933. static int
  1934. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1935. u64 offset, u32 len,
  1936. unsigned flags)
  1937. {
  1938. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1939. int ret;
  1940. ret = intel_ring_begin(ring, 4);
  1941. if (ret)
  1942. return ret;
  1943. /* FIXME(BDW): Address space and security selectors. */
  1944. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1945. intel_ring_emit(ring, lower_32_bits(offset));
  1946. intel_ring_emit(ring, upper_32_bits(offset));
  1947. intel_ring_emit(ring, MI_NOOP);
  1948. intel_ring_advance(ring);
  1949. return 0;
  1950. }
  1951. static int
  1952. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1953. u64 offset, u32 len,
  1954. unsigned flags)
  1955. {
  1956. int ret;
  1957. ret = intel_ring_begin(ring, 2);
  1958. if (ret)
  1959. return ret;
  1960. intel_ring_emit(ring,
  1961. MI_BATCH_BUFFER_START |
  1962. (flags & I915_DISPATCH_SECURE ?
  1963. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1964. /* bit0-7 is the length on GEN6+ */
  1965. intel_ring_emit(ring, offset);
  1966. intel_ring_advance(ring);
  1967. return 0;
  1968. }
  1969. static int
  1970. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1971. u64 offset, u32 len,
  1972. unsigned flags)
  1973. {
  1974. int ret;
  1975. ret = intel_ring_begin(ring, 2);
  1976. if (ret)
  1977. return ret;
  1978. intel_ring_emit(ring,
  1979. MI_BATCH_BUFFER_START |
  1980. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1981. /* bit0-7 is the length on GEN6+ */
  1982. intel_ring_emit(ring, offset);
  1983. intel_ring_advance(ring);
  1984. return 0;
  1985. }
  1986. /* Blitter support (SandyBridge+) */
  1987. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1988. u32 invalidate, u32 flush)
  1989. {
  1990. struct drm_device *dev = ring->dev;
  1991. struct drm_i915_private *dev_priv = dev->dev_private;
  1992. uint32_t cmd;
  1993. int ret;
  1994. ret = intel_ring_begin(ring, 4);
  1995. if (ret)
  1996. return ret;
  1997. cmd = MI_FLUSH_DW;
  1998. if (INTEL_INFO(ring->dev)->gen >= 8)
  1999. cmd += 1;
  2000. /*
  2001. * Bspec vol 1c.3 - blitter engine command streamer:
  2002. * "If ENABLED, all TLBs will be invalidated once the flush
  2003. * operation is complete. This bit is only valid when the
  2004. * Post-Sync Operation field is a value of 1h or 3h."
  2005. */
  2006. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2007. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  2008. MI_FLUSH_DW_OP_STOREDW;
  2009. intel_ring_emit(ring, cmd);
  2010. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2011. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2012. intel_ring_emit(ring, 0); /* upper addr */
  2013. intel_ring_emit(ring, 0); /* value */
  2014. } else {
  2015. intel_ring_emit(ring, 0);
  2016. intel_ring_emit(ring, MI_NOOP);
  2017. }
  2018. intel_ring_advance(ring);
  2019. if (!invalidate && flush) {
  2020. if (IS_GEN7(dev))
  2021. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  2022. else if (IS_BROADWELL(dev))
  2023. dev_priv->fbc.need_sw_cache_clean = true;
  2024. }
  2025. return 0;
  2026. }
  2027. int intel_init_render_ring_buffer(struct drm_device *dev)
  2028. {
  2029. struct drm_i915_private *dev_priv = dev->dev_private;
  2030. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2031. struct drm_i915_gem_object *obj;
  2032. int ret;
  2033. ring->name = "render ring";
  2034. ring->id = RCS;
  2035. ring->mmio_base = RENDER_RING_BASE;
  2036. if (INTEL_INFO(dev)->gen >= 8) {
  2037. if (i915_semaphore_is_enabled(dev)) {
  2038. obj = i915_gem_alloc_object(dev, 4096);
  2039. if (obj == NULL) {
  2040. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2041. i915.semaphores = 0;
  2042. } else {
  2043. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2044. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2045. if (ret != 0) {
  2046. drm_gem_object_unreference(&obj->base);
  2047. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2048. i915.semaphores = 0;
  2049. } else
  2050. dev_priv->semaphore_obj = obj;
  2051. }
  2052. }
  2053. ring->init_context = intel_rcs_ctx_init;
  2054. ring->add_request = gen6_add_request;
  2055. ring->flush = gen8_render_ring_flush;
  2056. ring->irq_get = gen8_ring_get_irq;
  2057. ring->irq_put = gen8_ring_put_irq;
  2058. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2059. ring->get_seqno = gen6_ring_get_seqno;
  2060. ring->set_seqno = ring_set_seqno;
  2061. if (i915_semaphore_is_enabled(dev)) {
  2062. WARN_ON(!dev_priv->semaphore_obj);
  2063. ring->semaphore.sync_to = gen8_ring_sync;
  2064. ring->semaphore.signal = gen8_rcs_signal;
  2065. GEN8_RING_SEMAPHORE_INIT;
  2066. }
  2067. } else if (INTEL_INFO(dev)->gen >= 6) {
  2068. ring->add_request = gen6_add_request;
  2069. ring->flush = gen7_render_ring_flush;
  2070. if (INTEL_INFO(dev)->gen == 6)
  2071. ring->flush = gen6_render_ring_flush;
  2072. ring->irq_get = gen6_ring_get_irq;
  2073. ring->irq_put = gen6_ring_put_irq;
  2074. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2075. ring->get_seqno = gen6_ring_get_seqno;
  2076. ring->set_seqno = ring_set_seqno;
  2077. if (i915_semaphore_is_enabled(dev)) {
  2078. ring->semaphore.sync_to = gen6_ring_sync;
  2079. ring->semaphore.signal = gen6_signal;
  2080. /*
  2081. * The current semaphore is only applied on pre-gen8
  2082. * platform. And there is no VCS2 ring on the pre-gen8
  2083. * platform. So the semaphore between RCS and VCS2 is
  2084. * initialized as INVALID. Gen8 will initialize the
  2085. * sema between VCS2 and RCS later.
  2086. */
  2087. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2088. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2089. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2090. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2091. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2092. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2093. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2094. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2095. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2096. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2097. }
  2098. } else if (IS_GEN5(dev)) {
  2099. ring->add_request = pc_render_add_request;
  2100. ring->flush = gen4_render_ring_flush;
  2101. ring->get_seqno = pc_render_get_seqno;
  2102. ring->set_seqno = pc_render_set_seqno;
  2103. ring->irq_get = gen5_ring_get_irq;
  2104. ring->irq_put = gen5_ring_put_irq;
  2105. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2106. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2107. } else {
  2108. ring->add_request = i9xx_add_request;
  2109. if (INTEL_INFO(dev)->gen < 4)
  2110. ring->flush = gen2_render_ring_flush;
  2111. else
  2112. ring->flush = gen4_render_ring_flush;
  2113. ring->get_seqno = ring_get_seqno;
  2114. ring->set_seqno = ring_set_seqno;
  2115. if (IS_GEN2(dev)) {
  2116. ring->irq_get = i8xx_ring_get_irq;
  2117. ring->irq_put = i8xx_ring_put_irq;
  2118. } else {
  2119. ring->irq_get = i9xx_ring_get_irq;
  2120. ring->irq_put = i9xx_ring_put_irq;
  2121. }
  2122. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2123. }
  2124. ring->write_tail = ring_write_tail;
  2125. if (IS_HASWELL(dev))
  2126. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2127. else if (IS_GEN8(dev))
  2128. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2129. else if (INTEL_INFO(dev)->gen >= 6)
  2130. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2131. else if (INTEL_INFO(dev)->gen >= 4)
  2132. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2133. else if (IS_I830(dev) || IS_845G(dev))
  2134. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2135. else
  2136. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2137. ring->init_hw = init_render_ring;
  2138. ring->cleanup = render_ring_cleanup;
  2139. /* Workaround batchbuffer to combat CS tlb bug. */
  2140. if (HAS_BROKEN_CS_TLB(dev)) {
  2141. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2142. if (obj == NULL) {
  2143. DRM_ERROR("Failed to allocate batch bo\n");
  2144. return -ENOMEM;
  2145. }
  2146. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2147. if (ret != 0) {
  2148. drm_gem_object_unreference(&obj->base);
  2149. DRM_ERROR("Failed to ping batch bo\n");
  2150. return ret;
  2151. }
  2152. ring->scratch.obj = obj;
  2153. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2154. }
  2155. ret = intel_init_ring_buffer(dev, ring);
  2156. if (ret)
  2157. return ret;
  2158. if (INTEL_INFO(dev)->gen >= 5) {
  2159. ret = intel_init_pipe_control(ring);
  2160. if (ret)
  2161. return ret;
  2162. }
  2163. return 0;
  2164. }
  2165. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2166. {
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2169. ring->name = "bsd ring";
  2170. ring->id = VCS;
  2171. ring->write_tail = ring_write_tail;
  2172. if (INTEL_INFO(dev)->gen >= 6) {
  2173. ring->mmio_base = GEN6_BSD_RING_BASE;
  2174. /* gen6 bsd needs a special wa for tail updates */
  2175. if (IS_GEN6(dev))
  2176. ring->write_tail = gen6_bsd_ring_write_tail;
  2177. ring->flush = gen6_bsd_ring_flush;
  2178. ring->add_request = gen6_add_request;
  2179. ring->get_seqno = gen6_ring_get_seqno;
  2180. ring->set_seqno = ring_set_seqno;
  2181. if (INTEL_INFO(dev)->gen >= 8) {
  2182. ring->irq_enable_mask =
  2183. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2184. ring->irq_get = gen8_ring_get_irq;
  2185. ring->irq_put = gen8_ring_put_irq;
  2186. ring->dispatch_execbuffer =
  2187. gen8_ring_dispatch_execbuffer;
  2188. if (i915_semaphore_is_enabled(dev)) {
  2189. ring->semaphore.sync_to = gen8_ring_sync;
  2190. ring->semaphore.signal = gen8_xcs_signal;
  2191. GEN8_RING_SEMAPHORE_INIT;
  2192. }
  2193. } else {
  2194. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2195. ring->irq_get = gen6_ring_get_irq;
  2196. ring->irq_put = gen6_ring_put_irq;
  2197. ring->dispatch_execbuffer =
  2198. gen6_ring_dispatch_execbuffer;
  2199. if (i915_semaphore_is_enabled(dev)) {
  2200. ring->semaphore.sync_to = gen6_ring_sync;
  2201. ring->semaphore.signal = gen6_signal;
  2202. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2203. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2204. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2205. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2206. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2207. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2208. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2209. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2210. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2211. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2212. }
  2213. }
  2214. } else {
  2215. ring->mmio_base = BSD_RING_BASE;
  2216. ring->flush = bsd_ring_flush;
  2217. ring->add_request = i9xx_add_request;
  2218. ring->get_seqno = ring_get_seqno;
  2219. ring->set_seqno = ring_set_seqno;
  2220. if (IS_GEN5(dev)) {
  2221. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2222. ring->irq_get = gen5_ring_get_irq;
  2223. ring->irq_put = gen5_ring_put_irq;
  2224. } else {
  2225. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2226. ring->irq_get = i9xx_ring_get_irq;
  2227. ring->irq_put = i9xx_ring_put_irq;
  2228. }
  2229. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2230. }
  2231. ring->init_hw = init_ring_common;
  2232. return intel_init_ring_buffer(dev, ring);
  2233. }
  2234. /**
  2235. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2236. */
  2237. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2238. {
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2241. ring->name = "bsd2 ring";
  2242. ring->id = VCS2;
  2243. ring->write_tail = ring_write_tail;
  2244. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2245. ring->flush = gen6_bsd_ring_flush;
  2246. ring->add_request = gen6_add_request;
  2247. ring->get_seqno = gen6_ring_get_seqno;
  2248. ring->set_seqno = ring_set_seqno;
  2249. ring->irq_enable_mask =
  2250. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2251. ring->irq_get = gen8_ring_get_irq;
  2252. ring->irq_put = gen8_ring_put_irq;
  2253. ring->dispatch_execbuffer =
  2254. gen8_ring_dispatch_execbuffer;
  2255. if (i915_semaphore_is_enabled(dev)) {
  2256. ring->semaphore.sync_to = gen8_ring_sync;
  2257. ring->semaphore.signal = gen8_xcs_signal;
  2258. GEN8_RING_SEMAPHORE_INIT;
  2259. }
  2260. ring->init_hw = init_ring_common;
  2261. return intel_init_ring_buffer(dev, ring);
  2262. }
  2263. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2264. {
  2265. struct drm_i915_private *dev_priv = dev->dev_private;
  2266. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2267. ring->name = "blitter ring";
  2268. ring->id = BCS;
  2269. ring->mmio_base = BLT_RING_BASE;
  2270. ring->write_tail = ring_write_tail;
  2271. ring->flush = gen6_ring_flush;
  2272. ring->add_request = gen6_add_request;
  2273. ring->get_seqno = gen6_ring_get_seqno;
  2274. ring->set_seqno = ring_set_seqno;
  2275. if (INTEL_INFO(dev)->gen >= 8) {
  2276. ring->irq_enable_mask =
  2277. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2278. ring->irq_get = gen8_ring_get_irq;
  2279. ring->irq_put = gen8_ring_put_irq;
  2280. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2281. if (i915_semaphore_is_enabled(dev)) {
  2282. ring->semaphore.sync_to = gen8_ring_sync;
  2283. ring->semaphore.signal = gen8_xcs_signal;
  2284. GEN8_RING_SEMAPHORE_INIT;
  2285. }
  2286. } else {
  2287. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2288. ring->irq_get = gen6_ring_get_irq;
  2289. ring->irq_put = gen6_ring_put_irq;
  2290. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2291. if (i915_semaphore_is_enabled(dev)) {
  2292. ring->semaphore.signal = gen6_signal;
  2293. ring->semaphore.sync_to = gen6_ring_sync;
  2294. /*
  2295. * The current semaphore is only applied on pre-gen8
  2296. * platform. And there is no VCS2 ring on the pre-gen8
  2297. * platform. So the semaphore between BCS and VCS2 is
  2298. * initialized as INVALID. Gen8 will initialize the
  2299. * sema between BCS and VCS2 later.
  2300. */
  2301. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2302. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2303. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2304. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2305. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2306. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2307. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2308. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2309. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2310. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2311. }
  2312. }
  2313. ring->init_hw = init_ring_common;
  2314. return intel_init_ring_buffer(dev, ring);
  2315. }
  2316. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2317. {
  2318. struct drm_i915_private *dev_priv = dev->dev_private;
  2319. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2320. ring->name = "video enhancement ring";
  2321. ring->id = VECS;
  2322. ring->mmio_base = VEBOX_RING_BASE;
  2323. ring->write_tail = ring_write_tail;
  2324. ring->flush = gen6_ring_flush;
  2325. ring->add_request = gen6_add_request;
  2326. ring->get_seqno = gen6_ring_get_seqno;
  2327. ring->set_seqno = ring_set_seqno;
  2328. if (INTEL_INFO(dev)->gen >= 8) {
  2329. ring->irq_enable_mask =
  2330. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2331. ring->irq_get = gen8_ring_get_irq;
  2332. ring->irq_put = gen8_ring_put_irq;
  2333. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2334. if (i915_semaphore_is_enabled(dev)) {
  2335. ring->semaphore.sync_to = gen8_ring_sync;
  2336. ring->semaphore.signal = gen8_xcs_signal;
  2337. GEN8_RING_SEMAPHORE_INIT;
  2338. }
  2339. } else {
  2340. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2341. ring->irq_get = hsw_vebox_get_irq;
  2342. ring->irq_put = hsw_vebox_put_irq;
  2343. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2344. if (i915_semaphore_is_enabled(dev)) {
  2345. ring->semaphore.sync_to = gen6_ring_sync;
  2346. ring->semaphore.signal = gen6_signal;
  2347. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2348. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2349. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2350. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2351. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2352. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2353. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2354. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2355. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2356. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2357. }
  2358. }
  2359. ring->init_hw = init_ring_common;
  2360. return intel_init_ring_buffer(dev, ring);
  2361. }
  2362. int
  2363. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2364. {
  2365. int ret;
  2366. if (!ring->gpu_caches_dirty)
  2367. return 0;
  2368. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2369. if (ret)
  2370. return ret;
  2371. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2372. ring->gpu_caches_dirty = false;
  2373. return 0;
  2374. }
  2375. int
  2376. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2377. {
  2378. uint32_t flush_domains;
  2379. int ret;
  2380. flush_domains = 0;
  2381. if (ring->gpu_caches_dirty)
  2382. flush_domains = I915_GEM_GPU_DOMAINS;
  2383. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2384. if (ret)
  2385. return ret;
  2386. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2387. ring->gpu_caches_dirty = false;
  2388. return 0;
  2389. }
  2390. void
  2391. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2392. {
  2393. int ret;
  2394. if (!intel_ring_initialized(ring))
  2395. return;
  2396. ret = intel_ring_idle(ring);
  2397. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2398. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2399. ring->name, ret);
  2400. stop_ring(ring);
  2401. }