blk-flush.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. * Functions to sequence PREFLUSH and FUA writes.
  3. *
  4. * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
  5. * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
  10. * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
  11. * properties and hardware capability.
  12. *
  13. * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
  14. * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
  15. * that the device cache should be flushed before the data is executed, and
  16. * REQ_FUA means that the data must be on non-volatile media on request
  17. * completion.
  18. *
  19. * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
  20. * difference. The requests are either completed immediately if there's no data
  21. * or executed as normal requests otherwise.
  22. *
  23. * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
  24. * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
  25. *
  26. * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
  27. * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
  28. *
  29. * The actual execution of flush is double buffered. Whenever a request
  30. * needs to execute PRE or POSTFLUSH, it queues at
  31. * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
  32. * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
  33. * completes, all the requests which were pending are proceeded to the next
  34. * step. This allows arbitrary merging of different types of PREFLUSH/FUA
  35. * requests.
  36. *
  37. * Currently, the following conditions are used to determine when to issue
  38. * flush.
  39. *
  40. * C1. At any given time, only one flush shall be in progress. This makes
  41. * double buffering sufficient.
  42. *
  43. * C2. Flush is deferred if any request is executing DATA of its sequence.
  44. * This avoids issuing separate POSTFLUSHes for requests which shared
  45. * PREFLUSH.
  46. *
  47. * C3. The second condition is ignored if there is a request which has
  48. * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
  49. * starvation in the unlikely case where there are continuous stream of
  50. * FUA (without PREFLUSH) requests.
  51. *
  52. * For devices which support FUA, it isn't clear whether C2 (and thus C3)
  53. * is beneficial.
  54. *
  55. * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
  56. * Once while executing DATA and again after the whole sequence is
  57. * complete. The first completion updates the contained bio but doesn't
  58. * finish it so that the bio submitter is notified only after the whole
  59. * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
  60. * req_bio_endio().
  61. *
  62. * The above peculiarity requires that each PREFLUSH/FUA request has only one
  63. * bio attached to it, which is guaranteed as they aren't allowed to be
  64. * merged in the usual way.
  65. */
  66. #include <linux/kernel.h>
  67. #include <linux/module.h>
  68. #include <linux/bio.h>
  69. #include <linux/blkdev.h>
  70. #include <linux/gfp.h>
  71. #include <linux/blk-mq.h>
  72. #include "blk.h"
  73. #include "blk-mq.h"
  74. #include "blk-mq-tag.h"
  75. #include "blk-mq-sched.h"
  76. /* PREFLUSH/FUA sequences */
  77. enum {
  78. REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
  79. REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
  80. REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
  81. REQ_FSEQ_DONE = (1 << 3),
  82. REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
  83. REQ_FSEQ_POSTFLUSH,
  84. /*
  85. * If flush has been pending longer than the following timeout,
  86. * it's issued even if flush_data requests are still in flight.
  87. */
  88. FLUSH_PENDING_TIMEOUT = 5 * HZ,
  89. };
  90. static bool blk_kick_flush(struct request_queue *q,
  91. struct blk_flush_queue *fq);
  92. static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
  93. {
  94. unsigned int policy = 0;
  95. if (blk_rq_sectors(rq))
  96. policy |= REQ_FSEQ_DATA;
  97. if (fflags & (1UL << QUEUE_FLAG_WC)) {
  98. if (rq->cmd_flags & REQ_PREFLUSH)
  99. policy |= REQ_FSEQ_PREFLUSH;
  100. if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
  101. (rq->cmd_flags & REQ_FUA))
  102. policy |= REQ_FSEQ_POSTFLUSH;
  103. }
  104. return policy;
  105. }
  106. static unsigned int blk_flush_cur_seq(struct request *rq)
  107. {
  108. return 1 << ffz(rq->flush.seq);
  109. }
  110. static void blk_flush_restore_request(struct request *rq)
  111. {
  112. /*
  113. * After flush data completion, @rq->bio is %NULL but we need to
  114. * complete the bio again. @rq->biotail is guaranteed to equal the
  115. * original @rq->bio. Restore it.
  116. */
  117. rq->bio = rq->biotail;
  118. /* make @rq a normal request */
  119. rq->rq_flags &= ~RQF_FLUSH_SEQ;
  120. rq->end_io = rq->flush.saved_end_io;
  121. }
  122. static bool blk_flush_queue_rq(struct request *rq, bool add_front)
  123. {
  124. if (rq->q->mq_ops) {
  125. blk_mq_add_to_requeue_list(rq, add_front, true);
  126. return false;
  127. } else {
  128. if (add_front)
  129. list_add(&rq->queuelist, &rq->q->queue_head);
  130. else
  131. list_add_tail(&rq->queuelist, &rq->q->queue_head);
  132. return true;
  133. }
  134. }
  135. /**
  136. * blk_flush_complete_seq - complete flush sequence
  137. * @rq: PREFLUSH/FUA request being sequenced
  138. * @fq: flush queue
  139. * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
  140. * @error: whether an error occurred
  141. *
  142. * @rq just completed @seq part of its flush sequence, record the
  143. * completion and trigger the next step.
  144. *
  145. * CONTEXT:
  146. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  147. *
  148. * RETURNS:
  149. * %true if requests were added to the dispatch queue, %false otherwise.
  150. */
  151. static bool blk_flush_complete_seq(struct request *rq,
  152. struct blk_flush_queue *fq,
  153. unsigned int seq, blk_status_t error)
  154. {
  155. struct request_queue *q = rq->q;
  156. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  157. bool queued = false, kicked;
  158. BUG_ON(rq->flush.seq & seq);
  159. rq->flush.seq |= seq;
  160. if (likely(!error))
  161. seq = blk_flush_cur_seq(rq);
  162. else
  163. seq = REQ_FSEQ_DONE;
  164. switch (seq) {
  165. case REQ_FSEQ_PREFLUSH:
  166. case REQ_FSEQ_POSTFLUSH:
  167. /* queue for flush */
  168. if (list_empty(pending))
  169. fq->flush_pending_since = jiffies;
  170. list_move_tail(&rq->flush.list, pending);
  171. break;
  172. case REQ_FSEQ_DATA:
  173. list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
  174. queued = blk_flush_queue_rq(rq, true);
  175. break;
  176. case REQ_FSEQ_DONE:
  177. /*
  178. * @rq was previously adjusted by blk_flush_issue() for
  179. * flush sequencing and may already have gone through the
  180. * flush data request completion path. Restore @rq for
  181. * normal completion and end it.
  182. */
  183. BUG_ON(!list_empty(&rq->queuelist));
  184. list_del_init(&rq->flush.list);
  185. blk_flush_restore_request(rq);
  186. if (q->mq_ops)
  187. blk_mq_end_request(rq, error);
  188. else
  189. __blk_end_request_all(rq, error);
  190. break;
  191. default:
  192. BUG();
  193. }
  194. kicked = blk_kick_flush(q, fq);
  195. return kicked | queued;
  196. }
  197. static void flush_end_io(struct request *flush_rq, blk_status_t error)
  198. {
  199. struct request_queue *q = flush_rq->q;
  200. struct list_head *running;
  201. bool queued = false;
  202. struct request *rq, *n;
  203. unsigned long flags = 0;
  204. struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
  205. if (q->mq_ops) {
  206. struct blk_mq_hw_ctx *hctx;
  207. /* release the tag's ownership to the req cloned from */
  208. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  209. hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
  210. if (!q->elevator) {
  211. blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
  212. flush_rq->tag = -1;
  213. } else {
  214. blk_mq_put_driver_tag_hctx(hctx, flush_rq);
  215. flush_rq->internal_tag = -1;
  216. }
  217. }
  218. running = &fq->flush_queue[fq->flush_running_idx];
  219. BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
  220. /* account completion of the flush request */
  221. fq->flush_running_idx ^= 1;
  222. if (!q->mq_ops)
  223. elv_completed_request(q, flush_rq);
  224. /* and push the waiting requests to the next stage */
  225. list_for_each_entry_safe(rq, n, running, flush.list) {
  226. unsigned int seq = blk_flush_cur_seq(rq);
  227. BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
  228. queued |= blk_flush_complete_seq(rq, fq, seq, error);
  229. }
  230. /*
  231. * Kick the queue to avoid stall for two cases:
  232. * 1. Moving a request silently to empty queue_head may stall the
  233. * queue.
  234. * 2. When flush request is running in non-queueable queue, the
  235. * queue is hold. Restart the queue after flush request is finished
  236. * to avoid stall.
  237. * This function is called from request completion path and calling
  238. * directly into request_fn may confuse the driver. Always use
  239. * kblockd.
  240. */
  241. if (queued || fq->flush_queue_delayed) {
  242. WARN_ON(q->mq_ops);
  243. blk_run_queue_async(q);
  244. }
  245. fq->flush_queue_delayed = 0;
  246. if (q->mq_ops)
  247. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  248. }
  249. /**
  250. * blk_kick_flush - consider issuing flush request
  251. * @q: request_queue being kicked
  252. * @fq: flush queue
  253. *
  254. * Flush related states of @q have changed, consider issuing flush request.
  255. * Please read the comment at the top of this file for more info.
  256. *
  257. * CONTEXT:
  258. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  259. *
  260. * RETURNS:
  261. * %true if flush was issued, %false otherwise.
  262. */
  263. static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
  264. {
  265. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  266. struct request *first_rq =
  267. list_first_entry(pending, struct request, flush.list);
  268. struct request *flush_rq = fq->flush_rq;
  269. /* C1 described at the top of this file */
  270. if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
  271. return false;
  272. /* C2 and C3
  273. *
  274. * For blk-mq + scheduling, we can risk having all driver tags
  275. * assigned to empty flushes, and we deadlock if we are expecting
  276. * other requests to make progress. Don't defer for that case.
  277. */
  278. if (!list_empty(&fq->flush_data_in_flight) &&
  279. !(q->mq_ops && q->elevator) &&
  280. time_before(jiffies,
  281. fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
  282. return false;
  283. /*
  284. * Issue flush and toggle pending_idx. This makes pending_idx
  285. * different from running_idx, which means flush is in flight.
  286. */
  287. fq->flush_pending_idx ^= 1;
  288. blk_rq_init(q, flush_rq);
  289. /*
  290. * In case of none scheduler, borrow tag from the first request
  291. * since they can't be in flight at the same time. And acquire
  292. * the tag's ownership for flush req.
  293. *
  294. * In case of IO scheduler, flush rq need to borrow scheduler tag
  295. * just for cheating put/get driver tag.
  296. */
  297. if (q->mq_ops) {
  298. struct blk_mq_hw_ctx *hctx;
  299. flush_rq->mq_ctx = first_rq->mq_ctx;
  300. if (!q->elevator) {
  301. fq->orig_rq = first_rq;
  302. flush_rq->tag = first_rq->tag;
  303. hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
  304. blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
  305. } else {
  306. flush_rq->internal_tag = first_rq->internal_tag;
  307. }
  308. }
  309. flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
  310. flush_rq->rq_flags |= RQF_FLUSH_SEQ;
  311. flush_rq->rq_disk = first_rq->rq_disk;
  312. flush_rq->end_io = flush_end_io;
  313. return blk_flush_queue_rq(flush_rq, false);
  314. }
  315. static void flush_data_end_io(struct request *rq, blk_status_t error)
  316. {
  317. struct request_queue *q = rq->q;
  318. struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
  319. lockdep_assert_held(q->queue_lock);
  320. /*
  321. * Updating q->in_flight[] here for making this tag usable
  322. * early. Because in blk_queue_start_tag(),
  323. * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
  324. * reserve tags for sync I/O.
  325. *
  326. * More importantly this way can avoid the following I/O
  327. * deadlock:
  328. *
  329. * - suppose there are 40 fua requests comming to flush queue
  330. * and queue depth is 31
  331. * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
  332. * tag for async I/O any more
  333. * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
  334. * and flush_data_end_io() is called
  335. * - the other rqs still can't go ahead if not updating
  336. * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
  337. * are held in flush data queue and make no progress of
  338. * handling post flush rq
  339. * - only after the post flush rq is handled, all these rqs
  340. * can be completed
  341. */
  342. elv_completed_request(q, rq);
  343. /* for avoiding double accounting */
  344. rq->rq_flags &= ~RQF_STARTED;
  345. /*
  346. * After populating an empty queue, kick it to avoid stall. Read
  347. * the comment in flush_end_io().
  348. */
  349. if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
  350. blk_run_queue_async(q);
  351. }
  352. static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
  353. {
  354. struct request_queue *q = rq->q;
  355. struct blk_mq_hw_ctx *hctx;
  356. struct blk_mq_ctx *ctx = rq->mq_ctx;
  357. unsigned long flags;
  358. struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
  359. hctx = blk_mq_map_queue(q, ctx->cpu);
  360. if (q->elevator) {
  361. WARN_ON(rq->tag < 0);
  362. blk_mq_put_driver_tag_hctx(hctx, rq);
  363. }
  364. /*
  365. * After populating an empty queue, kick it to avoid stall. Read
  366. * the comment in flush_end_io().
  367. */
  368. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  369. blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
  370. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  371. blk_mq_run_hw_queue(hctx, true);
  372. }
  373. /**
  374. * blk_insert_flush - insert a new PREFLUSH/FUA request
  375. * @rq: request to insert
  376. *
  377. * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
  378. * or __blk_mq_run_hw_queue() to dispatch request.
  379. * @rq is being submitted. Analyze what needs to be done and put it on the
  380. * right queue.
  381. */
  382. void blk_insert_flush(struct request *rq)
  383. {
  384. struct request_queue *q = rq->q;
  385. unsigned long fflags = q->queue_flags; /* may change, cache */
  386. unsigned int policy = blk_flush_policy(fflags, rq);
  387. struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
  388. if (!q->mq_ops)
  389. lockdep_assert_held(q->queue_lock);
  390. /*
  391. * @policy now records what operations need to be done. Adjust
  392. * REQ_PREFLUSH and FUA for the driver.
  393. */
  394. rq->cmd_flags &= ~REQ_PREFLUSH;
  395. if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
  396. rq->cmd_flags &= ~REQ_FUA;
  397. /*
  398. * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
  399. * of those flags, we have to set REQ_SYNC to avoid skewing
  400. * the request accounting.
  401. */
  402. rq->cmd_flags |= REQ_SYNC;
  403. /*
  404. * An empty flush handed down from a stacking driver may
  405. * translate into nothing if the underlying device does not
  406. * advertise a write-back cache. In this case, simply
  407. * complete the request.
  408. */
  409. if (!policy) {
  410. if (q->mq_ops)
  411. blk_mq_end_request(rq, 0);
  412. else
  413. __blk_end_request(rq, 0, 0);
  414. return;
  415. }
  416. BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
  417. /*
  418. * If there's data but flush is not necessary, the request can be
  419. * processed directly without going through flush machinery. Queue
  420. * for normal execution.
  421. */
  422. if ((policy & REQ_FSEQ_DATA) &&
  423. !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
  424. if (q->mq_ops)
  425. blk_mq_request_bypass_insert(rq, false);
  426. else
  427. list_add_tail(&rq->queuelist, &q->queue_head);
  428. return;
  429. }
  430. /*
  431. * @rq should go through flush machinery. Mark it part of flush
  432. * sequence and submit for further processing.
  433. */
  434. memset(&rq->flush, 0, sizeof(rq->flush));
  435. INIT_LIST_HEAD(&rq->flush.list);
  436. rq->rq_flags |= RQF_FLUSH_SEQ;
  437. rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
  438. if (q->mq_ops) {
  439. rq->end_io = mq_flush_data_end_io;
  440. spin_lock_irq(&fq->mq_flush_lock);
  441. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  442. spin_unlock_irq(&fq->mq_flush_lock);
  443. return;
  444. }
  445. rq->end_io = flush_data_end_io;
  446. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  447. }
  448. /**
  449. * blkdev_issue_flush - queue a flush
  450. * @bdev: blockdev to issue flush for
  451. * @gfp_mask: memory allocation flags (for bio_alloc)
  452. * @error_sector: error sector
  453. *
  454. * Description:
  455. * Issue a flush for the block device in question. Caller can supply
  456. * room for storing the error offset in case of a flush error, if they
  457. * wish to.
  458. */
  459. int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
  460. sector_t *error_sector)
  461. {
  462. struct request_queue *q;
  463. struct bio *bio;
  464. int ret = 0;
  465. if (bdev->bd_disk == NULL)
  466. return -ENXIO;
  467. q = bdev_get_queue(bdev);
  468. if (!q)
  469. return -ENXIO;
  470. /*
  471. * some block devices may not have their queue correctly set up here
  472. * (e.g. loop device without a backing file) and so issuing a flush
  473. * here will panic. Ensure there is a request function before issuing
  474. * the flush.
  475. */
  476. if (!q->make_request_fn)
  477. return -ENXIO;
  478. bio = bio_alloc(gfp_mask, 0);
  479. bio_set_dev(bio, bdev);
  480. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  481. ret = submit_bio_wait(bio);
  482. /*
  483. * The driver must store the error location in ->bi_sector, if
  484. * it supports it. For non-stacked drivers, this should be
  485. * copied from blk_rq_pos(rq).
  486. */
  487. if (error_sector)
  488. *error_sector = bio->bi_iter.bi_sector;
  489. bio_put(bio);
  490. return ret;
  491. }
  492. EXPORT_SYMBOL(blkdev_issue_flush);
  493. struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
  494. int node, int cmd_size)
  495. {
  496. struct blk_flush_queue *fq;
  497. int rq_sz = sizeof(struct request);
  498. fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
  499. if (!fq)
  500. goto fail;
  501. if (q->mq_ops)
  502. spin_lock_init(&fq->mq_flush_lock);
  503. rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
  504. fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
  505. if (!fq->flush_rq)
  506. goto fail_rq;
  507. INIT_LIST_HEAD(&fq->flush_queue[0]);
  508. INIT_LIST_HEAD(&fq->flush_queue[1]);
  509. INIT_LIST_HEAD(&fq->flush_data_in_flight);
  510. return fq;
  511. fail_rq:
  512. kfree(fq);
  513. fail:
  514. return NULL;
  515. }
  516. void blk_free_flush_queue(struct blk_flush_queue *fq)
  517. {
  518. /* bio based request queue hasn't flush queue */
  519. if (!fq)
  520. return;
  521. kfree(fq->flush_rq);
  522. kfree(fq);
  523. }