spi-topcliff-pch.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. };
  180. /**
  181. * struct pch_spi_board_data - Holds the SPI device specific details
  182. * @pdev: Pointer to the PCI device
  183. * @suspend_sts: Status of suspend
  184. * @num: The number of SPI device instance
  185. */
  186. struct pch_spi_board_data {
  187. struct pci_dev *pdev;
  188. u8 suspend_sts;
  189. int num;
  190. };
  191. struct pch_pd_dev_save {
  192. int num;
  193. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  194. struct pch_spi_board_data *board_dat;
  195. };
  196. static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
  197. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  198. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  201. { }
  202. };
  203. /**
  204. * pch_spi_writereg() - Performs register writes
  205. * @master: Pointer to struct spi_master.
  206. * @idx: Register offset.
  207. * @val: Value to be written to register.
  208. */
  209. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  210. {
  211. struct pch_spi_data *data = spi_master_get_devdata(master);
  212. iowrite32(val, (data->io_remap_addr + idx));
  213. }
  214. /**
  215. * pch_spi_readreg() - Performs register reads
  216. * @master: Pointer to struct spi_master.
  217. * @idx: Register offset.
  218. */
  219. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  220. {
  221. struct pch_spi_data *data = spi_master_get_devdata(master);
  222. return ioread32(data->io_remap_addr + idx);
  223. }
  224. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  225. u32 set, u32 clr)
  226. {
  227. u32 tmp = pch_spi_readreg(master, idx);
  228. tmp = (tmp & ~clr) | set;
  229. pch_spi_writereg(master, idx, tmp);
  230. }
  231. static void pch_spi_set_master_mode(struct spi_master *master)
  232. {
  233. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  234. }
  235. /**
  236. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  237. * @master: Pointer to struct spi_master.
  238. */
  239. static void pch_spi_clear_fifo(struct spi_master *master)
  240. {
  241. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  242. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  243. }
  244. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  245. void __iomem *io_remap_addr)
  246. {
  247. u32 n_read, tx_index, rx_index, bpw_len;
  248. u16 *pkt_rx_buffer, *pkt_tx_buff;
  249. int read_cnt;
  250. u32 reg_spcr_val;
  251. void __iomem *spsr;
  252. void __iomem *spdrr;
  253. void __iomem *spdwr;
  254. spsr = io_remap_addr + PCH_SPSR;
  255. iowrite32(reg_spsr_val, spsr);
  256. if (data->transfer_active) {
  257. rx_index = data->rx_index;
  258. tx_index = data->tx_index;
  259. bpw_len = data->bpw_len;
  260. pkt_rx_buffer = data->pkt_rx_buff;
  261. pkt_tx_buff = data->pkt_tx_buff;
  262. spdrr = io_remap_addr + PCH_SPDRR;
  263. spdwr = io_remap_addr + PCH_SPDWR;
  264. n_read = PCH_READABLE(reg_spsr_val);
  265. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  266. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  267. if (tx_index < bpw_len)
  268. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  269. }
  270. /* disable RFI if not needed */
  271. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  272. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  273. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  274. /* reset rx threshold */
  275. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  276. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  277. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  278. }
  279. /* update counts */
  280. data->tx_index = tx_index;
  281. data->rx_index = rx_index;
  282. /* if transfer complete interrupt */
  283. if (reg_spsr_val & SPSR_FI_BIT) {
  284. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  285. /* disable interrupts */
  286. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  287. PCH_ALL);
  288. /* transfer is completed;
  289. inform pch_spi_process_messages */
  290. data->transfer_complete = true;
  291. data->transfer_active = false;
  292. wake_up(&data->wait);
  293. } else {
  294. dev_err(&data->master->dev,
  295. "%s : Transfer is not completed",
  296. __func__);
  297. }
  298. }
  299. }
  300. }
  301. /**
  302. * pch_spi_handler() - Interrupt handler
  303. * @irq: The interrupt number.
  304. * @dev_id: Pointer to struct pch_spi_board_data.
  305. */
  306. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  307. {
  308. u32 reg_spsr_val;
  309. void __iomem *spsr;
  310. void __iomem *io_remap_addr;
  311. irqreturn_t ret = IRQ_NONE;
  312. struct pch_spi_data *data = dev_id;
  313. struct pch_spi_board_data *board_dat = data->board_dat;
  314. if (board_dat->suspend_sts) {
  315. dev_dbg(&board_dat->pdev->dev,
  316. "%s returning due to suspend\n", __func__);
  317. return IRQ_NONE;
  318. }
  319. io_remap_addr = data->io_remap_addr;
  320. spsr = io_remap_addr + PCH_SPSR;
  321. reg_spsr_val = ioread32(spsr);
  322. if (reg_spsr_val & SPSR_ORF_BIT) {
  323. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  324. if (data->current_msg->complete != 0) {
  325. data->transfer_complete = true;
  326. data->current_msg->status = -EIO;
  327. data->current_msg->complete(data->current_msg->context);
  328. data->bcurrent_msg_processing = false;
  329. data->current_msg = NULL;
  330. data->cur_trans = NULL;
  331. }
  332. }
  333. if (data->use_dma)
  334. return IRQ_NONE;
  335. /* Check if the interrupt is for SPI device */
  336. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  337. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  338. ret = IRQ_HANDLED;
  339. }
  340. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  341. __func__, ret);
  342. return ret;
  343. }
  344. /**
  345. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  346. * @master: Pointer to struct spi_master.
  347. * @speed_hz: Baud rate.
  348. */
  349. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  350. {
  351. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  352. /* if baud rate is less than we can support limit it */
  353. if (n_spbr > PCH_MAX_SPBR)
  354. n_spbr = PCH_MAX_SPBR;
  355. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  356. }
  357. /**
  358. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  359. * @master: Pointer to struct spi_master.
  360. * @bits_per_word: Bits per word for SPI transfer.
  361. */
  362. static void pch_spi_set_bits_per_word(struct spi_master *master,
  363. u8 bits_per_word)
  364. {
  365. if (bits_per_word == 8)
  366. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  367. else
  368. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  369. }
  370. /**
  371. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  372. * @spi: Pointer to struct spi_device.
  373. */
  374. static void pch_spi_setup_transfer(struct spi_device *spi)
  375. {
  376. u32 flags = 0;
  377. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  378. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  379. spi->max_speed_hz);
  380. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  381. /* set bits per word */
  382. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  383. if (!(spi->mode & SPI_LSB_FIRST))
  384. flags |= SPCR_LSBF_BIT;
  385. if (spi->mode & SPI_CPOL)
  386. flags |= SPCR_CPOL_BIT;
  387. if (spi->mode & SPI_CPHA)
  388. flags |= SPCR_CPHA_BIT;
  389. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  390. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  391. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  392. pch_spi_clear_fifo(spi->master);
  393. }
  394. /**
  395. * pch_spi_reset() - Clears SPI registers
  396. * @master: Pointer to struct spi_master.
  397. */
  398. static void pch_spi_reset(struct spi_master *master)
  399. {
  400. /* write 1 to reset SPI */
  401. pch_spi_writereg(master, PCH_SRST, 0x1);
  402. /* clear reset */
  403. pch_spi_writereg(master, PCH_SRST, 0x0);
  404. }
  405. static int pch_spi_setup(struct spi_device *pspi)
  406. {
  407. /* check bits per word */
  408. if (pspi->bits_per_word == 0) {
  409. pspi->bits_per_word = 8;
  410. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  411. }
  412. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  413. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  414. return -EINVAL;
  415. }
  416. /* Check baud rate setting */
  417. /* if baud rate of chip is greater than
  418. max we can support,return error */
  419. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  420. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  421. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  422. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  423. return 0;
  424. }
  425. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  426. {
  427. struct spi_transfer *transfer;
  428. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  429. int retval;
  430. unsigned long flags;
  431. /* validate spi message and baud rate */
  432. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  433. dev_err(&pspi->dev, "%s list empty\n", __func__);
  434. retval = -EINVAL;
  435. goto err_out;
  436. }
  437. if (unlikely(pspi->max_speed_hz == 0)) {
  438. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  439. __func__, pspi->max_speed_hz);
  440. retval = -EINVAL;
  441. goto err_out;
  442. }
  443. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  444. "Transfer Speed is set.\n", __func__);
  445. spin_lock_irqsave(&data->lock, flags);
  446. /* validate Tx/Rx buffers and Transfer length */
  447. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  448. if (!transfer->tx_buf && !transfer->rx_buf) {
  449. dev_err(&pspi->dev,
  450. "%s Tx and Rx buffer NULL\n", __func__);
  451. retval = -EINVAL;
  452. goto err_return_spinlock;
  453. }
  454. if (!transfer->len) {
  455. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  456. __func__);
  457. retval = -EINVAL;
  458. goto err_return_spinlock;
  459. }
  460. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  461. " valid\n", __func__);
  462. /* if baud rate has been specified validate the same */
  463. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  464. transfer->speed_hz = PCH_MAX_BAUDRATE;
  465. /* if bits per word has been specified validate the same */
  466. if (transfer->bits_per_word) {
  467. if ((transfer->bits_per_word != 8)
  468. && (transfer->bits_per_word != 16)) {
  469. retval = -EINVAL;
  470. dev_err(&pspi->dev,
  471. "%s Invalid bits per word\n", __func__);
  472. goto err_return_spinlock;
  473. }
  474. }
  475. }
  476. spin_unlock_irqrestore(&data->lock, flags);
  477. /* We won't process any messages if we have been asked to terminate */
  478. if (data->status == STATUS_EXITING) {
  479. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  480. retval = -ESHUTDOWN;
  481. goto err_out;
  482. }
  483. /* If suspended ,return -EINVAL */
  484. if (data->board_dat->suspend_sts) {
  485. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  486. retval = -EINVAL;
  487. goto err_out;
  488. }
  489. /* set status of message */
  490. pmsg->actual_length = 0;
  491. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  492. pmsg->status = -EINPROGRESS;
  493. spin_lock_irqsave(&data->lock, flags);
  494. /* add message to queue */
  495. list_add_tail(&pmsg->queue, &data->queue);
  496. spin_unlock_irqrestore(&data->lock, flags);
  497. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  498. /* schedule work queue to run */
  499. queue_work(data->wk, &data->work);
  500. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  501. retval = 0;
  502. err_out:
  503. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  504. return retval;
  505. err_return_spinlock:
  506. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  507. spin_unlock_irqrestore(&data->lock, flags);
  508. return retval;
  509. }
  510. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  511. struct spi_device *pspi)
  512. {
  513. if (data->current_chip != NULL) {
  514. if (pspi->chip_select != data->n_curnt_chip) {
  515. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  516. data->current_chip = NULL;
  517. }
  518. }
  519. data->current_chip = pspi;
  520. data->n_curnt_chip = data->current_chip->chip_select;
  521. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  522. pch_spi_setup_transfer(pspi);
  523. }
  524. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  525. {
  526. int size;
  527. u32 n_writes;
  528. int j;
  529. struct spi_message *pmsg;
  530. const u8 *tx_buf;
  531. const u16 *tx_sbuf;
  532. /* set baud rate if needed */
  533. if (data->cur_trans->speed_hz) {
  534. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  535. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  536. }
  537. /* set bits per word if needed */
  538. if (data->cur_trans->bits_per_word &&
  539. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  540. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  541. pch_spi_set_bits_per_word(data->master,
  542. data->cur_trans->bits_per_word);
  543. *bpw = data->cur_trans->bits_per_word;
  544. } else {
  545. *bpw = data->current_msg->spi->bits_per_word;
  546. }
  547. /* reset Tx/Rx index */
  548. data->tx_index = 0;
  549. data->rx_index = 0;
  550. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  551. /* find alloc size */
  552. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  553. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  554. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  555. if (data->pkt_tx_buff != NULL) {
  556. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  557. if (!data->pkt_rx_buff)
  558. kfree(data->pkt_tx_buff);
  559. }
  560. if (!data->pkt_rx_buff) {
  561. /* flush queue and set status of all transfers to -ENOMEM */
  562. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  563. list_for_each_entry(pmsg, data->queue.next, queue) {
  564. pmsg->status = -ENOMEM;
  565. if (pmsg->complete != 0)
  566. pmsg->complete(pmsg->context);
  567. /* delete from queue */
  568. list_del_init(&pmsg->queue);
  569. }
  570. return;
  571. }
  572. /* copy Tx Data */
  573. if (data->cur_trans->tx_buf != NULL) {
  574. if (*bpw == 8) {
  575. tx_buf = data->cur_trans->tx_buf;
  576. for (j = 0; j < data->bpw_len; j++)
  577. data->pkt_tx_buff[j] = *tx_buf++;
  578. } else {
  579. tx_sbuf = data->cur_trans->tx_buf;
  580. for (j = 0; j < data->bpw_len; j++)
  581. data->pkt_tx_buff[j] = *tx_sbuf++;
  582. }
  583. }
  584. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  585. n_writes = data->bpw_len;
  586. if (n_writes > PCH_MAX_FIFO_DEPTH)
  587. n_writes = PCH_MAX_FIFO_DEPTH;
  588. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  589. "0x2 to SSNXCR\n", __func__);
  590. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  591. for (j = 0; j < n_writes; j++)
  592. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  593. /* update tx_index */
  594. data->tx_index = j;
  595. /* reset transfer complete flag */
  596. data->transfer_complete = false;
  597. data->transfer_active = true;
  598. }
  599. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  600. {
  601. struct spi_message *pmsg;
  602. dev_dbg(&data->master->dev, "%s called\n", __func__);
  603. /* Invoke complete callback
  604. * [To the spi core..indicating end of transfer] */
  605. data->current_msg->status = 0;
  606. if (data->current_msg->complete != 0) {
  607. dev_dbg(&data->master->dev,
  608. "%s:Invoking callback of SPI core\n", __func__);
  609. data->current_msg->complete(data->current_msg->context);
  610. }
  611. /* update status in global variable */
  612. data->bcurrent_msg_processing = false;
  613. dev_dbg(&data->master->dev,
  614. "%s:data->bcurrent_msg_processing = false\n", __func__);
  615. data->current_msg = NULL;
  616. data->cur_trans = NULL;
  617. /* check if we have items in list and not suspending
  618. * return 1 if list empty */
  619. if ((list_empty(&data->queue) == 0) &&
  620. (!data->board_dat->suspend_sts) &&
  621. (data->status != STATUS_EXITING)) {
  622. /* We have some more work to do (either there is more tranint
  623. * bpw;sfer requests in the current message or there are
  624. *more messages)
  625. */
  626. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  627. queue_work(data->wk, &data->work);
  628. } else if (data->board_dat->suspend_sts ||
  629. data->status == STATUS_EXITING) {
  630. dev_dbg(&data->master->dev,
  631. "%s suspend/remove initiated, flushing queue\n",
  632. __func__);
  633. list_for_each_entry(pmsg, data->queue.next, queue) {
  634. pmsg->status = -EIO;
  635. if (pmsg->complete)
  636. pmsg->complete(pmsg->context);
  637. /* delete from queue */
  638. list_del_init(&pmsg->queue);
  639. }
  640. }
  641. }
  642. static void pch_spi_set_ir(struct pch_spi_data *data)
  643. {
  644. /* enable interrupts, set threshold, enable SPI */
  645. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  646. /* set receive threshold to PCH_RX_THOLD */
  647. pch_spi_setclr_reg(data->master, PCH_SPCR,
  648. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  649. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  650. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  651. MASK_RFIC_SPCR_BITS | PCH_ALL);
  652. else
  653. /* set receive threshold to maximum */
  654. pch_spi_setclr_reg(data->master, PCH_SPCR,
  655. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  656. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  657. SPCR_SPE_BIT,
  658. MASK_RFIC_SPCR_BITS | PCH_ALL);
  659. /* Wait until the transfer completes; go to sleep after
  660. initiating the transfer. */
  661. dev_dbg(&data->master->dev,
  662. "%s:waiting for transfer to get over\n", __func__);
  663. wait_event_interruptible(data->wait, data->transfer_complete);
  664. /* clear all interrupts */
  665. pch_spi_writereg(data->master, PCH_SPSR,
  666. pch_spi_readreg(data->master, PCH_SPSR));
  667. /* Disable interrupts and SPI transfer */
  668. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  669. /* clear FIFO */
  670. pch_spi_clear_fifo(data->master);
  671. }
  672. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  673. {
  674. int j;
  675. u8 *rx_buf;
  676. u16 *rx_sbuf;
  677. /* copy Rx Data */
  678. if (!data->cur_trans->rx_buf)
  679. return;
  680. if (bpw == 8) {
  681. rx_buf = data->cur_trans->rx_buf;
  682. for (j = 0; j < data->bpw_len; j++)
  683. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  684. } else {
  685. rx_sbuf = data->cur_trans->rx_buf;
  686. for (j = 0; j < data->bpw_len; j++)
  687. *rx_sbuf++ = data->pkt_rx_buff[j];
  688. }
  689. }
  690. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  691. {
  692. int j;
  693. u8 *rx_buf;
  694. u16 *rx_sbuf;
  695. const u8 *rx_dma_buf;
  696. const u16 *rx_dma_sbuf;
  697. /* copy Rx Data */
  698. if (!data->cur_trans->rx_buf)
  699. return;
  700. if (bpw == 8) {
  701. rx_buf = data->cur_trans->rx_buf;
  702. rx_dma_buf = data->dma.rx_buf_virt;
  703. for (j = 0; j < data->bpw_len; j++)
  704. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  705. } else {
  706. rx_sbuf = data->cur_trans->rx_buf;
  707. rx_dma_sbuf = data->dma.rx_buf_virt;
  708. for (j = 0; j < data->bpw_len; j++)
  709. *rx_sbuf++ = *rx_dma_sbuf++;
  710. }
  711. }
  712. static int pch_spi_start_transfer(struct pch_spi_data *data)
  713. {
  714. struct pch_spi_dma_ctrl *dma;
  715. unsigned long flags;
  716. int rtn;
  717. dma = &data->dma;
  718. spin_lock_irqsave(&data->lock, flags);
  719. /* disable interrupts, SPI set enable */
  720. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  721. spin_unlock_irqrestore(&data->lock, flags);
  722. /* Wait until the transfer completes; go to sleep after
  723. initiating the transfer. */
  724. dev_dbg(&data->master->dev,
  725. "%s:waiting for transfer to get over\n", __func__);
  726. rtn = wait_event_interruptible_timeout(data->wait,
  727. data->transfer_complete,
  728. msecs_to_jiffies(2 * HZ));
  729. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  730. DMA_FROM_DEVICE);
  731. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  732. DMA_FROM_DEVICE);
  733. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  734. async_tx_ack(dma->desc_rx);
  735. async_tx_ack(dma->desc_tx);
  736. kfree(dma->sg_tx_p);
  737. kfree(dma->sg_rx_p);
  738. spin_lock_irqsave(&data->lock, flags);
  739. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  740. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  741. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  742. SPCR_SPE_BIT);
  743. /* clear all interrupts */
  744. pch_spi_writereg(data->master, PCH_SPSR,
  745. pch_spi_readreg(data->master, PCH_SPSR));
  746. /* clear FIFO */
  747. pch_spi_clear_fifo(data->master);
  748. spin_unlock_irqrestore(&data->lock, flags);
  749. return rtn;
  750. }
  751. static void pch_dma_rx_complete(void *arg)
  752. {
  753. struct pch_spi_data *data = arg;
  754. /* transfer is completed;inform pch_spi_process_messages_dma */
  755. data->transfer_complete = true;
  756. wake_up_interruptible(&data->wait);
  757. }
  758. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  759. {
  760. struct pch_dma_slave *param = slave;
  761. if ((chan->chan_id == param->chan_id) &&
  762. (param->dma_dev == chan->device->dev)) {
  763. chan->private = param;
  764. return true;
  765. } else {
  766. return false;
  767. }
  768. }
  769. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  770. {
  771. dma_cap_mask_t mask;
  772. struct dma_chan *chan;
  773. struct pci_dev *dma_dev;
  774. struct pch_dma_slave *param;
  775. struct pch_spi_dma_ctrl *dma;
  776. unsigned int width;
  777. if (bpw == 8)
  778. width = PCH_DMA_WIDTH_1_BYTE;
  779. else
  780. width = PCH_DMA_WIDTH_2_BYTES;
  781. dma = &data->dma;
  782. dma_cap_zero(mask);
  783. dma_cap_set(DMA_SLAVE, mask);
  784. /* Get DMA's dev information */
  785. dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
  786. /* Set Tx DMA */
  787. param = &dma->param_tx;
  788. param->dma_dev = &dma_dev->dev;
  789. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  790. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  791. param->width = width;
  792. chan = dma_request_channel(mask, pch_spi_filter, param);
  793. if (!chan) {
  794. dev_err(&data->master->dev,
  795. "ERROR: dma_request_channel FAILS(Tx)\n");
  796. data->use_dma = 0;
  797. return;
  798. }
  799. dma->chan_tx = chan;
  800. /* Set Rx DMA */
  801. param = &dma->param_rx;
  802. param->dma_dev = &dma_dev->dev;
  803. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  804. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  805. param->width = width;
  806. chan = dma_request_channel(mask, pch_spi_filter, param);
  807. if (!chan) {
  808. dev_err(&data->master->dev,
  809. "ERROR: dma_request_channel FAILS(Rx)\n");
  810. dma_release_channel(dma->chan_tx);
  811. dma->chan_tx = NULL;
  812. data->use_dma = 0;
  813. return;
  814. }
  815. dma->chan_rx = chan;
  816. }
  817. static void pch_spi_release_dma(struct pch_spi_data *data)
  818. {
  819. struct pch_spi_dma_ctrl *dma;
  820. dma = &data->dma;
  821. if (dma->chan_tx) {
  822. dma_release_channel(dma->chan_tx);
  823. dma->chan_tx = NULL;
  824. }
  825. if (dma->chan_rx) {
  826. dma_release_channel(dma->chan_rx);
  827. dma->chan_rx = NULL;
  828. }
  829. return;
  830. }
  831. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  832. {
  833. const u8 *tx_buf;
  834. const u16 *tx_sbuf;
  835. u8 *tx_dma_buf;
  836. u16 *tx_dma_sbuf;
  837. struct scatterlist *sg;
  838. struct dma_async_tx_descriptor *desc_tx;
  839. struct dma_async_tx_descriptor *desc_rx;
  840. int num;
  841. int i;
  842. int size;
  843. int rem;
  844. unsigned long flags;
  845. struct pch_spi_dma_ctrl *dma;
  846. dma = &data->dma;
  847. /* set baud rate if needed */
  848. if (data->cur_trans->speed_hz) {
  849. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  850. spin_lock_irqsave(&data->lock, flags);
  851. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  852. spin_unlock_irqrestore(&data->lock, flags);
  853. }
  854. /* set bits per word if needed */
  855. if (data->cur_trans->bits_per_word &&
  856. (data->current_msg->spi->bits_per_word !=
  857. data->cur_trans->bits_per_word)) {
  858. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  859. spin_lock_irqsave(&data->lock, flags);
  860. pch_spi_set_bits_per_word(data->master,
  861. data->cur_trans->bits_per_word);
  862. spin_unlock_irqrestore(&data->lock, flags);
  863. *bpw = data->cur_trans->bits_per_word;
  864. } else {
  865. *bpw = data->current_msg->spi->bits_per_word;
  866. }
  867. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  868. /* copy Tx Data */
  869. if (data->cur_trans->tx_buf != NULL) {
  870. if (*bpw == 8) {
  871. tx_buf = data->cur_trans->tx_buf;
  872. tx_dma_buf = dma->tx_buf_virt;
  873. for (i = 0; i < data->bpw_len; i++)
  874. *tx_dma_buf++ = *tx_buf++;
  875. } else {
  876. tx_sbuf = data->cur_trans->tx_buf;
  877. tx_dma_sbuf = dma->tx_buf_virt;
  878. for (i = 0; i < data->bpw_len; i++)
  879. *tx_dma_sbuf++ = *tx_sbuf++;
  880. }
  881. }
  882. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  883. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  884. size = PCH_DMA_TRANS_SIZE;
  885. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  886. } else {
  887. num = 1;
  888. size = data->bpw_len;
  889. rem = data->bpw_len;
  890. }
  891. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  892. __func__, num, size, rem);
  893. spin_lock_irqsave(&data->lock, flags);
  894. /* set receive fifo threshold and transmit fifo threshold */
  895. pch_spi_setclr_reg(data->master, PCH_SPCR,
  896. ((size - 1) << SPCR_RFIC_FIELD) |
  897. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  898. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  899. spin_unlock_irqrestore(&data->lock, flags);
  900. /* RX */
  901. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  902. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  903. /* offset, length setting */
  904. sg = dma->sg_rx_p;
  905. for (i = 0; i < num; i++, sg++) {
  906. if (i == (num - 2)) {
  907. sg->offset = size * i;
  908. sg->offset = sg->offset * (*bpw / 8);
  909. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  910. sg->offset);
  911. sg_dma_len(sg) = rem;
  912. } else if (i == (num - 1)) {
  913. sg->offset = size * (i - 1) + rem;
  914. sg->offset = sg->offset * (*bpw / 8);
  915. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  916. sg->offset);
  917. sg_dma_len(sg) = size;
  918. } else {
  919. sg->offset = size * i;
  920. sg->offset = sg->offset * (*bpw / 8);
  921. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  922. sg->offset);
  923. sg_dma_len(sg) = size;
  924. }
  925. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  926. }
  927. sg = dma->sg_rx_p;
  928. desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
  929. num, DMA_DEV_TO_MEM,
  930. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  931. if (!desc_rx) {
  932. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  933. __func__);
  934. return;
  935. }
  936. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  937. desc_rx->callback = pch_dma_rx_complete;
  938. desc_rx->callback_param = data;
  939. dma->nent = num;
  940. dma->desc_rx = desc_rx;
  941. /* TX */
  942. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  943. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  944. size = PCH_DMA_TRANS_SIZE;
  945. rem = 16;
  946. } else {
  947. num = 1;
  948. size = data->bpw_len;
  949. rem = data->bpw_len;
  950. }
  951. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  952. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  953. /* offset, length setting */
  954. sg = dma->sg_tx_p;
  955. for (i = 0; i < num; i++, sg++) {
  956. if (i == 0) {
  957. sg->offset = 0;
  958. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  959. sg->offset);
  960. sg_dma_len(sg) = rem;
  961. } else {
  962. sg->offset = rem + size * (i - 1);
  963. sg->offset = sg->offset * (*bpw / 8);
  964. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  965. sg->offset);
  966. sg_dma_len(sg) = size;
  967. }
  968. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  969. }
  970. sg = dma->sg_tx_p;
  971. desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
  972. sg, num, DMA_MEM_TO_DEV,
  973. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  974. if (!desc_tx) {
  975. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  976. __func__);
  977. return;
  978. }
  979. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  980. desc_tx->callback = NULL;
  981. desc_tx->callback_param = data;
  982. dma->nent = num;
  983. dma->desc_tx = desc_tx;
  984. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  985. "0x2 to SSNXCR\n", __func__);
  986. spin_lock_irqsave(&data->lock, flags);
  987. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  988. desc_rx->tx_submit(desc_rx);
  989. desc_tx->tx_submit(desc_tx);
  990. spin_unlock_irqrestore(&data->lock, flags);
  991. /* reset transfer complete flag */
  992. data->transfer_complete = false;
  993. }
  994. static void pch_spi_process_messages(struct work_struct *pwork)
  995. {
  996. struct spi_message *pmsg;
  997. struct pch_spi_data *data;
  998. int bpw;
  999. data = container_of(pwork, struct pch_spi_data, work);
  1000. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  1001. spin_lock(&data->lock);
  1002. /* check if suspend has been initiated;if yes flush queue */
  1003. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1004. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  1005. "flushing queue\n", __func__);
  1006. list_for_each_entry(pmsg, data->queue.next, queue) {
  1007. pmsg->status = -EIO;
  1008. if (pmsg->complete != 0) {
  1009. spin_unlock(&data->lock);
  1010. pmsg->complete(pmsg->context);
  1011. spin_lock(&data->lock);
  1012. }
  1013. /* delete from queue */
  1014. list_del_init(&pmsg->queue);
  1015. }
  1016. spin_unlock(&data->lock);
  1017. return;
  1018. }
  1019. data->bcurrent_msg_processing = true;
  1020. dev_dbg(&data->master->dev,
  1021. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1022. /* Get the message from the queue and delete it from there. */
  1023. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1024. queue);
  1025. list_del_init(&data->current_msg->queue);
  1026. data->current_msg->status = 0;
  1027. pch_spi_select_chip(data, data->current_msg->spi);
  1028. spin_unlock(&data->lock);
  1029. if (data->use_dma)
  1030. pch_spi_request_dma(data,
  1031. data->current_msg->spi->bits_per_word);
  1032. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1033. do {
  1034. /* If we are already processing a message get the next
  1035. transfer structure from the message otherwise retrieve
  1036. the 1st transfer request from the message. */
  1037. spin_lock(&data->lock);
  1038. if (data->cur_trans == NULL) {
  1039. data->cur_trans =
  1040. list_entry(data->current_msg->transfers.next,
  1041. struct spi_transfer, transfer_list);
  1042. dev_dbg(&data->master->dev, "%s "
  1043. ":Getting 1st transfer message\n", __func__);
  1044. } else {
  1045. data->cur_trans =
  1046. list_entry(data->cur_trans->transfer_list.next,
  1047. struct spi_transfer, transfer_list);
  1048. dev_dbg(&data->master->dev, "%s "
  1049. ":Getting next transfer message\n", __func__);
  1050. }
  1051. spin_unlock(&data->lock);
  1052. if (data->use_dma) {
  1053. pch_spi_handle_dma(data, &bpw);
  1054. if (!pch_spi_start_transfer(data))
  1055. goto out;
  1056. pch_spi_copy_rx_data_for_dma(data, bpw);
  1057. } else {
  1058. pch_spi_set_tx(data, &bpw);
  1059. pch_spi_set_ir(data);
  1060. pch_spi_copy_rx_data(data, bpw);
  1061. kfree(data->pkt_rx_buff);
  1062. data->pkt_rx_buff = NULL;
  1063. kfree(data->pkt_tx_buff);
  1064. data->pkt_tx_buff = NULL;
  1065. }
  1066. /* increment message count */
  1067. data->current_msg->actual_length += data->cur_trans->len;
  1068. dev_dbg(&data->master->dev,
  1069. "%s:data->current_msg->actual_length=%d\n",
  1070. __func__, data->current_msg->actual_length);
  1071. /* check for delay */
  1072. if (data->cur_trans->delay_usecs) {
  1073. dev_dbg(&data->master->dev, "%s:"
  1074. "delay in usec=%d\n", __func__,
  1075. data->cur_trans->delay_usecs);
  1076. udelay(data->cur_trans->delay_usecs);
  1077. }
  1078. spin_lock(&data->lock);
  1079. /* No more transfer in this message. */
  1080. if ((data->cur_trans->transfer_list.next) ==
  1081. &(data->current_msg->transfers)) {
  1082. pch_spi_nomore_transfer(data);
  1083. }
  1084. spin_unlock(&data->lock);
  1085. } while (data->cur_trans != NULL);
  1086. out:
  1087. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1088. if (data->use_dma)
  1089. pch_spi_release_dma(data);
  1090. }
  1091. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1092. struct pch_spi_data *data)
  1093. {
  1094. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1095. /* free workqueue */
  1096. if (data->wk != NULL) {
  1097. destroy_workqueue(data->wk);
  1098. data->wk = NULL;
  1099. dev_dbg(&board_dat->pdev->dev,
  1100. "%s destroy_workqueue invoked successfully\n",
  1101. __func__);
  1102. }
  1103. }
  1104. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1105. struct pch_spi_data *data)
  1106. {
  1107. int retval = 0;
  1108. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1109. /* create workqueue */
  1110. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1111. if (!data->wk) {
  1112. dev_err(&board_dat->pdev->dev,
  1113. "%s create_singlet hread_workqueue failed\n", __func__);
  1114. retval = -EBUSY;
  1115. goto err_return;
  1116. }
  1117. /* reset PCH SPI h/w */
  1118. pch_spi_reset(data->master);
  1119. dev_dbg(&board_dat->pdev->dev,
  1120. "%s pch_spi_reset invoked successfully\n", __func__);
  1121. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1122. err_return:
  1123. if (retval != 0) {
  1124. dev_err(&board_dat->pdev->dev,
  1125. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1126. pch_spi_free_resources(board_dat, data);
  1127. }
  1128. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1129. return retval;
  1130. }
  1131. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1132. struct pch_spi_data *data)
  1133. {
  1134. struct pch_spi_dma_ctrl *dma;
  1135. dma = &data->dma;
  1136. if (dma->tx_buf_dma)
  1137. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1138. dma->tx_buf_virt, dma->tx_buf_dma);
  1139. if (dma->rx_buf_dma)
  1140. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1141. dma->rx_buf_virt, dma->rx_buf_dma);
  1142. return;
  1143. }
  1144. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1145. struct pch_spi_data *data)
  1146. {
  1147. struct pch_spi_dma_ctrl *dma;
  1148. dma = &data->dma;
  1149. /* Get Consistent memory for Tx DMA */
  1150. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1151. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1152. /* Get Consistent memory for Rx DMA */
  1153. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1154. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1155. }
  1156. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1157. {
  1158. int ret;
  1159. struct spi_master *master;
  1160. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1161. struct pch_spi_data *data;
  1162. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1163. master = spi_alloc_master(&board_dat->pdev->dev,
  1164. sizeof(struct pch_spi_data));
  1165. if (!master) {
  1166. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1167. plat_dev->id);
  1168. return -ENOMEM;
  1169. }
  1170. data = spi_master_get_devdata(master);
  1171. data->master = master;
  1172. platform_set_drvdata(plat_dev, data);
  1173. /* baseaddress + address offset) */
  1174. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1175. PCH_ADDRESS_SIZE * plat_dev->id;
  1176. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1177. PCH_ADDRESS_SIZE * plat_dev->id;
  1178. if (!data->io_remap_addr) {
  1179. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1180. ret = -ENOMEM;
  1181. goto err_pci_iomap;
  1182. }
  1183. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1184. plat_dev->id, data->io_remap_addr);
  1185. /* initialize members of SPI master */
  1186. master->bus_num = -1;
  1187. master->num_chipselect = PCH_MAX_CS;
  1188. master->setup = pch_spi_setup;
  1189. master->transfer = pch_spi_transfer;
  1190. data->board_dat = board_dat;
  1191. data->plat_dev = plat_dev;
  1192. data->n_curnt_chip = 255;
  1193. data->status = STATUS_RUNNING;
  1194. data->ch = plat_dev->id;
  1195. data->use_dma = use_dma;
  1196. INIT_LIST_HEAD(&data->queue);
  1197. spin_lock_init(&data->lock);
  1198. INIT_WORK(&data->work, pch_spi_process_messages);
  1199. init_waitqueue_head(&data->wait);
  1200. ret = pch_spi_get_resources(board_dat, data);
  1201. if (ret) {
  1202. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1203. goto err_spi_get_resources;
  1204. }
  1205. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1206. IRQF_SHARED, KBUILD_MODNAME, data);
  1207. if (ret) {
  1208. dev_err(&plat_dev->dev,
  1209. "%s request_irq failed\n", __func__);
  1210. goto err_request_irq;
  1211. }
  1212. data->irq_reg_sts = true;
  1213. pch_spi_set_master_mode(master);
  1214. ret = spi_register_master(master);
  1215. if (ret != 0) {
  1216. dev_err(&plat_dev->dev,
  1217. "%s spi_register_master FAILED\n", __func__);
  1218. goto err_spi_register_master;
  1219. }
  1220. if (use_dma) {
  1221. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1222. pch_alloc_dma_buf(board_dat, data);
  1223. }
  1224. return 0;
  1225. err_spi_register_master:
  1226. free_irq(board_dat->pdev->irq, board_dat);
  1227. err_request_irq:
  1228. pch_spi_free_resources(board_dat, data);
  1229. err_spi_get_resources:
  1230. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1231. err_pci_iomap:
  1232. spi_master_put(master);
  1233. return ret;
  1234. }
  1235. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1236. {
  1237. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1238. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1239. int count;
  1240. unsigned long flags;
  1241. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1242. __func__, plat_dev->id, board_dat->pdev->irq);
  1243. if (use_dma)
  1244. pch_free_dma_buf(board_dat, data);
  1245. /* check for any pending messages; no action is taken if the queue
  1246. * is still full; but at least we tried. Unload anyway */
  1247. count = 500;
  1248. spin_lock_irqsave(&data->lock, flags);
  1249. data->status = STATUS_EXITING;
  1250. while ((list_empty(&data->queue) == 0) && --count) {
  1251. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1252. __func__);
  1253. spin_unlock_irqrestore(&data->lock, flags);
  1254. msleep(PCH_SLEEP_TIME);
  1255. spin_lock_irqsave(&data->lock, flags);
  1256. }
  1257. spin_unlock_irqrestore(&data->lock, flags);
  1258. pch_spi_free_resources(board_dat, data);
  1259. /* disable interrupts & free IRQ */
  1260. if (data->irq_reg_sts) {
  1261. /* disable interrupts */
  1262. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1263. data->irq_reg_sts = false;
  1264. free_irq(board_dat->pdev->irq, data);
  1265. }
  1266. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1267. spi_unregister_master(data->master);
  1268. spi_master_put(data->master);
  1269. platform_set_drvdata(plat_dev, NULL);
  1270. return 0;
  1271. }
  1272. #ifdef CONFIG_PM
  1273. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1274. pm_message_t state)
  1275. {
  1276. u8 count;
  1277. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1278. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1279. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1280. if (!board_dat) {
  1281. dev_err(&pd_dev->dev,
  1282. "%s pci_get_drvdata returned NULL\n", __func__);
  1283. return -EFAULT;
  1284. }
  1285. /* check if the current message is processed:
  1286. Only after thats done the transfer will be suspended */
  1287. count = 255;
  1288. while ((--count) > 0) {
  1289. if (!(data->bcurrent_msg_processing))
  1290. break;
  1291. msleep(PCH_SLEEP_TIME);
  1292. }
  1293. /* Free IRQ */
  1294. if (data->irq_reg_sts) {
  1295. /* disable all interrupts */
  1296. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1297. pch_spi_reset(data->master);
  1298. free_irq(board_dat->pdev->irq, data);
  1299. data->irq_reg_sts = false;
  1300. dev_dbg(&pd_dev->dev,
  1301. "%s free_irq invoked successfully.\n", __func__);
  1302. }
  1303. return 0;
  1304. }
  1305. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1306. {
  1307. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1308. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1309. int retval;
  1310. if (!board_dat) {
  1311. dev_err(&pd_dev->dev,
  1312. "%s pci_get_drvdata returned NULL\n", __func__);
  1313. return -EFAULT;
  1314. }
  1315. if (!data->irq_reg_sts) {
  1316. /* register IRQ */
  1317. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1318. IRQF_SHARED, KBUILD_MODNAME, data);
  1319. if (retval < 0) {
  1320. dev_err(&pd_dev->dev,
  1321. "%s request_irq failed\n", __func__);
  1322. return retval;
  1323. }
  1324. /* reset PCH SPI h/w */
  1325. pch_spi_reset(data->master);
  1326. pch_spi_set_master_mode(data->master);
  1327. data->irq_reg_sts = true;
  1328. }
  1329. return 0;
  1330. }
  1331. #else
  1332. #define pch_spi_pd_suspend NULL
  1333. #define pch_spi_pd_resume NULL
  1334. #endif
  1335. static struct platform_driver pch_spi_pd_driver = {
  1336. .driver = {
  1337. .name = "pch-spi",
  1338. .owner = THIS_MODULE,
  1339. },
  1340. .probe = pch_spi_pd_probe,
  1341. .remove = __devexit_p(pch_spi_pd_remove),
  1342. .suspend = pch_spi_pd_suspend,
  1343. .resume = pch_spi_pd_resume
  1344. };
  1345. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1346. const struct pci_device_id *id)
  1347. {
  1348. struct pch_spi_board_data *board_dat;
  1349. struct platform_device *pd_dev = NULL;
  1350. int retval;
  1351. int i;
  1352. struct pch_pd_dev_save *pd_dev_save;
  1353. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1354. if (!pd_dev_save) {
  1355. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1356. return -ENOMEM;
  1357. }
  1358. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1359. if (!board_dat) {
  1360. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1361. retval = -ENOMEM;
  1362. goto err_no_mem;
  1363. }
  1364. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1365. if (retval) {
  1366. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1367. goto pci_request_regions;
  1368. }
  1369. board_dat->pdev = pdev;
  1370. board_dat->num = id->driver_data;
  1371. pd_dev_save->num = id->driver_data;
  1372. pd_dev_save->board_dat = board_dat;
  1373. retval = pci_enable_device(pdev);
  1374. if (retval) {
  1375. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1376. goto pci_enable_device;
  1377. }
  1378. for (i = 0; i < board_dat->num; i++) {
  1379. pd_dev = platform_device_alloc("pch-spi", i);
  1380. if (!pd_dev) {
  1381. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1382. goto err_platform_device;
  1383. }
  1384. pd_dev_save->pd_save[i] = pd_dev;
  1385. pd_dev->dev.parent = &pdev->dev;
  1386. retval = platform_device_add_data(pd_dev, board_dat,
  1387. sizeof(*board_dat));
  1388. if (retval) {
  1389. dev_err(&pdev->dev,
  1390. "platform_device_add_data failed\n");
  1391. platform_device_put(pd_dev);
  1392. goto err_platform_device;
  1393. }
  1394. retval = platform_device_add(pd_dev);
  1395. if (retval) {
  1396. dev_err(&pdev->dev, "platform_device_add failed\n");
  1397. platform_device_put(pd_dev);
  1398. goto err_platform_device;
  1399. }
  1400. }
  1401. pci_set_drvdata(pdev, pd_dev_save);
  1402. return 0;
  1403. err_platform_device:
  1404. pci_disable_device(pdev);
  1405. pci_enable_device:
  1406. pci_release_regions(pdev);
  1407. pci_request_regions:
  1408. kfree(board_dat);
  1409. err_no_mem:
  1410. kfree(pd_dev_save);
  1411. return retval;
  1412. }
  1413. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1414. {
  1415. int i;
  1416. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1417. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1418. for (i = 0; i < pd_dev_save->num; i++)
  1419. platform_device_unregister(pd_dev_save->pd_save[i]);
  1420. pci_disable_device(pdev);
  1421. pci_release_regions(pdev);
  1422. kfree(pd_dev_save->board_dat);
  1423. kfree(pd_dev_save);
  1424. }
  1425. #ifdef CONFIG_PM
  1426. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1427. {
  1428. int retval;
  1429. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1430. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1431. pd_dev_save->board_dat->suspend_sts = true;
  1432. /* save config space */
  1433. retval = pci_save_state(pdev);
  1434. if (retval == 0) {
  1435. pci_enable_wake(pdev, PCI_D3hot, 0);
  1436. pci_disable_device(pdev);
  1437. pci_set_power_state(pdev, PCI_D3hot);
  1438. } else {
  1439. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1440. }
  1441. return retval;
  1442. }
  1443. static int pch_spi_resume(struct pci_dev *pdev)
  1444. {
  1445. int retval;
  1446. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1447. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1448. pci_set_power_state(pdev, PCI_D0);
  1449. pci_restore_state(pdev);
  1450. retval = pci_enable_device(pdev);
  1451. if (retval < 0) {
  1452. dev_err(&pdev->dev,
  1453. "%s pci_enable_device failed\n", __func__);
  1454. } else {
  1455. pci_enable_wake(pdev, PCI_D3hot, 0);
  1456. /* set suspend status to false */
  1457. pd_dev_save->board_dat->suspend_sts = false;
  1458. }
  1459. return retval;
  1460. }
  1461. #else
  1462. #define pch_spi_suspend NULL
  1463. #define pch_spi_resume NULL
  1464. #endif
  1465. static struct pci_driver pch_spi_pcidev = {
  1466. .name = "pch_spi",
  1467. .id_table = pch_spi_pcidev_id,
  1468. .probe = pch_spi_probe,
  1469. .remove = pch_spi_remove,
  1470. .suspend = pch_spi_suspend,
  1471. .resume = pch_spi_resume,
  1472. };
  1473. static int __init pch_spi_init(void)
  1474. {
  1475. int ret;
  1476. ret = platform_driver_register(&pch_spi_pd_driver);
  1477. if (ret)
  1478. return ret;
  1479. ret = pci_register_driver(&pch_spi_pcidev);
  1480. if (ret)
  1481. return ret;
  1482. return 0;
  1483. }
  1484. module_init(pch_spi_init);
  1485. static void __exit pch_spi_exit(void)
  1486. {
  1487. pci_unregister_driver(&pch_spi_pcidev);
  1488. platform_driver_unregister(&pch_spi_pd_driver);
  1489. }
  1490. module_exit(pch_spi_exit);
  1491. module_param(use_dma, int, 0644);
  1492. MODULE_PARM_DESC(use_dma,
  1493. "to use DMA for data transfers pass 1 else 0; default 1");
  1494. MODULE_LICENSE("GPL");
  1495. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");