main.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. /*
  2. * drivers/base/power/main.c - Where the driver meets power management.
  3. *
  4. * Copyright (c) 2003 Patrick Mochel
  5. * Copyright (c) 2003 Open Source Development Lab
  6. *
  7. * This file is released under the GPLv2
  8. *
  9. *
  10. * The driver model core calls device_pm_add() when a device is registered.
  11. * This will intialize the embedded device_pm_info object in the device
  12. * and add it to the list of power-controlled devices. sysfs entries for
  13. * controlling device power management will also be added.
  14. *
  15. * A separate list is used for keeping track of power info, because the power
  16. * domain dependencies may differ from the ancestral dependencies that the
  17. * subsystem list maintains.
  18. */
  19. #include <linux/device.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/mutex.h>
  22. #include <linux/pm.h>
  23. #include <linux/resume-trace.h>
  24. #include <linux/rwsem.h>
  25. #include <linux/interrupt.h>
  26. #include "../base.h"
  27. #include "power.h"
  28. /*
  29. * The entries in the dpm_list list are in a depth first order, simply
  30. * because children are guaranteed to be discovered after parents, and
  31. * are inserted at the back of the list on discovery.
  32. *
  33. * Since device_pm_add() may be called with a device semaphore held,
  34. * we must never try to acquire a device semaphore while holding
  35. * dpm_list_mutex.
  36. */
  37. LIST_HEAD(dpm_list);
  38. static DEFINE_MUTEX(dpm_list_mtx);
  39. /*
  40. * Set once the preparation of devices for a PM transition has started, reset
  41. * before starting to resume devices. Protected by dpm_list_mtx.
  42. */
  43. static bool transition_started;
  44. /**
  45. * device_pm_lock - lock the list of active devices used by the PM core
  46. */
  47. void device_pm_lock(void)
  48. {
  49. mutex_lock(&dpm_list_mtx);
  50. }
  51. /**
  52. * device_pm_unlock - unlock the list of active devices used by the PM core
  53. */
  54. void device_pm_unlock(void)
  55. {
  56. mutex_unlock(&dpm_list_mtx);
  57. }
  58. /**
  59. * device_pm_add - add a device to the list of active devices
  60. * @dev: Device to be added to the list
  61. */
  62. void device_pm_add(struct device *dev)
  63. {
  64. pr_debug("PM: Adding info for %s:%s\n",
  65. dev->bus ? dev->bus->name : "No Bus",
  66. kobject_name(&dev->kobj));
  67. mutex_lock(&dpm_list_mtx);
  68. if (dev->parent) {
  69. if (dev->parent->power.status >= DPM_SUSPENDING)
  70. dev_warn(dev, "parent %s should not be sleeping\n",
  71. dev_name(dev->parent));
  72. } else if (transition_started) {
  73. /*
  74. * We refuse to register parentless devices while a PM
  75. * transition is in progress in order to avoid leaving them
  76. * unhandled down the road
  77. */
  78. dev_WARN(dev, "Parentless device registered during a PM transaction\n");
  79. }
  80. list_add_tail(&dev->power.entry, &dpm_list);
  81. mutex_unlock(&dpm_list_mtx);
  82. }
  83. /**
  84. * device_pm_remove - remove a device from the list of active devices
  85. * @dev: Device to be removed from the list
  86. *
  87. * This function also removes the device's PM-related sysfs attributes.
  88. */
  89. void device_pm_remove(struct device *dev)
  90. {
  91. pr_debug("PM: Removing info for %s:%s\n",
  92. dev->bus ? dev->bus->name : "No Bus",
  93. kobject_name(&dev->kobj));
  94. mutex_lock(&dpm_list_mtx);
  95. list_del_init(&dev->power.entry);
  96. mutex_unlock(&dpm_list_mtx);
  97. }
  98. /**
  99. * device_pm_move_before - move device in dpm_list
  100. * @deva: Device to move in dpm_list
  101. * @devb: Device @deva should come before
  102. */
  103. void device_pm_move_before(struct device *deva, struct device *devb)
  104. {
  105. pr_debug("PM: Moving %s:%s before %s:%s\n",
  106. deva->bus ? deva->bus->name : "No Bus",
  107. kobject_name(&deva->kobj),
  108. devb->bus ? devb->bus->name : "No Bus",
  109. kobject_name(&devb->kobj));
  110. /* Delete deva from dpm_list and reinsert before devb. */
  111. list_move_tail(&deva->power.entry, &devb->power.entry);
  112. }
  113. /**
  114. * device_pm_move_after - move device in dpm_list
  115. * @deva: Device to move in dpm_list
  116. * @devb: Device @deva should come after
  117. */
  118. void device_pm_move_after(struct device *deva, struct device *devb)
  119. {
  120. pr_debug("PM: Moving %s:%s after %s:%s\n",
  121. deva->bus ? deva->bus->name : "No Bus",
  122. kobject_name(&deva->kobj),
  123. devb->bus ? devb->bus->name : "No Bus",
  124. kobject_name(&devb->kobj));
  125. /* Delete deva from dpm_list and reinsert after devb. */
  126. list_move(&deva->power.entry, &devb->power.entry);
  127. }
  128. /**
  129. * device_pm_move_last - move device to end of dpm_list
  130. * @dev: Device to move in dpm_list
  131. */
  132. void device_pm_move_last(struct device *dev)
  133. {
  134. pr_debug("PM: Moving %s:%s to end of list\n",
  135. dev->bus ? dev->bus->name : "No Bus",
  136. kobject_name(&dev->kobj));
  137. list_move_tail(&dev->power.entry, &dpm_list);
  138. }
  139. /**
  140. * pm_op - execute the PM operation appropiate for given PM event
  141. * @dev: Device.
  142. * @ops: PM operations to choose from.
  143. * @state: PM transition of the system being carried out.
  144. */
  145. static int pm_op(struct device *dev, struct dev_pm_ops *ops,
  146. pm_message_t state)
  147. {
  148. int error = 0;
  149. switch (state.event) {
  150. #ifdef CONFIG_SUSPEND
  151. case PM_EVENT_SUSPEND:
  152. if (ops->suspend) {
  153. error = ops->suspend(dev);
  154. suspend_report_result(ops->suspend, error);
  155. }
  156. break;
  157. case PM_EVENT_RESUME:
  158. if (ops->resume) {
  159. error = ops->resume(dev);
  160. suspend_report_result(ops->resume, error);
  161. }
  162. break;
  163. #endif /* CONFIG_SUSPEND */
  164. #ifdef CONFIG_HIBERNATION
  165. case PM_EVENT_FREEZE:
  166. case PM_EVENT_QUIESCE:
  167. if (ops->freeze) {
  168. error = ops->freeze(dev);
  169. suspend_report_result(ops->freeze, error);
  170. }
  171. break;
  172. case PM_EVENT_HIBERNATE:
  173. if (ops->poweroff) {
  174. error = ops->poweroff(dev);
  175. suspend_report_result(ops->poweroff, error);
  176. }
  177. break;
  178. case PM_EVENT_THAW:
  179. case PM_EVENT_RECOVER:
  180. if (ops->thaw) {
  181. error = ops->thaw(dev);
  182. suspend_report_result(ops->thaw, error);
  183. }
  184. break;
  185. case PM_EVENT_RESTORE:
  186. if (ops->restore) {
  187. error = ops->restore(dev);
  188. suspend_report_result(ops->restore, error);
  189. }
  190. break;
  191. #endif /* CONFIG_HIBERNATION */
  192. default:
  193. error = -EINVAL;
  194. }
  195. return error;
  196. }
  197. /**
  198. * pm_noirq_op - execute the PM operation appropiate for given PM event
  199. * @dev: Device.
  200. * @ops: PM operations to choose from.
  201. * @state: PM transition of the system being carried out.
  202. *
  203. * The operation is executed with interrupts disabled by the only remaining
  204. * functional CPU in the system.
  205. */
  206. static int pm_noirq_op(struct device *dev, struct dev_pm_ops *ops,
  207. pm_message_t state)
  208. {
  209. int error = 0;
  210. switch (state.event) {
  211. #ifdef CONFIG_SUSPEND
  212. case PM_EVENT_SUSPEND:
  213. if (ops->suspend_noirq) {
  214. error = ops->suspend_noirq(dev);
  215. suspend_report_result(ops->suspend_noirq, error);
  216. }
  217. break;
  218. case PM_EVENT_RESUME:
  219. if (ops->resume_noirq) {
  220. error = ops->resume_noirq(dev);
  221. suspend_report_result(ops->resume_noirq, error);
  222. }
  223. break;
  224. #endif /* CONFIG_SUSPEND */
  225. #ifdef CONFIG_HIBERNATION
  226. case PM_EVENT_FREEZE:
  227. case PM_EVENT_QUIESCE:
  228. if (ops->freeze_noirq) {
  229. error = ops->freeze_noirq(dev);
  230. suspend_report_result(ops->freeze_noirq, error);
  231. }
  232. break;
  233. case PM_EVENT_HIBERNATE:
  234. if (ops->poweroff_noirq) {
  235. error = ops->poweroff_noirq(dev);
  236. suspend_report_result(ops->poweroff_noirq, error);
  237. }
  238. break;
  239. case PM_EVENT_THAW:
  240. case PM_EVENT_RECOVER:
  241. if (ops->thaw_noirq) {
  242. error = ops->thaw_noirq(dev);
  243. suspend_report_result(ops->thaw_noirq, error);
  244. }
  245. break;
  246. case PM_EVENT_RESTORE:
  247. if (ops->restore_noirq) {
  248. error = ops->restore_noirq(dev);
  249. suspend_report_result(ops->restore_noirq, error);
  250. }
  251. break;
  252. #endif /* CONFIG_HIBERNATION */
  253. default:
  254. error = -EINVAL;
  255. }
  256. return error;
  257. }
  258. static char *pm_verb(int event)
  259. {
  260. switch (event) {
  261. case PM_EVENT_SUSPEND:
  262. return "suspend";
  263. case PM_EVENT_RESUME:
  264. return "resume";
  265. case PM_EVENT_FREEZE:
  266. return "freeze";
  267. case PM_EVENT_QUIESCE:
  268. return "quiesce";
  269. case PM_EVENT_HIBERNATE:
  270. return "hibernate";
  271. case PM_EVENT_THAW:
  272. return "thaw";
  273. case PM_EVENT_RESTORE:
  274. return "restore";
  275. case PM_EVENT_RECOVER:
  276. return "recover";
  277. default:
  278. return "(unknown PM event)";
  279. }
  280. }
  281. static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
  282. {
  283. dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
  284. ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
  285. ", may wakeup" : "");
  286. }
  287. static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
  288. int error)
  289. {
  290. printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
  291. kobject_name(&dev->kobj), pm_verb(state.event), info, error);
  292. }
  293. /*------------------------- Resume routines -------------------------*/
  294. /**
  295. * device_resume_noirq - Power on one device (early resume).
  296. * @dev: Device.
  297. * @state: PM transition of the system being carried out.
  298. *
  299. * Must be called with interrupts disabled.
  300. */
  301. static int device_resume_noirq(struct device *dev, pm_message_t state)
  302. {
  303. int error = 0;
  304. TRACE_DEVICE(dev);
  305. TRACE_RESUME(0);
  306. if (!dev->bus)
  307. goto End;
  308. if (dev->bus->pm) {
  309. pm_dev_dbg(dev, state, "EARLY ");
  310. error = pm_noirq_op(dev, dev->bus->pm, state);
  311. }
  312. End:
  313. TRACE_RESUME(error);
  314. return error;
  315. }
  316. /**
  317. * dpm_resume_noirq - Power on all regular (non-sysdev) devices.
  318. * @state: PM transition of the system being carried out.
  319. *
  320. * Call the "noirq" resume handlers for all devices marked as
  321. * DPM_OFF_IRQ and enable device drivers to receive interrupts.
  322. *
  323. * Must be called under dpm_list_mtx. Device drivers should not receive
  324. * interrupts while it's being executed.
  325. */
  326. void dpm_resume_noirq(pm_message_t state)
  327. {
  328. struct device *dev;
  329. mutex_lock(&dpm_list_mtx);
  330. list_for_each_entry(dev, &dpm_list, power.entry)
  331. if (dev->power.status > DPM_OFF) {
  332. int error;
  333. dev->power.status = DPM_OFF;
  334. error = device_resume_noirq(dev, state);
  335. if (error)
  336. pm_dev_err(dev, state, " early", error);
  337. }
  338. mutex_unlock(&dpm_list_mtx);
  339. resume_device_irqs();
  340. }
  341. EXPORT_SYMBOL_GPL(dpm_resume_noirq);
  342. /**
  343. * device_resume - Restore state for one device.
  344. * @dev: Device.
  345. * @state: PM transition of the system being carried out.
  346. */
  347. static int device_resume(struct device *dev, pm_message_t state)
  348. {
  349. int error = 0;
  350. TRACE_DEVICE(dev);
  351. TRACE_RESUME(0);
  352. down(&dev->sem);
  353. if (dev->bus) {
  354. if (dev->bus->pm) {
  355. pm_dev_dbg(dev, state, "");
  356. error = pm_op(dev, dev->bus->pm, state);
  357. } else if (dev->bus->resume) {
  358. pm_dev_dbg(dev, state, "legacy ");
  359. error = dev->bus->resume(dev);
  360. }
  361. if (error)
  362. goto End;
  363. }
  364. if (dev->type) {
  365. if (dev->type->pm) {
  366. pm_dev_dbg(dev, state, "type ");
  367. error = pm_op(dev, dev->type->pm, state);
  368. } else if (dev->type->resume) {
  369. pm_dev_dbg(dev, state, "legacy type ");
  370. error = dev->type->resume(dev);
  371. }
  372. if (error)
  373. goto End;
  374. }
  375. if (dev->class) {
  376. if (dev->class->pm) {
  377. pm_dev_dbg(dev, state, "class ");
  378. error = pm_op(dev, dev->class->pm, state);
  379. } else if (dev->class->resume) {
  380. pm_dev_dbg(dev, state, "legacy class ");
  381. error = dev->class->resume(dev);
  382. }
  383. }
  384. End:
  385. up(&dev->sem);
  386. TRACE_RESUME(error);
  387. return error;
  388. }
  389. /**
  390. * dpm_resume - Resume every device.
  391. * @state: PM transition of the system being carried out.
  392. *
  393. * Execute the appropriate "resume" callback for all devices the status of
  394. * which indicates that they are inactive.
  395. */
  396. static void dpm_resume(pm_message_t state)
  397. {
  398. struct list_head list;
  399. INIT_LIST_HEAD(&list);
  400. mutex_lock(&dpm_list_mtx);
  401. transition_started = false;
  402. while (!list_empty(&dpm_list)) {
  403. struct device *dev = to_device(dpm_list.next);
  404. get_device(dev);
  405. if (dev->power.status >= DPM_OFF) {
  406. int error;
  407. dev->power.status = DPM_RESUMING;
  408. mutex_unlock(&dpm_list_mtx);
  409. error = device_resume(dev, state);
  410. mutex_lock(&dpm_list_mtx);
  411. if (error)
  412. pm_dev_err(dev, state, "", error);
  413. } else if (dev->power.status == DPM_SUSPENDING) {
  414. /* Allow new children of the device to be registered */
  415. dev->power.status = DPM_RESUMING;
  416. }
  417. if (!list_empty(&dev->power.entry))
  418. list_move_tail(&dev->power.entry, &list);
  419. put_device(dev);
  420. }
  421. list_splice(&list, &dpm_list);
  422. mutex_unlock(&dpm_list_mtx);
  423. }
  424. /**
  425. * device_complete - Complete a PM transition for given device
  426. * @dev: Device.
  427. * @state: PM transition of the system being carried out.
  428. */
  429. static void device_complete(struct device *dev, pm_message_t state)
  430. {
  431. down(&dev->sem);
  432. if (dev->class && dev->class->pm && dev->class->pm->complete) {
  433. pm_dev_dbg(dev, state, "completing class ");
  434. dev->class->pm->complete(dev);
  435. }
  436. if (dev->type && dev->type->pm && dev->type->pm->complete) {
  437. pm_dev_dbg(dev, state, "completing type ");
  438. dev->type->pm->complete(dev);
  439. }
  440. if (dev->bus && dev->bus->pm && dev->bus->pm->complete) {
  441. pm_dev_dbg(dev, state, "completing ");
  442. dev->bus->pm->complete(dev);
  443. }
  444. up(&dev->sem);
  445. }
  446. /**
  447. * dpm_complete - Complete a PM transition for all devices.
  448. * @state: PM transition of the system being carried out.
  449. *
  450. * Execute the ->complete() callbacks for all devices that are not marked
  451. * as DPM_ON.
  452. */
  453. static void dpm_complete(pm_message_t state)
  454. {
  455. struct list_head list;
  456. INIT_LIST_HEAD(&list);
  457. mutex_lock(&dpm_list_mtx);
  458. while (!list_empty(&dpm_list)) {
  459. struct device *dev = to_device(dpm_list.prev);
  460. get_device(dev);
  461. if (dev->power.status > DPM_ON) {
  462. dev->power.status = DPM_ON;
  463. mutex_unlock(&dpm_list_mtx);
  464. device_complete(dev, state);
  465. mutex_lock(&dpm_list_mtx);
  466. }
  467. if (!list_empty(&dev->power.entry))
  468. list_move(&dev->power.entry, &list);
  469. put_device(dev);
  470. }
  471. list_splice(&list, &dpm_list);
  472. mutex_unlock(&dpm_list_mtx);
  473. }
  474. /**
  475. * dpm_resume_end - Restore state of each device in system.
  476. * @state: PM transition of the system being carried out.
  477. *
  478. * Resume all the devices, unlock them all, and allow new
  479. * devices to be registered once again.
  480. */
  481. void dpm_resume_end(pm_message_t state)
  482. {
  483. might_sleep();
  484. dpm_resume(state);
  485. dpm_complete(state);
  486. }
  487. EXPORT_SYMBOL_GPL(dpm_resume_end);
  488. /*------------------------- Suspend routines -------------------------*/
  489. /**
  490. * resume_event - return a PM message representing the resume event
  491. * corresponding to given sleep state.
  492. * @sleep_state: PM message representing a sleep state.
  493. */
  494. static pm_message_t resume_event(pm_message_t sleep_state)
  495. {
  496. switch (sleep_state.event) {
  497. case PM_EVENT_SUSPEND:
  498. return PMSG_RESUME;
  499. case PM_EVENT_FREEZE:
  500. case PM_EVENT_QUIESCE:
  501. return PMSG_RECOVER;
  502. case PM_EVENT_HIBERNATE:
  503. return PMSG_RESTORE;
  504. }
  505. return PMSG_ON;
  506. }
  507. /**
  508. * device_suspend_noirq - Shut down one device (late suspend).
  509. * @dev: Device.
  510. * @state: PM transition of the system being carried out.
  511. *
  512. * This is called with interrupts off and only a single CPU running.
  513. */
  514. static int device_suspend_noirq(struct device *dev, pm_message_t state)
  515. {
  516. int error = 0;
  517. if (!dev->bus)
  518. return 0;
  519. if (dev->bus->pm) {
  520. pm_dev_dbg(dev, state, "LATE ");
  521. error = pm_noirq_op(dev, dev->bus->pm, state);
  522. }
  523. return error;
  524. }
  525. /**
  526. * dpm_suspend_noirq - Power down all regular (non-sysdev) devices.
  527. * @state: PM transition of the system being carried out.
  528. *
  529. * Prevent device drivers from receiving interrupts and call the "noirq"
  530. * suspend handlers.
  531. *
  532. * Must be called under dpm_list_mtx.
  533. */
  534. int dpm_suspend_noirq(pm_message_t state)
  535. {
  536. struct device *dev;
  537. int error = 0;
  538. suspend_device_irqs();
  539. mutex_lock(&dpm_list_mtx);
  540. list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
  541. error = device_suspend_noirq(dev, state);
  542. if (error) {
  543. pm_dev_err(dev, state, " late", error);
  544. break;
  545. }
  546. dev->power.status = DPM_OFF_IRQ;
  547. }
  548. mutex_unlock(&dpm_list_mtx);
  549. if (error)
  550. dpm_resume_noirq(resume_event(state));
  551. return error;
  552. }
  553. EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
  554. /**
  555. * device_suspend - Save state of one device.
  556. * @dev: Device.
  557. * @state: PM transition of the system being carried out.
  558. */
  559. static int device_suspend(struct device *dev, pm_message_t state)
  560. {
  561. int error = 0;
  562. down(&dev->sem);
  563. if (dev->class) {
  564. if (dev->class->pm) {
  565. pm_dev_dbg(dev, state, "class ");
  566. error = pm_op(dev, dev->class->pm, state);
  567. } else if (dev->class->suspend) {
  568. pm_dev_dbg(dev, state, "legacy class ");
  569. error = dev->class->suspend(dev, state);
  570. suspend_report_result(dev->class->suspend, error);
  571. }
  572. if (error)
  573. goto End;
  574. }
  575. if (dev->type) {
  576. if (dev->type->pm) {
  577. pm_dev_dbg(dev, state, "type ");
  578. error = pm_op(dev, dev->type->pm, state);
  579. } else if (dev->type->suspend) {
  580. pm_dev_dbg(dev, state, "legacy type ");
  581. error = dev->type->suspend(dev, state);
  582. suspend_report_result(dev->type->suspend, error);
  583. }
  584. if (error)
  585. goto End;
  586. }
  587. if (dev->bus) {
  588. if (dev->bus->pm) {
  589. pm_dev_dbg(dev, state, "");
  590. error = pm_op(dev, dev->bus->pm, state);
  591. } else if (dev->bus->suspend) {
  592. pm_dev_dbg(dev, state, "legacy ");
  593. error = dev->bus->suspend(dev, state);
  594. suspend_report_result(dev->bus->suspend, error);
  595. }
  596. }
  597. End:
  598. up(&dev->sem);
  599. return error;
  600. }
  601. /**
  602. * dpm_suspend - Suspend every device.
  603. * @state: PM transition of the system being carried out.
  604. *
  605. * Execute the appropriate "suspend" callbacks for all devices.
  606. */
  607. static int dpm_suspend(pm_message_t state)
  608. {
  609. struct list_head list;
  610. int error = 0;
  611. INIT_LIST_HEAD(&list);
  612. mutex_lock(&dpm_list_mtx);
  613. while (!list_empty(&dpm_list)) {
  614. struct device *dev = to_device(dpm_list.prev);
  615. get_device(dev);
  616. mutex_unlock(&dpm_list_mtx);
  617. error = device_suspend(dev, state);
  618. mutex_lock(&dpm_list_mtx);
  619. if (error) {
  620. pm_dev_err(dev, state, "", error);
  621. put_device(dev);
  622. break;
  623. }
  624. dev->power.status = DPM_OFF;
  625. if (!list_empty(&dev->power.entry))
  626. list_move(&dev->power.entry, &list);
  627. put_device(dev);
  628. }
  629. list_splice(&list, dpm_list.prev);
  630. mutex_unlock(&dpm_list_mtx);
  631. return error;
  632. }
  633. /**
  634. * device_prepare - Execute the ->prepare() callback(s) for given device.
  635. * @dev: Device.
  636. * @state: PM transition of the system being carried out.
  637. */
  638. static int device_prepare(struct device *dev, pm_message_t state)
  639. {
  640. int error = 0;
  641. down(&dev->sem);
  642. if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) {
  643. pm_dev_dbg(dev, state, "preparing ");
  644. error = dev->bus->pm->prepare(dev);
  645. suspend_report_result(dev->bus->pm->prepare, error);
  646. if (error)
  647. goto End;
  648. }
  649. if (dev->type && dev->type->pm && dev->type->pm->prepare) {
  650. pm_dev_dbg(dev, state, "preparing type ");
  651. error = dev->type->pm->prepare(dev);
  652. suspend_report_result(dev->type->pm->prepare, error);
  653. if (error)
  654. goto End;
  655. }
  656. if (dev->class && dev->class->pm && dev->class->pm->prepare) {
  657. pm_dev_dbg(dev, state, "preparing class ");
  658. error = dev->class->pm->prepare(dev);
  659. suspend_report_result(dev->class->pm->prepare, error);
  660. }
  661. End:
  662. up(&dev->sem);
  663. return error;
  664. }
  665. /**
  666. * dpm_prepare - Prepare all devices for a PM transition.
  667. * @state: PM transition of the system being carried out.
  668. *
  669. * Execute the ->prepare() callback for all devices.
  670. */
  671. static int dpm_prepare(pm_message_t state)
  672. {
  673. struct list_head list;
  674. int error = 0;
  675. INIT_LIST_HEAD(&list);
  676. mutex_lock(&dpm_list_mtx);
  677. transition_started = true;
  678. while (!list_empty(&dpm_list)) {
  679. struct device *dev = to_device(dpm_list.next);
  680. get_device(dev);
  681. dev->power.status = DPM_PREPARING;
  682. mutex_unlock(&dpm_list_mtx);
  683. error = device_prepare(dev, state);
  684. mutex_lock(&dpm_list_mtx);
  685. if (error) {
  686. dev->power.status = DPM_ON;
  687. if (error == -EAGAIN) {
  688. put_device(dev);
  689. continue;
  690. }
  691. printk(KERN_ERR "PM: Failed to prepare device %s "
  692. "for power transition: error %d\n",
  693. kobject_name(&dev->kobj), error);
  694. put_device(dev);
  695. break;
  696. }
  697. dev->power.status = DPM_SUSPENDING;
  698. if (!list_empty(&dev->power.entry))
  699. list_move_tail(&dev->power.entry, &list);
  700. put_device(dev);
  701. }
  702. list_splice(&list, &dpm_list);
  703. mutex_unlock(&dpm_list_mtx);
  704. return error;
  705. }
  706. /**
  707. * dpm_suspend_start - Save state and stop all devices in system.
  708. * @state: PM transition of the system being carried out.
  709. *
  710. * Prepare and suspend all devices.
  711. */
  712. int dpm_suspend_start(pm_message_t state)
  713. {
  714. int error;
  715. might_sleep();
  716. error = dpm_prepare(state);
  717. if (!error)
  718. error = dpm_suspend(state);
  719. return error;
  720. }
  721. EXPORT_SYMBOL_GPL(dpm_suspend_start);
  722. void __suspend_report_result(const char *function, void *fn, int ret)
  723. {
  724. if (ret)
  725. printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
  726. }
  727. EXPORT_SYMBOL_GPL(__suspend_report_result);