common.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * common.c - C code for kernel entry and exit
  3. * Copyright (c) 2015 Andrew Lutomirski
  4. * GPL v2
  5. *
  6. * Based on asm and ptrace code by many authors. The code here originated
  7. * in ptrace.c and signal.c.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/sched/task_stack.h>
  12. #include <linux/mm.h>
  13. #include <linux/smp.h>
  14. #include <linux/errno.h>
  15. #include <linux/ptrace.h>
  16. #include <linux/tracehook.h>
  17. #include <linux/audit.h>
  18. #include <linux/seccomp.h>
  19. #include <linux/signal.h>
  20. #include <linux/export.h>
  21. #include <linux/context_tracking.h>
  22. #include <linux/user-return-notifier.h>
  23. #include <linux/uprobes.h>
  24. #include <linux/livepatch.h>
  25. #include <linux/syscalls.h>
  26. #include <asm/desc.h>
  27. #include <asm/traps.h>
  28. #include <asm/vdso.h>
  29. #include <linux/uaccess.h>
  30. #include <asm/cpufeature.h>
  31. #define CREATE_TRACE_POINTS
  32. #include <trace/events/syscalls.h>
  33. #ifdef CONFIG_CONTEXT_TRACKING
  34. /* Called on entry from user mode with IRQs off. */
  35. __visible inline void enter_from_user_mode(void)
  36. {
  37. CT_WARN_ON(ct_state() != CONTEXT_USER);
  38. user_exit_irqoff();
  39. }
  40. #else
  41. static inline void enter_from_user_mode(void) {}
  42. #endif
  43. static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
  44. {
  45. #ifdef CONFIG_X86_64
  46. if (arch == AUDIT_ARCH_X86_64) {
  47. audit_syscall_entry(regs->orig_ax, regs->di,
  48. regs->si, regs->dx, regs->r10);
  49. } else
  50. #endif
  51. {
  52. audit_syscall_entry(regs->orig_ax, regs->bx,
  53. regs->cx, regs->dx, regs->si);
  54. }
  55. }
  56. /*
  57. * Returns the syscall nr to run (which should match regs->orig_ax) or -1
  58. * to skip the syscall.
  59. */
  60. static long syscall_trace_enter(struct pt_regs *regs)
  61. {
  62. u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
  63. struct thread_info *ti = current_thread_info();
  64. unsigned long ret = 0;
  65. bool emulated = false;
  66. u32 work;
  67. if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
  68. BUG_ON(regs != task_pt_regs(current));
  69. work = READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
  70. if (unlikely(work & _TIF_SYSCALL_EMU))
  71. emulated = true;
  72. if ((emulated || (work & _TIF_SYSCALL_TRACE)) &&
  73. tracehook_report_syscall_entry(regs))
  74. return -1L;
  75. if (emulated)
  76. return -1L;
  77. #ifdef CONFIG_SECCOMP
  78. /*
  79. * Do seccomp after ptrace, to catch any tracer changes.
  80. */
  81. if (work & _TIF_SECCOMP) {
  82. struct seccomp_data sd;
  83. sd.arch = arch;
  84. sd.nr = regs->orig_ax;
  85. sd.instruction_pointer = regs->ip;
  86. #ifdef CONFIG_X86_64
  87. if (arch == AUDIT_ARCH_X86_64) {
  88. sd.args[0] = regs->di;
  89. sd.args[1] = regs->si;
  90. sd.args[2] = regs->dx;
  91. sd.args[3] = regs->r10;
  92. sd.args[4] = regs->r8;
  93. sd.args[5] = regs->r9;
  94. } else
  95. #endif
  96. {
  97. sd.args[0] = regs->bx;
  98. sd.args[1] = regs->cx;
  99. sd.args[2] = regs->dx;
  100. sd.args[3] = regs->si;
  101. sd.args[4] = regs->di;
  102. sd.args[5] = regs->bp;
  103. }
  104. ret = __secure_computing(&sd);
  105. if (ret == -1)
  106. return ret;
  107. }
  108. #endif
  109. if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
  110. trace_sys_enter(regs, regs->orig_ax);
  111. do_audit_syscall_entry(regs, arch);
  112. return ret ?: regs->orig_ax;
  113. }
  114. #define EXIT_TO_USERMODE_LOOP_FLAGS \
  115. (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \
  116. _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING)
  117. static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
  118. {
  119. /*
  120. * In order to return to user mode, we need to have IRQs off with
  121. * none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags
  122. * can be set at any time on preemptable kernels if we have IRQs on,
  123. * so we need to loop. Disabling preemption wouldn't help: doing the
  124. * work to clear some of the flags can sleep.
  125. */
  126. while (true) {
  127. /* We have work to do. */
  128. local_irq_enable();
  129. if (cached_flags & _TIF_NEED_RESCHED)
  130. schedule();
  131. if (cached_flags & _TIF_UPROBE)
  132. uprobe_notify_resume(regs);
  133. if (cached_flags & _TIF_PATCH_PENDING)
  134. klp_update_patch_state(current);
  135. /* deal with pending signal delivery */
  136. if (cached_flags & _TIF_SIGPENDING)
  137. do_signal(regs);
  138. if (cached_flags & _TIF_NOTIFY_RESUME) {
  139. clear_thread_flag(TIF_NOTIFY_RESUME);
  140. tracehook_notify_resume(regs);
  141. }
  142. if (cached_flags & _TIF_USER_RETURN_NOTIFY)
  143. fire_user_return_notifiers();
  144. /* Disable IRQs and retry */
  145. local_irq_disable();
  146. cached_flags = READ_ONCE(current_thread_info()->flags);
  147. if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
  148. break;
  149. }
  150. }
  151. /* Called with IRQs disabled. */
  152. __visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
  153. {
  154. struct thread_info *ti = current_thread_info();
  155. u32 cached_flags;
  156. addr_limit_user_check();
  157. lockdep_assert_irqs_disabled();
  158. lockdep_sys_exit();
  159. cached_flags = READ_ONCE(ti->flags);
  160. if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
  161. exit_to_usermode_loop(regs, cached_flags);
  162. #ifdef CONFIG_COMPAT
  163. /*
  164. * Compat syscalls set TS_COMPAT. Make sure we clear it before
  165. * returning to user mode. We need to clear it *after* signal
  166. * handling, because syscall restart has a fixup for compat
  167. * syscalls. The fixup is exercised by the ptrace_syscall_32
  168. * selftest.
  169. *
  170. * We also need to clear TS_REGS_POKED_I386: the 32-bit tracer
  171. * special case only applies after poking regs and before the
  172. * very next return to user mode.
  173. */
  174. current->thread.status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
  175. #endif
  176. user_enter_irqoff();
  177. }
  178. #define SYSCALL_EXIT_WORK_FLAGS \
  179. (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \
  180. _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
  181. static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
  182. {
  183. bool step;
  184. audit_syscall_exit(regs);
  185. if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
  186. trace_sys_exit(regs, regs->ax);
  187. /*
  188. * If TIF_SYSCALL_EMU is set, we only get here because of
  189. * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
  190. * We already reported this syscall instruction in
  191. * syscall_trace_enter().
  192. */
  193. step = unlikely(
  194. (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
  195. == _TIF_SINGLESTEP);
  196. if (step || cached_flags & _TIF_SYSCALL_TRACE)
  197. tracehook_report_syscall_exit(regs, step);
  198. }
  199. /*
  200. * Called with IRQs on and fully valid regs. Returns with IRQs off in a
  201. * state such that we can immediately switch to user mode.
  202. */
  203. __visible inline void syscall_return_slowpath(struct pt_regs *regs)
  204. {
  205. struct thread_info *ti = current_thread_info();
  206. u32 cached_flags = READ_ONCE(ti->flags);
  207. CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
  208. if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
  209. WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
  210. local_irq_enable();
  211. /*
  212. * First do one-time work. If these work items are enabled, we
  213. * want to run them exactly once per syscall exit with IRQs on.
  214. */
  215. if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
  216. syscall_slow_exit_work(regs, cached_flags);
  217. local_irq_disable();
  218. prepare_exit_to_usermode(regs);
  219. }
  220. #ifdef CONFIG_X86_64
  221. __visible void do_syscall_64(struct pt_regs *regs)
  222. {
  223. struct thread_info *ti = current_thread_info();
  224. unsigned long nr = regs->orig_ax;
  225. enter_from_user_mode();
  226. local_irq_enable();
  227. if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
  228. nr = syscall_trace_enter(regs);
  229. /*
  230. * NB: Native and x32 syscalls are dispatched from the same
  231. * table. The only functional difference is the x32 bit in
  232. * regs->orig_ax, which changes the behavior of some syscalls.
  233. */
  234. if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
  235. regs->ax = sys_call_table[nr & __SYSCALL_MASK](
  236. regs->di, regs->si, regs->dx,
  237. regs->r10, regs->r8, regs->r9);
  238. }
  239. syscall_return_slowpath(regs);
  240. }
  241. #endif
  242. #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  243. /*
  244. * Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does
  245. * all entry and exit work and returns with IRQs off. This function is
  246. * extremely hot in workloads that use it, and it's usually called from
  247. * do_fast_syscall_32, so forcibly inline it to improve performance.
  248. */
  249. static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
  250. {
  251. struct thread_info *ti = current_thread_info();
  252. unsigned int nr = (unsigned int)regs->orig_ax;
  253. #ifdef CONFIG_IA32_EMULATION
  254. current->thread.status |= TS_COMPAT;
  255. #endif
  256. if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
  257. /*
  258. * Subtlety here: if ptrace pokes something larger than
  259. * 2^32-1 into orig_ax, this truncates it. This may or
  260. * may not be necessary, but it matches the old asm
  261. * behavior.
  262. */
  263. nr = syscall_trace_enter(regs);
  264. }
  265. if (likely(nr < IA32_NR_syscalls)) {
  266. /*
  267. * It's possible that a 32-bit syscall implementation
  268. * takes a 64-bit parameter but nonetheless assumes that
  269. * the high bits are zero. Make sure we zero-extend all
  270. * of the args.
  271. */
  272. regs->ax = ia32_sys_call_table[nr](
  273. (unsigned int)regs->bx, (unsigned int)regs->cx,
  274. (unsigned int)regs->dx, (unsigned int)regs->si,
  275. (unsigned int)regs->di, (unsigned int)regs->bp);
  276. }
  277. syscall_return_slowpath(regs);
  278. }
  279. /* Handles int $0x80 */
  280. __visible void do_int80_syscall_32(struct pt_regs *regs)
  281. {
  282. enter_from_user_mode();
  283. local_irq_enable();
  284. do_syscall_32_irqs_on(regs);
  285. }
  286. /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
  287. __visible long do_fast_syscall_32(struct pt_regs *regs)
  288. {
  289. /*
  290. * Called using the internal vDSO SYSENTER/SYSCALL32 calling
  291. * convention. Adjust regs so it looks like we entered using int80.
  292. */
  293. unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
  294. vdso_image_32.sym_int80_landing_pad;
  295. /*
  296. * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
  297. * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
  298. * Fix it up.
  299. */
  300. regs->ip = landing_pad;
  301. enter_from_user_mode();
  302. local_irq_enable();
  303. /* Fetch EBP from where the vDSO stashed it. */
  304. if (
  305. #ifdef CONFIG_X86_64
  306. /*
  307. * Micro-optimization: the pointer we're following is explicitly
  308. * 32 bits, so it can't be out of range.
  309. */
  310. __get_user(*(u32 *)&regs->bp,
  311. (u32 __user __force *)(unsigned long)(u32)regs->sp)
  312. #else
  313. get_user(*(u32 *)&regs->bp,
  314. (u32 __user __force *)(unsigned long)(u32)regs->sp)
  315. #endif
  316. ) {
  317. /* User code screwed up. */
  318. local_irq_disable();
  319. regs->ax = -EFAULT;
  320. prepare_exit_to_usermode(regs);
  321. return 0; /* Keep it simple: use IRET. */
  322. }
  323. /* Now this is just like a normal syscall. */
  324. do_syscall_32_irqs_on(regs);
  325. #ifdef CONFIG_X86_64
  326. /*
  327. * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
  328. * SYSRETL is available on all 64-bit CPUs, so we don't need to
  329. * bother with SYSEXIT.
  330. *
  331. * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
  332. * because the ECX fixup above will ensure that this is essentially
  333. * never the case.
  334. */
  335. return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
  336. regs->ip == landing_pad &&
  337. (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
  338. #else
  339. /*
  340. * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
  341. *
  342. * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
  343. * because the ECX fixup above will ensure that this is essentially
  344. * never the case.
  345. *
  346. * We don't allow syscalls at all from VM86 mode, but we still
  347. * need to check VM, because we might be returning from sys_vm86.
  348. */
  349. return static_cpu_has(X86_FEATURE_SEP) &&
  350. regs->cs == __USER_CS && regs->ss == __USER_DS &&
  351. regs->ip == landing_pad &&
  352. (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
  353. #endif
  354. }
  355. #endif