sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. unsigned long hrtick_flags;
  484. ktime_t hrtick_expire;
  485. struct hrtimer hrtick_timer;
  486. #endif
  487. #ifdef CONFIG_SCHEDSTATS
  488. /* latency stats */
  489. struct sched_info rq_sched_info;
  490. /* sys_sched_yield() stats */
  491. unsigned int yld_exp_empty;
  492. unsigned int yld_act_empty;
  493. unsigned int yld_both_empty;
  494. unsigned int yld_count;
  495. /* schedule() stats */
  496. unsigned int sched_switch;
  497. unsigned int sched_count;
  498. unsigned int sched_goidle;
  499. /* try_to_wake_up() stats */
  500. unsigned int ttwu_count;
  501. unsigned int ttwu_local;
  502. /* BKL stats */
  503. unsigned int bkl_count;
  504. #endif
  505. struct lock_class_key rq_lock_key;
  506. };
  507. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  508. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  509. {
  510. rq->curr->sched_class->check_preempt_curr(rq, p);
  511. }
  512. static inline int cpu_of(struct rq *rq)
  513. {
  514. #ifdef CONFIG_SMP
  515. return rq->cpu;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. /*
  521. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  522. * See detach_destroy_domains: synchronize_sched for details.
  523. *
  524. * The domain tree of any CPU may only be accessed from within
  525. * preempt-disabled sections.
  526. */
  527. #define for_each_domain(cpu, __sd) \
  528. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  529. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  530. #define this_rq() (&__get_cpu_var(runqueues))
  531. #define task_rq(p) cpu_rq(task_cpu(p))
  532. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  533. static inline void update_rq_clock(struct rq *rq)
  534. {
  535. rq->clock = sched_clock_cpu(cpu_of(rq));
  536. }
  537. /*
  538. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  539. */
  540. #ifdef CONFIG_SCHED_DEBUG
  541. # define const_debug __read_mostly
  542. #else
  543. # define const_debug static const
  544. #endif
  545. /**
  546. * runqueue_is_locked
  547. *
  548. * Returns true if the current cpu runqueue is locked.
  549. * This interface allows printk to be called with the runqueue lock
  550. * held and know whether or not it is OK to wake up the klogd.
  551. */
  552. int runqueue_is_locked(void)
  553. {
  554. int cpu = get_cpu();
  555. struct rq *rq = cpu_rq(cpu);
  556. int ret;
  557. ret = spin_is_locked(&rq->lock);
  558. put_cpu();
  559. return ret;
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_open(struct inode *inode, struct file *filp)
  585. {
  586. filp->private_data = inode->i_private;
  587. return 0;
  588. }
  589. static ssize_t
  590. sched_feat_read(struct file *filp, char __user *ubuf,
  591. size_t cnt, loff_t *ppos)
  592. {
  593. char *buf;
  594. int r = 0;
  595. int len = 0;
  596. int i;
  597. for (i = 0; sched_feat_names[i]; i++) {
  598. len += strlen(sched_feat_names[i]);
  599. len += 4;
  600. }
  601. buf = kmalloc(len + 2, GFP_KERNEL);
  602. if (!buf)
  603. return -ENOMEM;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (sysctl_sched_features & (1UL << i))
  606. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  607. else
  608. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  609. }
  610. r += sprintf(buf + r, "\n");
  611. WARN_ON(r >= len + 2);
  612. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  613. kfree(buf);
  614. return r;
  615. }
  616. static ssize_t
  617. sched_feat_write(struct file *filp, const char __user *ubuf,
  618. size_t cnt, loff_t *ppos)
  619. {
  620. char buf[64];
  621. char *cmp = buf;
  622. int neg = 0;
  623. int i;
  624. if (cnt > 63)
  625. cnt = 63;
  626. if (copy_from_user(&buf, ubuf, cnt))
  627. return -EFAULT;
  628. buf[cnt] = 0;
  629. if (strncmp(buf, "NO_", 3) == 0) {
  630. neg = 1;
  631. cmp += 3;
  632. }
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. int len = strlen(sched_feat_names[i]);
  635. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  636. if (neg)
  637. sysctl_sched_features &= ~(1UL << i);
  638. else
  639. sysctl_sched_features |= (1UL << i);
  640. break;
  641. }
  642. }
  643. if (!sched_feat_names[i])
  644. return -EINVAL;
  645. filp->f_pos += cnt;
  646. return cnt;
  647. }
  648. static struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .read = sched_feat_read,
  651. .write = sched_feat_write,
  652. };
  653. static __init int sched_init_debug(void)
  654. {
  655. debugfs_create_file("sched_features", 0644, NULL, NULL,
  656. &sched_feat_fops);
  657. return 0;
  658. }
  659. late_initcall(sched_init_debug);
  660. #endif
  661. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  662. /*
  663. * Number of tasks to iterate in a single balance run.
  664. * Limited because this is done with IRQs disabled.
  665. */
  666. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  667. /*
  668. * ratelimit for updating the group shares.
  669. * default: 0.5ms
  670. */
  671. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  672. /*
  673. * period over which we measure -rt task cpu usage in us.
  674. * default: 1s
  675. */
  676. unsigned int sysctl_sched_rt_period = 1000000;
  677. static __read_mostly int scheduler_running;
  678. /*
  679. * part of the period that we allow rt tasks to run in us.
  680. * default: 0.95s
  681. */
  682. int sysctl_sched_rt_runtime = 950000;
  683. static inline u64 global_rt_period(void)
  684. {
  685. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  686. }
  687. static inline u64 global_rt_runtime(void)
  688. {
  689. if (sysctl_sched_rt_period < 0)
  690. return RUNTIME_INF;
  691. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. static inline int task_current(struct rq *rq, struct task_struct *p)
  700. {
  701. return rq->curr == p;
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. return task_current(rq, p);
  707. }
  708. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  709. {
  710. }
  711. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  712. {
  713. #ifdef CONFIG_DEBUG_SPINLOCK
  714. /* this is a valid case when another task releases the spinlock */
  715. rq->lock.owner = current;
  716. #endif
  717. /*
  718. * If we are tracking spinlock dependencies then we have to
  719. * fix up the runqueue lock - which gets 'carried over' from
  720. * prev into current:
  721. */
  722. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  723. spin_unlock_irq(&rq->lock);
  724. }
  725. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. #ifdef CONFIG_SMP
  729. return p->oncpu;
  730. #else
  731. return task_current(rq, p);
  732. #endif
  733. }
  734. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * We can optimise this out completely for !SMP, because the
  739. * SMP rebalancing from interrupt is the only thing that cares
  740. * here.
  741. */
  742. next->oncpu = 1;
  743. #endif
  744. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. spin_unlock_irq(&rq->lock);
  746. #else
  747. spin_unlock(&rq->lock);
  748. #endif
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->oncpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->oncpu = 0;
  760. #endif
  761. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. local_irq_enable();
  763. #endif
  764. }
  765. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. /*
  767. * __task_rq_lock - lock the runqueue a given task resides on.
  768. * Must be called interrupts disabled.
  769. */
  770. static inline struct rq *__task_rq_lock(struct task_struct *p)
  771. __acquires(rq->lock)
  772. {
  773. for (;;) {
  774. struct rq *rq = task_rq(p);
  775. spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock the runqueue a given task resides on and disable
  783. * interrupts. Note the ordering: we can safely lookup the task_rq without
  784. * explicitly disabling preemption.
  785. */
  786. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  787. __acquires(rq->lock)
  788. {
  789. struct rq *rq;
  790. for (;;) {
  791. local_irq_save(*flags);
  792. rq = task_rq(p);
  793. spin_lock(&rq->lock);
  794. if (likely(rq == task_rq(p)))
  795. return rq;
  796. spin_unlock_irqrestore(&rq->lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. spin_unlock(&rq->lock);
  803. }
  804. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  805. __releases(rq->lock)
  806. {
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. /*
  810. * this_rq_lock - lock this runqueue and disable interrupts.
  811. */
  812. static struct rq *this_rq_lock(void)
  813. __acquires(rq->lock)
  814. {
  815. struct rq *rq;
  816. local_irq_disable();
  817. rq = this_rq();
  818. spin_lock(&rq->lock);
  819. return rq;
  820. }
  821. static void __resched_task(struct task_struct *p, int tif_bit);
  822. static inline void resched_task(struct task_struct *p)
  823. {
  824. __resched_task(p, TIF_NEED_RESCHED);
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. static inline void resched_hrt(struct task_struct *p)
  838. {
  839. __resched_task(p, TIF_HRTICK_RESCHED);
  840. }
  841. static inline void resched_rq(struct rq *rq)
  842. {
  843. unsigned long flags;
  844. spin_lock_irqsave(&rq->lock, flags);
  845. resched_task(rq->curr);
  846. spin_unlock_irqrestore(&rq->lock, flags);
  847. }
  848. enum {
  849. HRTICK_SET, /* re-programm hrtick_timer */
  850. HRTICK_RESET, /* not a new slice */
  851. HRTICK_BLOCK, /* stop hrtick operations */
  852. };
  853. /*
  854. * Use hrtick when:
  855. * - enabled by features
  856. * - hrtimer is actually high res
  857. */
  858. static inline int hrtick_enabled(struct rq *rq)
  859. {
  860. if (!sched_feat(HRTICK))
  861. return 0;
  862. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  863. return 0;
  864. return hrtimer_is_hres_active(&rq->hrtick_timer);
  865. }
  866. /*
  867. * Called to set the hrtick timer state.
  868. *
  869. * called with rq->lock held and irqs disabled
  870. */
  871. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  872. {
  873. assert_spin_locked(&rq->lock);
  874. /*
  875. * preempt at: now + delay
  876. */
  877. rq->hrtick_expire =
  878. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  879. /*
  880. * indicate we need to program the timer
  881. */
  882. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  883. if (reset)
  884. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  885. /*
  886. * New slices are called from the schedule path and don't need a
  887. * forced reschedule.
  888. */
  889. if (reset)
  890. resched_hrt(rq->curr);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * Update the timer from the possible pending state.
  899. */
  900. static void hrtick_set(struct rq *rq)
  901. {
  902. ktime_t time;
  903. int set, reset;
  904. unsigned long flags;
  905. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  906. spin_lock_irqsave(&rq->lock, flags);
  907. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  908. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  909. time = rq->hrtick_expire;
  910. clear_thread_flag(TIF_HRTICK_RESCHED);
  911. spin_unlock_irqrestore(&rq->lock, flags);
  912. if (set) {
  913. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  914. if (reset && !hrtimer_active(&rq->hrtick_timer))
  915. resched_rq(rq);
  916. } else
  917. hrtick_clear(rq);
  918. }
  919. /*
  920. * High-resolution timer tick.
  921. * Runs from hardirq context with interrupts disabled.
  922. */
  923. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  924. {
  925. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  926. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  927. spin_lock(&rq->lock);
  928. update_rq_clock(rq);
  929. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  930. spin_unlock(&rq->lock);
  931. return HRTIMER_NORESTART;
  932. }
  933. #ifdef CONFIG_SMP
  934. static void hotplug_hrtick_disable(int cpu)
  935. {
  936. struct rq *rq = cpu_rq(cpu);
  937. unsigned long flags;
  938. spin_lock_irqsave(&rq->lock, flags);
  939. rq->hrtick_flags = 0;
  940. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  941. spin_unlock_irqrestore(&rq->lock, flags);
  942. hrtick_clear(rq);
  943. }
  944. static void hotplug_hrtick_enable(int cpu)
  945. {
  946. struct rq *rq = cpu_rq(cpu);
  947. unsigned long flags;
  948. spin_lock_irqsave(&rq->lock, flags);
  949. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  950. spin_unlock_irqrestore(&rq->lock, flags);
  951. }
  952. static int
  953. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  954. {
  955. int cpu = (int)(long)hcpu;
  956. switch (action) {
  957. case CPU_UP_CANCELED:
  958. case CPU_UP_CANCELED_FROZEN:
  959. case CPU_DOWN_PREPARE:
  960. case CPU_DOWN_PREPARE_FROZEN:
  961. case CPU_DEAD:
  962. case CPU_DEAD_FROZEN:
  963. hotplug_hrtick_disable(cpu);
  964. return NOTIFY_OK;
  965. case CPU_UP_PREPARE:
  966. case CPU_UP_PREPARE_FROZEN:
  967. case CPU_DOWN_FAILED:
  968. case CPU_DOWN_FAILED_FROZEN:
  969. case CPU_ONLINE:
  970. case CPU_ONLINE_FROZEN:
  971. hotplug_hrtick_enable(cpu);
  972. return NOTIFY_OK;
  973. }
  974. return NOTIFY_DONE;
  975. }
  976. static void init_hrtick(void)
  977. {
  978. hotcpu_notifier(hotplug_hrtick, 0);
  979. }
  980. #endif /* CONFIG_SMP */
  981. static void init_rq_hrtick(struct rq *rq)
  982. {
  983. rq->hrtick_flags = 0;
  984. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  985. rq->hrtick_timer.function = hrtick;
  986. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  987. }
  988. void hrtick_resched(void)
  989. {
  990. struct rq *rq;
  991. unsigned long flags;
  992. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  993. return;
  994. local_irq_save(flags);
  995. rq = cpu_rq(smp_processor_id());
  996. hrtick_set(rq);
  997. local_irq_restore(flags);
  998. }
  999. #else
  1000. static inline void hrtick_clear(struct rq *rq)
  1001. {
  1002. }
  1003. static inline void hrtick_set(struct rq *rq)
  1004. {
  1005. }
  1006. static inline void init_rq_hrtick(struct rq *rq)
  1007. {
  1008. }
  1009. void hrtick_resched(void)
  1010. {
  1011. }
  1012. static inline void init_hrtick(void)
  1013. {
  1014. }
  1015. #endif
  1016. /*
  1017. * resched_task - mark a task 'to be rescheduled now'.
  1018. *
  1019. * On UP this means the setting of the need_resched flag, on SMP it
  1020. * might also involve a cross-CPU call to trigger the scheduler on
  1021. * the target CPU.
  1022. */
  1023. #ifdef CONFIG_SMP
  1024. #ifndef tsk_is_polling
  1025. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1026. #endif
  1027. static void __resched_task(struct task_struct *p, int tif_bit)
  1028. {
  1029. int cpu;
  1030. assert_spin_locked(&task_rq(p)->lock);
  1031. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1032. return;
  1033. set_tsk_thread_flag(p, tif_bit);
  1034. cpu = task_cpu(p);
  1035. if (cpu == smp_processor_id())
  1036. return;
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(p))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. static void resched_cpu(int cpu)
  1043. {
  1044. struct rq *rq = cpu_rq(cpu);
  1045. unsigned long flags;
  1046. if (!spin_trylock_irqsave(&rq->lock, flags))
  1047. return;
  1048. resched_task(cpu_curr(cpu));
  1049. spin_unlock_irqrestore(&rq->lock, flags);
  1050. }
  1051. #ifdef CONFIG_NO_HZ
  1052. /*
  1053. * When add_timer_on() enqueues a timer into the timer wheel of an
  1054. * idle CPU then this timer might expire before the next timer event
  1055. * which is scheduled to wake up that CPU. In case of a completely
  1056. * idle system the next event might even be infinite time into the
  1057. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1058. * leaves the inner idle loop so the newly added timer is taken into
  1059. * account when the CPU goes back to idle and evaluates the timer
  1060. * wheel for the next timer event.
  1061. */
  1062. void wake_up_idle_cpu(int cpu)
  1063. {
  1064. struct rq *rq = cpu_rq(cpu);
  1065. if (cpu == smp_processor_id())
  1066. return;
  1067. /*
  1068. * This is safe, as this function is called with the timer
  1069. * wheel base lock of (cpu) held. When the CPU is on the way
  1070. * to idle and has not yet set rq->curr to idle then it will
  1071. * be serialized on the timer wheel base lock and take the new
  1072. * timer into account automatically.
  1073. */
  1074. if (rq->curr != rq->idle)
  1075. return;
  1076. /*
  1077. * We can set TIF_RESCHED on the idle task of the other CPU
  1078. * lockless. The worst case is that the other CPU runs the
  1079. * idle task through an additional NOOP schedule()
  1080. */
  1081. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1082. /* NEED_RESCHED must be visible before we test polling */
  1083. smp_mb();
  1084. if (!tsk_is_polling(rq->idle))
  1085. smp_send_reschedule(cpu);
  1086. }
  1087. #endif /* CONFIG_NO_HZ */
  1088. #else /* !CONFIG_SMP */
  1089. static void __resched_task(struct task_struct *p, int tif_bit)
  1090. {
  1091. assert_spin_locked(&task_rq(p)->lock);
  1092. set_tsk_thread_flag(p, tif_bit);
  1093. }
  1094. #endif /* CONFIG_SMP */
  1095. #if BITS_PER_LONG == 32
  1096. # define WMULT_CONST (~0UL)
  1097. #else
  1098. # define WMULT_CONST (1UL << 32)
  1099. #endif
  1100. #define WMULT_SHIFT 32
  1101. /*
  1102. * Shift right and round:
  1103. */
  1104. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1105. /*
  1106. * delta *= weight / lw
  1107. */
  1108. static unsigned long
  1109. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1110. struct load_weight *lw)
  1111. {
  1112. u64 tmp;
  1113. if (!lw->inv_weight) {
  1114. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1115. lw->inv_weight = 1;
  1116. else
  1117. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1118. / (lw->weight+1);
  1119. }
  1120. tmp = (u64)delta_exec * weight;
  1121. /*
  1122. * Check whether we'd overflow the 64-bit multiplication:
  1123. */
  1124. if (unlikely(tmp > WMULT_CONST))
  1125. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1126. WMULT_SHIFT/2);
  1127. else
  1128. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1129. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1130. }
  1131. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1132. {
  1133. lw->weight += inc;
  1134. lw->inv_weight = 0;
  1135. }
  1136. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1137. {
  1138. lw->weight -= dec;
  1139. lw->inv_weight = 0;
  1140. }
  1141. /*
  1142. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1143. * of tasks with abnormal "nice" values across CPUs the contribution that
  1144. * each task makes to its run queue's load is weighted according to its
  1145. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1146. * scaled version of the new time slice allocation that they receive on time
  1147. * slice expiry etc.
  1148. */
  1149. #define WEIGHT_IDLEPRIO 2
  1150. #define WMULT_IDLEPRIO (1 << 31)
  1151. /*
  1152. * Nice levels are multiplicative, with a gentle 10% change for every
  1153. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1154. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1155. * that remained on nice 0.
  1156. *
  1157. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1158. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1159. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1160. * If a task goes up by ~10% and another task goes down by ~10% then
  1161. * the relative distance between them is ~25%.)
  1162. */
  1163. static const int prio_to_weight[40] = {
  1164. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1165. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1166. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1167. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1168. /* 0 */ 1024, 820, 655, 526, 423,
  1169. /* 5 */ 335, 272, 215, 172, 137,
  1170. /* 10 */ 110, 87, 70, 56, 45,
  1171. /* 15 */ 36, 29, 23, 18, 15,
  1172. };
  1173. /*
  1174. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1175. *
  1176. * In cases where the weight does not change often, we can use the
  1177. * precalculated inverse to speed up arithmetics by turning divisions
  1178. * into multiplications:
  1179. */
  1180. static const u32 prio_to_wmult[40] = {
  1181. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1182. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1183. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1184. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1185. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1186. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1187. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1188. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1189. };
  1190. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1191. /*
  1192. * runqueue iterator, to support SMP load-balancing between different
  1193. * scheduling classes, without having to expose their internal data
  1194. * structures to the load-balancing proper:
  1195. */
  1196. struct rq_iterator {
  1197. void *arg;
  1198. struct task_struct *(*start)(void *);
  1199. struct task_struct *(*next)(void *);
  1200. };
  1201. #ifdef CONFIG_SMP
  1202. static unsigned long
  1203. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1204. unsigned long max_load_move, struct sched_domain *sd,
  1205. enum cpu_idle_type idle, int *all_pinned,
  1206. int *this_best_prio, struct rq_iterator *iterator);
  1207. static int
  1208. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1209. struct sched_domain *sd, enum cpu_idle_type idle,
  1210. struct rq_iterator *iterator);
  1211. #endif
  1212. #ifdef CONFIG_CGROUP_CPUACCT
  1213. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1214. #else
  1215. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1216. #endif
  1217. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1218. {
  1219. update_load_add(&rq->load, load);
  1220. }
  1221. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1222. {
  1223. update_load_sub(&rq->load, load);
  1224. }
  1225. #ifdef CONFIG_SMP
  1226. static unsigned long source_load(int cpu, int type);
  1227. static unsigned long target_load(int cpu, int type);
  1228. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1229. static unsigned long cpu_avg_load_per_task(int cpu)
  1230. {
  1231. struct rq *rq = cpu_rq(cpu);
  1232. if (rq->nr_running)
  1233. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1234. return rq->avg_load_per_task;
  1235. }
  1236. #ifdef CONFIG_FAIR_GROUP_SCHED
  1237. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1238. /*
  1239. * Iterate the full tree, calling @down when first entering a node and @up when
  1240. * leaving it for the final time.
  1241. */
  1242. static void
  1243. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1244. {
  1245. struct task_group *parent, *child;
  1246. rcu_read_lock();
  1247. parent = &root_task_group;
  1248. down:
  1249. (*down)(parent, cpu, sd);
  1250. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1251. parent = child;
  1252. goto down;
  1253. up:
  1254. continue;
  1255. }
  1256. (*up)(parent, cpu, sd);
  1257. child = parent;
  1258. parent = parent->parent;
  1259. if (parent)
  1260. goto up;
  1261. rcu_read_unlock();
  1262. }
  1263. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1264. /*
  1265. * Calculate and set the cpu's group shares.
  1266. */
  1267. static void
  1268. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1269. unsigned long sd_shares, unsigned long sd_rq_weight)
  1270. {
  1271. int boost = 0;
  1272. unsigned long shares;
  1273. unsigned long rq_weight;
  1274. if (!tg->se[cpu])
  1275. return;
  1276. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1277. /*
  1278. * If there are currently no tasks on the cpu pretend there is one of
  1279. * average load so that when a new task gets to run here it will not
  1280. * get delayed by group starvation.
  1281. */
  1282. if (!rq_weight) {
  1283. boost = 1;
  1284. rq_weight = NICE_0_LOAD;
  1285. }
  1286. if (unlikely(rq_weight > sd_rq_weight))
  1287. rq_weight = sd_rq_weight;
  1288. /*
  1289. * \Sum shares * rq_weight
  1290. * shares = -----------------------
  1291. * \Sum rq_weight
  1292. *
  1293. */
  1294. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1295. /*
  1296. * record the actual number of shares, not the boosted amount.
  1297. */
  1298. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1299. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1300. if (shares < MIN_SHARES)
  1301. shares = MIN_SHARES;
  1302. else if (shares > MAX_SHARES)
  1303. shares = MAX_SHARES;
  1304. __set_se_shares(tg->se[cpu], shares);
  1305. }
  1306. /*
  1307. * Re-compute the task group their per cpu shares over the given domain.
  1308. * This needs to be done in a bottom-up fashion because the rq weight of a
  1309. * parent group depends on the shares of its child groups.
  1310. */
  1311. static void
  1312. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1313. {
  1314. unsigned long rq_weight = 0;
  1315. unsigned long shares = 0;
  1316. int i;
  1317. for_each_cpu_mask(i, sd->span) {
  1318. rq_weight += tg->cfs_rq[i]->load.weight;
  1319. shares += tg->cfs_rq[i]->shares;
  1320. }
  1321. if ((!shares && rq_weight) || shares > tg->shares)
  1322. shares = tg->shares;
  1323. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1324. shares = tg->shares;
  1325. if (!rq_weight)
  1326. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1327. for_each_cpu_mask(i, sd->span) {
  1328. struct rq *rq = cpu_rq(i);
  1329. unsigned long flags;
  1330. spin_lock_irqsave(&rq->lock, flags);
  1331. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1332. spin_unlock_irqrestore(&rq->lock, flags);
  1333. }
  1334. }
  1335. /*
  1336. * Compute the cpu's hierarchical load factor for each task group.
  1337. * This needs to be done in a top-down fashion because the load of a child
  1338. * group is a fraction of its parents load.
  1339. */
  1340. static void
  1341. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1342. {
  1343. unsigned long load;
  1344. if (!tg->parent) {
  1345. load = cpu_rq(cpu)->load.weight;
  1346. } else {
  1347. load = tg->parent->cfs_rq[cpu]->h_load;
  1348. load *= tg->cfs_rq[cpu]->shares;
  1349. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1350. }
  1351. tg->cfs_rq[cpu]->h_load = load;
  1352. }
  1353. static void
  1354. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1355. {
  1356. }
  1357. static void update_shares(struct sched_domain *sd)
  1358. {
  1359. u64 now = cpu_clock(raw_smp_processor_id());
  1360. s64 elapsed = now - sd->last_update;
  1361. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1362. sd->last_update = now;
  1363. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1364. }
  1365. }
  1366. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1367. {
  1368. spin_unlock(&rq->lock);
  1369. update_shares(sd);
  1370. spin_lock(&rq->lock);
  1371. }
  1372. static void update_h_load(int cpu)
  1373. {
  1374. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1375. }
  1376. #else
  1377. static inline void update_shares(struct sched_domain *sd)
  1378. {
  1379. }
  1380. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1381. {
  1382. }
  1383. #endif
  1384. #endif
  1385. #ifdef CONFIG_FAIR_GROUP_SCHED
  1386. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1387. {
  1388. #ifdef CONFIG_SMP
  1389. cfs_rq->shares = shares;
  1390. #endif
  1391. }
  1392. #endif
  1393. #include "sched_stats.h"
  1394. #include "sched_idletask.c"
  1395. #include "sched_fair.c"
  1396. #include "sched_rt.c"
  1397. #ifdef CONFIG_SCHED_DEBUG
  1398. # include "sched_debug.c"
  1399. #endif
  1400. #define sched_class_highest (&rt_sched_class)
  1401. #define for_each_class(class) \
  1402. for (class = sched_class_highest; class; class = class->next)
  1403. static void inc_nr_running(struct rq *rq)
  1404. {
  1405. rq->nr_running++;
  1406. }
  1407. static void dec_nr_running(struct rq *rq)
  1408. {
  1409. rq->nr_running--;
  1410. }
  1411. static void set_load_weight(struct task_struct *p)
  1412. {
  1413. if (task_has_rt_policy(p)) {
  1414. p->se.load.weight = prio_to_weight[0] * 2;
  1415. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1416. return;
  1417. }
  1418. /*
  1419. * SCHED_IDLE tasks get minimal weight:
  1420. */
  1421. if (p->policy == SCHED_IDLE) {
  1422. p->se.load.weight = WEIGHT_IDLEPRIO;
  1423. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1424. return;
  1425. }
  1426. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1427. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1428. }
  1429. static void update_avg(u64 *avg, u64 sample)
  1430. {
  1431. s64 diff = sample - *avg;
  1432. *avg += diff >> 3;
  1433. }
  1434. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1435. {
  1436. sched_info_queued(p);
  1437. p->sched_class->enqueue_task(rq, p, wakeup);
  1438. p->se.on_rq = 1;
  1439. }
  1440. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1441. {
  1442. if (sleep && p->se.last_wakeup) {
  1443. update_avg(&p->se.avg_overlap,
  1444. p->se.sum_exec_runtime - p->se.last_wakeup);
  1445. p->se.last_wakeup = 0;
  1446. }
  1447. sched_info_dequeued(p);
  1448. p->sched_class->dequeue_task(rq, p, sleep);
  1449. p->se.on_rq = 0;
  1450. }
  1451. /*
  1452. * __normal_prio - return the priority that is based on the static prio
  1453. */
  1454. static inline int __normal_prio(struct task_struct *p)
  1455. {
  1456. return p->static_prio;
  1457. }
  1458. /*
  1459. * Calculate the expected normal priority: i.e. priority
  1460. * without taking RT-inheritance into account. Might be
  1461. * boosted by interactivity modifiers. Changes upon fork,
  1462. * setprio syscalls, and whenever the interactivity
  1463. * estimator recalculates.
  1464. */
  1465. static inline int normal_prio(struct task_struct *p)
  1466. {
  1467. int prio;
  1468. if (task_has_rt_policy(p))
  1469. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1470. else
  1471. prio = __normal_prio(p);
  1472. return prio;
  1473. }
  1474. /*
  1475. * Calculate the current priority, i.e. the priority
  1476. * taken into account by the scheduler. This value might
  1477. * be boosted by RT tasks, or might be boosted by
  1478. * interactivity modifiers. Will be RT if the task got
  1479. * RT-boosted. If not then it returns p->normal_prio.
  1480. */
  1481. static int effective_prio(struct task_struct *p)
  1482. {
  1483. p->normal_prio = normal_prio(p);
  1484. /*
  1485. * If we are RT tasks or we were boosted to RT priority,
  1486. * keep the priority unchanged. Otherwise, update priority
  1487. * to the normal priority:
  1488. */
  1489. if (!rt_prio(p->prio))
  1490. return p->normal_prio;
  1491. return p->prio;
  1492. }
  1493. /*
  1494. * activate_task - move a task to the runqueue.
  1495. */
  1496. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1497. {
  1498. if (task_contributes_to_load(p))
  1499. rq->nr_uninterruptible--;
  1500. enqueue_task(rq, p, wakeup);
  1501. inc_nr_running(rq);
  1502. }
  1503. /*
  1504. * deactivate_task - remove a task from the runqueue.
  1505. */
  1506. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1507. {
  1508. if (task_contributes_to_load(p))
  1509. rq->nr_uninterruptible++;
  1510. dequeue_task(rq, p, sleep);
  1511. dec_nr_running(rq);
  1512. }
  1513. /**
  1514. * task_curr - is this task currently executing on a CPU?
  1515. * @p: the task in question.
  1516. */
  1517. inline int task_curr(const struct task_struct *p)
  1518. {
  1519. return cpu_curr(task_cpu(p)) == p;
  1520. }
  1521. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1522. {
  1523. set_task_rq(p, cpu);
  1524. #ifdef CONFIG_SMP
  1525. /*
  1526. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1527. * successfuly executed on another CPU. We must ensure that updates of
  1528. * per-task data have been completed by this moment.
  1529. */
  1530. smp_wmb();
  1531. task_thread_info(p)->cpu = cpu;
  1532. #endif
  1533. }
  1534. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1535. const struct sched_class *prev_class,
  1536. int oldprio, int running)
  1537. {
  1538. if (prev_class != p->sched_class) {
  1539. if (prev_class->switched_from)
  1540. prev_class->switched_from(rq, p, running);
  1541. p->sched_class->switched_to(rq, p, running);
  1542. } else
  1543. p->sched_class->prio_changed(rq, p, oldprio, running);
  1544. }
  1545. #ifdef CONFIG_SMP
  1546. /* Used instead of source_load when we know the type == 0 */
  1547. static unsigned long weighted_cpuload(const int cpu)
  1548. {
  1549. return cpu_rq(cpu)->load.weight;
  1550. }
  1551. /*
  1552. * Is this task likely cache-hot:
  1553. */
  1554. static int
  1555. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1556. {
  1557. s64 delta;
  1558. /*
  1559. * Buddy candidates are cache hot:
  1560. */
  1561. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1562. return 1;
  1563. if (p->sched_class != &fair_sched_class)
  1564. return 0;
  1565. if (sysctl_sched_migration_cost == -1)
  1566. return 1;
  1567. if (sysctl_sched_migration_cost == 0)
  1568. return 0;
  1569. delta = now - p->se.exec_start;
  1570. return delta < (s64)sysctl_sched_migration_cost;
  1571. }
  1572. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1573. {
  1574. int old_cpu = task_cpu(p);
  1575. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1576. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1577. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1578. u64 clock_offset;
  1579. clock_offset = old_rq->clock - new_rq->clock;
  1580. #ifdef CONFIG_SCHEDSTATS
  1581. if (p->se.wait_start)
  1582. p->se.wait_start -= clock_offset;
  1583. if (p->se.sleep_start)
  1584. p->se.sleep_start -= clock_offset;
  1585. if (p->se.block_start)
  1586. p->se.block_start -= clock_offset;
  1587. if (old_cpu != new_cpu) {
  1588. schedstat_inc(p, se.nr_migrations);
  1589. if (task_hot(p, old_rq->clock, NULL))
  1590. schedstat_inc(p, se.nr_forced2_migrations);
  1591. }
  1592. #endif
  1593. p->se.vruntime -= old_cfsrq->min_vruntime -
  1594. new_cfsrq->min_vruntime;
  1595. __set_task_cpu(p, new_cpu);
  1596. }
  1597. struct migration_req {
  1598. struct list_head list;
  1599. struct task_struct *task;
  1600. int dest_cpu;
  1601. struct completion done;
  1602. };
  1603. /*
  1604. * The task's runqueue lock must be held.
  1605. * Returns true if you have to wait for migration thread.
  1606. */
  1607. static int
  1608. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1609. {
  1610. struct rq *rq = task_rq(p);
  1611. /*
  1612. * If the task is not on a runqueue (and not running), then
  1613. * it is sufficient to simply update the task's cpu field.
  1614. */
  1615. if (!p->se.on_rq && !task_running(rq, p)) {
  1616. set_task_cpu(p, dest_cpu);
  1617. return 0;
  1618. }
  1619. init_completion(&req->done);
  1620. req->task = p;
  1621. req->dest_cpu = dest_cpu;
  1622. list_add(&req->list, &rq->migration_queue);
  1623. return 1;
  1624. }
  1625. /*
  1626. * wait_task_inactive - wait for a thread to unschedule.
  1627. *
  1628. * The caller must ensure that the task *will* unschedule sometime soon,
  1629. * else this function might spin for a *long* time. This function can't
  1630. * be called with interrupts off, or it may introduce deadlock with
  1631. * smp_call_function() if an IPI is sent by the same process we are
  1632. * waiting to become inactive.
  1633. */
  1634. void wait_task_inactive(struct task_struct *p)
  1635. {
  1636. unsigned long flags;
  1637. int running, on_rq;
  1638. struct rq *rq;
  1639. for (;;) {
  1640. /*
  1641. * We do the initial early heuristics without holding
  1642. * any task-queue locks at all. We'll only try to get
  1643. * the runqueue lock when things look like they will
  1644. * work out!
  1645. */
  1646. rq = task_rq(p);
  1647. /*
  1648. * If the task is actively running on another CPU
  1649. * still, just relax and busy-wait without holding
  1650. * any locks.
  1651. *
  1652. * NOTE! Since we don't hold any locks, it's not
  1653. * even sure that "rq" stays as the right runqueue!
  1654. * But we don't care, since "task_running()" will
  1655. * return false if the runqueue has changed and p
  1656. * is actually now running somewhere else!
  1657. */
  1658. while (task_running(rq, p))
  1659. cpu_relax();
  1660. /*
  1661. * Ok, time to look more closely! We need the rq
  1662. * lock now, to be *sure*. If we're wrong, we'll
  1663. * just go back and repeat.
  1664. */
  1665. rq = task_rq_lock(p, &flags);
  1666. running = task_running(rq, p);
  1667. on_rq = p->se.on_rq;
  1668. task_rq_unlock(rq, &flags);
  1669. /*
  1670. * Was it really running after all now that we
  1671. * checked with the proper locks actually held?
  1672. *
  1673. * Oops. Go back and try again..
  1674. */
  1675. if (unlikely(running)) {
  1676. cpu_relax();
  1677. continue;
  1678. }
  1679. /*
  1680. * It's not enough that it's not actively running,
  1681. * it must be off the runqueue _entirely_, and not
  1682. * preempted!
  1683. *
  1684. * So if it wa still runnable (but just not actively
  1685. * running right now), it's preempted, and we should
  1686. * yield - it could be a while.
  1687. */
  1688. if (unlikely(on_rq)) {
  1689. schedule_timeout_uninterruptible(1);
  1690. continue;
  1691. }
  1692. /*
  1693. * Ahh, all good. It wasn't running, and it wasn't
  1694. * runnable, which means that it will never become
  1695. * running in the future either. We're all done!
  1696. */
  1697. break;
  1698. }
  1699. }
  1700. /***
  1701. * kick_process - kick a running thread to enter/exit the kernel
  1702. * @p: the to-be-kicked thread
  1703. *
  1704. * Cause a process which is running on another CPU to enter
  1705. * kernel-mode, without any delay. (to get signals handled.)
  1706. *
  1707. * NOTE: this function doesnt have to take the runqueue lock,
  1708. * because all it wants to ensure is that the remote task enters
  1709. * the kernel. If the IPI races and the task has been migrated
  1710. * to another CPU then no harm is done and the purpose has been
  1711. * achieved as well.
  1712. */
  1713. void kick_process(struct task_struct *p)
  1714. {
  1715. int cpu;
  1716. preempt_disable();
  1717. cpu = task_cpu(p);
  1718. if ((cpu != smp_processor_id()) && task_curr(p))
  1719. smp_send_reschedule(cpu);
  1720. preempt_enable();
  1721. }
  1722. /*
  1723. * Return a low guess at the load of a migration-source cpu weighted
  1724. * according to the scheduling class and "nice" value.
  1725. *
  1726. * We want to under-estimate the load of migration sources, to
  1727. * balance conservatively.
  1728. */
  1729. static unsigned long source_load(int cpu, int type)
  1730. {
  1731. struct rq *rq = cpu_rq(cpu);
  1732. unsigned long total = weighted_cpuload(cpu);
  1733. if (type == 0 || !sched_feat(LB_BIAS))
  1734. return total;
  1735. return min(rq->cpu_load[type-1], total);
  1736. }
  1737. /*
  1738. * Return a high guess at the load of a migration-target cpu weighted
  1739. * according to the scheduling class and "nice" value.
  1740. */
  1741. static unsigned long target_load(int cpu, int type)
  1742. {
  1743. struct rq *rq = cpu_rq(cpu);
  1744. unsigned long total = weighted_cpuload(cpu);
  1745. if (type == 0 || !sched_feat(LB_BIAS))
  1746. return total;
  1747. return max(rq->cpu_load[type-1], total);
  1748. }
  1749. /*
  1750. * find_idlest_group finds and returns the least busy CPU group within the
  1751. * domain.
  1752. */
  1753. static struct sched_group *
  1754. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1755. {
  1756. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1757. unsigned long min_load = ULONG_MAX, this_load = 0;
  1758. int load_idx = sd->forkexec_idx;
  1759. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1760. do {
  1761. unsigned long load, avg_load;
  1762. int local_group;
  1763. int i;
  1764. /* Skip over this group if it has no CPUs allowed */
  1765. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1766. continue;
  1767. local_group = cpu_isset(this_cpu, group->cpumask);
  1768. /* Tally up the load of all CPUs in the group */
  1769. avg_load = 0;
  1770. for_each_cpu_mask(i, group->cpumask) {
  1771. /* Bias balancing toward cpus of our domain */
  1772. if (local_group)
  1773. load = source_load(i, load_idx);
  1774. else
  1775. load = target_load(i, load_idx);
  1776. avg_load += load;
  1777. }
  1778. /* Adjust by relative CPU power of the group */
  1779. avg_load = sg_div_cpu_power(group,
  1780. avg_load * SCHED_LOAD_SCALE);
  1781. if (local_group) {
  1782. this_load = avg_load;
  1783. this = group;
  1784. } else if (avg_load < min_load) {
  1785. min_load = avg_load;
  1786. idlest = group;
  1787. }
  1788. } while (group = group->next, group != sd->groups);
  1789. if (!idlest || 100*this_load < imbalance*min_load)
  1790. return NULL;
  1791. return idlest;
  1792. }
  1793. /*
  1794. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1795. */
  1796. static int
  1797. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1798. cpumask_t *tmp)
  1799. {
  1800. unsigned long load, min_load = ULONG_MAX;
  1801. int idlest = -1;
  1802. int i;
  1803. /* Traverse only the allowed CPUs */
  1804. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1805. for_each_cpu_mask(i, *tmp) {
  1806. load = weighted_cpuload(i);
  1807. if (load < min_load || (load == min_load && i == this_cpu)) {
  1808. min_load = load;
  1809. idlest = i;
  1810. }
  1811. }
  1812. return idlest;
  1813. }
  1814. /*
  1815. * sched_balance_self: balance the current task (running on cpu) in domains
  1816. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1817. * SD_BALANCE_EXEC.
  1818. *
  1819. * Balance, ie. select the least loaded group.
  1820. *
  1821. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1822. *
  1823. * preempt must be disabled.
  1824. */
  1825. static int sched_balance_self(int cpu, int flag)
  1826. {
  1827. struct task_struct *t = current;
  1828. struct sched_domain *tmp, *sd = NULL;
  1829. for_each_domain(cpu, tmp) {
  1830. /*
  1831. * If power savings logic is enabled for a domain, stop there.
  1832. */
  1833. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1834. break;
  1835. if (tmp->flags & flag)
  1836. sd = tmp;
  1837. }
  1838. if (sd)
  1839. update_shares(sd);
  1840. while (sd) {
  1841. cpumask_t span, tmpmask;
  1842. struct sched_group *group;
  1843. int new_cpu, weight;
  1844. if (!(sd->flags & flag)) {
  1845. sd = sd->child;
  1846. continue;
  1847. }
  1848. span = sd->span;
  1849. group = find_idlest_group(sd, t, cpu);
  1850. if (!group) {
  1851. sd = sd->child;
  1852. continue;
  1853. }
  1854. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1855. if (new_cpu == -1 || new_cpu == cpu) {
  1856. /* Now try balancing at a lower domain level of cpu */
  1857. sd = sd->child;
  1858. continue;
  1859. }
  1860. /* Now try balancing at a lower domain level of new_cpu */
  1861. cpu = new_cpu;
  1862. sd = NULL;
  1863. weight = cpus_weight(span);
  1864. for_each_domain(cpu, tmp) {
  1865. if (weight <= cpus_weight(tmp->span))
  1866. break;
  1867. if (tmp->flags & flag)
  1868. sd = tmp;
  1869. }
  1870. /* while loop will break here if sd == NULL */
  1871. }
  1872. return cpu;
  1873. }
  1874. #endif /* CONFIG_SMP */
  1875. /***
  1876. * try_to_wake_up - wake up a thread
  1877. * @p: the to-be-woken-up thread
  1878. * @state: the mask of task states that can be woken
  1879. * @sync: do a synchronous wakeup?
  1880. *
  1881. * Put it on the run-queue if it's not already there. The "current"
  1882. * thread is always on the run-queue (except when the actual
  1883. * re-schedule is in progress), and as such you're allowed to do
  1884. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1885. * runnable without the overhead of this.
  1886. *
  1887. * returns failure only if the task is already active.
  1888. */
  1889. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1890. {
  1891. int cpu, orig_cpu, this_cpu, success = 0;
  1892. unsigned long flags;
  1893. long old_state;
  1894. struct rq *rq;
  1895. if (!sched_feat(SYNC_WAKEUPS))
  1896. sync = 0;
  1897. #ifdef CONFIG_SMP
  1898. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1899. struct sched_domain *sd;
  1900. this_cpu = raw_smp_processor_id();
  1901. cpu = task_cpu(p);
  1902. for_each_domain(this_cpu, sd) {
  1903. if (cpu_isset(cpu, sd->span)) {
  1904. update_shares(sd);
  1905. break;
  1906. }
  1907. }
  1908. }
  1909. #endif
  1910. smp_wmb();
  1911. rq = task_rq_lock(p, &flags);
  1912. old_state = p->state;
  1913. if (!(old_state & state))
  1914. goto out;
  1915. if (p->se.on_rq)
  1916. goto out_running;
  1917. cpu = task_cpu(p);
  1918. orig_cpu = cpu;
  1919. this_cpu = smp_processor_id();
  1920. #ifdef CONFIG_SMP
  1921. if (unlikely(task_running(rq, p)))
  1922. goto out_activate;
  1923. cpu = p->sched_class->select_task_rq(p, sync);
  1924. if (cpu != orig_cpu) {
  1925. set_task_cpu(p, cpu);
  1926. task_rq_unlock(rq, &flags);
  1927. /* might preempt at this point */
  1928. rq = task_rq_lock(p, &flags);
  1929. old_state = p->state;
  1930. if (!(old_state & state))
  1931. goto out;
  1932. if (p->se.on_rq)
  1933. goto out_running;
  1934. this_cpu = smp_processor_id();
  1935. cpu = task_cpu(p);
  1936. }
  1937. #ifdef CONFIG_SCHEDSTATS
  1938. schedstat_inc(rq, ttwu_count);
  1939. if (cpu == this_cpu)
  1940. schedstat_inc(rq, ttwu_local);
  1941. else {
  1942. struct sched_domain *sd;
  1943. for_each_domain(this_cpu, sd) {
  1944. if (cpu_isset(cpu, sd->span)) {
  1945. schedstat_inc(sd, ttwu_wake_remote);
  1946. break;
  1947. }
  1948. }
  1949. }
  1950. #endif /* CONFIG_SCHEDSTATS */
  1951. out_activate:
  1952. #endif /* CONFIG_SMP */
  1953. schedstat_inc(p, se.nr_wakeups);
  1954. if (sync)
  1955. schedstat_inc(p, se.nr_wakeups_sync);
  1956. if (orig_cpu != cpu)
  1957. schedstat_inc(p, se.nr_wakeups_migrate);
  1958. if (cpu == this_cpu)
  1959. schedstat_inc(p, se.nr_wakeups_local);
  1960. else
  1961. schedstat_inc(p, se.nr_wakeups_remote);
  1962. update_rq_clock(rq);
  1963. activate_task(rq, p, 1);
  1964. success = 1;
  1965. out_running:
  1966. trace_mark(kernel_sched_wakeup,
  1967. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1968. p->pid, p->state, rq, p, rq->curr);
  1969. check_preempt_curr(rq, p);
  1970. p->state = TASK_RUNNING;
  1971. #ifdef CONFIG_SMP
  1972. if (p->sched_class->task_wake_up)
  1973. p->sched_class->task_wake_up(rq, p);
  1974. #endif
  1975. out:
  1976. current->se.last_wakeup = current->se.sum_exec_runtime;
  1977. task_rq_unlock(rq, &flags);
  1978. return success;
  1979. }
  1980. int wake_up_process(struct task_struct *p)
  1981. {
  1982. return try_to_wake_up(p, TASK_ALL, 0);
  1983. }
  1984. EXPORT_SYMBOL(wake_up_process);
  1985. int wake_up_state(struct task_struct *p, unsigned int state)
  1986. {
  1987. return try_to_wake_up(p, state, 0);
  1988. }
  1989. /*
  1990. * Perform scheduler related setup for a newly forked process p.
  1991. * p is forked by current.
  1992. *
  1993. * __sched_fork() is basic setup used by init_idle() too:
  1994. */
  1995. static void __sched_fork(struct task_struct *p)
  1996. {
  1997. p->se.exec_start = 0;
  1998. p->se.sum_exec_runtime = 0;
  1999. p->se.prev_sum_exec_runtime = 0;
  2000. p->se.last_wakeup = 0;
  2001. p->se.avg_overlap = 0;
  2002. #ifdef CONFIG_SCHEDSTATS
  2003. p->se.wait_start = 0;
  2004. p->se.sum_sleep_runtime = 0;
  2005. p->se.sleep_start = 0;
  2006. p->se.block_start = 0;
  2007. p->se.sleep_max = 0;
  2008. p->se.block_max = 0;
  2009. p->se.exec_max = 0;
  2010. p->se.slice_max = 0;
  2011. p->se.wait_max = 0;
  2012. #endif
  2013. INIT_LIST_HEAD(&p->rt.run_list);
  2014. p->se.on_rq = 0;
  2015. INIT_LIST_HEAD(&p->se.group_node);
  2016. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2017. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2018. #endif
  2019. /*
  2020. * We mark the process as running here, but have not actually
  2021. * inserted it onto the runqueue yet. This guarantees that
  2022. * nobody will actually run it, and a signal or other external
  2023. * event cannot wake it up and insert it on the runqueue either.
  2024. */
  2025. p->state = TASK_RUNNING;
  2026. }
  2027. /*
  2028. * fork()/clone()-time setup:
  2029. */
  2030. void sched_fork(struct task_struct *p, int clone_flags)
  2031. {
  2032. int cpu = get_cpu();
  2033. __sched_fork(p);
  2034. #ifdef CONFIG_SMP
  2035. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2036. #endif
  2037. set_task_cpu(p, cpu);
  2038. /*
  2039. * Make sure we do not leak PI boosting priority to the child:
  2040. */
  2041. p->prio = current->normal_prio;
  2042. if (!rt_prio(p->prio))
  2043. p->sched_class = &fair_sched_class;
  2044. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2045. if (likely(sched_info_on()))
  2046. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2047. #endif
  2048. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2049. p->oncpu = 0;
  2050. #endif
  2051. #ifdef CONFIG_PREEMPT
  2052. /* Want to start with kernel preemption disabled. */
  2053. task_thread_info(p)->preempt_count = 1;
  2054. #endif
  2055. put_cpu();
  2056. }
  2057. /*
  2058. * wake_up_new_task - wake up a newly created task for the first time.
  2059. *
  2060. * This function will do some initial scheduler statistics housekeeping
  2061. * that must be done for every newly created context, then puts the task
  2062. * on the runqueue and wakes it.
  2063. */
  2064. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2065. {
  2066. unsigned long flags;
  2067. struct rq *rq;
  2068. rq = task_rq_lock(p, &flags);
  2069. BUG_ON(p->state != TASK_RUNNING);
  2070. update_rq_clock(rq);
  2071. p->prio = effective_prio(p);
  2072. if (!p->sched_class->task_new || !current->se.on_rq) {
  2073. activate_task(rq, p, 0);
  2074. } else {
  2075. /*
  2076. * Let the scheduling class do new task startup
  2077. * management (if any):
  2078. */
  2079. p->sched_class->task_new(rq, p);
  2080. inc_nr_running(rq);
  2081. }
  2082. trace_mark(kernel_sched_wakeup_new,
  2083. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2084. p->pid, p->state, rq, p, rq->curr);
  2085. check_preempt_curr(rq, p);
  2086. #ifdef CONFIG_SMP
  2087. if (p->sched_class->task_wake_up)
  2088. p->sched_class->task_wake_up(rq, p);
  2089. #endif
  2090. task_rq_unlock(rq, &flags);
  2091. }
  2092. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2093. /**
  2094. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2095. * @notifier: notifier struct to register
  2096. */
  2097. void preempt_notifier_register(struct preempt_notifier *notifier)
  2098. {
  2099. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2100. }
  2101. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2102. /**
  2103. * preempt_notifier_unregister - no longer interested in preemption notifications
  2104. * @notifier: notifier struct to unregister
  2105. *
  2106. * This is safe to call from within a preemption notifier.
  2107. */
  2108. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2109. {
  2110. hlist_del(&notifier->link);
  2111. }
  2112. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2113. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2114. {
  2115. struct preempt_notifier *notifier;
  2116. struct hlist_node *node;
  2117. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2118. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2119. }
  2120. static void
  2121. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2122. struct task_struct *next)
  2123. {
  2124. struct preempt_notifier *notifier;
  2125. struct hlist_node *node;
  2126. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2127. notifier->ops->sched_out(notifier, next);
  2128. }
  2129. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2130. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2131. {
  2132. }
  2133. static void
  2134. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2135. struct task_struct *next)
  2136. {
  2137. }
  2138. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2139. /**
  2140. * prepare_task_switch - prepare to switch tasks
  2141. * @rq: the runqueue preparing to switch
  2142. * @prev: the current task that is being switched out
  2143. * @next: the task we are going to switch to.
  2144. *
  2145. * This is called with the rq lock held and interrupts off. It must
  2146. * be paired with a subsequent finish_task_switch after the context
  2147. * switch.
  2148. *
  2149. * prepare_task_switch sets up locking and calls architecture specific
  2150. * hooks.
  2151. */
  2152. static inline void
  2153. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2154. struct task_struct *next)
  2155. {
  2156. fire_sched_out_preempt_notifiers(prev, next);
  2157. prepare_lock_switch(rq, next);
  2158. prepare_arch_switch(next);
  2159. }
  2160. /**
  2161. * finish_task_switch - clean up after a task-switch
  2162. * @rq: runqueue associated with task-switch
  2163. * @prev: the thread we just switched away from.
  2164. *
  2165. * finish_task_switch must be called after the context switch, paired
  2166. * with a prepare_task_switch call before the context switch.
  2167. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2168. * and do any other architecture-specific cleanup actions.
  2169. *
  2170. * Note that we may have delayed dropping an mm in context_switch(). If
  2171. * so, we finish that here outside of the runqueue lock. (Doing it
  2172. * with the lock held can cause deadlocks; see schedule() for
  2173. * details.)
  2174. */
  2175. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2176. __releases(rq->lock)
  2177. {
  2178. struct mm_struct *mm = rq->prev_mm;
  2179. long prev_state;
  2180. rq->prev_mm = NULL;
  2181. /*
  2182. * A task struct has one reference for the use as "current".
  2183. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2184. * schedule one last time. The schedule call will never return, and
  2185. * the scheduled task must drop that reference.
  2186. * The test for TASK_DEAD must occur while the runqueue locks are
  2187. * still held, otherwise prev could be scheduled on another cpu, die
  2188. * there before we look at prev->state, and then the reference would
  2189. * be dropped twice.
  2190. * Manfred Spraul <manfred@colorfullife.com>
  2191. */
  2192. prev_state = prev->state;
  2193. finish_arch_switch(prev);
  2194. finish_lock_switch(rq, prev);
  2195. #ifdef CONFIG_SMP
  2196. if (current->sched_class->post_schedule)
  2197. current->sched_class->post_schedule(rq);
  2198. #endif
  2199. fire_sched_in_preempt_notifiers(current);
  2200. if (mm)
  2201. mmdrop(mm);
  2202. if (unlikely(prev_state == TASK_DEAD)) {
  2203. /*
  2204. * Remove function-return probe instances associated with this
  2205. * task and put them back on the free list.
  2206. */
  2207. kprobe_flush_task(prev);
  2208. put_task_struct(prev);
  2209. }
  2210. }
  2211. /**
  2212. * schedule_tail - first thing a freshly forked thread must call.
  2213. * @prev: the thread we just switched away from.
  2214. */
  2215. asmlinkage void schedule_tail(struct task_struct *prev)
  2216. __releases(rq->lock)
  2217. {
  2218. struct rq *rq = this_rq();
  2219. finish_task_switch(rq, prev);
  2220. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2221. /* In this case, finish_task_switch does not reenable preemption */
  2222. preempt_enable();
  2223. #endif
  2224. if (current->set_child_tid)
  2225. put_user(task_pid_vnr(current), current->set_child_tid);
  2226. }
  2227. /*
  2228. * context_switch - switch to the new MM and the new
  2229. * thread's register state.
  2230. */
  2231. static inline void
  2232. context_switch(struct rq *rq, struct task_struct *prev,
  2233. struct task_struct *next)
  2234. {
  2235. struct mm_struct *mm, *oldmm;
  2236. prepare_task_switch(rq, prev, next);
  2237. trace_mark(kernel_sched_schedule,
  2238. "prev_pid %d next_pid %d prev_state %ld "
  2239. "## rq %p prev %p next %p",
  2240. prev->pid, next->pid, prev->state,
  2241. rq, prev, next);
  2242. mm = next->mm;
  2243. oldmm = prev->active_mm;
  2244. /*
  2245. * For paravirt, this is coupled with an exit in switch_to to
  2246. * combine the page table reload and the switch backend into
  2247. * one hypercall.
  2248. */
  2249. arch_enter_lazy_cpu_mode();
  2250. if (unlikely(!mm)) {
  2251. next->active_mm = oldmm;
  2252. atomic_inc(&oldmm->mm_count);
  2253. enter_lazy_tlb(oldmm, next);
  2254. } else
  2255. switch_mm(oldmm, mm, next);
  2256. if (unlikely(!prev->mm)) {
  2257. prev->active_mm = NULL;
  2258. rq->prev_mm = oldmm;
  2259. }
  2260. /*
  2261. * Since the runqueue lock will be released by the next
  2262. * task (which is an invalid locking op but in the case
  2263. * of the scheduler it's an obvious special-case), so we
  2264. * do an early lockdep release here:
  2265. */
  2266. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2267. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2268. #endif
  2269. /* Here we just switch the register state and the stack. */
  2270. switch_to(prev, next, prev);
  2271. barrier();
  2272. /*
  2273. * this_rq must be evaluated again because prev may have moved
  2274. * CPUs since it called schedule(), thus the 'rq' on its stack
  2275. * frame will be invalid.
  2276. */
  2277. finish_task_switch(this_rq(), prev);
  2278. }
  2279. /*
  2280. * nr_running, nr_uninterruptible and nr_context_switches:
  2281. *
  2282. * externally visible scheduler statistics: current number of runnable
  2283. * threads, current number of uninterruptible-sleeping threads, total
  2284. * number of context switches performed since bootup.
  2285. */
  2286. unsigned long nr_running(void)
  2287. {
  2288. unsigned long i, sum = 0;
  2289. for_each_online_cpu(i)
  2290. sum += cpu_rq(i)->nr_running;
  2291. return sum;
  2292. }
  2293. unsigned long nr_uninterruptible(void)
  2294. {
  2295. unsigned long i, sum = 0;
  2296. for_each_possible_cpu(i)
  2297. sum += cpu_rq(i)->nr_uninterruptible;
  2298. /*
  2299. * Since we read the counters lockless, it might be slightly
  2300. * inaccurate. Do not allow it to go below zero though:
  2301. */
  2302. if (unlikely((long)sum < 0))
  2303. sum = 0;
  2304. return sum;
  2305. }
  2306. unsigned long long nr_context_switches(void)
  2307. {
  2308. int i;
  2309. unsigned long long sum = 0;
  2310. for_each_possible_cpu(i)
  2311. sum += cpu_rq(i)->nr_switches;
  2312. return sum;
  2313. }
  2314. unsigned long nr_iowait(void)
  2315. {
  2316. unsigned long i, sum = 0;
  2317. for_each_possible_cpu(i)
  2318. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2319. return sum;
  2320. }
  2321. unsigned long nr_active(void)
  2322. {
  2323. unsigned long i, running = 0, uninterruptible = 0;
  2324. for_each_online_cpu(i) {
  2325. running += cpu_rq(i)->nr_running;
  2326. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2327. }
  2328. if (unlikely((long)uninterruptible < 0))
  2329. uninterruptible = 0;
  2330. return running + uninterruptible;
  2331. }
  2332. /*
  2333. * Update rq->cpu_load[] statistics. This function is usually called every
  2334. * scheduler tick (TICK_NSEC).
  2335. */
  2336. static void update_cpu_load(struct rq *this_rq)
  2337. {
  2338. unsigned long this_load = this_rq->load.weight;
  2339. int i, scale;
  2340. this_rq->nr_load_updates++;
  2341. /* Update our load: */
  2342. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2343. unsigned long old_load, new_load;
  2344. /* scale is effectively 1 << i now, and >> i divides by scale */
  2345. old_load = this_rq->cpu_load[i];
  2346. new_load = this_load;
  2347. /*
  2348. * Round up the averaging division if load is increasing. This
  2349. * prevents us from getting stuck on 9 if the load is 10, for
  2350. * example.
  2351. */
  2352. if (new_load > old_load)
  2353. new_load += scale-1;
  2354. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2355. }
  2356. }
  2357. #ifdef CONFIG_SMP
  2358. /*
  2359. * double_rq_lock - safely lock two runqueues
  2360. *
  2361. * Note this does not disable interrupts like task_rq_lock,
  2362. * you need to do so manually before calling.
  2363. */
  2364. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2365. __acquires(rq1->lock)
  2366. __acquires(rq2->lock)
  2367. {
  2368. BUG_ON(!irqs_disabled());
  2369. if (rq1 == rq2) {
  2370. spin_lock(&rq1->lock);
  2371. __acquire(rq2->lock); /* Fake it out ;) */
  2372. } else {
  2373. if (rq1 < rq2) {
  2374. spin_lock(&rq1->lock);
  2375. spin_lock(&rq2->lock);
  2376. } else {
  2377. spin_lock(&rq2->lock);
  2378. spin_lock(&rq1->lock);
  2379. }
  2380. }
  2381. update_rq_clock(rq1);
  2382. update_rq_clock(rq2);
  2383. }
  2384. /*
  2385. * double_rq_unlock - safely unlock two runqueues
  2386. *
  2387. * Note this does not restore interrupts like task_rq_unlock,
  2388. * you need to do so manually after calling.
  2389. */
  2390. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2391. __releases(rq1->lock)
  2392. __releases(rq2->lock)
  2393. {
  2394. spin_unlock(&rq1->lock);
  2395. if (rq1 != rq2)
  2396. spin_unlock(&rq2->lock);
  2397. else
  2398. __release(rq2->lock);
  2399. }
  2400. /*
  2401. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2402. */
  2403. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2404. __releases(this_rq->lock)
  2405. __acquires(busiest->lock)
  2406. __acquires(this_rq->lock)
  2407. {
  2408. int ret = 0;
  2409. if (unlikely(!irqs_disabled())) {
  2410. /* printk() doesn't work good under rq->lock */
  2411. spin_unlock(&this_rq->lock);
  2412. BUG_ON(1);
  2413. }
  2414. if (unlikely(!spin_trylock(&busiest->lock))) {
  2415. if (busiest < this_rq) {
  2416. spin_unlock(&this_rq->lock);
  2417. spin_lock(&busiest->lock);
  2418. spin_lock(&this_rq->lock);
  2419. ret = 1;
  2420. } else
  2421. spin_lock(&busiest->lock);
  2422. }
  2423. return ret;
  2424. }
  2425. /*
  2426. * If dest_cpu is allowed for this process, migrate the task to it.
  2427. * This is accomplished by forcing the cpu_allowed mask to only
  2428. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2429. * the cpu_allowed mask is restored.
  2430. */
  2431. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2432. {
  2433. struct migration_req req;
  2434. unsigned long flags;
  2435. struct rq *rq;
  2436. rq = task_rq_lock(p, &flags);
  2437. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2438. || unlikely(cpu_is_offline(dest_cpu)))
  2439. goto out;
  2440. /* force the process onto the specified CPU */
  2441. if (migrate_task(p, dest_cpu, &req)) {
  2442. /* Need to wait for migration thread (might exit: take ref). */
  2443. struct task_struct *mt = rq->migration_thread;
  2444. get_task_struct(mt);
  2445. task_rq_unlock(rq, &flags);
  2446. wake_up_process(mt);
  2447. put_task_struct(mt);
  2448. wait_for_completion(&req.done);
  2449. return;
  2450. }
  2451. out:
  2452. task_rq_unlock(rq, &flags);
  2453. }
  2454. /*
  2455. * sched_exec - execve() is a valuable balancing opportunity, because at
  2456. * this point the task has the smallest effective memory and cache footprint.
  2457. */
  2458. void sched_exec(void)
  2459. {
  2460. int new_cpu, this_cpu = get_cpu();
  2461. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2462. put_cpu();
  2463. if (new_cpu != this_cpu)
  2464. sched_migrate_task(current, new_cpu);
  2465. }
  2466. /*
  2467. * pull_task - move a task from a remote runqueue to the local runqueue.
  2468. * Both runqueues must be locked.
  2469. */
  2470. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2471. struct rq *this_rq, int this_cpu)
  2472. {
  2473. deactivate_task(src_rq, p, 0);
  2474. set_task_cpu(p, this_cpu);
  2475. activate_task(this_rq, p, 0);
  2476. /*
  2477. * Note that idle threads have a prio of MAX_PRIO, for this test
  2478. * to be always true for them.
  2479. */
  2480. check_preempt_curr(this_rq, p);
  2481. }
  2482. /*
  2483. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2484. */
  2485. static
  2486. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2487. struct sched_domain *sd, enum cpu_idle_type idle,
  2488. int *all_pinned)
  2489. {
  2490. /*
  2491. * We do not migrate tasks that are:
  2492. * 1) running (obviously), or
  2493. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2494. * 3) are cache-hot on their current CPU.
  2495. */
  2496. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2497. schedstat_inc(p, se.nr_failed_migrations_affine);
  2498. return 0;
  2499. }
  2500. *all_pinned = 0;
  2501. if (task_running(rq, p)) {
  2502. schedstat_inc(p, se.nr_failed_migrations_running);
  2503. return 0;
  2504. }
  2505. /*
  2506. * Aggressive migration if:
  2507. * 1) task is cache cold, or
  2508. * 2) too many balance attempts have failed.
  2509. */
  2510. if (!task_hot(p, rq->clock, sd) ||
  2511. sd->nr_balance_failed > sd->cache_nice_tries) {
  2512. #ifdef CONFIG_SCHEDSTATS
  2513. if (task_hot(p, rq->clock, sd)) {
  2514. schedstat_inc(sd, lb_hot_gained[idle]);
  2515. schedstat_inc(p, se.nr_forced_migrations);
  2516. }
  2517. #endif
  2518. return 1;
  2519. }
  2520. if (task_hot(p, rq->clock, sd)) {
  2521. schedstat_inc(p, se.nr_failed_migrations_hot);
  2522. return 0;
  2523. }
  2524. return 1;
  2525. }
  2526. static unsigned long
  2527. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2528. unsigned long max_load_move, struct sched_domain *sd,
  2529. enum cpu_idle_type idle, int *all_pinned,
  2530. int *this_best_prio, struct rq_iterator *iterator)
  2531. {
  2532. int loops = 0, pulled = 0, pinned = 0;
  2533. struct task_struct *p;
  2534. long rem_load_move = max_load_move;
  2535. if (max_load_move == 0)
  2536. goto out;
  2537. pinned = 1;
  2538. /*
  2539. * Start the load-balancing iterator:
  2540. */
  2541. p = iterator->start(iterator->arg);
  2542. next:
  2543. if (!p || loops++ > sysctl_sched_nr_migrate)
  2544. goto out;
  2545. if ((p->se.load.weight >> 1) > rem_load_move ||
  2546. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2547. p = iterator->next(iterator->arg);
  2548. goto next;
  2549. }
  2550. pull_task(busiest, p, this_rq, this_cpu);
  2551. pulled++;
  2552. rem_load_move -= p->se.load.weight;
  2553. /*
  2554. * We only want to steal up to the prescribed amount of weighted load.
  2555. */
  2556. if (rem_load_move > 0) {
  2557. if (p->prio < *this_best_prio)
  2558. *this_best_prio = p->prio;
  2559. p = iterator->next(iterator->arg);
  2560. goto next;
  2561. }
  2562. out:
  2563. /*
  2564. * Right now, this is one of only two places pull_task() is called,
  2565. * so we can safely collect pull_task() stats here rather than
  2566. * inside pull_task().
  2567. */
  2568. schedstat_add(sd, lb_gained[idle], pulled);
  2569. if (all_pinned)
  2570. *all_pinned = pinned;
  2571. return max_load_move - rem_load_move;
  2572. }
  2573. /*
  2574. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2575. * this_rq, as part of a balancing operation within domain "sd".
  2576. * Returns 1 if successful and 0 otherwise.
  2577. *
  2578. * Called with both runqueues locked.
  2579. */
  2580. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2581. unsigned long max_load_move,
  2582. struct sched_domain *sd, enum cpu_idle_type idle,
  2583. int *all_pinned)
  2584. {
  2585. const struct sched_class *class = sched_class_highest;
  2586. unsigned long total_load_moved = 0;
  2587. int this_best_prio = this_rq->curr->prio;
  2588. do {
  2589. total_load_moved +=
  2590. class->load_balance(this_rq, this_cpu, busiest,
  2591. max_load_move - total_load_moved,
  2592. sd, idle, all_pinned, &this_best_prio);
  2593. class = class->next;
  2594. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2595. break;
  2596. } while (class && max_load_move > total_load_moved);
  2597. return total_load_moved > 0;
  2598. }
  2599. static int
  2600. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2601. struct sched_domain *sd, enum cpu_idle_type idle,
  2602. struct rq_iterator *iterator)
  2603. {
  2604. struct task_struct *p = iterator->start(iterator->arg);
  2605. int pinned = 0;
  2606. while (p) {
  2607. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2608. pull_task(busiest, p, this_rq, this_cpu);
  2609. /*
  2610. * Right now, this is only the second place pull_task()
  2611. * is called, so we can safely collect pull_task()
  2612. * stats here rather than inside pull_task().
  2613. */
  2614. schedstat_inc(sd, lb_gained[idle]);
  2615. return 1;
  2616. }
  2617. p = iterator->next(iterator->arg);
  2618. }
  2619. return 0;
  2620. }
  2621. /*
  2622. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2623. * part of active balancing operations within "domain".
  2624. * Returns 1 if successful and 0 otherwise.
  2625. *
  2626. * Called with both runqueues locked.
  2627. */
  2628. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2629. struct sched_domain *sd, enum cpu_idle_type idle)
  2630. {
  2631. const struct sched_class *class;
  2632. for (class = sched_class_highest; class; class = class->next)
  2633. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2634. return 1;
  2635. return 0;
  2636. }
  2637. /*
  2638. * find_busiest_group finds and returns the busiest CPU group within the
  2639. * domain. It calculates and returns the amount of weighted load which
  2640. * should be moved to restore balance via the imbalance parameter.
  2641. */
  2642. static struct sched_group *
  2643. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2644. unsigned long *imbalance, enum cpu_idle_type idle,
  2645. int *sd_idle, const cpumask_t *cpus, int *balance)
  2646. {
  2647. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2648. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2649. unsigned long max_pull;
  2650. unsigned long busiest_load_per_task, busiest_nr_running;
  2651. unsigned long this_load_per_task, this_nr_running;
  2652. int load_idx, group_imb = 0;
  2653. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2654. int power_savings_balance = 1;
  2655. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2656. unsigned long min_nr_running = ULONG_MAX;
  2657. struct sched_group *group_min = NULL, *group_leader = NULL;
  2658. #endif
  2659. max_load = this_load = total_load = total_pwr = 0;
  2660. busiest_load_per_task = busiest_nr_running = 0;
  2661. this_load_per_task = this_nr_running = 0;
  2662. if (idle == CPU_NOT_IDLE)
  2663. load_idx = sd->busy_idx;
  2664. else if (idle == CPU_NEWLY_IDLE)
  2665. load_idx = sd->newidle_idx;
  2666. else
  2667. load_idx = sd->idle_idx;
  2668. do {
  2669. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2670. int local_group;
  2671. int i;
  2672. int __group_imb = 0;
  2673. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2674. unsigned long sum_nr_running, sum_weighted_load;
  2675. unsigned long sum_avg_load_per_task;
  2676. unsigned long avg_load_per_task;
  2677. local_group = cpu_isset(this_cpu, group->cpumask);
  2678. if (local_group)
  2679. balance_cpu = first_cpu(group->cpumask);
  2680. /* Tally up the load of all CPUs in the group */
  2681. sum_weighted_load = sum_nr_running = avg_load = 0;
  2682. sum_avg_load_per_task = avg_load_per_task = 0;
  2683. max_cpu_load = 0;
  2684. min_cpu_load = ~0UL;
  2685. for_each_cpu_mask(i, group->cpumask) {
  2686. struct rq *rq;
  2687. if (!cpu_isset(i, *cpus))
  2688. continue;
  2689. rq = cpu_rq(i);
  2690. if (*sd_idle && rq->nr_running)
  2691. *sd_idle = 0;
  2692. /* Bias balancing toward cpus of our domain */
  2693. if (local_group) {
  2694. if (idle_cpu(i) && !first_idle_cpu) {
  2695. first_idle_cpu = 1;
  2696. balance_cpu = i;
  2697. }
  2698. load = target_load(i, load_idx);
  2699. } else {
  2700. load = source_load(i, load_idx);
  2701. if (load > max_cpu_load)
  2702. max_cpu_load = load;
  2703. if (min_cpu_load > load)
  2704. min_cpu_load = load;
  2705. }
  2706. avg_load += load;
  2707. sum_nr_running += rq->nr_running;
  2708. sum_weighted_load += weighted_cpuload(i);
  2709. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2710. }
  2711. /*
  2712. * First idle cpu or the first cpu(busiest) in this sched group
  2713. * is eligible for doing load balancing at this and above
  2714. * domains. In the newly idle case, we will allow all the cpu's
  2715. * to do the newly idle load balance.
  2716. */
  2717. if (idle != CPU_NEWLY_IDLE && local_group &&
  2718. balance_cpu != this_cpu && balance) {
  2719. *balance = 0;
  2720. goto ret;
  2721. }
  2722. total_load += avg_load;
  2723. total_pwr += group->__cpu_power;
  2724. /* Adjust by relative CPU power of the group */
  2725. avg_load = sg_div_cpu_power(group,
  2726. avg_load * SCHED_LOAD_SCALE);
  2727. /*
  2728. * Consider the group unbalanced when the imbalance is larger
  2729. * than the average weight of two tasks.
  2730. *
  2731. * APZ: with cgroup the avg task weight can vary wildly and
  2732. * might not be a suitable number - should we keep a
  2733. * normalized nr_running number somewhere that negates
  2734. * the hierarchy?
  2735. */
  2736. avg_load_per_task = sg_div_cpu_power(group,
  2737. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2738. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2739. __group_imb = 1;
  2740. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2741. if (local_group) {
  2742. this_load = avg_load;
  2743. this = group;
  2744. this_nr_running = sum_nr_running;
  2745. this_load_per_task = sum_weighted_load;
  2746. } else if (avg_load > max_load &&
  2747. (sum_nr_running > group_capacity || __group_imb)) {
  2748. max_load = avg_load;
  2749. busiest = group;
  2750. busiest_nr_running = sum_nr_running;
  2751. busiest_load_per_task = sum_weighted_load;
  2752. group_imb = __group_imb;
  2753. }
  2754. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2755. /*
  2756. * Busy processors will not participate in power savings
  2757. * balance.
  2758. */
  2759. if (idle == CPU_NOT_IDLE ||
  2760. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2761. goto group_next;
  2762. /*
  2763. * If the local group is idle or completely loaded
  2764. * no need to do power savings balance at this domain
  2765. */
  2766. if (local_group && (this_nr_running >= group_capacity ||
  2767. !this_nr_running))
  2768. power_savings_balance = 0;
  2769. /*
  2770. * If a group is already running at full capacity or idle,
  2771. * don't include that group in power savings calculations
  2772. */
  2773. if (!power_savings_balance || sum_nr_running >= group_capacity
  2774. || !sum_nr_running)
  2775. goto group_next;
  2776. /*
  2777. * Calculate the group which has the least non-idle load.
  2778. * This is the group from where we need to pick up the load
  2779. * for saving power
  2780. */
  2781. if ((sum_nr_running < min_nr_running) ||
  2782. (sum_nr_running == min_nr_running &&
  2783. first_cpu(group->cpumask) <
  2784. first_cpu(group_min->cpumask))) {
  2785. group_min = group;
  2786. min_nr_running = sum_nr_running;
  2787. min_load_per_task = sum_weighted_load /
  2788. sum_nr_running;
  2789. }
  2790. /*
  2791. * Calculate the group which is almost near its
  2792. * capacity but still has some space to pick up some load
  2793. * from other group and save more power
  2794. */
  2795. if (sum_nr_running <= group_capacity - 1) {
  2796. if (sum_nr_running > leader_nr_running ||
  2797. (sum_nr_running == leader_nr_running &&
  2798. first_cpu(group->cpumask) >
  2799. first_cpu(group_leader->cpumask))) {
  2800. group_leader = group;
  2801. leader_nr_running = sum_nr_running;
  2802. }
  2803. }
  2804. group_next:
  2805. #endif
  2806. group = group->next;
  2807. } while (group != sd->groups);
  2808. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2809. goto out_balanced;
  2810. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2811. if (this_load >= avg_load ||
  2812. 100*max_load <= sd->imbalance_pct*this_load)
  2813. goto out_balanced;
  2814. busiest_load_per_task /= busiest_nr_running;
  2815. if (group_imb)
  2816. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2817. /*
  2818. * We're trying to get all the cpus to the average_load, so we don't
  2819. * want to push ourselves above the average load, nor do we wish to
  2820. * reduce the max loaded cpu below the average load, as either of these
  2821. * actions would just result in more rebalancing later, and ping-pong
  2822. * tasks around. Thus we look for the minimum possible imbalance.
  2823. * Negative imbalances (*we* are more loaded than anyone else) will
  2824. * be counted as no imbalance for these purposes -- we can't fix that
  2825. * by pulling tasks to us. Be careful of negative numbers as they'll
  2826. * appear as very large values with unsigned longs.
  2827. */
  2828. if (max_load <= busiest_load_per_task)
  2829. goto out_balanced;
  2830. /*
  2831. * In the presence of smp nice balancing, certain scenarios can have
  2832. * max load less than avg load(as we skip the groups at or below
  2833. * its cpu_power, while calculating max_load..)
  2834. */
  2835. if (max_load < avg_load) {
  2836. *imbalance = 0;
  2837. goto small_imbalance;
  2838. }
  2839. /* Don't want to pull so many tasks that a group would go idle */
  2840. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2841. /* How much load to actually move to equalise the imbalance */
  2842. *imbalance = min(max_pull * busiest->__cpu_power,
  2843. (avg_load - this_load) * this->__cpu_power)
  2844. / SCHED_LOAD_SCALE;
  2845. /*
  2846. * if *imbalance is less than the average load per runnable task
  2847. * there is no gaurantee that any tasks will be moved so we'll have
  2848. * a think about bumping its value to force at least one task to be
  2849. * moved
  2850. */
  2851. if (*imbalance < busiest_load_per_task) {
  2852. unsigned long tmp, pwr_now, pwr_move;
  2853. unsigned int imbn;
  2854. small_imbalance:
  2855. pwr_move = pwr_now = 0;
  2856. imbn = 2;
  2857. if (this_nr_running) {
  2858. this_load_per_task /= this_nr_running;
  2859. if (busiest_load_per_task > this_load_per_task)
  2860. imbn = 1;
  2861. } else
  2862. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2863. if (max_load - this_load + 2*busiest_load_per_task >=
  2864. busiest_load_per_task * imbn) {
  2865. *imbalance = busiest_load_per_task;
  2866. return busiest;
  2867. }
  2868. /*
  2869. * OK, we don't have enough imbalance to justify moving tasks,
  2870. * however we may be able to increase total CPU power used by
  2871. * moving them.
  2872. */
  2873. pwr_now += busiest->__cpu_power *
  2874. min(busiest_load_per_task, max_load);
  2875. pwr_now += this->__cpu_power *
  2876. min(this_load_per_task, this_load);
  2877. pwr_now /= SCHED_LOAD_SCALE;
  2878. /* Amount of load we'd subtract */
  2879. tmp = sg_div_cpu_power(busiest,
  2880. busiest_load_per_task * SCHED_LOAD_SCALE);
  2881. if (max_load > tmp)
  2882. pwr_move += busiest->__cpu_power *
  2883. min(busiest_load_per_task, max_load - tmp);
  2884. /* Amount of load we'd add */
  2885. if (max_load * busiest->__cpu_power <
  2886. busiest_load_per_task * SCHED_LOAD_SCALE)
  2887. tmp = sg_div_cpu_power(this,
  2888. max_load * busiest->__cpu_power);
  2889. else
  2890. tmp = sg_div_cpu_power(this,
  2891. busiest_load_per_task * SCHED_LOAD_SCALE);
  2892. pwr_move += this->__cpu_power *
  2893. min(this_load_per_task, this_load + tmp);
  2894. pwr_move /= SCHED_LOAD_SCALE;
  2895. /* Move if we gain throughput */
  2896. if (pwr_move > pwr_now)
  2897. *imbalance = busiest_load_per_task;
  2898. }
  2899. return busiest;
  2900. out_balanced:
  2901. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2902. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2903. goto ret;
  2904. if (this == group_leader && group_leader != group_min) {
  2905. *imbalance = min_load_per_task;
  2906. return group_min;
  2907. }
  2908. #endif
  2909. ret:
  2910. *imbalance = 0;
  2911. return NULL;
  2912. }
  2913. /*
  2914. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2915. */
  2916. static struct rq *
  2917. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2918. unsigned long imbalance, const cpumask_t *cpus)
  2919. {
  2920. struct rq *busiest = NULL, *rq;
  2921. unsigned long max_load = 0;
  2922. int i;
  2923. for_each_cpu_mask(i, group->cpumask) {
  2924. unsigned long wl;
  2925. if (!cpu_isset(i, *cpus))
  2926. continue;
  2927. rq = cpu_rq(i);
  2928. wl = weighted_cpuload(i);
  2929. if (rq->nr_running == 1 && wl > imbalance)
  2930. continue;
  2931. if (wl > max_load) {
  2932. max_load = wl;
  2933. busiest = rq;
  2934. }
  2935. }
  2936. return busiest;
  2937. }
  2938. /*
  2939. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2940. * so long as it is large enough.
  2941. */
  2942. #define MAX_PINNED_INTERVAL 512
  2943. /*
  2944. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2945. * tasks if there is an imbalance.
  2946. */
  2947. static int load_balance(int this_cpu, struct rq *this_rq,
  2948. struct sched_domain *sd, enum cpu_idle_type idle,
  2949. int *balance, cpumask_t *cpus)
  2950. {
  2951. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2952. struct sched_group *group;
  2953. unsigned long imbalance;
  2954. struct rq *busiest;
  2955. unsigned long flags;
  2956. cpus_setall(*cpus);
  2957. /*
  2958. * When power savings policy is enabled for the parent domain, idle
  2959. * sibling can pick up load irrespective of busy siblings. In this case,
  2960. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2961. * portraying it as CPU_NOT_IDLE.
  2962. */
  2963. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2964. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2965. sd_idle = 1;
  2966. schedstat_inc(sd, lb_count[idle]);
  2967. redo:
  2968. update_shares(sd);
  2969. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2970. cpus, balance);
  2971. if (*balance == 0)
  2972. goto out_balanced;
  2973. if (!group) {
  2974. schedstat_inc(sd, lb_nobusyg[idle]);
  2975. goto out_balanced;
  2976. }
  2977. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2978. if (!busiest) {
  2979. schedstat_inc(sd, lb_nobusyq[idle]);
  2980. goto out_balanced;
  2981. }
  2982. BUG_ON(busiest == this_rq);
  2983. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2984. ld_moved = 0;
  2985. if (busiest->nr_running > 1) {
  2986. /*
  2987. * Attempt to move tasks. If find_busiest_group has found
  2988. * an imbalance but busiest->nr_running <= 1, the group is
  2989. * still unbalanced. ld_moved simply stays zero, so it is
  2990. * correctly treated as an imbalance.
  2991. */
  2992. local_irq_save(flags);
  2993. double_rq_lock(this_rq, busiest);
  2994. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2995. imbalance, sd, idle, &all_pinned);
  2996. double_rq_unlock(this_rq, busiest);
  2997. local_irq_restore(flags);
  2998. /*
  2999. * some other cpu did the load balance for us.
  3000. */
  3001. if (ld_moved && this_cpu != smp_processor_id())
  3002. resched_cpu(this_cpu);
  3003. /* All tasks on this runqueue were pinned by CPU affinity */
  3004. if (unlikely(all_pinned)) {
  3005. cpu_clear(cpu_of(busiest), *cpus);
  3006. if (!cpus_empty(*cpus))
  3007. goto redo;
  3008. goto out_balanced;
  3009. }
  3010. }
  3011. if (!ld_moved) {
  3012. schedstat_inc(sd, lb_failed[idle]);
  3013. sd->nr_balance_failed++;
  3014. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3015. spin_lock_irqsave(&busiest->lock, flags);
  3016. /* don't kick the migration_thread, if the curr
  3017. * task on busiest cpu can't be moved to this_cpu
  3018. */
  3019. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3020. spin_unlock_irqrestore(&busiest->lock, flags);
  3021. all_pinned = 1;
  3022. goto out_one_pinned;
  3023. }
  3024. if (!busiest->active_balance) {
  3025. busiest->active_balance = 1;
  3026. busiest->push_cpu = this_cpu;
  3027. active_balance = 1;
  3028. }
  3029. spin_unlock_irqrestore(&busiest->lock, flags);
  3030. if (active_balance)
  3031. wake_up_process(busiest->migration_thread);
  3032. /*
  3033. * We've kicked active balancing, reset the failure
  3034. * counter.
  3035. */
  3036. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3037. }
  3038. } else
  3039. sd->nr_balance_failed = 0;
  3040. if (likely(!active_balance)) {
  3041. /* We were unbalanced, so reset the balancing interval */
  3042. sd->balance_interval = sd->min_interval;
  3043. } else {
  3044. /*
  3045. * If we've begun active balancing, start to back off. This
  3046. * case may not be covered by the all_pinned logic if there
  3047. * is only 1 task on the busy runqueue (because we don't call
  3048. * move_tasks).
  3049. */
  3050. if (sd->balance_interval < sd->max_interval)
  3051. sd->balance_interval *= 2;
  3052. }
  3053. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3054. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3055. ld_moved = -1;
  3056. goto out;
  3057. out_balanced:
  3058. schedstat_inc(sd, lb_balanced[idle]);
  3059. sd->nr_balance_failed = 0;
  3060. out_one_pinned:
  3061. /* tune up the balancing interval */
  3062. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3063. (sd->balance_interval < sd->max_interval))
  3064. sd->balance_interval *= 2;
  3065. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3066. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3067. ld_moved = -1;
  3068. else
  3069. ld_moved = 0;
  3070. out:
  3071. if (ld_moved)
  3072. update_shares(sd);
  3073. return ld_moved;
  3074. }
  3075. /*
  3076. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3077. * tasks if there is an imbalance.
  3078. *
  3079. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3080. * this_rq is locked.
  3081. */
  3082. static int
  3083. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3084. cpumask_t *cpus)
  3085. {
  3086. struct sched_group *group;
  3087. struct rq *busiest = NULL;
  3088. unsigned long imbalance;
  3089. int ld_moved = 0;
  3090. int sd_idle = 0;
  3091. int all_pinned = 0;
  3092. cpus_setall(*cpus);
  3093. /*
  3094. * When power savings policy is enabled for the parent domain, idle
  3095. * sibling can pick up load irrespective of busy siblings. In this case,
  3096. * let the state of idle sibling percolate up as IDLE, instead of
  3097. * portraying it as CPU_NOT_IDLE.
  3098. */
  3099. if (sd->flags & SD_SHARE_CPUPOWER &&
  3100. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3101. sd_idle = 1;
  3102. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3103. redo:
  3104. update_shares_locked(this_rq, sd);
  3105. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3106. &sd_idle, cpus, NULL);
  3107. if (!group) {
  3108. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3109. goto out_balanced;
  3110. }
  3111. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3112. if (!busiest) {
  3113. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3114. goto out_balanced;
  3115. }
  3116. BUG_ON(busiest == this_rq);
  3117. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3118. ld_moved = 0;
  3119. if (busiest->nr_running > 1) {
  3120. /* Attempt to move tasks */
  3121. double_lock_balance(this_rq, busiest);
  3122. /* this_rq->clock is already updated */
  3123. update_rq_clock(busiest);
  3124. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3125. imbalance, sd, CPU_NEWLY_IDLE,
  3126. &all_pinned);
  3127. spin_unlock(&busiest->lock);
  3128. if (unlikely(all_pinned)) {
  3129. cpu_clear(cpu_of(busiest), *cpus);
  3130. if (!cpus_empty(*cpus))
  3131. goto redo;
  3132. }
  3133. }
  3134. if (!ld_moved) {
  3135. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3136. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3137. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3138. return -1;
  3139. } else
  3140. sd->nr_balance_failed = 0;
  3141. update_shares_locked(this_rq, sd);
  3142. return ld_moved;
  3143. out_balanced:
  3144. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3145. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3146. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3147. return -1;
  3148. sd->nr_balance_failed = 0;
  3149. return 0;
  3150. }
  3151. /*
  3152. * idle_balance is called by schedule() if this_cpu is about to become
  3153. * idle. Attempts to pull tasks from other CPUs.
  3154. */
  3155. static void idle_balance(int this_cpu, struct rq *this_rq)
  3156. {
  3157. struct sched_domain *sd;
  3158. int pulled_task = -1;
  3159. unsigned long next_balance = jiffies + HZ;
  3160. cpumask_t tmpmask;
  3161. for_each_domain(this_cpu, sd) {
  3162. unsigned long interval;
  3163. if (!(sd->flags & SD_LOAD_BALANCE))
  3164. continue;
  3165. if (sd->flags & SD_BALANCE_NEWIDLE)
  3166. /* If we've pulled tasks over stop searching: */
  3167. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3168. sd, &tmpmask);
  3169. interval = msecs_to_jiffies(sd->balance_interval);
  3170. if (time_after(next_balance, sd->last_balance + interval))
  3171. next_balance = sd->last_balance + interval;
  3172. if (pulled_task)
  3173. break;
  3174. }
  3175. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3176. /*
  3177. * We are going idle. next_balance may be set based on
  3178. * a busy processor. So reset next_balance.
  3179. */
  3180. this_rq->next_balance = next_balance;
  3181. }
  3182. }
  3183. /*
  3184. * active_load_balance is run by migration threads. It pushes running tasks
  3185. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3186. * running on each physical CPU where possible, and avoids physical /
  3187. * logical imbalances.
  3188. *
  3189. * Called with busiest_rq locked.
  3190. */
  3191. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3192. {
  3193. int target_cpu = busiest_rq->push_cpu;
  3194. struct sched_domain *sd;
  3195. struct rq *target_rq;
  3196. /* Is there any task to move? */
  3197. if (busiest_rq->nr_running <= 1)
  3198. return;
  3199. target_rq = cpu_rq(target_cpu);
  3200. /*
  3201. * This condition is "impossible", if it occurs
  3202. * we need to fix it. Originally reported by
  3203. * Bjorn Helgaas on a 128-cpu setup.
  3204. */
  3205. BUG_ON(busiest_rq == target_rq);
  3206. /* move a task from busiest_rq to target_rq */
  3207. double_lock_balance(busiest_rq, target_rq);
  3208. update_rq_clock(busiest_rq);
  3209. update_rq_clock(target_rq);
  3210. /* Search for an sd spanning us and the target CPU. */
  3211. for_each_domain(target_cpu, sd) {
  3212. if ((sd->flags & SD_LOAD_BALANCE) &&
  3213. cpu_isset(busiest_cpu, sd->span))
  3214. break;
  3215. }
  3216. if (likely(sd)) {
  3217. schedstat_inc(sd, alb_count);
  3218. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3219. sd, CPU_IDLE))
  3220. schedstat_inc(sd, alb_pushed);
  3221. else
  3222. schedstat_inc(sd, alb_failed);
  3223. }
  3224. spin_unlock(&target_rq->lock);
  3225. }
  3226. #ifdef CONFIG_NO_HZ
  3227. static struct {
  3228. atomic_t load_balancer;
  3229. cpumask_t cpu_mask;
  3230. } nohz ____cacheline_aligned = {
  3231. .load_balancer = ATOMIC_INIT(-1),
  3232. .cpu_mask = CPU_MASK_NONE,
  3233. };
  3234. /*
  3235. * This routine will try to nominate the ilb (idle load balancing)
  3236. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3237. * load balancing on behalf of all those cpus. If all the cpus in the system
  3238. * go into this tickless mode, then there will be no ilb owner (as there is
  3239. * no need for one) and all the cpus will sleep till the next wakeup event
  3240. * arrives...
  3241. *
  3242. * For the ilb owner, tick is not stopped. And this tick will be used
  3243. * for idle load balancing. ilb owner will still be part of
  3244. * nohz.cpu_mask..
  3245. *
  3246. * While stopping the tick, this cpu will become the ilb owner if there
  3247. * is no other owner. And will be the owner till that cpu becomes busy
  3248. * or if all cpus in the system stop their ticks at which point
  3249. * there is no need for ilb owner.
  3250. *
  3251. * When the ilb owner becomes busy, it nominates another owner, during the
  3252. * next busy scheduler_tick()
  3253. */
  3254. int select_nohz_load_balancer(int stop_tick)
  3255. {
  3256. int cpu = smp_processor_id();
  3257. if (stop_tick) {
  3258. cpu_set(cpu, nohz.cpu_mask);
  3259. cpu_rq(cpu)->in_nohz_recently = 1;
  3260. /*
  3261. * If we are going offline and still the leader, give up!
  3262. */
  3263. if (cpu_is_offline(cpu) &&
  3264. atomic_read(&nohz.load_balancer) == cpu) {
  3265. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3266. BUG();
  3267. return 0;
  3268. }
  3269. /* time for ilb owner also to sleep */
  3270. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3271. if (atomic_read(&nohz.load_balancer) == cpu)
  3272. atomic_set(&nohz.load_balancer, -1);
  3273. return 0;
  3274. }
  3275. if (atomic_read(&nohz.load_balancer) == -1) {
  3276. /* make me the ilb owner */
  3277. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3278. return 1;
  3279. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3280. return 1;
  3281. } else {
  3282. if (!cpu_isset(cpu, nohz.cpu_mask))
  3283. return 0;
  3284. cpu_clear(cpu, nohz.cpu_mask);
  3285. if (atomic_read(&nohz.load_balancer) == cpu)
  3286. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3287. BUG();
  3288. }
  3289. return 0;
  3290. }
  3291. #endif
  3292. static DEFINE_SPINLOCK(balancing);
  3293. /*
  3294. * It checks each scheduling domain to see if it is due to be balanced,
  3295. * and initiates a balancing operation if so.
  3296. *
  3297. * Balancing parameters are set up in arch_init_sched_domains.
  3298. */
  3299. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3300. {
  3301. int balance = 1;
  3302. struct rq *rq = cpu_rq(cpu);
  3303. unsigned long interval;
  3304. struct sched_domain *sd;
  3305. /* Earliest time when we have to do rebalance again */
  3306. unsigned long next_balance = jiffies + 60*HZ;
  3307. int update_next_balance = 0;
  3308. int need_serialize;
  3309. cpumask_t tmp;
  3310. for_each_domain(cpu, sd) {
  3311. if (!(sd->flags & SD_LOAD_BALANCE))
  3312. continue;
  3313. interval = sd->balance_interval;
  3314. if (idle != CPU_IDLE)
  3315. interval *= sd->busy_factor;
  3316. /* scale ms to jiffies */
  3317. interval = msecs_to_jiffies(interval);
  3318. if (unlikely(!interval))
  3319. interval = 1;
  3320. if (interval > HZ*NR_CPUS/10)
  3321. interval = HZ*NR_CPUS/10;
  3322. need_serialize = sd->flags & SD_SERIALIZE;
  3323. if (need_serialize) {
  3324. if (!spin_trylock(&balancing))
  3325. goto out;
  3326. }
  3327. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3328. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3329. /*
  3330. * We've pulled tasks over so either we're no
  3331. * longer idle, or one of our SMT siblings is
  3332. * not idle.
  3333. */
  3334. idle = CPU_NOT_IDLE;
  3335. }
  3336. sd->last_balance = jiffies;
  3337. }
  3338. if (need_serialize)
  3339. spin_unlock(&balancing);
  3340. out:
  3341. if (time_after(next_balance, sd->last_balance + interval)) {
  3342. next_balance = sd->last_balance + interval;
  3343. update_next_balance = 1;
  3344. }
  3345. /*
  3346. * Stop the load balance at this level. There is another
  3347. * CPU in our sched group which is doing load balancing more
  3348. * actively.
  3349. */
  3350. if (!balance)
  3351. break;
  3352. }
  3353. /*
  3354. * next_balance will be updated only when there is a need.
  3355. * When the cpu is attached to null domain for ex, it will not be
  3356. * updated.
  3357. */
  3358. if (likely(update_next_balance))
  3359. rq->next_balance = next_balance;
  3360. }
  3361. /*
  3362. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3363. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3364. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3365. */
  3366. static void run_rebalance_domains(struct softirq_action *h)
  3367. {
  3368. int this_cpu = smp_processor_id();
  3369. struct rq *this_rq = cpu_rq(this_cpu);
  3370. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3371. CPU_IDLE : CPU_NOT_IDLE;
  3372. rebalance_domains(this_cpu, idle);
  3373. #ifdef CONFIG_NO_HZ
  3374. /*
  3375. * If this cpu is the owner for idle load balancing, then do the
  3376. * balancing on behalf of the other idle cpus whose ticks are
  3377. * stopped.
  3378. */
  3379. if (this_rq->idle_at_tick &&
  3380. atomic_read(&nohz.load_balancer) == this_cpu) {
  3381. cpumask_t cpus = nohz.cpu_mask;
  3382. struct rq *rq;
  3383. int balance_cpu;
  3384. cpu_clear(this_cpu, cpus);
  3385. for_each_cpu_mask(balance_cpu, cpus) {
  3386. /*
  3387. * If this cpu gets work to do, stop the load balancing
  3388. * work being done for other cpus. Next load
  3389. * balancing owner will pick it up.
  3390. */
  3391. if (need_resched())
  3392. break;
  3393. rebalance_domains(balance_cpu, CPU_IDLE);
  3394. rq = cpu_rq(balance_cpu);
  3395. if (time_after(this_rq->next_balance, rq->next_balance))
  3396. this_rq->next_balance = rq->next_balance;
  3397. }
  3398. }
  3399. #endif
  3400. }
  3401. /*
  3402. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3403. *
  3404. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3405. * idle load balancing owner or decide to stop the periodic load balancing,
  3406. * if the whole system is idle.
  3407. */
  3408. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3409. {
  3410. #ifdef CONFIG_NO_HZ
  3411. /*
  3412. * If we were in the nohz mode recently and busy at the current
  3413. * scheduler tick, then check if we need to nominate new idle
  3414. * load balancer.
  3415. */
  3416. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3417. rq->in_nohz_recently = 0;
  3418. if (atomic_read(&nohz.load_balancer) == cpu) {
  3419. cpu_clear(cpu, nohz.cpu_mask);
  3420. atomic_set(&nohz.load_balancer, -1);
  3421. }
  3422. if (atomic_read(&nohz.load_balancer) == -1) {
  3423. /*
  3424. * simple selection for now: Nominate the
  3425. * first cpu in the nohz list to be the next
  3426. * ilb owner.
  3427. *
  3428. * TBD: Traverse the sched domains and nominate
  3429. * the nearest cpu in the nohz.cpu_mask.
  3430. */
  3431. int ilb = first_cpu(nohz.cpu_mask);
  3432. if (ilb < nr_cpu_ids)
  3433. resched_cpu(ilb);
  3434. }
  3435. }
  3436. /*
  3437. * If this cpu is idle and doing idle load balancing for all the
  3438. * cpus with ticks stopped, is it time for that to stop?
  3439. */
  3440. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3441. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3442. resched_cpu(cpu);
  3443. return;
  3444. }
  3445. /*
  3446. * If this cpu is idle and the idle load balancing is done by
  3447. * someone else, then no need raise the SCHED_SOFTIRQ
  3448. */
  3449. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3450. cpu_isset(cpu, nohz.cpu_mask))
  3451. return;
  3452. #endif
  3453. if (time_after_eq(jiffies, rq->next_balance))
  3454. raise_softirq(SCHED_SOFTIRQ);
  3455. }
  3456. #else /* CONFIG_SMP */
  3457. /*
  3458. * on UP we do not need to balance between CPUs:
  3459. */
  3460. static inline void idle_balance(int cpu, struct rq *rq)
  3461. {
  3462. }
  3463. #endif
  3464. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3465. EXPORT_PER_CPU_SYMBOL(kstat);
  3466. /*
  3467. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3468. * that have not yet been banked in case the task is currently running.
  3469. */
  3470. unsigned long long task_sched_runtime(struct task_struct *p)
  3471. {
  3472. unsigned long flags;
  3473. u64 ns, delta_exec;
  3474. struct rq *rq;
  3475. rq = task_rq_lock(p, &flags);
  3476. ns = p->se.sum_exec_runtime;
  3477. if (task_current(rq, p)) {
  3478. update_rq_clock(rq);
  3479. delta_exec = rq->clock - p->se.exec_start;
  3480. if ((s64)delta_exec > 0)
  3481. ns += delta_exec;
  3482. }
  3483. task_rq_unlock(rq, &flags);
  3484. return ns;
  3485. }
  3486. /*
  3487. * Account user cpu time to a process.
  3488. * @p: the process that the cpu time gets accounted to
  3489. * @cputime: the cpu time spent in user space since the last update
  3490. */
  3491. void account_user_time(struct task_struct *p, cputime_t cputime)
  3492. {
  3493. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3494. cputime64_t tmp;
  3495. p->utime = cputime_add(p->utime, cputime);
  3496. /* Add user time to cpustat. */
  3497. tmp = cputime_to_cputime64(cputime);
  3498. if (TASK_NICE(p) > 0)
  3499. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3500. else
  3501. cpustat->user = cputime64_add(cpustat->user, tmp);
  3502. }
  3503. /*
  3504. * Account guest cpu time to a process.
  3505. * @p: the process that the cpu time gets accounted to
  3506. * @cputime: the cpu time spent in virtual machine since the last update
  3507. */
  3508. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3509. {
  3510. cputime64_t tmp;
  3511. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3512. tmp = cputime_to_cputime64(cputime);
  3513. p->utime = cputime_add(p->utime, cputime);
  3514. p->gtime = cputime_add(p->gtime, cputime);
  3515. cpustat->user = cputime64_add(cpustat->user, tmp);
  3516. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3517. }
  3518. /*
  3519. * Account scaled user cpu time to a process.
  3520. * @p: the process that the cpu time gets accounted to
  3521. * @cputime: the cpu time spent in user space since the last update
  3522. */
  3523. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3524. {
  3525. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3526. }
  3527. /*
  3528. * Account system cpu time to a process.
  3529. * @p: the process that the cpu time gets accounted to
  3530. * @hardirq_offset: the offset to subtract from hardirq_count()
  3531. * @cputime: the cpu time spent in kernel space since the last update
  3532. */
  3533. void account_system_time(struct task_struct *p, int hardirq_offset,
  3534. cputime_t cputime)
  3535. {
  3536. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3537. struct rq *rq = this_rq();
  3538. cputime64_t tmp;
  3539. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3540. account_guest_time(p, cputime);
  3541. return;
  3542. }
  3543. p->stime = cputime_add(p->stime, cputime);
  3544. /* Add system time to cpustat. */
  3545. tmp = cputime_to_cputime64(cputime);
  3546. if (hardirq_count() - hardirq_offset)
  3547. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3548. else if (softirq_count())
  3549. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3550. else if (p != rq->idle)
  3551. cpustat->system = cputime64_add(cpustat->system, tmp);
  3552. else if (atomic_read(&rq->nr_iowait) > 0)
  3553. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3554. else
  3555. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3556. /* Account for system time used */
  3557. acct_update_integrals(p);
  3558. }
  3559. /*
  3560. * Account scaled system cpu time to a process.
  3561. * @p: the process that the cpu time gets accounted to
  3562. * @hardirq_offset: the offset to subtract from hardirq_count()
  3563. * @cputime: the cpu time spent in kernel space since the last update
  3564. */
  3565. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3566. {
  3567. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3568. }
  3569. /*
  3570. * Account for involuntary wait time.
  3571. * @p: the process from which the cpu time has been stolen
  3572. * @steal: the cpu time spent in involuntary wait
  3573. */
  3574. void account_steal_time(struct task_struct *p, cputime_t steal)
  3575. {
  3576. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3577. cputime64_t tmp = cputime_to_cputime64(steal);
  3578. struct rq *rq = this_rq();
  3579. if (p == rq->idle) {
  3580. p->stime = cputime_add(p->stime, steal);
  3581. if (atomic_read(&rq->nr_iowait) > 0)
  3582. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3583. else
  3584. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3585. } else
  3586. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3587. }
  3588. /*
  3589. * This function gets called by the timer code, with HZ frequency.
  3590. * We call it with interrupts disabled.
  3591. *
  3592. * It also gets called by the fork code, when changing the parent's
  3593. * timeslices.
  3594. */
  3595. void scheduler_tick(void)
  3596. {
  3597. int cpu = smp_processor_id();
  3598. struct rq *rq = cpu_rq(cpu);
  3599. struct task_struct *curr = rq->curr;
  3600. sched_clock_tick();
  3601. spin_lock(&rq->lock);
  3602. update_rq_clock(rq);
  3603. update_cpu_load(rq);
  3604. curr->sched_class->task_tick(rq, curr, 0);
  3605. spin_unlock(&rq->lock);
  3606. #ifdef CONFIG_SMP
  3607. rq->idle_at_tick = idle_cpu(cpu);
  3608. trigger_load_balance(rq, cpu);
  3609. #endif
  3610. }
  3611. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3612. defined(CONFIG_PREEMPT_TRACER))
  3613. static inline unsigned long get_parent_ip(unsigned long addr)
  3614. {
  3615. if (in_lock_functions(addr)) {
  3616. addr = CALLER_ADDR2;
  3617. if (in_lock_functions(addr))
  3618. addr = CALLER_ADDR3;
  3619. }
  3620. return addr;
  3621. }
  3622. void __kprobes add_preempt_count(int val)
  3623. {
  3624. #ifdef CONFIG_DEBUG_PREEMPT
  3625. /*
  3626. * Underflow?
  3627. */
  3628. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3629. return;
  3630. #endif
  3631. preempt_count() += val;
  3632. #ifdef CONFIG_DEBUG_PREEMPT
  3633. /*
  3634. * Spinlock count overflowing soon?
  3635. */
  3636. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3637. PREEMPT_MASK - 10);
  3638. #endif
  3639. if (preempt_count() == val)
  3640. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3641. }
  3642. EXPORT_SYMBOL(add_preempt_count);
  3643. void __kprobes sub_preempt_count(int val)
  3644. {
  3645. #ifdef CONFIG_DEBUG_PREEMPT
  3646. /*
  3647. * Underflow?
  3648. */
  3649. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3650. return;
  3651. /*
  3652. * Is the spinlock portion underflowing?
  3653. */
  3654. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3655. !(preempt_count() & PREEMPT_MASK)))
  3656. return;
  3657. #endif
  3658. if (preempt_count() == val)
  3659. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3660. preempt_count() -= val;
  3661. }
  3662. EXPORT_SYMBOL(sub_preempt_count);
  3663. #endif
  3664. /*
  3665. * Print scheduling while atomic bug:
  3666. */
  3667. static noinline void __schedule_bug(struct task_struct *prev)
  3668. {
  3669. struct pt_regs *regs = get_irq_regs();
  3670. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3671. prev->comm, prev->pid, preempt_count());
  3672. debug_show_held_locks(prev);
  3673. print_modules();
  3674. if (irqs_disabled())
  3675. print_irqtrace_events(prev);
  3676. if (regs)
  3677. show_regs(regs);
  3678. else
  3679. dump_stack();
  3680. }
  3681. /*
  3682. * Various schedule()-time debugging checks and statistics:
  3683. */
  3684. static inline void schedule_debug(struct task_struct *prev)
  3685. {
  3686. /*
  3687. * Test if we are atomic. Since do_exit() needs to call into
  3688. * schedule() atomically, we ignore that path for now.
  3689. * Otherwise, whine if we are scheduling when we should not be.
  3690. */
  3691. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3692. __schedule_bug(prev);
  3693. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3694. schedstat_inc(this_rq(), sched_count);
  3695. #ifdef CONFIG_SCHEDSTATS
  3696. if (unlikely(prev->lock_depth >= 0)) {
  3697. schedstat_inc(this_rq(), bkl_count);
  3698. schedstat_inc(prev, sched_info.bkl_count);
  3699. }
  3700. #endif
  3701. }
  3702. /*
  3703. * Pick up the highest-prio task:
  3704. */
  3705. static inline struct task_struct *
  3706. pick_next_task(struct rq *rq, struct task_struct *prev)
  3707. {
  3708. const struct sched_class *class;
  3709. struct task_struct *p;
  3710. /*
  3711. * Optimization: we know that if all tasks are in
  3712. * the fair class we can call that function directly:
  3713. */
  3714. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3715. p = fair_sched_class.pick_next_task(rq);
  3716. if (likely(p))
  3717. return p;
  3718. }
  3719. class = sched_class_highest;
  3720. for ( ; ; ) {
  3721. p = class->pick_next_task(rq);
  3722. if (p)
  3723. return p;
  3724. /*
  3725. * Will never be NULL as the idle class always
  3726. * returns a non-NULL p:
  3727. */
  3728. class = class->next;
  3729. }
  3730. }
  3731. /*
  3732. * schedule() is the main scheduler function.
  3733. */
  3734. asmlinkage void __sched schedule(void)
  3735. {
  3736. struct task_struct *prev, *next;
  3737. unsigned long *switch_count;
  3738. struct rq *rq;
  3739. int cpu, hrtick = sched_feat(HRTICK);
  3740. need_resched:
  3741. preempt_disable();
  3742. cpu = smp_processor_id();
  3743. rq = cpu_rq(cpu);
  3744. rcu_qsctr_inc(cpu);
  3745. prev = rq->curr;
  3746. switch_count = &prev->nivcsw;
  3747. release_kernel_lock(prev);
  3748. need_resched_nonpreemptible:
  3749. schedule_debug(prev);
  3750. if (hrtick)
  3751. hrtick_clear(rq);
  3752. /*
  3753. * Do the rq-clock update outside the rq lock:
  3754. */
  3755. local_irq_disable();
  3756. update_rq_clock(rq);
  3757. spin_lock(&rq->lock);
  3758. clear_tsk_need_resched(prev);
  3759. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3760. if (unlikely(signal_pending_state(prev->state, prev)))
  3761. prev->state = TASK_RUNNING;
  3762. else
  3763. deactivate_task(rq, prev, 1);
  3764. switch_count = &prev->nvcsw;
  3765. }
  3766. #ifdef CONFIG_SMP
  3767. if (prev->sched_class->pre_schedule)
  3768. prev->sched_class->pre_schedule(rq, prev);
  3769. #endif
  3770. if (unlikely(!rq->nr_running))
  3771. idle_balance(cpu, rq);
  3772. prev->sched_class->put_prev_task(rq, prev);
  3773. next = pick_next_task(rq, prev);
  3774. if (likely(prev != next)) {
  3775. sched_info_switch(prev, next);
  3776. rq->nr_switches++;
  3777. rq->curr = next;
  3778. ++*switch_count;
  3779. context_switch(rq, prev, next); /* unlocks the rq */
  3780. /*
  3781. * the context switch might have flipped the stack from under
  3782. * us, hence refresh the local variables.
  3783. */
  3784. cpu = smp_processor_id();
  3785. rq = cpu_rq(cpu);
  3786. } else
  3787. spin_unlock_irq(&rq->lock);
  3788. if (hrtick)
  3789. hrtick_set(rq);
  3790. if (unlikely(reacquire_kernel_lock(current) < 0))
  3791. goto need_resched_nonpreemptible;
  3792. preempt_enable_no_resched();
  3793. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3794. goto need_resched;
  3795. }
  3796. EXPORT_SYMBOL(schedule);
  3797. #ifdef CONFIG_PREEMPT
  3798. /*
  3799. * this is the entry point to schedule() from in-kernel preemption
  3800. * off of preempt_enable. Kernel preemptions off return from interrupt
  3801. * occur there and call schedule directly.
  3802. */
  3803. asmlinkage void __sched preempt_schedule(void)
  3804. {
  3805. struct thread_info *ti = current_thread_info();
  3806. /*
  3807. * If there is a non-zero preempt_count or interrupts are disabled,
  3808. * we do not want to preempt the current task. Just return..
  3809. */
  3810. if (likely(ti->preempt_count || irqs_disabled()))
  3811. return;
  3812. do {
  3813. add_preempt_count(PREEMPT_ACTIVE);
  3814. schedule();
  3815. sub_preempt_count(PREEMPT_ACTIVE);
  3816. /*
  3817. * Check again in case we missed a preemption opportunity
  3818. * between schedule and now.
  3819. */
  3820. barrier();
  3821. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3822. }
  3823. EXPORT_SYMBOL(preempt_schedule);
  3824. /*
  3825. * this is the entry point to schedule() from kernel preemption
  3826. * off of irq context.
  3827. * Note, that this is called and return with irqs disabled. This will
  3828. * protect us against recursive calling from irq.
  3829. */
  3830. asmlinkage void __sched preempt_schedule_irq(void)
  3831. {
  3832. struct thread_info *ti = current_thread_info();
  3833. /* Catch callers which need to be fixed */
  3834. BUG_ON(ti->preempt_count || !irqs_disabled());
  3835. do {
  3836. add_preempt_count(PREEMPT_ACTIVE);
  3837. local_irq_enable();
  3838. schedule();
  3839. local_irq_disable();
  3840. sub_preempt_count(PREEMPT_ACTIVE);
  3841. /*
  3842. * Check again in case we missed a preemption opportunity
  3843. * between schedule and now.
  3844. */
  3845. barrier();
  3846. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3847. }
  3848. #endif /* CONFIG_PREEMPT */
  3849. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3850. void *key)
  3851. {
  3852. return try_to_wake_up(curr->private, mode, sync);
  3853. }
  3854. EXPORT_SYMBOL(default_wake_function);
  3855. /*
  3856. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3857. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3858. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3859. *
  3860. * There are circumstances in which we can try to wake a task which has already
  3861. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3862. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3863. */
  3864. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3865. int nr_exclusive, int sync, void *key)
  3866. {
  3867. wait_queue_t *curr, *next;
  3868. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3869. unsigned flags = curr->flags;
  3870. if (curr->func(curr, mode, sync, key) &&
  3871. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3872. break;
  3873. }
  3874. }
  3875. /**
  3876. * __wake_up - wake up threads blocked on a waitqueue.
  3877. * @q: the waitqueue
  3878. * @mode: which threads
  3879. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3880. * @key: is directly passed to the wakeup function
  3881. */
  3882. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3883. int nr_exclusive, void *key)
  3884. {
  3885. unsigned long flags;
  3886. spin_lock_irqsave(&q->lock, flags);
  3887. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3888. spin_unlock_irqrestore(&q->lock, flags);
  3889. }
  3890. EXPORT_SYMBOL(__wake_up);
  3891. /*
  3892. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3893. */
  3894. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3895. {
  3896. __wake_up_common(q, mode, 1, 0, NULL);
  3897. }
  3898. /**
  3899. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3900. * @q: the waitqueue
  3901. * @mode: which threads
  3902. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3903. *
  3904. * The sync wakeup differs that the waker knows that it will schedule
  3905. * away soon, so while the target thread will be woken up, it will not
  3906. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3907. * with each other. This can prevent needless bouncing between CPUs.
  3908. *
  3909. * On UP it can prevent extra preemption.
  3910. */
  3911. void
  3912. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3913. {
  3914. unsigned long flags;
  3915. int sync = 1;
  3916. if (unlikely(!q))
  3917. return;
  3918. if (unlikely(!nr_exclusive))
  3919. sync = 0;
  3920. spin_lock_irqsave(&q->lock, flags);
  3921. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3922. spin_unlock_irqrestore(&q->lock, flags);
  3923. }
  3924. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3925. void complete(struct completion *x)
  3926. {
  3927. unsigned long flags;
  3928. spin_lock_irqsave(&x->wait.lock, flags);
  3929. x->done++;
  3930. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3931. spin_unlock_irqrestore(&x->wait.lock, flags);
  3932. }
  3933. EXPORT_SYMBOL(complete);
  3934. void complete_all(struct completion *x)
  3935. {
  3936. unsigned long flags;
  3937. spin_lock_irqsave(&x->wait.lock, flags);
  3938. x->done += UINT_MAX/2;
  3939. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3940. spin_unlock_irqrestore(&x->wait.lock, flags);
  3941. }
  3942. EXPORT_SYMBOL(complete_all);
  3943. static inline long __sched
  3944. do_wait_for_common(struct completion *x, long timeout, int state)
  3945. {
  3946. if (!x->done) {
  3947. DECLARE_WAITQUEUE(wait, current);
  3948. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3949. __add_wait_queue_tail(&x->wait, &wait);
  3950. do {
  3951. if ((state == TASK_INTERRUPTIBLE &&
  3952. signal_pending(current)) ||
  3953. (state == TASK_KILLABLE &&
  3954. fatal_signal_pending(current))) {
  3955. timeout = -ERESTARTSYS;
  3956. break;
  3957. }
  3958. __set_current_state(state);
  3959. spin_unlock_irq(&x->wait.lock);
  3960. timeout = schedule_timeout(timeout);
  3961. spin_lock_irq(&x->wait.lock);
  3962. } while (!x->done && timeout);
  3963. __remove_wait_queue(&x->wait, &wait);
  3964. if (!x->done)
  3965. return timeout;
  3966. }
  3967. x->done--;
  3968. return timeout ?: 1;
  3969. }
  3970. static long __sched
  3971. wait_for_common(struct completion *x, long timeout, int state)
  3972. {
  3973. might_sleep();
  3974. spin_lock_irq(&x->wait.lock);
  3975. timeout = do_wait_for_common(x, timeout, state);
  3976. spin_unlock_irq(&x->wait.lock);
  3977. return timeout;
  3978. }
  3979. void __sched wait_for_completion(struct completion *x)
  3980. {
  3981. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3982. }
  3983. EXPORT_SYMBOL(wait_for_completion);
  3984. unsigned long __sched
  3985. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3986. {
  3987. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3988. }
  3989. EXPORT_SYMBOL(wait_for_completion_timeout);
  3990. int __sched wait_for_completion_interruptible(struct completion *x)
  3991. {
  3992. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3993. if (t == -ERESTARTSYS)
  3994. return t;
  3995. return 0;
  3996. }
  3997. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3998. unsigned long __sched
  3999. wait_for_completion_interruptible_timeout(struct completion *x,
  4000. unsigned long timeout)
  4001. {
  4002. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4003. }
  4004. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4005. int __sched wait_for_completion_killable(struct completion *x)
  4006. {
  4007. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4008. if (t == -ERESTARTSYS)
  4009. return t;
  4010. return 0;
  4011. }
  4012. EXPORT_SYMBOL(wait_for_completion_killable);
  4013. static long __sched
  4014. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4015. {
  4016. unsigned long flags;
  4017. wait_queue_t wait;
  4018. init_waitqueue_entry(&wait, current);
  4019. __set_current_state(state);
  4020. spin_lock_irqsave(&q->lock, flags);
  4021. __add_wait_queue(q, &wait);
  4022. spin_unlock(&q->lock);
  4023. timeout = schedule_timeout(timeout);
  4024. spin_lock_irq(&q->lock);
  4025. __remove_wait_queue(q, &wait);
  4026. spin_unlock_irqrestore(&q->lock, flags);
  4027. return timeout;
  4028. }
  4029. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4030. {
  4031. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4032. }
  4033. EXPORT_SYMBOL(interruptible_sleep_on);
  4034. long __sched
  4035. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4036. {
  4037. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4038. }
  4039. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4040. void __sched sleep_on(wait_queue_head_t *q)
  4041. {
  4042. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4043. }
  4044. EXPORT_SYMBOL(sleep_on);
  4045. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4046. {
  4047. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4048. }
  4049. EXPORT_SYMBOL(sleep_on_timeout);
  4050. #ifdef CONFIG_RT_MUTEXES
  4051. /*
  4052. * rt_mutex_setprio - set the current priority of a task
  4053. * @p: task
  4054. * @prio: prio value (kernel-internal form)
  4055. *
  4056. * This function changes the 'effective' priority of a task. It does
  4057. * not touch ->normal_prio like __setscheduler().
  4058. *
  4059. * Used by the rt_mutex code to implement priority inheritance logic.
  4060. */
  4061. void rt_mutex_setprio(struct task_struct *p, int prio)
  4062. {
  4063. unsigned long flags;
  4064. int oldprio, on_rq, running;
  4065. struct rq *rq;
  4066. const struct sched_class *prev_class = p->sched_class;
  4067. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4068. rq = task_rq_lock(p, &flags);
  4069. update_rq_clock(rq);
  4070. oldprio = p->prio;
  4071. on_rq = p->se.on_rq;
  4072. running = task_current(rq, p);
  4073. if (on_rq)
  4074. dequeue_task(rq, p, 0);
  4075. if (running)
  4076. p->sched_class->put_prev_task(rq, p);
  4077. if (rt_prio(prio))
  4078. p->sched_class = &rt_sched_class;
  4079. else
  4080. p->sched_class = &fair_sched_class;
  4081. p->prio = prio;
  4082. if (running)
  4083. p->sched_class->set_curr_task(rq);
  4084. if (on_rq) {
  4085. enqueue_task(rq, p, 0);
  4086. check_class_changed(rq, p, prev_class, oldprio, running);
  4087. }
  4088. task_rq_unlock(rq, &flags);
  4089. }
  4090. #endif
  4091. void set_user_nice(struct task_struct *p, long nice)
  4092. {
  4093. int old_prio, delta, on_rq;
  4094. unsigned long flags;
  4095. struct rq *rq;
  4096. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4097. return;
  4098. /*
  4099. * We have to be careful, if called from sys_setpriority(),
  4100. * the task might be in the middle of scheduling on another CPU.
  4101. */
  4102. rq = task_rq_lock(p, &flags);
  4103. update_rq_clock(rq);
  4104. /*
  4105. * The RT priorities are set via sched_setscheduler(), but we still
  4106. * allow the 'normal' nice value to be set - but as expected
  4107. * it wont have any effect on scheduling until the task is
  4108. * SCHED_FIFO/SCHED_RR:
  4109. */
  4110. if (task_has_rt_policy(p)) {
  4111. p->static_prio = NICE_TO_PRIO(nice);
  4112. goto out_unlock;
  4113. }
  4114. on_rq = p->se.on_rq;
  4115. if (on_rq)
  4116. dequeue_task(rq, p, 0);
  4117. p->static_prio = NICE_TO_PRIO(nice);
  4118. set_load_weight(p);
  4119. old_prio = p->prio;
  4120. p->prio = effective_prio(p);
  4121. delta = p->prio - old_prio;
  4122. if (on_rq) {
  4123. enqueue_task(rq, p, 0);
  4124. /*
  4125. * If the task increased its priority or is running and
  4126. * lowered its priority, then reschedule its CPU:
  4127. */
  4128. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4129. resched_task(rq->curr);
  4130. }
  4131. out_unlock:
  4132. task_rq_unlock(rq, &flags);
  4133. }
  4134. EXPORT_SYMBOL(set_user_nice);
  4135. /*
  4136. * can_nice - check if a task can reduce its nice value
  4137. * @p: task
  4138. * @nice: nice value
  4139. */
  4140. int can_nice(const struct task_struct *p, const int nice)
  4141. {
  4142. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4143. int nice_rlim = 20 - nice;
  4144. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4145. capable(CAP_SYS_NICE));
  4146. }
  4147. #ifdef __ARCH_WANT_SYS_NICE
  4148. /*
  4149. * sys_nice - change the priority of the current process.
  4150. * @increment: priority increment
  4151. *
  4152. * sys_setpriority is a more generic, but much slower function that
  4153. * does similar things.
  4154. */
  4155. asmlinkage long sys_nice(int increment)
  4156. {
  4157. long nice, retval;
  4158. /*
  4159. * Setpriority might change our priority at the same moment.
  4160. * We don't have to worry. Conceptually one call occurs first
  4161. * and we have a single winner.
  4162. */
  4163. if (increment < -40)
  4164. increment = -40;
  4165. if (increment > 40)
  4166. increment = 40;
  4167. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4168. if (nice < -20)
  4169. nice = -20;
  4170. if (nice > 19)
  4171. nice = 19;
  4172. if (increment < 0 && !can_nice(current, nice))
  4173. return -EPERM;
  4174. retval = security_task_setnice(current, nice);
  4175. if (retval)
  4176. return retval;
  4177. set_user_nice(current, nice);
  4178. return 0;
  4179. }
  4180. #endif
  4181. /**
  4182. * task_prio - return the priority value of a given task.
  4183. * @p: the task in question.
  4184. *
  4185. * This is the priority value as seen by users in /proc.
  4186. * RT tasks are offset by -200. Normal tasks are centered
  4187. * around 0, value goes from -16 to +15.
  4188. */
  4189. int task_prio(const struct task_struct *p)
  4190. {
  4191. return p->prio - MAX_RT_PRIO;
  4192. }
  4193. /**
  4194. * task_nice - return the nice value of a given task.
  4195. * @p: the task in question.
  4196. */
  4197. int task_nice(const struct task_struct *p)
  4198. {
  4199. return TASK_NICE(p);
  4200. }
  4201. EXPORT_SYMBOL(task_nice);
  4202. /**
  4203. * idle_cpu - is a given cpu idle currently?
  4204. * @cpu: the processor in question.
  4205. */
  4206. int idle_cpu(int cpu)
  4207. {
  4208. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4209. }
  4210. /**
  4211. * idle_task - return the idle task for a given cpu.
  4212. * @cpu: the processor in question.
  4213. */
  4214. struct task_struct *idle_task(int cpu)
  4215. {
  4216. return cpu_rq(cpu)->idle;
  4217. }
  4218. /**
  4219. * find_process_by_pid - find a process with a matching PID value.
  4220. * @pid: the pid in question.
  4221. */
  4222. static struct task_struct *find_process_by_pid(pid_t pid)
  4223. {
  4224. return pid ? find_task_by_vpid(pid) : current;
  4225. }
  4226. /* Actually do priority change: must hold rq lock. */
  4227. static void
  4228. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4229. {
  4230. BUG_ON(p->se.on_rq);
  4231. p->policy = policy;
  4232. switch (p->policy) {
  4233. case SCHED_NORMAL:
  4234. case SCHED_BATCH:
  4235. case SCHED_IDLE:
  4236. p->sched_class = &fair_sched_class;
  4237. break;
  4238. case SCHED_FIFO:
  4239. case SCHED_RR:
  4240. p->sched_class = &rt_sched_class;
  4241. break;
  4242. }
  4243. p->rt_priority = prio;
  4244. p->normal_prio = normal_prio(p);
  4245. /* we are holding p->pi_lock already */
  4246. p->prio = rt_mutex_getprio(p);
  4247. set_load_weight(p);
  4248. }
  4249. /**
  4250. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4251. * @p: the task in question.
  4252. * @policy: new policy.
  4253. * @param: structure containing the new RT priority.
  4254. *
  4255. * NOTE that the task may be already dead.
  4256. */
  4257. int sched_setscheduler(struct task_struct *p, int policy,
  4258. struct sched_param *param)
  4259. {
  4260. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4261. unsigned long flags;
  4262. const struct sched_class *prev_class = p->sched_class;
  4263. struct rq *rq;
  4264. /* may grab non-irq protected spin_locks */
  4265. BUG_ON(in_interrupt());
  4266. recheck:
  4267. /* double check policy once rq lock held */
  4268. if (policy < 0)
  4269. policy = oldpolicy = p->policy;
  4270. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4271. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4272. policy != SCHED_IDLE)
  4273. return -EINVAL;
  4274. /*
  4275. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4276. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4277. * SCHED_BATCH and SCHED_IDLE is 0.
  4278. */
  4279. if (param->sched_priority < 0 ||
  4280. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4281. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4282. return -EINVAL;
  4283. if (rt_policy(policy) != (param->sched_priority != 0))
  4284. return -EINVAL;
  4285. /*
  4286. * Allow unprivileged RT tasks to decrease priority:
  4287. */
  4288. if (!capable(CAP_SYS_NICE)) {
  4289. if (rt_policy(policy)) {
  4290. unsigned long rlim_rtprio;
  4291. if (!lock_task_sighand(p, &flags))
  4292. return -ESRCH;
  4293. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4294. unlock_task_sighand(p, &flags);
  4295. /* can't set/change the rt policy */
  4296. if (policy != p->policy && !rlim_rtprio)
  4297. return -EPERM;
  4298. /* can't increase priority */
  4299. if (param->sched_priority > p->rt_priority &&
  4300. param->sched_priority > rlim_rtprio)
  4301. return -EPERM;
  4302. }
  4303. /*
  4304. * Like positive nice levels, dont allow tasks to
  4305. * move out of SCHED_IDLE either:
  4306. */
  4307. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4308. return -EPERM;
  4309. /* can't change other user's priorities */
  4310. if ((current->euid != p->euid) &&
  4311. (current->euid != p->uid))
  4312. return -EPERM;
  4313. }
  4314. #ifdef CONFIG_RT_GROUP_SCHED
  4315. /*
  4316. * Do not allow realtime tasks into groups that have no runtime
  4317. * assigned.
  4318. */
  4319. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4320. return -EPERM;
  4321. #endif
  4322. retval = security_task_setscheduler(p, policy, param);
  4323. if (retval)
  4324. return retval;
  4325. /*
  4326. * make sure no PI-waiters arrive (or leave) while we are
  4327. * changing the priority of the task:
  4328. */
  4329. spin_lock_irqsave(&p->pi_lock, flags);
  4330. /*
  4331. * To be able to change p->policy safely, the apropriate
  4332. * runqueue lock must be held.
  4333. */
  4334. rq = __task_rq_lock(p);
  4335. /* recheck policy now with rq lock held */
  4336. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4337. policy = oldpolicy = -1;
  4338. __task_rq_unlock(rq);
  4339. spin_unlock_irqrestore(&p->pi_lock, flags);
  4340. goto recheck;
  4341. }
  4342. update_rq_clock(rq);
  4343. on_rq = p->se.on_rq;
  4344. running = task_current(rq, p);
  4345. if (on_rq)
  4346. deactivate_task(rq, p, 0);
  4347. if (running)
  4348. p->sched_class->put_prev_task(rq, p);
  4349. oldprio = p->prio;
  4350. __setscheduler(rq, p, policy, param->sched_priority);
  4351. if (running)
  4352. p->sched_class->set_curr_task(rq);
  4353. if (on_rq) {
  4354. activate_task(rq, p, 0);
  4355. check_class_changed(rq, p, prev_class, oldprio, running);
  4356. }
  4357. __task_rq_unlock(rq);
  4358. spin_unlock_irqrestore(&p->pi_lock, flags);
  4359. rt_mutex_adjust_pi(p);
  4360. return 0;
  4361. }
  4362. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4363. static int
  4364. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4365. {
  4366. struct sched_param lparam;
  4367. struct task_struct *p;
  4368. int retval;
  4369. if (!param || pid < 0)
  4370. return -EINVAL;
  4371. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4372. return -EFAULT;
  4373. rcu_read_lock();
  4374. retval = -ESRCH;
  4375. p = find_process_by_pid(pid);
  4376. if (p != NULL)
  4377. retval = sched_setscheduler(p, policy, &lparam);
  4378. rcu_read_unlock();
  4379. return retval;
  4380. }
  4381. /**
  4382. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4383. * @pid: the pid in question.
  4384. * @policy: new policy.
  4385. * @param: structure containing the new RT priority.
  4386. */
  4387. asmlinkage long
  4388. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4389. {
  4390. /* negative values for policy are not valid */
  4391. if (policy < 0)
  4392. return -EINVAL;
  4393. return do_sched_setscheduler(pid, policy, param);
  4394. }
  4395. /**
  4396. * sys_sched_setparam - set/change the RT priority of a thread
  4397. * @pid: the pid in question.
  4398. * @param: structure containing the new RT priority.
  4399. */
  4400. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4401. {
  4402. return do_sched_setscheduler(pid, -1, param);
  4403. }
  4404. /**
  4405. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4406. * @pid: the pid in question.
  4407. */
  4408. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4409. {
  4410. struct task_struct *p;
  4411. int retval;
  4412. if (pid < 0)
  4413. return -EINVAL;
  4414. retval = -ESRCH;
  4415. read_lock(&tasklist_lock);
  4416. p = find_process_by_pid(pid);
  4417. if (p) {
  4418. retval = security_task_getscheduler(p);
  4419. if (!retval)
  4420. retval = p->policy;
  4421. }
  4422. read_unlock(&tasklist_lock);
  4423. return retval;
  4424. }
  4425. /**
  4426. * sys_sched_getscheduler - get the RT priority of a thread
  4427. * @pid: the pid in question.
  4428. * @param: structure containing the RT priority.
  4429. */
  4430. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4431. {
  4432. struct sched_param lp;
  4433. struct task_struct *p;
  4434. int retval;
  4435. if (!param || pid < 0)
  4436. return -EINVAL;
  4437. read_lock(&tasklist_lock);
  4438. p = find_process_by_pid(pid);
  4439. retval = -ESRCH;
  4440. if (!p)
  4441. goto out_unlock;
  4442. retval = security_task_getscheduler(p);
  4443. if (retval)
  4444. goto out_unlock;
  4445. lp.sched_priority = p->rt_priority;
  4446. read_unlock(&tasklist_lock);
  4447. /*
  4448. * This one might sleep, we cannot do it with a spinlock held ...
  4449. */
  4450. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4451. return retval;
  4452. out_unlock:
  4453. read_unlock(&tasklist_lock);
  4454. return retval;
  4455. }
  4456. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4457. {
  4458. cpumask_t cpus_allowed;
  4459. cpumask_t new_mask = *in_mask;
  4460. struct task_struct *p;
  4461. int retval;
  4462. get_online_cpus();
  4463. read_lock(&tasklist_lock);
  4464. p = find_process_by_pid(pid);
  4465. if (!p) {
  4466. read_unlock(&tasklist_lock);
  4467. put_online_cpus();
  4468. return -ESRCH;
  4469. }
  4470. /*
  4471. * It is not safe to call set_cpus_allowed with the
  4472. * tasklist_lock held. We will bump the task_struct's
  4473. * usage count and then drop tasklist_lock.
  4474. */
  4475. get_task_struct(p);
  4476. read_unlock(&tasklist_lock);
  4477. retval = -EPERM;
  4478. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4479. !capable(CAP_SYS_NICE))
  4480. goto out_unlock;
  4481. retval = security_task_setscheduler(p, 0, NULL);
  4482. if (retval)
  4483. goto out_unlock;
  4484. cpuset_cpus_allowed(p, &cpus_allowed);
  4485. cpus_and(new_mask, new_mask, cpus_allowed);
  4486. again:
  4487. retval = set_cpus_allowed_ptr(p, &new_mask);
  4488. if (!retval) {
  4489. cpuset_cpus_allowed(p, &cpus_allowed);
  4490. if (!cpus_subset(new_mask, cpus_allowed)) {
  4491. /*
  4492. * We must have raced with a concurrent cpuset
  4493. * update. Just reset the cpus_allowed to the
  4494. * cpuset's cpus_allowed
  4495. */
  4496. new_mask = cpus_allowed;
  4497. goto again;
  4498. }
  4499. }
  4500. out_unlock:
  4501. put_task_struct(p);
  4502. put_online_cpus();
  4503. return retval;
  4504. }
  4505. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4506. cpumask_t *new_mask)
  4507. {
  4508. if (len < sizeof(cpumask_t)) {
  4509. memset(new_mask, 0, sizeof(cpumask_t));
  4510. } else if (len > sizeof(cpumask_t)) {
  4511. len = sizeof(cpumask_t);
  4512. }
  4513. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4514. }
  4515. /**
  4516. * sys_sched_setaffinity - set the cpu affinity of a process
  4517. * @pid: pid of the process
  4518. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4519. * @user_mask_ptr: user-space pointer to the new cpu mask
  4520. */
  4521. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4522. unsigned long __user *user_mask_ptr)
  4523. {
  4524. cpumask_t new_mask;
  4525. int retval;
  4526. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4527. if (retval)
  4528. return retval;
  4529. return sched_setaffinity(pid, &new_mask);
  4530. }
  4531. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4532. {
  4533. struct task_struct *p;
  4534. int retval;
  4535. get_online_cpus();
  4536. read_lock(&tasklist_lock);
  4537. retval = -ESRCH;
  4538. p = find_process_by_pid(pid);
  4539. if (!p)
  4540. goto out_unlock;
  4541. retval = security_task_getscheduler(p);
  4542. if (retval)
  4543. goto out_unlock;
  4544. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4545. out_unlock:
  4546. read_unlock(&tasklist_lock);
  4547. put_online_cpus();
  4548. return retval;
  4549. }
  4550. /**
  4551. * sys_sched_getaffinity - get the cpu affinity of a process
  4552. * @pid: pid of the process
  4553. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4554. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4555. */
  4556. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4557. unsigned long __user *user_mask_ptr)
  4558. {
  4559. int ret;
  4560. cpumask_t mask;
  4561. if (len < sizeof(cpumask_t))
  4562. return -EINVAL;
  4563. ret = sched_getaffinity(pid, &mask);
  4564. if (ret < 0)
  4565. return ret;
  4566. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4567. return -EFAULT;
  4568. return sizeof(cpumask_t);
  4569. }
  4570. /**
  4571. * sys_sched_yield - yield the current processor to other threads.
  4572. *
  4573. * This function yields the current CPU to other tasks. If there are no
  4574. * other threads running on this CPU then this function will return.
  4575. */
  4576. asmlinkage long sys_sched_yield(void)
  4577. {
  4578. struct rq *rq = this_rq_lock();
  4579. schedstat_inc(rq, yld_count);
  4580. current->sched_class->yield_task(rq);
  4581. /*
  4582. * Since we are going to call schedule() anyway, there's
  4583. * no need to preempt or enable interrupts:
  4584. */
  4585. __release(rq->lock);
  4586. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4587. _raw_spin_unlock(&rq->lock);
  4588. preempt_enable_no_resched();
  4589. schedule();
  4590. return 0;
  4591. }
  4592. static void __cond_resched(void)
  4593. {
  4594. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4595. __might_sleep(__FILE__, __LINE__);
  4596. #endif
  4597. /*
  4598. * The BKS might be reacquired before we have dropped
  4599. * PREEMPT_ACTIVE, which could trigger a second
  4600. * cond_resched() call.
  4601. */
  4602. do {
  4603. add_preempt_count(PREEMPT_ACTIVE);
  4604. schedule();
  4605. sub_preempt_count(PREEMPT_ACTIVE);
  4606. } while (need_resched());
  4607. }
  4608. int __sched _cond_resched(void)
  4609. {
  4610. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4611. system_state == SYSTEM_RUNNING) {
  4612. __cond_resched();
  4613. return 1;
  4614. }
  4615. return 0;
  4616. }
  4617. EXPORT_SYMBOL(_cond_resched);
  4618. /*
  4619. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4620. * call schedule, and on return reacquire the lock.
  4621. *
  4622. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4623. * operations here to prevent schedule() from being called twice (once via
  4624. * spin_unlock(), once by hand).
  4625. */
  4626. int cond_resched_lock(spinlock_t *lock)
  4627. {
  4628. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4629. int ret = 0;
  4630. if (spin_needbreak(lock) || resched) {
  4631. spin_unlock(lock);
  4632. if (resched && need_resched())
  4633. __cond_resched();
  4634. else
  4635. cpu_relax();
  4636. ret = 1;
  4637. spin_lock(lock);
  4638. }
  4639. return ret;
  4640. }
  4641. EXPORT_SYMBOL(cond_resched_lock);
  4642. int __sched cond_resched_softirq(void)
  4643. {
  4644. BUG_ON(!in_softirq());
  4645. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4646. local_bh_enable();
  4647. __cond_resched();
  4648. local_bh_disable();
  4649. return 1;
  4650. }
  4651. return 0;
  4652. }
  4653. EXPORT_SYMBOL(cond_resched_softirq);
  4654. /**
  4655. * yield - yield the current processor to other threads.
  4656. *
  4657. * This is a shortcut for kernel-space yielding - it marks the
  4658. * thread runnable and calls sys_sched_yield().
  4659. */
  4660. void __sched yield(void)
  4661. {
  4662. set_current_state(TASK_RUNNING);
  4663. sys_sched_yield();
  4664. }
  4665. EXPORT_SYMBOL(yield);
  4666. /*
  4667. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4668. * that process accounting knows that this is a task in IO wait state.
  4669. *
  4670. * But don't do that if it is a deliberate, throttling IO wait (this task
  4671. * has set its backing_dev_info: the queue against which it should throttle)
  4672. */
  4673. void __sched io_schedule(void)
  4674. {
  4675. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4676. delayacct_blkio_start();
  4677. atomic_inc(&rq->nr_iowait);
  4678. schedule();
  4679. atomic_dec(&rq->nr_iowait);
  4680. delayacct_blkio_end();
  4681. }
  4682. EXPORT_SYMBOL(io_schedule);
  4683. long __sched io_schedule_timeout(long timeout)
  4684. {
  4685. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4686. long ret;
  4687. delayacct_blkio_start();
  4688. atomic_inc(&rq->nr_iowait);
  4689. ret = schedule_timeout(timeout);
  4690. atomic_dec(&rq->nr_iowait);
  4691. delayacct_blkio_end();
  4692. return ret;
  4693. }
  4694. /**
  4695. * sys_sched_get_priority_max - return maximum RT priority.
  4696. * @policy: scheduling class.
  4697. *
  4698. * this syscall returns the maximum rt_priority that can be used
  4699. * by a given scheduling class.
  4700. */
  4701. asmlinkage long sys_sched_get_priority_max(int policy)
  4702. {
  4703. int ret = -EINVAL;
  4704. switch (policy) {
  4705. case SCHED_FIFO:
  4706. case SCHED_RR:
  4707. ret = MAX_USER_RT_PRIO-1;
  4708. break;
  4709. case SCHED_NORMAL:
  4710. case SCHED_BATCH:
  4711. case SCHED_IDLE:
  4712. ret = 0;
  4713. break;
  4714. }
  4715. return ret;
  4716. }
  4717. /**
  4718. * sys_sched_get_priority_min - return minimum RT priority.
  4719. * @policy: scheduling class.
  4720. *
  4721. * this syscall returns the minimum rt_priority that can be used
  4722. * by a given scheduling class.
  4723. */
  4724. asmlinkage long sys_sched_get_priority_min(int policy)
  4725. {
  4726. int ret = -EINVAL;
  4727. switch (policy) {
  4728. case SCHED_FIFO:
  4729. case SCHED_RR:
  4730. ret = 1;
  4731. break;
  4732. case SCHED_NORMAL:
  4733. case SCHED_BATCH:
  4734. case SCHED_IDLE:
  4735. ret = 0;
  4736. }
  4737. return ret;
  4738. }
  4739. /**
  4740. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4741. * @pid: pid of the process.
  4742. * @interval: userspace pointer to the timeslice value.
  4743. *
  4744. * this syscall writes the default timeslice value of a given process
  4745. * into the user-space timespec buffer. A value of '0' means infinity.
  4746. */
  4747. asmlinkage
  4748. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4749. {
  4750. struct task_struct *p;
  4751. unsigned int time_slice;
  4752. int retval;
  4753. struct timespec t;
  4754. if (pid < 0)
  4755. return -EINVAL;
  4756. retval = -ESRCH;
  4757. read_lock(&tasklist_lock);
  4758. p = find_process_by_pid(pid);
  4759. if (!p)
  4760. goto out_unlock;
  4761. retval = security_task_getscheduler(p);
  4762. if (retval)
  4763. goto out_unlock;
  4764. /*
  4765. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4766. * tasks that are on an otherwise idle runqueue:
  4767. */
  4768. time_slice = 0;
  4769. if (p->policy == SCHED_RR) {
  4770. time_slice = DEF_TIMESLICE;
  4771. } else if (p->policy != SCHED_FIFO) {
  4772. struct sched_entity *se = &p->se;
  4773. unsigned long flags;
  4774. struct rq *rq;
  4775. rq = task_rq_lock(p, &flags);
  4776. if (rq->cfs.load.weight)
  4777. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4778. task_rq_unlock(rq, &flags);
  4779. }
  4780. read_unlock(&tasklist_lock);
  4781. jiffies_to_timespec(time_slice, &t);
  4782. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4783. return retval;
  4784. out_unlock:
  4785. read_unlock(&tasklist_lock);
  4786. return retval;
  4787. }
  4788. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4789. void sched_show_task(struct task_struct *p)
  4790. {
  4791. unsigned long free = 0;
  4792. unsigned state;
  4793. state = p->state ? __ffs(p->state) + 1 : 0;
  4794. printk(KERN_INFO "%-13.13s %c", p->comm,
  4795. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4796. #if BITS_PER_LONG == 32
  4797. if (state == TASK_RUNNING)
  4798. printk(KERN_CONT " running ");
  4799. else
  4800. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4801. #else
  4802. if (state == TASK_RUNNING)
  4803. printk(KERN_CONT " running task ");
  4804. else
  4805. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4806. #endif
  4807. #ifdef CONFIG_DEBUG_STACK_USAGE
  4808. {
  4809. unsigned long *n = end_of_stack(p);
  4810. while (!*n)
  4811. n++;
  4812. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4813. }
  4814. #endif
  4815. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4816. task_pid_nr(p), task_pid_nr(p->real_parent));
  4817. show_stack(p, NULL);
  4818. }
  4819. void show_state_filter(unsigned long state_filter)
  4820. {
  4821. struct task_struct *g, *p;
  4822. #if BITS_PER_LONG == 32
  4823. printk(KERN_INFO
  4824. " task PC stack pid father\n");
  4825. #else
  4826. printk(KERN_INFO
  4827. " task PC stack pid father\n");
  4828. #endif
  4829. read_lock(&tasklist_lock);
  4830. do_each_thread(g, p) {
  4831. /*
  4832. * reset the NMI-timeout, listing all files on a slow
  4833. * console might take alot of time:
  4834. */
  4835. touch_nmi_watchdog();
  4836. if (!state_filter || (p->state & state_filter))
  4837. sched_show_task(p);
  4838. } while_each_thread(g, p);
  4839. touch_all_softlockup_watchdogs();
  4840. #ifdef CONFIG_SCHED_DEBUG
  4841. sysrq_sched_debug_show();
  4842. #endif
  4843. read_unlock(&tasklist_lock);
  4844. /*
  4845. * Only show locks if all tasks are dumped:
  4846. */
  4847. if (state_filter == -1)
  4848. debug_show_all_locks();
  4849. }
  4850. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4851. {
  4852. idle->sched_class = &idle_sched_class;
  4853. }
  4854. /**
  4855. * init_idle - set up an idle thread for a given CPU
  4856. * @idle: task in question
  4857. * @cpu: cpu the idle task belongs to
  4858. *
  4859. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4860. * flag, to make booting more robust.
  4861. */
  4862. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4863. {
  4864. struct rq *rq = cpu_rq(cpu);
  4865. unsigned long flags;
  4866. __sched_fork(idle);
  4867. idle->se.exec_start = sched_clock();
  4868. idle->prio = idle->normal_prio = MAX_PRIO;
  4869. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4870. __set_task_cpu(idle, cpu);
  4871. spin_lock_irqsave(&rq->lock, flags);
  4872. rq->curr = rq->idle = idle;
  4873. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4874. idle->oncpu = 1;
  4875. #endif
  4876. spin_unlock_irqrestore(&rq->lock, flags);
  4877. /* Set the preempt count _outside_ the spinlocks! */
  4878. #if defined(CONFIG_PREEMPT)
  4879. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4880. #else
  4881. task_thread_info(idle)->preempt_count = 0;
  4882. #endif
  4883. /*
  4884. * The idle tasks have their own, simple scheduling class:
  4885. */
  4886. idle->sched_class = &idle_sched_class;
  4887. }
  4888. /*
  4889. * In a system that switches off the HZ timer nohz_cpu_mask
  4890. * indicates which cpus entered this state. This is used
  4891. * in the rcu update to wait only for active cpus. For system
  4892. * which do not switch off the HZ timer nohz_cpu_mask should
  4893. * always be CPU_MASK_NONE.
  4894. */
  4895. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4896. /*
  4897. * Increase the granularity value when there are more CPUs,
  4898. * because with more CPUs the 'effective latency' as visible
  4899. * to users decreases. But the relationship is not linear,
  4900. * so pick a second-best guess by going with the log2 of the
  4901. * number of CPUs.
  4902. *
  4903. * This idea comes from the SD scheduler of Con Kolivas:
  4904. */
  4905. static inline void sched_init_granularity(void)
  4906. {
  4907. unsigned int factor = 1 + ilog2(num_online_cpus());
  4908. const unsigned long limit = 200000000;
  4909. sysctl_sched_min_granularity *= factor;
  4910. if (sysctl_sched_min_granularity > limit)
  4911. sysctl_sched_min_granularity = limit;
  4912. sysctl_sched_latency *= factor;
  4913. if (sysctl_sched_latency > limit)
  4914. sysctl_sched_latency = limit;
  4915. sysctl_sched_wakeup_granularity *= factor;
  4916. }
  4917. #ifdef CONFIG_SMP
  4918. /*
  4919. * This is how migration works:
  4920. *
  4921. * 1) we queue a struct migration_req structure in the source CPU's
  4922. * runqueue and wake up that CPU's migration thread.
  4923. * 2) we down() the locked semaphore => thread blocks.
  4924. * 3) migration thread wakes up (implicitly it forces the migrated
  4925. * thread off the CPU)
  4926. * 4) it gets the migration request and checks whether the migrated
  4927. * task is still in the wrong runqueue.
  4928. * 5) if it's in the wrong runqueue then the migration thread removes
  4929. * it and puts it into the right queue.
  4930. * 6) migration thread up()s the semaphore.
  4931. * 7) we wake up and the migration is done.
  4932. */
  4933. /*
  4934. * Change a given task's CPU affinity. Migrate the thread to a
  4935. * proper CPU and schedule it away if the CPU it's executing on
  4936. * is removed from the allowed bitmask.
  4937. *
  4938. * NOTE: the caller must have a valid reference to the task, the
  4939. * task must not exit() & deallocate itself prematurely. The
  4940. * call is not atomic; no spinlocks may be held.
  4941. */
  4942. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4943. {
  4944. struct migration_req req;
  4945. unsigned long flags;
  4946. struct rq *rq;
  4947. int ret = 0;
  4948. rq = task_rq_lock(p, &flags);
  4949. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4950. ret = -EINVAL;
  4951. goto out;
  4952. }
  4953. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4954. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4955. ret = -EINVAL;
  4956. goto out;
  4957. }
  4958. if (p->sched_class->set_cpus_allowed)
  4959. p->sched_class->set_cpus_allowed(p, new_mask);
  4960. else {
  4961. p->cpus_allowed = *new_mask;
  4962. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4963. }
  4964. /* Can the task run on the task's current CPU? If so, we're done */
  4965. if (cpu_isset(task_cpu(p), *new_mask))
  4966. goto out;
  4967. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4968. /* Need help from migration thread: drop lock and wait. */
  4969. task_rq_unlock(rq, &flags);
  4970. wake_up_process(rq->migration_thread);
  4971. wait_for_completion(&req.done);
  4972. tlb_migrate_finish(p->mm);
  4973. return 0;
  4974. }
  4975. out:
  4976. task_rq_unlock(rq, &flags);
  4977. return ret;
  4978. }
  4979. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4980. /*
  4981. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4982. * this because either it can't run here any more (set_cpus_allowed()
  4983. * away from this CPU, or CPU going down), or because we're
  4984. * attempting to rebalance this task on exec (sched_exec).
  4985. *
  4986. * So we race with normal scheduler movements, but that's OK, as long
  4987. * as the task is no longer on this CPU.
  4988. *
  4989. * Returns non-zero if task was successfully migrated.
  4990. */
  4991. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4992. {
  4993. struct rq *rq_dest, *rq_src;
  4994. int ret = 0, on_rq;
  4995. if (unlikely(cpu_is_offline(dest_cpu)))
  4996. return ret;
  4997. rq_src = cpu_rq(src_cpu);
  4998. rq_dest = cpu_rq(dest_cpu);
  4999. double_rq_lock(rq_src, rq_dest);
  5000. /* Already moved. */
  5001. if (task_cpu(p) != src_cpu)
  5002. goto done;
  5003. /* Affinity changed (again). */
  5004. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5005. goto fail;
  5006. on_rq = p->se.on_rq;
  5007. if (on_rq)
  5008. deactivate_task(rq_src, p, 0);
  5009. set_task_cpu(p, dest_cpu);
  5010. if (on_rq) {
  5011. activate_task(rq_dest, p, 0);
  5012. check_preempt_curr(rq_dest, p);
  5013. }
  5014. done:
  5015. ret = 1;
  5016. fail:
  5017. double_rq_unlock(rq_src, rq_dest);
  5018. return ret;
  5019. }
  5020. /*
  5021. * migration_thread - this is a highprio system thread that performs
  5022. * thread migration by bumping thread off CPU then 'pushing' onto
  5023. * another runqueue.
  5024. */
  5025. static int migration_thread(void *data)
  5026. {
  5027. int cpu = (long)data;
  5028. struct rq *rq;
  5029. rq = cpu_rq(cpu);
  5030. BUG_ON(rq->migration_thread != current);
  5031. set_current_state(TASK_INTERRUPTIBLE);
  5032. while (!kthread_should_stop()) {
  5033. struct migration_req *req;
  5034. struct list_head *head;
  5035. spin_lock_irq(&rq->lock);
  5036. if (cpu_is_offline(cpu)) {
  5037. spin_unlock_irq(&rq->lock);
  5038. goto wait_to_die;
  5039. }
  5040. if (rq->active_balance) {
  5041. active_load_balance(rq, cpu);
  5042. rq->active_balance = 0;
  5043. }
  5044. head = &rq->migration_queue;
  5045. if (list_empty(head)) {
  5046. spin_unlock_irq(&rq->lock);
  5047. schedule();
  5048. set_current_state(TASK_INTERRUPTIBLE);
  5049. continue;
  5050. }
  5051. req = list_entry(head->next, struct migration_req, list);
  5052. list_del_init(head->next);
  5053. spin_unlock(&rq->lock);
  5054. __migrate_task(req->task, cpu, req->dest_cpu);
  5055. local_irq_enable();
  5056. complete(&req->done);
  5057. }
  5058. __set_current_state(TASK_RUNNING);
  5059. return 0;
  5060. wait_to_die:
  5061. /* Wait for kthread_stop */
  5062. set_current_state(TASK_INTERRUPTIBLE);
  5063. while (!kthread_should_stop()) {
  5064. schedule();
  5065. set_current_state(TASK_INTERRUPTIBLE);
  5066. }
  5067. __set_current_state(TASK_RUNNING);
  5068. return 0;
  5069. }
  5070. #ifdef CONFIG_HOTPLUG_CPU
  5071. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5072. {
  5073. int ret;
  5074. local_irq_disable();
  5075. ret = __migrate_task(p, src_cpu, dest_cpu);
  5076. local_irq_enable();
  5077. return ret;
  5078. }
  5079. /*
  5080. * Figure out where task on dead CPU should go, use force if necessary.
  5081. * NOTE: interrupts should be disabled by the caller
  5082. */
  5083. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5084. {
  5085. unsigned long flags;
  5086. cpumask_t mask;
  5087. struct rq *rq;
  5088. int dest_cpu;
  5089. do {
  5090. /* On same node? */
  5091. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5092. cpus_and(mask, mask, p->cpus_allowed);
  5093. dest_cpu = any_online_cpu(mask);
  5094. /* On any allowed CPU? */
  5095. if (dest_cpu >= nr_cpu_ids)
  5096. dest_cpu = any_online_cpu(p->cpus_allowed);
  5097. /* No more Mr. Nice Guy. */
  5098. if (dest_cpu >= nr_cpu_ids) {
  5099. cpumask_t cpus_allowed;
  5100. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5101. /*
  5102. * Try to stay on the same cpuset, where the
  5103. * current cpuset may be a subset of all cpus.
  5104. * The cpuset_cpus_allowed_locked() variant of
  5105. * cpuset_cpus_allowed() will not block. It must be
  5106. * called within calls to cpuset_lock/cpuset_unlock.
  5107. */
  5108. rq = task_rq_lock(p, &flags);
  5109. p->cpus_allowed = cpus_allowed;
  5110. dest_cpu = any_online_cpu(p->cpus_allowed);
  5111. task_rq_unlock(rq, &flags);
  5112. /*
  5113. * Don't tell them about moving exiting tasks or
  5114. * kernel threads (both mm NULL), since they never
  5115. * leave kernel.
  5116. */
  5117. if (p->mm && printk_ratelimit()) {
  5118. printk(KERN_INFO "process %d (%s) no "
  5119. "longer affine to cpu%d\n",
  5120. task_pid_nr(p), p->comm, dead_cpu);
  5121. }
  5122. }
  5123. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5124. }
  5125. /*
  5126. * While a dead CPU has no uninterruptible tasks queued at this point,
  5127. * it might still have a nonzero ->nr_uninterruptible counter, because
  5128. * for performance reasons the counter is not stricly tracking tasks to
  5129. * their home CPUs. So we just add the counter to another CPU's counter,
  5130. * to keep the global sum constant after CPU-down:
  5131. */
  5132. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5133. {
  5134. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5135. unsigned long flags;
  5136. local_irq_save(flags);
  5137. double_rq_lock(rq_src, rq_dest);
  5138. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5139. rq_src->nr_uninterruptible = 0;
  5140. double_rq_unlock(rq_src, rq_dest);
  5141. local_irq_restore(flags);
  5142. }
  5143. /* Run through task list and migrate tasks from the dead cpu. */
  5144. static void migrate_live_tasks(int src_cpu)
  5145. {
  5146. struct task_struct *p, *t;
  5147. read_lock(&tasklist_lock);
  5148. do_each_thread(t, p) {
  5149. if (p == current)
  5150. continue;
  5151. if (task_cpu(p) == src_cpu)
  5152. move_task_off_dead_cpu(src_cpu, p);
  5153. } while_each_thread(t, p);
  5154. read_unlock(&tasklist_lock);
  5155. }
  5156. /*
  5157. * Schedules idle task to be the next runnable task on current CPU.
  5158. * It does so by boosting its priority to highest possible.
  5159. * Used by CPU offline code.
  5160. */
  5161. void sched_idle_next(void)
  5162. {
  5163. int this_cpu = smp_processor_id();
  5164. struct rq *rq = cpu_rq(this_cpu);
  5165. struct task_struct *p = rq->idle;
  5166. unsigned long flags;
  5167. /* cpu has to be offline */
  5168. BUG_ON(cpu_online(this_cpu));
  5169. /*
  5170. * Strictly not necessary since rest of the CPUs are stopped by now
  5171. * and interrupts disabled on the current cpu.
  5172. */
  5173. spin_lock_irqsave(&rq->lock, flags);
  5174. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5175. update_rq_clock(rq);
  5176. activate_task(rq, p, 0);
  5177. spin_unlock_irqrestore(&rq->lock, flags);
  5178. }
  5179. /*
  5180. * Ensures that the idle task is using init_mm right before its cpu goes
  5181. * offline.
  5182. */
  5183. void idle_task_exit(void)
  5184. {
  5185. struct mm_struct *mm = current->active_mm;
  5186. BUG_ON(cpu_online(smp_processor_id()));
  5187. if (mm != &init_mm)
  5188. switch_mm(mm, &init_mm, current);
  5189. mmdrop(mm);
  5190. }
  5191. /* called under rq->lock with disabled interrupts */
  5192. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5193. {
  5194. struct rq *rq = cpu_rq(dead_cpu);
  5195. /* Must be exiting, otherwise would be on tasklist. */
  5196. BUG_ON(!p->exit_state);
  5197. /* Cannot have done final schedule yet: would have vanished. */
  5198. BUG_ON(p->state == TASK_DEAD);
  5199. get_task_struct(p);
  5200. /*
  5201. * Drop lock around migration; if someone else moves it,
  5202. * that's OK. No task can be added to this CPU, so iteration is
  5203. * fine.
  5204. */
  5205. spin_unlock_irq(&rq->lock);
  5206. move_task_off_dead_cpu(dead_cpu, p);
  5207. spin_lock_irq(&rq->lock);
  5208. put_task_struct(p);
  5209. }
  5210. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5211. static void migrate_dead_tasks(unsigned int dead_cpu)
  5212. {
  5213. struct rq *rq = cpu_rq(dead_cpu);
  5214. struct task_struct *next;
  5215. for ( ; ; ) {
  5216. if (!rq->nr_running)
  5217. break;
  5218. update_rq_clock(rq);
  5219. next = pick_next_task(rq, rq->curr);
  5220. if (!next)
  5221. break;
  5222. next->sched_class->put_prev_task(rq, next);
  5223. migrate_dead(dead_cpu, next);
  5224. }
  5225. }
  5226. #endif /* CONFIG_HOTPLUG_CPU */
  5227. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5228. static struct ctl_table sd_ctl_dir[] = {
  5229. {
  5230. .procname = "sched_domain",
  5231. .mode = 0555,
  5232. },
  5233. {0, },
  5234. };
  5235. static struct ctl_table sd_ctl_root[] = {
  5236. {
  5237. .ctl_name = CTL_KERN,
  5238. .procname = "kernel",
  5239. .mode = 0555,
  5240. .child = sd_ctl_dir,
  5241. },
  5242. {0, },
  5243. };
  5244. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5245. {
  5246. struct ctl_table *entry =
  5247. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5248. return entry;
  5249. }
  5250. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5251. {
  5252. struct ctl_table *entry;
  5253. /*
  5254. * In the intermediate directories, both the child directory and
  5255. * procname are dynamically allocated and could fail but the mode
  5256. * will always be set. In the lowest directory the names are
  5257. * static strings and all have proc handlers.
  5258. */
  5259. for (entry = *tablep; entry->mode; entry++) {
  5260. if (entry->child)
  5261. sd_free_ctl_entry(&entry->child);
  5262. if (entry->proc_handler == NULL)
  5263. kfree(entry->procname);
  5264. }
  5265. kfree(*tablep);
  5266. *tablep = NULL;
  5267. }
  5268. static void
  5269. set_table_entry(struct ctl_table *entry,
  5270. const char *procname, void *data, int maxlen,
  5271. mode_t mode, proc_handler *proc_handler)
  5272. {
  5273. entry->procname = procname;
  5274. entry->data = data;
  5275. entry->maxlen = maxlen;
  5276. entry->mode = mode;
  5277. entry->proc_handler = proc_handler;
  5278. }
  5279. static struct ctl_table *
  5280. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5281. {
  5282. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5283. if (table == NULL)
  5284. return NULL;
  5285. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5286. sizeof(long), 0644, proc_doulongvec_minmax);
  5287. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5288. sizeof(long), 0644, proc_doulongvec_minmax);
  5289. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5290. sizeof(int), 0644, proc_dointvec_minmax);
  5291. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5292. sizeof(int), 0644, proc_dointvec_minmax);
  5293. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5294. sizeof(int), 0644, proc_dointvec_minmax);
  5295. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5296. sizeof(int), 0644, proc_dointvec_minmax);
  5297. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5298. sizeof(int), 0644, proc_dointvec_minmax);
  5299. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5300. sizeof(int), 0644, proc_dointvec_minmax);
  5301. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5302. sizeof(int), 0644, proc_dointvec_minmax);
  5303. set_table_entry(&table[9], "cache_nice_tries",
  5304. &sd->cache_nice_tries,
  5305. sizeof(int), 0644, proc_dointvec_minmax);
  5306. set_table_entry(&table[10], "flags", &sd->flags,
  5307. sizeof(int), 0644, proc_dointvec_minmax);
  5308. /* &table[11] is terminator */
  5309. return table;
  5310. }
  5311. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5312. {
  5313. struct ctl_table *entry, *table;
  5314. struct sched_domain *sd;
  5315. int domain_num = 0, i;
  5316. char buf[32];
  5317. for_each_domain(cpu, sd)
  5318. domain_num++;
  5319. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5320. if (table == NULL)
  5321. return NULL;
  5322. i = 0;
  5323. for_each_domain(cpu, sd) {
  5324. snprintf(buf, 32, "domain%d", i);
  5325. entry->procname = kstrdup(buf, GFP_KERNEL);
  5326. entry->mode = 0555;
  5327. entry->child = sd_alloc_ctl_domain_table(sd);
  5328. entry++;
  5329. i++;
  5330. }
  5331. return table;
  5332. }
  5333. static struct ctl_table_header *sd_sysctl_header;
  5334. static void register_sched_domain_sysctl(void)
  5335. {
  5336. int i, cpu_num = num_online_cpus();
  5337. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5338. char buf[32];
  5339. WARN_ON(sd_ctl_dir[0].child);
  5340. sd_ctl_dir[0].child = entry;
  5341. if (entry == NULL)
  5342. return;
  5343. for_each_online_cpu(i) {
  5344. snprintf(buf, 32, "cpu%d", i);
  5345. entry->procname = kstrdup(buf, GFP_KERNEL);
  5346. entry->mode = 0555;
  5347. entry->child = sd_alloc_ctl_cpu_table(i);
  5348. entry++;
  5349. }
  5350. WARN_ON(sd_sysctl_header);
  5351. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5352. }
  5353. /* may be called multiple times per register */
  5354. static void unregister_sched_domain_sysctl(void)
  5355. {
  5356. if (sd_sysctl_header)
  5357. unregister_sysctl_table(sd_sysctl_header);
  5358. sd_sysctl_header = NULL;
  5359. if (sd_ctl_dir[0].child)
  5360. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5361. }
  5362. #else
  5363. static void register_sched_domain_sysctl(void)
  5364. {
  5365. }
  5366. static void unregister_sched_domain_sysctl(void)
  5367. {
  5368. }
  5369. #endif
  5370. static void set_rq_online(struct rq *rq)
  5371. {
  5372. if (!rq->online) {
  5373. const struct sched_class *class;
  5374. cpu_set(rq->cpu, rq->rd->online);
  5375. rq->online = 1;
  5376. for_each_class(class) {
  5377. if (class->rq_online)
  5378. class->rq_online(rq);
  5379. }
  5380. }
  5381. }
  5382. static void set_rq_offline(struct rq *rq)
  5383. {
  5384. if (rq->online) {
  5385. const struct sched_class *class;
  5386. for_each_class(class) {
  5387. if (class->rq_offline)
  5388. class->rq_offline(rq);
  5389. }
  5390. cpu_clear(rq->cpu, rq->rd->online);
  5391. rq->online = 0;
  5392. }
  5393. }
  5394. /*
  5395. * migration_call - callback that gets triggered when a CPU is added.
  5396. * Here we can start up the necessary migration thread for the new CPU.
  5397. */
  5398. static int __cpuinit
  5399. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5400. {
  5401. struct task_struct *p;
  5402. int cpu = (long)hcpu;
  5403. unsigned long flags;
  5404. struct rq *rq;
  5405. switch (action) {
  5406. case CPU_UP_PREPARE:
  5407. case CPU_UP_PREPARE_FROZEN:
  5408. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5409. if (IS_ERR(p))
  5410. return NOTIFY_BAD;
  5411. kthread_bind(p, cpu);
  5412. /* Must be high prio: stop_machine expects to yield to it. */
  5413. rq = task_rq_lock(p, &flags);
  5414. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5415. task_rq_unlock(rq, &flags);
  5416. cpu_rq(cpu)->migration_thread = p;
  5417. break;
  5418. case CPU_ONLINE:
  5419. case CPU_ONLINE_FROZEN:
  5420. /* Strictly unnecessary, as first user will wake it. */
  5421. wake_up_process(cpu_rq(cpu)->migration_thread);
  5422. /* Update our root-domain */
  5423. rq = cpu_rq(cpu);
  5424. spin_lock_irqsave(&rq->lock, flags);
  5425. if (rq->rd) {
  5426. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5427. set_rq_online(rq);
  5428. }
  5429. spin_unlock_irqrestore(&rq->lock, flags);
  5430. break;
  5431. #ifdef CONFIG_HOTPLUG_CPU
  5432. case CPU_UP_CANCELED:
  5433. case CPU_UP_CANCELED_FROZEN:
  5434. if (!cpu_rq(cpu)->migration_thread)
  5435. break;
  5436. /* Unbind it from offline cpu so it can run. Fall thru. */
  5437. kthread_bind(cpu_rq(cpu)->migration_thread,
  5438. any_online_cpu(cpu_online_map));
  5439. kthread_stop(cpu_rq(cpu)->migration_thread);
  5440. cpu_rq(cpu)->migration_thread = NULL;
  5441. break;
  5442. case CPU_DEAD:
  5443. case CPU_DEAD_FROZEN:
  5444. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5445. migrate_live_tasks(cpu);
  5446. rq = cpu_rq(cpu);
  5447. kthread_stop(rq->migration_thread);
  5448. rq->migration_thread = NULL;
  5449. /* Idle task back to normal (off runqueue, low prio) */
  5450. spin_lock_irq(&rq->lock);
  5451. update_rq_clock(rq);
  5452. deactivate_task(rq, rq->idle, 0);
  5453. rq->idle->static_prio = MAX_PRIO;
  5454. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5455. rq->idle->sched_class = &idle_sched_class;
  5456. migrate_dead_tasks(cpu);
  5457. spin_unlock_irq(&rq->lock);
  5458. cpuset_unlock();
  5459. migrate_nr_uninterruptible(rq);
  5460. BUG_ON(rq->nr_running != 0);
  5461. /*
  5462. * No need to migrate the tasks: it was best-effort if
  5463. * they didn't take sched_hotcpu_mutex. Just wake up
  5464. * the requestors.
  5465. */
  5466. spin_lock_irq(&rq->lock);
  5467. while (!list_empty(&rq->migration_queue)) {
  5468. struct migration_req *req;
  5469. req = list_entry(rq->migration_queue.next,
  5470. struct migration_req, list);
  5471. list_del_init(&req->list);
  5472. complete(&req->done);
  5473. }
  5474. spin_unlock_irq(&rq->lock);
  5475. break;
  5476. case CPU_DYING:
  5477. case CPU_DYING_FROZEN:
  5478. /* Update our root-domain */
  5479. rq = cpu_rq(cpu);
  5480. spin_lock_irqsave(&rq->lock, flags);
  5481. if (rq->rd) {
  5482. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5483. set_rq_offline(rq);
  5484. }
  5485. spin_unlock_irqrestore(&rq->lock, flags);
  5486. break;
  5487. #endif
  5488. }
  5489. return NOTIFY_OK;
  5490. }
  5491. /* Register at highest priority so that task migration (migrate_all_tasks)
  5492. * happens before everything else.
  5493. */
  5494. static struct notifier_block __cpuinitdata migration_notifier = {
  5495. .notifier_call = migration_call,
  5496. .priority = 10
  5497. };
  5498. void __init migration_init(void)
  5499. {
  5500. void *cpu = (void *)(long)smp_processor_id();
  5501. int err;
  5502. /* Start one for the boot CPU: */
  5503. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5504. BUG_ON(err == NOTIFY_BAD);
  5505. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5506. register_cpu_notifier(&migration_notifier);
  5507. }
  5508. #endif
  5509. #ifdef CONFIG_SMP
  5510. #ifdef CONFIG_SCHED_DEBUG
  5511. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5512. {
  5513. switch (lvl) {
  5514. case SD_LV_NONE:
  5515. return "NONE";
  5516. case SD_LV_SIBLING:
  5517. return "SIBLING";
  5518. case SD_LV_MC:
  5519. return "MC";
  5520. case SD_LV_CPU:
  5521. return "CPU";
  5522. case SD_LV_NODE:
  5523. return "NODE";
  5524. case SD_LV_ALLNODES:
  5525. return "ALLNODES";
  5526. case SD_LV_MAX:
  5527. return "MAX";
  5528. }
  5529. return "MAX";
  5530. }
  5531. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5532. cpumask_t *groupmask)
  5533. {
  5534. struct sched_group *group = sd->groups;
  5535. char str[256];
  5536. cpulist_scnprintf(str, sizeof(str), sd->span);
  5537. cpus_clear(*groupmask);
  5538. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5539. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5540. printk("does not load-balance\n");
  5541. if (sd->parent)
  5542. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5543. " has parent");
  5544. return -1;
  5545. }
  5546. printk(KERN_CONT "span %s level %s\n",
  5547. str, sd_level_to_string(sd->level));
  5548. if (!cpu_isset(cpu, sd->span)) {
  5549. printk(KERN_ERR "ERROR: domain->span does not contain "
  5550. "CPU%d\n", cpu);
  5551. }
  5552. if (!cpu_isset(cpu, group->cpumask)) {
  5553. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5554. " CPU%d\n", cpu);
  5555. }
  5556. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5557. do {
  5558. if (!group) {
  5559. printk("\n");
  5560. printk(KERN_ERR "ERROR: group is NULL\n");
  5561. break;
  5562. }
  5563. if (!group->__cpu_power) {
  5564. printk(KERN_CONT "\n");
  5565. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5566. "set\n");
  5567. break;
  5568. }
  5569. if (!cpus_weight(group->cpumask)) {
  5570. printk(KERN_CONT "\n");
  5571. printk(KERN_ERR "ERROR: empty group\n");
  5572. break;
  5573. }
  5574. if (cpus_intersects(*groupmask, group->cpumask)) {
  5575. printk(KERN_CONT "\n");
  5576. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5577. break;
  5578. }
  5579. cpus_or(*groupmask, *groupmask, group->cpumask);
  5580. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5581. printk(KERN_CONT " %s", str);
  5582. group = group->next;
  5583. } while (group != sd->groups);
  5584. printk(KERN_CONT "\n");
  5585. if (!cpus_equal(sd->span, *groupmask))
  5586. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5587. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5588. printk(KERN_ERR "ERROR: parent span is not a superset "
  5589. "of domain->span\n");
  5590. return 0;
  5591. }
  5592. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5593. {
  5594. cpumask_t *groupmask;
  5595. int level = 0;
  5596. if (!sd) {
  5597. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5598. return;
  5599. }
  5600. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5601. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5602. if (!groupmask) {
  5603. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5604. return;
  5605. }
  5606. for (;;) {
  5607. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5608. break;
  5609. level++;
  5610. sd = sd->parent;
  5611. if (!sd)
  5612. break;
  5613. }
  5614. kfree(groupmask);
  5615. }
  5616. #else /* !CONFIG_SCHED_DEBUG */
  5617. # define sched_domain_debug(sd, cpu) do { } while (0)
  5618. #endif /* CONFIG_SCHED_DEBUG */
  5619. static int sd_degenerate(struct sched_domain *sd)
  5620. {
  5621. if (cpus_weight(sd->span) == 1)
  5622. return 1;
  5623. /* Following flags need at least 2 groups */
  5624. if (sd->flags & (SD_LOAD_BALANCE |
  5625. SD_BALANCE_NEWIDLE |
  5626. SD_BALANCE_FORK |
  5627. SD_BALANCE_EXEC |
  5628. SD_SHARE_CPUPOWER |
  5629. SD_SHARE_PKG_RESOURCES)) {
  5630. if (sd->groups != sd->groups->next)
  5631. return 0;
  5632. }
  5633. /* Following flags don't use groups */
  5634. if (sd->flags & (SD_WAKE_IDLE |
  5635. SD_WAKE_AFFINE |
  5636. SD_WAKE_BALANCE))
  5637. return 0;
  5638. return 1;
  5639. }
  5640. static int
  5641. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5642. {
  5643. unsigned long cflags = sd->flags, pflags = parent->flags;
  5644. if (sd_degenerate(parent))
  5645. return 1;
  5646. if (!cpus_equal(sd->span, parent->span))
  5647. return 0;
  5648. /* Does parent contain flags not in child? */
  5649. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5650. if (cflags & SD_WAKE_AFFINE)
  5651. pflags &= ~SD_WAKE_BALANCE;
  5652. /* Flags needing groups don't count if only 1 group in parent */
  5653. if (parent->groups == parent->groups->next) {
  5654. pflags &= ~(SD_LOAD_BALANCE |
  5655. SD_BALANCE_NEWIDLE |
  5656. SD_BALANCE_FORK |
  5657. SD_BALANCE_EXEC |
  5658. SD_SHARE_CPUPOWER |
  5659. SD_SHARE_PKG_RESOURCES);
  5660. }
  5661. if (~cflags & pflags)
  5662. return 0;
  5663. return 1;
  5664. }
  5665. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5666. {
  5667. unsigned long flags;
  5668. spin_lock_irqsave(&rq->lock, flags);
  5669. if (rq->rd) {
  5670. struct root_domain *old_rd = rq->rd;
  5671. if (cpu_isset(rq->cpu, old_rd->online))
  5672. set_rq_offline(rq);
  5673. cpu_clear(rq->cpu, old_rd->span);
  5674. if (atomic_dec_and_test(&old_rd->refcount))
  5675. kfree(old_rd);
  5676. }
  5677. atomic_inc(&rd->refcount);
  5678. rq->rd = rd;
  5679. cpu_set(rq->cpu, rd->span);
  5680. if (cpu_isset(rq->cpu, cpu_online_map))
  5681. set_rq_online(rq);
  5682. spin_unlock_irqrestore(&rq->lock, flags);
  5683. }
  5684. static void init_rootdomain(struct root_domain *rd)
  5685. {
  5686. memset(rd, 0, sizeof(*rd));
  5687. cpus_clear(rd->span);
  5688. cpus_clear(rd->online);
  5689. cpupri_init(&rd->cpupri);
  5690. }
  5691. static void init_defrootdomain(void)
  5692. {
  5693. init_rootdomain(&def_root_domain);
  5694. atomic_set(&def_root_domain.refcount, 1);
  5695. }
  5696. static struct root_domain *alloc_rootdomain(void)
  5697. {
  5698. struct root_domain *rd;
  5699. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5700. if (!rd)
  5701. return NULL;
  5702. init_rootdomain(rd);
  5703. return rd;
  5704. }
  5705. /*
  5706. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5707. * hold the hotplug lock.
  5708. */
  5709. static void
  5710. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5711. {
  5712. struct rq *rq = cpu_rq(cpu);
  5713. struct sched_domain *tmp;
  5714. /* Remove the sched domains which do not contribute to scheduling. */
  5715. for (tmp = sd; tmp; tmp = tmp->parent) {
  5716. struct sched_domain *parent = tmp->parent;
  5717. if (!parent)
  5718. break;
  5719. if (sd_parent_degenerate(tmp, parent)) {
  5720. tmp->parent = parent->parent;
  5721. if (parent->parent)
  5722. parent->parent->child = tmp;
  5723. }
  5724. }
  5725. if (sd && sd_degenerate(sd)) {
  5726. sd = sd->parent;
  5727. if (sd)
  5728. sd->child = NULL;
  5729. }
  5730. sched_domain_debug(sd, cpu);
  5731. rq_attach_root(rq, rd);
  5732. rcu_assign_pointer(rq->sd, sd);
  5733. }
  5734. /* cpus with isolated domains */
  5735. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5736. /* Setup the mask of cpus configured for isolated domains */
  5737. static int __init isolated_cpu_setup(char *str)
  5738. {
  5739. int ints[NR_CPUS], i;
  5740. str = get_options(str, ARRAY_SIZE(ints), ints);
  5741. cpus_clear(cpu_isolated_map);
  5742. for (i = 1; i <= ints[0]; i++)
  5743. if (ints[i] < NR_CPUS)
  5744. cpu_set(ints[i], cpu_isolated_map);
  5745. return 1;
  5746. }
  5747. __setup("isolcpus=", isolated_cpu_setup);
  5748. /*
  5749. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5750. * to a function which identifies what group(along with sched group) a CPU
  5751. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5752. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5753. *
  5754. * init_sched_build_groups will build a circular linked list of the groups
  5755. * covered by the given span, and will set each group's ->cpumask correctly,
  5756. * and ->cpu_power to 0.
  5757. */
  5758. static void
  5759. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5760. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5761. struct sched_group **sg,
  5762. cpumask_t *tmpmask),
  5763. cpumask_t *covered, cpumask_t *tmpmask)
  5764. {
  5765. struct sched_group *first = NULL, *last = NULL;
  5766. int i;
  5767. cpus_clear(*covered);
  5768. for_each_cpu_mask(i, *span) {
  5769. struct sched_group *sg;
  5770. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5771. int j;
  5772. if (cpu_isset(i, *covered))
  5773. continue;
  5774. cpus_clear(sg->cpumask);
  5775. sg->__cpu_power = 0;
  5776. for_each_cpu_mask(j, *span) {
  5777. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5778. continue;
  5779. cpu_set(j, *covered);
  5780. cpu_set(j, sg->cpumask);
  5781. }
  5782. if (!first)
  5783. first = sg;
  5784. if (last)
  5785. last->next = sg;
  5786. last = sg;
  5787. }
  5788. last->next = first;
  5789. }
  5790. #define SD_NODES_PER_DOMAIN 16
  5791. #ifdef CONFIG_NUMA
  5792. /**
  5793. * find_next_best_node - find the next node to include in a sched_domain
  5794. * @node: node whose sched_domain we're building
  5795. * @used_nodes: nodes already in the sched_domain
  5796. *
  5797. * Find the next node to include in a given scheduling domain. Simply
  5798. * finds the closest node not already in the @used_nodes map.
  5799. *
  5800. * Should use nodemask_t.
  5801. */
  5802. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5803. {
  5804. int i, n, val, min_val, best_node = 0;
  5805. min_val = INT_MAX;
  5806. for (i = 0; i < nr_node_ids; i++) {
  5807. /* Start at @node */
  5808. n = (node + i) % nr_node_ids;
  5809. if (!nr_cpus_node(n))
  5810. continue;
  5811. /* Skip already used nodes */
  5812. if (node_isset(n, *used_nodes))
  5813. continue;
  5814. /* Simple min distance search */
  5815. val = node_distance(node, n);
  5816. if (val < min_val) {
  5817. min_val = val;
  5818. best_node = n;
  5819. }
  5820. }
  5821. node_set(best_node, *used_nodes);
  5822. return best_node;
  5823. }
  5824. /**
  5825. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5826. * @node: node whose cpumask we're constructing
  5827. * @span: resulting cpumask
  5828. *
  5829. * Given a node, construct a good cpumask for its sched_domain to span. It
  5830. * should be one that prevents unnecessary balancing, but also spreads tasks
  5831. * out optimally.
  5832. */
  5833. static void sched_domain_node_span(int node, cpumask_t *span)
  5834. {
  5835. nodemask_t used_nodes;
  5836. node_to_cpumask_ptr(nodemask, node);
  5837. int i;
  5838. cpus_clear(*span);
  5839. nodes_clear(used_nodes);
  5840. cpus_or(*span, *span, *nodemask);
  5841. node_set(node, used_nodes);
  5842. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5843. int next_node = find_next_best_node(node, &used_nodes);
  5844. node_to_cpumask_ptr_next(nodemask, next_node);
  5845. cpus_or(*span, *span, *nodemask);
  5846. }
  5847. }
  5848. #endif /* CONFIG_NUMA */
  5849. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5850. /*
  5851. * SMT sched-domains:
  5852. */
  5853. #ifdef CONFIG_SCHED_SMT
  5854. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5855. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5856. static int
  5857. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5858. cpumask_t *unused)
  5859. {
  5860. if (sg)
  5861. *sg = &per_cpu(sched_group_cpus, cpu);
  5862. return cpu;
  5863. }
  5864. #endif /* CONFIG_SCHED_SMT */
  5865. /*
  5866. * multi-core sched-domains:
  5867. */
  5868. #ifdef CONFIG_SCHED_MC
  5869. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5870. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5871. #endif /* CONFIG_SCHED_MC */
  5872. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5873. static int
  5874. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5875. cpumask_t *mask)
  5876. {
  5877. int group;
  5878. *mask = per_cpu(cpu_sibling_map, cpu);
  5879. cpus_and(*mask, *mask, *cpu_map);
  5880. group = first_cpu(*mask);
  5881. if (sg)
  5882. *sg = &per_cpu(sched_group_core, group);
  5883. return group;
  5884. }
  5885. #elif defined(CONFIG_SCHED_MC)
  5886. static int
  5887. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5888. cpumask_t *unused)
  5889. {
  5890. if (sg)
  5891. *sg = &per_cpu(sched_group_core, cpu);
  5892. return cpu;
  5893. }
  5894. #endif
  5895. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5896. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5897. static int
  5898. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5899. cpumask_t *mask)
  5900. {
  5901. int group;
  5902. #ifdef CONFIG_SCHED_MC
  5903. *mask = cpu_coregroup_map(cpu);
  5904. cpus_and(*mask, *mask, *cpu_map);
  5905. group = first_cpu(*mask);
  5906. #elif defined(CONFIG_SCHED_SMT)
  5907. *mask = per_cpu(cpu_sibling_map, cpu);
  5908. cpus_and(*mask, *mask, *cpu_map);
  5909. group = first_cpu(*mask);
  5910. #else
  5911. group = cpu;
  5912. #endif
  5913. if (sg)
  5914. *sg = &per_cpu(sched_group_phys, group);
  5915. return group;
  5916. }
  5917. #ifdef CONFIG_NUMA
  5918. /*
  5919. * The init_sched_build_groups can't handle what we want to do with node
  5920. * groups, so roll our own. Now each node has its own list of groups which
  5921. * gets dynamically allocated.
  5922. */
  5923. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5924. static struct sched_group ***sched_group_nodes_bycpu;
  5925. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5926. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5927. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5928. struct sched_group **sg, cpumask_t *nodemask)
  5929. {
  5930. int group;
  5931. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5932. cpus_and(*nodemask, *nodemask, *cpu_map);
  5933. group = first_cpu(*nodemask);
  5934. if (sg)
  5935. *sg = &per_cpu(sched_group_allnodes, group);
  5936. return group;
  5937. }
  5938. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5939. {
  5940. struct sched_group *sg = group_head;
  5941. int j;
  5942. if (!sg)
  5943. return;
  5944. do {
  5945. for_each_cpu_mask(j, sg->cpumask) {
  5946. struct sched_domain *sd;
  5947. sd = &per_cpu(phys_domains, j);
  5948. if (j != first_cpu(sd->groups->cpumask)) {
  5949. /*
  5950. * Only add "power" once for each
  5951. * physical package.
  5952. */
  5953. continue;
  5954. }
  5955. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5956. }
  5957. sg = sg->next;
  5958. } while (sg != group_head);
  5959. }
  5960. #endif /* CONFIG_NUMA */
  5961. #ifdef CONFIG_NUMA
  5962. /* Free memory allocated for various sched_group structures */
  5963. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5964. {
  5965. int cpu, i;
  5966. for_each_cpu_mask(cpu, *cpu_map) {
  5967. struct sched_group **sched_group_nodes
  5968. = sched_group_nodes_bycpu[cpu];
  5969. if (!sched_group_nodes)
  5970. continue;
  5971. for (i = 0; i < nr_node_ids; i++) {
  5972. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5973. *nodemask = node_to_cpumask(i);
  5974. cpus_and(*nodemask, *nodemask, *cpu_map);
  5975. if (cpus_empty(*nodemask))
  5976. continue;
  5977. if (sg == NULL)
  5978. continue;
  5979. sg = sg->next;
  5980. next_sg:
  5981. oldsg = sg;
  5982. sg = sg->next;
  5983. kfree(oldsg);
  5984. if (oldsg != sched_group_nodes[i])
  5985. goto next_sg;
  5986. }
  5987. kfree(sched_group_nodes);
  5988. sched_group_nodes_bycpu[cpu] = NULL;
  5989. }
  5990. }
  5991. #else /* !CONFIG_NUMA */
  5992. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5993. {
  5994. }
  5995. #endif /* CONFIG_NUMA */
  5996. /*
  5997. * Initialize sched groups cpu_power.
  5998. *
  5999. * cpu_power indicates the capacity of sched group, which is used while
  6000. * distributing the load between different sched groups in a sched domain.
  6001. * Typically cpu_power for all the groups in a sched domain will be same unless
  6002. * there are asymmetries in the topology. If there are asymmetries, group
  6003. * having more cpu_power will pickup more load compared to the group having
  6004. * less cpu_power.
  6005. *
  6006. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6007. * the maximum number of tasks a group can handle in the presence of other idle
  6008. * or lightly loaded groups in the same sched domain.
  6009. */
  6010. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6011. {
  6012. struct sched_domain *child;
  6013. struct sched_group *group;
  6014. WARN_ON(!sd || !sd->groups);
  6015. if (cpu != first_cpu(sd->groups->cpumask))
  6016. return;
  6017. child = sd->child;
  6018. sd->groups->__cpu_power = 0;
  6019. /*
  6020. * For perf policy, if the groups in child domain share resources
  6021. * (for example cores sharing some portions of the cache hierarchy
  6022. * or SMT), then set this domain groups cpu_power such that each group
  6023. * can handle only one task, when there are other idle groups in the
  6024. * same sched domain.
  6025. */
  6026. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6027. (child->flags &
  6028. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6029. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6030. return;
  6031. }
  6032. /*
  6033. * add cpu_power of each child group to this groups cpu_power
  6034. */
  6035. group = child->groups;
  6036. do {
  6037. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6038. group = group->next;
  6039. } while (group != child->groups);
  6040. }
  6041. /*
  6042. * Initializers for schedule domains
  6043. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6044. */
  6045. #define SD_INIT(sd, type) sd_init_##type(sd)
  6046. #define SD_INIT_FUNC(type) \
  6047. static noinline void sd_init_##type(struct sched_domain *sd) \
  6048. { \
  6049. memset(sd, 0, sizeof(*sd)); \
  6050. *sd = SD_##type##_INIT; \
  6051. sd->level = SD_LV_##type; \
  6052. }
  6053. SD_INIT_FUNC(CPU)
  6054. #ifdef CONFIG_NUMA
  6055. SD_INIT_FUNC(ALLNODES)
  6056. SD_INIT_FUNC(NODE)
  6057. #endif
  6058. #ifdef CONFIG_SCHED_SMT
  6059. SD_INIT_FUNC(SIBLING)
  6060. #endif
  6061. #ifdef CONFIG_SCHED_MC
  6062. SD_INIT_FUNC(MC)
  6063. #endif
  6064. /*
  6065. * To minimize stack usage kmalloc room for cpumasks and share the
  6066. * space as the usage in build_sched_domains() dictates. Used only
  6067. * if the amount of space is significant.
  6068. */
  6069. struct allmasks {
  6070. cpumask_t tmpmask; /* make this one first */
  6071. union {
  6072. cpumask_t nodemask;
  6073. cpumask_t this_sibling_map;
  6074. cpumask_t this_core_map;
  6075. };
  6076. cpumask_t send_covered;
  6077. #ifdef CONFIG_NUMA
  6078. cpumask_t domainspan;
  6079. cpumask_t covered;
  6080. cpumask_t notcovered;
  6081. #endif
  6082. };
  6083. #if NR_CPUS > 128
  6084. #define SCHED_CPUMASK_ALLOC 1
  6085. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6086. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6087. #else
  6088. #define SCHED_CPUMASK_ALLOC 0
  6089. #define SCHED_CPUMASK_FREE(v)
  6090. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6091. #endif
  6092. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6093. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6094. static int default_relax_domain_level = -1;
  6095. static int __init setup_relax_domain_level(char *str)
  6096. {
  6097. unsigned long val;
  6098. val = simple_strtoul(str, NULL, 0);
  6099. if (val < SD_LV_MAX)
  6100. default_relax_domain_level = val;
  6101. return 1;
  6102. }
  6103. __setup("relax_domain_level=", setup_relax_domain_level);
  6104. static void set_domain_attribute(struct sched_domain *sd,
  6105. struct sched_domain_attr *attr)
  6106. {
  6107. int request;
  6108. if (!attr || attr->relax_domain_level < 0) {
  6109. if (default_relax_domain_level < 0)
  6110. return;
  6111. else
  6112. request = default_relax_domain_level;
  6113. } else
  6114. request = attr->relax_domain_level;
  6115. if (request < sd->level) {
  6116. /* turn off idle balance on this domain */
  6117. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6118. } else {
  6119. /* turn on idle balance on this domain */
  6120. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6121. }
  6122. }
  6123. /*
  6124. * Build sched domains for a given set of cpus and attach the sched domains
  6125. * to the individual cpus
  6126. */
  6127. static int __build_sched_domains(const cpumask_t *cpu_map,
  6128. struct sched_domain_attr *attr)
  6129. {
  6130. int i;
  6131. struct root_domain *rd;
  6132. SCHED_CPUMASK_DECLARE(allmasks);
  6133. cpumask_t *tmpmask;
  6134. #ifdef CONFIG_NUMA
  6135. struct sched_group **sched_group_nodes = NULL;
  6136. int sd_allnodes = 0;
  6137. /*
  6138. * Allocate the per-node list of sched groups
  6139. */
  6140. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6141. GFP_KERNEL);
  6142. if (!sched_group_nodes) {
  6143. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6144. return -ENOMEM;
  6145. }
  6146. #endif
  6147. rd = alloc_rootdomain();
  6148. if (!rd) {
  6149. printk(KERN_WARNING "Cannot alloc root domain\n");
  6150. #ifdef CONFIG_NUMA
  6151. kfree(sched_group_nodes);
  6152. #endif
  6153. return -ENOMEM;
  6154. }
  6155. #if SCHED_CPUMASK_ALLOC
  6156. /* get space for all scratch cpumask variables */
  6157. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6158. if (!allmasks) {
  6159. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6160. kfree(rd);
  6161. #ifdef CONFIG_NUMA
  6162. kfree(sched_group_nodes);
  6163. #endif
  6164. return -ENOMEM;
  6165. }
  6166. #endif
  6167. tmpmask = (cpumask_t *)allmasks;
  6168. #ifdef CONFIG_NUMA
  6169. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6170. #endif
  6171. /*
  6172. * Set up domains for cpus specified by the cpu_map.
  6173. */
  6174. for_each_cpu_mask(i, *cpu_map) {
  6175. struct sched_domain *sd = NULL, *p;
  6176. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6177. *nodemask = node_to_cpumask(cpu_to_node(i));
  6178. cpus_and(*nodemask, *nodemask, *cpu_map);
  6179. #ifdef CONFIG_NUMA
  6180. if (cpus_weight(*cpu_map) >
  6181. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6182. sd = &per_cpu(allnodes_domains, i);
  6183. SD_INIT(sd, ALLNODES);
  6184. set_domain_attribute(sd, attr);
  6185. sd->span = *cpu_map;
  6186. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6187. p = sd;
  6188. sd_allnodes = 1;
  6189. } else
  6190. p = NULL;
  6191. sd = &per_cpu(node_domains, i);
  6192. SD_INIT(sd, NODE);
  6193. set_domain_attribute(sd, attr);
  6194. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6195. sd->parent = p;
  6196. if (p)
  6197. p->child = sd;
  6198. cpus_and(sd->span, sd->span, *cpu_map);
  6199. #endif
  6200. p = sd;
  6201. sd = &per_cpu(phys_domains, i);
  6202. SD_INIT(sd, CPU);
  6203. set_domain_attribute(sd, attr);
  6204. sd->span = *nodemask;
  6205. sd->parent = p;
  6206. if (p)
  6207. p->child = sd;
  6208. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6209. #ifdef CONFIG_SCHED_MC
  6210. p = sd;
  6211. sd = &per_cpu(core_domains, i);
  6212. SD_INIT(sd, MC);
  6213. set_domain_attribute(sd, attr);
  6214. sd->span = cpu_coregroup_map(i);
  6215. cpus_and(sd->span, sd->span, *cpu_map);
  6216. sd->parent = p;
  6217. p->child = sd;
  6218. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6219. #endif
  6220. #ifdef CONFIG_SCHED_SMT
  6221. p = sd;
  6222. sd = &per_cpu(cpu_domains, i);
  6223. SD_INIT(sd, SIBLING);
  6224. set_domain_attribute(sd, attr);
  6225. sd->span = per_cpu(cpu_sibling_map, i);
  6226. cpus_and(sd->span, sd->span, *cpu_map);
  6227. sd->parent = p;
  6228. p->child = sd;
  6229. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6230. #endif
  6231. }
  6232. #ifdef CONFIG_SCHED_SMT
  6233. /* Set up CPU (sibling) groups */
  6234. for_each_cpu_mask(i, *cpu_map) {
  6235. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6236. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6237. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6238. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6239. if (i != first_cpu(*this_sibling_map))
  6240. continue;
  6241. init_sched_build_groups(this_sibling_map, cpu_map,
  6242. &cpu_to_cpu_group,
  6243. send_covered, tmpmask);
  6244. }
  6245. #endif
  6246. #ifdef CONFIG_SCHED_MC
  6247. /* Set up multi-core groups */
  6248. for_each_cpu_mask(i, *cpu_map) {
  6249. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6250. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6251. *this_core_map = cpu_coregroup_map(i);
  6252. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6253. if (i != first_cpu(*this_core_map))
  6254. continue;
  6255. init_sched_build_groups(this_core_map, cpu_map,
  6256. &cpu_to_core_group,
  6257. send_covered, tmpmask);
  6258. }
  6259. #endif
  6260. /* Set up physical groups */
  6261. for (i = 0; i < nr_node_ids; i++) {
  6262. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6263. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6264. *nodemask = node_to_cpumask(i);
  6265. cpus_and(*nodemask, *nodemask, *cpu_map);
  6266. if (cpus_empty(*nodemask))
  6267. continue;
  6268. init_sched_build_groups(nodemask, cpu_map,
  6269. &cpu_to_phys_group,
  6270. send_covered, tmpmask);
  6271. }
  6272. #ifdef CONFIG_NUMA
  6273. /* Set up node groups */
  6274. if (sd_allnodes) {
  6275. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6276. init_sched_build_groups(cpu_map, cpu_map,
  6277. &cpu_to_allnodes_group,
  6278. send_covered, tmpmask);
  6279. }
  6280. for (i = 0; i < nr_node_ids; i++) {
  6281. /* Set up node groups */
  6282. struct sched_group *sg, *prev;
  6283. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6284. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6285. SCHED_CPUMASK_VAR(covered, allmasks);
  6286. int j;
  6287. *nodemask = node_to_cpumask(i);
  6288. cpus_clear(*covered);
  6289. cpus_and(*nodemask, *nodemask, *cpu_map);
  6290. if (cpus_empty(*nodemask)) {
  6291. sched_group_nodes[i] = NULL;
  6292. continue;
  6293. }
  6294. sched_domain_node_span(i, domainspan);
  6295. cpus_and(*domainspan, *domainspan, *cpu_map);
  6296. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6297. if (!sg) {
  6298. printk(KERN_WARNING "Can not alloc domain group for "
  6299. "node %d\n", i);
  6300. goto error;
  6301. }
  6302. sched_group_nodes[i] = sg;
  6303. for_each_cpu_mask(j, *nodemask) {
  6304. struct sched_domain *sd;
  6305. sd = &per_cpu(node_domains, j);
  6306. sd->groups = sg;
  6307. }
  6308. sg->__cpu_power = 0;
  6309. sg->cpumask = *nodemask;
  6310. sg->next = sg;
  6311. cpus_or(*covered, *covered, *nodemask);
  6312. prev = sg;
  6313. for (j = 0; j < nr_node_ids; j++) {
  6314. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6315. int n = (i + j) % nr_node_ids;
  6316. node_to_cpumask_ptr(pnodemask, n);
  6317. cpus_complement(*notcovered, *covered);
  6318. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6319. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6320. if (cpus_empty(*tmpmask))
  6321. break;
  6322. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6323. if (cpus_empty(*tmpmask))
  6324. continue;
  6325. sg = kmalloc_node(sizeof(struct sched_group),
  6326. GFP_KERNEL, i);
  6327. if (!sg) {
  6328. printk(KERN_WARNING
  6329. "Can not alloc domain group for node %d\n", j);
  6330. goto error;
  6331. }
  6332. sg->__cpu_power = 0;
  6333. sg->cpumask = *tmpmask;
  6334. sg->next = prev->next;
  6335. cpus_or(*covered, *covered, *tmpmask);
  6336. prev->next = sg;
  6337. prev = sg;
  6338. }
  6339. }
  6340. #endif
  6341. /* Calculate CPU power for physical packages and nodes */
  6342. #ifdef CONFIG_SCHED_SMT
  6343. for_each_cpu_mask(i, *cpu_map) {
  6344. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6345. init_sched_groups_power(i, sd);
  6346. }
  6347. #endif
  6348. #ifdef CONFIG_SCHED_MC
  6349. for_each_cpu_mask(i, *cpu_map) {
  6350. struct sched_domain *sd = &per_cpu(core_domains, i);
  6351. init_sched_groups_power(i, sd);
  6352. }
  6353. #endif
  6354. for_each_cpu_mask(i, *cpu_map) {
  6355. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6356. init_sched_groups_power(i, sd);
  6357. }
  6358. #ifdef CONFIG_NUMA
  6359. for (i = 0; i < nr_node_ids; i++)
  6360. init_numa_sched_groups_power(sched_group_nodes[i]);
  6361. if (sd_allnodes) {
  6362. struct sched_group *sg;
  6363. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6364. tmpmask);
  6365. init_numa_sched_groups_power(sg);
  6366. }
  6367. #endif
  6368. /* Attach the domains */
  6369. for_each_cpu_mask(i, *cpu_map) {
  6370. struct sched_domain *sd;
  6371. #ifdef CONFIG_SCHED_SMT
  6372. sd = &per_cpu(cpu_domains, i);
  6373. #elif defined(CONFIG_SCHED_MC)
  6374. sd = &per_cpu(core_domains, i);
  6375. #else
  6376. sd = &per_cpu(phys_domains, i);
  6377. #endif
  6378. cpu_attach_domain(sd, rd, i);
  6379. }
  6380. SCHED_CPUMASK_FREE((void *)allmasks);
  6381. return 0;
  6382. #ifdef CONFIG_NUMA
  6383. error:
  6384. free_sched_groups(cpu_map, tmpmask);
  6385. SCHED_CPUMASK_FREE((void *)allmasks);
  6386. return -ENOMEM;
  6387. #endif
  6388. }
  6389. static int build_sched_domains(const cpumask_t *cpu_map)
  6390. {
  6391. return __build_sched_domains(cpu_map, NULL);
  6392. }
  6393. static cpumask_t *doms_cur; /* current sched domains */
  6394. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6395. static struct sched_domain_attr *dattr_cur;
  6396. /* attribues of custom domains in 'doms_cur' */
  6397. /*
  6398. * Special case: If a kmalloc of a doms_cur partition (array of
  6399. * cpumask_t) fails, then fallback to a single sched domain,
  6400. * as determined by the single cpumask_t fallback_doms.
  6401. */
  6402. static cpumask_t fallback_doms;
  6403. void __attribute__((weak)) arch_update_cpu_topology(void)
  6404. {
  6405. }
  6406. /*
  6407. * Free current domain masks.
  6408. * Called after all cpus are attached to NULL domain.
  6409. */
  6410. static void free_sched_domains(void)
  6411. {
  6412. ndoms_cur = 0;
  6413. if (doms_cur != &fallback_doms)
  6414. kfree(doms_cur);
  6415. doms_cur = &fallback_doms;
  6416. }
  6417. /*
  6418. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6419. * For now this just excludes isolated cpus, but could be used to
  6420. * exclude other special cases in the future.
  6421. */
  6422. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6423. {
  6424. int err;
  6425. arch_update_cpu_topology();
  6426. ndoms_cur = 1;
  6427. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6428. if (!doms_cur)
  6429. doms_cur = &fallback_doms;
  6430. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6431. dattr_cur = NULL;
  6432. err = build_sched_domains(doms_cur);
  6433. register_sched_domain_sysctl();
  6434. return err;
  6435. }
  6436. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6437. cpumask_t *tmpmask)
  6438. {
  6439. free_sched_groups(cpu_map, tmpmask);
  6440. }
  6441. /*
  6442. * Detach sched domains from a group of cpus specified in cpu_map
  6443. * These cpus will now be attached to the NULL domain
  6444. */
  6445. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6446. {
  6447. cpumask_t tmpmask;
  6448. int i;
  6449. unregister_sched_domain_sysctl();
  6450. for_each_cpu_mask(i, *cpu_map)
  6451. cpu_attach_domain(NULL, &def_root_domain, i);
  6452. synchronize_sched();
  6453. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6454. }
  6455. /* handle null as "default" */
  6456. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6457. struct sched_domain_attr *new, int idx_new)
  6458. {
  6459. struct sched_domain_attr tmp;
  6460. /* fast path */
  6461. if (!new && !cur)
  6462. return 1;
  6463. tmp = SD_ATTR_INIT;
  6464. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6465. new ? (new + idx_new) : &tmp,
  6466. sizeof(struct sched_domain_attr));
  6467. }
  6468. /*
  6469. * Partition sched domains as specified by the 'ndoms_new'
  6470. * cpumasks in the array doms_new[] of cpumasks. This compares
  6471. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6472. * It destroys each deleted domain and builds each new domain.
  6473. *
  6474. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6475. * The masks don't intersect (don't overlap.) We should setup one
  6476. * sched domain for each mask. CPUs not in any of the cpumasks will
  6477. * not be load balanced. If the same cpumask appears both in the
  6478. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6479. * it as it is.
  6480. *
  6481. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6482. * ownership of it and will kfree it when done with it. If the caller
  6483. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6484. * and partition_sched_domains() will fallback to the single partition
  6485. * 'fallback_doms'.
  6486. *
  6487. * Call with hotplug lock held
  6488. */
  6489. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6490. struct sched_domain_attr *dattr_new)
  6491. {
  6492. int i, j;
  6493. mutex_lock(&sched_domains_mutex);
  6494. /* always unregister in case we don't destroy any domains */
  6495. unregister_sched_domain_sysctl();
  6496. if (doms_new == NULL) {
  6497. ndoms_new = 1;
  6498. doms_new = &fallback_doms;
  6499. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6500. dattr_new = NULL;
  6501. }
  6502. /* Destroy deleted domains */
  6503. for (i = 0; i < ndoms_cur; i++) {
  6504. for (j = 0; j < ndoms_new; j++) {
  6505. if (cpus_equal(doms_cur[i], doms_new[j])
  6506. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6507. goto match1;
  6508. }
  6509. /* no match - a current sched domain not in new doms_new[] */
  6510. detach_destroy_domains(doms_cur + i);
  6511. match1:
  6512. ;
  6513. }
  6514. /* Build new domains */
  6515. for (i = 0; i < ndoms_new; i++) {
  6516. for (j = 0; j < ndoms_cur; j++) {
  6517. if (cpus_equal(doms_new[i], doms_cur[j])
  6518. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6519. goto match2;
  6520. }
  6521. /* no match - add a new doms_new */
  6522. __build_sched_domains(doms_new + i,
  6523. dattr_new ? dattr_new + i : NULL);
  6524. match2:
  6525. ;
  6526. }
  6527. /* Remember the new sched domains */
  6528. if (doms_cur != &fallback_doms)
  6529. kfree(doms_cur);
  6530. kfree(dattr_cur); /* kfree(NULL) is safe */
  6531. doms_cur = doms_new;
  6532. dattr_cur = dattr_new;
  6533. ndoms_cur = ndoms_new;
  6534. register_sched_domain_sysctl();
  6535. mutex_unlock(&sched_domains_mutex);
  6536. }
  6537. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6538. int arch_reinit_sched_domains(void)
  6539. {
  6540. int err;
  6541. get_online_cpus();
  6542. mutex_lock(&sched_domains_mutex);
  6543. detach_destroy_domains(&cpu_online_map);
  6544. free_sched_domains();
  6545. err = arch_init_sched_domains(&cpu_online_map);
  6546. mutex_unlock(&sched_domains_mutex);
  6547. put_online_cpus();
  6548. return err;
  6549. }
  6550. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6551. {
  6552. int ret;
  6553. if (buf[0] != '0' && buf[0] != '1')
  6554. return -EINVAL;
  6555. if (smt)
  6556. sched_smt_power_savings = (buf[0] == '1');
  6557. else
  6558. sched_mc_power_savings = (buf[0] == '1');
  6559. ret = arch_reinit_sched_domains();
  6560. return ret ? ret : count;
  6561. }
  6562. #ifdef CONFIG_SCHED_MC
  6563. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6564. {
  6565. return sprintf(page, "%u\n", sched_mc_power_savings);
  6566. }
  6567. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6568. const char *buf, size_t count)
  6569. {
  6570. return sched_power_savings_store(buf, count, 0);
  6571. }
  6572. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6573. sched_mc_power_savings_store);
  6574. #endif
  6575. #ifdef CONFIG_SCHED_SMT
  6576. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6577. {
  6578. return sprintf(page, "%u\n", sched_smt_power_savings);
  6579. }
  6580. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6581. const char *buf, size_t count)
  6582. {
  6583. return sched_power_savings_store(buf, count, 1);
  6584. }
  6585. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6586. sched_smt_power_savings_store);
  6587. #endif
  6588. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6589. {
  6590. int err = 0;
  6591. #ifdef CONFIG_SCHED_SMT
  6592. if (smt_capable())
  6593. err = sysfs_create_file(&cls->kset.kobj,
  6594. &attr_sched_smt_power_savings.attr);
  6595. #endif
  6596. #ifdef CONFIG_SCHED_MC
  6597. if (!err && mc_capable())
  6598. err = sysfs_create_file(&cls->kset.kobj,
  6599. &attr_sched_mc_power_savings.attr);
  6600. #endif
  6601. return err;
  6602. }
  6603. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6604. /*
  6605. * Force a reinitialization of the sched domains hierarchy. The domains
  6606. * and groups cannot be updated in place without racing with the balancing
  6607. * code, so we temporarily attach all running cpus to the NULL domain
  6608. * which will prevent rebalancing while the sched domains are recalculated.
  6609. */
  6610. static int update_sched_domains(struct notifier_block *nfb,
  6611. unsigned long action, void *hcpu)
  6612. {
  6613. int cpu = (int)(long)hcpu;
  6614. switch (action) {
  6615. case CPU_DOWN_PREPARE:
  6616. case CPU_DOWN_PREPARE_FROZEN:
  6617. disable_runtime(cpu_rq(cpu));
  6618. /* fall-through */
  6619. case CPU_UP_PREPARE:
  6620. case CPU_UP_PREPARE_FROZEN:
  6621. detach_destroy_domains(&cpu_online_map);
  6622. free_sched_domains();
  6623. return NOTIFY_OK;
  6624. case CPU_DOWN_FAILED:
  6625. case CPU_DOWN_FAILED_FROZEN:
  6626. case CPU_ONLINE:
  6627. case CPU_ONLINE_FROZEN:
  6628. enable_runtime(cpu_rq(cpu));
  6629. /* fall-through */
  6630. case CPU_UP_CANCELED:
  6631. case CPU_UP_CANCELED_FROZEN:
  6632. case CPU_DEAD:
  6633. case CPU_DEAD_FROZEN:
  6634. /*
  6635. * Fall through and re-initialise the domains.
  6636. */
  6637. break;
  6638. default:
  6639. return NOTIFY_DONE;
  6640. }
  6641. #ifndef CONFIG_CPUSETS
  6642. /*
  6643. * Create default domain partitioning if cpusets are disabled.
  6644. * Otherwise we let cpusets rebuild the domains based on the
  6645. * current setup.
  6646. */
  6647. /* The hotplug lock is already held by cpu_up/cpu_down */
  6648. arch_init_sched_domains(&cpu_online_map);
  6649. #endif
  6650. return NOTIFY_OK;
  6651. }
  6652. void __init sched_init_smp(void)
  6653. {
  6654. cpumask_t non_isolated_cpus;
  6655. #if defined(CONFIG_NUMA)
  6656. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6657. GFP_KERNEL);
  6658. BUG_ON(sched_group_nodes_bycpu == NULL);
  6659. #endif
  6660. get_online_cpus();
  6661. mutex_lock(&sched_domains_mutex);
  6662. arch_init_sched_domains(&cpu_online_map);
  6663. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6664. if (cpus_empty(non_isolated_cpus))
  6665. cpu_set(smp_processor_id(), non_isolated_cpus);
  6666. mutex_unlock(&sched_domains_mutex);
  6667. put_online_cpus();
  6668. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6669. hotcpu_notifier(update_sched_domains, 0);
  6670. init_hrtick();
  6671. /* Move init over to a non-isolated CPU */
  6672. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6673. BUG();
  6674. sched_init_granularity();
  6675. }
  6676. #else
  6677. void __init sched_init_smp(void)
  6678. {
  6679. sched_init_granularity();
  6680. }
  6681. #endif /* CONFIG_SMP */
  6682. int in_sched_functions(unsigned long addr)
  6683. {
  6684. return in_lock_functions(addr) ||
  6685. (addr >= (unsigned long)__sched_text_start
  6686. && addr < (unsigned long)__sched_text_end);
  6687. }
  6688. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6689. {
  6690. cfs_rq->tasks_timeline = RB_ROOT;
  6691. INIT_LIST_HEAD(&cfs_rq->tasks);
  6692. #ifdef CONFIG_FAIR_GROUP_SCHED
  6693. cfs_rq->rq = rq;
  6694. #endif
  6695. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6696. }
  6697. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6698. {
  6699. struct rt_prio_array *array;
  6700. int i;
  6701. array = &rt_rq->active;
  6702. for (i = 0; i < MAX_RT_PRIO; i++) {
  6703. INIT_LIST_HEAD(array->queue + i);
  6704. __clear_bit(i, array->bitmap);
  6705. }
  6706. /* delimiter for bitsearch: */
  6707. __set_bit(MAX_RT_PRIO, array->bitmap);
  6708. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6709. rt_rq->highest_prio = MAX_RT_PRIO;
  6710. #endif
  6711. #ifdef CONFIG_SMP
  6712. rt_rq->rt_nr_migratory = 0;
  6713. rt_rq->overloaded = 0;
  6714. #endif
  6715. rt_rq->rt_time = 0;
  6716. rt_rq->rt_throttled = 0;
  6717. rt_rq->rt_runtime = 0;
  6718. spin_lock_init(&rt_rq->rt_runtime_lock);
  6719. #ifdef CONFIG_RT_GROUP_SCHED
  6720. rt_rq->rt_nr_boosted = 0;
  6721. rt_rq->rq = rq;
  6722. #endif
  6723. }
  6724. #ifdef CONFIG_FAIR_GROUP_SCHED
  6725. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6726. struct sched_entity *se, int cpu, int add,
  6727. struct sched_entity *parent)
  6728. {
  6729. struct rq *rq = cpu_rq(cpu);
  6730. tg->cfs_rq[cpu] = cfs_rq;
  6731. init_cfs_rq(cfs_rq, rq);
  6732. cfs_rq->tg = tg;
  6733. if (add)
  6734. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6735. tg->se[cpu] = se;
  6736. /* se could be NULL for init_task_group */
  6737. if (!se)
  6738. return;
  6739. if (!parent)
  6740. se->cfs_rq = &rq->cfs;
  6741. else
  6742. se->cfs_rq = parent->my_q;
  6743. se->my_q = cfs_rq;
  6744. se->load.weight = tg->shares;
  6745. se->load.inv_weight = 0;
  6746. se->parent = parent;
  6747. }
  6748. #endif
  6749. #ifdef CONFIG_RT_GROUP_SCHED
  6750. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6751. struct sched_rt_entity *rt_se, int cpu, int add,
  6752. struct sched_rt_entity *parent)
  6753. {
  6754. struct rq *rq = cpu_rq(cpu);
  6755. tg->rt_rq[cpu] = rt_rq;
  6756. init_rt_rq(rt_rq, rq);
  6757. rt_rq->tg = tg;
  6758. rt_rq->rt_se = rt_se;
  6759. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6760. if (add)
  6761. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6762. tg->rt_se[cpu] = rt_se;
  6763. if (!rt_se)
  6764. return;
  6765. if (!parent)
  6766. rt_se->rt_rq = &rq->rt;
  6767. else
  6768. rt_se->rt_rq = parent->my_q;
  6769. rt_se->my_q = rt_rq;
  6770. rt_se->parent = parent;
  6771. INIT_LIST_HEAD(&rt_se->run_list);
  6772. }
  6773. #endif
  6774. void __init sched_init(void)
  6775. {
  6776. int i, j;
  6777. unsigned long alloc_size = 0, ptr;
  6778. #ifdef CONFIG_FAIR_GROUP_SCHED
  6779. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6780. #endif
  6781. #ifdef CONFIG_RT_GROUP_SCHED
  6782. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6783. #endif
  6784. #ifdef CONFIG_USER_SCHED
  6785. alloc_size *= 2;
  6786. #endif
  6787. /*
  6788. * As sched_init() is called before page_alloc is setup,
  6789. * we use alloc_bootmem().
  6790. */
  6791. if (alloc_size) {
  6792. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6793. #ifdef CONFIG_FAIR_GROUP_SCHED
  6794. init_task_group.se = (struct sched_entity **)ptr;
  6795. ptr += nr_cpu_ids * sizeof(void **);
  6796. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6797. ptr += nr_cpu_ids * sizeof(void **);
  6798. #ifdef CONFIG_USER_SCHED
  6799. root_task_group.se = (struct sched_entity **)ptr;
  6800. ptr += nr_cpu_ids * sizeof(void **);
  6801. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6802. ptr += nr_cpu_ids * sizeof(void **);
  6803. #endif /* CONFIG_USER_SCHED */
  6804. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6805. #ifdef CONFIG_RT_GROUP_SCHED
  6806. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6807. ptr += nr_cpu_ids * sizeof(void **);
  6808. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6809. ptr += nr_cpu_ids * sizeof(void **);
  6810. #ifdef CONFIG_USER_SCHED
  6811. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6812. ptr += nr_cpu_ids * sizeof(void **);
  6813. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6814. ptr += nr_cpu_ids * sizeof(void **);
  6815. #endif /* CONFIG_USER_SCHED */
  6816. #endif /* CONFIG_RT_GROUP_SCHED */
  6817. }
  6818. #ifdef CONFIG_SMP
  6819. init_defrootdomain();
  6820. #endif
  6821. init_rt_bandwidth(&def_rt_bandwidth,
  6822. global_rt_period(), global_rt_runtime());
  6823. #ifdef CONFIG_RT_GROUP_SCHED
  6824. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6825. global_rt_period(), global_rt_runtime());
  6826. #ifdef CONFIG_USER_SCHED
  6827. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6828. global_rt_period(), RUNTIME_INF);
  6829. #endif /* CONFIG_USER_SCHED */
  6830. #endif /* CONFIG_RT_GROUP_SCHED */
  6831. #ifdef CONFIG_GROUP_SCHED
  6832. list_add(&init_task_group.list, &task_groups);
  6833. INIT_LIST_HEAD(&init_task_group.children);
  6834. #ifdef CONFIG_USER_SCHED
  6835. INIT_LIST_HEAD(&root_task_group.children);
  6836. init_task_group.parent = &root_task_group;
  6837. list_add(&init_task_group.siblings, &root_task_group.children);
  6838. #endif /* CONFIG_USER_SCHED */
  6839. #endif /* CONFIG_GROUP_SCHED */
  6840. for_each_possible_cpu(i) {
  6841. struct rq *rq;
  6842. rq = cpu_rq(i);
  6843. spin_lock_init(&rq->lock);
  6844. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6845. rq->nr_running = 0;
  6846. init_cfs_rq(&rq->cfs, rq);
  6847. init_rt_rq(&rq->rt, rq);
  6848. #ifdef CONFIG_FAIR_GROUP_SCHED
  6849. init_task_group.shares = init_task_group_load;
  6850. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6851. #ifdef CONFIG_CGROUP_SCHED
  6852. /*
  6853. * How much cpu bandwidth does init_task_group get?
  6854. *
  6855. * In case of task-groups formed thr' the cgroup filesystem, it
  6856. * gets 100% of the cpu resources in the system. This overall
  6857. * system cpu resource is divided among the tasks of
  6858. * init_task_group and its child task-groups in a fair manner,
  6859. * based on each entity's (task or task-group's) weight
  6860. * (se->load.weight).
  6861. *
  6862. * In other words, if init_task_group has 10 tasks of weight
  6863. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6864. * then A0's share of the cpu resource is:
  6865. *
  6866. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6867. *
  6868. * We achieve this by letting init_task_group's tasks sit
  6869. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6870. */
  6871. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6872. #elif defined CONFIG_USER_SCHED
  6873. root_task_group.shares = NICE_0_LOAD;
  6874. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6875. /*
  6876. * In case of task-groups formed thr' the user id of tasks,
  6877. * init_task_group represents tasks belonging to root user.
  6878. * Hence it forms a sibling of all subsequent groups formed.
  6879. * In this case, init_task_group gets only a fraction of overall
  6880. * system cpu resource, based on the weight assigned to root
  6881. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6882. * by letting tasks of init_task_group sit in a separate cfs_rq
  6883. * (init_cfs_rq) and having one entity represent this group of
  6884. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6885. */
  6886. init_tg_cfs_entry(&init_task_group,
  6887. &per_cpu(init_cfs_rq, i),
  6888. &per_cpu(init_sched_entity, i), i, 1,
  6889. root_task_group.se[i]);
  6890. #endif
  6891. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6892. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6893. #ifdef CONFIG_RT_GROUP_SCHED
  6894. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6895. #ifdef CONFIG_CGROUP_SCHED
  6896. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6897. #elif defined CONFIG_USER_SCHED
  6898. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6899. init_tg_rt_entry(&init_task_group,
  6900. &per_cpu(init_rt_rq, i),
  6901. &per_cpu(init_sched_rt_entity, i), i, 1,
  6902. root_task_group.rt_se[i]);
  6903. #endif
  6904. #endif
  6905. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6906. rq->cpu_load[j] = 0;
  6907. #ifdef CONFIG_SMP
  6908. rq->sd = NULL;
  6909. rq->rd = NULL;
  6910. rq->active_balance = 0;
  6911. rq->next_balance = jiffies;
  6912. rq->push_cpu = 0;
  6913. rq->cpu = i;
  6914. rq->online = 0;
  6915. rq->migration_thread = NULL;
  6916. INIT_LIST_HEAD(&rq->migration_queue);
  6917. rq_attach_root(rq, &def_root_domain);
  6918. #endif
  6919. init_rq_hrtick(rq);
  6920. atomic_set(&rq->nr_iowait, 0);
  6921. }
  6922. set_load_weight(&init_task);
  6923. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6924. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6925. #endif
  6926. #ifdef CONFIG_SMP
  6927. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6928. #endif
  6929. #ifdef CONFIG_RT_MUTEXES
  6930. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6931. #endif
  6932. /*
  6933. * The boot idle thread does lazy MMU switching as well:
  6934. */
  6935. atomic_inc(&init_mm.mm_count);
  6936. enter_lazy_tlb(&init_mm, current);
  6937. /*
  6938. * Make us the idle thread. Technically, schedule() should not be
  6939. * called from this thread, however somewhere below it might be,
  6940. * but because we are the idle thread, we just pick up running again
  6941. * when this runqueue becomes "idle".
  6942. */
  6943. init_idle(current, smp_processor_id());
  6944. /*
  6945. * During early bootup we pretend to be a normal task:
  6946. */
  6947. current->sched_class = &fair_sched_class;
  6948. scheduler_running = 1;
  6949. }
  6950. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6951. void __might_sleep(char *file, int line)
  6952. {
  6953. #ifdef in_atomic
  6954. static unsigned long prev_jiffy; /* ratelimiting */
  6955. if ((in_atomic() || irqs_disabled()) &&
  6956. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6957. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6958. return;
  6959. prev_jiffy = jiffies;
  6960. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6961. " context at %s:%d\n", file, line);
  6962. printk("in_atomic():%d, irqs_disabled():%d\n",
  6963. in_atomic(), irqs_disabled());
  6964. debug_show_held_locks(current);
  6965. if (irqs_disabled())
  6966. print_irqtrace_events(current);
  6967. dump_stack();
  6968. }
  6969. #endif
  6970. }
  6971. EXPORT_SYMBOL(__might_sleep);
  6972. #endif
  6973. #ifdef CONFIG_MAGIC_SYSRQ
  6974. static void normalize_task(struct rq *rq, struct task_struct *p)
  6975. {
  6976. int on_rq;
  6977. update_rq_clock(rq);
  6978. on_rq = p->se.on_rq;
  6979. if (on_rq)
  6980. deactivate_task(rq, p, 0);
  6981. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6982. if (on_rq) {
  6983. activate_task(rq, p, 0);
  6984. resched_task(rq->curr);
  6985. }
  6986. }
  6987. void normalize_rt_tasks(void)
  6988. {
  6989. struct task_struct *g, *p;
  6990. unsigned long flags;
  6991. struct rq *rq;
  6992. read_lock_irqsave(&tasklist_lock, flags);
  6993. do_each_thread(g, p) {
  6994. /*
  6995. * Only normalize user tasks:
  6996. */
  6997. if (!p->mm)
  6998. continue;
  6999. p->se.exec_start = 0;
  7000. #ifdef CONFIG_SCHEDSTATS
  7001. p->se.wait_start = 0;
  7002. p->se.sleep_start = 0;
  7003. p->se.block_start = 0;
  7004. #endif
  7005. if (!rt_task(p)) {
  7006. /*
  7007. * Renice negative nice level userspace
  7008. * tasks back to 0:
  7009. */
  7010. if (TASK_NICE(p) < 0 && p->mm)
  7011. set_user_nice(p, 0);
  7012. continue;
  7013. }
  7014. spin_lock(&p->pi_lock);
  7015. rq = __task_rq_lock(p);
  7016. normalize_task(rq, p);
  7017. __task_rq_unlock(rq);
  7018. spin_unlock(&p->pi_lock);
  7019. } while_each_thread(g, p);
  7020. read_unlock_irqrestore(&tasklist_lock, flags);
  7021. }
  7022. #endif /* CONFIG_MAGIC_SYSRQ */
  7023. #ifdef CONFIG_IA64
  7024. /*
  7025. * These functions are only useful for the IA64 MCA handling.
  7026. *
  7027. * They can only be called when the whole system has been
  7028. * stopped - every CPU needs to be quiescent, and no scheduling
  7029. * activity can take place. Using them for anything else would
  7030. * be a serious bug, and as a result, they aren't even visible
  7031. * under any other configuration.
  7032. */
  7033. /**
  7034. * curr_task - return the current task for a given cpu.
  7035. * @cpu: the processor in question.
  7036. *
  7037. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7038. */
  7039. struct task_struct *curr_task(int cpu)
  7040. {
  7041. return cpu_curr(cpu);
  7042. }
  7043. /**
  7044. * set_curr_task - set the current task for a given cpu.
  7045. * @cpu: the processor in question.
  7046. * @p: the task pointer to set.
  7047. *
  7048. * Description: This function must only be used when non-maskable interrupts
  7049. * are serviced on a separate stack. It allows the architecture to switch the
  7050. * notion of the current task on a cpu in a non-blocking manner. This function
  7051. * must be called with all CPU's synchronized, and interrupts disabled, the
  7052. * and caller must save the original value of the current task (see
  7053. * curr_task() above) and restore that value before reenabling interrupts and
  7054. * re-starting the system.
  7055. *
  7056. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7057. */
  7058. void set_curr_task(int cpu, struct task_struct *p)
  7059. {
  7060. cpu_curr(cpu) = p;
  7061. }
  7062. #endif
  7063. #ifdef CONFIG_FAIR_GROUP_SCHED
  7064. static void free_fair_sched_group(struct task_group *tg)
  7065. {
  7066. int i;
  7067. for_each_possible_cpu(i) {
  7068. if (tg->cfs_rq)
  7069. kfree(tg->cfs_rq[i]);
  7070. if (tg->se)
  7071. kfree(tg->se[i]);
  7072. }
  7073. kfree(tg->cfs_rq);
  7074. kfree(tg->se);
  7075. }
  7076. static
  7077. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7078. {
  7079. struct cfs_rq *cfs_rq;
  7080. struct sched_entity *se, *parent_se;
  7081. struct rq *rq;
  7082. int i;
  7083. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7084. if (!tg->cfs_rq)
  7085. goto err;
  7086. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7087. if (!tg->se)
  7088. goto err;
  7089. tg->shares = NICE_0_LOAD;
  7090. for_each_possible_cpu(i) {
  7091. rq = cpu_rq(i);
  7092. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7093. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7094. if (!cfs_rq)
  7095. goto err;
  7096. se = kmalloc_node(sizeof(struct sched_entity),
  7097. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7098. if (!se)
  7099. goto err;
  7100. parent_se = parent ? parent->se[i] : NULL;
  7101. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7102. }
  7103. return 1;
  7104. err:
  7105. return 0;
  7106. }
  7107. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7108. {
  7109. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7110. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7111. }
  7112. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7113. {
  7114. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7115. }
  7116. #else /* !CONFG_FAIR_GROUP_SCHED */
  7117. static inline void free_fair_sched_group(struct task_group *tg)
  7118. {
  7119. }
  7120. static inline
  7121. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7122. {
  7123. return 1;
  7124. }
  7125. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7126. {
  7127. }
  7128. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7129. {
  7130. }
  7131. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7132. #ifdef CONFIG_RT_GROUP_SCHED
  7133. static void free_rt_sched_group(struct task_group *tg)
  7134. {
  7135. int i;
  7136. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7137. for_each_possible_cpu(i) {
  7138. if (tg->rt_rq)
  7139. kfree(tg->rt_rq[i]);
  7140. if (tg->rt_se)
  7141. kfree(tg->rt_se[i]);
  7142. }
  7143. kfree(tg->rt_rq);
  7144. kfree(tg->rt_se);
  7145. }
  7146. static
  7147. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7148. {
  7149. struct rt_rq *rt_rq;
  7150. struct sched_rt_entity *rt_se, *parent_se;
  7151. struct rq *rq;
  7152. int i;
  7153. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7154. if (!tg->rt_rq)
  7155. goto err;
  7156. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7157. if (!tg->rt_se)
  7158. goto err;
  7159. init_rt_bandwidth(&tg->rt_bandwidth,
  7160. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7161. for_each_possible_cpu(i) {
  7162. rq = cpu_rq(i);
  7163. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7164. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7165. if (!rt_rq)
  7166. goto err;
  7167. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7168. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7169. if (!rt_se)
  7170. goto err;
  7171. parent_se = parent ? parent->rt_se[i] : NULL;
  7172. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7173. }
  7174. return 1;
  7175. err:
  7176. return 0;
  7177. }
  7178. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7179. {
  7180. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7181. &cpu_rq(cpu)->leaf_rt_rq_list);
  7182. }
  7183. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7184. {
  7185. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7186. }
  7187. #else /* !CONFIG_RT_GROUP_SCHED */
  7188. static inline void free_rt_sched_group(struct task_group *tg)
  7189. {
  7190. }
  7191. static inline
  7192. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7193. {
  7194. return 1;
  7195. }
  7196. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7197. {
  7198. }
  7199. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7200. {
  7201. }
  7202. #endif /* CONFIG_RT_GROUP_SCHED */
  7203. #ifdef CONFIG_GROUP_SCHED
  7204. static void free_sched_group(struct task_group *tg)
  7205. {
  7206. free_fair_sched_group(tg);
  7207. free_rt_sched_group(tg);
  7208. kfree(tg);
  7209. }
  7210. /* allocate runqueue etc for a new task group */
  7211. struct task_group *sched_create_group(struct task_group *parent)
  7212. {
  7213. struct task_group *tg;
  7214. unsigned long flags;
  7215. int i;
  7216. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7217. if (!tg)
  7218. return ERR_PTR(-ENOMEM);
  7219. if (!alloc_fair_sched_group(tg, parent))
  7220. goto err;
  7221. if (!alloc_rt_sched_group(tg, parent))
  7222. goto err;
  7223. spin_lock_irqsave(&task_group_lock, flags);
  7224. for_each_possible_cpu(i) {
  7225. register_fair_sched_group(tg, i);
  7226. register_rt_sched_group(tg, i);
  7227. }
  7228. list_add_rcu(&tg->list, &task_groups);
  7229. WARN_ON(!parent); /* root should already exist */
  7230. tg->parent = parent;
  7231. list_add_rcu(&tg->siblings, &parent->children);
  7232. INIT_LIST_HEAD(&tg->children);
  7233. spin_unlock_irqrestore(&task_group_lock, flags);
  7234. return tg;
  7235. err:
  7236. free_sched_group(tg);
  7237. return ERR_PTR(-ENOMEM);
  7238. }
  7239. /* rcu callback to free various structures associated with a task group */
  7240. static void free_sched_group_rcu(struct rcu_head *rhp)
  7241. {
  7242. /* now it should be safe to free those cfs_rqs */
  7243. free_sched_group(container_of(rhp, struct task_group, rcu));
  7244. }
  7245. /* Destroy runqueue etc associated with a task group */
  7246. void sched_destroy_group(struct task_group *tg)
  7247. {
  7248. unsigned long flags;
  7249. int i;
  7250. spin_lock_irqsave(&task_group_lock, flags);
  7251. for_each_possible_cpu(i) {
  7252. unregister_fair_sched_group(tg, i);
  7253. unregister_rt_sched_group(tg, i);
  7254. }
  7255. list_del_rcu(&tg->list);
  7256. list_del_rcu(&tg->siblings);
  7257. spin_unlock_irqrestore(&task_group_lock, flags);
  7258. /* wait for possible concurrent references to cfs_rqs complete */
  7259. call_rcu(&tg->rcu, free_sched_group_rcu);
  7260. }
  7261. /* change task's runqueue when it moves between groups.
  7262. * The caller of this function should have put the task in its new group
  7263. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7264. * reflect its new group.
  7265. */
  7266. void sched_move_task(struct task_struct *tsk)
  7267. {
  7268. int on_rq, running;
  7269. unsigned long flags;
  7270. struct rq *rq;
  7271. rq = task_rq_lock(tsk, &flags);
  7272. update_rq_clock(rq);
  7273. running = task_current(rq, tsk);
  7274. on_rq = tsk->se.on_rq;
  7275. if (on_rq)
  7276. dequeue_task(rq, tsk, 0);
  7277. if (unlikely(running))
  7278. tsk->sched_class->put_prev_task(rq, tsk);
  7279. set_task_rq(tsk, task_cpu(tsk));
  7280. #ifdef CONFIG_FAIR_GROUP_SCHED
  7281. if (tsk->sched_class->moved_group)
  7282. tsk->sched_class->moved_group(tsk);
  7283. #endif
  7284. if (unlikely(running))
  7285. tsk->sched_class->set_curr_task(rq);
  7286. if (on_rq)
  7287. enqueue_task(rq, tsk, 0);
  7288. task_rq_unlock(rq, &flags);
  7289. }
  7290. #endif /* CONFIG_GROUP_SCHED */
  7291. #ifdef CONFIG_FAIR_GROUP_SCHED
  7292. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7293. {
  7294. struct cfs_rq *cfs_rq = se->cfs_rq;
  7295. int on_rq;
  7296. on_rq = se->on_rq;
  7297. if (on_rq)
  7298. dequeue_entity(cfs_rq, se, 0);
  7299. se->load.weight = shares;
  7300. se->load.inv_weight = 0;
  7301. if (on_rq)
  7302. enqueue_entity(cfs_rq, se, 0);
  7303. }
  7304. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7305. {
  7306. struct cfs_rq *cfs_rq = se->cfs_rq;
  7307. struct rq *rq = cfs_rq->rq;
  7308. unsigned long flags;
  7309. spin_lock_irqsave(&rq->lock, flags);
  7310. __set_se_shares(se, shares);
  7311. spin_unlock_irqrestore(&rq->lock, flags);
  7312. }
  7313. static DEFINE_MUTEX(shares_mutex);
  7314. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7315. {
  7316. int i;
  7317. unsigned long flags;
  7318. /*
  7319. * We can't change the weight of the root cgroup.
  7320. */
  7321. if (!tg->se[0])
  7322. return -EINVAL;
  7323. if (shares < MIN_SHARES)
  7324. shares = MIN_SHARES;
  7325. else if (shares > MAX_SHARES)
  7326. shares = MAX_SHARES;
  7327. mutex_lock(&shares_mutex);
  7328. if (tg->shares == shares)
  7329. goto done;
  7330. spin_lock_irqsave(&task_group_lock, flags);
  7331. for_each_possible_cpu(i)
  7332. unregister_fair_sched_group(tg, i);
  7333. list_del_rcu(&tg->siblings);
  7334. spin_unlock_irqrestore(&task_group_lock, flags);
  7335. /* wait for any ongoing reference to this group to finish */
  7336. synchronize_sched();
  7337. /*
  7338. * Now we are free to modify the group's share on each cpu
  7339. * w/o tripping rebalance_share or load_balance_fair.
  7340. */
  7341. tg->shares = shares;
  7342. for_each_possible_cpu(i) {
  7343. /*
  7344. * force a rebalance
  7345. */
  7346. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7347. set_se_shares(tg->se[i], shares);
  7348. }
  7349. /*
  7350. * Enable load balance activity on this group, by inserting it back on
  7351. * each cpu's rq->leaf_cfs_rq_list.
  7352. */
  7353. spin_lock_irqsave(&task_group_lock, flags);
  7354. for_each_possible_cpu(i)
  7355. register_fair_sched_group(tg, i);
  7356. list_add_rcu(&tg->siblings, &tg->parent->children);
  7357. spin_unlock_irqrestore(&task_group_lock, flags);
  7358. done:
  7359. mutex_unlock(&shares_mutex);
  7360. return 0;
  7361. }
  7362. unsigned long sched_group_shares(struct task_group *tg)
  7363. {
  7364. return tg->shares;
  7365. }
  7366. #endif
  7367. #ifdef CONFIG_RT_GROUP_SCHED
  7368. /*
  7369. * Ensure that the real time constraints are schedulable.
  7370. */
  7371. static DEFINE_MUTEX(rt_constraints_mutex);
  7372. static unsigned long to_ratio(u64 period, u64 runtime)
  7373. {
  7374. if (runtime == RUNTIME_INF)
  7375. return 1ULL << 16;
  7376. return div64_u64(runtime << 16, period);
  7377. }
  7378. #ifdef CONFIG_CGROUP_SCHED
  7379. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7380. {
  7381. struct task_group *tgi, *parent = tg->parent;
  7382. unsigned long total = 0;
  7383. if (!parent) {
  7384. if (global_rt_period() < period)
  7385. return 0;
  7386. return to_ratio(period, runtime) <
  7387. to_ratio(global_rt_period(), global_rt_runtime());
  7388. }
  7389. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7390. return 0;
  7391. rcu_read_lock();
  7392. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7393. if (tgi == tg)
  7394. continue;
  7395. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7396. tgi->rt_bandwidth.rt_runtime);
  7397. }
  7398. rcu_read_unlock();
  7399. return total + to_ratio(period, runtime) <=
  7400. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7401. parent->rt_bandwidth.rt_runtime);
  7402. }
  7403. #elif defined CONFIG_USER_SCHED
  7404. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7405. {
  7406. struct task_group *tgi;
  7407. unsigned long total = 0;
  7408. unsigned long global_ratio =
  7409. to_ratio(global_rt_period(), global_rt_runtime());
  7410. rcu_read_lock();
  7411. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7412. if (tgi == tg)
  7413. continue;
  7414. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7415. tgi->rt_bandwidth.rt_runtime);
  7416. }
  7417. rcu_read_unlock();
  7418. return total + to_ratio(period, runtime) < global_ratio;
  7419. }
  7420. #endif
  7421. /* Must be called with tasklist_lock held */
  7422. static inline int tg_has_rt_tasks(struct task_group *tg)
  7423. {
  7424. struct task_struct *g, *p;
  7425. do_each_thread(g, p) {
  7426. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7427. return 1;
  7428. } while_each_thread(g, p);
  7429. return 0;
  7430. }
  7431. static int tg_set_bandwidth(struct task_group *tg,
  7432. u64 rt_period, u64 rt_runtime)
  7433. {
  7434. int i, err = 0;
  7435. mutex_lock(&rt_constraints_mutex);
  7436. read_lock(&tasklist_lock);
  7437. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7438. err = -EBUSY;
  7439. goto unlock;
  7440. }
  7441. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7442. err = -EINVAL;
  7443. goto unlock;
  7444. }
  7445. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7446. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7447. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7448. for_each_possible_cpu(i) {
  7449. struct rt_rq *rt_rq = tg->rt_rq[i];
  7450. spin_lock(&rt_rq->rt_runtime_lock);
  7451. rt_rq->rt_runtime = rt_runtime;
  7452. spin_unlock(&rt_rq->rt_runtime_lock);
  7453. }
  7454. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7455. unlock:
  7456. read_unlock(&tasklist_lock);
  7457. mutex_unlock(&rt_constraints_mutex);
  7458. return err;
  7459. }
  7460. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7461. {
  7462. u64 rt_runtime, rt_period;
  7463. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7464. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7465. if (rt_runtime_us < 0)
  7466. rt_runtime = RUNTIME_INF;
  7467. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7468. }
  7469. long sched_group_rt_runtime(struct task_group *tg)
  7470. {
  7471. u64 rt_runtime_us;
  7472. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7473. return -1;
  7474. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7475. do_div(rt_runtime_us, NSEC_PER_USEC);
  7476. return rt_runtime_us;
  7477. }
  7478. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7479. {
  7480. u64 rt_runtime, rt_period;
  7481. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7482. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7483. if (rt_period == 0)
  7484. return -EINVAL;
  7485. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7486. }
  7487. long sched_group_rt_period(struct task_group *tg)
  7488. {
  7489. u64 rt_period_us;
  7490. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7491. do_div(rt_period_us, NSEC_PER_USEC);
  7492. return rt_period_us;
  7493. }
  7494. static int sched_rt_global_constraints(void)
  7495. {
  7496. struct task_group *tg = &root_task_group;
  7497. u64 rt_runtime, rt_period;
  7498. int ret = 0;
  7499. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7500. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7501. mutex_lock(&rt_constraints_mutex);
  7502. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7503. ret = -EINVAL;
  7504. mutex_unlock(&rt_constraints_mutex);
  7505. return ret;
  7506. }
  7507. #else /* !CONFIG_RT_GROUP_SCHED */
  7508. static int sched_rt_global_constraints(void)
  7509. {
  7510. unsigned long flags;
  7511. int i;
  7512. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7513. for_each_possible_cpu(i) {
  7514. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7515. spin_lock(&rt_rq->rt_runtime_lock);
  7516. rt_rq->rt_runtime = global_rt_runtime();
  7517. spin_unlock(&rt_rq->rt_runtime_lock);
  7518. }
  7519. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7520. return 0;
  7521. }
  7522. #endif /* CONFIG_RT_GROUP_SCHED */
  7523. int sched_rt_handler(struct ctl_table *table, int write,
  7524. struct file *filp, void __user *buffer, size_t *lenp,
  7525. loff_t *ppos)
  7526. {
  7527. int ret;
  7528. int old_period, old_runtime;
  7529. static DEFINE_MUTEX(mutex);
  7530. mutex_lock(&mutex);
  7531. old_period = sysctl_sched_rt_period;
  7532. old_runtime = sysctl_sched_rt_runtime;
  7533. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7534. if (!ret && write) {
  7535. ret = sched_rt_global_constraints();
  7536. if (ret) {
  7537. sysctl_sched_rt_period = old_period;
  7538. sysctl_sched_rt_runtime = old_runtime;
  7539. } else {
  7540. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7541. def_rt_bandwidth.rt_period =
  7542. ns_to_ktime(global_rt_period());
  7543. }
  7544. }
  7545. mutex_unlock(&mutex);
  7546. return ret;
  7547. }
  7548. #ifdef CONFIG_CGROUP_SCHED
  7549. /* return corresponding task_group object of a cgroup */
  7550. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7551. {
  7552. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7553. struct task_group, css);
  7554. }
  7555. static struct cgroup_subsys_state *
  7556. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7557. {
  7558. struct task_group *tg, *parent;
  7559. if (!cgrp->parent) {
  7560. /* This is early initialization for the top cgroup */
  7561. init_task_group.css.cgroup = cgrp;
  7562. return &init_task_group.css;
  7563. }
  7564. parent = cgroup_tg(cgrp->parent);
  7565. tg = sched_create_group(parent);
  7566. if (IS_ERR(tg))
  7567. return ERR_PTR(-ENOMEM);
  7568. /* Bind the cgroup to task_group object we just created */
  7569. tg->css.cgroup = cgrp;
  7570. return &tg->css;
  7571. }
  7572. static void
  7573. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7574. {
  7575. struct task_group *tg = cgroup_tg(cgrp);
  7576. sched_destroy_group(tg);
  7577. }
  7578. static int
  7579. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7580. struct task_struct *tsk)
  7581. {
  7582. #ifdef CONFIG_RT_GROUP_SCHED
  7583. /* Don't accept realtime tasks when there is no way for them to run */
  7584. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7585. return -EINVAL;
  7586. #else
  7587. /* We don't support RT-tasks being in separate groups */
  7588. if (tsk->sched_class != &fair_sched_class)
  7589. return -EINVAL;
  7590. #endif
  7591. return 0;
  7592. }
  7593. static void
  7594. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7595. struct cgroup *old_cont, struct task_struct *tsk)
  7596. {
  7597. sched_move_task(tsk);
  7598. }
  7599. #ifdef CONFIG_FAIR_GROUP_SCHED
  7600. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7601. u64 shareval)
  7602. {
  7603. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7604. }
  7605. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7606. {
  7607. struct task_group *tg = cgroup_tg(cgrp);
  7608. return (u64) tg->shares;
  7609. }
  7610. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7611. #ifdef CONFIG_RT_GROUP_SCHED
  7612. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7613. s64 val)
  7614. {
  7615. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7616. }
  7617. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7618. {
  7619. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7620. }
  7621. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7622. u64 rt_period_us)
  7623. {
  7624. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7625. }
  7626. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7627. {
  7628. return sched_group_rt_period(cgroup_tg(cgrp));
  7629. }
  7630. #endif /* CONFIG_RT_GROUP_SCHED */
  7631. static struct cftype cpu_files[] = {
  7632. #ifdef CONFIG_FAIR_GROUP_SCHED
  7633. {
  7634. .name = "shares",
  7635. .read_u64 = cpu_shares_read_u64,
  7636. .write_u64 = cpu_shares_write_u64,
  7637. },
  7638. #endif
  7639. #ifdef CONFIG_RT_GROUP_SCHED
  7640. {
  7641. .name = "rt_runtime_us",
  7642. .read_s64 = cpu_rt_runtime_read,
  7643. .write_s64 = cpu_rt_runtime_write,
  7644. },
  7645. {
  7646. .name = "rt_period_us",
  7647. .read_u64 = cpu_rt_period_read_uint,
  7648. .write_u64 = cpu_rt_period_write_uint,
  7649. },
  7650. #endif
  7651. };
  7652. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7653. {
  7654. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7655. }
  7656. struct cgroup_subsys cpu_cgroup_subsys = {
  7657. .name = "cpu",
  7658. .create = cpu_cgroup_create,
  7659. .destroy = cpu_cgroup_destroy,
  7660. .can_attach = cpu_cgroup_can_attach,
  7661. .attach = cpu_cgroup_attach,
  7662. .populate = cpu_cgroup_populate,
  7663. .subsys_id = cpu_cgroup_subsys_id,
  7664. .early_init = 1,
  7665. };
  7666. #endif /* CONFIG_CGROUP_SCHED */
  7667. #ifdef CONFIG_CGROUP_CPUACCT
  7668. /*
  7669. * CPU accounting code for task groups.
  7670. *
  7671. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7672. * (balbir@in.ibm.com).
  7673. */
  7674. /* track cpu usage of a group of tasks */
  7675. struct cpuacct {
  7676. struct cgroup_subsys_state css;
  7677. /* cpuusage holds pointer to a u64-type object on every cpu */
  7678. u64 *cpuusage;
  7679. };
  7680. struct cgroup_subsys cpuacct_subsys;
  7681. /* return cpu accounting group corresponding to this container */
  7682. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7683. {
  7684. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7685. struct cpuacct, css);
  7686. }
  7687. /* return cpu accounting group to which this task belongs */
  7688. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7689. {
  7690. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7691. struct cpuacct, css);
  7692. }
  7693. /* create a new cpu accounting group */
  7694. static struct cgroup_subsys_state *cpuacct_create(
  7695. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7696. {
  7697. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7698. if (!ca)
  7699. return ERR_PTR(-ENOMEM);
  7700. ca->cpuusage = alloc_percpu(u64);
  7701. if (!ca->cpuusage) {
  7702. kfree(ca);
  7703. return ERR_PTR(-ENOMEM);
  7704. }
  7705. return &ca->css;
  7706. }
  7707. /* destroy an existing cpu accounting group */
  7708. static void
  7709. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7710. {
  7711. struct cpuacct *ca = cgroup_ca(cgrp);
  7712. free_percpu(ca->cpuusage);
  7713. kfree(ca);
  7714. }
  7715. /* return total cpu usage (in nanoseconds) of a group */
  7716. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7717. {
  7718. struct cpuacct *ca = cgroup_ca(cgrp);
  7719. u64 totalcpuusage = 0;
  7720. int i;
  7721. for_each_possible_cpu(i) {
  7722. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7723. /*
  7724. * Take rq->lock to make 64-bit addition safe on 32-bit
  7725. * platforms.
  7726. */
  7727. spin_lock_irq(&cpu_rq(i)->lock);
  7728. totalcpuusage += *cpuusage;
  7729. spin_unlock_irq(&cpu_rq(i)->lock);
  7730. }
  7731. return totalcpuusage;
  7732. }
  7733. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7734. u64 reset)
  7735. {
  7736. struct cpuacct *ca = cgroup_ca(cgrp);
  7737. int err = 0;
  7738. int i;
  7739. if (reset) {
  7740. err = -EINVAL;
  7741. goto out;
  7742. }
  7743. for_each_possible_cpu(i) {
  7744. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7745. spin_lock_irq(&cpu_rq(i)->lock);
  7746. *cpuusage = 0;
  7747. spin_unlock_irq(&cpu_rq(i)->lock);
  7748. }
  7749. out:
  7750. return err;
  7751. }
  7752. static struct cftype files[] = {
  7753. {
  7754. .name = "usage",
  7755. .read_u64 = cpuusage_read,
  7756. .write_u64 = cpuusage_write,
  7757. },
  7758. };
  7759. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7760. {
  7761. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7762. }
  7763. /*
  7764. * charge this task's execution time to its accounting group.
  7765. *
  7766. * called with rq->lock held.
  7767. */
  7768. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7769. {
  7770. struct cpuacct *ca;
  7771. if (!cpuacct_subsys.active)
  7772. return;
  7773. ca = task_ca(tsk);
  7774. if (ca) {
  7775. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7776. *cpuusage += cputime;
  7777. }
  7778. }
  7779. struct cgroup_subsys cpuacct_subsys = {
  7780. .name = "cpuacct",
  7781. .create = cpuacct_create,
  7782. .destroy = cpuacct_destroy,
  7783. .populate = cpuacct_populate,
  7784. .subsys_id = cpuacct_subsys_id,
  7785. };
  7786. #endif /* CONFIG_CGROUP_CPUACCT */