namespace.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static u64 event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct hlist_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_HLIST_NODE(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  200. #ifdef CONFIG_FSNOTIFY
  201. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  202. #endif
  203. }
  204. return mnt;
  205. #ifdef CONFIG_SMP
  206. out_free_devname:
  207. kfree(mnt->mnt_devname);
  208. #endif
  209. out_free_id:
  210. mnt_free_id(mnt);
  211. out_free_cache:
  212. kmem_cache_free(mnt_cache, mnt);
  213. return NULL;
  214. }
  215. /*
  216. * Most r/o checks on a fs are for operations that take
  217. * discrete amounts of time, like a write() or unlink().
  218. * We must keep track of when those operations start
  219. * (for permission checks) and when they end, so that
  220. * we can determine when writes are able to occur to
  221. * a filesystem.
  222. */
  223. /*
  224. * __mnt_is_readonly: check whether a mount is read-only
  225. * @mnt: the mount to check for its write status
  226. *
  227. * This shouldn't be used directly ouside of the VFS.
  228. * It does not guarantee that the filesystem will stay
  229. * r/w, just that it is right *now*. This can not and
  230. * should not be used in place of IS_RDONLY(inode).
  231. * mnt_want/drop_write() will _keep_ the filesystem
  232. * r/w.
  233. */
  234. int __mnt_is_readonly(struct vfsmount *mnt)
  235. {
  236. if (mnt->mnt_flags & MNT_READONLY)
  237. return 1;
  238. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  239. return 1;
  240. return 0;
  241. }
  242. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  243. static inline void mnt_inc_writers(struct mount *mnt)
  244. {
  245. #ifdef CONFIG_SMP
  246. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  247. #else
  248. mnt->mnt_writers++;
  249. #endif
  250. }
  251. static inline void mnt_dec_writers(struct mount *mnt)
  252. {
  253. #ifdef CONFIG_SMP
  254. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  255. #else
  256. mnt->mnt_writers--;
  257. #endif
  258. }
  259. static unsigned int mnt_get_writers(struct mount *mnt)
  260. {
  261. #ifdef CONFIG_SMP
  262. unsigned int count = 0;
  263. int cpu;
  264. for_each_possible_cpu(cpu) {
  265. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  266. }
  267. return count;
  268. #else
  269. return mnt->mnt_writers;
  270. #endif
  271. }
  272. static int mnt_is_readonly(struct vfsmount *mnt)
  273. {
  274. if (mnt->mnt_sb->s_readonly_remount)
  275. return 1;
  276. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  277. smp_rmb();
  278. return __mnt_is_readonly(mnt);
  279. }
  280. /*
  281. * Most r/o & frozen checks on a fs are for operations that take discrete
  282. * amounts of time, like a write() or unlink(). We must keep track of when
  283. * those operations start (for permission checks) and when they end, so that we
  284. * can determine when writes are able to occur to a filesystem.
  285. */
  286. /**
  287. * __mnt_want_write - get write access to a mount without freeze protection
  288. * @m: the mount on which to take a write
  289. *
  290. * This tells the low-level filesystem that a write is about to be performed to
  291. * it, and makes sure that writes are allowed (mnt it read-write) before
  292. * returning success. This operation does not protect against filesystem being
  293. * frozen. When the write operation is finished, __mnt_drop_write() must be
  294. * called. This is effectively a refcount.
  295. */
  296. int __mnt_want_write(struct vfsmount *m)
  297. {
  298. struct mount *mnt = real_mount(m);
  299. int ret = 0;
  300. preempt_disable();
  301. mnt_inc_writers(mnt);
  302. /*
  303. * The store to mnt_inc_writers must be visible before we pass
  304. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  305. * incremented count after it has set MNT_WRITE_HOLD.
  306. */
  307. smp_mb();
  308. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  309. cpu_relax();
  310. /*
  311. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  312. * be set to match its requirements. So we must not load that until
  313. * MNT_WRITE_HOLD is cleared.
  314. */
  315. smp_rmb();
  316. if (mnt_is_readonly(m)) {
  317. mnt_dec_writers(mnt);
  318. ret = -EROFS;
  319. }
  320. preempt_enable();
  321. return ret;
  322. }
  323. /**
  324. * mnt_want_write - get write access to a mount
  325. * @m: the mount on which to take a write
  326. *
  327. * This tells the low-level filesystem that a write is about to be performed to
  328. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  329. * is not frozen) before returning success. When the write operation is
  330. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  331. */
  332. int mnt_want_write(struct vfsmount *m)
  333. {
  334. int ret;
  335. sb_start_write(m->mnt_sb);
  336. ret = __mnt_want_write(m);
  337. if (ret)
  338. sb_end_write(m->mnt_sb);
  339. return ret;
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write);
  342. /**
  343. * mnt_clone_write - get write access to a mount
  344. * @mnt: the mount on which to take a write
  345. *
  346. * This is effectively like mnt_want_write, except
  347. * it must only be used to take an extra write reference
  348. * on a mountpoint that we already know has a write reference
  349. * on it. This allows some optimisation.
  350. *
  351. * After finished, mnt_drop_write must be called as usual to
  352. * drop the reference.
  353. */
  354. int mnt_clone_write(struct vfsmount *mnt)
  355. {
  356. /* superblock may be r/o */
  357. if (__mnt_is_readonly(mnt))
  358. return -EROFS;
  359. preempt_disable();
  360. mnt_inc_writers(real_mount(mnt));
  361. preempt_enable();
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(mnt_clone_write);
  365. /**
  366. * __mnt_want_write_file - get write access to a file's mount
  367. * @file: the file who's mount on which to take a write
  368. *
  369. * This is like __mnt_want_write, but it takes a file and can
  370. * do some optimisations if the file is open for write already
  371. */
  372. int __mnt_want_write_file(struct file *file)
  373. {
  374. if (!(file->f_mode & FMODE_WRITER))
  375. return __mnt_want_write(file->f_path.mnt);
  376. else
  377. return mnt_clone_write(file->f_path.mnt);
  378. }
  379. /**
  380. * mnt_want_write_file - get write access to a file's mount
  381. * @file: the file who's mount on which to take a write
  382. *
  383. * This is like mnt_want_write, but it takes a file and can
  384. * do some optimisations if the file is open for write already
  385. */
  386. int mnt_want_write_file(struct file *file)
  387. {
  388. int ret;
  389. sb_start_write(file->f_path.mnt->mnt_sb);
  390. ret = __mnt_want_write_file(file);
  391. if (ret)
  392. sb_end_write(file->f_path.mnt->mnt_sb);
  393. return ret;
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  396. /**
  397. * __mnt_drop_write - give up write access to a mount
  398. * @mnt: the mount on which to give up write access
  399. *
  400. * Tells the low-level filesystem that we are done
  401. * performing writes to it. Must be matched with
  402. * __mnt_want_write() call above.
  403. */
  404. void __mnt_drop_write(struct vfsmount *mnt)
  405. {
  406. preempt_disable();
  407. mnt_dec_writers(real_mount(mnt));
  408. preempt_enable();
  409. }
  410. /**
  411. * mnt_drop_write - give up write access to a mount
  412. * @mnt: the mount on which to give up write access
  413. *
  414. * Tells the low-level filesystem that we are done performing writes to it and
  415. * also allows filesystem to be frozen again. Must be matched with
  416. * mnt_want_write() call above.
  417. */
  418. void mnt_drop_write(struct vfsmount *mnt)
  419. {
  420. __mnt_drop_write(mnt);
  421. sb_end_write(mnt->mnt_sb);
  422. }
  423. EXPORT_SYMBOL_GPL(mnt_drop_write);
  424. void __mnt_drop_write_file(struct file *file)
  425. {
  426. __mnt_drop_write(file->f_path.mnt);
  427. }
  428. void mnt_drop_write_file(struct file *file)
  429. {
  430. mnt_drop_write(file->f_path.mnt);
  431. }
  432. EXPORT_SYMBOL(mnt_drop_write_file);
  433. static int mnt_make_readonly(struct mount *mnt)
  434. {
  435. int ret = 0;
  436. lock_mount_hash();
  437. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  438. /*
  439. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  440. * should be visible before we do.
  441. */
  442. smp_mb();
  443. /*
  444. * With writers on hold, if this value is zero, then there are
  445. * definitely no active writers (although held writers may subsequently
  446. * increment the count, they'll have to wait, and decrement it after
  447. * seeing MNT_READONLY).
  448. *
  449. * It is OK to have counter incremented on one CPU and decremented on
  450. * another: the sum will add up correctly. The danger would be when we
  451. * sum up each counter, if we read a counter before it is incremented,
  452. * but then read another CPU's count which it has been subsequently
  453. * decremented from -- we would see more decrements than we should.
  454. * MNT_WRITE_HOLD protects against this scenario, because
  455. * mnt_want_write first increments count, then smp_mb, then spins on
  456. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  457. * we're counting up here.
  458. */
  459. if (mnt_get_writers(mnt) > 0)
  460. ret = -EBUSY;
  461. else
  462. mnt->mnt.mnt_flags |= MNT_READONLY;
  463. /*
  464. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  465. * that become unheld will see MNT_READONLY.
  466. */
  467. smp_wmb();
  468. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  469. unlock_mount_hash();
  470. return ret;
  471. }
  472. static void __mnt_unmake_readonly(struct mount *mnt)
  473. {
  474. lock_mount_hash();
  475. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  476. unlock_mount_hash();
  477. }
  478. int sb_prepare_remount_readonly(struct super_block *sb)
  479. {
  480. struct mount *mnt;
  481. int err = 0;
  482. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  483. if (atomic_long_read(&sb->s_remove_count))
  484. return -EBUSY;
  485. lock_mount_hash();
  486. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  487. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  488. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  489. smp_mb();
  490. if (mnt_get_writers(mnt) > 0) {
  491. err = -EBUSY;
  492. break;
  493. }
  494. }
  495. }
  496. if (!err && atomic_long_read(&sb->s_remove_count))
  497. err = -EBUSY;
  498. if (!err) {
  499. sb->s_readonly_remount = 1;
  500. smp_wmb();
  501. }
  502. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  503. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  504. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  505. }
  506. unlock_mount_hash();
  507. return err;
  508. }
  509. static void free_vfsmnt(struct mount *mnt)
  510. {
  511. kfree(mnt->mnt_devname);
  512. #ifdef CONFIG_SMP
  513. free_percpu(mnt->mnt_pcp);
  514. #endif
  515. kmem_cache_free(mnt_cache, mnt);
  516. }
  517. static void delayed_free_vfsmnt(struct rcu_head *head)
  518. {
  519. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  520. }
  521. /* call under rcu_read_lock */
  522. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  523. {
  524. struct mount *mnt;
  525. if (read_seqretry(&mount_lock, seq))
  526. return false;
  527. if (bastard == NULL)
  528. return true;
  529. mnt = real_mount(bastard);
  530. mnt_add_count(mnt, 1);
  531. if (likely(!read_seqretry(&mount_lock, seq)))
  532. return true;
  533. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  534. mnt_add_count(mnt, -1);
  535. return false;
  536. }
  537. rcu_read_unlock();
  538. mntput(bastard);
  539. rcu_read_lock();
  540. return false;
  541. }
  542. /*
  543. * find the first mount at @dentry on vfsmount @mnt.
  544. * call under rcu_read_lock()
  545. */
  546. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  547. {
  548. struct hlist_head *head = m_hash(mnt, dentry);
  549. struct mount *p;
  550. hlist_for_each_entry_rcu(p, head, mnt_hash)
  551. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  552. return p;
  553. return NULL;
  554. }
  555. /*
  556. * find the last mount at @dentry on vfsmount @mnt.
  557. * mount_lock must be held.
  558. */
  559. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  560. {
  561. struct mount *p, *res;
  562. res = p = __lookup_mnt(mnt, dentry);
  563. if (!p)
  564. goto out;
  565. hlist_for_each_entry_continue(p, mnt_hash) {
  566. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  567. break;
  568. res = p;
  569. }
  570. out:
  571. return res;
  572. }
  573. /*
  574. * lookup_mnt - Return the first child mount mounted at path
  575. *
  576. * "First" means first mounted chronologically. If you create the
  577. * following mounts:
  578. *
  579. * mount /dev/sda1 /mnt
  580. * mount /dev/sda2 /mnt
  581. * mount /dev/sda3 /mnt
  582. *
  583. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  584. * return successively the root dentry and vfsmount of /dev/sda1, then
  585. * /dev/sda2, then /dev/sda3, then NULL.
  586. *
  587. * lookup_mnt takes a reference to the found vfsmount.
  588. */
  589. struct vfsmount *lookup_mnt(struct path *path)
  590. {
  591. struct mount *child_mnt;
  592. struct vfsmount *m;
  593. unsigned seq;
  594. rcu_read_lock();
  595. do {
  596. seq = read_seqbegin(&mount_lock);
  597. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  598. m = child_mnt ? &child_mnt->mnt : NULL;
  599. } while (!legitimize_mnt(m, seq));
  600. rcu_read_unlock();
  601. return m;
  602. }
  603. /*
  604. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  605. * current mount namespace.
  606. *
  607. * The common case is dentries are not mountpoints at all and that
  608. * test is handled inline. For the slow case when we are actually
  609. * dealing with a mountpoint of some kind, walk through all of the
  610. * mounts in the current mount namespace and test to see if the dentry
  611. * is a mountpoint.
  612. *
  613. * The mount_hashtable is not usable in the context because we
  614. * need to identify all mounts that may be in the current mount
  615. * namespace not just a mount that happens to have some specified
  616. * parent mount.
  617. */
  618. bool __is_local_mountpoint(struct dentry *dentry)
  619. {
  620. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  621. struct mount *mnt;
  622. bool is_covered = false;
  623. if (!d_mountpoint(dentry))
  624. goto out;
  625. down_read(&namespace_sem);
  626. list_for_each_entry(mnt, &ns->list, mnt_list) {
  627. is_covered = (mnt->mnt_mountpoint == dentry);
  628. if (is_covered)
  629. break;
  630. }
  631. up_read(&namespace_sem);
  632. out:
  633. return is_covered;
  634. }
  635. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  636. {
  637. struct hlist_head *chain = mp_hash(dentry);
  638. struct mountpoint *mp;
  639. hlist_for_each_entry(mp, chain, m_hash) {
  640. if (mp->m_dentry == dentry) {
  641. /* might be worth a WARN_ON() */
  642. if (d_unlinked(dentry))
  643. return ERR_PTR(-ENOENT);
  644. mp->m_count++;
  645. return mp;
  646. }
  647. }
  648. return NULL;
  649. }
  650. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  651. {
  652. struct hlist_head *chain = mp_hash(dentry);
  653. struct mountpoint *mp;
  654. int ret;
  655. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  656. if (!mp)
  657. return ERR_PTR(-ENOMEM);
  658. ret = d_set_mounted(dentry);
  659. if (ret) {
  660. kfree(mp);
  661. return ERR_PTR(ret);
  662. }
  663. mp->m_dentry = dentry;
  664. mp->m_count = 1;
  665. hlist_add_head(&mp->m_hash, chain);
  666. INIT_HLIST_HEAD(&mp->m_list);
  667. return mp;
  668. }
  669. static void put_mountpoint(struct mountpoint *mp)
  670. {
  671. if (!--mp->m_count) {
  672. struct dentry *dentry = mp->m_dentry;
  673. BUG_ON(!hlist_empty(&mp->m_list));
  674. spin_lock(&dentry->d_lock);
  675. dentry->d_flags &= ~DCACHE_MOUNTED;
  676. spin_unlock(&dentry->d_lock);
  677. hlist_del(&mp->m_hash);
  678. kfree(mp);
  679. }
  680. }
  681. static inline int check_mnt(struct mount *mnt)
  682. {
  683. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  684. }
  685. /*
  686. * vfsmount lock must be held for write
  687. */
  688. static void touch_mnt_namespace(struct mnt_namespace *ns)
  689. {
  690. if (ns) {
  691. ns->event = ++event;
  692. wake_up_interruptible(&ns->poll);
  693. }
  694. }
  695. /*
  696. * vfsmount lock must be held for write
  697. */
  698. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  699. {
  700. if (ns && ns->event != event) {
  701. ns->event = event;
  702. wake_up_interruptible(&ns->poll);
  703. }
  704. }
  705. /*
  706. * vfsmount lock must be held for write
  707. */
  708. static void detach_mnt(struct mount *mnt, struct path *old_path)
  709. {
  710. old_path->dentry = mnt->mnt_mountpoint;
  711. old_path->mnt = &mnt->mnt_parent->mnt;
  712. mnt->mnt_parent = mnt;
  713. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  714. list_del_init(&mnt->mnt_child);
  715. hlist_del_init_rcu(&mnt->mnt_hash);
  716. hlist_del_init(&mnt->mnt_mp_list);
  717. put_mountpoint(mnt->mnt_mp);
  718. mnt->mnt_mp = NULL;
  719. }
  720. /*
  721. * vfsmount lock must be held for write
  722. */
  723. void mnt_set_mountpoint(struct mount *mnt,
  724. struct mountpoint *mp,
  725. struct mount *child_mnt)
  726. {
  727. mp->m_count++;
  728. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  729. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  730. child_mnt->mnt_parent = mnt;
  731. child_mnt->mnt_mp = mp;
  732. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  733. }
  734. /*
  735. * vfsmount lock must be held for write
  736. */
  737. static void attach_mnt(struct mount *mnt,
  738. struct mount *parent,
  739. struct mountpoint *mp)
  740. {
  741. mnt_set_mountpoint(parent, mp, mnt);
  742. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  743. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  744. }
  745. static void attach_shadowed(struct mount *mnt,
  746. struct mount *parent,
  747. struct mount *shadows)
  748. {
  749. if (shadows) {
  750. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  751. list_add(&mnt->mnt_child, &shadows->mnt_child);
  752. } else {
  753. hlist_add_head_rcu(&mnt->mnt_hash,
  754. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  755. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  756. }
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. static void commit_tree(struct mount *mnt, struct mount *shadows)
  762. {
  763. struct mount *parent = mnt->mnt_parent;
  764. struct mount *m;
  765. LIST_HEAD(head);
  766. struct mnt_namespace *n = parent->mnt_ns;
  767. BUG_ON(parent == mnt);
  768. list_add_tail(&head, &mnt->mnt_list);
  769. list_for_each_entry(m, &head, mnt_list)
  770. m->mnt_ns = n;
  771. list_splice(&head, n->list.prev);
  772. attach_shadowed(mnt, parent, shadows);
  773. touch_mnt_namespace(n);
  774. }
  775. static struct mount *next_mnt(struct mount *p, struct mount *root)
  776. {
  777. struct list_head *next = p->mnt_mounts.next;
  778. if (next == &p->mnt_mounts) {
  779. while (1) {
  780. if (p == root)
  781. return NULL;
  782. next = p->mnt_child.next;
  783. if (next != &p->mnt_parent->mnt_mounts)
  784. break;
  785. p = p->mnt_parent;
  786. }
  787. }
  788. return list_entry(next, struct mount, mnt_child);
  789. }
  790. static struct mount *skip_mnt_tree(struct mount *p)
  791. {
  792. struct list_head *prev = p->mnt_mounts.prev;
  793. while (prev != &p->mnt_mounts) {
  794. p = list_entry(prev, struct mount, mnt_child);
  795. prev = p->mnt_mounts.prev;
  796. }
  797. return p;
  798. }
  799. struct vfsmount *
  800. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  801. {
  802. struct mount *mnt;
  803. struct dentry *root;
  804. if (!type)
  805. return ERR_PTR(-ENODEV);
  806. mnt = alloc_vfsmnt(name);
  807. if (!mnt)
  808. return ERR_PTR(-ENOMEM);
  809. if (flags & MS_KERNMOUNT)
  810. mnt->mnt.mnt_flags = MNT_INTERNAL;
  811. root = mount_fs(type, flags, name, data);
  812. if (IS_ERR(root)) {
  813. mnt_free_id(mnt);
  814. free_vfsmnt(mnt);
  815. return ERR_CAST(root);
  816. }
  817. mnt->mnt.mnt_root = root;
  818. mnt->mnt.mnt_sb = root->d_sb;
  819. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  820. mnt->mnt_parent = mnt;
  821. lock_mount_hash();
  822. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  823. unlock_mount_hash();
  824. return &mnt->mnt;
  825. }
  826. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  827. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  828. int flag)
  829. {
  830. struct super_block *sb = old->mnt.mnt_sb;
  831. struct mount *mnt;
  832. int err;
  833. mnt = alloc_vfsmnt(old->mnt_devname);
  834. if (!mnt)
  835. return ERR_PTR(-ENOMEM);
  836. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  837. mnt->mnt_group_id = 0; /* not a peer of original */
  838. else
  839. mnt->mnt_group_id = old->mnt_group_id;
  840. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  841. err = mnt_alloc_group_id(mnt);
  842. if (err)
  843. goto out_free;
  844. }
  845. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  846. /* Don't allow unprivileged users to change mount flags */
  847. if (flag & CL_UNPRIVILEGED) {
  848. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  849. if (mnt->mnt.mnt_flags & MNT_READONLY)
  850. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  851. if (mnt->mnt.mnt_flags & MNT_NODEV)
  852. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  853. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  854. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  855. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  856. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  857. }
  858. /* Don't allow unprivileged users to reveal what is under a mount */
  859. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  860. mnt->mnt.mnt_flags |= MNT_LOCKED;
  861. atomic_inc(&sb->s_active);
  862. mnt->mnt.mnt_sb = sb;
  863. mnt->mnt.mnt_root = dget(root);
  864. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  865. mnt->mnt_parent = mnt;
  866. lock_mount_hash();
  867. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  868. unlock_mount_hash();
  869. if ((flag & CL_SLAVE) ||
  870. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  871. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  872. mnt->mnt_master = old;
  873. CLEAR_MNT_SHARED(mnt);
  874. } else if (!(flag & CL_PRIVATE)) {
  875. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  876. list_add(&mnt->mnt_share, &old->mnt_share);
  877. if (IS_MNT_SLAVE(old))
  878. list_add(&mnt->mnt_slave, &old->mnt_slave);
  879. mnt->mnt_master = old->mnt_master;
  880. }
  881. if (flag & CL_MAKE_SHARED)
  882. set_mnt_shared(mnt);
  883. /* stick the duplicate mount on the same expiry list
  884. * as the original if that was on one */
  885. if (flag & CL_EXPIRE) {
  886. if (!list_empty(&old->mnt_expire))
  887. list_add(&mnt->mnt_expire, &old->mnt_expire);
  888. }
  889. return mnt;
  890. out_free:
  891. mnt_free_id(mnt);
  892. free_vfsmnt(mnt);
  893. return ERR_PTR(err);
  894. }
  895. static void cleanup_mnt(struct mount *mnt)
  896. {
  897. /*
  898. * This probably indicates that somebody messed
  899. * up a mnt_want/drop_write() pair. If this
  900. * happens, the filesystem was probably unable
  901. * to make r/w->r/o transitions.
  902. */
  903. /*
  904. * The locking used to deal with mnt_count decrement provides barriers,
  905. * so mnt_get_writers() below is safe.
  906. */
  907. WARN_ON(mnt_get_writers(mnt));
  908. if (unlikely(mnt->mnt_pins.first))
  909. mnt_pin_kill(mnt);
  910. fsnotify_vfsmount_delete(&mnt->mnt);
  911. dput(mnt->mnt.mnt_root);
  912. deactivate_super(mnt->mnt.mnt_sb);
  913. mnt_free_id(mnt);
  914. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  915. }
  916. static void __cleanup_mnt(struct rcu_head *head)
  917. {
  918. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  919. }
  920. static LLIST_HEAD(delayed_mntput_list);
  921. static void delayed_mntput(struct work_struct *unused)
  922. {
  923. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  924. struct llist_node *next;
  925. for (; node; node = next) {
  926. next = llist_next(node);
  927. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  928. }
  929. }
  930. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  931. static void mntput_no_expire(struct mount *mnt)
  932. {
  933. rcu_read_lock();
  934. mnt_add_count(mnt, -1);
  935. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  936. rcu_read_unlock();
  937. return;
  938. }
  939. lock_mount_hash();
  940. if (mnt_get_count(mnt)) {
  941. rcu_read_unlock();
  942. unlock_mount_hash();
  943. return;
  944. }
  945. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  946. rcu_read_unlock();
  947. unlock_mount_hash();
  948. return;
  949. }
  950. mnt->mnt.mnt_flags |= MNT_DOOMED;
  951. rcu_read_unlock();
  952. list_del(&mnt->mnt_instance);
  953. unlock_mount_hash();
  954. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  955. struct task_struct *task = current;
  956. if (likely(!(task->flags & PF_KTHREAD))) {
  957. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  958. if (!task_work_add(task, &mnt->mnt_rcu, true))
  959. return;
  960. }
  961. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  962. schedule_delayed_work(&delayed_mntput_work, 1);
  963. return;
  964. }
  965. cleanup_mnt(mnt);
  966. }
  967. void mntput(struct vfsmount *mnt)
  968. {
  969. if (mnt) {
  970. struct mount *m = real_mount(mnt);
  971. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  972. if (unlikely(m->mnt_expiry_mark))
  973. m->mnt_expiry_mark = 0;
  974. mntput_no_expire(m);
  975. }
  976. }
  977. EXPORT_SYMBOL(mntput);
  978. struct vfsmount *mntget(struct vfsmount *mnt)
  979. {
  980. if (mnt)
  981. mnt_add_count(real_mount(mnt), 1);
  982. return mnt;
  983. }
  984. EXPORT_SYMBOL(mntget);
  985. struct vfsmount *mnt_clone_internal(struct path *path)
  986. {
  987. struct mount *p;
  988. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  989. if (IS_ERR(p))
  990. return ERR_CAST(p);
  991. p->mnt.mnt_flags |= MNT_INTERNAL;
  992. return &p->mnt;
  993. }
  994. static inline void mangle(struct seq_file *m, const char *s)
  995. {
  996. seq_escape(m, s, " \t\n\\");
  997. }
  998. /*
  999. * Simple .show_options callback for filesystems which don't want to
  1000. * implement more complex mount option showing.
  1001. *
  1002. * See also save_mount_options().
  1003. */
  1004. int generic_show_options(struct seq_file *m, struct dentry *root)
  1005. {
  1006. const char *options;
  1007. rcu_read_lock();
  1008. options = rcu_dereference(root->d_sb->s_options);
  1009. if (options != NULL && options[0]) {
  1010. seq_putc(m, ',');
  1011. mangle(m, options);
  1012. }
  1013. rcu_read_unlock();
  1014. return 0;
  1015. }
  1016. EXPORT_SYMBOL(generic_show_options);
  1017. /*
  1018. * If filesystem uses generic_show_options(), this function should be
  1019. * called from the fill_super() callback.
  1020. *
  1021. * The .remount_fs callback usually needs to be handled in a special
  1022. * way, to make sure, that previous options are not overwritten if the
  1023. * remount fails.
  1024. *
  1025. * Also note, that if the filesystem's .remount_fs function doesn't
  1026. * reset all options to their default value, but changes only newly
  1027. * given options, then the displayed options will not reflect reality
  1028. * any more.
  1029. */
  1030. void save_mount_options(struct super_block *sb, char *options)
  1031. {
  1032. BUG_ON(sb->s_options);
  1033. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1034. }
  1035. EXPORT_SYMBOL(save_mount_options);
  1036. void replace_mount_options(struct super_block *sb, char *options)
  1037. {
  1038. char *old = sb->s_options;
  1039. rcu_assign_pointer(sb->s_options, options);
  1040. if (old) {
  1041. synchronize_rcu();
  1042. kfree(old);
  1043. }
  1044. }
  1045. EXPORT_SYMBOL(replace_mount_options);
  1046. #ifdef CONFIG_PROC_FS
  1047. /* iterator; we want it to have access to namespace_sem, thus here... */
  1048. static void *m_start(struct seq_file *m, loff_t *pos)
  1049. {
  1050. struct proc_mounts *p = proc_mounts(m);
  1051. down_read(&namespace_sem);
  1052. if (p->cached_event == p->ns->event) {
  1053. void *v = p->cached_mount;
  1054. if (*pos == p->cached_index)
  1055. return v;
  1056. if (*pos == p->cached_index + 1) {
  1057. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1058. return p->cached_mount = v;
  1059. }
  1060. }
  1061. p->cached_event = p->ns->event;
  1062. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1063. p->cached_index = *pos;
  1064. return p->cached_mount;
  1065. }
  1066. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1067. {
  1068. struct proc_mounts *p = proc_mounts(m);
  1069. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1070. p->cached_index = *pos;
  1071. return p->cached_mount;
  1072. }
  1073. static void m_stop(struct seq_file *m, void *v)
  1074. {
  1075. up_read(&namespace_sem);
  1076. }
  1077. static int m_show(struct seq_file *m, void *v)
  1078. {
  1079. struct proc_mounts *p = proc_mounts(m);
  1080. struct mount *r = list_entry(v, struct mount, mnt_list);
  1081. return p->show(m, &r->mnt);
  1082. }
  1083. const struct seq_operations mounts_op = {
  1084. .start = m_start,
  1085. .next = m_next,
  1086. .stop = m_stop,
  1087. .show = m_show,
  1088. };
  1089. #endif /* CONFIG_PROC_FS */
  1090. /**
  1091. * may_umount_tree - check if a mount tree is busy
  1092. * @mnt: root of mount tree
  1093. *
  1094. * This is called to check if a tree of mounts has any
  1095. * open files, pwds, chroots or sub mounts that are
  1096. * busy.
  1097. */
  1098. int may_umount_tree(struct vfsmount *m)
  1099. {
  1100. struct mount *mnt = real_mount(m);
  1101. int actual_refs = 0;
  1102. int minimum_refs = 0;
  1103. struct mount *p;
  1104. BUG_ON(!m);
  1105. /* write lock needed for mnt_get_count */
  1106. lock_mount_hash();
  1107. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1108. actual_refs += mnt_get_count(p);
  1109. minimum_refs += 2;
  1110. }
  1111. unlock_mount_hash();
  1112. if (actual_refs > minimum_refs)
  1113. return 0;
  1114. return 1;
  1115. }
  1116. EXPORT_SYMBOL(may_umount_tree);
  1117. /**
  1118. * may_umount - check if a mount point is busy
  1119. * @mnt: root of mount
  1120. *
  1121. * This is called to check if a mount point has any
  1122. * open files, pwds, chroots or sub mounts. If the
  1123. * mount has sub mounts this will return busy
  1124. * regardless of whether the sub mounts are busy.
  1125. *
  1126. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1127. * give false negatives. The main reason why it's here is that we need
  1128. * a non-destructive way to look for easily umountable filesystems.
  1129. */
  1130. int may_umount(struct vfsmount *mnt)
  1131. {
  1132. int ret = 1;
  1133. down_read(&namespace_sem);
  1134. lock_mount_hash();
  1135. if (propagate_mount_busy(real_mount(mnt), 2))
  1136. ret = 0;
  1137. unlock_mount_hash();
  1138. up_read(&namespace_sem);
  1139. return ret;
  1140. }
  1141. EXPORT_SYMBOL(may_umount);
  1142. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1143. static void namespace_unlock(void)
  1144. {
  1145. struct mount *mnt;
  1146. struct hlist_head head = unmounted;
  1147. if (likely(hlist_empty(&head))) {
  1148. up_write(&namespace_sem);
  1149. return;
  1150. }
  1151. head.first->pprev = &head.first;
  1152. INIT_HLIST_HEAD(&unmounted);
  1153. /* undo decrements we'd done in umount_tree() */
  1154. hlist_for_each_entry(mnt, &head, mnt_hash)
  1155. if (mnt->mnt_ex_mountpoint.mnt)
  1156. mntget(mnt->mnt_ex_mountpoint.mnt);
  1157. up_write(&namespace_sem);
  1158. synchronize_rcu();
  1159. while (!hlist_empty(&head)) {
  1160. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1161. hlist_del_init(&mnt->mnt_hash);
  1162. if (mnt->mnt_ex_mountpoint.mnt)
  1163. path_put(&mnt->mnt_ex_mountpoint);
  1164. mntput(&mnt->mnt);
  1165. }
  1166. }
  1167. static inline void namespace_lock(void)
  1168. {
  1169. down_write(&namespace_sem);
  1170. }
  1171. /*
  1172. * mount_lock must be held
  1173. * namespace_sem must be held for write
  1174. * how = 0 => just this tree, don't propagate
  1175. * how = 1 => propagate; we know that nobody else has reference to any victims
  1176. * how = 2 => lazy umount
  1177. */
  1178. void umount_tree(struct mount *mnt, int how)
  1179. {
  1180. HLIST_HEAD(tmp_list);
  1181. struct mount *p;
  1182. struct mount *last = NULL;
  1183. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1184. hlist_del_init_rcu(&p->mnt_hash);
  1185. hlist_add_head(&p->mnt_hash, &tmp_list);
  1186. }
  1187. hlist_for_each_entry(p, &tmp_list, mnt_hash)
  1188. list_del_init(&p->mnt_child);
  1189. if (how)
  1190. propagate_umount(&tmp_list);
  1191. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1192. list_del_init(&p->mnt_expire);
  1193. list_del_init(&p->mnt_list);
  1194. __touch_mnt_namespace(p->mnt_ns);
  1195. p->mnt_ns = NULL;
  1196. if (how < 2)
  1197. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1198. if (mnt_has_parent(p)) {
  1199. hlist_del_init(&p->mnt_mp_list);
  1200. put_mountpoint(p->mnt_mp);
  1201. mnt_add_count(p->mnt_parent, -1);
  1202. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1203. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1204. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1205. p->mnt_mountpoint = p->mnt.mnt_root;
  1206. p->mnt_parent = p;
  1207. p->mnt_mp = NULL;
  1208. }
  1209. change_mnt_propagation(p, MS_PRIVATE);
  1210. last = p;
  1211. }
  1212. if (last) {
  1213. last->mnt_hash.next = unmounted.first;
  1214. unmounted.first = tmp_list.first;
  1215. unmounted.first->pprev = &unmounted.first;
  1216. }
  1217. }
  1218. static void shrink_submounts(struct mount *mnt);
  1219. static int do_umount(struct mount *mnt, int flags)
  1220. {
  1221. struct super_block *sb = mnt->mnt.mnt_sb;
  1222. int retval;
  1223. retval = security_sb_umount(&mnt->mnt, flags);
  1224. if (retval)
  1225. return retval;
  1226. /*
  1227. * Allow userspace to request a mountpoint be expired rather than
  1228. * unmounting unconditionally. Unmount only happens if:
  1229. * (1) the mark is already set (the mark is cleared by mntput())
  1230. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1231. */
  1232. if (flags & MNT_EXPIRE) {
  1233. if (&mnt->mnt == current->fs->root.mnt ||
  1234. flags & (MNT_FORCE | MNT_DETACH))
  1235. return -EINVAL;
  1236. /*
  1237. * probably don't strictly need the lock here if we examined
  1238. * all race cases, but it's a slowpath.
  1239. */
  1240. lock_mount_hash();
  1241. if (mnt_get_count(mnt) != 2) {
  1242. unlock_mount_hash();
  1243. return -EBUSY;
  1244. }
  1245. unlock_mount_hash();
  1246. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1247. return -EAGAIN;
  1248. }
  1249. /*
  1250. * If we may have to abort operations to get out of this
  1251. * mount, and they will themselves hold resources we must
  1252. * allow the fs to do things. In the Unix tradition of
  1253. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1254. * might fail to complete on the first run through as other tasks
  1255. * must return, and the like. Thats for the mount program to worry
  1256. * about for the moment.
  1257. */
  1258. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1259. sb->s_op->umount_begin(sb);
  1260. }
  1261. /*
  1262. * No sense to grab the lock for this test, but test itself looks
  1263. * somewhat bogus. Suggestions for better replacement?
  1264. * Ho-hum... In principle, we might treat that as umount + switch
  1265. * to rootfs. GC would eventually take care of the old vfsmount.
  1266. * Actually it makes sense, especially if rootfs would contain a
  1267. * /reboot - static binary that would close all descriptors and
  1268. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1269. */
  1270. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1271. /*
  1272. * Special case for "unmounting" root ...
  1273. * we just try to remount it readonly.
  1274. */
  1275. if (!capable(CAP_SYS_ADMIN))
  1276. return -EPERM;
  1277. down_write(&sb->s_umount);
  1278. if (!(sb->s_flags & MS_RDONLY))
  1279. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1280. up_write(&sb->s_umount);
  1281. return retval;
  1282. }
  1283. namespace_lock();
  1284. lock_mount_hash();
  1285. event++;
  1286. if (flags & MNT_DETACH) {
  1287. if (!list_empty(&mnt->mnt_list))
  1288. umount_tree(mnt, 2);
  1289. retval = 0;
  1290. } else {
  1291. shrink_submounts(mnt);
  1292. retval = -EBUSY;
  1293. if (!propagate_mount_busy(mnt, 2)) {
  1294. if (!list_empty(&mnt->mnt_list))
  1295. umount_tree(mnt, 1);
  1296. retval = 0;
  1297. }
  1298. }
  1299. unlock_mount_hash();
  1300. namespace_unlock();
  1301. return retval;
  1302. }
  1303. /*
  1304. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1305. *
  1306. * During unlink, rmdir, and d_drop it is possible to loose the path
  1307. * to an existing mountpoint, and wind up leaking the mount.
  1308. * detach_mounts allows lazily unmounting those mounts instead of
  1309. * leaking them.
  1310. *
  1311. * The caller may hold dentry->d_inode->i_mutex.
  1312. */
  1313. void __detach_mounts(struct dentry *dentry)
  1314. {
  1315. struct mountpoint *mp;
  1316. struct mount *mnt;
  1317. namespace_lock();
  1318. mp = lookup_mountpoint(dentry);
  1319. if (!mp)
  1320. goto out_unlock;
  1321. lock_mount_hash();
  1322. while (!hlist_empty(&mp->m_list)) {
  1323. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1324. umount_tree(mnt, 2);
  1325. }
  1326. unlock_mount_hash();
  1327. put_mountpoint(mp);
  1328. out_unlock:
  1329. namespace_unlock();
  1330. }
  1331. /*
  1332. * Is the caller allowed to modify his namespace?
  1333. */
  1334. static inline bool may_mount(void)
  1335. {
  1336. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1337. }
  1338. /*
  1339. * Now umount can handle mount points as well as block devices.
  1340. * This is important for filesystems which use unnamed block devices.
  1341. *
  1342. * We now support a flag for forced unmount like the other 'big iron'
  1343. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1344. */
  1345. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1346. {
  1347. struct path path;
  1348. struct mount *mnt;
  1349. int retval;
  1350. int lookup_flags = 0;
  1351. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1352. return -EINVAL;
  1353. if (!may_mount())
  1354. return -EPERM;
  1355. if (!(flags & UMOUNT_NOFOLLOW))
  1356. lookup_flags |= LOOKUP_FOLLOW;
  1357. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1358. if (retval)
  1359. goto out;
  1360. mnt = real_mount(path.mnt);
  1361. retval = -EINVAL;
  1362. if (path.dentry != path.mnt->mnt_root)
  1363. goto dput_and_out;
  1364. if (!check_mnt(mnt))
  1365. goto dput_and_out;
  1366. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1367. goto dput_and_out;
  1368. retval = do_umount(mnt, flags);
  1369. dput_and_out:
  1370. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1371. dput(path.dentry);
  1372. mntput_no_expire(mnt);
  1373. out:
  1374. return retval;
  1375. }
  1376. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1377. /*
  1378. * The 2.0 compatible umount. No flags.
  1379. */
  1380. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1381. {
  1382. return sys_umount(name, 0);
  1383. }
  1384. #endif
  1385. static bool is_mnt_ns_file(struct dentry *dentry)
  1386. {
  1387. /* Is this a proxy for a mount namespace? */
  1388. return dentry->d_op == &ns_dentry_operations &&
  1389. dentry->d_fsdata == &mntns_operations;
  1390. }
  1391. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1392. {
  1393. return container_of(ns, struct mnt_namespace, ns);
  1394. }
  1395. static bool mnt_ns_loop(struct dentry *dentry)
  1396. {
  1397. /* Could bind mounting the mount namespace inode cause a
  1398. * mount namespace loop?
  1399. */
  1400. struct mnt_namespace *mnt_ns;
  1401. if (!is_mnt_ns_file(dentry))
  1402. return false;
  1403. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1404. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1405. }
  1406. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1407. int flag)
  1408. {
  1409. struct mount *res, *p, *q, *r, *parent;
  1410. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1411. return ERR_PTR(-EINVAL);
  1412. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1413. return ERR_PTR(-EINVAL);
  1414. res = q = clone_mnt(mnt, dentry, flag);
  1415. if (IS_ERR(q))
  1416. return q;
  1417. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1418. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1419. p = mnt;
  1420. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1421. struct mount *s;
  1422. if (!is_subdir(r->mnt_mountpoint, dentry))
  1423. continue;
  1424. for (s = r; s; s = next_mnt(s, r)) {
  1425. struct mount *t = NULL;
  1426. if (!(flag & CL_COPY_UNBINDABLE) &&
  1427. IS_MNT_UNBINDABLE(s)) {
  1428. s = skip_mnt_tree(s);
  1429. continue;
  1430. }
  1431. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1432. is_mnt_ns_file(s->mnt.mnt_root)) {
  1433. s = skip_mnt_tree(s);
  1434. continue;
  1435. }
  1436. while (p != s->mnt_parent) {
  1437. p = p->mnt_parent;
  1438. q = q->mnt_parent;
  1439. }
  1440. p = s;
  1441. parent = q;
  1442. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1443. if (IS_ERR(q))
  1444. goto out;
  1445. lock_mount_hash();
  1446. list_add_tail(&q->mnt_list, &res->mnt_list);
  1447. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1448. if (!list_empty(&parent->mnt_mounts)) {
  1449. t = list_last_entry(&parent->mnt_mounts,
  1450. struct mount, mnt_child);
  1451. if (t->mnt_mp != p->mnt_mp)
  1452. t = NULL;
  1453. }
  1454. attach_shadowed(q, parent, t);
  1455. unlock_mount_hash();
  1456. }
  1457. }
  1458. return res;
  1459. out:
  1460. if (res) {
  1461. lock_mount_hash();
  1462. umount_tree(res, 0);
  1463. unlock_mount_hash();
  1464. }
  1465. return q;
  1466. }
  1467. /* Caller should check returned pointer for errors */
  1468. struct vfsmount *collect_mounts(struct path *path)
  1469. {
  1470. struct mount *tree;
  1471. namespace_lock();
  1472. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1473. CL_COPY_ALL | CL_PRIVATE);
  1474. namespace_unlock();
  1475. if (IS_ERR(tree))
  1476. return ERR_CAST(tree);
  1477. return &tree->mnt;
  1478. }
  1479. void drop_collected_mounts(struct vfsmount *mnt)
  1480. {
  1481. namespace_lock();
  1482. lock_mount_hash();
  1483. umount_tree(real_mount(mnt), 0);
  1484. unlock_mount_hash();
  1485. namespace_unlock();
  1486. }
  1487. /**
  1488. * clone_private_mount - create a private clone of a path
  1489. *
  1490. * This creates a new vfsmount, which will be the clone of @path. The new will
  1491. * not be attached anywhere in the namespace and will be private (i.e. changes
  1492. * to the originating mount won't be propagated into this).
  1493. *
  1494. * Release with mntput().
  1495. */
  1496. struct vfsmount *clone_private_mount(struct path *path)
  1497. {
  1498. struct mount *old_mnt = real_mount(path->mnt);
  1499. struct mount *new_mnt;
  1500. if (IS_MNT_UNBINDABLE(old_mnt))
  1501. return ERR_PTR(-EINVAL);
  1502. down_read(&namespace_sem);
  1503. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1504. up_read(&namespace_sem);
  1505. if (IS_ERR(new_mnt))
  1506. return ERR_CAST(new_mnt);
  1507. return &new_mnt->mnt;
  1508. }
  1509. EXPORT_SYMBOL_GPL(clone_private_mount);
  1510. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1511. struct vfsmount *root)
  1512. {
  1513. struct mount *mnt;
  1514. int res = f(root, arg);
  1515. if (res)
  1516. return res;
  1517. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1518. res = f(&mnt->mnt, arg);
  1519. if (res)
  1520. return res;
  1521. }
  1522. return 0;
  1523. }
  1524. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1525. {
  1526. struct mount *p;
  1527. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1528. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1529. mnt_release_group_id(p);
  1530. }
  1531. }
  1532. static int invent_group_ids(struct mount *mnt, bool recurse)
  1533. {
  1534. struct mount *p;
  1535. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1536. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1537. int err = mnt_alloc_group_id(p);
  1538. if (err) {
  1539. cleanup_group_ids(mnt, p);
  1540. return err;
  1541. }
  1542. }
  1543. }
  1544. return 0;
  1545. }
  1546. /*
  1547. * @source_mnt : mount tree to be attached
  1548. * @nd : place the mount tree @source_mnt is attached
  1549. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1550. * store the parent mount and mountpoint dentry.
  1551. * (done when source_mnt is moved)
  1552. *
  1553. * NOTE: in the table below explains the semantics when a source mount
  1554. * of a given type is attached to a destination mount of a given type.
  1555. * ---------------------------------------------------------------------------
  1556. * | BIND MOUNT OPERATION |
  1557. * |**************************************************************************
  1558. * | source-->| shared | private | slave | unbindable |
  1559. * | dest | | | | |
  1560. * | | | | | | |
  1561. * | v | | | | |
  1562. * |**************************************************************************
  1563. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1564. * | | | | | |
  1565. * |non-shared| shared (+) | private | slave (*) | invalid |
  1566. * ***************************************************************************
  1567. * A bind operation clones the source mount and mounts the clone on the
  1568. * destination mount.
  1569. *
  1570. * (++) the cloned mount is propagated to all the mounts in the propagation
  1571. * tree of the destination mount and the cloned mount is added to
  1572. * the peer group of the source mount.
  1573. * (+) the cloned mount is created under the destination mount and is marked
  1574. * as shared. The cloned mount is added to the peer group of the source
  1575. * mount.
  1576. * (+++) the mount is propagated to all the mounts in the propagation tree
  1577. * of the destination mount and the cloned mount is made slave
  1578. * of the same master as that of the source mount. The cloned mount
  1579. * is marked as 'shared and slave'.
  1580. * (*) the cloned mount is made a slave of the same master as that of the
  1581. * source mount.
  1582. *
  1583. * ---------------------------------------------------------------------------
  1584. * | MOVE MOUNT OPERATION |
  1585. * |**************************************************************************
  1586. * | source-->| shared | private | slave | unbindable |
  1587. * | dest | | | | |
  1588. * | | | | | | |
  1589. * | v | | | | |
  1590. * |**************************************************************************
  1591. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1592. * | | | | | |
  1593. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1594. * ***************************************************************************
  1595. *
  1596. * (+) the mount is moved to the destination. And is then propagated to
  1597. * all the mounts in the propagation tree of the destination mount.
  1598. * (+*) the mount is moved to the destination.
  1599. * (+++) the mount is moved to the destination and is then propagated to
  1600. * all the mounts belonging to the destination mount's propagation tree.
  1601. * the mount is marked as 'shared and slave'.
  1602. * (*) the mount continues to be a slave at the new location.
  1603. *
  1604. * if the source mount is a tree, the operations explained above is
  1605. * applied to each mount in the tree.
  1606. * Must be called without spinlocks held, since this function can sleep
  1607. * in allocations.
  1608. */
  1609. static int attach_recursive_mnt(struct mount *source_mnt,
  1610. struct mount *dest_mnt,
  1611. struct mountpoint *dest_mp,
  1612. struct path *parent_path)
  1613. {
  1614. HLIST_HEAD(tree_list);
  1615. struct mount *child, *p;
  1616. struct hlist_node *n;
  1617. int err;
  1618. if (IS_MNT_SHARED(dest_mnt)) {
  1619. err = invent_group_ids(source_mnt, true);
  1620. if (err)
  1621. goto out;
  1622. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1623. lock_mount_hash();
  1624. if (err)
  1625. goto out_cleanup_ids;
  1626. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1627. set_mnt_shared(p);
  1628. } else {
  1629. lock_mount_hash();
  1630. }
  1631. if (parent_path) {
  1632. detach_mnt(source_mnt, parent_path);
  1633. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1634. touch_mnt_namespace(source_mnt->mnt_ns);
  1635. } else {
  1636. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1637. commit_tree(source_mnt, NULL);
  1638. }
  1639. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1640. struct mount *q;
  1641. hlist_del_init(&child->mnt_hash);
  1642. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1643. child->mnt_mountpoint);
  1644. commit_tree(child, q);
  1645. }
  1646. unlock_mount_hash();
  1647. return 0;
  1648. out_cleanup_ids:
  1649. while (!hlist_empty(&tree_list)) {
  1650. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1651. umount_tree(child, 0);
  1652. }
  1653. unlock_mount_hash();
  1654. cleanup_group_ids(source_mnt, NULL);
  1655. out:
  1656. return err;
  1657. }
  1658. static struct mountpoint *lock_mount(struct path *path)
  1659. {
  1660. struct vfsmount *mnt;
  1661. struct dentry *dentry = path->dentry;
  1662. retry:
  1663. mutex_lock(&dentry->d_inode->i_mutex);
  1664. if (unlikely(cant_mount(dentry))) {
  1665. mutex_unlock(&dentry->d_inode->i_mutex);
  1666. return ERR_PTR(-ENOENT);
  1667. }
  1668. namespace_lock();
  1669. mnt = lookup_mnt(path);
  1670. if (likely(!mnt)) {
  1671. struct mountpoint *mp = lookup_mountpoint(dentry);
  1672. if (!mp)
  1673. mp = new_mountpoint(dentry);
  1674. if (IS_ERR(mp)) {
  1675. namespace_unlock();
  1676. mutex_unlock(&dentry->d_inode->i_mutex);
  1677. return mp;
  1678. }
  1679. return mp;
  1680. }
  1681. namespace_unlock();
  1682. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1683. path_put(path);
  1684. path->mnt = mnt;
  1685. dentry = path->dentry = dget(mnt->mnt_root);
  1686. goto retry;
  1687. }
  1688. static void unlock_mount(struct mountpoint *where)
  1689. {
  1690. struct dentry *dentry = where->m_dentry;
  1691. put_mountpoint(where);
  1692. namespace_unlock();
  1693. mutex_unlock(&dentry->d_inode->i_mutex);
  1694. }
  1695. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1696. {
  1697. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1698. return -EINVAL;
  1699. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1700. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1701. return -ENOTDIR;
  1702. return attach_recursive_mnt(mnt, p, mp, NULL);
  1703. }
  1704. /*
  1705. * Sanity check the flags to change_mnt_propagation.
  1706. */
  1707. static int flags_to_propagation_type(int flags)
  1708. {
  1709. int type = flags & ~(MS_REC | MS_SILENT);
  1710. /* Fail if any non-propagation flags are set */
  1711. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1712. return 0;
  1713. /* Only one propagation flag should be set */
  1714. if (!is_power_of_2(type))
  1715. return 0;
  1716. return type;
  1717. }
  1718. /*
  1719. * recursively change the type of the mountpoint.
  1720. */
  1721. static int do_change_type(struct path *path, int flag)
  1722. {
  1723. struct mount *m;
  1724. struct mount *mnt = real_mount(path->mnt);
  1725. int recurse = flag & MS_REC;
  1726. int type;
  1727. int err = 0;
  1728. if (path->dentry != path->mnt->mnt_root)
  1729. return -EINVAL;
  1730. type = flags_to_propagation_type(flag);
  1731. if (!type)
  1732. return -EINVAL;
  1733. namespace_lock();
  1734. if (type == MS_SHARED) {
  1735. err = invent_group_ids(mnt, recurse);
  1736. if (err)
  1737. goto out_unlock;
  1738. }
  1739. lock_mount_hash();
  1740. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1741. change_mnt_propagation(m, type);
  1742. unlock_mount_hash();
  1743. out_unlock:
  1744. namespace_unlock();
  1745. return err;
  1746. }
  1747. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1748. {
  1749. struct mount *child;
  1750. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1751. if (!is_subdir(child->mnt_mountpoint, dentry))
  1752. continue;
  1753. if (child->mnt.mnt_flags & MNT_LOCKED)
  1754. return true;
  1755. }
  1756. return false;
  1757. }
  1758. /*
  1759. * do loopback mount.
  1760. */
  1761. static int do_loopback(struct path *path, const char *old_name,
  1762. int recurse)
  1763. {
  1764. struct path old_path;
  1765. struct mount *mnt = NULL, *old, *parent;
  1766. struct mountpoint *mp;
  1767. int err;
  1768. if (!old_name || !*old_name)
  1769. return -EINVAL;
  1770. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1771. if (err)
  1772. return err;
  1773. err = -EINVAL;
  1774. if (mnt_ns_loop(old_path.dentry))
  1775. goto out;
  1776. mp = lock_mount(path);
  1777. err = PTR_ERR(mp);
  1778. if (IS_ERR(mp))
  1779. goto out;
  1780. old = real_mount(old_path.mnt);
  1781. parent = real_mount(path->mnt);
  1782. err = -EINVAL;
  1783. if (IS_MNT_UNBINDABLE(old))
  1784. goto out2;
  1785. if (!check_mnt(parent))
  1786. goto out2;
  1787. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1788. goto out2;
  1789. if (!recurse && has_locked_children(old, old_path.dentry))
  1790. goto out2;
  1791. if (recurse)
  1792. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1793. else
  1794. mnt = clone_mnt(old, old_path.dentry, 0);
  1795. if (IS_ERR(mnt)) {
  1796. err = PTR_ERR(mnt);
  1797. goto out2;
  1798. }
  1799. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1800. err = graft_tree(mnt, parent, mp);
  1801. if (err) {
  1802. lock_mount_hash();
  1803. umount_tree(mnt, 0);
  1804. unlock_mount_hash();
  1805. }
  1806. out2:
  1807. unlock_mount(mp);
  1808. out:
  1809. path_put(&old_path);
  1810. return err;
  1811. }
  1812. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1813. {
  1814. int error = 0;
  1815. int readonly_request = 0;
  1816. if (ms_flags & MS_RDONLY)
  1817. readonly_request = 1;
  1818. if (readonly_request == __mnt_is_readonly(mnt))
  1819. return 0;
  1820. if (readonly_request)
  1821. error = mnt_make_readonly(real_mount(mnt));
  1822. else
  1823. __mnt_unmake_readonly(real_mount(mnt));
  1824. return error;
  1825. }
  1826. /*
  1827. * change filesystem flags. dir should be a physical root of filesystem.
  1828. * If you've mounted a non-root directory somewhere and want to do remount
  1829. * on it - tough luck.
  1830. */
  1831. static int do_remount(struct path *path, int flags, int mnt_flags,
  1832. void *data)
  1833. {
  1834. int err;
  1835. struct super_block *sb = path->mnt->mnt_sb;
  1836. struct mount *mnt = real_mount(path->mnt);
  1837. if (!check_mnt(mnt))
  1838. return -EINVAL;
  1839. if (path->dentry != path->mnt->mnt_root)
  1840. return -EINVAL;
  1841. /* Don't allow changing of locked mnt flags.
  1842. *
  1843. * No locks need to be held here while testing the various
  1844. * MNT_LOCK flags because those flags can never be cleared
  1845. * once they are set.
  1846. */
  1847. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1848. !(mnt_flags & MNT_READONLY)) {
  1849. return -EPERM;
  1850. }
  1851. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1852. !(mnt_flags & MNT_NODEV)) {
  1853. return -EPERM;
  1854. }
  1855. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1856. !(mnt_flags & MNT_NOSUID)) {
  1857. return -EPERM;
  1858. }
  1859. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1860. !(mnt_flags & MNT_NOEXEC)) {
  1861. return -EPERM;
  1862. }
  1863. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1864. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1865. return -EPERM;
  1866. }
  1867. err = security_sb_remount(sb, data);
  1868. if (err)
  1869. return err;
  1870. down_write(&sb->s_umount);
  1871. if (flags & MS_BIND)
  1872. err = change_mount_flags(path->mnt, flags);
  1873. else if (!capable(CAP_SYS_ADMIN))
  1874. err = -EPERM;
  1875. else
  1876. err = do_remount_sb(sb, flags, data, 0);
  1877. if (!err) {
  1878. lock_mount_hash();
  1879. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1880. mnt->mnt.mnt_flags = mnt_flags;
  1881. touch_mnt_namespace(mnt->mnt_ns);
  1882. unlock_mount_hash();
  1883. }
  1884. up_write(&sb->s_umount);
  1885. return err;
  1886. }
  1887. static inline int tree_contains_unbindable(struct mount *mnt)
  1888. {
  1889. struct mount *p;
  1890. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1891. if (IS_MNT_UNBINDABLE(p))
  1892. return 1;
  1893. }
  1894. return 0;
  1895. }
  1896. static int do_move_mount(struct path *path, const char *old_name)
  1897. {
  1898. struct path old_path, parent_path;
  1899. struct mount *p;
  1900. struct mount *old;
  1901. struct mountpoint *mp;
  1902. int err;
  1903. if (!old_name || !*old_name)
  1904. return -EINVAL;
  1905. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1906. if (err)
  1907. return err;
  1908. mp = lock_mount(path);
  1909. err = PTR_ERR(mp);
  1910. if (IS_ERR(mp))
  1911. goto out;
  1912. old = real_mount(old_path.mnt);
  1913. p = real_mount(path->mnt);
  1914. err = -EINVAL;
  1915. if (!check_mnt(p) || !check_mnt(old))
  1916. goto out1;
  1917. if (old->mnt.mnt_flags & MNT_LOCKED)
  1918. goto out1;
  1919. err = -EINVAL;
  1920. if (old_path.dentry != old_path.mnt->mnt_root)
  1921. goto out1;
  1922. if (!mnt_has_parent(old))
  1923. goto out1;
  1924. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1925. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1926. goto out1;
  1927. /*
  1928. * Don't move a mount residing in a shared parent.
  1929. */
  1930. if (IS_MNT_SHARED(old->mnt_parent))
  1931. goto out1;
  1932. /*
  1933. * Don't move a mount tree containing unbindable mounts to a destination
  1934. * mount which is shared.
  1935. */
  1936. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1937. goto out1;
  1938. err = -ELOOP;
  1939. for (; mnt_has_parent(p); p = p->mnt_parent)
  1940. if (p == old)
  1941. goto out1;
  1942. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1943. if (err)
  1944. goto out1;
  1945. /* if the mount is moved, it should no longer be expire
  1946. * automatically */
  1947. list_del_init(&old->mnt_expire);
  1948. out1:
  1949. unlock_mount(mp);
  1950. out:
  1951. if (!err)
  1952. path_put(&parent_path);
  1953. path_put(&old_path);
  1954. return err;
  1955. }
  1956. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1957. {
  1958. int err;
  1959. const char *subtype = strchr(fstype, '.');
  1960. if (subtype) {
  1961. subtype++;
  1962. err = -EINVAL;
  1963. if (!subtype[0])
  1964. goto err;
  1965. } else
  1966. subtype = "";
  1967. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1968. err = -ENOMEM;
  1969. if (!mnt->mnt_sb->s_subtype)
  1970. goto err;
  1971. return mnt;
  1972. err:
  1973. mntput(mnt);
  1974. return ERR_PTR(err);
  1975. }
  1976. /*
  1977. * add a mount into a namespace's mount tree
  1978. */
  1979. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1980. {
  1981. struct mountpoint *mp;
  1982. struct mount *parent;
  1983. int err;
  1984. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1985. mp = lock_mount(path);
  1986. if (IS_ERR(mp))
  1987. return PTR_ERR(mp);
  1988. parent = real_mount(path->mnt);
  1989. err = -EINVAL;
  1990. if (unlikely(!check_mnt(parent))) {
  1991. /* that's acceptable only for automounts done in private ns */
  1992. if (!(mnt_flags & MNT_SHRINKABLE))
  1993. goto unlock;
  1994. /* ... and for those we'd better have mountpoint still alive */
  1995. if (!parent->mnt_ns)
  1996. goto unlock;
  1997. }
  1998. /* Refuse the same filesystem on the same mount point */
  1999. err = -EBUSY;
  2000. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2001. path->mnt->mnt_root == path->dentry)
  2002. goto unlock;
  2003. err = -EINVAL;
  2004. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  2005. goto unlock;
  2006. newmnt->mnt.mnt_flags = mnt_flags;
  2007. err = graft_tree(newmnt, parent, mp);
  2008. unlock:
  2009. unlock_mount(mp);
  2010. return err;
  2011. }
  2012. /*
  2013. * create a new mount for userspace and request it to be added into the
  2014. * namespace's tree
  2015. */
  2016. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2017. int mnt_flags, const char *name, void *data)
  2018. {
  2019. struct file_system_type *type;
  2020. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  2021. struct vfsmount *mnt;
  2022. int err;
  2023. if (!fstype)
  2024. return -EINVAL;
  2025. type = get_fs_type(fstype);
  2026. if (!type)
  2027. return -ENODEV;
  2028. if (user_ns != &init_user_ns) {
  2029. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2030. put_filesystem(type);
  2031. return -EPERM;
  2032. }
  2033. /* Only in special cases allow devices from mounts
  2034. * created outside the initial user namespace.
  2035. */
  2036. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2037. flags |= MS_NODEV;
  2038. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2039. }
  2040. }
  2041. mnt = vfs_kern_mount(type, flags, name, data);
  2042. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2043. !mnt->mnt_sb->s_subtype)
  2044. mnt = fs_set_subtype(mnt, fstype);
  2045. put_filesystem(type);
  2046. if (IS_ERR(mnt))
  2047. return PTR_ERR(mnt);
  2048. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2049. if (err)
  2050. mntput(mnt);
  2051. return err;
  2052. }
  2053. int finish_automount(struct vfsmount *m, struct path *path)
  2054. {
  2055. struct mount *mnt = real_mount(m);
  2056. int err;
  2057. /* The new mount record should have at least 2 refs to prevent it being
  2058. * expired before we get a chance to add it
  2059. */
  2060. BUG_ON(mnt_get_count(mnt) < 2);
  2061. if (m->mnt_sb == path->mnt->mnt_sb &&
  2062. m->mnt_root == path->dentry) {
  2063. err = -ELOOP;
  2064. goto fail;
  2065. }
  2066. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2067. if (!err)
  2068. return 0;
  2069. fail:
  2070. /* remove m from any expiration list it may be on */
  2071. if (!list_empty(&mnt->mnt_expire)) {
  2072. namespace_lock();
  2073. list_del_init(&mnt->mnt_expire);
  2074. namespace_unlock();
  2075. }
  2076. mntput(m);
  2077. mntput(m);
  2078. return err;
  2079. }
  2080. /**
  2081. * mnt_set_expiry - Put a mount on an expiration list
  2082. * @mnt: The mount to list.
  2083. * @expiry_list: The list to add the mount to.
  2084. */
  2085. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2086. {
  2087. namespace_lock();
  2088. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2089. namespace_unlock();
  2090. }
  2091. EXPORT_SYMBOL(mnt_set_expiry);
  2092. /*
  2093. * process a list of expirable mountpoints with the intent of discarding any
  2094. * mountpoints that aren't in use and haven't been touched since last we came
  2095. * here
  2096. */
  2097. void mark_mounts_for_expiry(struct list_head *mounts)
  2098. {
  2099. struct mount *mnt, *next;
  2100. LIST_HEAD(graveyard);
  2101. if (list_empty(mounts))
  2102. return;
  2103. namespace_lock();
  2104. lock_mount_hash();
  2105. /* extract from the expiration list every vfsmount that matches the
  2106. * following criteria:
  2107. * - only referenced by its parent vfsmount
  2108. * - still marked for expiry (marked on the last call here; marks are
  2109. * cleared by mntput())
  2110. */
  2111. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2112. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2113. propagate_mount_busy(mnt, 1))
  2114. continue;
  2115. list_move(&mnt->mnt_expire, &graveyard);
  2116. }
  2117. while (!list_empty(&graveyard)) {
  2118. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2119. touch_mnt_namespace(mnt->mnt_ns);
  2120. umount_tree(mnt, 1);
  2121. }
  2122. unlock_mount_hash();
  2123. namespace_unlock();
  2124. }
  2125. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2126. /*
  2127. * Ripoff of 'select_parent()'
  2128. *
  2129. * search the list of submounts for a given mountpoint, and move any
  2130. * shrinkable submounts to the 'graveyard' list.
  2131. */
  2132. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2133. {
  2134. struct mount *this_parent = parent;
  2135. struct list_head *next;
  2136. int found = 0;
  2137. repeat:
  2138. next = this_parent->mnt_mounts.next;
  2139. resume:
  2140. while (next != &this_parent->mnt_mounts) {
  2141. struct list_head *tmp = next;
  2142. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2143. next = tmp->next;
  2144. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2145. continue;
  2146. /*
  2147. * Descend a level if the d_mounts list is non-empty.
  2148. */
  2149. if (!list_empty(&mnt->mnt_mounts)) {
  2150. this_parent = mnt;
  2151. goto repeat;
  2152. }
  2153. if (!propagate_mount_busy(mnt, 1)) {
  2154. list_move_tail(&mnt->mnt_expire, graveyard);
  2155. found++;
  2156. }
  2157. }
  2158. /*
  2159. * All done at this level ... ascend and resume the search
  2160. */
  2161. if (this_parent != parent) {
  2162. next = this_parent->mnt_child.next;
  2163. this_parent = this_parent->mnt_parent;
  2164. goto resume;
  2165. }
  2166. return found;
  2167. }
  2168. /*
  2169. * process a list of expirable mountpoints with the intent of discarding any
  2170. * submounts of a specific parent mountpoint
  2171. *
  2172. * mount_lock must be held for write
  2173. */
  2174. static void shrink_submounts(struct mount *mnt)
  2175. {
  2176. LIST_HEAD(graveyard);
  2177. struct mount *m;
  2178. /* extract submounts of 'mountpoint' from the expiration list */
  2179. while (select_submounts(mnt, &graveyard)) {
  2180. while (!list_empty(&graveyard)) {
  2181. m = list_first_entry(&graveyard, struct mount,
  2182. mnt_expire);
  2183. touch_mnt_namespace(m->mnt_ns);
  2184. umount_tree(m, 1);
  2185. }
  2186. }
  2187. }
  2188. /*
  2189. * Some copy_from_user() implementations do not return the exact number of
  2190. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2191. * Note that this function differs from copy_from_user() in that it will oops
  2192. * on bad values of `to', rather than returning a short copy.
  2193. */
  2194. static long exact_copy_from_user(void *to, const void __user * from,
  2195. unsigned long n)
  2196. {
  2197. char *t = to;
  2198. const char __user *f = from;
  2199. char c;
  2200. if (!access_ok(VERIFY_READ, from, n))
  2201. return n;
  2202. while (n) {
  2203. if (__get_user(c, f)) {
  2204. memset(t, 0, n);
  2205. break;
  2206. }
  2207. *t++ = c;
  2208. f++;
  2209. n--;
  2210. }
  2211. return n;
  2212. }
  2213. int copy_mount_options(const void __user * data, unsigned long *where)
  2214. {
  2215. int i;
  2216. unsigned long page;
  2217. unsigned long size;
  2218. *where = 0;
  2219. if (!data)
  2220. return 0;
  2221. if (!(page = __get_free_page(GFP_KERNEL)))
  2222. return -ENOMEM;
  2223. /* We only care that *some* data at the address the user
  2224. * gave us is valid. Just in case, we'll zero
  2225. * the remainder of the page.
  2226. */
  2227. /* copy_from_user cannot cross TASK_SIZE ! */
  2228. size = TASK_SIZE - (unsigned long)data;
  2229. if (size > PAGE_SIZE)
  2230. size = PAGE_SIZE;
  2231. i = size - exact_copy_from_user((void *)page, data, size);
  2232. if (!i) {
  2233. free_page(page);
  2234. return -EFAULT;
  2235. }
  2236. if (i != PAGE_SIZE)
  2237. memset((char *)page + i, 0, PAGE_SIZE - i);
  2238. *where = page;
  2239. return 0;
  2240. }
  2241. char *copy_mount_string(const void __user *data)
  2242. {
  2243. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2244. }
  2245. /*
  2246. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2247. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2248. *
  2249. * data is a (void *) that can point to any structure up to
  2250. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2251. * information (or be NULL).
  2252. *
  2253. * Pre-0.97 versions of mount() didn't have a flags word.
  2254. * When the flags word was introduced its top half was required
  2255. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2256. * Therefore, if this magic number is present, it carries no information
  2257. * and must be discarded.
  2258. */
  2259. long do_mount(const char *dev_name, const char __user *dir_name,
  2260. const char *type_page, unsigned long flags, void *data_page)
  2261. {
  2262. struct path path;
  2263. int retval = 0;
  2264. int mnt_flags = 0;
  2265. /* Discard magic */
  2266. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2267. flags &= ~MS_MGC_MSK;
  2268. /* Basic sanity checks */
  2269. if (data_page)
  2270. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2271. /* ... and get the mountpoint */
  2272. retval = user_path(dir_name, &path);
  2273. if (retval)
  2274. return retval;
  2275. retval = security_sb_mount(dev_name, &path,
  2276. type_page, flags, data_page);
  2277. if (!retval && !may_mount())
  2278. retval = -EPERM;
  2279. if (retval)
  2280. goto dput_out;
  2281. /* Default to relatime unless overriden */
  2282. if (!(flags & MS_NOATIME))
  2283. mnt_flags |= MNT_RELATIME;
  2284. /* Separate the per-mountpoint flags */
  2285. if (flags & MS_NOSUID)
  2286. mnt_flags |= MNT_NOSUID;
  2287. if (flags & MS_NODEV)
  2288. mnt_flags |= MNT_NODEV;
  2289. if (flags & MS_NOEXEC)
  2290. mnt_flags |= MNT_NOEXEC;
  2291. if (flags & MS_NOATIME)
  2292. mnt_flags |= MNT_NOATIME;
  2293. if (flags & MS_NODIRATIME)
  2294. mnt_flags |= MNT_NODIRATIME;
  2295. if (flags & MS_STRICTATIME)
  2296. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2297. if (flags & MS_RDONLY)
  2298. mnt_flags |= MNT_READONLY;
  2299. /* The default atime for remount is preservation */
  2300. if ((flags & MS_REMOUNT) &&
  2301. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2302. MS_STRICTATIME)) == 0)) {
  2303. mnt_flags &= ~MNT_ATIME_MASK;
  2304. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2305. }
  2306. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2307. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2308. MS_STRICTATIME);
  2309. if (flags & MS_REMOUNT)
  2310. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2311. data_page);
  2312. else if (flags & MS_BIND)
  2313. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2314. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2315. retval = do_change_type(&path, flags);
  2316. else if (flags & MS_MOVE)
  2317. retval = do_move_mount(&path, dev_name);
  2318. else
  2319. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2320. dev_name, data_page);
  2321. dput_out:
  2322. path_put(&path);
  2323. return retval;
  2324. }
  2325. static void free_mnt_ns(struct mnt_namespace *ns)
  2326. {
  2327. ns_free_inum(&ns->ns);
  2328. put_user_ns(ns->user_ns);
  2329. kfree(ns);
  2330. }
  2331. /*
  2332. * Assign a sequence number so we can detect when we attempt to bind
  2333. * mount a reference to an older mount namespace into the current
  2334. * mount namespace, preventing reference counting loops. A 64bit
  2335. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2336. * is effectively never, so we can ignore the possibility.
  2337. */
  2338. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2339. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2340. {
  2341. struct mnt_namespace *new_ns;
  2342. int ret;
  2343. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2344. if (!new_ns)
  2345. return ERR_PTR(-ENOMEM);
  2346. ret = ns_alloc_inum(&new_ns->ns);
  2347. if (ret) {
  2348. kfree(new_ns);
  2349. return ERR_PTR(ret);
  2350. }
  2351. new_ns->ns.ops = &mntns_operations;
  2352. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2353. atomic_set(&new_ns->count, 1);
  2354. new_ns->root = NULL;
  2355. INIT_LIST_HEAD(&new_ns->list);
  2356. init_waitqueue_head(&new_ns->poll);
  2357. new_ns->event = 0;
  2358. new_ns->user_ns = get_user_ns(user_ns);
  2359. return new_ns;
  2360. }
  2361. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2362. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2363. {
  2364. struct mnt_namespace *new_ns;
  2365. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2366. struct mount *p, *q;
  2367. struct mount *old;
  2368. struct mount *new;
  2369. int copy_flags;
  2370. BUG_ON(!ns);
  2371. if (likely(!(flags & CLONE_NEWNS))) {
  2372. get_mnt_ns(ns);
  2373. return ns;
  2374. }
  2375. old = ns->root;
  2376. new_ns = alloc_mnt_ns(user_ns);
  2377. if (IS_ERR(new_ns))
  2378. return new_ns;
  2379. namespace_lock();
  2380. /* First pass: copy the tree topology */
  2381. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2382. if (user_ns != ns->user_ns)
  2383. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2384. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2385. if (IS_ERR(new)) {
  2386. namespace_unlock();
  2387. free_mnt_ns(new_ns);
  2388. return ERR_CAST(new);
  2389. }
  2390. new_ns->root = new;
  2391. list_add_tail(&new_ns->list, &new->mnt_list);
  2392. /*
  2393. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2394. * as belonging to new namespace. We have already acquired a private
  2395. * fs_struct, so tsk->fs->lock is not needed.
  2396. */
  2397. p = old;
  2398. q = new;
  2399. while (p) {
  2400. q->mnt_ns = new_ns;
  2401. if (new_fs) {
  2402. if (&p->mnt == new_fs->root.mnt) {
  2403. new_fs->root.mnt = mntget(&q->mnt);
  2404. rootmnt = &p->mnt;
  2405. }
  2406. if (&p->mnt == new_fs->pwd.mnt) {
  2407. new_fs->pwd.mnt = mntget(&q->mnt);
  2408. pwdmnt = &p->mnt;
  2409. }
  2410. }
  2411. p = next_mnt(p, old);
  2412. q = next_mnt(q, new);
  2413. if (!q)
  2414. break;
  2415. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2416. p = next_mnt(p, old);
  2417. }
  2418. namespace_unlock();
  2419. if (rootmnt)
  2420. mntput(rootmnt);
  2421. if (pwdmnt)
  2422. mntput(pwdmnt);
  2423. return new_ns;
  2424. }
  2425. /**
  2426. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2427. * @mnt: pointer to the new root filesystem mountpoint
  2428. */
  2429. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2430. {
  2431. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2432. if (!IS_ERR(new_ns)) {
  2433. struct mount *mnt = real_mount(m);
  2434. mnt->mnt_ns = new_ns;
  2435. new_ns->root = mnt;
  2436. list_add(&mnt->mnt_list, &new_ns->list);
  2437. } else {
  2438. mntput(m);
  2439. }
  2440. return new_ns;
  2441. }
  2442. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2443. {
  2444. struct mnt_namespace *ns;
  2445. struct super_block *s;
  2446. struct path path;
  2447. int err;
  2448. ns = create_mnt_ns(mnt);
  2449. if (IS_ERR(ns))
  2450. return ERR_CAST(ns);
  2451. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2452. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2453. put_mnt_ns(ns);
  2454. if (err)
  2455. return ERR_PTR(err);
  2456. /* trade a vfsmount reference for active sb one */
  2457. s = path.mnt->mnt_sb;
  2458. atomic_inc(&s->s_active);
  2459. mntput(path.mnt);
  2460. /* lock the sucker */
  2461. down_write(&s->s_umount);
  2462. /* ... and return the root of (sub)tree on it */
  2463. return path.dentry;
  2464. }
  2465. EXPORT_SYMBOL(mount_subtree);
  2466. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2467. char __user *, type, unsigned long, flags, void __user *, data)
  2468. {
  2469. int ret;
  2470. char *kernel_type;
  2471. char *kernel_dev;
  2472. unsigned long data_page;
  2473. kernel_type = copy_mount_string(type);
  2474. ret = PTR_ERR(kernel_type);
  2475. if (IS_ERR(kernel_type))
  2476. goto out_type;
  2477. kernel_dev = copy_mount_string(dev_name);
  2478. ret = PTR_ERR(kernel_dev);
  2479. if (IS_ERR(kernel_dev))
  2480. goto out_dev;
  2481. ret = copy_mount_options(data, &data_page);
  2482. if (ret < 0)
  2483. goto out_data;
  2484. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2485. (void *) data_page);
  2486. free_page(data_page);
  2487. out_data:
  2488. kfree(kernel_dev);
  2489. out_dev:
  2490. kfree(kernel_type);
  2491. out_type:
  2492. return ret;
  2493. }
  2494. /*
  2495. * Return true if path is reachable from root
  2496. *
  2497. * namespace_sem or mount_lock is held
  2498. */
  2499. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2500. const struct path *root)
  2501. {
  2502. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2503. dentry = mnt->mnt_mountpoint;
  2504. mnt = mnt->mnt_parent;
  2505. }
  2506. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2507. }
  2508. int path_is_under(struct path *path1, struct path *path2)
  2509. {
  2510. int res;
  2511. read_seqlock_excl(&mount_lock);
  2512. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2513. read_sequnlock_excl(&mount_lock);
  2514. return res;
  2515. }
  2516. EXPORT_SYMBOL(path_is_under);
  2517. /*
  2518. * pivot_root Semantics:
  2519. * Moves the root file system of the current process to the directory put_old,
  2520. * makes new_root as the new root file system of the current process, and sets
  2521. * root/cwd of all processes which had them on the current root to new_root.
  2522. *
  2523. * Restrictions:
  2524. * The new_root and put_old must be directories, and must not be on the
  2525. * same file system as the current process root. The put_old must be
  2526. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2527. * pointed to by put_old must yield the same directory as new_root. No other
  2528. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2529. *
  2530. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2531. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2532. * in this situation.
  2533. *
  2534. * Notes:
  2535. * - we don't move root/cwd if they are not at the root (reason: if something
  2536. * cared enough to change them, it's probably wrong to force them elsewhere)
  2537. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2538. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2539. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2540. * first.
  2541. */
  2542. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2543. const char __user *, put_old)
  2544. {
  2545. struct path new, old, parent_path, root_parent, root;
  2546. struct mount *new_mnt, *root_mnt, *old_mnt;
  2547. struct mountpoint *old_mp, *root_mp;
  2548. int error;
  2549. if (!may_mount())
  2550. return -EPERM;
  2551. error = user_path_dir(new_root, &new);
  2552. if (error)
  2553. goto out0;
  2554. error = user_path_dir(put_old, &old);
  2555. if (error)
  2556. goto out1;
  2557. error = security_sb_pivotroot(&old, &new);
  2558. if (error)
  2559. goto out2;
  2560. get_fs_root(current->fs, &root);
  2561. old_mp = lock_mount(&old);
  2562. error = PTR_ERR(old_mp);
  2563. if (IS_ERR(old_mp))
  2564. goto out3;
  2565. error = -EINVAL;
  2566. new_mnt = real_mount(new.mnt);
  2567. root_mnt = real_mount(root.mnt);
  2568. old_mnt = real_mount(old.mnt);
  2569. if (IS_MNT_SHARED(old_mnt) ||
  2570. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2571. IS_MNT_SHARED(root_mnt->mnt_parent))
  2572. goto out4;
  2573. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2574. goto out4;
  2575. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2576. goto out4;
  2577. error = -ENOENT;
  2578. if (d_unlinked(new.dentry))
  2579. goto out4;
  2580. error = -EBUSY;
  2581. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2582. goto out4; /* loop, on the same file system */
  2583. error = -EINVAL;
  2584. if (root.mnt->mnt_root != root.dentry)
  2585. goto out4; /* not a mountpoint */
  2586. if (!mnt_has_parent(root_mnt))
  2587. goto out4; /* not attached */
  2588. root_mp = root_mnt->mnt_mp;
  2589. if (new.mnt->mnt_root != new.dentry)
  2590. goto out4; /* not a mountpoint */
  2591. if (!mnt_has_parent(new_mnt))
  2592. goto out4; /* not attached */
  2593. /* make sure we can reach put_old from new_root */
  2594. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2595. goto out4;
  2596. /* make certain new is below the root */
  2597. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2598. goto out4;
  2599. root_mp->m_count++; /* pin it so it won't go away */
  2600. lock_mount_hash();
  2601. detach_mnt(new_mnt, &parent_path);
  2602. detach_mnt(root_mnt, &root_parent);
  2603. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2604. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2605. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2606. }
  2607. /* mount old root on put_old */
  2608. attach_mnt(root_mnt, old_mnt, old_mp);
  2609. /* mount new_root on / */
  2610. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2611. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2612. unlock_mount_hash();
  2613. chroot_fs_refs(&root, &new);
  2614. put_mountpoint(root_mp);
  2615. error = 0;
  2616. out4:
  2617. unlock_mount(old_mp);
  2618. if (!error) {
  2619. path_put(&root_parent);
  2620. path_put(&parent_path);
  2621. }
  2622. out3:
  2623. path_put(&root);
  2624. out2:
  2625. path_put(&old);
  2626. out1:
  2627. path_put(&new);
  2628. out0:
  2629. return error;
  2630. }
  2631. static void __init init_mount_tree(void)
  2632. {
  2633. struct vfsmount *mnt;
  2634. struct mnt_namespace *ns;
  2635. struct path root;
  2636. struct file_system_type *type;
  2637. type = get_fs_type("rootfs");
  2638. if (!type)
  2639. panic("Can't find rootfs type");
  2640. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2641. put_filesystem(type);
  2642. if (IS_ERR(mnt))
  2643. panic("Can't create rootfs");
  2644. ns = create_mnt_ns(mnt);
  2645. if (IS_ERR(ns))
  2646. panic("Can't allocate initial namespace");
  2647. init_task.nsproxy->mnt_ns = ns;
  2648. get_mnt_ns(ns);
  2649. root.mnt = mnt;
  2650. root.dentry = mnt->mnt_root;
  2651. set_fs_pwd(current->fs, &root);
  2652. set_fs_root(current->fs, &root);
  2653. }
  2654. void __init mnt_init(void)
  2655. {
  2656. unsigned u;
  2657. int err;
  2658. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2659. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2660. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2661. sizeof(struct hlist_head),
  2662. mhash_entries, 19,
  2663. 0,
  2664. &m_hash_shift, &m_hash_mask, 0, 0);
  2665. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2666. sizeof(struct hlist_head),
  2667. mphash_entries, 19,
  2668. 0,
  2669. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2670. if (!mount_hashtable || !mountpoint_hashtable)
  2671. panic("Failed to allocate mount hash table\n");
  2672. for (u = 0; u <= m_hash_mask; u++)
  2673. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2674. for (u = 0; u <= mp_hash_mask; u++)
  2675. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2676. kernfs_init();
  2677. err = sysfs_init();
  2678. if (err)
  2679. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2680. __func__, err);
  2681. fs_kobj = kobject_create_and_add("fs", NULL);
  2682. if (!fs_kobj)
  2683. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2684. init_rootfs();
  2685. init_mount_tree();
  2686. }
  2687. void put_mnt_ns(struct mnt_namespace *ns)
  2688. {
  2689. if (!atomic_dec_and_test(&ns->count))
  2690. return;
  2691. drop_collected_mounts(&ns->root->mnt);
  2692. free_mnt_ns(ns);
  2693. }
  2694. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2695. {
  2696. struct vfsmount *mnt;
  2697. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2698. if (!IS_ERR(mnt)) {
  2699. /*
  2700. * it is a longterm mount, don't release mnt until
  2701. * we unmount before file sys is unregistered
  2702. */
  2703. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2704. }
  2705. return mnt;
  2706. }
  2707. EXPORT_SYMBOL_GPL(kern_mount_data);
  2708. void kern_unmount(struct vfsmount *mnt)
  2709. {
  2710. /* release long term mount so mount point can be released */
  2711. if (!IS_ERR_OR_NULL(mnt)) {
  2712. real_mount(mnt)->mnt_ns = NULL;
  2713. synchronize_rcu(); /* yecchhh... */
  2714. mntput(mnt);
  2715. }
  2716. }
  2717. EXPORT_SYMBOL(kern_unmount);
  2718. bool our_mnt(struct vfsmount *mnt)
  2719. {
  2720. return check_mnt(real_mount(mnt));
  2721. }
  2722. bool current_chrooted(void)
  2723. {
  2724. /* Does the current process have a non-standard root */
  2725. struct path ns_root;
  2726. struct path fs_root;
  2727. bool chrooted;
  2728. /* Find the namespace root */
  2729. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2730. ns_root.dentry = ns_root.mnt->mnt_root;
  2731. path_get(&ns_root);
  2732. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2733. ;
  2734. get_fs_root(current->fs, &fs_root);
  2735. chrooted = !path_equal(&fs_root, &ns_root);
  2736. path_put(&fs_root);
  2737. path_put(&ns_root);
  2738. return chrooted;
  2739. }
  2740. bool fs_fully_visible(struct file_system_type *type)
  2741. {
  2742. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2743. struct mount *mnt;
  2744. bool visible = false;
  2745. if (unlikely(!ns))
  2746. return false;
  2747. down_read(&namespace_sem);
  2748. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2749. struct mount *child;
  2750. if (mnt->mnt.mnt_sb->s_type != type)
  2751. continue;
  2752. /* This mount is not fully visible if there are any child mounts
  2753. * that cover anything except for empty directories.
  2754. */
  2755. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2756. struct inode *inode = child->mnt_mountpoint->d_inode;
  2757. if (!S_ISDIR(inode->i_mode))
  2758. goto next;
  2759. if (inode->i_nlink > 2)
  2760. goto next;
  2761. }
  2762. visible = true;
  2763. goto found;
  2764. next: ;
  2765. }
  2766. found:
  2767. up_read(&namespace_sem);
  2768. return visible;
  2769. }
  2770. static struct ns_common *mntns_get(struct task_struct *task)
  2771. {
  2772. struct ns_common *ns = NULL;
  2773. struct nsproxy *nsproxy;
  2774. task_lock(task);
  2775. nsproxy = task->nsproxy;
  2776. if (nsproxy) {
  2777. ns = &nsproxy->mnt_ns->ns;
  2778. get_mnt_ns(to_mnt_ns(ns));
  2779. }
  2780. task_unlock(task);
  2781. return ns;
  2782. }
  2783. static void mntns_put(struct ns_common *ns)
  2784. {
  2785. put_mnt_ns(to_mnt_ns(ns));
  2786. }
  2787. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  2788. {
  2789. struct fs_struct *fs = current->fs;
  2790. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  2791. struct path root;
  2792. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2793. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2794. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2795. return -EPERM;
  2796. if (fs->users != 1)
  2797. return -EINVAL;
  2798. get_mnt_ns(mnt_ns);
  2799. put_mnt_ns(nsproxy->mnt_ns);
  2800. nsproxy->mnt_ns = mnt_ns;
  2801. /* Find the root */
  2802. root.mnt = &mnt_ns->root->mnt;
  2803. root.dentry = mnt_ns->root->mnt.mnt_root;
  2804. path_get(&root);
  2805. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2806. ;
  2807. /* Update the pwd and root */
  2808. set_fs_pwd(fs, &root);
  2809. set_fs_root(fs, &root);
  2810. path_put(&root);
  2811. return 0;
  2812. }
  2813. const struct proc_ns_operations mntns_operations = {
  2814. .name = "mnt",
  2815. .type = CLONE_NEWNS,
  2816. .get = mntns_get,
  2817. .put = mntns_put,
  2818. .install = mntns_install,
  2819. };