igb_main.c 221 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/bitops.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/slab.h>
  33. #include <net/checksum.h>
  34. #include <net/ip6_checksum.h>
  35. #include <linux/net_tstamp.h>
  36. #include <linux/mii.h>
  37. #include <linux/ethtool.h>
  38. #include <linux/if.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/pci.h>
  41. #include <linux/pci-aspm.h>
  42. #include <linux/delay.h>
  43. #include <linux/interrupt.h>
  44. #include <linux/ip.h>
  45. #include <linux/tcp.h>
  46. #include <linux/sctp.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/aer.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/pm_runtime.h>
  51. #include <linux/etherdevice.h>
  52. #ifdef CONFIG_IGB_DCA
  53. #include <linux/dca.h>
  54. #endif
  55. #include <linux/i2c.h>
  56. #include "igb.h"
  57. #define MAJ 5
  58. #define MIN 3
  59. #define BUILD 0
  60. #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  61. __stringify(BUILD) "-k"
  62. char igb_driver_name[] = "igb";
  63. char igb_driver_version[] = DRV_VERSION;
  64. static const char igb_driver_string[] =
  65. "Intel(R) Gigabit Ethernet Network Driver";
  66. static const char igb_copyright[] =
  67. "Copyright (c) 2007-2014 Intel Corporation.";
  68. static const struct e1000_info *igb_info_tbl[] = {
  69. [board_82575] = &e1000_82575_info,
  70. };
  71. static const struct pci_device_id igb_pci_tbl[] = {
  72. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  73. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  74. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  75. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  76. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  77. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  78. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  79. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  80. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  81. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  82. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  83. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  84. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  85. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  86. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  87. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  88. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  89. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  90. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  91. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  92. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  93. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  94. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  95. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  96. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  97. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  98. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  99. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  100. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  101. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  102. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  103. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  104. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  105. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  106. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  107. /* required last entry */
  108. {0, }
  109. };
  110. MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  111. static int igb_setup_all_tx_resources(struct igb_adapter *);
  112. static int igb_setup_all_rx_resources(struct igb_adapter *);
  113. static void igb_free_all_tx_resources(struct igb_adapter *);
  114. static void igb_free_all_rx_resources(struct igb_adapter *);
  115. static void igb_setup_mrqc(struct igb_adapter *);
  116. static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  117. static void igb_remove(struct pci_dev *pdev);
  118. static int igb_sw_init(struct igb_adapter *);
  119. int igb_open(struct net_device *);
  120. int igb_close(struct net_device *);
  121. static void igb_configure(struct igb_adapter *);
  122. static void igb_configure_tx(struct igb_adapter *);
  123. static void igb_configure_rx(struct igb_adapter *);
  124. static void igb_clean_all_tx_rings(struct igb_adapter *);
  125. static void igb_clean_all_rx_rings(struct igb_adapter *);
  126. static void igb_clean_tx_ring(struct igb_ring *);
  127. static void igb_clean_rx_ring(struct igb_ring *);
  128. static void igb_set_rx_mode(struct net_device *);
  129. static void igb_update_phy_info(unsigned long);
  130. static void igb_watchdog(unsigned long);
  131. static void igb_watchdog_task(struct work_struct *);
  132. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  133. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
  134. struct rtnl_link_stats64 *stats);
  135. static int igb_change_mtu(struct net_device *, int);
  136. static int igb_set_mac(struct net_device *, void *);
  137. static void igb_set_uta(struct igb_adapter *adapter, bool set);
  138. static irqreturn_t igb_intr(int irq, void *);
  139. static irqreturn_t igb_intr_msi(int irq, void *);
  140. static irqreturn_t igb_msix_other(int irq, void *);
  141. static irqreturn_t igb_msix_ring(int irq, void *);
  142. #ifdef CONFIG_IGB_DCA
  143. static void igb_update_dca(struct igb_q_vector *);
  144. static void igb_setup_dca(struct igb_adapter *);
  145. #endif /* CONFIG_IGB_DCA */
  146. static int igb_poll(struct napi_struct *, int);
  147. static bool igb_clean_tx_irq(struct igb_q_vector *, int);
  148. static int igb_clean_rx_irq(struct igb_q_vector *, int);
  149. static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  150. static void igb_tx_timeout(struct net_device *);
  151. static void igb_reset_task(struct work_struct *);
  152. static void igb_vlan_mode(struct net_device *netdev,
  153. netdev_features_t features);
  154. static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  155. static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  156. static void igb_restore_vlan(struct igb_adapter *);
  157. static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
  158. static void igb_ping_all_vfs(struct igb_adapter *);
  159. static void igb_msg_task(struct igb_adapter *);
  160. static void igb_vmm_control(struct igb_adapter *);
  161. static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  162. static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  163. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  164. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  165. int vf, u16 vlan, u8 qos);
  166. static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  167. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  168. bool setting);
  169. static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  170. struct ifla_vf_info *ivi);
  171. static void igb_check_vf_rate_limit(struct igb_adapter *);
  172. #ifdef CONFIG_PCI_IOV
  173. static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  174. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
  175. static int igb_disable_sriov(struct pci_dev *dev);
  176. static int igb_pci_disable_sriov(struct pci_dev *dev);
  177. #endif
  178. #ifdef CONFIG_PM
  179. #ifdef CONFIG_PM_SLEEP
  180. static int igb_suspend(struct device *);
  181. #endif
  182. static int igb_resume(struct device *);
  183. static int igb_runtime_suspend(struct device *dev);
  184. static int igb_runtime_resume(struct device *dev);
  185. static int igb_runtime_idle(struct device *dev);
  186. static const struct dev_pm_ops igb_pm_ops = {
  187. SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  188. SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  189. igb_runtime_idle)
  190. };
  191. #endif
  192. static void igb_shutdown(struct pci_dev *);
  193. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  194. #ifdef CONFIG_IGB_DCA
  195. static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  196. static struct notifier_block dca_notifier = {
  197. .notifier_call = igb_notify_dca,
  198. .next = NULL,
  199. .priority = 0
  200. };
  201. #endif
  202. #ifdef CONFIG_NET_POLL_CONTROLLER
  203. /* for netdump / net console */
  204. static void igb_netpoll(struct net_device *);
  205. #endif
  206. #ifdef CONFIG_PCI_IOV
  207. static unsigned int max_vfs;
  208. module_param(max_vfs, uint, 0);
  209. MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  210. #endif /* CONFIG_PCI_IOV */
  211. static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  212. pci_channel_state_t);
  213. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  214. static void igb_io_resume(struct pci_dev *);
  215. static const struct pci_error_handlers igb_err_handler = {
  216. .error_detected = igb_io_error_detected,
  217. .slot_reset = igb_io_slot_reset,
  218. .resume = igb_io_resume,
  219. };
  220. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  221. static struct pci_driver igb_driver = {
  222. .name = igb_driver_name,
  223. .id_table = igb_pci_tbl,
  224. .probe = igb_probe,
  225. .remove = igb_remove,
  226. #ifdef CONFIG_PM
  227. .driver.pm = &igb_pm_ops,
  228. #endif
  229. .shutdown = igb_shutdown,
  230. .sriov_configure = igb_pci_sriov_configure,
  231. .err_handler = &igb_err_handler
  232. };
  233. MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  234. MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  235. MODULE_LICENSE("GPL");
  236. MODULE_VERSION(DRV_VERSION);
  237. #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  238. static int debug = -1;
  239. module_param(debug, int, 0);
  240. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  241. struct igb_reg_info {
  242. u32 ofs;
  243. char *name;
  244. };
  245. static const struct igb_reg_info igb_reg_info_tbl[] = {
  246. /* General Registers */
  247. {E1000_CTRL, "CTRL"},
  248. {E1000_STATUS, "STATUS"},
  249. {E1000_CTRL_EXT, "CTRL_EXT"},
  250. /* Interrupt Registers */
  251. {E1000_ICR, "ICR"},
  252. /* RX Registers */
  253. {E1000_RCTL, "RCTL"},
  254. {E1000_RDLEN(0), "RDLEN"},
  255. {E1000_RDH(0), "RDH"},
  256. {E1000_RDT(0), "RDT"},
  257. {E1000_RXDCTL(0), "RXDCTL"},
  258. {E1000_RDBAL(0), "RDBAL"},
  259. {E1000_RDBAH(0), "RDBAH"},
  260. /* TX Registers */
  261. {E1000_TCTL, "TCTL"},
  262. {E1000_TDBAL(0), "TDBAL"},
  263. {E1000_TDBAH(0), "TDBAH"},
  264. {E1000_TDLEN(0), "TDLEN"},
  265. {E1000_TDH(0), "TDH"},
  266. {E1000_TDT(0), "TDT"},
  267. {E1000_TXDCTL(0), "TXDCTL"},
  268. {E1000_TDFH, "TDFH"},
  269. {E1000_TDFT, "TDFT"},
  270. {E1000_TDFHS, "TDFHS"},
  271. {E1000_TDFPC, "TDFPC"},
  272. /* List Terminator */
  273. {}
  274. };
  275. /* igb_regdump - register printout routine */
  276. static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  277. {
  278. int n = 0;
  279. char rname[16];
  280. u32 regs[8];
  281. switch (reginfo->ofs) {
  282. case E1000_RDLEN(0):
  283. for (n = 0; n < 4; n++)
  284. regs[n] = rd32(E1000_RDLEN(n));
  285. break;
  286. case E1000_RDH(0):
  287. for (n = 0; n < 4; n++)
  288. regs[n] = rd32(E1000_RDH(n));
  289. break;
  290. case E1000_RDT(0):
  291. for (n = 0; n < 4; n++)
  292. regs[n] = rd32(E1000_RDT(n));
  293. break;
  294. case E1000_RXDCTL(0):
  295. for (n = 0; n < 4; n++)
  296. regs[n] = rd32(E1000_RXDCTL(n));
  297. break;
  298. case E1000_RDBAL(0):
  299. for (n = 0; n < 4; n++)
  300. regs[n] = rd32(E1000_RDBAL(n));
  301. break;
  302. case E1000_RDBAH(0):
  303. for (n = 0; n < 4; n++)
  304. regs[n] = rd32(E1000_RDBAH(n));
  305. break;
  306. case E1000_TDBAL(0):
  307. for (n = 0; n < 4; n++)
  308. regs[n] = rd32(E1000_RDBAL(n));
  309. break;
  310. case E1000_TDBAH(0):
  311. for (n = 0; n < 4; n++)
  312. regs[n] = rd32(E1000_TDBAH(n));
  313. break;
  314. case E1000_TDLEN(0):
  315. for (n = 0; n < 4; n++)
  316. regs[n] = rd32(E1000_TDLEN(n));
  317. break;
  318. case E1000_TDH(0):
  319. for (n = 0; n < 4; n++)
  320. regs[n] = rd32(E1000_TDH(n));
  321. break;
  322. case E1000_TDT(0):
  323. for (n = 0; n < 4; n++)
  324. regs[n] = rd32(E1000_TDT(n));
  325. break;
  326. case E1000_TXDCTL(0):
  327. for (n = 0; n < 4; n++)
  328. regs[n] = rd32(E1000_TXDCTL(n));
  329. break;
  330. default:
  331. pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  332. return;
  333. }
  334. snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  335. pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  336. regs[2], regs[3]);
  337. }
  338. /* igb_dump - Print registers, Tx-rings and Rx-rings */
  339. static void igb_dump(struct igb_adapter *adapter)
  340. {
  341. struct net_device *netdev = adapter->netdev;
  342. struct e1000_hw *hw = &adapter->hw;
  343. struct igb_reg_info *reginfo;
  344. struct igb_ring *tx_ring;
  345. union e1000_adv_tx_desc *tx_desc;
  346. struct my_u0 { u64 a; u64 b; } *u0;
  347. struct igb_ring *rx_ring;
  348. union e1000_adv_rx_desc *rx_desc;
  349. u32 staterr;
  350. u16 i, n;
  351. if (!netif_msg_hw(adapter))
  352. return;
  353. /* Print netdevice Info */
  354. if (netdev) {
  355. dev_info(&adapter->pdev->dev, "Net device Info\n");
  356. pr_info("Device Name state trans_start last_rx\n");
  357. pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
  358. netdev->state, dev_trans_start(netdev), netdev->last_rx);
  359. }
  360. /* Print Registers */
  361. dev_info(&adapter->pdev->dev, "Register Dump\n");
  362. pr_info(" Register Name Value\n");
  363. for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  364. reginfo->name; reginfo++) {
  365. igb_regdump(hw, reginfo);
  366. }
  367. /* Print TX Ring Summary */
  368. if (!netdev || !netif_running(netdev))
  369. goto exit;
  370. dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  371. pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
  372. for (n = 0; n < adapter->num_tx_queues; n++) {
  373. struct igb_tx_buffer *buffer_info;
  374. tx_ring = adapter->tx_ring[n];
  375. buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  376. pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  377. n, tx_ring->next_to_use, tx_ring->next_to_clean,
  378. (u64)dma_unmap_addr(buffer_info, dma),
  379. dma_unmap_len(buffer_info, len),
  380. buffer_info->next_to_watch,
  381. (u64)buffer_info->time_stamp);
  382. }
  383. /* Print TX Rings */
  384. if (!netif_msg_tx_done(adapter))
  385. goto rx_ring_summary;
  386. dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  387. /* Transmit Descriptor Formats
  388. *
  389. * Advanced Transmit Descriptor
  390. * +--------------------------------------------------------------+
  391. * 0 | Buffer Address [63:0] |
  392. * +--------------------------------------------------------------+
  393. * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
  394. * +--------------------------------------------------------------+
  395. * 63 46 45 40 39 38 36 35 32 31 24 15 0
  396. */
  397. for (n = 0; n < adapter->num_tx_queues; n++) {
  398. tx_ring = adapter->tx_ring[n];
  399. pr_info("------------------------------------\n");
  400. pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  401. pr_info("------------------------------------\n");
  402. pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
  403. for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  404. const char *next_desc;
  405. struct igb_tx_buffer *buffer_info;
  406. tx_desc = IGB_TX_DESC(tx_ring, i);
  407. buffer_info = &tx_ring->tx_buffer_info[i];
  408. u0 = (struct my_u0 *)tx_desc;
  409. if (i == tx_ring->next_to_use &&
  410. i == tx_ring->next_to_clean)
  411. next_desc = " NTC/U";
  412. else if (i == tx_ring->next_to_use)
  413. next_desc = " NTU";
  414. else if (i == tx_ring->next_to_clean)
  415. next_desc = " NTC";
  416. else
  417. next_desc = "";
  418. pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
  419. i, le64_to_cpu(u0->a),
  420. le64_to_cpu(u0->b),
  421. (u64)dma_unmap_addr(buffer_info, dma),
  422. dma_unmap_len(buffer_info, len),
  423. buffer_info->next_to_watch,
  424. (u64)buffer_info->time_stamp,
  425. buffer_info->skb, next_desc);
  426. if (netif_msg_pktdata(adapter) && buffer_info->skb)
  427. print_hex_dump(KERN_INFO, "",
  428. DUMP_PREFIX_ADDRESS,
  429. 16, 1, buffer_info->skb->data,
  430. dma_unmap_len(buffer_info, len),
  431. true);
  432. }
  433. }
  434. /* Print RX Rings Summary */
  435. rx_ring_summary:
  436. dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  437. pr_info("Queue [NTU] [NTC]\n");
  438. for (n = 0; n < adapter->num_rx_queues; n++) {
  439. rx_ring = adapter->rx_ring[n];
  440. pr_info(" %5d %5X %5X\n",
  441. n, rx_ring->next_to_use, rx_ring->next_to_clean);
  442. }
  443. /* Print RX Rings */
  444. if (!netif_msg_rx_status(adapter))
  445. goto exit;
  446. dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  447. /* Advanced Receive Descriptor (Read) Format
  448. * 63 1 0
  449. * +-----------------------------------------------------+
  450. * 0 | Packet Buffer Address [63:1] |A0/NSE|
  451. * +----------------------------------------------+------+
  452. * 8 | Header Buffer Address [63:1] | DD |
  453. * +-----------------------------------------------------+
  454. *
  455. *
  456. * Advanced Receive Descriptor (Write-Back) Format
  457. *
  458. * 63 48 47 32 31 30 21 20 17 16 4 3 0
  459. * +------------------------------------------------------+
  460. * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
  461. * | Checksum Ident | | | | Type | Type |
  462. * +------------------------------------------------------+
  463. * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  464. * +------------------------------------------------------+
  465. * 63 48 47 32 31 20 19 0
  466. */
  467. for (n = 0; n < adapter->num_rx_queues; n++) {
  468. rx_ring = adapter->rx_ring[n];
  469. pr_info("------------------------------------\n");
  470. pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  471. pr_info("------------------------------------\n");
  472. pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
  473. pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  474. for (i = 0; i < rx_ring->count; i++) {
  475. const char *next_desc;
  476. struct igb_rx_buffer *buffer_info;
  477. buffer_info = &rx_ring->rx_buffer_info[i];
  478. rx_desc = IGB_RX_DESC(rx_ring, i);
  479. u0 = (struct my_u0 *)rx_desc;
  480. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  481. if (i == rx_ring->next_to_use)
  482. next_desc = " NTU";
  483. else if (i == rx_ring->next_to_clean)
  484. next_desc = " NTC";
  485. else
  486. next_desc = "";
  487. if (staterr & E1000_RXD_STAT_DD) {
  488. /* Descriptor Done */
  489. pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
  490. "RWB", i,
  491. le64_to_cpu(u0->a),
  492. le64_to_cpu(u0->b),
  493. next_desc);
  494. } else {
  495. pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
  496. "R ", i,
  497. le64_to_cpu(u0->a),
  498. le64_to_cpu(u0->b),
  499. (u64)buffer_info->dma,
  500. next_desc);
  501. if (netif_msg_pktdata(adapter) &&
  502. buffer_info->dma && buffer_info->page) {
  503. print_hex_dump(KERN_INFO, "",
  504. DUMP_PREFIX_ADDRESS,
  505. 16, 1,
  506. page_address(buffer_info->page) +
  507. buffer_info->page_offset,
  508. IGB_RX_BUFSZ, true);
  509. }
  510. }
  511. }
  512. }
  513. exit:
  514. return;
  515. }
  516. /**
  517. * igb_get_i2c_data - Reads the I2C SDA data bit
  518. * @hw: pointer to hardware structure
  519. * @i2cctl: Current value of I2CCTL register
  520. *
  521. * Returns the I2C data bit value
  522. **/
  523. static int igb_get_i2c_data(void *data)
  524. {
  525. struct igb_adapter *adapter = (struct igb_adapter *)data;
  526. struct e1000_hw *hw = &adapter->hw;
  527. s32 i2cctl = rd32(E1000_I2CPARAMS);
  528. return !!(i2cctl & E1000_I2C_DATA_IN);
  529. }
  530. /**
  531. * igb_set_i2c_data - Sets the I2C data bit
  532. * @data: pointer to hardware structure
  533. * @state: I2C data value (0 or 1) to set
  534. *
  535. * Sets the I2C data bit
  536. **/
  537. static void igb_set_i2c_data(void *data, int state)
  538. {
  539. struct igb_adapter *adapter = (struct igb_adapter *)data;
  540. struct e1000_hw *hw = &adapter->hw;
  541. s32 i2cctl = rd32(E1000_I2CPARAMS);
  542. if (state)
  543. i2cctl |= E1000_I2C_DATA_OUT;
  544. else
  545. i2cctl &= ~E1000_I2C_DATA_OUT;
  546. i2cctl &= ~E1000_I2C_DATA_OE_N;
  547. i2cctl |= E1000_I2C_CLK_OE_N;
  548. wr32(E1000_I2CPARAMS, i2cctl);
  549. wrfl();
  550. }
  551. /**
  552. * igb_set_i2c_clk - Sets the I2C SCL clock
  553. * @data: pointer to hardware structure
  554. * @state: state to set clock
  555. *
  556. * Sets the I2C clock line to state
  557. **/
  558. static void igb_set_i2c_clk(void *data, int state)
  559. {
  560. struct igb_adapter *adapter = (struct igb_adapter *)data;
  561. struct e1000_hw *hw = &adapter->hw;
  562. s32 i2cctl = rd32(E1000_I2CPARAMS);
  563. if (state) {
  564. i2cctl |= E1000_I2C_CLK_OUT;
  565. i2cctl &= ~E1000_I2C_CLK_OE_N;
  566. } else {
  567. i2cctl &= ~E1000_I2C_CLK_OUT;
  568. i2cctl &= ~E1000_I2C_CLK_OE_N;
  569. }
  570. wr32(E1000_I2CPARAMS, i2cctl);
  571. wrfl();
  572. }
  573. /**
  574. * igb_get_i2c_clk - Gets the I2C SCL clock state
  575. * @data: pointer to hardware structure
  576. *
  577. * Gets the I2C clock state
  578. **/
  579. static int igb_get_i2c_clk(void *data)
  580. {
  581. struct igb_adapter *adapter = (struct igb_adapter *)data;
  582. struct e1000_hw *hw = &adapter->hw;
  583. s32 i2cctl = rd32(E1000_I2CPARAMS);
  584. return !!(i2cctl & E1000_I2C_CLK_IN);
  585. }
  586. static const struct i2c_algo_bit_data igb_i2c_algo = {
  587. .setsda = igb_set_i2c_data,
  588. .setscl = igb_set_i2c_clk,
  589. .getsda = igb_get_i2c_data,
  590. .getscl = igb_get_i2c_clk,
  591. .udelay = 5,
  592. .timeout = 20,
  593. };
  594. /**
  595. * igb_get_hw_dev - return device
  596. * @hw: pointer to hardware structure
  597. *
  598. * used by hardware layer to print debugging information
  599. **/
  600. struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  601. {
  602. struct igb_adapter *adapter = hw->back;
  603. return adapter->netdev;
  604. }
  605. /**
  606. * igb_init_module - Driver Registration Routine
  607. *
  608. * igb_init_module is the first routine called when the driver is
  609. * loaded. All it does is register with the PCI subsystem.
  610. **/
  611. static int __init igb_init_module(void)
  612. {
  613. int ret;
  614. pr_info("%s - version %s\n",
  615. igb_driver_string, igb_driver_version);
  616. pr_info("%s\n", igb_copyright);
  617. #ifdef CONFIG_IGB_DCA
  618. dca_register_notify(&dca_notifier);
  619. #endif
  620. ret = pci_register_driver(&igb_driver);
  621. return ret;
  622. }
  623. module_init(igb_init_module);
  624. /**
  625. * igb_exit_module - Driver Exit Cleanup Routine
  626. *
  627. * igb_exit_module is called just before the driver is removed
  628. * from memory.
  629. **/
  630. static void __exit igb_exit_module(void)
  631. {
  632. #ifdef CONFIG_IGB_DCA
  633. dca_unregister_notify(&dca_notifier);
  634. #endif
  635. pci_unregister_driver(&igb_driver);
  636. }
  637. module_exit(igb_exit_module);
  638. #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  639. /**
  640. * igb_cache_ring_register - Descriptor ring to register mapping
  641. * @adapter: board private structure to initialize
  642. *
  643. * Once we know the feature-set enabled for the device, we'll cache
  644. * the register offset the descriptor ring is assigned to.
  645. **/
  646. static void igb_cache_ring_register(struct igb_adapter *adapter)
  647. {
  648. int i = 0, j = 0;
  649. u32 rbase_offset = adapter->vfs_allocated_count;
  650. switch (adapter->hw.mac.type) {
  651. case e1000_82576:
  652. /* The queues are allocated for virtualization such that VF 0
  653. * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  654. * In order to avoid collision we start at the first free queue
  655. * and continue consuming queues in the same sequence
  656. */
  657. if (adapter->vfs_allocated_count) {
  658. for (; i < adapter->rss_queues; i++)
  659. adapter->rx_ring[i]->reg_idx = rbase_offset +
  660. Q_IDX_82576(i);
  661. }
  662. /* Fall through */
  663. case e1000_82575:
  664. case e1000_82580:
  665. case e1000_i350:
  666. case e1000_i354:
  667. case e1000_i210:
  668. case e1000_i211:
  669. /* Fall through */
  670. default:
  671. for (; i < adapter->num_rx_queues; i++)
  672. adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  673. for (; j < adapter->num_tx_queues; j++)
  674. adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  675. break;
  676. }
  677. }
  678. u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  679. {
  680. struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  681. u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
  682. u32 value = 0;
  683. if (E1000_REMOVED(hw_addr))
  684. return ~value;
  685. value = readl(&hw_addr[reg]);
  686. /* reads should not return all F's */
  687. if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  688. struct net_device *netdev = igb->netdev;
  689. hw->hw_addr = NULL;
  690. netif_device_detach(netdev);
  691. netdev_err(netdev, "PCIe link lost, device now detached\n");
  692. }
  693. return value;
  694. }
  695. /**
  696. * igb_write_ivar - configure ivar for given MSI-X vector
  697. * @hw: pointer to the HW structure
  698. * @msix_vector: vector number we are allocating to a given ring
  699. * @index: row index of IVAR register to write within IVAR table
  700. * @offset: column offset of in IVAR, should be multiple of 8
  701. *
  702. * This function is intended to handle the writing of the IVAR register
  703. * for adapters 82576 and newer. The IVAR table consists of 2 columns,
  704. * each containing an cause allocation for an Rx and Tx ring, and a
  705. * variable number of rows depending on the number of queues supported.
  706. **/
  707. static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  708. int index, int offset)
  709. {
  710. u32 ivar = array_rd32(E1000_IVAR0, index);
  711. /* clear any bits that are currently set */
  712. ivar &= ~((u32)0xFF << offset);
  713. /* write vector and valid bit */
  714. ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  715. array_wr32(E1000_IVAR0, index, ivar);
  716. }
  717. #define IGB_N0_QUEUE -1
  718. static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  719. {
  720. struct igb_adapter *adapter = q_vector->adapter;
  721. struct e1000_hw *hw = &adapter->hw;
  722. int rx_queue = IGB_N0_QUEUE;
  723. int tx_queue = IGB_N0_QUEUE;
  724. u32 msixbm = 0;
  725. if (q_vector->rx.ring)
  726. rx_queue = q_vector->rx.ring->reg_idx;
  727. if (q_vector->tx.ring)
  728. tx_queue = q_vector->tx.ring->reg_idx;
  729. switch (hw->mac.type) {
  730. case e1000_82575:
  731. /* The 82575 assigns vectors using a bitmask, which matches the
  732. * bitmask for the EICR/EIMS/EIMC registers. To assign one
  733. * or more queues to a vector, we write the appropriate bits
  734. * into the MSIXBM register for that vector.
  735. */
  736. if (rx_queue > IGB_N0_QUEUE)
  737. msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  738. if (tx_queue > IGB_N0_QUEUE)
  739. msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  740. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  741. msixbm |= E1000_EIMS_OTHER;
  742. array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  743. q_vector->eims_value = msixbm;
  744. break;
  745. case e1000_82576:
  746. /* 82576 uses a table that essentially consists of 2 columns
  747. * with 8 rows. The ordering is column-major so we use the
  748. * lower 3 bits as the row index, and the 4th bit as the
  749. * column offset.
  750. */
  751. if (rx_queue > IGB_N0_QUEUE)
  752. igb_write_ivar(hw, msix_vector,
  753. rx_queue & 0x7,
  754. (rx_queue & 0x8) << 1);
  755. if (tx_queue > IGB_N0_QUEUE)
  756. igb_write_ivar(hw, msix_vector,
  757. tx_queue & 0x7,
  758. ((tx_queue & 0x8) << 1) + 8);
  759. q_vector->eims_value = BIT(msix_vector);
  760. break;
  761. case e1000_82580:
  762. case e1000_i350:
  763. case e1000_i354:
  764. case e1000_i210:
  765. case e1000_i211:
  766. /* On 82580 and newer adapters the scheme is similar to 82576
  767. * however instead of ordering column-major we have things
  768. * ordered row-major. So we traverse the table by using
  769. * bit 0 as the column offset, and the remaining bits as the
  770. * row index.
  771. */
  772. if (rx_queue > IGB_N0_QUEUE)
  773. igb_write_ivar(hw, msix_vector,
  774. rx_queue >> 1,
  775. (rx_queue & 0x1) << 4);
  776. if (tx_queue > IGB_N0_QUEUE)
  777. igb_write_ivar(hw, msix_vector,
  778. tx_queue >> 1,
  779. ((tx_queue & 0x1) << 4) + 8);
  780. q_vector->eims_value = BIT(msix_vector);
  781. break;
  782. default:
  783. BUG();
  784. break;
  785. }
  786. /* add q_vector eims value to global eims_enable_mask */
  787. adapter->eims_enable_mask |= q_vector->eims_value;
  788. /* configure q_vector to set itr on first interrupt */
  789. q_vector->set_itr = 1;
  790. }
  791. /**
  792. * igb_configure_msix - Configure MSI-X hardware
  793. * @adapter: board private structure to initialize
  794. *
  795. * igb_configure_msix sets up the hardware to properly
  796. * generate MSI-X interrupts.
  797. **/
  798. static void igb_configure_msix(struct igb_adapter *adapter)
  799. {
  800. u32 tmp;
  801. int i, vector = 0;
  802. struct e1000_hw *hw = &adapter->hw;
  803. adapter->eims_enable_mask = 0;
  804. /* set vector for other causes, i.e. link changes */
  805. switch (hw->mac.type) {
  806. case e1000_82575:
  807. tmp = rd32(E1000_CTRL_EXT);
  808. /* enable MSI-X PBA support*/
  809. tmp |= E1000_CTRL_EXT_PBA_CLR;
  810. /* Auto-Mask interrupts upon ICR read. */
  811. tmp |= E1000_CTRL_EXT_EIAME;
  812. tmp |= E1000_CTRL_EXT_IRCA;
  813. wr32(E1000_CTRL_EXT, tmp);
  814. /* enable msix_other interrupt */
  815. array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  816. adapter->eims_other = E1000_EIMS_OTHER;
  817. break;
  818. case e1000_82576:
  819. case e1000_82580:
  820. case e1000_i350:
  821. case e1000_i354:
  822. case e1000_i210:
  823. case e1000_i211:
  824. /* Turn on MSI-X capability first, or our settings
  825. * won't stick. And it will take days to debug.
  826. */
  827. wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  828. E1000_GPIE_PBA | E1000_GPIE_EIAME |
  829. E1000_GPIE_NSICR);
  830. /* enable msix_other interrupt */
  831. adapter->eims_other = BIT(vector);
  832. tmp = (vector++ | E1000_IVAR_VALID) << 8;
  833. wr32(E1000_IVAR_MISC, tmp);
  834. break;
  835. default:
  836. /* do nothing, since nothing else supports MSI-X */
  837. break;
  838. } /* switch (hw->mac.type) */
  839. adapter->eims_enable_mask |= adapter->eims_other;
  840. for (i = 0; i < adapter->num_q_vectors; i++)
  841. igb_assign_vector(adapter->q_vector[i], vector++);
  842. wrfl();
  843. }
  844. /**
  845. * igb_request_msix - Initialize MSI-X interrupts
  846. * @adapter: board private structure to initialize
  847. *
  848. * igb_request_msix allocates MSI-X vectors and requests interrupts from the
  849. * kernel.
  850. **/
  851. static int igb_request_msix(struct igb_adapter *adapter)
  852. {
  853. struct net_device *netdev = adapter->netdev;
  854. int i, err = 0, vector = 0, free_vector = 0;
  855. err = request_irq(adapter->msix_entries[vector].vector,
  856. igb_msix_other, 0, netdev->name, adapter);
  857. if (err)
  858. goto err_out;
  859. for (i = 0; i < adapter->num_q_vectors; i++) {
  860. struct igb_q_vector *q_vector = adapter->q_vector[i];
  861. vector++;
  862. q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  863. if (q_vector->rx.ring && q_vector->tx.ring)
  864. sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  865. q_vector->rx.ring->queue_index);
  866. else if (q_vector->tx.ring)
  867. sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  868. q_vector->tx.ring->queue_index);
  869. else if (q_vector->rx.ring)
  870. sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  871. q_vector->rx.ring->queue_index);
  872. else
  873. sprintf(q_vector->name, "%s-unused", netdev->name);
  874. err = request_irq(adapter->msix_entries[vector].vector,
  875. igb_msix_ring, 0, q_vector->name,
  876. q_vector);
  877. if (err)
  878. goto err_free;
  879. }
  880. igb_configure_msix(adapter);
  881. return 0;
  882. err_free:
  883. /* free already assigned IRQs */
  884. free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  885. vector--;
  886. for (i = 0; i < vector; i++) {
  887. free_irq(adapter->msix_entries[free_vector++].vector,
  888. adapter->q_vector[i]);
  889. }
  890. err_out:
  891. return err;
  892. }
  893. /**
  894. * igb_free_q_vector - Free memory allocated for specific interrupt vector
  895. * @adapter: board private structure to initialize
  896. * @v_idx: Index of vector to be freed
  897. *
  898. * This function frees the memory allocated to the q_vector.
  899. **/
  900. static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  901. {
  902. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  903. adapter->q_vector[v_idx] = NULL;
  904. /* igb_get_stats64() might access the rings on this vector,
  905. * we must wait a grace period before freeing it.
  906. */
  907. if (q_vector)
  908. kfree_rcu(q_vector, rcu);
  909. }
  910. /**
  911. * igb_reset_q_vector - Reset config for interrupt vector
  912. * @adapter: board private structure to initialize
  913. * @v_idx: Index of vector to be reset
  914. *
  915. * If NAPI is enabled it will delete any references to the
  916. * NAPI struct. This is preparation for igb_free_q_vector.
  917. **/
  918. static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
  919. {
  920. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  921. /* Coming from igb_set_interrupt_capability, the vectors are not yet
  922. * allocated. So, q_vector is NULL so we should stop here.
  923. */
  924. if (!q_vector)
  925. return;
  926. if (q_vector->tx.ring)
  927. adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
  928. if (q_vector->rx.ring)
  929. adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
  930. netif_napi_del(&q_vector->napi);
  931. }
  932. static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
  933. {
  934. int v_idx = adapter->num_q_vectors;
  935. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  936. pci_disable_msix(adapter->pdev);
  937. else if (adapter->flags & IGB_FLAG_HAS_MSI)
  938. pci_disable_msi(adapter->pdev);
  939. while (v_idx--)
  940. igb_reset_q_vector(adapter, v_idx);
  941. }
  942. /**
  943. * igb_free_q_vectors - Free memory allocated for interrupt vectors
  944. * @adapter: board private structure to initialize
  945. *
  946. * This function frees the memory allocated to the q_vectors. In addition if
  947. * NAPI is enabled it will delete any references to the NAPI struct prior
  948. * to freeing the q_vector.
  949. **/
  950. static void igb_free_q_vectors(struct igb_adapter *adapter)
  951. {
  952. int v_idx = adapter->num_q_vectors;
  953. adapter->num_tx_queues = 0;
  954. adapter->num_rx_queues = 0;
  955. adapter->num_q_vectors = 0;
  956. while (v_idx--) {
  957. igb_reset_q_vector(adapter, v_idx);
  958. igb_free_q_vector(adapter, v_idx);
  959. }
  960. }
  961. /**
  962. * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
  963. * @adapter: board private structure to initialize
  964. *
  965. * This function resets the device so that it has 0 Rx queues, Tx queues, and
  966. * MSI-X interrupts allocated.
  967. */
  968. static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
  969. {
  970. igb_free_q_vectors(adapter);
  971. igb_reset_interrupt_capability(adapter);
  972. }
  973. /**
  974. * igb_set_interrupt_capability - set MSI or MSI-X if supported
  975. * @adapter: board private structure to initialize
  976. * @msix: boolean value of MSIX capability
  977. *
  978. * Attempt to configure interrupts using the best available
  979. * capabilities of the hardware and kernel.
  980. **/
  981. static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
  982. {
  983. int err;
  984. int numvecs, i;
  985. if (!msix)
  986. goto msi_only;
  987. adapter->flags |= IGB_FLAG_HAS_MSIX;
  988. /* Number of supported queues. */
  989. adapter->num_rx_queues = adapter->rss_queues;
  990. if (adapter->vfs_allocated_count)
  991. adapter->num_tx_queues = 1;
  992. else
  993. adapter->num_tx_queues = adapter->rss_queues;
  994. /* start with one vector for every Rx queue */
  995. numvecs = adapter->num_rx_queues;
  996. /* if Tx handler is separate add 1 for every Tx queue */
  997. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
  998. numvecs += adapter->num_tx_queues;
  999. /* store the number of vectors reserved for queues */
  1000. adapter->num_q_vectors = numvecs;
  1001. /* add 1 vector for link status interrupts */
  1002. numvecs++;
  1003. for (i = 0; i < numvecs; i++)
  1004. adapter->msix_entries[i].entry = i;
  1005. err = pci_enable_msix_range(adapter->pdev,
  1006. adapter->msix_entries,
  1007. numvecs,
  1008. numvecs);
  1009. if (err > 0)
  1010. return;
  1011. igb_reset_interrupt_capability(adapter);
  1012. /* If we can't do MSI-X, try MSI */
  1013. msi_only:
  1014. adapter->flags &= ~IGB_FLAG_HAS_MSIX;
  1015. #ifdef CONFIG_PCI_IOV
  1016. /* disable SR-IOV for non MSI-X configurations */
  1017. if (adapter->vf_data) {
  1018. struct e1000_hw *hw = &adapter->hw;
  1019. /* disable iov and allow time for transactions to clear */
  1020. pci_disable_sriov(adapter->pdev);
  1021. msleep(500);
  1022. kfree(adapter->vf_data);
  1023. adapter->vf_data = NULL;
  1024. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  1025. wrfl();
  1026. msleep(100);
  1027. dev_info(&adapter->pdev->dev, "IOV Disabled\n");
  1028. }
  1029. #endif
  1030. adapter->vfs_allocated_count = 0;
  1031. adapter->rss_queues = 1;
  1032. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  1033. adapter->num_rx_queues = 1;
  1034. adapter->num_tx_queues = 1;
  1035. adapter->num_q_vectors = 1;
  1036. if (!pci_enable_msi(adapter->pdev))
  1037. adapter->flags |= IGB_FLAG_HAS_MSI;
  1038. }
  1039. static void igb_add_ring(struct igb_ring *ring,
  1040. struct igb_ring_container *head)
  1041. {
  1042. head->ring = ring;
  1043. head->count++;
  1044. }
  1045. /**
  1046. * igb_alloc_q_vector - Allocate memory for a single interrupt vector
  1047. * @adapter: board private structure to initialize
  1048. * @v_count: q_vectors allocated on adapter, used for ring interleaving
  1049. * @v_idx: index of vector in adapter struct
  1050. * @txr_count: total number of Tx rings to allocate
  1051. * @txr_idx: index of first Tx ring to allocate
  1052. * @rxr_count: total number of Rx rings to allocate
  1053. * @rxr_idx: index of first Rx ring to allocate
  1054. *
  1055. * We allocate one q_vector. If allocation fails we return -ENOMEM.
  1056. **/
  1057. static int igb_alloc_q_vector(struct igb_adapter *adapter,
  1058. int v_count, int v_idx,
  1059. int txr_count, int txr_idx,
  1060. int rxr_count, int rxr_idx)
  1061. {
  1062. struct igb_q_vector *q_vector;
  1063. struct igb_ring *ring;
  1064. int ring_count, size;
  1065. /* igb only supports 1 Tx and/or 1 Rx queue per vector */
  1066. if (txr_count > 1 || rxr_count > 1)
  1067. return -ENOMEM;
  1068. ring_count = txr_count + rxr_count;
  1069. size = sizeof(struct igb_q_vector) +
  1070. (sizeof(struct igb_ring) * ring_count);
  1071. /* allocate q_vector and rings */
  1072. q_vector = adapter->q_vector[v_idx];
  1073. if (!q_vector) {
  1074. q_vector = kzalloc(size, GFP_KERNEL);
  1075. } else if (size > ksize(q_vector)) {
  1076. kfree_rcu(q_vector, rcu);
  1077. q_vector = kzalloc(size, GFP_KERNEL);
  1078. } else {
  1079. memset(q_vector, 0, size);
  1080. }
  1081. if (!q_vector)
  1082. return -ENOMEM;
  1083. /* initialize NAPI */
  1084. netif_napi_add(adapter->netdev, &q_vector->napi,
  1085. igb_poll, 64);
  1086. /* tie q_vector and adapter together */
  1087. adapter->q_vector[v_idx] = q_vector;
  1088. q_vector->adapter = adapter;
  1089. /* initialize work limits */
  1090. q_vector->tx.work_limit = adapter->tx_work_limit;
  1091. /* initialize ITR configuration */
  1092. q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
  1093. q_vector->itr_val = IGB_START_ITR;
  1094. /* initialize pointer to rings */
  1095. ring = q_vector->ring;
  1096. /* intialize ITR */
  1097. if (rxr_count) {
  1098. /* rx or rx/tx vector */
  1099. if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
  1100. q_vector->itr_val = adapter->rx_itr_setting;
  1101. } else {
  1102. /* tx only vector */
  1103. if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
  1104. q_vector->itr_val = adapter->tx_itr_setting;
  1105. }
  1106. if (txr_count) {
  1107. /* assign generic ring traits */
  1108. ring->dev = &adapter->pdev->dev;
  1109. ring->netdev = adapter->netdev;
  1110. /* configure backlink on ring */
  1111. ring->q_vector = q_vector;
  1112. /* update q_vector Tx values */
  1113. igb_add_ring(ring, &q_vector->tx);
  1114. /* For 82575, context index must be unique per ring. */
  1115. if (adapter->hw.mac.type == e1000_82575)
  1116. set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
  1117. /* apply Tx specific ring traits */
  1118. ring->count = adapter->tx_ring_count;
  1119. ring->queue_index = txr_idx;
  1120. u64_stats_init(&ring->tx_syncp);
  1121. u64_stats_init(&ring->tx_syncp2);
  1122. /* assign ring to adapter */
  1123. adapter->tx_ring[txr_idx] = ring;
  1124. /* push pointer to next ring */
  1125. ring++;
  1126. }
  1127. if (rxr_count) {
  1128. /* assign generic ring traits */
  1129. ring->dev = &adapter->pdev->dev;
  1130. ring->netdev = adapter->netdev;
  1131. /* configure backlink on ring */
  1132. ring->q_vector = q_vector;
  1133. /* update q_vector Rx values */
  1134. igb_add_ring(ring, &q_vector->rx);
  1135. /* set flag indicating ring supports SCTP checksum offload */
  1136. if (adapter->hw.mac.type >= e1000_82576)
  1137. set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
  1138. /* On i350, i354, i210, and i211, loopback VLAN packets
  1139. * have the tag byte-swapped.
  1140. */
  1141. if (adapter->hw.mac.type >= e1000_i350)
  1142. set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
  1143. /* apply Rx specific ring traits */
  1144. ring->count = adapter->rx_ring_count;
  1145. ring->queue_index = rxr_idx;
  1146. u64_stats_init(&ring->rx_syncp);
  1147. /* assign ring to adapter */
  1148. adapter->rx_ring[rxr_idx] = ring;
  1149. }
  1150. return 0;
  1151. }
  1152. /**
  1153. * igb_alloc_q_vectors - Allocate memory for interrupt vectors
  1154. * @adapter: board private structure to initialize
  1155. *
  1156. * We allocate one q_vector per queue interrupt. If allocation fails we
  1157. * return -ENOMEM.
  1158. **/
  1159. static int igb_alloc_q_vectors(struct igb_adapter *adapter)
  1160. {
  1161. int q_vectors = adapter->num_q_vectors;
  1162. int rxr_remaining = adapter->num_rx_queues;
  1163. int txr_remaining = adapter->num_tx_queues;
  1164. int rxr_idx = 0, txr_idx = 0, v_idx = 0;
  1165. int err;
  1166. if (q_vectors >= (rxr_remaining + txr_remaining)) {
  1167. for (; rxr_remaining; v_idx++) {
  1168. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1169. 0, 0, 1, rxr_idx);
  1170. if (err)
  1171. goto err_out;
  1172. /* update counts and index */
  1173. rxr_remaining--;
  1174. rxr_idx++;
  1175. }
  1176. }
  1177. for (; v_idx < q_vectors; v_idx++) {
  1178. int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
  1179. int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
  1180. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1181. tqpv, txr_idx, rqpv, rxr_idx);
  1182. if (err)
  1183. goto err_out;
  1184. /* update counts and index */
  1185. rxr_remaining -= rqpv;
  1186. txr_remaining -= tqpv;
  1187. rxr_idx++;
  1188. txr_idx++;
  1189. }
  1190. return 0;
  1191. err_out:
  1192. adapter->num_tx_queues = 0;
  1193. adapter->num_rx_queues = 0;
  1194. adapter->num_q_vectors = 0;
  1195. while (v_idx--)
  1196. igb_free_q_vector(adapter, v_idx);
  1197. return -ENOMEM;
  1198. }
  1199. /**
  1200. * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
  1201. * @adapter: board private structure to initialize
  1202. * @msix: boolean value of MSIX capability
  1203. *
  1204. * This function initializes the interrupts and allocates all of the queues.
  1205. **/
  1206. static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
  1207. {
  1208. struct pci_dev *pdev = adapter->pdev;
  1209. int err;
  1210. igb_set_interrupt_capability(adapter, msix);
  1211. err = igb_alloc_q_vectors(adapter);
  1212. if (err) {
  1213. dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
  1214. goto err_alloc_q_vectors;
  1215. }
  1216. igb_cache_ring_register(adapter);
  1217. return 0;
  1218. err_alloc_q_vectors:
  1219. igb_reset_interrupt_capability(adapter);
  1220. return err;
  1221. }
  1222. /**
  1223. * igb_request_irq - initialize interrupts
  1224. * @adapter: board private structure to initialize
  1225. *
  1226. * Attempts to configure interrupts using the best available
  1227. * capabilities of the hardware and kernel.
  1228. **/
  1229. static int igb_request_irq(struct igb_adapter *adapter)
  1230. {
  1231. struct net_device *netdev = adapter->netdev;
  1232. struct pci_dev *pdev = adapter->pdev;
  1233. int err = 0;
  1234. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1235. err = igb_request_msix(adapter);
  1236. if (!err)
  1237. goto request_done;
  1238. /* fall back to MSI */
  1239. igb_free_all_tx_resources(adapter);
  1240. igb_free_all_rx_resources(adapter);
  1241. igb_clear_interrupt_scheme(adapter);
  1242. err = igb_init_interrupt_scheme(adapter, false);
  1243. if (err)
  1244. goto request_done;
  1245. igb_setup_all_tx_resources(adapter);
  1246. igb_setup_all_rx_resources(adapter);
  1247. igb_configure(adapter);
  1248. }
  1249. igb_assign_vector(adapter->q_vector[0], 0);
  1250. if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1251. err = request_irq(pdev->irq, igb_intr_msi, 0,
  1252. netdev->name, adapter);
  1253. if (!err)
  1254. goto request_done;
  1255. /* fall back to legacy interrupts */
  1256. igb_reset_interrupt_capability(adapter);
  1257. adapter->flags &= ~IGB_FLAG_HAS_MSI;
  1258. }
  1259. err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
  1260. netdev->name, adapter);
  1261. if (err)
  1262. dev_err(&pdev->dev, "Error %d getting interrupt\n",
  1263. err);
  1264. request_done:
  1265. return err;
  1266. }
  1267. static void igb_free_irq(struct igb_adapter *adapter)
  1268. {
  1269. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1270. int vector = 0, i;
  1271. free_irq(adapter->msix_entries[vector++].vector, adapter);
  1272. for (i = 0; i < adapter->num_q_vectors; i++)
  1273. free_irq(adapter->msix_entries[vector++].vector,
  1274. adapter->q_vector[i]);
  1275. } else {
  1276. free_irq(adapter->pdev->irq, adapter);
  1277. }
  1278. }
  1279. /**
  1280. * igb_irq_disable - Mask off interrupt generation on the NIC
  1281. * @adapter: board private structure
  1282. **/
  1283. static void igb_irq_disable(struct igb_adapter *adapter)
  1284. {
  1285. struct e1000_hw *hw = &adapter->hw;
  1286. /* we need to be careful when disabling interrupts. The VFs are also
  1287. * mapped into these registers and so clearing the bits can cause
  1288. * issues on the VF drivers so we only need to clear what we set
  1289. */
  1290. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1291. u32 regval = rd32(E1000_EIAM);
  1292. wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
  1293. wr32(E1000_EIMC, adapter->eims_enable_mask);
  1294. regval = rd32(E1000_EIAC);
  1295. wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
  1296. }
  1297. wr32(E1000_IAM, 0);
  1298. wr32(E1000_IMC, ~0);
  1299. wrfl();
  1300. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1301. int i;
  1302. for (i = 0; i < adapter->num_q_vectors; i++)
  1303. synchronize_irq(adapter->msix_entries[i].vector);
  1304. } else {
  1305. synchronize_irq(adapter->pdev->irq);
  1306. }
  1307. }
  1308. /**
  1309. * igb_irq_enable - Enable default interrupt generation settings
  1310. * @adapter: board private structure
  1311. **/
  1312. static void igb_irq_enable(struct igb_adapter *adapter)
  1313. {
  1314. struct e1000_hw *hw = &adapter->hw;
  1315. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1316. u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
  1317. u32 regval = rd32(E1000_EIAC);
  1318. wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
  1319. regval = rd32(E1000_EIAM);
  1320. wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
  1321. wr32(E1000_EIMS, adapter->eims_enable_mask);
  1322. if (adapter->vfs_allocated_count) {
  1323. wr32(E1000_MBVFIMR, 0xFF);
  1324. ims |= E1000_IMS_VMMB;
  1325. }
  1326. wr32(E1000_IMS, ims);
  1327. } else {
  1328. wr32(E1000_IMS, IMS_ENABLE_MASK |
  1329. E1000_IMS_DRSTA);
  1330. wr32(E1000_IAM, IMS_ENABLE_MASK |
  1331. E1000_IMS_DRSTA);
  1332. }
  1333. }
  1334. static void igb_update_mng_vlan(struct igb_adapter *adapter)
  1335. {
  1336. struct e1000_hw *hw = &adapter->hw;
  1337. u16 pf_id = adapter->vfs_allocated_count;
  1338. u16 vid = adapter->hw.mng_cookie.vlan_id;
  1339. u16 old_vid = adapter->mng_vlan_id;
  1340. if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
  1341. /* add VID to filter table */
  1342. igb_vfta_set(hw, vid, pf_id, true, true);
  1343. adapter->mng_vlan_id = vid;
  1344. } else {
  1345. adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
  1346. }
  1347. if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
  1348. (vid != old_vid) &&
  1349. !test_bit(old_vid, adapter->active_vlans)) {
  1350. /* remove VID from filter table */
  1351. igb_vfta_set(hw, vid, pf_id, false, true);
  1352. }
  1353. }
  1354. /**
  1355. * igb_release_hw_control - release control of the h/w to f/w
  1356. * @adapter: address of board private structure
  1357. *
  1358. * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
  1359. * For ASF and Pass Through versions of f/w this means that the
  1360. * driver is no longer loaded.
  1361. **/
  1362. static void igb_release_hw_control(struct igb_adapter *adapter)
  1363. {
  1364. struct e1000_hw *hw = &adapter->hw;
  1365. u32 ctrl_ext;
  1366. /* Let firmware take over control of h/w */
  1367. ctrl_ext = rd32(E1000_CTRL_EXT);
  1368. wr32(E1000_CTRL_EXT,
  1369. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  1370. }
  1371. /**
  1372. * igb_get_hw_control - get control of the h/w from f/w
  1373. * @adapter: address of board private structure
  1374. *
  1375. * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
  1376. * For ASF and Pass Through versions of f/w this means that
  1377. * the driver is loaded.
  1378. **/
  1379. static void igb_get_hw_control(struct igb_adapter *adapter)
  1380. {
  1381. struct e1000_hw *hw = &adapter->hw;
  1382. u32 ctrl_ext;
  1383. /* Let firmware know the driver has taken over */
  1384. ctrl_ext = rd32(E1000_CTRL_EXT);
  1385. wr32(E1000_CTRL_EXT,
  1386. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  1387. }
  1388. /**
  1389. * igb_configure - configure the hardware for RX and TX
  1390. * @adapter: private board structure
  1391. **/
  1392. static void igb_configure(struct igb_adapter *adapter)
  1393. {
  1394. struct net_device *netdev = adapter->netdev;
  1395. int i;
  1396. igb_get_hw_control(adapter);
  1397. igb_set_rx_mode(netdev);
  1398. igb_restore_vlan(adapter);
  1399. igb_setup_tctl(adapter);
  1400. igb_setup_mrqc(adapter);
  1401. igb_setup_rctl(adapter);
  1402. igb_configure_tx(adapter);
  1403. igb_configure_rx(adapter);
  1404. igb_rx_fifo_flush_82575(&adapter->hw);
  1405. /* call igb_desc_unused which always leaves
  1406. * at least 1 descriptor unused to make sure
  1407. * next_to_use != next_to_clean
  1408. */
  1409. for (i = 0; i < adapter->num_rx_queues; i++) {
  1410. struct igb_ring *ring = adapter->rx_ring[i];
  1411. igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
  1412. }
  1413. }
  1414. /**
  1415. * igb_power_up_link - Power up the phy/serdes link
  1416. * @adapter: address of board private structure
  1417. **/
  1418. void igb_power_up_link(struct igb_adapter *adapter)
  1419. {
  1420. igb_reset_phy(&adapter->hw);
  1421. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1422. igb_power_up_phy_copper(&adapter->hw);
  1423. else
  1424. igb_power_up_serdes_link_82575(&adapter->hw);
  1425. igb_setup_link(&adapter->hw);
  1426. }
  1427. /**
  1428. * igb_power_down_link - Power down the phy/serdes link
  1429. * @adapter: address of board private structure
  1430. */
  1431. static void igb_power_down_link(struct igb_adapter *adapter)
  1432. {
  1433. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1434. igb_power_down_phy_copper_82575(&adapter->hw);
  1435. else
  1436. igb_shutdown_serdes_link_82575(&adapter->hw);
  1437. }
  1438. /**
  1439. * Detect and switch function for Media Auto Sense
  1440. * @adapter: address of the board private structure
  1441. **/
  1442. static void igb_check_swap_media(struct igb_adapter *adapter)
  1443. {
  1444. struct e1000_hw *hw = &adapter->hw;
  1445. u32 ctrl_ext, connsw;
  1446. bool swap_now = false;
  1447. ctrl_ext = rd32(E1000_CTRL_EXT);
  1448. connsw = rd32(E1000_CONNSW);
  1449. /* need to live swap if current media is copper and we have fiber/serdes
  1450. * to go to.
  1451. */
  1452. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1453. (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
  1454. swap_now = true;
  1455. } else if (!(connsw & E1000_CONNSW_SERDESD)) {
  1456. /* copper signal takes time to appear */
  1457. if (adapter->copper_tries < 4) {
  1458. adapter->copper_tries++;
  1459. connsw |= E1000_CONNSW_AUTOSENSE_CONF;
  1460. wr32(E1000_CONNSW, connsw);
  1461. return;
  1462. } else {
  1463. adapter->copper_tries = 0;
  1464. if ((connsw & E1000_CONNSW_PHYSD) &&
  1465. (!(connsw & E1000_CONNSW_PHY_PDN))) {
  1466. swap_now = true;
  1467. connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
  1468. wr32(E1000_CONNSW, connsw);
  1469. }
  1470. }
  1471. }
  1472. if (!swap_now)
  1473. return;
  1474. switch (hw->phy.media_type) {
  1475. case e1000_media_type_copper:
  1476. netdev_info(adapter->netdev,
  1477. "MAS: changing media to fiber/serdes\n");
  1478. ctrl_ext |=
  1479. E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1480. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1481. adapter->copper_tries = 0;
  1482. break;
  1483. case e1000_media_type_internal_serdes:
  1484. case e1000_media_type_fiber:
  1485. netdev_info(adapter->netdev,
  1486. "MAS: changing media to copper\n");
  1487. ctrl_ext &=
  1488. ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1489. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1490. break;
  1491. default:
  1492. /* shouldn't get here during regular operation */
  1493. netdev_err(adapter->netdev,
  1494. "AMS: Invalid media type found, returning\n");
  1495. break;
  1496. }
  1497. wr32(E1000_CTRL_EXT, ctrl_ext);
  1498. }
  1499. /**
  1500. * igb_up - Open the interface and prepare it to handle traffic
  1501. * @adapter: board private structure
  1502. **/
  1503. int igb_up(struct igb_adapter *adapter)
  1504. {
  1505. struct e1000_hw *hw = &adapter->hw;
  1506. int i;
  1507. /* hardware has been reset, we need to reload some things */
  1508. igb_configure(adapter);
  1509. clear_bit(__IGB_DOWN, &adapter->state);
  1510. for (i = 0; i < adapter->num_q_vectors; i++)
  1511. napi_enable(&(adapter->q_vector[i]->napi));
  1512. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1513. igb_configure_msix(adapter);
  1514. else
  1515. igb_assign_vector(adapter->q_vector[0], 0);
  1516. /* Clear any pending interrupts. */
  1517. rd32(E1000_ICR);
  1518. igb_irq_enable(adapter);
  1519. /* notify VFs that reset has been completed */
  1520. if (adapter->vfs_allocated_count) {
  1521. u32 reg_data = rd32(E1000_CTRL_EXT);
  1522. reg_data |= E1000_CTRL_EXT_PFRSTD;
  1523. wr32(E1000_CTRL_EXT, reg_data);
  1524. }
  1525. netif_tx_start_all_queues(adapter->netdev);
  1526. /* start the watchdog. */
  1527. hw->mac.get_link_status = 1;
  1528. schedule_work(&adapter->watchdog_task);
  1529. if ((adapter->flags & IGB_FLAG_EEE) &&
  1530. (!hw->dev_spec._82575.eee_disable))
  1531. adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
  1532. return 0;
  1533. }
  1534. void igb_down(struct igb_adapter *adapter)
  1535. {
  1536. struct net_device *netdev = adapter->netdev;
  1537. struct e1000_hw *hw = &adapter->hw;
  1538. u32 tctl, rctl;
  1539. int i;
  1540. /* signal that we're down so the interrupt handler does not
  1541. * reschedule our watchdog timer
  1542. */
  1543. set_bit(__IGB_DOWN, &adapter->state);
  1544. /* disable receives in the hardware */
  1545. rctl = rd32(E1000_RCTL);
  1546. wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
  1547. /* flush and sleep below */
  1548. netif_carrier_off(netdev);
  1549. netif_tx_stop_all_queues(netdev);
  1550. /* disable transmits in the hardware */
  1551. tctl = rd32(E1000_TCTL);
  1552. tctl &= ~E1000_TCTL_EN;
  1553. wr32(E1000_TCTL, tctl);
  1554. /* flush both disables and wait for them to finish */
  1555. wrfl();
  1556. usleep_range(10000, 11000);
  1557. igb_irq_disable(adapter);
  1558. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  1559. for (i = 0; i < adapter->num_q_vectors; i++) {
  1560. if (adapter->q_vector[i]) {
  1561. napi_synchronize(&adapter->q_vector[i]->napi);
  1562. napi_disable(&adapter->q_vector[i]->napi);
  1563. }
  1564. }
  1565. del_timer_sync(&adapter->watchdog_timer);
  1566. del_timer_sync(&adapter->phy_info_timer);
  1567. /* record the stats before reset*/
  1568. spin_lock(&adapter->stats64_lock);
  1569. igb_update_stats(adapter, &adapter->stats64);
  1570. spin_unlock(&adapter->stats64_lock);
  1571. adapter->link_speed = 0;
  1572. adapter->link_duplex = 0;
  1573. if (!pci_channel_offline(adapter->pdev))
  1574. igb_reset(adapter);
  1575. /* clear VLAN promisc flag so VFTA will be updated if necessary */
  1576. adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
  1577. igb_clean_all_tx_rings(adapter);
  1578. igb_clean_all_rx_rings(adapter);
  1579. #ifdef CONFIG_IGB_DCA
  1580. /* since we reset the hardware DCA settings were cleared */
  1581. igb_setup_dca(adapter);
  1582. #endif
  1583. }
  1584. void igb_reinit_locked(struct igb_adapter *adapter)
  1585. {
  1586. WARN_ON(in_interrupt());
  1587. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  1588. usleep_range(1000, 2000);
  1589. igb_down(adapter);
  1590. igb_up(adapter);
  1591. clear_bit(__IGB_RESETTING, &adapter->state);
  1592. }
  1593. /** igb_enable_mas - Media Autosense re-enable after swap
  1594. *
  1595. * @adapter: adapter struct
  1596. **/
  1597. static void igb_enable_mas(struct igb_adapter *adapter)
  1598. {
  1599. struct e1000_hw *hw = &adapter->hw;
  1600. u32 connsw = rd32(E1000_CONNSW);
  1601. /* configure for SerDes media detect */
  1602. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1603. (!(connsw & E1000_CONNSW_SERDESD))) {
  1604. connsw |= E1000_CONNSW_ENRGSRC;
  1605. connsw |= E1000_CONNSW_AUTOSENSE_EN;
  1606. wr32(E1000_CONNSW, connsw);
  1607. wrfl();
  1608. }
  1609. }
  1610. void igb_reset(struct igb_adapter *adapter)
  1611. {
  1612. struct pci_dev *pdev = adapter->pdev;
  1613. struct e1000_hw *hw = &adapter->hw;
  1614. struct e1000_mac_info *mac = &hw->mac;
  1615. struct e1000_fc_info *fc = &hw->fc;
  1616. u32 pba, hwm;
  1617. /* Repartition Pba for greater than 9k mtu
  1618. * To take effect CTRL.RST is required.
  1619. */
  1620. switch (mac->type) {
  1621. case e1000_i350:
  1622. case e1000_i354:
  1623. case e1000_82580:
  1624. pba = rd32(E1000_RXPBS);
  1625. pba = igb_rxpbs_adjust_82580(pba);
  1626. break;
  1627. case e1000_82576:
  1628. pba = rd32(E1000_RXPBS);
  1629. pba &= E1000_RXPBS_SIZE_MASK_82576;
  1630. break;
  1631. case e1000_82575:
  1632. case e1000_i210:
  1633. case e1000_i211:
  1634. default:
  1635. pba = E1000_PBA_34K;
  1636. break;
  1637. }
  1638. if (mac->type == e1000_82575) {
  1639. u32 min_rx_space, min_tx_space, needed_tx_space;
  1640. /* write Rx PBA so that hardware can report correct Tx PBA */
  1641. wr32(E1000_PBA, pba);
  1642. /* To maintain wire speed transmits, the Tx FIFO should be
  1643. * large enough to accommodate two full transmit packets,
  1644. * rounded up to the next 1KB and expressed in KB. Likewise,
  1645. * the Rx FIFO should be large enough to accommodate at least
  1646. * one full receive packet and is similarly rounded up and
  1647. * expressed in KB.
  1648. */
  1649. min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
  1650. /* The Tx FIFO also stores 16 bytes of information about the Tx
  1651. * but don't include Ethernet FCS because hardware appends it.
  1652. * We only need to round down to the nearest 512 byte block
  1653. * count since the value we care about is 2 frames, not 1.
  1654. */
  1655. min_tx_space = adapter->max_frame_size;
  1656. min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
  1657. min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
  1658. /* upper 16 bits has Tx packet buffer allocation size in KB */
  1659. needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
  1660. /* If current Tx allocation is less than the min Tx FIFO size,
  1661. * and the min Tx FIFO size is less than the current Rx FIFO
  1662. * allocation, take space away from current Rx allocation.
  1663. */
  1664. if (needed_tx_space < pba) {
  1665. pba -= needed_tx_space;
  1666. /* if short on Rx space, Rx wins and must trump Tx
  1667. * adjustment
  1668. */
  1669. if (pba < min_rx_space)
  1670. pba = min_rx_space;
  1671. }
  1672. /* adjust PBA for jumbo frames */
  1673. wr32(E1000_PBA, pba);
  1674. }
  1675. /* flow control settings
  1676. * The high water mark must be low enough to fit one full frame
  1677. * after transmitting the pause frame. As such we must have enough
  1678. * space to allow for us to complete our current transmit and then
  1679. * receive the frame that is in progress from the link partner.
  1680. * Set it to:
  1681. * - the full Rx FIFO size minus one full Tx plus one full Rx frame
  1682. */
  1683. hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
  1684. fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
  1685. fc->low_water = fc->high_water - 16;
  1686. fc->pause_time = 0xFFFF;
  1687. fc->send_xon = 1;
  1688. fc->current_mode = fc->requested_mode;
  1689. /* disable receive for all VFs and wait one second */
  1690. if (adapter->vfs_allocated_count) {
  1691. int i;
  1692. for (i = 0 ; i < adapter->vfs_allocated_count; i++)
  1693. adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
  1694. /* ping all the active vfs to let them know we are going down */
  1695. igb_ping_all_vfs(adapter);
  1696. /* disable transmits and receives */
  1697. wr32(E1000_VFRE, 0);
  1698. wr32(E1000_VFTE, 0);
  1699. }
  1700. /* Allow time for pending master requests to run */
  1701. hw->mac.ops.reset_hw(hw);
  1702. wr32(E1000_WUC, 0);
  1703. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  1704. /* need to resetup here after media swap */
  1705. adapter->ei.get_invariants(hw);
  1706. adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
  1707. }
  1708. if ((mac->type == e1000_82575) &&
  1709. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  1710. igb_enable_mas(adapter);
  1711. }
  1712. if (hw->mac.ops.init_hw(hw))
  1713. dev_err(&pdev->dev, "Hardware Error\n");
  1714. /* Flow control settings reset on hardware reset, so guarantee flow
  1715. * control is off when forcing speed.
  1716. */
  1717. if (!hw->mac.autoneg)
  1718. igb_force_mac_fc(hw);
  1719. igb_init_dmac(adapter, pba);
  1720. #ifdef CONFIG_IGB_HWMON
  1721. /* Re-initialize the thermal sensor on i350 devices. */
  1722. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  1723. if (mac->type == e1000_i350 && hw->bus.func == 0) {
  1724. /* If present, re-initialize the external thermal sensor
  1725. * interface.
  1726. */
  1727. if (adapter->ets)
  1728. mac->ops.init_thermal_sensor_thresh(hw);
  1729. }
  1730. }
  1731. #endif
  1732. /* Re-establish EEE setting */
  1733. if (hw->phy.media_type == e1000_media_type_copper) {
  1734. switch (mac->type) {
  1735. case e1000_i350:
  1736. case e1000_i210:
  1737. case e1000_i211:
  1738. igb_set_eee_i350(hw, true, true);
  1739. break;
  1740. case e1000_i354:
  1741. igb_set_eee_i354(hw, true, true);
  1742. break;
  1743. default:
  1744. break;
  1745. }
  1746. }
  1747. if (!netif_running(adapter->netdev))
  1748. igb_power_down_link(adapter);
  1749. igb_update_mng_vlan(adapter);
  1750. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  1751. wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
  1752. /* Re-enable PTP, where applicable. */
  1753. igb_ptp_reset(adapter);
  1754. igb_get_phy_info(hw);
  1755. }
  1756. static netdev_features_t igb_fix_features(struct net_device *netdev,
  1757. netdev_features_t features)
  1758. {
  1759. /* Since there is no support for separate Rx/Tx vlan accel
  1760. * enable/disable make sure Tx flag is always in same state as Rx.
  1761. */
  1762. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  1763. features |= NETIF_F_HW_VLAN_CTAG_TX;
  1764. else
  1765. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  1766. return features;
  1767. }
  1768. static int igb_set_features(struct net_device *netdev,
  1769. netdev_features_t features)
  1770. {
  1771. netdev_features_t changed = netdev->features ^ features;
  1772. struct igb_adapter *adapter = netdev_priv(netdev);
  1773. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  1774. igb_vlan_mode(netdev, features);
  1775. if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
  1776. return 0;
  1777. netdev->features = features;
  1778. if (netif_running(netdev))
  1779. igb_reinit_locked(adapter);
  1780. else
  1781. igb_reset(adapter);
  1782. return 0;
  1783. }
  1784. static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
  1785. struct net_device *dev,
  1786. const unsigned char *addr, u16 vid,
  1787. u16 flags)
  1788. {
  1789. /* guarantee we can provide a unique filter for the unicast address */
  1790. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
  1791. struct igb_adapter *adapter = netdev_priv(dev);
  1792. struct e1000_hw *hw = &adapter->hw;
  1793. int vfn = adapter->vfs_allocated_count;
  1794. int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  1795. if (netdev_uc_count(dev) >= rar_entries)
  1796. return -ENOMEM;
  1797. }
  1798. return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
  1799. }
  1800. #define IGB_MAX_MAC_HDR_LEN 127
  1801. #define IGB_MAX_NETWORK_HDR_LEN 511
  1802. static netdev_features_t
  1803. igb_features_check(struct sk_buff *skb, struct net_device *dev,
  1804. netdev_features_t features)
  1805. {
  1806. unsigned int network_hdr_len, mac_hdr_len;
  1807. /* Make certain the headers can be described by a context descriptor */
  1808. mac_hdr_len = skb_network_header(skb) - skb->data;
  1809. if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
  1810. return features & ~(NETIF_F_HW_CSUM |
  1811. NETIF_F_SCTP_CRC |
  1812. NETIF_F_HW_VLAN_CTAG_TX |
  1813. NETIF_F_TSO |
  1814. NETIF_F_TSO6);
  1815. network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
  1816. if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
  1817. return features & ~(NETIF_F_HW_CSUM |
  1818. NETIF_F_SCTP_CRC |
  1819. NETIF_F_TSO |
  1820. NETIF_F_TSO6);
  1821. /* We can only support IPV4 TSO in tunnels if we can mangle the
  1822. * inner IP ID field, so strip TSO if MANGLEID is not supported.
  1823. */
  1824. if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
  1825. features &= ~NETIF_F_TSO;
  1826. return features;
  1827. }
  1828. static const struct net_device_ops igb_netdev_ops = {
  1829. .ndo_open = igb_open,
  1830. .ndo_stop = igb_close,
  1831. .ndo_start_xmit = igb_xmit_frame,
  1832. .ndo_get_stats64 = igb_get_stats64,
  1833. .ndo_set_rx_mode = igb_set_rx_mode,
  1834. .ndo_set_mac_address = igb_set_mac,
  1835. .ndo_change_mtu = igb_change_mtu,
  1836. .ndo_do_ioctl = igb_ioctl,
  1837. .ndo_tx_timeout = igb_tx_timeout,
  1838. .ndo_validate_addr = eth_validate_addr,
  1839. .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
  1840. .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
  1841. .ndo_set_vf_mac = igb_ndo_set_vf_mac,
  1842. .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
  1843. .ndo_set_vf_rate = igb_ndo_set_vf_bw,
  1844. .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
  1845. .ndo_get_vf_config = igb_ndo_get_vf_config,
  1846. #ifdef CONFIG_NET_POLL_CONTROLLER
  1847. .ndo_poll_controller = igb_netpoll,
  1848. #endif
  1849. .ndo_fix_features = igb_fix_features,
  1850. .ndo_set_features = igb_set_features,
  1851. .ndo_fdb_add = igb_ndo_fdb_add,
  1852. .ndo_features_check = igb_features_check,
  1853. };
  1854. /**
  1855. * igb_set_fw_version - Configure version string for ethtool
  1856. * @adapter: adapter struct
  1857. **/
  1858. void igb_set_fw_version(struct igb_adapter *adapter)
  1859. {
  1860. struct e1000_hw *hw = &adapter->hw;
  1861. struct e1000_fw_version fw;
  1862. igb_get_fw_version(hw, &fw);
  1863. switch (hw->mac.type) {
  1864. case e1000_i210:
  1865. case e1000_i211:
  1866. if (!(igb_get_flash_presence_i210(hw))) {
  1867. snprintf(adapter->fw_version,
  1868. sizeof(adapter->fw_version),
  1869. "%2d.%2d-%d",
  1870. fw.invm_major, fw.invm_minor,
  1871. fw.invm_img_type);
  1872. break;
  1873. }
  1874. /* fall through */
  1875. default:
  1876. /* if option is rom valid, display its version too */
  1877. if (fw.or_valid) {
  1878. snprintf(adapter->fw_version,
  1879. sizeof(adapter->fw_version),
  1880. "%d.%d, 0x%08x, %d.%d.%d",
  1881. fw.eep_major, fw.eep_minor, fw.etrack_id,
  1882. fw.or_major, fw.or_build, fw.or_patch);
  1883. /* no option rom */
  1884. } else if (fw.etrack_id != 0X0000) {
  1885. snprintf(adapter->fw_version,
  1886. sizeof(adapter->fw_version),
  1887. "%d.%d, 0x%08x",
  1888. fw.eep_major, fw.eep_minor, fw.etrack_id);
  1889. } else {
  1890. snprintf(adapter->fw_version,
  1891. sizeof(adapter->fw_version),
  1892. "%d.%d.%d",
  1893. fw.eep_major, fw.eep_minor, fw.eep_build);
  1894. }
  1895. break;
  1896. }
  1897. }
  1898. /**
  1899. * igb_init_mas - init Media Autosense feature if enabled in the NVM
  1900. *
  1901. * @adapter: adapter struct
  1902. **/
  1903. static void igb_init_mas(struct igb_adapter *adapter)
  1904. {
  1905. struct e1000_hw *hw = &adapter->hw;
  1906. u16 eeprom_data;
  1907. hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
  1908. switch (hw->bus.func) {
  1909. case E1000_FUNC_0:
  1910. if (eeprom_data & IGB_MAS_ENABLE_0) {
  1911. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1912. netdev_info(adapter->netdev,
  1913. "MAS: Enabling Media Autosense for port %d\n",
  1914. hw->bus.func);
  1915. }
  1916. break;
  1917. case E1000_FUNC_1:
  1918. if (eeprom_data & IGB_MAS_ENABLE_1) {
  1919. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1920. netdev_info(adapter->netdev,
  1921. "MAS: Enabling Media Autosense for port %d\n",
  1922. hw->bus.func);
  1923. }
  1924. break;
  1925. case E1000_FUNC_2:
  1926. if (eeprom_data & IGB_MAS_ENABLE_2) {
  1927. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1928. netdev_info(adapter->netdev,
  1929. "MAS: Enabling Media Autosense for port %d\n",
  1930. hw->bus.func);
  1931. }
  1932. break;
  1933. case E1000_FUNC_3:
  1934. if (eeprom_data & IGB_MAS_ENABLE_3) {
  1935. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1936. netdev_info(adapter->netdev,
  1937. "MAS: Enabling Media Autosense for port %d\n",
  1938. hw->bus.func);
  1939. }
  1940. break;
  1941. default:
  1942. /* Shouldn't get here */
  1943. netdev_err(adapter->netdev,
  1944. "MAS: Invalid port configuration, returning\n");
  1945. break;
  1946. }
  1947. }
  1948. /**
  1949. * igb_init_i2c - Init I2C interface
  1950. * @adapter: pointer to adapter structure
  1951. **/
  1952. static s32 igb_init_i2c(struct igb_adapter *adapter)
  1953. {
  1954. s32 status = 0;
  1955. /* I2C interface supported on i350 devices */
  1956. if (adapter->hw.mac.type != e1000_i350)
  1957. return 0;
  1958. /* Initialize the i2c bus which is controlled by the registers.
  1959. * This bus will use the i2c_algo_bit structue that implements
  1960. * the protocol through toggling of the 4 bits in the register.
  1961. */
  1962. adapter->i2c_adap.owner = THIS_MODULE;
  1963. adapter->i2c_algo = igb_i2c_algo;
  1964. adapter->i2c_algo.data = adapter;
  1965. adapter->i2c_adap.algo_data = &adapter->i2c_algo;
  1966. adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
  1967. strlcpy(adapter->i2c_adap.name, "igb BB",
  1968. sizeof(adapter->i2c_adap.name));
  1969. status = i2c_bit_add_bus(&adapter->i2c_adap);
  1970. return status;
  1971. }
  1972. /**
  1973. * igb_probe - Device Initialization Routine
  1974. * @pdev: PCI device information struct
  1975. * @ent: entry in igb_pci_tbl
  1976. *
  1977. * Returns 0 on success, negative on failure
  1978. *
  1979. * igb_probe initializes an adapter identified by a pci_dev structure.
  1980. * The OS initialization, configuring of the adapter private structure,
  1981. * and a hardware reset occur.
  1982. **/
  1983. static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1984. {
  1985. struct net_device *netdev;
  1986. struct igb_adapter *adapter;
  1987. struct e1000_hw *hw;
  1988. u16 eeprom_data = 0;
  1989. s32 ret_val;
  1990. static int global_quad_port_a; /* global quad port a indication */
  1991. const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
  1992. int err, pci_using_dac;
  1993. u8 part_str[E1000_PBANUM_LENGTH];
  1994. /* Catch broken hardware that put the wrong VF device ID in
  1995. * the PCIe SR-IOV capability.
  1996. */
  1997. if (pdev->is_virtfn) {
  1998. WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
  1999. pci_name(pdev), pdev->vendor, pdev->device);
  2000. return -EINVAL;
  2001. }
  2002. err = pci_enable_device_mem(pdev);
  2003. if (err)
  2004. return err;
  2005. pci_using_dac = 0;
  2006. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  2007. if (!err) {
  2008. pci_using_dac = 1;
  2009. } else {
  2010. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  2011. if (err) {
  2012. dev_err(&pdev->dev,
  2013. "No usable DMA configuration, aborting\n");
  2014. goto err_dma;
  2015. }
  2016. }
  2017. err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
  2018. IORESOURCE_MEM),
  2019. igb_driver_name);
  2020. if (err)
  2021. goto err_pci_reg;
  2022. pci_enable_pcie_error_reporting(pdev);
  2023. pci_set_master(pdev);
  2024. pci_save_state(pdev);
  2025. err = -ENOMEM;
  2026. netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
  2027. IGB_MAX_TX_QUEUES);
  2028. if (!netdev)
  2029. goto err_alloc_etherdev;
  2030. SET_NETDEV_DEV(netdev, &pdev->dev);
  2031. pci_set_drvdata(pdev, netdev);
  2032. adapter = netdev_priv(netdev);
  2033. adapter->netdev = netdev;
  2034. adapter->pdev = pdev;
  2035. hw = &adapter->hw;
  2036. hw->back = adapter;
  2037. adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
  2038. err = -EIO;
  2039. adapter->io_addr = pci_iomap(pdev, 0, 0);
  2040. if (!adapter->io_addr)
  2041. goto err_ioremap;
  2042. /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
  2043. hw->hw_addr = adapter->io_addr;
  2044. netdev->netdev_ops = &igb_netdev_ops;
  2045. igb_set_ethtool_ops(netdev);
  2046. netdev->watchdog_timeo = 5 * HZ;
  2047. strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
  2048. netdev->mem_start = pci_resource_start(pdev, 0);
  2049. netdev->mem_end = pci_resource_end(pdev, 0);
  2050. /* PCI config space info */
  2051. hw->vendor_id = pdev->vendor;
  2052. hw->device_id = pdev->device;
  2053. hw->revision_id = pdev->revision;
  2054. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  2055. hw->subsystem_device_id = pdev->subsystem_device;
  2056. /* Copy the default MAC, PHY and NVM function pointers */
  2057. memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
  2058. memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
  2059. memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
  2060. /* Initialize skew-specific constants */
  2061. err = ei->get_invariants(hw);
  2062. if (err)
  2063. goto err_sw_init;
  2064. /* setup the private structure */
  2065. err = igb_sw_init(adapter);
  2066. if (err)
  2067. goto err_sw_init;
  2068. igb_get_bus_info_pcie(hw);
  2069. hw->phy.autoneg_wait_to_complete = false;
  2070. /* Copper options */
  2071. if (hw->phy.media_type == e1000_media_type_copper) {
  2072. hw->phy.mdix = AUTO_ALL_MODES;
  2073. hw->phy.disable_polarity_correction = false;
  2074. hw->phy.ms_type = e1000_ms_hw_default;
  2075. }
  2076. if (igb_check_reset_block(hw))
  2077. dev_info(&pdev->dev,
  2078. "PHY reset is blocked due to SOL/IDER session.\n");
  2079. /* features is initialized to 0 in allocation, it might have bits
  2080. * set by igb_sw_init so we should use an or instead of an
  2081. * assignment.
  2082. */
  2083. netdev->features |= NETIF_F_SG |
  2084. NETIF_F_TSO |
  2085. NETIF_F_TSO6 |
  2086. NETIF_F_RXHASH |
  2087. NETIF_F_RXCSUM |
  2088. NETIF_F_HW_CSUM;
  2089. if (hw->mac.type >= e1000_82576)
  2090. netdev->features |= NETIF_F_SCTP_CRC;
  2091. #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
  2092. NETIF_F_GSO_GRE_CSUM | \
  2093. NETIF_F_GSO_IPIP | \
  2094. NETIF_F_GSO_SIT | \
  2095. NETIF_F_GSO_UDP_TUNNEL | \
  2096. NETIF_F_GSO_UDP_TUNNEL_CSUM)
  2097. netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
  2098. netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
  2099. /* copy netdev features into list of user selectable features */
  2100. netdev->hw_features |= netdev->features |
  2101. NETIF_F_HW_VLAN_CTAG_RX |
  2102. NETIF_F_HW_VLAN_CTAG_TX |
  2103. NETIF_F_RXALL;
  2104. if (hw->mac.type >= e1000_i350)
  2105. netdev->hw_features |= NETIF_F_NTUPLE;
  2106. if (pci_using_dac)
  2107. netdev->features |= NETIF_F_HIGHDMA;
  2108. netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
  2109. netdev->mpls_features |= NETIF_F_HW_CSUM;
  2110. netdev->hw_enc_features |= netdev->vlan_features;
  2111. /* set this bit last since it cannot be part of vlan_features */
  2112. netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
  2113. NETIF_F_HW_VLAN_CTAG_RX |
  2114. NETIF_F_HW_VLAN_CTAG_TX;
  2115. netdev->priv_flags |= IFF_SUPP_NOFCS;
  2116. netdev->priv_flags |= IFF_UNICAST_FLT;
  2117. adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
  2118. /* before reading the NVM, reset the controller to put the device in a
  2119. * known good starting state
  2120. */
  2121. hw->mac.ops.reset_hw(hw);
  2122. /* make sure the NVM is good , i211/i210 parts can have special NVM
  2123. * that doesn't contain a checksum
  2124. */
  2125. switch (hw->mac.type) {
  2126. case e1000_i210:
  2127. case e1000_i211:
  2128. if (igb_get_flash_presence_i210(hw)) {
  2129. if (hw->nvm.ops.validate(hw) < 0) {
  2130. dev_err(&pdev->dev,
  2131. "The NVM Checksum Is Not Valid\n");
  2132. err = -EIO;
  2133. goto err_eeprom;
  2134. }
  2135. }
  2136. break;
  2137. default:
  2138. if (hw->nvm.ops.validate(hw) < 0) {
  2139. dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
  2140. err = -EIO;
  2141. goto err_eeprom;
  2142. }
  2143. break;
  2144. }
  2145. if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
  2146. /* copy the MAC address out of the NVM */
  2147. if (hw->mac.ops.read_mac_addr(hw))
  2148. dev_err(&pdev->dev, "NVM Read Error\n");
  2149. }
  2150. memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
  2151. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2152. dev_err(&pdev->dev, "Invalid MAC Address\n");
  2153. err = -EIO;
  2154. goto err_eeprom;
  2155. }
  2156. /* get firmware version for ethtool -i */
  2157. igb_set_fw_version(adapter);
  2158. /* configure RXPBSIZE and TXPBSIZE */
  2159. if (hw->mac.type == e1000_i210) {
  2160. wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
  2161. wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
  2162. }
  2163. setup_timer(&adapter->watchdog_timer, igb_watchdog,
  2164. (unsigned long) adapter);
  2165. setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
  2166. (unsigned long) adapter);
  2167. INIT_WORK(&adapter->reset_task, igb_reset_task);
  2168. INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
  2169. /* Initialize link properties that are user-changeable */
  2170. adapter->fc_autoneg = true;
  2171. hw->mac.autoneg = true;
  2172. hw->phy.autoneg_advertised = 0x2f;
  2173. hw->fc.requested_mode = e1000_fc_default;
  2174. hw->fc.current_mode = e1000_fc_default;
  2175. igb_validate_mdi_setting(hw);
  2176. /* By default, support wake on port A */
  2177. if (hw->bus.func == 0)
  2178. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2179. /* Check the NVM for wake support on non-port A ports */
  2180. if (hw->mac.type >= e1000_82580)
  2181. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  2182. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  2183. &eeprom_data);
  2184. else if (hw->bus.func == 1)
  2185. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  2186. if (eeprom_data & IGB_EEPROM_APME)
  2187. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2188. /* now that we have the eeprom settings, apply the special cases where
  2189. * the eeprom may be wrong or the board simply won't support wake on
  2190. * lan on a particular port
  2191. */
  2192. switch (pdev->device) {
  2193. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  2194. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2195. break;
  2196. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  2197. case E1000_DEV_ID_82576_FIBER:
  2198. case E1000_DEV_ID_82576_SERDES:
  2199. /* Wake events only supported on port A for dual fiber
  2200. * regardless of eeprom setting
  2201. */
  2202. if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
  2203. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2204. break;
  2205. case E1000_DEV_ID_82576_QUAD_COPPER:
  2206. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  2207. /* if quad port adapter, disable WoL on all but port A */
  2208. if (global_quad_port_a != 0)
  2209. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2210. else
  2211. adapter->flags |= IGB_FLAG_QUAD_PORT_A;
  2212. /* Reset for multiple quad port adapters */
  2213. if (++global_quad_port_a == 4)
  2214. global_quad_port_a = 0;
  2215. break;
  2216. default:
  2217. /* If the device can't wake, don't set software support */
  2218. if (!device_can_wakeup(&adapter->pdev->dev))
  2219. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2220. }
  2221. /* initialize the wol settings based on the eeprom settings */
  2222. if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
  2223. adapter->wol |= E1000_WUFC_MAG;
  2224. /* Some vendors want WoL disabled by default, but still supported */
  2225. if ((hw->mac.type == e1000_i350) &&
  2226. (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
  2227. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2228. adapter->wol = 0;
  2229. }
  2230. /* Some vendors want the ability to Use the EEPROM setting as
  2231. * enable/disable only, and not for capability
  2232. */
  2233. if (((hw->mac.type == e1000_i350) ||
  2234. (hw->mac.type == e1000_i354)) &&
  2235. (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
  2236. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2237. adapter->wol = 0;
  2238. }
  2239. if (hw->mac.type == e1000_i350) {
  2240. if (((pdev->subsystem_device == 0x5001) ||
  2241. (pdev->subsystem_device == 0x5002)) &&
  2242. (hw->bus.func == 0)) {
  2243. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2244. adapter->wol = 0;
  2245. }
  2246. if (pdev->subsystem_device == 0x1F52)
  2247. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2248. }
  2249. device_set_wakeup_enable(&adapter->pdev->dev,
  2250. adapter->flags & IGB_FLAG_WOL_SUPPORTED);
  2251. /* reset the hardware with the new settings */
  2252. igb_reset(adapter);
  2253. /* Init the I2C interface */
  2254. err = igb_init_i2c(adapter);
  2255. if (err) {
  2256. dev_err(&pdev->dev, "failed to init i2c interface\n");
  2257. goto err_eeprom;
  2258. }
  2259. /* let the f/w know that the h/w is now under the control of the
  2260. * driver.
  2261. */
  2262. igb_get_hw_control(adapter);
  2263. strcpy(netdev->name, "eth%d");
  2264. err = register_netdev(netdev);
  2265. if (err)
  2266. goto err_register;
  2267. /* carrier off reporting is important to ethtool even BEFORE open */
  2268. netif_carrier_off(netdev);
  2269. #ifdef CONFIG_IGB_DCA
  2270. if (dca_add_requester(&pdev->dev) == 0) {
  2271. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  2272. dev_info(&pdev->dev, "DCA enabled\n");
  2273. igb_setup_dca(adapter);
  2274. }
  2275. #endif
  2276. #ifdef CONFIG_IGB_HWMON
  2277. /* Initialize the thermal sensor on i350 devices. */
  2278. if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
  2279. u16 ets_word;
  2280. /* Read the NVM to determine if this i350 device supports an
  2281. * external thermal sensor.
  2282. */
  2283. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
  2284. if (ets_word != 0x0000 && ets_word != 0xFFFF)
  2285. adapter->ets = true;
  2286. else
  2287. adapter->ets = false;
  2288. if (igb_sysfs_init(adapter))
  2289. dev_err(&pdev->dev,
  2290. "failed to allocate sysfs resources\n");
  2291. } else {
  2292. adapter->ets = false;
  2293. }
  2294. #endif
  2295. /* Check if Media Autosense is enabled */
  2296. adapter->ei = *ei;
  2297. if (hw->dev_spec._82575.mas_capable)
  2298. igb_init_mas(adapter);
  2299. /* do hw tstamp init after resetting */
  2300. igb_ptp_init(adapter);
  2301. dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
  2302. /* print bus type/speed/width info, not applicable to i354 */
  2303. if (hw->mac.type != e1000_i354) {
  2304. dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
  2305. netdev->name,
  2306. ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  2307. (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
  2308. "unknown"),
  2309. ((hw->bus.width == e1000_bus_width_pcie_x4) ?
  2310. "Width x4" :
  2311. (hw->bus.width == e1000_bus_width_pcie_x2) ?
  2312. "Width x2" :
  2313. (hw->bus.width == e1000_bus_width_pcie_x1) ?
  2314. "Width x1" : "unknown"), netdev->dev_addr);
  2315. }
  2316. if ((hw->mac.type >= e1000_i210 ||
  2317. igb_get_flash_presence_i210(hw))) {
  2318. ret_val = igb_read_part_string(hw, part_str,
  2319. E1000_PBANUM_LENGTH);
  2320. } else {
  2321. ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  2322. }
  2323. if (ret_val)
  2324. strcpy(part_str, "Unknown");
  2325. dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
  2326. dev_info(&pdev->dev,
  2327. "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
  2328. (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
  2329. (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
  2330. adapter->num_rx_queues, adapter->num_tx_queues);
  2331. if (hw->phy.media_type == e1000_media_type_copper) {
  2332. switch (hw->mac.type) {
  2333. case e1000_i350:
  2334. case e1000_i210:
  2335. case e1000_i211:
  2336. /* Enable EEE for internal copper PHY devices */
  2337. err = igb_set_eee_i350(hw, true, true);
  2338. if ((!err) &&
  2339. (!hw->dev_spec._82575.eee_disable)) {
  2340. adapter->eee_advert =
  2341. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2342. adapter->flags |= IGB_FLAG_EEE;
  2343. }
  2344. break;
  2345. case e1000_i354:
  2346. if ((rd32(E1000_CTRL_EXT) &
  2347. E1000_CTRL_EXT_LINK_MODE_SGMII)) {
  2348. err = igb_set_eee_i354(hw, true, true);
  2349. if ((!err) &&
  2350. (!hw->dev_spec._82575.eee_disable)) {
  2351. adapter->eee_advert =
  2352. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2353. adapter->flags |= IGB_FLAG_EEE;
  2354. }
  2355. }
  2356. break;
  2357. default:
  2358. break;
  2359. }
  2360. }
  2361. pm_runtime_put_noidle(&pdev->dev);
  2362. return 0;
  2363. err_register:
  2364. igb_release_hw_control(adapter);
  2365. memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
  2366. err_eeprom:
  2367. if (!igb_check_reset_block(hw))
  2368. igb_reset_phy(hw);
  2369. if (hw->flash_address)
  2370. iounmap(hw->flash_address);
  2371. err_sw_init:
  2372. kfree(adapter->shadow_vfta);
  2373. igb_clear_interrupt_scheme(adapter);
  2374. #ifdef CONFIG_PCI_IOV
  2375. igb_disable_sriov(pdev);
  2376. #endif
  2377. pci_iounmap(pdev, adapter->io_addr);
  2378. err_ioremap:
  2379. free_netdev(netdev);
  2380. err_alloc_etherdev:
  2381. pci_release_selected_regions(pdev,
  2382. pci_select_bars(pdev, IORESOURCE_MEM));
  2383. err_pci_reg:
  2384. err_dma:
  2385. pci_disable_device(pdev);
  2386. return err;
  2387. }
  2388. #ifdef CONFIG_PCI_IOV
  2389. static int igb_disable_sriov(struct pci_dev *pdev)
  2390. {
  2391. struct net_device *netdev = pci_get_drvdata(pdev);
  2392. struct igb_adapter *adapter = netdev_priv(netdev);
  2393. struct e1000_hw *hw = &adapter->hw;
  2394. /* reclaim resources allocated to VFs */
  2395. if (adapter->vf_data) {
  2396. /* disable iov and allow time for transactions to clear */
  2397. if (pci_vfs_assigned(pdev)) {
  2398. dev_warn(&pdev->dev,
  2399. "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
  2400. return -EPERM;
  2401. } else {
  2402. pci_disable_sriov(pdev);
  2403. msleep(500);
  2404. }
  2405. kfree(adapter->vf_data);
  2406. adapter->vf_data = NULL;
  2407. adapter->vfs_allocated_count = 0;
  2408. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  2409. wrfl();
  2410. msleep(100);
  2411. dev_info(&pdev->dev, "IOV Disabled\n");
  2412. /* Re-enable DMA Coalescing flag since IOV is turned off */
  2413. adapter->flags |= IGB_FLAG_DMAC;
  2414. }
  2415. return 0;
  2416. }
  2417. static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
  2418. {
  2419. struct net_device *netdev = pci_get_drvdata(pdev);
  2420. struct igb_adapter *adapter = netdev_priv(netdev);
  2421. int old_vfs = pci_num_vf(pdev);
  2422. int err = 0;
  2423. int i;
  2424. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
  2425. err = -EPERM;
  2426. goto out;
  2427. }
  2428. if (!num_vfs)
  2429. goto out;
  2430. if (old_vfs) {
  2431. dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
  2432. old_vfs, max_vfs);
  2433. adapter->vfs_allocated_count = old_vfs;
  2434. } else
  2435. adapter->vfs_allocated_count = num_vfs;
  2436. adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
  2437. sizeof(struct vf_data_storage), GFP_KERNEL);
  2438. /* if allocation failed then we do not support SR-IOV */
  2439. if (!adapter->vf_data) {
  2440. adapter->vfs_allocated_count = 0;
  2441. dev_err(&pdev->dev,
  2442. "Unable to allocate memory for VF Data Storage\n");
  2443. err = -ENOMEM;
  2444. goto out;
  2445. }
  2446. /* only call pci_enable_sriov() if no VFs are allocated already */
  2447. if (!old_vfs) {
  2448. err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
  2449. if (err)
  2450. goto err_out;
  2451. }
  2452. dev_info(&pdev->dev, "%d VFs allocated\n",
  2453. adapter->vfs_allocated_count);
  2454. for (i = 0; i < adapter->vfs_allocated_count; i++)
  2455. igb_vf_configure(adapter, i);
  2456. /* DMA Coalescing is not supported in IOV mode. */
  2457. adapter->flags &= ~IGB_FLAG_DMAC;
  2458. goto out;
  2459. err_out:
  2460. kfree(adapter->vf_data);
  2461. adapter->vf_data = NULL;
  2462. adapter->vfs_allocated_count = 0;
  2463. out:
  2464. return err;
  2465. }
  2466. #endif
  2467. /**
  2468. * igb_remove_i2c - Cleanup I2C interface
  2469. * @adapter: pointer to adapter structure
  2470. **/
  2471. static void igb_remove_i2c(struct igb_adapter *adapter)
  2472. {
  2473. /* free the adapter bus structure */
  2474. i2c_del_adapter(&adapter->i2c_adap);
  2475. }
  2476. /**
  2477. * igb_remove - Device Removal Routine
  2478. * @pdev: PCI device information struct
  2479. *
  2480. * igb_remove is called by the PCI subsystem to alert the driver
  2481. * that it should release a PCI device. The could be caused by a
  2482. * Hot-Plug event, or because the driver is going to be removed from
  2483. * memory.
  2484. **/
  2485. static void igb_remove(struct pci_dev *pdev)
  2486. {
  2487. struct net_device *netdev = pci_get_drvdata(pdev);
  2488. struct igb_adapter *adapter = netdev_priv(netdev);
  2489. struct e1000_hw *hw = &adapter->hw;
  2490. pm_runtime_get_noresume(&pdev->dev);
  2491. #ifdef CONFIG_IGB_HWMON
  2492. igb_sysfs_exit(adapter);
  2493. #endif
  2494. igb_remove_i2c(adapter);
  2495. igb_ptp_stop(adapter);
  2496. /* The watchdog timer may be rescheduled, so explicitly
  2497. * disable watchdog from being rescheduled.
  2498. */
  2499. set_bit(__IGB_DOWN, &adapter->state);
  2500. del_timer_sync(&adapter->watchdog_timer);
  2501. del_timer_sync(&adapter->phy_info_timer);
  2502. cancel_work_sync(&adapter->reset_task);
  2503. cancel_work_sync(&adapter->watchdog_task);
  2504. #ifdef CONFIG_IGB_DCA
  2505. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  2506. dev_info(&pdev->dev, "DCA disabled\n");
  2507. dca_remove_requester(&pdev->dev);
  2508. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  2509. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  2510. }
  2511. #endif
  2512. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  2513. * would have already happened in close and is redundant.
  2514. */
  2515. igb_release_hw_control(adapter);
  2516. #ifdef CONFIG_PCI_IOV
  2517. igb_disable_sriov(pdev);
  2518. #endif
  2519. unregister_netdev(netdev);
  2520. igb_clear_interrupt_scheme(adapter);
  2521. pci_iounmap(pdev, adapter->io_addr);
  2522. if (hw->flash_address)
  2523. iounmap(hw->flash_address);
  2524. pci_release_selected_regions(pdev,
  2525. pci_select_bars(pdev, IORESOURCE_MEM));
  2526. kfree(adapter->shadow_vfta);
  2527. free_netdev(netdev);
  2528. pci_disable_pcie_error_reporting(pdev);
  2529. pci_disable_device(pdev);
  2530. }
  2531. /**
  2532. * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
  2533. * @adapter: board private structure to initialize
  2534. *
  2535. * This function initializes the vf specific data storage and then attempts to
  2536. * allocate the VFs. The reason for ordering it this way is because it is much
  2537. * mor expensive time wise to disable SR-IOV than it is to allocate and free
  2538. * the memory for the VFs.
  2539. **/
  2540. static void igb_probe_vfs(struct igb_adapter *adapter)
  2541. {
  2542. #ifdef CONFIG_PCI_IOV
  2543. struct pci_dev *pdev = adapter->pdev;
  2544. struct e1000_hw *hw = &adapter->hw;
  2545. /* Virtualization features not supported on i210 family. */
  2546. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  2547. return;
  2548. /* Of the below we really only want the effect of getting
  2549. * IGB_FLAG_HAS_MSIX set (if available), without which
  2550. * igb_enable_sriov() has no effect.
  2551. */
  2552. igb_set_interrupt_capability(adapter, true);
  2553. igb_reset_interrupt_capability(adapter);
  2554. pci_sriov_set_totalvfs(pdev, 7);
  2555. igb_enable_sriov(pdev, max_vfs);
  2556. #endif /* CONFIG_PCI_IOV */
  2557. }
  2558. static void igb_init_queue_configuration(struct igb_adapter *adapter)
  2559. {
  2560. struct e1000_hw *hw = &adapter->hw;
  2561. u32 max_rss_queues;
  2562. /* Determine the maximum number of RSS queues supported. */
  2563. switch (hw->mac.type) {
  2564. case e1000_i211:
  2565. max_rss_queues = IGB_MAX_RX_QUEUES_I211;
  2566. break;
  2567. case e1000_82575:
  2568. case e1000_i210:
  2569. max_rss_queues = IGB_MAX_RX_QUEUES_82575;
  2570. break;
  2571. case e1000_i350:
  2572. /* I350 cannot do RSS and SR-IOV at the same time */
  2573. if (!!adapter->vfs_allocated_count) {
  2574. max_rss_queues = 1;
  2575. break;
  2576. }
  2577. /* fall through */
  2578. case e1000_82576:
  2579. if (!!adapter->vfs_allocated_count) {
  2580. max_rss_queues = 2;
  2581. break;
  2582. }
  2583. /* fall through */
  2584. case e1000_82580:
  2585. case e1000_i354:
  2586. default:
  2587. max_rss_queues = IGB_MAX_RX_QUEUES;
  2588. break;
  2589. }
  2590. adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
  2591. igb_set_flag_queue_pairs(adapter, max_rss_queues);
  2592. }
  2593. void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
  2594. const u32 max_rss_queues)
  2595. {
  2596. struct e1000_hw *hw = &adapter->hw;
  2597. /* Determine if we need to pair queues. */
  2598. switch (hw->mac.type) {
  2599. case e1000_82575:
  2600. case e1000_i211:
  2601. /* Device supports enough interrupts without queue pairing. */
  2602. break;
  2603. case e1000_82576:
  2604. case e1000_82580:
  2605. case e1000_i350:
  2606. case e1000_i354:
  2607. case e1000_i210:
  2608. default:
  2609. /* If rss_queues > half of max_rss_queues, pair the queues in
  2610. * order to conserve interrupts due to limited supply.
  2611. */
  2612. if (adapter->rss_queues > (max_rss_queues / 2))
  2613. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2614. else
  2615. adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
  2616. break;
  2617. }
  2618. }
  2619. /**
  2620. * igb_sw_init - Initialize general software structures (struct igb_adapter)
  2621. * @adapter: board private structure to initialize
  2622. *
  2623. * igb_sw_init initializes the Adapter private data structure.
  2624. * Fields are initialized based on PCI device information and
  2625. * OS network device settings (MTU size).
  2626. **/
  2627. static int igb_sw_init(struct igb_adapter *adapter)
  2628. {
  2629. struct e1000_hw *hw = &adapter->hw;
  2630. struct net_device *netdev = adapter->netdev;
  2631. struct pci_dev *pdev = adapter->pdev;
  2632. pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
  2633. /* set default ring sizes */
  2634. adapter->tx_ring_count = IGB_DEFAULT_TXD;
  2635. adapter->rx_ring_count = IGB_DEFAULT_RXD;
  2636. /* set default ITR values */
  2637. adapter->rx_itr_setting = IGB_DEFAULT_ITR;
  2638. adapter->tx_itr_setting = IGB_DEFAULT_ITR;
  2639. /* set default work limits */
  2640. adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
  2641. adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
  2642. VLAN_HLEN;
  2643. adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  2644. spin_lock_init(&adapter->stats64_lock);
  2645. #ifdef CONFIG_PCI_IOV
  2646. switch (hw->mac.type) {
  2647. case e1000_82576:
  2648. case e1000_i350:
  2649. if (max_vfs > 7) {
  2650. dev_warn(&pdev->dev,
  2651. "Maximum of 7 VFs per PF, using max\n");
  2652. max_vfs = adapter->vfs_allocated_count = 7;
  2653. } else
  2654. adapter->vfs_allocated_count = max_vfs;
  2655. if (adapter->vfs_allocated_count)
  2656. dev_warn(&pdev->dev,
  2657. "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
  2658. break;
  2659. default:
  2660. break;
  2661. }
  2662. #endif /* CONFIG_PCI_IOV */
  2663. /* Assume MSI-X interrupts, will be checked during IRQ allocation */
  2664. adapter->flags |= IGB_FLAG_HAS_MSIX;
  2665. igb_probe_vfs(adapter);
  2666. igb_init_queue_configuration(adapter);
  2667. /* Setup and initialize a copy of the hw vlan table array */
  2668. adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
  2669. GFP_ATOMIC);
  2670. /* This call may decrease the number of queues */
  2671. if (igb_init_interrupt_scheme(adapter, true)) {
  2672. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  2673. return -ENOMEM;
  2674. }
  2675. /* Explicitly disable IRQ since the NIC can be in any state. */
  2676. igb_irq_disable(adapter);
  2677. if (hw->mac.type >= e1000_i350)
  2678. adapter->flags &= ~IGB_FLAG_DMAC;
  2679. set_bit(__IGB_DOWN, &adapter->state);
  2680. return 0;
  2681. }
  2682. /**
  2683. * igb_open - Called when a network interface is made active
  2684. * @netdev: network interface device structure
  2685. *
  2686. * Returns 0 on success, negative value on failure
  2687. *
  2688. * The open entry point is called when a network interface is made
  2689. * active by the system (IFF_UP). At this point all resources needed
  2690. * for transmit and receive operations are allocated, the interrupt
  2691. * handler is registered with the OS, the watchdog timer is started,
  2692. * and the stack is notified that the interface is ready.
  2693. **/
  2694. static int __igb_open(struct net_device *netdev, bool resuming)
  2695. {
  2696. struct igb_adapter *adapter = netdev_priv(netdev);
  2697. struct e1000_hw *hw = &adapter->hw;
  2698. struct pci_dev *pdev = adapter->pdev;
  2699. int err;
  2700. int i;
  2701. /* disallow open during test */
  2702. if (test_bit(__IGB_TESTING, &adapter->state)) {
  2703. WARN_ON(resuming);
  2704. return -EBUSY;
  2705. }
  2706. if (!resuming)
  2707. pm_runtime_get_sync(&pdev->dev);
  2708. netif_carrier_off(netdev);
  2709. /* allocate transmit descriptors */
  2710. err = igb_setup_all_tx_resources(adapter);
  2711. if (err)
  2712. goto err_setup_tx;
  2713. /* allocate receive descriptors */
  2714. err = igb_setup_all_rx_resources(adapter);
  2715. if (err)
  2716. goto err_setup_rx;
  2717. igb_power_up_link(adapter);
  2718. /* before we allocate an interrupt, we must be ready to handle it.
  2719. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
  2720. * as soon as we call pci_request_irq, so we have to setup our
  2721. * clean_rx handler before we do so.
  2722. */
  2723. igb_configure(adapter);
  2724. err = igb_request_irq(adapter);
  2725. if (err)
  2726. goto err_req_irq;
  2727. /* Notify the stack of the actual queue counts. */
  2728. err = netif_set_real_num_tx_queues(adapter->netdev,
  2729. adapter->num_tx_queues);
  2730. if (err)
  2731. goto err_set_queues;
  2732. err = netif_set_real_num_rx_queues(adapter->netdev,
  2733. adapter->num_rx_queues);
  2734. if (err)
  2735. goto err_set_queues;
  2736. /* From here on the code is the same as igb_up() */
  2737. clear_bit(__IGB_DOWN, &adapter->state);
  2738. for (i = 0; i < adapter->num_q_vectors; i++)
  2739. napi_enable(&(adapter->q_vector[i]->napi));
  2740. /* Clear any pending interrupts. */
  2741. rd32(E1000_ICR);
  2742. igb_irq_enable(adapter);
  2743. /* notify VFs that reset has been completed */
  2744. if (adapter->vfs_allocated_count) {
  2745. u32 reg_data = rd32(E1000_CTRL_EXT);
  2746. reg_data |= E1000_CTRL_EXT_PFRSTD;
  2747. wr32(E1000_CTRL_EXT, reg_data);
  2748. }
  2749. netif_tx_start_all_queues(netdev);
  2750. if (!resuming)
  2751. pm_runtime_put(&pdev->dev);
  2752. /* start the watchdog. */
  2753. hw->mac.get_link_status = 1;
  2754. schedule_work(&adapter->watchdog_task);
  2755. return 0;
  2756. err_set_queues:
  2757. igb_free_irq(adapter);
  2758. err_req_irq:
  2759. igb_release_hw_control(adapter);
  2760. igb_power_down_link(adapter);
  2761. igb_free_all_rx_resources(adapter);
  2762. err_setup_rx:
  2763. igb_free_all_tx_resources(adapter);
  2764. err_setup_tx:
  2765. igb_reset(adapter);
  2766. if (!resuming)
  2767. pm_runtime_put(&pdev->dev);
  2768. return err;
  2769. }
  2770. int igb_open(struct net_device *netdev)
  2771. {
  2772. return __igb_open(netdev, false);
  2773. }
  2774. /**
  2775. * igb_close - Disables a network interface
  2776. * @netdev: network interface device structure
  2777. *
  2778. * Returns 0, this is not allowed to fail
  2779. *
  2780. * The close entry point is called when an interface is de-activated
  2781. * by the OS. The hardware is still under the driver's control, but
  2782. * needs to be disabled. A global MAC reset is issued to stop the
  2783. * hardware, and all transmit and receive resources are freed.
  2784. **/
  2785. static int __igb_close(struct net_device *netdev, bool suspending)
  2786. {
  2787. struct igb_adapter *adapter = netdev_priv(netdev);
  2788. struct pci_dev *pdev = adapter->pdev;
  2789. WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
  2790. if (!suspending)
  2791. pm_runtime_get_sync(&pdev->dev);
  2792. igb_down(adapter);
  2793. igb_free_irq(adapter);
  2794. igb_free_all_tx_resources(adapter);
  2795. igb_free_all_rx_resources(adapter);
  2796. if (!suspending)
  2797. pm_runtime_put_sync(&pdev->dev);
  2798. return 0;
  2799. }
  2800. int igb_close(struct net_device *netdev)
  2801. {
  2802. return __igb_close(netdev, false);
  2803. }
  2804. /**
  2805. * igb_setup_tx_resources - allocate Tx resources (Descriptors)
  2806. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2807. *
  2808. * Return 0 on success, negative on failure
  2809. **/
  2810. int igb_setup_tx_resources(struct igb_ring *tx_ring)
  2811. {
  2812. struct device *dev = tx_ring->dev;
  2813. int size;
  2814. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  2815. tx_ring->tx_buffer_info = vzalloc(size);
  2816. if (!tx_ring->tx_buffer_info)
  2817. goto err;
  2818. /* round up to nearest 4K */
  2819. tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
  2820. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2821. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  2822. &tx_ring->dma, GFP_KERNEL);
  2823. if (!tx_ring->desc)
  2824. goto err;
  2825. tx_ring->next_to_use = 0;
  2826. tx_ring->next_to_clean = 0;
  2827. return 0;
  2828. err:
  2829. vfree(tx_ring->tx_buffer_info);
  2830. tx_ring->tx_buffer_info = NULL;
  2831. dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
  2832. return -ENOMEM;
  2833. }
  2834. /**
  2835. * igb_setup_all_tx_resources - wrapper to allocate Tx resources
  2836. * (Descriptors) for all queues
  2837. * @adapter: board private structure
  2838. *
  2839. * Return 0 on success, negative on failure
  2840. **/
  2841. static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
  2842. {
  2843. struct pci_dev *pdev = adapter->pdev;
  2844. int i, err = 0;
  2845. for (i = 0; i < adapter->num_tx_queues; i++) {
  2846. err = igb_setup_tx_resources(adapter->tx_ring[i]);
  2847. if (err) {
  2848. dev_err(&pdev->dev,
  2849. "Allocation for Tx Queue %u failed\n", i);
  2850. for (i--; i >= 0; i--)
  2851. igb_free_tx_resources(adapter->tx_ring[i]);
  2852. break;
  2853. }
  2854. }
  2855. return err;
  2856. }
  2857. /**
  2858. * igb_setup_tctl - configure the transmit control registers
  2859. * @adapter: Board private structure
  2860. **/
  2861. void igb_setup_tctl(struct igb_adapter *adapter)
  2862. {
  2863. struct e1000_hw *hw = &adapter->hw;
  2864. u32 tctl;
  2865. /* disable queue 0 which is enabled by default on 82575 and 82576 */
  2866. wr32(E1000_TXDCTL(0), 0);
  2867. /* Program the Transmit Control Register */
  2868. tctl = rd32(E1000_TCTL);
  2869. tctl &= ~E1000_TCTL_CT;
  2870. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  2871. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  2872. igb_config_collision_dist(hw);
  2873. /* Enable transmits */
  2874. tctl |= E1000_TCTL_EN;
  2875. wr32(E1000_TCTL, tctl);
  2876. }
  2877. /**
  2878. * igb_configure_tx_ring - Configure transmit ring after Reset
  2879. * @adapter: board private structure
  2880. * @ring: tx ring to configure
  2881. *
  2882. * Configure a transmit ring after a reset.
  2883. **/
  2884. void igb_configure_tx_ring(struct igb_adapter *adapter,
  2885. struct igb_ring *ring)
  2886. {
  2887. struct e1000_hw *hw = &adapter->hw;
  2888. u32 txdctl = 0;
  2889. u64 tdba = ring->dma;
  2890. int reg_idx = ring->reg_idx;
  2891. /* disable the queue */
  2892. wr32(E1000_TXDCTL(reg_idx), 0);
  2893. wrfl();
  2894. mdelay(10);
  2895. wr32(E1000_TDLEN(reg_idx),
  2896. ring->count * sizeof(union e1000_adv_tx_desc));
  2897. wr32(E1000_TDBAL(reg_idx),
  2898. tdba & 0x00000000ffffffffULL);
  2899. wr32(E1000_TDBAH(reg_idx), tdba >> 32);
  2900. ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
  2901. wr32(E1000_TDH(reg_idx), 0);
  2902. writel(0, ring->tail);
  2903. txdctl |= IGB_TX_PTHRESH;
  2904. txdctl |= IGB_TX_HTHRESH << 8;
  2905. txdctl |= IGB_TX_WTHRESH << 16;
  2906. txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
  2907. wr32(E1000_TXDCTL(reg_idx), txdctl);
  2908. }
  2909. /**
  2910. * igb_configure_tx - Configure transmit Unit after Reset
  2911. * @adapter: board private structure
  2912. *
  2913. * Configure the Tx unit of the MAC after a reset.
  2914. **/
  2915. static void igb_configure_tx(struct igb_adapter *adapter)
  2916. {
  2917. int i;
  2918. for (i = 0; i < adapter->num_tx_queues; i++)
  2919. igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
  2920. }
  2921. /**
  2922. * igb_setup_rx_resources - allocate Rx resources (Descriptors)
  2923. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  2924. *
  2925. * Returns 0 on success, negative on failure
  2926. **/
  2927. int igb_setup_rx_resources(struct igb_ring *rx_ring)
  2928. {
  2929. struct device *dev = rx_ring->dev;
  2930. int size;
  2931. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  2932. rx_ring->rx_buffer_info = vzalloc(size);
  2933. if (!rx_ring->rx_buffer_info)
  2934. goto err;
  2935. /* Round up to nearest 4K */
  2936. rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
  2937. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2938. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  2939. &rx_ring->dma, GFP_KERNEL);
  2940. if (!rx_ring->desc)
  2941. goto err;
  2942. rx_ring->next_to_alloc = 0;
  2943. rx_ring->next_to_clean = 0;
  2944. rx_ring->next_to_use = 0;
  2945. return 0;
  2946. err:
  2947. vfree(rx_ring->rx_buffer_info);
  2948. rx_ring->rx_buffer_info = NULL;
  2949. dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
  2950. return -ENOMEM;
  2951. }
  2952. /**
  2953. * igb_setup_all_rx_resources - wrapper to allocate Rx resources
  2954. * (Descriptors) for all queues
  2955. * @adapter: board private structure
  2956. *
  2957. * Return 0 on success, negative on failure
  2958. **/
  2959. static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
  2960. {
  2961. struct pci_dev *pdev = adapter->pdev;
  2962. int i, err = 0;
  2963. for (i = 0; i < adapter->num_rx_queues; i++) {
  2964. err = igb_setup_rx_resources(adapter->rx_ring[i]);
  2965. if (err) {
  2966. dev_err(&pdev->dev,
  2967. "Allocation for Rx Queue %u failed\n", i);
  2968. for (i--; i >= 0; i--)
  2969. igb_free_rx_resources(adapter->rx_ring[i]);
  2970. break;
  2971. }
  2972. }
  2973. return err;
  2974. }
  2975. /**
  2976. * igb_setup_mrqc - configure the multiple receive queue control registers
  2977. * @adapter: Board private structure
  2978. **/
  2979. static void igb_setup_mrqc(struct igb_adapter *adapter)
  2980. {
  2981. struct e1000_hw *hw = &adapter->hw;
  2982. u32 mrqc, rxcsum;
  2983. u32 j, num_rx_queues;
  2984. u32 rss_key[10];
  2985. netdev_rss_key_fill(rss_key, sizeof(rss_key));
  2986. for (j = 0; j < 10; j++)
  2987. wr32(E1000_RSSRK(j), rss_key[j]);
  2988. num_rx_queues = adapter->rss_queues;
  2989. switch (hw->mac.type) {
  2990. case e1000_82576:
  2991. /* 82576 supports 2 RSS queues for SR-IOV */
  2992. if (adapter->vfs_allocated_count)
  2993. num_rx_queues = 2;
  2994. break;
  2995. default:
  2996. break;
  2997. }
  2998. if (adapter->rss_indir_tbl_init != num_rx_queues) {
  2999. for (j = 0; j < IGB_RETA_SIZE; j++)
  3000. adapter->rss_indir_tbl[j] =
  3001. (j * num_rx_queues) / IGB_RETA_SIZE;
  3002. adapter->rss_indir_tbl_init = num_rx_queues;
  3003. }
  3004. igb_write_rss_indir_tbl(adapter);
  3005. /* Disable raw packet checksumming so that RSS hash is placed in
  3006. * descriptor on writeback. No need to enable TCP/UDP/IP checksum
  3007. * offloads as they are enabled by default
  3008. */
  3009. rxcsum = rd32(E1000_RXCSUM);
  3010. rxcsum |= E1000_RXCSUM_PCSD;
  3011. if (adapter->hw.mac.type >= e1000_82576)
  3012. /* Enable Receive Checksum Offload for SCTP */
  3013. rxcsum |= E1000_RXCSUM_CRCOFL;
  3014. /* Don't need to set TUOFL or IPOFL, they default to 1 */
  3015. wr32(E1000_RXCSUM, rxcsum);
  3016. /* Generate RSS hash based on packet types, TCP/UDP
  3017. * port numbers and/or IPv4/v6 src and dst addresses
  3018. */
  3019. mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
  3020. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  3021. E1000_MRQC_RSS_FIELD_IPV6 |
  3022. E1000_MRQC_RSS_FIELD_IPV6_TCP |
  3023. E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
  3024. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  3025. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  3026. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  3027. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  3028. /* If VMDq is enabled then we set the appropriate mode for that, else
  3029. * we default to RSS so that an RSS hash is calculated per packet even
  3030. * if we are only using one queue
  3031. */
  3032. if (adapter->vfs_allocated_count) {
  3033. if (hw->mac.type > e1000_82575) {
  3034. /* Set the default pool for the PF's first queue */
  3035. u32 vtctl = rd32(E1000_VT_CTL);
  3036. vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
  3037. E1000_VT_CTL_DISABLE_DEF_POOL);
  3038. vtctl |= adapter->vfs_allocated_count <<
  3039. E1000_VT_CTL_DEFAULT_POOL_SHIFT;
  3040. wr32(E1000_VT_CTL, vtctl);
  3041. }
  3042. if (adapter->rss_queues > 1)
  3043. mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
  3044. else
  3045. mrqc |= E1000_MRQC_ENABLE_VMDQ;
  3046. } else {
  3047. if (hw->mac.type != e1000_i211)
  3048. mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
  3049. }
  3050. igb_vmm_control(adapter);
  3051. wr32(E1000_MRQC, mrqc);
  3052. }
  3053. /**
  3054. * igb_setup_rctl - configure the receive control registers
  3055. * @adapter: Board private structure
  3056. **/
  3057. void igb_setup_rctl(struct igb_adapter *adapter)
  3058. {
  3059. struct e1000_hw *hw = &adapter->hw;
  3060. u32 rctl;
  3061. rctl = rd32(E1000_RCTL);
  3062. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  3063. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  3064. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
  3065. (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
  3066. /* enable stripping of CRC. It's unlikely this will break BMC
  3067. * redirection as it did with e1000. Newer features require
  3068. * that the HW strips the CRC.
  3069. */
  3070. rctl |= E1000_RCTL_SECRC;
  3071. /* disable store bad packets and clear size bits. */
  3072. rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
  3073. /* enable LPE to allow for reception of jumbo frames */
  3074. rctl |= E1000_RCTL_LPE;
  3075. /* disable queue 0 to prevent tail write w/o re-config */
  3076. wr32(E1000_RXDCTL(0), 0);
  3077. /* Attention!!! For SR-IOV PF driver operations you must enable
  3078. * queue drop for all VF and PF queues to prevent head of line blocking
  3079. * if an un-trusted VF does not provide descriptors to hardware.
  3080. */
  3081. if (adapter->vfs_allocated_count) {
  3082. /* set all queue drop enable bits */
  3083. wr32(E1000_QDE, ALL_QUEUES);
  3084. }
  3085. /* This is useful for sniffing bad packets. */
  3086. if (adapter->netdev->features & NETIF_F_RXALL) {
  3087. /* UPE and MPE will be handled by normal PROMISC logic
  3088. * in e1000e_set_rx_mode
  3089. */
  3090. rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
  3091. E1000_RCTL_BAM | /* RX All Bcast Pkts */
  3092. E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
  3093. rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
  3094. E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
  3095. /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
  3096. * and that breaks VLANs.
  3097. */
  3098. }
  3099. wr32(E1000_RCTL, rctl);
  3100. }
  3101. static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
  3102. int vfn)
  3103. {
  3104. struct e1000_hw *hw = &adapter->hw;
  3105. u32 vmolr;
  3106. if (size > MAX_JUMBO_FRAME_SIZE)
  3107. size = MAX_JUMBO_FRAME_SIZE;
  3108. vmolr = rd32(E1000_VMOLR(vfn));
  3109. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3110. vmolr |= size | E1000_VMOLR_LPE;
  3111. wr32(E1000_VMOLR(vfn), vmolr);
  3112. return 0;
  3113. }
  3114. static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
  3115. int vfn, bool enable)
  3116. {
  3117. struct e1000_hw *hw = &adapter->hw;
  3118. u32 val, reg;
  3119. if (hw->mac.type < e1000_82576)
  3120. return;
  3121. if (hw->mac.type == e1000_i350)
  3122. reg = E1000_DVMOLR(vfn);
  3123. else
  3124. reg = E1000_VMOLR(vfn);
  3125. val = rd32(reg);
  3126. if (enable)
  3127. val |= E1000_VMOLR_STRVLAN;
  3128. else
  3129. val &= ~(E1000_VMOLR_STRVLAN);
  3130. wr32(reg, val);
  3131. }
  3132. static inline void igb_set_vmolr(struct igb_adapter *adapter,
  3133. int vfn, bool aupe)
  3134. {
  3135. struct e1000_hw *hw = &adapter->hw;
  3136. u32 vmolr;
  3137. /* This register exists only on 82576 and newer so if we are older then
  3138. * we should exit and do nothing
  3139. */
  3140. if (hw->mac.type < e1000_82576)
  3141. return;
  3142. vmolr = rd32(E1000_VMOLR(vfn));
  3143. if (aupe)
  3144. vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
  3145. else
  3146. vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
  3147. /* clear all bits that might not be set */
  3148. vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
  3149. if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
  3150. vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
  3151. /* for VMDq only allow the VFs and pool 0 to accept broadcast and
  3152. * multicast packets
  3153. */
  3154. if (vfn <= adapter->vfs_allocated_count)
  3155. vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
  3156. wr32(E1000_VMOLR(vfn), vmolr);
  3157. }
  3158. /**
  3159. * igb_configure_rx_ring - Configure a receive ring after Reset
  3160. * @adapter: board private structure
  3161. * @ring: receive ring to be configured
  3162. *
  3163. * Configure the Rx unit of the MAC after a reset.
  3164. **/
  3165. void igb_configure_rx_ring(struct igb_adapter *adapter,
  3166. struct igb_ring *ring)
  3167. {
  3168. struct e1000_hw *hw = &adapter->hw;
  3169. u64 rdba = ring->dma;
  3170. int reg_idx = ring->reg_idx;
  3171. u32 srrctl = 0, rxdctl = 0;
  3172. /* disable the queue */
  3173. wr32(E1000_RXDCTL(reg_idx), 0);
  3174. /* Set DMA base address registers */
  3175. wr32(E1000_RDBAL(reg_idx),
  3176. rdba & 0x00000000ffffffffULL);
  3177. wr32(E1000_RDBAH(reg_idx), rdba >> 32);
  3178. wr32(E1000_RDLEN(reg_idx),
  3179. ring->count * sizeof(union e1000_adv_rx_desc));
  3180. /* initialize head and tail */
  3181. ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
  3182. wr32(E1000_RDH(reg_idx), 0);
  3183. writel(0, ring->tail);
  3184. /* set descriptor configuration */
  3185. srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
  3186. srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
  3187. srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
  3188. if (hw->mac.type >= e1000_82580)
  3189. srrctl |= E1000_SRRCTL_TIMESTAMP;
  3190. /* Only set Drop Enable if we are supporting multiple queues */
  3191. if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
  3192. srrctl |= E1000_SRRCTL_DROP_EN;
  3193. wr32(E1000_SRRCTL(reg_idx), srrctl);
  3194. /* set filtering for VMDQ pools */
  3195. igb_set_vmolr(adapter, reg_idx & 0x7, true);
  3196. rxdctl |= IGB_RX_PTHRESH;
  3197. rxdctl |= IGB_RX_HTHRESH << 8;
  3198. rxdctl |= IGB_RX_WTHRESH << 16;
  3199. /* enable receive descriptor fetching */
  3200. rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
  3201. wr32(E1000_RXDCTL(reg_idx), rxdctl);
  3202. }
  3203. /**
  3204. * igb_configure_rx - Configure receive Unit after Reset
  3205. * @adapter: board private structure
  3206. *
  3207. * Configure the Rx unit of the MAC after a reset.
  3208. **/
  3209. static void igb_configure_rx(struct igb_adapter *adapter)
  3210. {
  3211. int i;
  3212. /* set the correct pool for the PF default MAC address in entry 0 */
  3213. igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
  3214. adapter->vfs_allocated_count);
  3215. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  3216. * the Base and Length of the Rx Descriptor Ring
  3217. */
  3218. for (i = 0; i < adapter->num_rx_queues; i++)
  3219. igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
  3220. }
  3221. /**
  3222. * igb_free_tx_resources - Free Tx Resources per Queue
  3223. * @tx_ring: Tx descriptor ring for a specific queue
  3224. *
  3225. * Free all transmit software resources
  3226. **/
  3227. void igb_free_tx_resources(struct igb_ring *tx_ring)
  3228. {
  3229. igb_clean_tx_ring(tx_ring);
  3230. vfree(tx_ring->tx_buffer_info);
  3231. tx_ring->tx_buffer_info = NULL;
  3232. /* if not set, then don't free */
  3233. if (!tx_ring->desc)
  3234. return;
  3235. dma_free_coherent(tx_ring->dev, tx_ring->size,
  3236. tx_ring->desc, tx_ring->dma);
  3237. tx_ring->desc = NULL;
  3238. }
  3239. /**
  3240. * igb_free_all_tx_resources - Free Tx Resources for All Queues
  3241. * @adapter: board private structure
  3242. *
  3243. * Free all transmit software resources
  3244. **/
  3245. static void igb_free_all_tx_resources(struct igb_adapter *adapter)
  3246. {
  3247. int i;
  3248. for (i = 0; i < adapter->num_tx_queues; i++)
  3249. if (adapter->tx_ring[i])
  3250. igb_free_tx_resources(adapter->tx_ring[i]);
  3251. }
  3252. void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
  3253. struct igb_tx_buffer *tx_buffer)
  3254. {
  3255. if (tx_buffer->skb) {
  3256. dev_kfree_skb_any(tx_buffer->skb);
  3257. if (dma_unmap_len(tx_buffer, len))
  3258. dma_unmap_single(ring->dev,
  3259. dma_unmap_addr(tx_buffer, dma),
  3260. dma_unmap_len(tx_buffer, len),
  3261. DMA_TO_DEVICE);
  3262. } else if (dma_unmap_len(tx_buffer, len)) {
  3263. dma_unmap_page(ring->dev,
  3264. dma_unmap_addr(tx_buffer, dma),
  3265. dma_unmap_len(tx_buffer, len),
  3266. DMA_TO_DEVICE);
  3267. }
  3268. tx_buffer->next_to_watch = NULL;
  3269. tx_buffer->skb = NULL;
  3270. dma_unmap_len_set(tx_buffer, len, 0);
  3271. /* buffer_info must be completely set up in the transmit path */
  3272. }
  3273. /**
  3274. * igb_clean_tx_ring - Free Tx Buffers
  3275. * @tx_ring: ring to be cleaned
  3276. **/
  3277. static void igb_clean_tx_ring(struct igb_ring *tx_ring)
  3278. {
  3279. struct igb_tx_buffer *buffer_info;
  3280. unsigned long size;
  3281. u16 i;
  3282. if (!tx_ring->tx_buffer_info)
  3283. return;
  3284. /* Free all the Tx ring sk_buffs */
  3285. for (i = 0; i < tx_ring->count; i++) {
  3286. buffer_info = &tx_ring->tx_buffer_info[i];
  3287. igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
  3288. }
  3289. netdev_tx_reset_queue(txring_txq(tx_ring));
  3290. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  3291. memset(tx_ring->tx_buffer_info, 0, size);
  3292. /* Zero out the descriptor ring */
  3293. memset(tx_ring->desc, 0, tx_ring->size);
  3294. tx_ring->next_to_use = 0;
  3295. tx_ring->next_to_clean = 0;
  3296. }
  3297. /**
  3298. * igb_clean_all_tx_rings - Free Tx Buffers for all queues
  3299. * @adapter: board private structure
  3300. **/
  3301. static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
  3302. {
  3303. int i;
  3304. for (i = 0; i < adapter->num_tx_queues; i++)
  3305. if (adapter->tx_ring[i])
  3306. igb_clean_tx_ring(adapter->tx_ring[i]);
  3307. }
  3308. /**
  3309. * igb_free_rx_resources - Free Rx Resources
  3310. * @rx_ring: ring to clean the resources from
  3311. *
  3312. * Free all receive software resources
  3313. **/
  3314. void igb_free_rx_resources(struct igb_ring *rx_ring)
  3315. {
  3316. igb_clean_rx_ring(rx_ring);
  3317. vfree(rx_ring->rx_buffer_info);
  3318. rx_ring->rx_buffer_info = NULL;
  3319. /* if not set, then don't free */
  3320. if (!rx_ring->desc)
  3321. return;
  3322. dma_free_coherent(rx_ring->dev, rx_ring->size,
  3323. rx_ring->desc, rx_ring->dma);
  3324. rx_ring->desc = NULL;
  3325. }
  3326. /**
  3327. * igb_free_all_rx_resources - Free Rx Resources for All Queues
  3328. * @adapter: board private structure
  3329. *
  3330. * Free all receive software resources
  3331. **/
  3332. static void igb_free_all_rx_resources(struct igb_adapter *adapter)
  3333. {
  3334. int i;
  3335. for (i = 0; i < adapter->num_rx_queues; i++)
  3336. if (adapter->rx_ring[i])
  3337. igb_free_rx_resources(adapter->rx_ring[i]);
  3338. }
  3339. /**
  3340. * igb_clean_rx_ring - Free Rx Buffers per Queue
  3341. * @rx_ring: ring to free buffers from
  3342. **/
  3343. static void igb_clean_rx_ring(struct igb_ring *rx_ring)
  3344. {
  3345. unsigned long size;
  3346. u16 i;
  3347. if (rx_ring->skb)
  3348. dev_kfree_skb(rx_ring->skb);
  3349. rx_ring->skb = NULL;
  3350. if (!rx_ring->rx_buffer_info)
  3351. return;
  3352. /* Free all the Rx ring sk_buffs */
  3353. for (i = 0; i < rx_ring->count; i++) {
  3354. struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
  3355. if (!buffer_info->page)
  3356. continue;
  3357. dma_unmap_page(rx_ring->dev,
  3358. buffer_info->dma,
  3359. PAGE_SIZE,
  3360. DMA_FROM_DEVICE);
  3361. __free_page(buffer_info->page);
  3362. buffer_info->page = NULL;
  3363. }
  3364. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  3365. memset(rx_ring->rx_buffer_info, 0, size);
  3366. /* Zero out the descriptor ring */
  3367. memset(rx_ring->desc, 0, rx_ring->size);
  3368. rx_ring->next_to_alloc = 0;
  3369. rx_ring->next_to_clean = 0;
  3370. rx_ring->next_to_use = 0;
  3371. }
  3372. /**
  3373. * igb_clean_all_rx_rings - Free Rx Buffers for all queues
  3374. * @adapter: board private structure
  3375. **/
  3376. static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
  3377. {
  3378. int i;
  3379. for (i = 0; i < adapter->num_rx_queues; i++)
  3380. if (adapter->rx_ring[i])
  3381. igb_clean_rx_ring(adapter->rx_ring[i]);
  3382. }
  3383. /**
  3384. * igb_set_mac - Change the Ethernet Address of the NIC
  3385. * @netdev: network interface device structure
  3386. * @p: pointer to an address structure
  3387. *
  3388. * Returns 0 on success, negative on failure
  3389. **/
  3390. static int igb_set_mac(struct net_device *netdev, void *p)
  3391. {
  3392. struct igb_adapter *adapter = netdev_priv(netdev);
  3393. struct e1000_hw *hw = &adapter->hw;
  3394. struct sockaddr *addr = p;
  3395. if (!is_valid_ether_addr(addr->sa_data))
  3396. return -EADDRNOTAVAIL;
  3397. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  3398. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  3399. /* set the correct pool for the new PF MAC address in entry 0 */
  3400. igb_rar_set_qsel(adapter, hw->mac.addr, 0,
  3401. adapter->vfs_allocated_count);
  3402. return 0;
  3403. }
  3404. /**
  3405. * igb_write_mc_addr_list - write multicast addresses to MTA
  3406. * @netdev: network interface device structure
  3407. *
  3408. * Writes multicast address list to the MTA hash table.
  3409. * Returns: -ENOMEM on failure
  3410. * 0 on no addresses written
  3411. * X on writing X addresses to MTA
  3412. **/
  3413. static int igb_write_mc_addr_list(struct net_device *netdev)
  3414. {
  3415. struct igb_adapter *adapter = netdev_priv(netdev);
  3416. struct e1000_hw *hw = &adapter->hw;
  3417. struct netdev_hw_addr *ha;
  3418. u8 *mta_list;
  3419. int i;
  3420. if (netdev_mc_empty(netdev)) {
  3421. /* nothing to program, so clear mc list */
  3422. igb_update_mc_addr_list(hw, NULL, 0);
  3423. igb_restore_vf_multicasts(adapter);
  3424. return 0;
  3425. }
  3426. mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
  3427. if (!mta_list)
  3428. return -ENOMEM;
  3429. /* The shared function expects a packed array of only addresses. */
  3430. i = 0;
  3431. netdev_for_each_mc_addr(ha, netdev)
  3432. memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
  3433. igb_update_mc_addr_list(hw, mta_list, i);
  3434. kfree(mta_list);
  3435. return netdev_mc_count(netdev);
  3436. }
  3437. /**
  3438. * igb_write_uc_addr_list - write unicast addresses to RAR table
  3439. * @netdev: network interface device structure
  3440. *
  3441. * Writes unicast address list to the RAR table.
  3442. * Returns: -ENOMEM on failure/insufficient address space
  3443. * 0 on no addresses written
  3444. * X on writing X addresses to the RAR table
  3445. **/
  3446. static int igb_write_uc_addr_list(struct net_device *netdev)
  3447. {
  3448. struct igb_adapter *adapter = netdev_priv(netdev);
  3449. struct e1000_hw *hw = &adapter->hw;
  3450. unsigned int vfn = adapter->vfs_allocated_count;
  3451. unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  3452. int count = 0;
  3453. /* return ENOMEM indicating insufficient memory for addresses */
  3454. if (netdev_uc_count(netdev) > rar_entries)
  3455. return -ENOMEM;
  3456. if (!netdev_uc_empty(netdev) && rar_entries) {
  3457. struct netdev_hw_addr *ha;
  3458. netdev_for_each_uc_addr(ha, netdev) {
  3459. if (!rar_entries)
  3460. break;
  3461. igb_rar_set_qsel(adapter, ha->addr,
  3462. rar_entries--,
  3463. vfn);
  3464. count++;
  3465. }
  3466. }
  3467. /* write the addresses in reverse order to avoid write combining */
  3468. for (; rar_entries > 0 ; rar_entries--) {
  3469. wr32(E1000_RAH(rar_entries), 0);
  3470. wr32(E1000_RAL(rar_entries), 0);
  3471. }
  3472. wrfl();
  3473. return count;
  3474. }
  3475. static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
  3476. {
  3477. struct e1000_hw *hw = &adapter->hw;
  3478. u32 i, pf_id;
  3479. switch (hw->mac.type) {
  3480. case e1000_i210:
  3481. case e1000_i211:
  3482. case e1000_i350:
  3483. /* VLAN filtering needed for VLAN prio filter */
  3484. if (adapter->netdev->features & NETIF_F_NTUPLE)
  3485. break;
  3486. /* fall through */
  3487. case e1000_82576:
  3488. case e1000_82580:
  3489. case e1000_i354:
  3490. /* VLAN filtering needed for pool filtering */
  3491. if (adapter->vfs_allocated_count)
  3492. break;
  3493. /* fall through */
  3494. default:
  3495. return 1;
  3496. }
  3497. /* We are already in VLAN promisc, nothing to do */
  3498. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  3499. return 0;
  3500. if (!adapter->vfs_allocated_count)
  3501. goto set_vfta;
  3502. /* Add PF to all active pools */
  3503. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  3504. for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
  3505. u32 vlvf = rd32(E1000_VLVF(i));
  3506. vlvf |= BIT(pf_id);
  3507. wr32(E1000_VLVF(i), vlvf);
  3508. }
  3509. set_vfta:
  3510. /* Set all bits in the VLAN filter table array */
  3511. for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
  3512. hw->mac.ops.write_vfta(hw, i, ~0U);
  3513. /* Set flag so we don't redo unnecessary work */
  3514. adapter->flags |= IGB_FLAG_VLAN_PROMISC;
  3515. return 0;
  3516. }
  3517. #define VFTA_BLOCK_SIZE 8
  3518. static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
  3519. {
  3520. struct e1000_hw *hw = &adapter->hw;
  3521. u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
  3522. u32 vid_start = vfta_offset * 32;
  3523. u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
  3524. u32 i, vid, word, bits, pf_id;
  3525. /* guarantee that we don't scrub out management VLAN */
  3526. vid = adapter->mng_vlan_id;
  3527. if (vid >= vid_start && vid < vid_end)
  3528. vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
  3529. if (!adapter->vfs_allocated_count)
  3530. goto set_vfta;
  3531. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  3532. for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
  3533. u32 vlvf = rd32(E1000_VLVF(i));
  3534. /* pull VLAN ID from VLVF */
  3535. vid = vlvf & VLAN_VID_MASK;
  3536. /* only concern ourselves with a certain range */
  3537. if (vid < vid_start || vid >= vid_end)
  3538. continue;
  3539. if (vlvf & E1000_VLVF_VLANID_ENABLE) {
  3540. /* record VLAN ID in VFTA */
  3541. vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
  3542. /* if PF is part of this then continue */
  3543. if (test_bit(vid, adapter->active_vlans))
  3544. continue;
  3545. }
  3546. /* remove PF from the pool */
  3547. bits = ~BIT(pf_id);
  3548. bits &= rd32(E1000_VLVF(i));
  3549. wr32(E1000_VLVF(i), bits);
  3550. }
  3551. set_vfta:
  3552. /* extract values from active_vlans and write back to VFTA */
  3553. for (i = VFTA_BLOCK_SIZE; i--;) {
  3554. vid = (vfta_offset + i) * 32;
  3555. word = vid / BITS_PER_LONG;
  3556. bits = vid % BITS_PER_LONG;
  3557. vfta[i] |= adapter->active_vlans[word] >> bits;
  3558. hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
  3559. }
  3560. }
  3561. static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
  3562. {
  3563. u32 i;
  3564. /* We are not in VLAN promisc, nothing to do */
  3565. if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  3566. return;
  3567. /* Set flag so we don't redo unnecessary work */
  3568. adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
  3569. for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
  3570. igb_scrub_vfta(adapter, i);
  3571. }
  3572. /**
  3573. * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
  3574. * @netdev: network interface device structure
  3575. *
  3576. * The set_rx_mode entry point is called whenever the unicast or multicast
  3577. * address lists or the network interface flags are updated. This routine is
  3578. * responsible for configuring the hardware for proper unicast, multicast,
  3579. * promiscuous mode, and all-multi behavior.
  3580. **/
  3581. static void igb_set_rx_mode(struct net_device *netdev)
  3582. {
  3583. struct igb_adapter *adapter = netdev_priv(netdev);
  3584. struct e1000_hw *hw = &adapter->hw;
  3585. unsigned int vfn = adapter->vfs_allocated_count;
  3586. u32 rctl = 0, vmolr = 0;
  3587. int count;
  3588. /* Check for Promiscuous and All Multicast modes */
  3589. if (netdev->flags & IFF_PROMISC) {
  3590. rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
  3591. vmolr |= E1000_VMOLR_MPME;
  3592. /* enable use of UTA filter to force packets to default pool */
  3593. if (hw->mac.type == e1000_82576)
  3594. vmolr |= E1000_VMOLR_ROPE;
  3595. } else {
  3596. if (netdev->flags & IFF_ALLMULTI) {
  3597. rctl |= E1000_RCTL_MPE;
  3598. vmolr |= E1000_VMOLR_MPME;
  3599. } else {
  3600. /* Write addresses to the MTA, if the attempt fails
  3601. * then we should just turn on promiscuous mode so
  3602. * that we can at least receive multicast traffic
  3603. */
  3604. count = igb_write_mc_addr_list(netdev);
  3605. if (count < 0) {
  3606. rctl |= E1000_RCTL_MPE;
  3607. vmolr |= E1000_VMOLR_MPME;
  3608. } else if (count) {
  3609. vmolr |= E1000_VMOLR_ROMPE;
  3610. }
  3611. }
  3612. }
  3613. /* Write addresses to available RAR registers, if there is not
  3614. * sufficient space to store all the addresses then enable
  3615. * unicast promiscuous mode
  3616. */
  3617. count = igb_write_uc_addr_list(netdev);
  3618. if (count < 0) {
  3619. rctl |= E1000_RCTL_UPE;
  3620. vmolr |= E1000_VMOLR_ROPE;
  3621. }
  3622. /* enable VLAN filtering by default */
  3623. rctl |= E1000_RCTL_VFE;
  3624. /* disable VLAN filtering for modes that require it */
  3625. if ((netdev->flags & IFF_PROMISC) ||
  3626. (netdev->features & NETIF_F_RXALL)) {
  3627. /* if we fail to set all rules then just clear VFE */
  3628. if (igb_vlan_promisc_enable(adapter))
  3629. rctl &= ~E1000_RCTL_VFE;
  3630. } else {
  3631. igb_vlan_promisc_disable(adapter);
  3632. }
  3633. /* update state of unicast, multicast, and VLAN filtering modes */
  3634. rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
  3635. E1000_RCTL_VFE);
  3636. wr32(E1000_RCTL, rctl);
  3637. /* In order to support SR-IOV and eventually VMDq it is necessary to set
  3638. * the VMOLR to enable the appropriate modes. Without this workaround
  3639. * we will have issues with VLAN tag stripping not being done for frames
  3640. * that are only arriving because we are the default pool
  3641. */
  3642. if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
  3643. return;
  3644. /* set UTA to appropriate mode */
  3645. igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
  3646. vmolr |= rd32(E1000_VMOLR(vfn)) &
  3647. ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
  3648. /* enable Rx jumbo frames, no need for restriction */
  3649. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3650. vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
  3651. wr32(E1000_VMOLR(vfn), vmolr);
  3652. wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
  3653. igb_restore_vf_multicasts(adapter);
  3654. }
  3655. static void igb_check_wvbr(struct igb_adapter *adapter)
  3656. {
  3657. struct e1000_hw *hw = &adapter->hw;
  3658. u32 wvbr = 0;
  3659. switch (hw->mac.type) {
  3660. case e1000_82576:
  3661. case e1000_i350:
  3662. wvbr = rd32(E1000_WVBR);
  3663. if (!wvbr)
  3664. return;
  3665. break;
  3666. default:
  3667. break;
  3668. }
  3669. adapter->wvbr |= wvbr;
  3670. }
  3671. #define IGB_STAGGERED_QUEUE_OFFSET 8
  3672. static void igb_spoof_check(struct igb_adapter *adapter)
  3673. {
  3674. int j;
  3675. if (!adapter->wvbr)
  3676. return;
  3677. for (j = 0; j < adapter->vfs_allocated_count; j++) {
  3678. if (adapter->wvbr & BIT(j) ||
  3679. adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
  3680. dev_warn(&adapter->pdev->dev,
  3681. "Spoof event(s) detected on VF %d\n", j);
  3682. adapter->wvbr &=
  3683. ~(BIT(j) |
  3684. BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
  3685. }
  3686. }
  3687. }
  3688. /* Need to wait a few seconds after link up to get diagnostic information from
  3689. * the phy
  3690. */
  3691. static void igb_update_phy_info(unsigned long data)
  3692. {
  3693. struct igb_adapter *adapter = (struct igb_adapter *) data;
  3694. igb_get_phy_info(&adapter->hw);
  3695. }
  3696. /**
  3697. * igb_has_link - check shared code for link and determine up/down
  3698. * @adapter: pointer to driver private info
  3699. **/
  3700. bool igb_has_link(struct igb_adapter *adapter)
  3701. {
  3702. struct e1000_hw *hw = &adapter->hw;
  3703. bool link_active = false;
  3704. /* get_link_status is set on LSC (link status) interrupt or
  3705. * rx sequence error interrupt. get_link_status will stay
  3706. * false until the e1000_check_for_link establishes link
  3707. * for copper adapters ONLY
  3708. */
  3709. switch (hw->phy.media_type) {
  3710. case e1000_media_type_copper:
  3711. if (!hw->mac.get_link_status)
  3712. return true;
  3713. case e1000_media_type_internal_serdes:
  3714. hw->mac.ops.check_for_link(hw);
  3715. link_active = !hw->mac.get_link_status;
  3716. break;
  3717. default:
  3718. case e1000_media_type_unknown:
  3719. break;
  3720. }
  3721. if (((hw->mac.type == e1000_i210) ||
  3722. (hw->mac.type == e1000_i211)) &&
  3723. (hw->phy.id == I210_I_PHY_ID)) {
  3724. if (!netif_carrier_ok(adapter->netdev)) {
  3725. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3726. } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
  3727. adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
  3728. adapter->link_check_timeout = jiffies;
  3729. }
  3730. }
  3731. return link_active;
  3732. }
  3733. static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
  3734. {
  3735. bool ret = false;
  3736. u32 ctrl_ext, thstat;
  3737. /* check for thermal sensor event on i350 copper only */
  3738. if (hw->mac.type == e1000_i350) {
  3739. thstat = rd32(E1000_THSTAT);
  3740. ctrl_ext = rd32(E1000_CTRL_EXT);
  3741. if ((hw->phy.media_type == e1000_media_type_copper) &&
  3742. !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
  3743. ret = !!(thstat & event);
  3744. }
  3745. return ret;
  3746. }
  3747. /**
  3748. * igb_check_lvmmc - check for malformed packets received
  3749. * and indicated in LVMMC register
  3750. * @adapter: pointer to adapter
  3751. **/
  3752. static void igb_check_lvmmc(struct igb_adapter *adapter)
  3753. {
  3754. struct e1000_hw *hw = &adapter->hw;
  3755. u32 lvmmc;
  3756. lvmmc = rd32(E1000_LVMMC);
  3757. if (lvmmc) {
  3758. if (unlikely(net_ratelimit())) {
  3759. netdev_warn(adapter->netdev,
  3760. "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
  3761. lvmmc);
  3762. }
  3763. }
  3764. }
  3765. /**
  3766. * igb_watchdog - Timer Call-back
  3767. * @data: pointer to adapter cast into an unsigned long
  3768. **/
  3769. static void igb_watchdog(unsigned long data)
  3770. {
  3771. struct igb_adapter *adapter = (struct igb_adapter *)data;
  3772. /* Do the rest outside of interrupt context */
  3773. schedule_work(&adapter->watchdog_task);
  3774. }
  3775. static void igb_watchdog_task(struct work_struct *work)
  3776. {
  3777. struct igb_adapter *adapter = container_of(work,
  3778. struct igb_adapter,
  3779. watchdog_task);
  3780. struct e1000_hw *hw = &adapter->hw;
  3781. struct e1000_phy_info *phy = &hw->phy;
  3782. struct net_device *netdev = adapter->netdev;
  3783. u32 link;
  3784. int i;
  3785. u32 connsw;
  3786. u16 phy_data, retry_count = 20;
  3787. link = igb_has_link(adapter);
  3788. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
  3789. if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
  3790. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3791. else
  3792. link = false;
  3793. }
  3794. /* Force link down if we have fiber to swap to */
  3795. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3796. if (hw->phy.media_type == e1000_media_type_copper) {
  3797. connsw = rd32(E1000_CONNSW);
  3798. if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
  3799. link = 0;
  3800. }
  3801. }
  3802. if (link) {
  3803. /* Perform a reset if the media type changed. */
  3804. if (hw->dev_spec._82575.media_changed) {
  3805. hw->dev_spec._82575.media_changed = false;
  3806. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  3807. igb_reset(adapter);
  3808. }
  3809. /* Cancel scheduled suspend requests. */
  3810. pm_runtime_resume(netdev->dev.parent);
  3811. if (!netif_carrier_ok(netdev)) {
  3812. u32 ctrl;
  3813. hw->mac.ops.get_speed_and_duplex(hw,
  3814. &adapter->link_speed,
  3815. &adapter->link_duplex);
  3816. ctrl = rd32(E1000_CTRL);
  3817. /* Links status message must follow this format */
  3818. netdev_info(netdev,
  3819. "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
  3820. netdev->name,
  3821. adapter->link_speed,
  3822. adapter->link_duplex == FULL_DUPLEX ?
  3823. "Full" : "Half",
  3824. (ctrl & E1000_CTRL_TFCE) &&
  3825. (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
  3826. (ctrl & E1000_CTRL_RFCE) ? "RX" :
  3827. (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
  3828. /* disable EEE if enabled */
  3829. if ((adapter->flags & IGB_FLAG_EEE) &&
  3830. (adapter->link_duplex == HALF_DUPLEX)) {
  3831. dev_info(&adapter->pdev->dev,
  3832. "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
  3833. adapter->hw.dev_spec._82575.eee_disable = true;
  3834. adapter->flags &= ~IGB_FLAG_EEE;
  3835. }
  3836. /* check if SmartSpeed worked */
  3837. igb_check_downshift(hw);
  3838. if (phy->speed_downgraded)
  3839. netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
  3840. /* check for thermal sensor event */
  3841. if (igb_thermal_sensor_event(hw,
  3842. E1000_THSTAT_LINK_THROTTLE))
  3843. netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
  3844. /* adjust timeout factor according to speed/duplex */
  3845. adapter->tx_timeout_factor = 1;
  3846. switch (adapter->link_speed) {
  3847. case SPEED_10:
  3848. adapter->tx_timeout_factor = 14;
  3849. break;
  3850. case SPEED_100:
  3851. /* maybe add some timeout factor ? */
  3852. break;
  3853. }
  3854. if (adapter->link_speed != SPEED_1000)
  3855. goto no_wait;
  3856. /* wait for Remote receiver status OK */
  3857. retry_read_status:
  3858. if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
  3859. &phy_data)) {
  3860. if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
  3861. retry_count) {
  3862. msleep(100);
  3863. retry_count--;
  3864. goto retry_read_status;
  3865. } else if (!retry_count) {
  3866. dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
  3867. }
  3868. } else {
  3869. dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
  3870. }
  3871. no_wait:
  3872. netif_carrier_on(netdev);
  3873. igb_ping_all_vfs(adapter);
  3874. igb_check_vf_rate_limit(adapter);
  3875. /* link state has changed, schedule phy info update */
  3876. if (!test_bit(__IGB_DOWN, &adapter->state))
  3877. mod_timer(&adapter->phy_info_timer,
  3878. round_jiffies(jiffies + 2 * HZ));
  3879. }
  3880. } else {
  3881. if (netif_carrier_ok(netdev)) {
  3882. adapter->link_speed = 0;
  3883. adapter->link_duplex = 0;
  3884. /* check for thermal sensor event */
  3885. if (igb_thermal_sensor_event(hw,
  3886. E1000_THSTAT_PWR_DOWN)) {
  3887. netdev_err(netdev, "The network adapter was stopped because it overheated\n");
  3888. }
  3889. /* Links status message must follow this format */
  3890. netdev_info(netdev, "igb: %s NIC Link is Down\n",
  3891. netdev->name);
  3892. netif_carrier_off(netdev);
  3893. igb_ping_all_vfs(adapter);
  3894. /* link state has changed, schedule phy info update */
  3895. if (!test_bit(__IGB_DOWN, &adapter->state))
  3896. mod_timer(&adapter->phy_info_timer,
  3897. round_jiffies(jiffies + 2 * HZ));
  3898. /* link is down, time to check for alternate media */
  3899. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3900. igb_check_swap_media(adapter);
  3901. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3902. schedule_work(&adapter->reset_task);
  3903. /* return immediately */
  3904. return;
  3905. }
  3906. }
  3907. pm_schedule_suspend(netdev->dev.parent,
  3908. MSEC_PER_SEC * 5);
  3909. /* also check for alternate media here */
  3910. } else if (!netif_carrier_ok(netdev) &&
  3911. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  3912. igb_check_swap_media(adapter);
  3913. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3914. schedule_work(&adapter->reset_task);
  3915. /* return immediately */
  3916. return;
  3917. }
  3918. }
  3919. }
  3920. spin_lock(&adapter->stats64_lock);
  3921. igb_update_stats(adapter, &adapter->stats64);
  3922. spin_unlock(&adapter->stats64_lock);
  3923. for (i = 0; i < adapter->num_tx_queues; i++) {
  3924. struct igb_ring *tx_ring = adapter->tx_ring[i];
  3925. if (!netif_carrier_ok(netdev)) {
  3926. /* We've lost link, so the controller stops DMA,
  3927. * but we've got queued Tx work that's never going
  3928. * to get done, so reset controller to flush Tx.
  3929. * (Do the reset outside of interrupt context).
  3930. */
  3931. if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
  3932. adapter->tx_timeout_count++;
  3933. schedule_work(&adapter->reset_task);
  3934. /* return immediately since reset is imminent */
  3935. return;
  3936. }
  3937. }
  3938. /* Force detection of hung controller every watchdog period */
  3939. set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  3940. }
  3941. /* Cause software interrupt to ensure Rx ring is cleaned */
  3942. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  3943. u32 eics = 0;
  3944. for (i = 0; i < adapter->num_q_vectors; i++)
  3945. eics |= adapter->q_vector[i]->eims_value;
  3946. wr32(E1000_EICS, eics);
  3947. } else {
  3948. wr32(E1000_ICS, E1000_ICS_RXDMT0);
  3949. }
  3950. igb_spoof_check(adapter);
  3951. igb_ptp_rx_hang(adapter);
  3952. /* Check LVMMC register on i350/i354 only */
  3953. if ((adapter->hw.mac.type == e1000_i350) ||
  3954. (adapter->hw.mac.type == e1000_i354))
  3955. igb_check_lvmmc(adapter);
  3956. /* Reset the timer */
  3957. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  3958. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
  3959. mod_timer(&adapter->watchdog_timer,
  3960. round_jiffies(jiffies + HZ));
  3961. else
  3962. mod_timer(&adapter->watchdog_timer,
  3963. round_jiffies(jiffies + 2 * HZ));
  3964. }
  3965. }
  3966. enum latency_range {
  3967. lowest_latency = 0,
  3968. low_latency = 1,
  3969. bulk_latency = 2,
  3970. latency_invalid = 255
  3971. };
  3972. /**
  3973. * igb_update_ring_itr - update the dynamic ITR value based on packet size
  3974. * @q_vector: pointer to q_vector
  3975. *
  3976. * Stores a new ITR value based on strictly on packet size. This
  3977. * algorithm is less sophisticated than that used in igb_update_itr,
  3978. * due to the difficulty of synchronizing statistics across multiple
  3979. * receive rings. The divisors and thresholds used by this function
  3980. * were determined based on theoretical maximum wire speed and testing
  3981. * data, in order to minimize response time while increasing bulk
  3982. * throughput.
  3983. * This functionality is controlled by ethtool's coalescing settings.
  3984. * NOTE: This function is called only when operating in a multiqueue
  3985. * receive environment.
  3986. **/
  3987. static void igb_update_ring_itr(struct igb_q_vector *q_vector)
  3988. {
  3989. int new_val = q_vector->itr_val;
  3990. int avg_wire_size = 0;
  3991. struct igb_adapter *adapter = q_vector->adapter;
  3992. unsigned int packets;
  3993. /* For non-gigabit speeds, just fix the interrupt rate at 4000
  3994. * ints/sec - ITR timer value of 120 ticks.
  3995. */
  3996. if (adapter->link_speed != SPEED_1000) {
  3997. new_val = IGB_4K_ITR;
  3998. goto set_itr_val;
  3999. }
  4000. packets = q_vector->rx.total_packets;
  4001. if (packets)
  4002. avg_wire_size = q_vector->rx.total_bytes / packets;
  4003. packets = q_vector->tx.total_packets;
  4004. if (packets)
  4005. avg_wire_size = max_t(u32, avg_wire_size,
  4006. q_vector->tx.total_bytes / packets);
  4007. /* if avg_wire_size isn't set no work was done */
  4008. if (!avg_wire_size)
  4009. goto clear_counts;
  4010. /* Add 24 bytes to size to account for CRC, preamble, and gap */
  4011. avg_wire_size += 24;
  4012. /* Don't starve jumbo frames */
  4013. avg_wire_size = min(avg_wire_size, 3000);
  4014. /* Give a little boost to mid-size frames */
  4015. if ((avg_wire_size > 300) && (avg_wire_size < 1200))
  4016. new_val = avg_wire_size / 3;
  4017. else
  4018. new_val = avg_wire_size / 2;
  4019. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  4020. if (new_val < IGB_20K_ITR &&
  4021. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  4022. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  4023. new_val = IGB_20K_ITR;
  4024. set_itr_val:
  4025. if (new_val != q_vector->itr_val) {
  4026. q_vector->itr_val = new_val;
  4027. q_vector->set_itr = 1;
  4028. }
  4029. clear_counts:
  4030. q_vector->rx.total_bytes = 0;
  4031. q_vector->rx.total_packets = 0;
  4032. q_vector->tx.total_bytes = 0;
  4033. q_vector->tx.total_packets = 0;
  4034. }
  4035. /**
  4036. * igb_update_itr - update the dynamic ITR value based on statistics
  4037. * @q_vector: pointer to q_vector
  4038. * @ring_container: ring info to update the itr for
  4039. *
  4040. * Stores a new ITR value based on packets and byte
  4041. * counts during the last interrupt. The advantage of per interrupt
  4042. * computation is faster updates and more accurate ITR for the current
  4043. * traffic pattern. Constants in this function were computed
  4044. * based on theoretical maximum wire speed and thresholds were set based
  4045. * on testing data as well as attempting to minimize response time
  4046. * while increasing bulk throughput.
  4047. * This functionality is controlled by ethtool's coalescing settings.
  4048. * NOTE: These calculations are only valid when operating in a single-
  4049. * queue environment.
  4050. **/
  4051. static void igb_update_itr(struct igb_q_vector *q_vector,
  4052. struct igb_ring_container *ring_container)
  4053. {
  4054. unsigned int packets = ring_container->total_packets;
  4055. unsigned int bytes = ring_container->total_bytes;
  4056. u8 itrval = ring_container->itr;
  4057. /* no packets, exit with status unchanged */
  4058. if (packets == 0)
  4059. return;
  4060. switch (itrval) {
  4061. case lowest_latency:
  4062. /* handle TSO and jumbo frames */
  4063. if (bytes/packets > 8000)
  4064. itrval = bulk_latency;
  4065. else if ((packets < 5) && (bytes > 512))
  4066. itrval = low_latency;
  4067. break;
  4068. case low_latency: /* 50 usec aka 20000 ints/s */
  4069. if (bytes > 10000) {
  4070. /* this if handles the TSO accounting */
  4071. if (bytes/packets > 8000)
  4072. itrval = bulk_latency;
  4073. else if ((packets < 10) || ((bytes/packets) > 1200))
  4074. itrval = bulk_latency;
  4075. else if ((packets > 35))
  4076. itrval = lowest_latency;
  4077. } else if (bytes/packets > 2000) {
  4078. itrval = bulk_latency;
  4079. } else if (packets <= 2 && bytes < 512) {
  4080. itrval = lowest_latency;
  4081. }
  4082. break;
  4083. case bulk_latency: /* 250 usec aka 4000 ints/s */
  4084. if (bytes > 25000) {
  4085. if (packets > 35)
  4086. itrval = low_latency;
  4087. } else if (bytes < 1500) {
  4088. itrval = low_latency;
  4089. }
  4090. break;
  4091. }
  4092. /* clear work counters since we have the values we need */
  4093. ring_container->total_bytes = 0;
  4094. ring_container->total_packets = 0;
  4095. /* write updated itr to ring container */
  4096. ring_container->itr = itrval;
  4097. }
  4098. static void igb_set_itr(struct igb_q_vector *q_vector)
  4099. {
  4100. struct igb_adapter *adapter = q_vector->adapter;
  4101. u32 new_itr = q_vector->itr_val;
  4102. u8 current_itr = 0;
  4103. /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
  4104. if (adapter->link_speed != SPEED_1000) {
  4105. current_itr = 0;
  4106. new_itr = IGB_4K_ITR;
  4107. goto set_itr_now;
  4108. }
  4109. igb_update_itr(q_vector, &q_vector->tx);
  4110. igb_update_itr(q_vector, &q_vector->rx);
  4111. current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
  4112. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  4113. if (current_itr == lowest_latency &&
  4114. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  4115. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  4116. current_itr = low_latency;
  4117. switch (current_itr) {
  4118. /* counts and packets in update_itr are dependent on these numbers */
  4119. case lowest_latency:
  4120. new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
  4121. break;
  4122. case low_latency:
  4123. new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
  4124. break;
  4125. case bulk_latency:
  4126. new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
  4127. break;
  4128. default:
  4129. break;
  4130. }
  4131. set_itr_now:
  4132. if (new_itr != q_vector->itr_val) {
  4133. /* this attempts to bias the interrupt rate towards Bulk
  4134. * by adding intermediate steps when interrupt rate is
  4135. * increasing
  4136. */
  4137. new_itr = new_itr > q_vector->itr_val ?
  4138. max((new_itr * q_vector->itr_val) /
  4139. (new_itr + (q_vector->itr_val >> 2)),
  4140. new_itr) : new_itr;
  4141. /* Don't write the value here; it resets the adapter's
  4142. * internal timer, and causes us to delay far longer than
  4143. * we should between interrupts. Instead, we write the ITR
  4144. * value at the beginning of the next interrupt so the timing
  4145. * ends up being correct.
  4146. */
  4147. q_vector->itr_val = new_itr;
  4148. q_vector->set_itr = 1;
  4149. }
  4150. }
  4151. static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
  4152. u32 type_tucmd, u32 mss_l4len_idx)
  4153. {
  4154. struct e1000_adv_tx_context_desc *context_desc;
  4155. u16 i = tx_ring->next_to_use;
  4156. context_desc = IGB_TX_CTXTDESC(tx_ring, i);
  4157. i++;
  4158. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  4159. /* set bits to identify this as an advanced context descriptor */
  4160. type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
  4161. /* For 82575, context index must be unique per ring. */
  4162. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4163. mss_l4len_idx |= tx_ring->reg_idx << 4;
  4164. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  4165. context_desc->seqnum_seed = 0;
  4166. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
  4167. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  4168. }
  4169. static int igb_tso(struct igb_ring *tx_ring,
  4170. struct igb_tx_buffer *first,
  4171. u8 *hdr_len)
  4172. {
  4173. u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
  4174. struct sk_buff *skb = first->skb;
  4175. union {
  4176. struct iphdr *v4;
  4177. struct ipv6hdr *v6;
  4178. unsigned char *hdr;
  4179. } ip;
  4180. union {
  4181. struct tcphdr *tcp;
  4182. unsigned char *hdr;
  4183. } l4;
  4184. u32 paylen, l4_offset;
  4185. int err;
  4186. if (skb->ip_summed != CHECKSUM_PARTIAL)
  4187. return 0;
  4188. if (!skb_is_gso(skb))
  4189. return 0;
  4190. err = skb_cow_head(skb, 0);
  4191. if (err < 0)
  4192. return err;
  4193. ip.hdr = skb_network_header(skb);
  4194. l4.hdr = skb_checksum_start(skb);
  4195. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  4196. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  4197. /* initialize outer IP header fields */
  4198. if (ip.v4->version == 4) {
  4199. /* IP header will have to cancel out any data that
  4200. * is not a part of the outer IP header
  4201. */
  4202. ip.v4->check = csum_fold(csum_add(lco_csum(skb),
  4203. csum_unfold(l4.tcp->check)));
  4204. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  4205. ip.v4->tot_len = 0;
  4206. first->tx_flags |= IGB_TX_FLAGS_TSO |
  4207. IGB_TX_FLAGS_CSUM |
  4208. IGB_TX_FLAGS_IPV4;
  4209. } else {
  4210. ip.v6->payload_len = 0;
  4211. first->tx_flags |= IGB_TX_FLAGS_TSO |
  4212. IGB_TX_FLAGS_CSUM;
  4213. }
  4214. /* determine offset of inner transport header */
  4215. l4_offset = l4.hdr - skb->data;
  4216. /* compute length of segmentation header */
  4217. *hdr_len = (l4.tcp->doff * 4) + l4_offset;
  4218. /* remove payload length from inner checksum */
  4219. paylen = skb->len - l4_offset;
  4220. csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
  4221. /* update gso size and bytecount with header size */
  4222. first->gso_segs = skb_shinfo(skb)->gso_segs;
  4223. first->bytecount += (first->gso_segs - 1) * *hdr_len;
  4224. /* MSS L4LEN IDX */
  4225. mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
  4226. mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
  4227. /* VLAN MACLEN IPLEN */
  4228. vlan_macip_lens = l4.hdr - ip.hdr;
  4229. vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
  4230. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4231. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4232. return 1;
  4233. }
  4234. static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
  4235. {
  4236. unsigned int offset = 0;
  4237. ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
  4238. return offset == skb_checksum_start_offset(skb);
  4239. }
  4240. static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
  4241. {
  4242. struct sk_buff *skb = first->skb;
  4243. u32 vlan_macip_lens = 0;
  4244. u32 type_tucmd = 0;
  4245. if (skb->ip_summed != CHECKSUM_PARTIAL) {
  4246. csum_failed:
  4247. if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
  4248. return;
  4249. goto no_csum;
  4250. }
  4251. switch (skb->csum_offset) {
  4252. case offsetof(struct tcphdr, check):
  4253. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  4254. /* fall through */
  4255. case offsetof(struct udphdr, check):
  4256. break;
  4257. case offsetof(struct sctphdr, checksum):
  4258. /* validate that this is actually an SCTP request */
  4259. if (((first->protocol == htons(ETH_P_IP)) &&
  4260. (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
  4261. ((first->protocol == htons(ETH_P_IPV6)) &&
  4262. igb_ipv6_csum_is_sctp(skb))) {
  4263. type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
  4264. break;
  4265. }
  4266. default:
  4267. skb_checksum_help(skb);
  4268. goto csum_failed;
  4269. }
  4270. /* update TX checksum flag */
  4271. first->tx_flags |= IGB_TX_FLAGS_CSUM;
  4272. vlan_macip_lens = skb_checksum_start_offset(skb) -
  4273. skb_network_offset(skb);
  4274. no_csum:
  4275. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4276. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4277. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
  4278. }
  4279. #define IGB_SET_FLAG(_input, _flag, _result) \
  4280. ((_flag <= _result) ? \
  4281. ((u32)(_input & _flag) * (_result / _flag)) : \
  4282. ((u32)(_input & _flag) / (_flag / _result)))
  4283. static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
  4284. {
  4285. /* set type for advanced descriptor with frame checksum insertion */
  4286. u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
  4287. E1000_ADVTXD_DCMD_DEXT |
  4288. E1000_ADVTXD_DCMD_IFCS;
  4289. /* set HW vlan bit if vlan is present */
  4290. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
  4291. (E1000_ADVTXD_DCMD_VLE));
  4292. /* set segmentation bits for TSO */
  4293. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
  4294. (E1000_ADVTXD_DCMD_TSE));
  4295. /* set timestamp bit if present */
  4296. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
  4297. (E1000_ADVTXD_MAC_TSTAMP));
  4298. /* insert frame checksum */
  4299. cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
  4300. return cmd_type;
  4301. }
  4302. static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
  4303. union e1000_adv_tx_desc *tx_desc,
  4304. u32 tx_flags, unsigned int paylen)
  4305. {
  4306. u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
  4307. /* 82575 requires a unique index per ring */
  4308. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4309. olinfo_status |= tx_ring->reg_idx << 4;
  4310. /* insert L4 checksum */
  4311. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4312. IGB_TX_FLAGS_CSUM,
  4313. (E1000_TXD_POPTS_TXSM << 8));
  4314. /* insert IPv4 checksum */
  4315. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4316. IGB_TX_FLAGS_IPV4,
  4317. (E1000_TXD_POPTS_IXSM << 8));
  4318. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  4319. }
  4320. static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4321. {
  4322. struct net_device *netdev = tx_ring->netdev;
  4323. netif_stop_subqueue(netdev, tx_ring->queue_index);
  4324. /* Herbert's original patch had:
  4325. * smp_mb__after_netif_stop_queue();
  4326. * but since that doesn't exist yet, just open code it.
  4327. */
  4328. smp_mb();
  4329. /* We need to check again in a case another CPU has just
  4330. * made room available.
  4331. */
  4332. if (igb_desc_unused(tx_ring) < size)
  4333. return -EBUSY;
  4334. /* A reprieve! */
  4335. netif_wake_subqueue(netdev, tx_ring->queue_index);
  4336. u64_stats_update_begin(&tx_ring->tx_syncp2);
  4337. tx_ring->tx_stats.restart_queue2++;
  4338. u64_stats_update_end(&tx_ring->tx_syncp2);
  4339. return 0;
  4340. }
  4341. static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4342. {
  4343. if (igb_desc_unused(tx_ring) >= size)
  4344. return 0;
  4345. return __igb_maybe_stop_tx(tx_ring, size);
  4346. }
  4347. static void igb_tx_map(struct igb_ring *tx_ring,
  4348. struct igb_tx_buffer *first,
  4349. const u8 hdr_len)
  4350. {
  4351. struct sk_buff *skb = first->skb;
  4352. struct igb_tx_buffer *tx_buffer;
  4353. union e1000_adv_tx_desc *tx_desc;
  4354. struct skb_frag_struct *frag;
  4355. dma_addr_t dma;
  4356. unsigned int data_len, size;
  4357. u32 tx_flags = first->tx_flags;
  4358. u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
  4359. u16 i = tx_ring->next_to_use;
  4360. tx_desc = IGB_TX_DESC(tx_ring, i);
  4361. igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
  4362. size = skb_headlen(skb);
  4363. data_len = skb->data_len;
  4364. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  4365. tx_buffer = first;
  4366. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  4367. if (dma_mapping_error(tx_ring->dev, dma))
  4368. goto dma_error;
  4369. /* record length, and DMA address */
  4370. dma_unmap_len_set(tx_buffer, len, size);
  4371. dma_unmap_addr_set(tx_buffer, dma, dma);
  4372. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4373. while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
  4374. tx_desc->read.cmd_type_len =
  4375. cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
  4376. i++;
  4377. tx_desc++;
  4378. if (i == tx_ring->count) {
  4379. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4380. i = 0;
  4381. }
  4382. tx_desc->read.olinfo_status = 0;
  4383. dma += IGB_MAX_DATA_PER_TXD;
  4384. size -= IGB_MAX_DATA_PER_TXD;
  4385. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4386. }
  4387. if (likely(!data_len))
  4388. break;
  4389. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
  4390. i++;
  4391. tx_desc++;
  4392. if (i == tx_ring->count) {
  4393. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4394. i = 0;
  4395. }
  4396. tx_desc->read.olinfo_status = 0;
  4397. size = skb_frag_size(frag);
  4398. data_len -= size;
  4399. dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
  4400. size, DMA_TO_DEVICE);
  4401. tx_buffer = &tx_ring->tx_buffer_info[i];
  4402. }
  4403. /* write last descriptor with RS and EOP bits */
  4404. cmd_type |= size | IGB_TXD_DCMD;
  4405. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
  4406. netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
  4407. /* set the timestamp */
  4408. first->time_stamp = jiffies;
  4409. /* Force memory writes to complete before letting h/w know there
  4410. * are new descriptors to fetch. (Only applicable for weak-ordered
  4411. * memory model archs, such as IA-64).
  4412. *
  4413. * We also need this memory barrier to make certain all of the
  4414. * status bits have been updated before next_to_watch is written.
  4415. */
  4416. wmb();
  4417. /* set next_to_watch value indicating a packet is present */
  4418. first->next_to_watch = tx_desc;
  4419. i++;
  4420. if (i == tx_ring->count)
  4421. i = 0;
  4422. tx_ring->next_to_use = i;
  4423. /* Make sure there is space in the ring for the next send. */
  4424. igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
  4425. if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
  4426. writel(i, tx_ring->tail);
  4427. /* we need this if more than one processor can write to our tail
  4428. * at a time, it synchronizes IO on IA64/Altix systems
  4429. */
  4430. mmiowb();
  4431. }
  4432. return;
  4433. dma_error:
  4434. dev_err(tx_ring->dev, "TX DMA map failed\n");
  4435. /* clear dma mappings for failed tx_buffer_info map */
  4436. for (;;) {
  4437. tx_buffer = &tx_ring->tx_buffer_info[i];
  4438. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
  4439. if (tx_buffer == first)
  4440. break;
  4441. if (i == 0)
  4442. i = tx_ring->count;
  4443. i--;
  4444. }
  4445. tx_ring->next_to_use = i;
  4446. }
  4447. netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
  4448. struct igb_ring *tx_ring)
  4449. {
  4450. struct igb_tx_buffer *first;
  4451. int tso;
  4452. u32 tx_flags = 0;
  4453. unsigned short f;
  4454. u16 count = TXD_USE_COUNT(skb_headlen(skb));
  4455. __be16 protocol = vlan_get_protocol(skb);
  4456. u8 hdr_len = 0;
  4457. /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
  4458. * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
  4459. * + 2 desc gap to keep tail from touching head,
  4460. * + 1 desc for context descriptor,
  4461. * otherwise try next time
  4462. */
  4463. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  4464. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  4465. if (igb_maybe_stop_tx(tx_ring, count + 3)) {
  4466. /* this is a hard error */
  4467. return NETDEV_TX_BUSY;
  4468. }
  4469. /* record the location of the first descriptor for this packet */
  4470. first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
  4471. first->skb = skb;
  4472. first->bytecount = skb->len;
  4473. first->gso_segs = 1;
  4474. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
  4475. struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
  4476. if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
  4477. &adapter->state)) {
  4478. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  4479. tx_flags |= IGB_TX_FLAGS_TSTAMP;
  4480. adapter->ptp_tx_skb = skb_get(skb);
  4481. adapter->ptp_tx_start = jiffies;
  4482. if (adapter->hw.mac.type == e1000_82576)
  4483. schedule_work(&adapter->ptp_tx_work);
  4484. }
  4485. }
  4486. skb_tx_timestamp(skb);
  4487. if (skb_vlan_tag_present(skb)) {
  4488. tx_flags |= IGB_TX_FLAGS_VLAN;
  4489. tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
  4490. }
  4491. /* record initial flags and protocol */
  4492. first->tx_flags = tx_flags;
  4493. first->protocol = protocol;
  4494. tso = igb_tso(tx_ring, first, &hdr_len);
  4495. if (tso < 0)
  4496. goto out_drop;
  4497. else if (!tso)
  4498. igb_tx_csum(tx_ring, first);
  4499. igb_tx_map(tx_ring, first, hdr_len);
  4500. return NETDEV_TX_OK;
  4501. out_drop:
  4502. igb_unmap_and_free_tx_resource(tx_ring, first);
  4503. return NETDEV_TX_OK;
  4504. }
  4505. static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
  4506. struct sk_buff *skb)
  4507. {
  4508. unsigned int r_idx = skb->queue_mapping;
  4509. if (r_idx >= adapter->num_tx_queues)
  4510. r_idx = r_idx % adapter->num_tx_queues;
  4511. return adapter->tx_ring[r_idx];
  4512. }
  4513. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
  4514. struct net_device *netdev)
  4515. {
  4516. struct igb_adapter *adapter = netdev_priv(netdev);
  4517. /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
  4518. * in order to meet this minimum size requirement.
  4519. */
  4520. if (skb_put_padto(skb, 17))
  4521. return NETDEV_TX_OK;
  4522. return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
  4523. }
  4524. /**
  4525. * igb_tx_timeout - Respond to a Tx Hang
  4526. * @netdev: network interface device structure
  4527. **/
  4528. static void igb_tx_timeout(struct net_device *netdev)
  4529. {
  4530. struct igb_adapter *adapter = netdev_priv(netdev);
  4531. struct e1000_hw *hw = &adapter->hw;
  4532. /* Do the reset outside of interrupt context */
  4533. adapter->tx_timeout_count++;
  4534. if (hw->mac.type >= e1000_82580)
  4535. hw->dev_spec._82575.global_device_reset = true;
  4536. schedule_work(&adapter->reset_task);
  4537. wr32(E1000_EICS,
  4538. (adapter->eims_enable_mask & ~adapter->eims_other));
  4539. }
  4540. static void igb_reset_task(struct work_struct *work)
  4541. {
  4542. struct igb_adapter *adapter;
  4543. adapter = container_of(work, struct igb_adapter, reset_task);
  4544. igb_dump(adapter);
  4545. netdev_err(adapter->netdev, "Reset adapter\n");
  4546. igb_reinit_locked(adapter);
  4547. }
  4548. /**
  4549. * igb_get_stats64 - Get System Network Statistics
  4550. * @netdev: network interface device structure
  4551. * @stats: rtnl_link_stats64 pointer
  4552. **/
  4553. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
  4554. struct rtnl_link_stats64 *stats)
  4555. {
  4556. struct igb_adapter *adapter = netdev_priv(netdev);
  4557. spin_lock(&adapter->stats64_lock);
  4558. igb_update_stats(adapter, &adapter->stats64);
  4559. memcpy(stats, &adapter->stats64, sizeof(*stats));
  4560. spin_unlock(&adapter->stats64_lock);
  4561. return stats;
  4562. }
  4563. /**
  4564. * igb_change_mtu - Change the Maximum Transfer Unit
  4565. * @netdev: network interface device structure
  4566. * @new_mtu: new value for maximum frame size
  4567. *
  4568. * Returns 0 on success, negative on failure
  4569. **/
  4570. static int igb_change_mtu(struct net_device *netdev, int new_mtu)
  4571. {
  4572. struct igb_adapter *adapter = netdev_priv(netdev);
  4573. struct pci_dev *pdev = adapter->pdev;
  4574. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  4575. if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  4576. dev_err(&pdev->dev, "Invalid MTU setting\n");
  4577. return -EINVAL;
  4578. }
  4579. #define MAX_STD_JUMBO_FRAME_SIZE 9238
  4580. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  4581. dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
  4582. return -EINVAL;
  4583. }
  4584. /* adjust max frame to be at least the size of a standard frame */
  4585. if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
  4586. max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
  4587. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  4588. usleep_range(1000, 2000);
  4589. /* igb_down has a dependency on max_frame_size */
  4590. adapter->max_frame_size = max_frame;
  4591. if (netif_running(netdev))
  4592. igb_down(adapter);
  4593. dev_info(&pdev->dev, "changing MTU from %d to %d\n",
  4594. netdev->mtu, new_mtu);
  4595. netdev->mtu = new_mtu;
  4596. if (netif_running(netdev))
  4597. igb_up(adapter);
  4598. else
  4599. igb_reset(adapter);
  4600. clear_bit(__IGB_RESETTING, &adapter->state);
  4601. return 0;
  4602. }
  4603. /**
  4604. * igb_update_stats - Update the board statistics counters
  4605. * @adapter: board private structure
  4606. **/
  4607. void igb_update_stats(struct igb_adapter *adapter,
  4608. struct rtnl_link_stats64 *net_stats)
  4609. {
  4610. struct e1000_hw *hw = &adapter->hw;
  4611. struct pci_dev *pdev = adapter->pdev;
  4612. u32 reg, mpc;
  4613. int i;
  4614. u64 bytes, packets;
  4615. unsigned int start;
  4616. u64 _bytes, _packets;
  4617. /* Prevent stats update while adapter is being reset, or if the pci
  4618. * connection is down.
  4619. */
  4620. if (adapter->link_speed == 0)
  4621. return;
  4622. if (pci_channel_offline(pdev))
  4623. return;
  4624. bytes = 0;
  4625. packets = 0;
  4626. rcu_read_lock();
  4627. for (i = 0; i < adapter->num_rx_queues; i++) {
  4628. struct igb_ring *ring = adapter->rx_ring[i];
  4629. u32 rqdpc = rd32(E1000_RQDPC(i));
  4630. if (hw->mac.type >= e1000_i210)
  4631. wr32(E1000_RQDPC(i), 0);
  4632. if (rqdpc) {
  4633. ring->rx_stats.drops += rqdpc;
  4634. net_stats->rx_fifo_errors += rqdpc;
  4635. }
  4636. do {
  4637. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  4638. _bytes = ring->rx_stats.bytes;
  4639. _packets = ring->rx_stats.packets;
  4640. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  4641. bytes += _bytes;
  4642. packets += _packets;
  4643. }
  4644. net_stats->rx_bytes = bytes;
  4645. net_stats->rx_packets = packets;
  4646. bytes = 0;
  4647. packets = 0;
  4648. for (i = 0; i < adapter->num_tx_queues; i++) {
  4649. struct igb_ring *ring = adapter->tx_ring[i];
  4650. do {
  4651. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  4652. _bytes = ring->tx_stats.bytes;
  4653. _packets = ring->tx_stats.packets;
  4654. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  4655. bytes += _bytes;
  4656. packets += _packets;
  4657. }
  4658. net_stats->tx_bytes = bytes;
  4659. net_stats->tx_packets = packets;
  4660. rcu_read_unlock();
  4661. /* read stats registers */
  4662. adapter->stats.crcerrs += rd32(E1000_CRCERRS);
  4663. adapter->stats.gprc += rd32(E1000_GPRC);
  4664. adapter->stats.gorc += rd32(E1000_GORCL);
  4665. rd32(E1000_GORCH); /* clear GORCL */
  4666. adapter->stats.bprc += rd32(E1000_BPRC);
  4667. adapter->stats.mprc += rd32(E1000_MPRC);
  4668. adapter->stats.roc += rd32(E1000_ROC);
  4669. adapter->stats.prc64 += rd32(E1000_PRC64);
  4670. adapter->stats.prc127 += rd32(E1000_PRC127);
  4671. adapter->stats.prc255 += rd32(E1000_PRC255);
  4672. adapter->stats.prc511 += rd32(E1000_PRC511);
  4673. adapter->stats.prc1023 += rd32(E1000_PRC1023);
  4674. adapter->stats.prc1522 += rd32(E1000_PRC1522);
  4675. adapter->stats.symerrs += rd32(E1000_SYMERRS);
  4676. adapter->stats.sec += rd32(E1000_SEC);
  4677. mpc = rd32(E1000_MPC);
  4678. adapter->stats.mpc += mpc;
  4679. net_stats->rx_fifo_errors += mpc;
  4680. adapter->stats.scc += rd32(E1000_SCC);
  4681. adapter->stats.ecol += rd32(E1000_ECOL);
  4682. adapter->stats.mcc += rd32(E1000_MCC);
  4683. adapter->stats.latecol += rd32(E1000_LATECOL);
  4684. adapter->stats.dc += rd32(E1000_DC);
  4685. adapter->stats.rlec += rd32(E1000_RLEC);
  4686. adapter->stats.xonrxc += rd32(E1000_XONRXC);
  4687. adapter->stats.xontxc += rd32(E1000_XONTXC);
  4688. adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
  4689. adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
  4690. adapter->stats.fcruc += rd32(E1000_FCRUC);
  4691. adapter->stats.gptc += rd32(E1000_GPTC);
  4692. adapter->stats.gotc += rd32(E1000_GOTCL);
  4693. rd32(E1000_GOTCH); /* clear GOTCL */
  4694. adapter->stats.rnbc += rd32(E1000_RNBC);
  4695. adapter->stats.ruc += rd32(E1000_RUC);
  4696. adapter->stats.rfc += rd32(E1000_RFC);
  4697. adapter->stats.rjc += rd32(E1000_RJC);
  4698. adapter->stats.tor += rd32(E1000_TORH);
  4699. adapter->stats.tot += rd32(E1000_TOTH);
  4700. adapter->stats.tpr += rd32(E1000_TPR);
  4701. adapter->stats.ptc64 += rd32(E1000_PTC64);
  4702. adapter->stats.ptc127 += rd32(E1000_PTC127);
  4703. adapter->stats.ptc255 += rd32(E1000_PTC255);
  4704. adapter->stats.ptc511 += rd32(E1000_PTC511);
  4705. adapter->stats.ptc1023 += rd32(E1000_PTC1023);
  4706. adapter->stats.ptc1522 += rd32(E1000_PTC1522);
  4707. adapter->stats.mptc += rd32(E1000_MPTC);
  4708. adapter->stats.bptc += rd32(E1000_BPTC);
  4709. adapter->stats.tpt += rd32(E1000_TPT);
  4710. adapter->stats.colc += rd32(E1000_COLC);
  4711. adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
  4712. /* read internal phy specific stats */
  4713. reg = rd32(E1000_CTRL_EXT);
  4714. if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
  4715. adapter->stats.rxerrc += rd32(E1000_RXERRC);
  4716. /* this stat has invalid values on i210/i211 */
  4717. if ((hw->mac.type != e1000_i210) &&
  4718. (hw->mac.type != e1000_i211))
  4719. adapter->stats.tncrs += rd32(E1000_TNCRS);
  4720. }
  4721. adapter->stats.tsctc += rd32(E1000_TSCTC);
  4722. adapter->stats.tsctfc += rd32(E1000_TSCTFC);
  4723. adapter->stats.iac += rd32(E1000_IAC);
  4724. adapter->stats.icrxoc += rd32(E1000_ICRXOC);
  4725. adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
  4726. adapter->stats.icrxatc += rd32(E1000_ICRXATC);
  4727. adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
  4728. adapter->stats.ictxatc += rd32(E1000_ICTXATC);
  4729. adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
  4730. adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
  4731. adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
  4732. /* Fill out the OS statistics structure */
  4733. net_stats->multicast = adapter->stats.mprc;
  4734. net_stats->collisions = adapter->stats.colc;
  4735. /* Rx Errors */
  4736. /* RLEC on some newer hardware can be incorrect so build
  4737. * our own version based on RUC and ROC
  4738. */
  4739. net_stats->rx_errors = adapter->stats.rxerrc +
  4740. adapter->stats.crcerrs + adapter->stats.algnerrc +
  4741. adapter->stats.ruc + adapter->stats.roc +
  4742. adapter->stats.cexterr;
  4743. net_stats->rx_length_errors = adapter->stats.ruc +
  4744. adapter->stats.roc;
  4745. net_stats->rx_crc_errors = adapter->stats.crcerrs;
  4746. net_stats->rx_frame_errors = adapter->stats.algnerrc;
  4747. net_stats->rx_missed_errors = adapter->stats.mpc;
  4748. /* Tx Errors */
  4749. net_stats->tx_errors = adapter->stats.ecol +
  4750. adapter->stats.latecol;
  4751. net_stats->tx_aborted_errors = adapter->stats.ecol;
  4752. net_stats->tx_window_errors = adapter->stats.latecol;
  4753. net_stats->tx_carrier_errors = adapter->stats.tncrs;
  4754. /* Tx Dropped needs to be maintained elsewhere */
  4755. /* Management Stats */
  4756. adapter->stats.mgptc += rd32(E1000_MGTPTC);
  4757. adapter->stats.mgprc += rd32(E1000_MGTPRC);
  4758. adapter->stats.mgpdc += rd32(E1000_MGTPDC);
  4759. /* OS2BMC Stats */
  4760. reg = rd32(E1000_MANC);
  4761. if (reg & E1000_MANC_EN_BMC2OS) {
  4762. adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
  4763. adapter->stats.o2bspc += rd32(E1000_O2BSPC);
  4764. adapter->stats.b2ospc += rd32(E1000_B2OSPC);
  4765. adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
  4766. }
  4767. }
  4768. static void igb_tsync_interrupt(struct igb_adapter *adapter)
  4769. {
  4770. struct e1000_hw *hw = &adapter->hw;
  4771. struct ptp_clock_event event;
  4772. struct timespec64 ts;
  4773. u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
  4774. if (tsicr & TSINTR_SYS_WRAP) {
  4775. event.type = PTP_CLOCK_PPS;
  4776. if (adapter->ptp_caps.pps)
  4777. ptp_clock_event(adapter->ptp_clock, &event);
  4778. else
  4779. dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
  4780. ack |= TSINTR_SYS_WRAP;
  4781. }
  4782. if (tsicr & E1000_TSICR_TXTS) {
  4783. /* retrieve hardware timestamp */
  4784. schedule_work(&adapter->ptp_tx_work);
  4785. ack |= E1000_TSICR_TXTS;
  4786. }
  4787. if (tsicr & TSINTR_TT0) {
  4788. spin_lock(&adapter->tmreg_lock);
  4789. ts = timespec64_add(adapter->perout[0].start,
  4790. adapter->perout[0].period);
  4791. /* u32 conversion of tv_sec is safe until y2106 */
  4792. wr32(E1000_TRGTTIML0, ts.tv_nsec);
  4793. wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
  4794. tsauxc = rd32(E1000_TSAUXC);
  4795. tsauxc |= TSAUXC_EN_TT0;
  4796. wr32(E1000_TSAUXC, tsauxc);
  4797. adapter->perout[0].start = ts;
  4798. spin_unlock(&adapter->tmreg_lock);
  4799. ack |= TSINTR_TT0;
  4800. }
  4801. if (tsicr & TSINTR_TT1) {
  4802. spin_lock(&adapter->tmreg_lock);
  4803. ts = timespec64_add(adapter->perout[1].start,
  4804. adapter->perout[1].period);
  4805. wr32(E1000_TRGTTIML1, ts.tv_nsec);
  4806. wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
  4807. tsauxc = rd32(E1000_TSAUXC);
  4808. tsauxc |= TSAUXC_EN_TT1;
  4809. wr32(E1000_TSAUXC, tsauxc);
  4810. adapter->perout[1].start = ts;
  4811. spin_unlock(&adapter->tmreg_lock);
  4812. ack |= TSINTR_TT1;
  4813. }
  4814. if (tsicr & TSINTR_AUTT0) {
  4815. nsec = rd32(E1000_AUXSTMPL0);
  4816. sec = rd32(E1000_AUXSTMPH0);
  4817. event.type = PTP_CLOCK_EXTTS;
  4818. event.index = 0;
  4819. event.timestamp = sec * 1000000000ULL + nsec;
  4820. ptp_clock_event(adapter->ptp_clock, &event);
  4821. ack |= TSINTR_AUTT0;
  4822. }
  4823. if (tsicr & TSINTR_AUTT1) {
  4824. nsec = rd32(E1000_AUXSTMPL1);
  4825. sec = rd32(E1000_AUXSTMPH1);
  4826. event.type = PTP_CLOCK_EXTTS;
  4827. event.index = 1;
  4828. event.timestamp = sec * 1000000000ULL + nsec;
  4829. ptp_clock_event(adapter->ptp_clock, &event);
  4830. ack |= TSINTR_AUTT1;
  4831. }
  4832. /* acknowledge the interrupts */
  4833. wr32(E1000_TSICR, ack);
  4834. }
  4835. static irqreturn_t igb_msix_other(int irq, void *data)
  4836. {
  4837. struct igb_adapter *adapter = data;
  4838. struct e1000_hw *hw = &adapter->hw;
  4839. u32 icr = rd32(E1000_ICR);
  4840. /* reading ICR causes bit 31 of EICR to be cleared */
  4841. if (icr & E1000_ICR_DRSTA)
  4842. schedule_work(&adapter->reset_task);
  4843. if (icr & E1000_ICR_DOUTSYNC) {
  4844. /* HW is reporting DMA is out of sync */
  4845. adapter->stats.doosync++;
  4846. /* The DMA Out of Sync is also indication of a spoof event
  4847. * in IOV mode. Check the Wrong VM Behavior register to
  4848. * see if it is really a spoof event.
  4849. */
  4850. igb_check_wvbr(adapter);
  4851. }
  4852. /* Check for a mailbox event */
  4853. if (icr & E1000_ICR_VMMB)
  4854. igb_msg_task(adapter);
  4855. if (icr & E1000_ICR_LSC) {
  4856. hw->mac.get_link_status = 1;
  4857. /* guard against interrupt when we're going down */
  4858. if (!test_bit(__IGB_DOWN, &adapter->state))
  4859. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  4860. }
  4861. if (icr & E1000_ICR_TS)
  4862. igb_tsync_interrupt(adapter);
  4863. wr32(E1000_EIMS, adapter->eims_other);
  4864. return IRQ_HANDLED;
  4865. }
  4866. static void igb_write_itr(struct igb_q_vector *q_vector)
  4867. {
  4868. struct igb_adapter *adapter = q_vector->adapter;
  4869. u32 itr_val = q_vector->itr_val & 0x7FFC;
  4870. if (!q_vector->set_itr)
  4871. return;
  4872. if (!itr_val)
  4873. itr_val = 0x4;
  4874. if (adapter->hw.mac.type == e1000_82575)
  4875. itr_val |= itr_val << 16;
  4876. else
  4877. itr_val |= E1000_EITR_CNT_IGNR;
  4878. writel(itr_val, q_vector->itr_register);
  4879. q_vector->set_itr = 0;
  4880. }
  4881. static irqreturn_t igb_msix_ring(int irq, void *data)
  4882. {
  4883. struct igb_q_vector *q_vector = data;
  4884. /* Write the ITR value calculated from the previous interrupt. */
  4885. igb_write_itr(q_vector);
  4886. napi_schedule(&q_vector->napi);
  4887. return IRQ_HANDLED;
  4888. }
  4889. #ifdef CONFIG_IGB_DCA
  4890. static void igb_update_tx_dca(struct igb_adapter *adapter,
  4891. struct igb_ring *tx_ring,
  4892. int cpu)
  4893. {
  4894. struct e1000_hw *hw = &adapter->hw;
  4895. u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
  4896. if (hw->mac.type != e1000_82575)
  4897. txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
  4898. /* We can enable relaxed ordering for reads, but not writes when
  4899. * DCA is enabled. This is due to a known issue in some chipsets
  4900. * which will cause the DCA tag to be cleared.
  4901. */
  4902. txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
  4903. E1000_DCA_TXCTRL_DATA_RRO_EN |
  4904. E1000_DCA_TXCTRL_DESC_DCA_EN;
  4905. wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
  4906. }
  4907. static void igb_update_rx_dca(struct igb_adapter *adapter,
  4908. struct igb_ring *rx_ring,
  4909. int cpu)
  4910. {
  4911. struct e1000_hw *hw = &adapter->hw;
  4912. u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
  4913. if (hw->mac.type != e1000_82575)
  4914. rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
  4915. /* We can enable relaxed ordering for reads, but not writes when
  4916. * DCA is enabled. This is due to a known issue in some chipsets
  4917. * which will cause the DCA tag to be cleared.
  4918. */
  4919. rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
  4920. E1000_DCA_RXCTRL_DESC_DCA_EN;
  4921. wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
  4922. }
  4923. static void igb_update_dca(struct igb_q_vector *q_vector)
  4924. {
  4925. struct igb_adapter *adapter = q_vector->adapter;
  4926. int cpu = get_cpu();
  4927. if (q_vector->cpu == cpu)
  4928. goto out_no_update;
  4929. if (q_vector->tx.ring)
  4930. igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
  4931. if (q_vector->rx.ring)
  4932. igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
  4933. q_vector->cpu = cpu;
  4934. out_no_update:
  4935. put_cpu();
  4936. }
  4937. static void igb_setup_dca(struct igb_adapter *adapter)
  4938. {
  4939. struct e1000_hw *hw = &adapter->hw;
  4940. int i;
  4941. if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
  4942. return;
  4943. /* Always use CB2 mode, difference is masked in the CB driver. */
  4944. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
  4945. for (i = 0; i < adapter->num_q_vectors; i++) {
  4946. adapter->q_vector[i]->cpu = -1;
  4947. igb_update_dca(adapter->q_vector[i]);
  4948. }
  4949. }
  4950. static int __igb_notify_dca(struct device *dev, void *data)
  4951. {
  4952. struct net_device *netdev = dev_get_drvdata(dev);
  4953. struct igb_adapter *adapter = netdev_priv(netdev);
  4954. struct pci_dev *pdev = adapter->pdev;
  4955. struct e1000_hw *hw = &adapter->hw;
  4956. unsigned long event = *(unsigned long *)data;
  4957. switch (event) {
  4958. case DCA_PROVIDER_ADD:
  4959. /* if already enabled, don't do it again */
  4960. if (adapter->flags & IGB_FLAG_DCA_ENABLED)
  4961. break;
  4962. if (dca_add_requester(dev) == 0) {
  4963. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  4964. dev_info(&pdev->dev, "DCA enabled\n");
  4965. igb_setup_dca(adapter);
  4966. break;
  4967. }
  4968. /* Fall Through since DCA is disabled. */
  4969. case DCA_PROVIDER_REMOVE:
  4970. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  4971. /* without this a class_device is left
  4972. * hanging around in the sysfs model
  4973. */
  4974. dca_remove_requester(dev);
  4975. dev_info(&pdev->dev, "DCA disabled\n");
  4976. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  4977. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  4978. }
  4979. break;
  4980. }
  4981. return 0;
  4982. }
  4983. static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
  4984. void *p)
  4985. {
  4986. int ret_val;
  4987. ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
  4988. __igb_notify_dca);
  4989. return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
  4990. }
  4991. #endif /* CONFIG_IGB_DCA */
  4992. #ifdef CONFIG_PCI_IOV
  4993. static int igb_vf_configure(struct igb_adapter *adapter, int vf)
  4994. {
  4995. unsigned char mac_addr[ETH_ALEN];
  4996. eth_zero_addr(mac_addr);
  4997. igb_set_vf_mac(adapter, vf, mac_addr);
  4998. /* By default spoof check is enabled for all VFs */
  4999. adapter->vf_data[vf].spoofchk_enabled = true;
  5000. return 0;
  5001. }
  5002. #endif
  5003. static void igb_ping_all_vfs(struct igb_adapter *adapter)
  5004. {
  5005. struct e1000_hw *hw = &adapter->hw;
  5006. u32 ping;
  5007. int i;
  5008. for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
  5009. ping = E1000_PF_CONTROL_MSG;
  5010. if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
  5011. ping |= E1000_VT_MSGTYPE_CTS;
  5012. igb_write_mbx(hw, &ping, 1, i);
  5013. }
  5014. }
  5015. static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  5016. {
  5017. struct e1000_hw *hw = &adapter->hw;
  5018. u32 vmolr = rd32(E1000_VMOLR(vf));
  5019. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5020. vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
  5021. IGB_VF_FLAG_MULTI_PROMISC);
  5022. vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  5023. if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
  5024. vmolr |= E1000_VMOLR_MPME;
  5025. vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
  5026. *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
  5027. } else {
  5028. /* if we have hashes and we are clearing a multicast promisc
  5029. * flag we need to write the hashes to the MTA as this step
  5030. * was previously skipped
  5031. */
  5032. if (vf_data->num_vf_mc_hashes > 30) {
  5033. vmolr |= E1000_VMOLR_MPME;
  5034. } else if (vf_data->num_vf_mc_hashes) {
  5035. int j;
  5036. vmolr |= E1000_VMOLR_ROMPE;
  5037. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  5038. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  5039. }
  5040. }
  5041. wr32(E1000_VMOLR(vf), vmolr);
  5042. /* there are flags left unprocessed, likely not supported */
  5043. if (*msgbuf & E1000_VT_MSGINFO_MASK)
  5044. return -EINVAL;
  5045. return 0;
  5046. }
  5047. static int igb_set_vf_multicasts(struct igb_adapter *adapter,
  5048. u32 *msgbuf, u32 vf)
  5049. {
  5050. int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5051. u16 *hash_list = (u16 *)&msgbuf[1];
  5052. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5053. int i;
  5054. /* salt away the number of multicast addresses assigned
  5055. * to this VF for later use to restore when the PF multi cast
  5056. * list changes
  5057. */
  5058. vf_data->num_vf_mc_hashes = n;
  5059. /* only up to 30 hash values supported */
  5060. if (n > 30)
  5061. n = 30;
  5062. /* store the hashes for later use */
  5063. for (i = 0; i < n; i++)
  5064. vf_data->vf_mc_hashes[i] = hash_list[i];
  5065. /* Flush and reset the mta with the new values */
  5066. igb_set_rx_mode(adapter->netdev);
  5067. return 0;
  5068. }
  5069. static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
  5070. {
  5071. struct e1000_hw *hw = &adapter->hw;
  5072. struct vf_data_storage *vf_data;
  5073. int i, j;
  5074. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  5075. u32 vmolr = rd32(E1000_VMOLR(i));
  5076. vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  5077. vf_data = &adapter->vf_data[i];
  5078. if ((vf_data->num_vf_mc_hashes > 30) ||
  5079. (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
  5080. vmolr |= E1000_VMOLR_MPME;
  5081. } else if (vf_data->num_vf_mc_hashes) {
  5082. vmolr |= E1000_VMOLR_ROMPE;
  5083. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  5084. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  5085. }
  5086. wr32(E1000_VMOLR(i), vmolr);
  5087. }
  5088. }
  5089. static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
  5090. {
  5091. struct e1000_hw *hw = &adapter->hw;
  5092. u32 pool_mask, vlvf_mask, i;
  5093. /* create mask for VF and other pools */
  5094. pool_mask = E1000_VLVF_POOLSEL_MASK;
  5095. vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
  5096. /* drop PF from pool bits */
  5097. pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
  5098. adapter->vfs_allocated_count);
  5099. /* Find the vlan filter for this id */
  5100. for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
  5101. u32 vlvf = rd32(E1000_VLVF(i));
  5102. u32 vfta_mask, vid, vfta;
  5103. /* remove the vf from the pool */
  5104. if (!(vlvf & vlvf_mask))
  5105. continue;
  5106. /* clear out bit from VLVF */
  5107. vlvf ^= vlvf_mask;
  5108. /* if other pools are present, just remove ourselves */
  5109. if (vlvf & pool_mask)
  5110. goto update_vlvfb;
  5111. /* if PF is present, leave VFTA */
  5112. if (vlvf & E1000_VLVF_POOLSEL_MASK)
  5113. goto update_vlvf;
  5114. vid = vlvf & E1000_VLVF_VLANID_MASK;
  5115. vfta_mask = BIT(vid % 32);
  5116. /* clear bit from VFTA */
  5117. vfta = adapter->shadow_vfta[vid / 32];
  5118. if (vfta & vfta_mask)
  5119. hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
  5120. update_vlvf:
  5121. /* clear pool selection enable */
  5122. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  5123. vlvf &= E1000_VLVF_POOLSEL_MASK;
  5124. else
  5125. vlvf = 0;
  5126. update_vlvfb:
  5127. /* clear pool bits */
  5128. wr32(E1000_VLVF(i), vlvf);
  5129. }
  5130. }
  5131. static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
  5132. {
  5133. u32 vlvf;
  5134. int idx;
  5135. /* short cut the special case */
  5136. if (vlan == 0)
  5137. return 0;
  5138. /* Search for the VLAN id in the VLVF entries */
  5139. for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
  5140. vlvf = rd32(E1000_VLVF(idx));
  5141. if ((vlvf & VLAN_VID_MASK) == vlan)
  5142. break;
  5143. }
  5144. return idx;
  5145. }
  5146. static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
  5147. {
  5148. struct e1000_hw *hw = &adapter->hw;
  5149. u32 bits, pf_id;
  5150. int idx;
  5151. idx = igb_find_vlvf_entry(hw, vid);
  5152. if (!idx)
  5153. return;
  5154. /* See if any other pools are set for this VLAN filter
  5155. * entry other than the PF.
  5156. */
  5157. pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
  5158. bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
  5159. bits &= rd32(E1000_VLVF(idx));
  5160. /* Disable the filter so this falls into the default pool. */
  5161. if (!bits) {
  5162. if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
  5163. wr32(E1000_VLVF(idx), BIT(pf_id));
  5164. else
  5165. wr32(E1000_VLVF(idx), 0);
  5166. }
  5167. }
  5168. static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
  5169. bool add, u32 vf)
  5170. {
  5171. int pf_id = adapter->vfs_allocated_count;
  5172. struct e1000_hw *hw = &adapter->hw;
  5173. int err;
  5174. /* If VLAN overlaps with one the PF is currently monitoring make
  5175. * sure that we are able to allocate a VLVF entry. This may be
  5176. * redundant but it guarantees PF will maintain visibility to
  5177. * the VLAN.
  5178. */
  5179. if (add && test_bit(vid, adapter->active_vlans)) {
  5180. err = igb_vfta_set(hw, vid, pf_id, true, false);
  5181. if (err)
  5182. return err;
  5183. }
  5184. err = igb_vfta_set(hw, vid, vf, add, false);
  5185. if (add && !err)
  5186. return err;
  5187. /* If we failed to add the VF VLAN or we are removing the VF VLAN
  5188. * we may need to drop the PF pool bit in order to allow us to free
  5189. * up the VLVF resources.
  5190. */
  5191. if (test_bit(vid, adapter->active_vlans) ||
  5192. (adapter->flags & IGB_FLAG_VLAN_PROMISC))
  5193. igb_update_pf_vlvf(adapter, vid);
  5194. return err;
  5195. }
  5196. static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
  5197. {
  5198. struct e1000_hw *hw = &adapter->hw;
  5199. if (vid)
  5200. wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
  5201. else
  5202. wr32(E1000_VMVIR(vf), 0);
  5203. }
  5204. static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
  5205. u16 vlan, u8 qos)
  5206. {
  5207. int err;
  5208. err = igb_set_vf_vlan(adapter, vlan, true, vf);
  5209. if (err)
  5210. return err;
  5211. igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
  5212. igb_set_vmolr(adapter, vf, !vlan);
  5213. /* revoke access to previous VLAN */
  5214. if (vlan != adapter->vf_data[vf].pf_vlan)
  5215. igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
  5216. false, vf);
  5217. adapter->vf_data[vf].pf_vlan = vlan;
  5218. adapter->vf_data[vf].pf_qos = qos;
  5219. igb_set_vf_vlan_strip(adapter, vf, true);
  5220. dev_info(&adapter->pdev->dev,
  5221. "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
  5222. if (test_bit(__IGB_DOWN, &adapter->state)) {
  5223. dev_warn(&adapter->pdev->dev,
  5224. "The VF VLAN has been set, but the PF device is not up.\n");
  5225. dev_warn(&adapter->pdev->dev,
  5226. "Bring the PF device up before attempting to use the VF device.\n");
  5227. }
  5228. return err;
  5229. }
  5230. static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
  5231. {
  5232. /* Restore tagless access via VLAN 0 */
  5233. igb_set_vf_vlan(adapter, 0, true, vf);
  5234. igb_set_vmvir(adapter, 0, vf);
  5235. igb_set_vmolr(adapter, vf, true);
  5236. /* Remove any PF assigned VLAN */
  5237. if (adapter->vf_data[vf].pf_vlan)
  5238. igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
  5239. false, vf);
  5240. adapter->vf_data[vf].pf_vlan = 0;
  5241. adapter->vf_data[vf].pf_qos = 0;
  5242. igb_set_vf_vlan_strip(adapter, vf, false);
  5243. return 0;
  5244. }
  5245. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  5246. int vf, u16 vlan, u8 qos)
  5247. {
  5248. struct igb_adapter *adapter = netdev_priv(netdev);
  5249. if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
  5250. return -EINVAL;
  5251. return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
  5252. igb_disable_port_vlan(adapter, vf);
  5253. }
  5254. static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  5255. {
  5256. int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5257. int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
  5258. int ret;
  5259. if (adapter->vf_data[vf].pf_vlan)
  5260. return -1;
  5261. /* VLAN 0 is a special case, don't allow it to be removed */
  5262. if (!vid && !add)
  5263. return 0;
  5264. ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
  5265. if (!ret)
  5266. igb_set_vf_vlan_strip(adapter, vf, !!vid);
  5267. return ret;
  5268. }
  5269. static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
  5270. {
  5271. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5272. /* clear flags - except flag that indicates PF has set the MAC */
  5273. vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
  5274. vf_data->last_nack = jiffies;
  5275. /* reset vlans for device */
  5276. igb_clear_vf_vfta(adapter, vf);
  5277. igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
  5278. igb_set_vmvir(adapter, vf_data->pf_vlan |
  5279. (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
  5280. igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
  5281. igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
  5282. /* reset multicast table array for vf */
  5283. adapter->vf_data[vf].num_vf_mc_hashes = 0;
  5284. /* Flush and reset the mta with the new values */
  5285. igb_set_rx_mode(adapter->netdev);
  5286. }
  5287. static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
  5288. {
  5289. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5290. /* clear mac address as we were hotplug removed/added */
  5291. if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
  5292. eth_zero_addr(vf_mac);
  5293. /* process remaining reset events */
  5294. igb_vf_reset(adapter, vf);
  5295. }
  5296. static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
  5297. {
  5298. struct e1000_hw *hw = &adapter->hw;
  5299. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5300. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  5301. u32 reg, msgbuf[3];
  5302. u8 *addr = (u8 *)(&msgbuf[1]);
  5303. /* process all the same items cleared in a function level reset */
  5304. igb_vf_reset(adapter, vf);
  5305. /* set vf mac address */
  5306. igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
  5307. /* enable transmit and receive for vf */
  5308. reg = rd32(E1000_VFTE);
  5309. wr32(E1000_VFTE, reg | BIT(vf));
  5310. reg = rd32(E1000_VFRE);
  5311. wr32(E1000_VFRE, reg | BIT(vf));
  5312. adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
  5313. /* reply to reset with ack and vf mac address */
  5314. if (!is_zero_ether_addr(vf_mac)) {
  5315. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
  5316. memcpy(addr, vf_mac, ETH_ALEN);
  5317. } else {
  5318. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
  5319. }
  5320. igb_write_mbx(hw, msgbuf, 3, vf);
  5321. }
  5322. static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
  5323. {
  5324. /* The VF MAC Address is stored in a packed array of bytes
  5325. * starting at the second 32 bit word of the msg array
  5326. */
  5327. unsigned char *addr = (char *)&msg[1];
  5328. int err = -1;
  5329. if (is_valid_ether_addr(addr))
  5330. err = igb_set_vf_mac(adapter, vf, addr);
  5331. return err;
  5332. }
  5333. static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
  5334. {
  5335. struct e1000_hw *hw = &adapter->hw;
  5336. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5337. u32 msg = E1000_VT_MSGTYPE_NACK;
  5338. /* if device isn't clear to send it shouldn't be reading either */
  5339. if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
  5340. time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
  5341. igb_write_mbx(hw, &msg, 1, vf);
  5342. vf_data->last_nack = jiffies;
  5343. }
  5344. }
  5345. static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
  5346. {
  5347. struct pci_dev *pdev = adapter->pdev;
  5348. u32 msgbuf[E1000_VFMAILBOX_SIZE];
  5349. struct e1000_hw *hw = &adapter->hw;
  5350. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5351. s32 retval;
  5352. retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
  5353. if (retval) {
  5354. /* if receive failed revoke VF CTS stats and restart init */
  5355. dev_err(&pdev->dev, "Error receiving message from VF\n");
  5356. vf_data->flags &= ~IGB_VF_FLAG_CTS;
  5357. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5358. return;
  5359. goto out;
  5360. }
  5361. /* this is a message we already processed, do nothing */
  5362. if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
  5363. return;
  5364. /* until the vf completes a reset it should not be
  5365. * allowed to start any configuration.
  5366. */
  5367. if (msgbuf[0] == E1000_VF_RESET) {
  5368. igb_vf_reset_msg(adapter, vf);
  5369. return;
  5370. }
  5371. if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
  5372. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5373. return;
  5374. retval = -1;
  5375. goto out;
  5376. }
  5377. switch ((msgbuf[0] & 0xFFFF)) {
  5378. case E1000_VF_SET_MAC_ADDR:
  5379. retval = -EINVAL;
  5380. if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
  5381. retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
  5382. else
  5383. dev_warn(&pdev->dev,
  5384. "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
  5385. vf);
  5386. break;
  5387. case E1000_VF_SET_PROMISC:
  5388. retval = igb_set_vf_promisc(adapter, msgbuf, vf);
  5389. break;
  5390. case E1000_VF_SET_MULTICAST:
  5391. retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
  5392. break;
  5393. case E1000_VF_SET_LPE:
  5394. retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
  5395. break;
  5396. case E1000_VF_SET_VLAN:
  5397. retval = -1;
  5398. if (vf_data->pf_vlan)
  5399. dev_warn(&pdev->dev,
  5400. "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
  5401. vf);
  5402. else
  5403. retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
  5404. break;
  5405. default:
  5406. dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
  5407. retval = -1;
  5408. break;
  5409. }
  5410. msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
  5411. out:
  5412. /* notify the VF of the results of what it sent us */
  5413. if (retval)
  5414. msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
  5415. else
  5416. msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
  5417. igb_write_mbx(hw, msgbuf, 1, vf);
  5418. }
  5419. static void igb_msg_task(struct igb_adapter *adapter)
  5420. {
  5421. struct e1000_hw *hw = &adapter->hw;
  5422. u32 vf;
  5423. for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
  5424. /* process any reset requests */
  5425. if (!igb_check_for_rst(hw, vf))
  5426. igb_vf_reset_event(adapter, vf);
  5427. /* process any messages pending */
  5428. if (!igb_check_for_msg(hw, vf))
  5429. igb_rcv_msg_from_vf(adapter, vf);
  5430. /* process any acks */
  5431. if (!igb_check_for_ack(hw, vf))
  5432. igb_rcv_ack_from_vf(adapter, vf);
  5433. }
  5434. }
  5435. /**
  5436. * igb_set_uta - Set unicast filter table address
  5437. * @adapter: board private structure
  5438. * @set: boolean indicating if we are setting or clearing bits
  5439. *
  5440. * The unicast table address is a register array of 32-bit registers.
  5441. * The table is meant to be used in a way similar to how the MTA is used
  5442. * however due to certain limitations in the hardware it is necessary to
  5443. * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
  5444. * enable bit to allow vlan tag stripping when promiscuous mode is enabled
  5445. **/
  5446. static void igb_set_uta(struct igb_adapter *adapter, bool set)
  5447. {
  5448. struct e1000_hw *hw = &adapter->hw;
  5449. u32 uta = set ? ~0 : 0;
  5450. int i;
  5451. /* we only need to do this if VMDq is enabled */
  5452. if (!adapter->vfs_allocated_count)
  5453. return;
  5454. for (i = hw->mac.uta_reg_count; i--;)
  5455. array_wr32(E1000_UTA, i, uta);
  5456. }
  5457. /**
  5458. * igb_intr_msi - Interrupt Handler
  5459. * @irq: interrupt number
  5460. * @data: pointer to a network interface device structure
  5461. **/
  5462. static irqreturn_t igb_intr_msi(int irq, void *data)
  5463. {
  5464. struct igb_adapter *adapter = data;
  5465. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5466. struct e1000_hw *hw = &adapter->hw;
  5467. /* read ICR disables interrupts using IAM */
  5468. u32 icr = rd32(E1000_ICR);
  5469. igb_write_itr(q_vector);
  5470. if (icr & E1000_ICR_DRSTA)
  5471. schedule_work(&adapter->reset_task);
  5472. if (icr & E1000_ICR_DOUTSYNC) {
  5473. /* HW is reporting DMA is out of sync */
  5474. adapter->stats.doosync++;
  5475. }
  5476. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5477. hw->mac.get_link_status = 1;
  5478. if (!test_bit(__IGB_DOWN, &adapter->state))
  5479. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5480. }
  5481. if (icr & E1000_ICR_TS)
  5482. igb_tsync_interrupt(adapter);
  5483. napi_schedule(&q_vector->napi);
  5484. return IRQ_HANDLED;
  5485. }
  5486. /**
  5487. * igb_intr - Legacy Interrupt Handler
  5488. * @irq: interrupt number
  5489. * @data: pointer to a network interface device structure
  5490. **/
  5491. static irqreturn_t igb_intr(int irq, void *data)
  5492. {
  5493. struct igb_adapter *adapter = data;
  5494. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5495. struct e1000_hw *hw = &adapter->hw;
  5496. /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
  5497. * need for the IMC write
  5498. */
  5499. u32 icr = rd32(E1000_ICR);
  5500. /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
  5501. * not set, then the adapter didn't send an interrupt
  5502. */
  5503. if (!(icr & E1000_ICR_INT_ASSERTED))
  5504. return IRQ_NONE;
  5505. igb_write_itr(q_vector);
  5506. if (icr & E1000_ICR_DRSTA)
  5507. schedule_work(&adapter->reset_task);
  5508. if (icr & E1000_ICR_DOUTSYNC) {
  5509. /* HW is reporting DMA is out of sync */
  5510. adapter->stats.doosync++;
  5511. }
  5512. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5513. hw->mac.get_link_status = 1;
  5514. /* guard against interrupt when we're going down */
  5515. if (!test_bit(__IGB_DOWN, &adapter->state))
  5516. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5517. }
  5518. if (icr & E1000_ICR_TS)
  5519. igb_tsync_interrupt(adapter);
  5520. napi_schedule(&q_vector->napi);
  5521. return IRQ_HANDLED;
  5522. }
  5523. static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
  5524. {
  5525. struct igb_adapter *adapter = q_vector->adapter;
  5526. struct e1000_hw *hw = &adapter->hw;
  5527. if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
  5528. (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
  5529. if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
  5530. igb_set_itr(q_vector);
  5531. else
  5532. igb_update_ring_itr(q_vector);
  5533. }
  5534. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  5535. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  5536. wr32(E1000_EIMS, q_vector->eims_value);
  5537. else
  5538. igb_irq_enable(adapter);
  5539. }
  5540. }
  5541. /**
  5542. * igb_poll - NAPI Rx polling callback
  5543. * @napi: napi polling structure
  5544. * @budget: count of how many packets we should handle
  5545. **/
  5546. static int igb_poll(struct napi_struct *napi, int budget)
  5547. {
  5548. struct igb_q_vector *q_vector = container_of(napi,
  5549. struct igb_q_vector,
  5550. napi);
  5551. bool clean_complete = true;
  5552. int work_done = 0;
  5553. #ifdef CONFIG_IGB_DCA
  5554. if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
  5555. igb_update_dca(q_vector);
  5556. #endif
  5557. if (q_vector->tx.ring)
  5558. clean_complete = igb_clean_tx_irq(q_vector, budget);
  5559. if (q_vector->rx.ring) {
  5560. int cleaned = igb_clean_rx_irq(q_vector, budget);
  5561. work_done += cleaned;
  5562. if (cleaned >= budget)
  5563. clean_complete = false;
  5564. }
  5565. /* If all work not completed, return budget and keep polling */
  5566. if (!clean_complete)
  5567. return budget;
  5568. /* If not enough Rx work done, exit the polling mode */
  5569. napi_complete_done(napi, work_done);
  5570. igb_ring_irq_enable(q_vector);
  5571. return 0;
  5572. }
  5573. /**
  5574. * igb_clean_tx_irq - Reclaim resources after transmit completes
  5575. * @q_vector: pointer to q_vector containing needed info
  5576. * @napi_budget: Used to determine if we are in netpoll
  5577. *
  5578. * returns true if ring is completely cleaned
  5579. **/
  5580. static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
  5581. {
  5582. struct igb_adapter *adapter = q_vector->adapter;
  5583. struct igb_ring *tx_ring = q_vector->tx.ring;
  5584. struct igb_tx_buffer *tx_buffer;
  5585. union e1000_adv_tx_desc *tx_desc;
  5586. unsigned int total_bytes = 0, total_packets = 0;
  5587. unsigned int budget = q_vector->tx.work_limit;
  5588. unsigned int i = tx_ring->next_to_clean;
  5589. if (test_bit(__IGB_DOWN, &adapter->state))
  5590. return true;
  5591. tx_buffer = &tx_ring->tx_buffer_info[i];
  5592. tx_desc = IGB_TX_DESC(tx_ring, i);
  5593. i -= tx_ring->count;
  5594. do {
  5595. union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
  5596. /* if next_to_watch is not set then there is no work pending */
  5597. if (!eop_desc)
  5598. break;
  5599. /* prevent any other reads prior to eop_desc */
  5600. read_barrier_depends();
  5601. /* if DD is not set pending work has not been completed */
  5602. if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
  5603. break;
  5604. /* clear next_to_watch to prevent false hangs */
  5605. tx_buffer->next_to_watch = NULL;
  5606. /* update the statistics for this packet */
  5607. total_bytes += tx_buffer->bytecount;
  5608. total_packets += tx_buffer->gso_segs;
  5609. /* free the skb */
  5610. napi_consume_skb(tx_buffer->skb, napi_budget);
  5611. /* unmap skb header data */
  5612. dma_unmap_single(tx_ring->dev,
  5613. dma_unmap_addr(tx_buffer, dma),
  5614. dma_unmap_len(tx_buffer, len),
  5615. DMA_TO_DEVICE);
  5616. /* clear tx_buffer data */
  5617. tx_buffer->skb = NULL;
  5618. dma_unmap_len_set(tx_buffer, len, 0);
  5619. /* clear last DMA location and unmap remaining buffers */
  5620. while (tx_desc != eop_desc) {
  5621. tx_buffer++;
  5622. tx_desc++;
  5623. i++;
  5624. if (unlikely(!i)) {
  5625. i -= tx_ring->count;
  5626. tx_buffer = tx_ring->tx_buffer_info;
  5627. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5628. }
  5629. /* unmap any remaining paged data */
  5630. if (dma_unmap_len(tx_buffer, len)) {
  5631. dma_unmap_page(tx_ring->dev,
  5632. dma_unmap_addr(tx_buffer, dma),
  5633. dma_unmap_len(tx_buffer, len),
  5634. DMA_TO_DEVICE);
  5635. dma_unmap_len_set(tx_buffer, len, 0);
  5636. }
  5637. }
  5638. /* move us one more past the eop_desc for start of next pkt */
  5639. tx_buffer++;
  5640. tx_desc++;
  5641. i++;
  5642. if (unlikely(!i)) {
  5643. i -= tx_ring->count;
  5644. tx_buffer = tx_ring->tx_buffer_info;
  5645. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5646. }
  5647. /* issue prefetch for next Tx descriptor */
  5648. prefetch(tx_desc);
  5649. /* update budget accounting */
  5650. budget--;
  5651. } while (likely(budget));
  5652. netdev_tx_completed_queue(txring_txq(tx_ring),
  5653. total_packets, total_bytes);
  5654. i += tx_ring->count;
  5655. tx_ring->next_to_clean = i;
  5656. u64_stats_update_begin(&tx_ring->tx_syncp);
  5657. tx_ring->tx_stats.bytes += total_bytes;
  5658. tx_ring->tx_stats.packets += total_packets;
  5659. u64_stats_update_end(&tx_ring->tx_syncp);
  5660. q_vector->tx.total_bytes += total_bytes;
  5661. q_vector->tx.total_packets += total_packets;
  5662. if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
  5663. struct e1000_hw *hw = &adapter->hw;
  5664. /* Detect a transmit hang in hardware, this serializes the
  5665. * check with the clearing of time_stamp and movement of i
  5666. */
  5667. clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  5668. if (tx_buffer->next_to_watch &&
  5669. time_after(jiffies, tx_buffer->time_stamp +
  5670. (adapter->tx_timeout_factor * HZ)) &&
  5671. !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
  5672. /* detected Tx unit hang */
  5673. dev_err(tx_ring->dev,
  5674. "Detected Tx Unit Hang\n"
  5675. " Tx Queue <%d>\n"
  5676. " TDH <%x>\n"
  5677. " TDT <%x>\n"
  5678. " next_to_use <%x>\n"
  5679. " next_to_clean <%x>\n"
  5680. "buffer_info[next_to_clean]\n"
  5681. " time_stamp <%lx>\n"
  5682. " next_to_watch <%p>\n"
  5683. " jiffies <%lx>\n"
  5684. " desc.status <%x>\n",
  5685. tx_ring->queue_index,
  5686. rd32(E1000_TDH(tx_ring->reg_idx)),
  5687. readl(tx_ring->tail),
  5688. tx_ring->next_to_use,
  5689. tx_ring->next_to_clean,
  5690. tx_buffer->time_stamp,
  5691. tx_buffer->next_to_watch,
  5692. jiffies,
  5693. tx_buffer->next_to_watch->wb.status);
  5694. netif_stop_subqueue(tx_ring->netdev,
  5695. tx_ring->queue_index);
  5696. /* we are about to reset, no point in enabling stuff */
  5697. return true;
  5698. }
  5699. }
  5700. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  5701. if (unlikely(total_packets &&
  5702. netif_carrier_ok(tx_ring->netdev) &&
  5703. igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
  5704. /* Make sure that anybody stopping the queue after this
  5705. * sees the new next_to_clean.
  5706. */
  5707. smp_mb();
  5708. if (__netif_subqueue_stopped(tx_ring->netdev,
  5709. tx_ring->queue_index) &&
  5710. !(test_bit(__IGB_DOWN, &adapter->state))) {
  5711. netif_wake_subqueue(tx_ring->netdev,
  5712. tx_ring->queue_index);
  5713. u64_stats_update_begin(&tx_ring->tx_syncp);
  5714. tx_ring->tx_stats.restart_queue++;
  5715. u64_stats_update_end(&tx_ring->tx_syncp);
  5716. }
  5717. }
  5718. return !!budget;
  5719. }
  5720. /**
  5721. * igb_reuse_rx_page - page flip buffer and store it back on the ring
  5722. * @rx_ring: rx descriptor ring to store buffers on
  5723. * @old_buff: donor buffer to have page reused
  5724. *
  5725. * Synchronizes page for reuse by the adapter
  5726. **/
  5727. static void igb_reuse_rx_page(struct igb_ring *rx_ring,
  5728. struct igb_rx_buffer *old_buff)
  5729. {
  5730. struct igb_rx_buffer *new_buff;
  5731. u16 nta = rx_ring->next_to_alloc;
  5732. new_buff = &rx_ring->rx_buffer_info[nta];
  5733. /* update, and store next to alloc */
  5734. nta++;
  5735. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  5736. /* transfer page from old buffer to new buffer */
  5737. *new_buff = *old_buff;
  5738. /* sync the buffer for use by the device */
  5739. dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
  5740. old_buff->page_offset,
  5741. IGB_RX_BUFSZ,
  5742. DMA_FROM_DEVICE);
  5743. }
  5744. static inline bool igb_page_is_reserved(struct page *page)
  5745. {
  5746. return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
  5747. }
  5748. static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
  5749. struct page *page,
  5750. unsigned int truesize)
  5751. {
  5752. /* avoid re-using remote pages */
  5753. if (unlikely(igb_page_is_reserved(page)))
  5754. return false;
  5755. #if (PAGE_SIZE < 8192)
  5756. /* if we are only owner of page we can reuse it */
  5757. if (unlikely(page_count(page) != 1))
  5758. return false;
  5759. /* flip page offset to other buffer */
  5760. rx_buffer->page_offset ^= IGB_RX_BUFSZ;
  5761. #else
  5762. /* move offset up to the next cache line */
  5763. rx_buffer->page_offset += truesize;
  5764. if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
  5765. return false;
  5766. #endif
  5767. /* Even if we own the page, we are not allowed to use atomic_set()
  5768. * This would break get_page_unless_zero() users.
  5769. */
  5770. page_ref_inc(page);
  5771. return true;
  5772. }
  5773. /**
  5774. * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
  5775. * @rx_ring: rx descriptor ring to transact packets on
  5776. * @rx_buffer: buffer containing page to add
  5777. * @rx_desc: descriptor containing length of buffer written by hardware
  5778. * @skb: sk_buff to place the data into
  5779. *
  5780. * This function will add the data contained in rx_buffer->page to the skb.
  5781. * This is done either through a direct copy if the data in the buffer is
  5782. * less than the skb header size, otherwise it will just attach the page as
  5783. * a frag to the skb.
  5784. *
  5785. * The function will then update the page offset if necessary and return
  5786. * true if the buffer can be reused by the adapter.
  5787. **/
  5788. static bool igb_add_rx_frag(struct igb_ring *rx_ring,
  5789. struct igb_rx_buffer *rx_buffer,
  5790. union e1000_adv_rx_desc *rx_desc,
  5791. struct sk_buff *skb)
  5792. {
  5793. struct page *page = rx_buffer->page;
  5794. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  5795. unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
  5796. #if (PAGE_SIZE < 8192)
  5797. unsigned int truesize = IGB_RX_BUFSZ;
  5798. #else
  5799. unsigned int truesize = SKB_DATA_ALIGN(size);
  5800. #endif
  5801. unsigned int pull_len;
  5802. if (unlikely(skb_is_nonlinear(skb)))
  5803. goto add_tail_frag;
  5804. if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
  5805. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5806. va += IGB_TS_HDR_LEN;
  5807. size -= IGB_TS_HDR_LEN;
  5808. }
  5809. if (likely(size <= IGB_RX_HDR_LEN)) {
  5810. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  5811. /* page is not reserved, we can reuse buffer as-is */
  5812. if (likely(!igb_page_is_reserved(page)))
  5813. return true;
  5814. /* this page cannot be reused so discard it */
  5815. __free_page(page);
  5816. return false;
  5817. }
  5818. /* we need the header to contain the greater of either ETH_HLEN or
  5819. * 60 bytes if the skb->len is less than 60 for skb_pad.
  5820. */
  5821. pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
  5822. /* align pull length to size of long to optimize memcpy performance */
  5823. memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
  5824. /* update all of the pointers */
  5825. va += pull_len;
  5826. size -= pull_len;
  5827. add_tail_frag:
  5828. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  5829. (unsigned long)va & ~PAGE_MASK, size, truesize);
  5830. return igb_can_reuse_rx_page(rx_buffer, page, truesize);
  5831. }
  5832. static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
  5833. union e1000_adv_rx_desc *rx_desc,
  5834. struct sk_buff *skb)
  5835. {
  5836. struct igb_rx_buffer *rx_buffer;
  5837. struct page *page;
  5838. rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
  5839. page = rx_buffer->page;
  5840. prefetchw(page);
  5841. if (likely(!skb)) {
  5842. void *page_addr = page_address(page) +
  5843. rx_buffer->page_offset;
  5844. /* prefetch first cache line of first page */
  5845. prefetch(page_addr);
  5846. #if L1_CACHE_BYTES < 128
  5847. prefetch(page_addr + L1_CACHE_BYTES);
  5848. #endif
  5849. /* allocate a skb to store the frags */
  5850. skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
  5851. if (unlikely(!skb)) {
  5852. rx_ring->rx_stats.alloc_failed++;
  5853. return NULL;
  5854. }
  5855. /* we will be copying header into skb->data in
  5856. * pskb_may_pull so it is in our interest to prefetch
  5857. * it now to avoid a possible cache miss
  5858. */
  5859. prefetchw(skb->data);
  5860. }
  5861. /* we are reusing so sync this buffer for CPU use */
  5862. dma_sync_single_range_for_cpu(rx_ring->dev,
  5863. rx_buffer->dma,
  5864. rx_buffer->page_offset,
  5865. IGB_RX_BUFSZ,
  5866. DMA_FROM_DEVICE);
  5867. /* pull page into skb */
  5868. if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  5869. /* hand second half of page back to the ring */
  5870. igb_reuse_rx_page(rx_ring, rx_buffer);
  5871. } else {
  5872. /* we are not reusing the buffer so unmap it */
  5873. dma_unmap_page(rx_ring->dev, rx_buffer->dma,
  5874. PAGE_SIZE, DMA_FROM_DEVICE);
  5875. }
  5876. /* clear contents of rx_buffer */
  5877. rx_buffer->page = NULL;
  5878. return skb;
  5879. }
  5880. static inline void igb_rx_checksum(struct igb_ring *ring,
  5881. union e1000_adv_rx_desc *rx_desc,
  5882. struct sk_buff *skb)
  5883. {
  5884. skb_checksum_none_assert(skb);
  5885. /* Ignore Checksum bit is set */
  5886. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
  5887. return;
  5888. /* Rx checksum disabled via ethtool */
  5889. if (!(ring->netdev->features & NETIF_F_RXCSUM))
  5890. return;
  5891. /* TCP/UDP checksum error bit is set */
  5892. if (igb_test_staterr(rx_desc,
  5893. E1000_RXDEXT_STATERR_TCPE |
  5894. E1000_RXDEXT_STATERR_IPE)) {
  5895. /* work around errata with sctp packets where the TCPE aka
  5896. * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
  5897. * packets, (aka let the stack check the crc32c)
  5898. */
  5899. if (!((skb->len == 60) &&
  5900. test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
  5901. u64_stats_update_begin(&ring->rx_syncp);
  5902. ring->rx_stats.csum_err++;
  5903. u64_stats_update_end(&ring->rx_syncp);
  5904. }
  5905. /* let the stack verify checksum errors */
  5906. return;
  5907. }
  5908. /* It must be a TCP or UDP packet with a valid checksum */
  5909. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
  5910. E1000_RXD_STAT_UDPCS))
  5911. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5912. dev_dbg(ring->dev, "cksum success: bits %08X\n",
  5913. le32_to_cpu(rx_desc->wb.upper.status_error));
  5914. }
  5915. static inline void igb_rx_hash(struct igb_ring *ring,
  5916. union e1000_adv_rx_desc *rx_desc,
  5917. struct sk_buff *skb)
  5918. {
  5919. if (ring->netdev->features & NETIF_F_RXHASH)
  5920. skb_set_hash(skb,
  5921. le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
  5922. PKT_HASH_TYPE_L3);
  5923. }
  5924. /**
  5925. * igb_is_non_eop - process handling of non-EOP buffers
  5926. * @rx_ring: Rx ring being processed
  5927. * @rx_desc: Rx descriptor for current buffer
  5928. * @skb: current socket buffer containing buffer in progress
  5929. *
  5930. * This function updates next to clean. If the buffer is an EOP buffer
  5931. * this function exits returning false, otherwise it will place the
  5932. * sk_buff in the next buffer to be chained and return true indicating
  5933. * that this is in fact a non-EOP buffer.
  5934. **/
  5935. static bool igb_is_non_eop(struct igb_ring *rx_ring,
  5936. union e1000_adv_rx_desc *rx_desc)
  5937. {
  5938. u32 ntc = rx_ring->next_to_clean + 1;
  5939. /* fetch, update, and store next to clean */
  5940. ntc = (ntc < rx_ring->count) ? ntc : 0;
  5941. rx_ring->next_to_clean = ntc;
  5942. prefetch(IGB_RX_DESC(rx_ring, ntc));
  5943. if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
  5944. return false;
  5945. return true;
  5946. }
  5947. /**
  5948. * igb_cleanup_headers - Correct corrupted or empty headers
  5949. * @rx_ring: rx descriptor ring packet is being transacted on
  5950. * @rx_desc: pointer to the EOP Rx descriptor
  5951. * @skb: pointer to current skb being fixed
  5952. *
  5953. * Address the case where we are pulling data in on pages only
  5954. * and as such no data is present in the skb header.
  5955. *
  5956. * In addition if skb is not at least 60 bytes we need to pad it so that
  5957. * it is large enough to qualify as a valid Ethernet frame.
  5958. *
  5959. * Returns true if an error was encountered and skb was freed.
  5960. **/
  5961. static bool igb_cleanup_headers(struct igb_ring *rx_ring,
  5962. union e1000_adv_rx_desc *rx_desc,
  5963. struct sk_buff *skb)
  5964. {
  5965. if (unlikely((igb_test_staterr(rx_desc,
  5966. E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
  5967. struct net_device *netdev = rx_ring->netdev;
  5968. if (!(netdev->features & NETIF_F_RXALL)) {
  5969. dev_kfree_skb_any(skb);
  5970. return true;
  5971. }
  5972. }
  5973. /* if eth_skb_pad returns an error the skb was freed */
  5974. if (eth_skb_pad(skb))
  5975. return true;
  5976. return false;
  5977. }
  5978. /**
  5979. * igb_process_skb_fields - Populate skb header fields from Rx descriptor
  5980. * @rx_ring: rx descriptor ring packet is being transacted on
  5981. * @rx_desc: pointer to the EOP Rx descriptor
  5982. * @skb: pointer to current skb being populated
  5983. *
  5984. * This function checks the ring, descriptor, and packet information in
  5985. * order to populate the hash, checksum, VLAN, timestamp, protocol, and
  5986. * other fields within the skb.
  5987. **/
  5988. static void igb_process_skb_fields(struct igb_ring *rx_ring,
  5989. union e1000_adv_rx_desc *rx_desc,
  5990. struct sk_buff *skb)
  5991. {
  5992. struct net_device *dev = rx_ring->netdev;
  5993. igb_rx_hash(rx_ring, rx_desc, skb);
  5994. igb_rx_checksum(rx_ring, rx_desc, skb);
  5995. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
  5996. !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
  5997. igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
  5998. if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  5999. igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
  6000. u16 vid;
  6001. if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
  6002. test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
  6003. vid = be16_to_cpu(rx_desc->wb.upper.vlan);
  6004. else
  6005. vid = le16_to_cpu(rx_desc->wb.upper.vlan);
  6006. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  6007. }
  6008. skb_record_rx_queue(skb, rx_ring->queue_index);
  6009. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  6010. }
  6011. static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
  6012. {
  6013. struct igb_ring *rx_ring = q_vector->rx.ring;
  6014. struct sk_buff *skb = rx_ring->skb;
  6015. unsigned int total_bytes = 0, total_packets = 0;
  6016. u16 cleaned_count = igb_desc_unused(rx_ring);
  6017. while (likely(total_packets < budget)) {
  6018. union e1000_adv_rx_desc *rx_desc;
  6019. /* return some buffers to hardware, one at a time is too slow */
  6020. if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
  6021. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  6022. cleaned_count = 0;
  6023. }
  6024. rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
  6025. if (!rx_desc->wb.upper.status_error)
  6026. break;
  6027. /* This memory barrier is needed to keep us from reading
  6028. * any other fields out of the rx_desc until we know the
  6029. * descriptor has been written back
  6030. */
  6031. dma_rmb();
  6032. /* retrieve a buffer from the ring */
  6033. skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
  6034. /* exit if we failed to retrieve a buffer */
  6035. if (!skb)
  6036. break;
  6037. cleaned_count++;
  6038. /* fetch next buffer in frame if non-eop */
  6039. if (igb_is_non_eop(rx_ring, rx_desc))
  6040. continue;
  6041. /* verify the packet layout is correct */
  6042. if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
  6043. skb = NULL;
  6044. continue;
  6045. }
  6046. /* probably a little skewed due to removing CRC */
  6047. total_bytes += skb->len;
  6048. /* populate checksum, timestamp, VLAN, and protocol */
  6049. igb_process_skb_fields(rx_ring, rx_desc, skb);
  6050. napi_gro_receive(&q_vector->napi, skb);
  6051. /* reset skb pointer */
  6052. skb = NULL;
  6053. /* update budget accounting */
  6054. total_packets++;
  6055. }
  6056. /* place incomplete frames back on ring for completion */
  6057. rx_ring->skb = skb;
  6058. u64_stats_update_begin(&rx_ring->rx_syncp);
  6059. rx_ring->rx_stats.packets += total_packets;
  6060. rx_ring->rx_stats.bytes += total_bytes;
  6061. u64_stats_update_end(&rx_ring->rx_syncp);
  6062. q_vector->rx.total_packets += total_packets;
  6063. q_vector->rx.total_bytes += total_bytes;
  6064. if (cleaned_count)
  6065. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  6066. return total_packets;
  6067. }
  6068. static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
  6069. struct igb_rx_buffer *bi)
  6070. {
  6071. struct page *page = bi->page;
  6072. dma_addr_t dma;
  6073. /* since we are recycling buffers we should seldom need to alloc */
  6074. if (likely(page))
  6075. return true;
  6076. /* alloc new page for storage */
  6077. page = dev_alloc_page();
  6078. if (unlikely(!page)) {
  6079. rx_ring->rx_stats.alloc_failed++;
  6080. return false;
  6081. }
  6082. /* map page for use */
  6083. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  6084. /* if mapping failed free memory back to system since
  6085. * there isn't much point in holding memory we can't use
  6086. */
  6087. if (dma_mapping_error(rx_ring->dev, dma)) {
  6088. __free_page(page);
  6089. rx_ring->rx_stats.alloc_failed++;
  6090. return false;
  6091. }
  6092. bi->dma = dma;
  6093. bi->page = page;
  6094. bi->page_offset = 0;
  6095. return true;
  6096. }
  6097. /**
  6098. * igb_alloc_rx_buffers - Replace used receive buffers; packet split
  6099. * @adapter: address of board private structure
  6100. **/
  6101. void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
  6102. {
  6103. union e1000_adv_rx_desc *rx_desc;
  6104. struct igb_rx_buffer *bi;
  6105. u16 i = rx_ring->next_to_use;
  6106. /* nothing to do */
  6107. if (!cleaned_count)
  6108. return;
  6109. rx_desc = IGB_RX_DESC(rx_ring, i);
  6110. bi = &rx_ring->rx_buffer_info[i];
  6111. i -= rx_ring->count;
  6112. do {
  6113. if (!igb_alloc_mapped_page(rx_ring, bi))
  6114. break;
  6115. /* Refresh the desc even if buffer_addrs didn't change
  6116. * because each write-back erases this info.
  6117. */
  6118. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  6119. rx_desc++;
  6120. bi++;
  6121. i++;
  6122. if (unlikely(!i)) {
  6123. rx_desc = IGB_RX_DESC(rx_ring, 0);
  6124. bi = rx_ring->rx_buffer_info;
  6125. i -= rx_ring->count;
  6126. }
  6127. /* clear the status bits for the next_to_use descriptor */
  6128. rx_desc->wb.upper.status_error = 0;
  6129. cleaned_count--;
  6130. } while (cleaned_count);
  6131. i += rx_ring->count;
  6132. if (rx_ring->next_to_use != i) {
  6133. /* record the next descriptor to use */
  6134. rx_ring->next_to_use = i;
  6135. /* update next to alloc since we have filled the ring */
  6136. rx_ring->next_to_alloc = i;
  6137. /* Force memory writes to complete before letting h/w
  6138. * know there are new descriptors to fetch. (Only
  6139. * applicable for weak-ordered memory model archs,
  6140. * such as IA-64).
  6141. */
  6142. wmb();
  6143. writel(i, rx_ring->tail);
  6144. }
  6145. }
  6146. /**
  6147. * igb_mii_ioctl -
  6148. * @netdev:
  6149. * @ifreq:
  6150. * @cmd:
  6151. **/
  6152. static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6153. {
  6154. struct igb_adapter *adapter = netdev_priv(netdev);
  6155. struct mii_ioctl_data *data = if_mii(ifr);
  6156. if (adapter->hw.phy.media_type != e1000_media_type_copper)
  6157. return -EOPNOTSUPP;
  6158. switch (cmd) {
  6159. case SIOCGMIIPHY:
  6160. data->phy_id = adapter->hw.phy.addr;
  6161. break;
  6162. case SIOCGMIIREG:
  6163. if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  6164. &data->val_out))
  6165. return -EIO;
  6166. break;
  6167. case SIOCSMIIREG:
  6168. default:
  6169. return -EOPNOTSUPP;
  6170. }
  6171. return 0;
  6172. }
  6173. /**
  6174. * igb_ioctl -
  6175. * @netdev:
  6176. * @ifreq:
  6177. * @cmd:
  6178. **/
  6179. static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6180. {
  6181. switch (cmd) {
  6182. case SIOCGMIIPHY:
  6183. case SIOCGMIIREG:
  6184. case SIOCSMIIREG:
  6185. return igb_mii_ioctl(netdev, ifr, cmd);
  6186. case SIOCGHWTSTAMP:
  6187. return igb_ptp_get_ts_config(netdev, ifr);
  6188. case SIOCSHWTSTAMP:
  6189. return igb_ptp_set_ts_config(netdev, ifr);
  6190. default:
  6191. return -EOPNOTSUPP;
  6192. }
  6193. }
  6194. void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6195. {
  6196. struct igb_adapter *adapter = hw->back;
  6197. pci_read_config_word(adapter->pdev, reg, value);
  6198. }
  6199. void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6200. {
  6201. struct igb_adapter *adapter = hw->back;
  6202. pci_write_config_word(adapter->pdev, reg, *value);
  6203. }
  6204. s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6205. {
  6206. struct igb_adapter *adapter = hw->back;
  6207. if (pcie_capability_read_word(adapter->pdev, reg, value))
  6208. return -E1000_ERR_CONFIG;
  6209. return 0;
  6210. }
  6211. s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6212. {
  6213. struct igb_adapter *adapter = hw->back;
  6214. if (pcie_capability_write_word(adapter->pdev, reg, *value))
  6215. return -E1000_ERR_CONFIG;
  6216. return 0;
  6217. }
  6218. static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
  6219. {
  6220. struct igb_adapter *adapter = netdev_priv(netdev);
  6221. struct e1000_hw *hw = &adapter->hw;
  6222. u32 ctrl, rctl;
  6223. bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
  6224. if (enable) {
  6225. /* enable VLAN tag insert/strip */
  6226. ctrl = rd32(E1000_CTRL);
  6227. ctrl |= E1000_CTRL_VME;
  6228. wr32(E1000_CTRL, ctrl);
  6229. /* Disable CFI check */
  6230. rctl = rd32(E1000_RCTL);
  6231. rctl &= ~E1000_RCTL_CFIEN;
  6232. wr32(E1000_RCTL, rctl);
  6233. } else {
  6234. /* disable VLAN tag insert/strip */
  6235. ctrl = rd32(E1000_CTRL);
  6236. ctrl &= ~E1000_CTRL_VME;
  6237. wr32(E1000_CTRL, ctrl);
  6238. }
  6239. igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
  6240. }
  6241. static int igb_vlan_rx_add_vid(struct net_device *netdev,
  6242. __be16 proto, u16 vid)
  6243. {
  6244. struct igb_adapter *adapter = netdev_priv(netdev);
  6245. struct e1000_hw *hw = &adapter->hw;
  6246. int pf_id = adapter->vfs_allocated_count;
  6247. /* add the filter since PF can receive vlans w/o entry in vlvf */
  6248. if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  6249. igb_vfta_set(hw, vid, pf_id, true, !!vid);
  6250. set_bit(vid, adapter->active_vlans);
  6251. return 0;
  6252. }
  6253. static int igb_vlan_rx_kill_vid(struct net_device *netdev,
  6254. __be16 proto, u16 vid)
  6255. {
  6256. struct igb_adapter *adapter = netdev_priv(netdev);
  6257. int pf_id = adapter->vfs_allocated_count;
  6258. struct e1000_hw *hw = &adapter->hw;
  6259. /* remove VID from filter table */
  6260. if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
  6261. igb_vfta_set(hw, vid, pf_id, false, true);
  6262. clear_bit(vid, adapter->active_vlans);
  6263. return 0;
  6264. }
  6265. static void igb_restore_vlan(struct igb_adapter *adapter)
  6266. {
  6267. u16 vid = 1;
  6268. igb_vlan_mode(adapter->netdev, adapter->netdev->features);
  6269. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
  6270. for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
  6271. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
  6272. }
  6273. int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
  6274. {
  6275. struct pci_dev *pdev = adapter->pdev;
  6276. struct e1000_mac_info *mac = &adapter->hw.mac;
  6277. mac->autoneg = 0;
  6278. /* Make sure dplx is at most 1 bit and lsb of speed is not set
  6279. * for the switch() below to work
  6280. */
  6281. if ((spd & 1) || (dplx & ~1))
  6282. goto err_inval;
  6283. /* Fiber NIC's only allow 1000 gbps Full duplex
  6284. * and 100Mbps Full duplex for 100baseFx sfp
  6285. */
  6286. if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
  6287. switch (spd + dplx) {
  6288. case SPEED_10 + DUPLEX_HALF:
  6289. case SPEED_10 + DUPLEX_FULL:
  6290. case SPEED_100 + DUPLEX_HALF:
  6291. goto err_inval;
  6292. default:
  6293. break;
  6294. }
  6295. }
  6296. switch (spd + dplx) {
  6297. case SPEED_10 + DUPLEX_HALF:
  6298. mac->forced_speed_duplex = ADVERTISE_10_HALF;
  6299. break;
  6300. case SPEED_10 + DUPLEX_FULL:
  6301. mac->forced_speed_duplex = ADVERTISE_10_FULL;
  6302. break;
  6303. case SPEED_100 + DUPLEX_HALF:
  6304. mac->forced_speed_duplex = ADVERTISE_100_HALF;
  6305. break;
  6306. case SPEED_100 + DUPLEX_FULL:
  6307. mac->forced_speed_duplex = ADVERTISE_100_FULL;
  6308. break;
  6309. case SPEED_1000 + DUPLEX_FULL:
  6310. mac->autoneg = 1;
  6311. adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
  6312. break;
  6313. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  6314. default:
  6315. goto err_inval;
  6316. }
  6317. /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
  6318. adapter->hw.phy.mdix = AUTO_ALL_MODES;
  6319. return 0;
  6320. err_inval:
  6321. dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
  6322. return -EINVAL;
  6323. }
  6324. static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
  6325. bool runtime)
  6326. {
  6327. struct net_device *netdev = pci_get_drvdata(pdev);
  6328. struct igb_adapter *adapter = netdev_priv(netdev);
  6329. struct e1000_hw *hw = &adapter->hw;
  6330. u32 ctrl, rctl, status;
  6331. u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
  6332. #ifdef CONFIG_PM
  6333. int retval = 0;
  6334. #endif
  6335. netif_device_detach(netdev);
  6336. if (netif_running(netdev))
  6337. __igb_close(netdev, true);
  6338. igb_clear_interrupt_scheme(adapter);
  6339. #ifdef CONFIG_PM
  6340. retval = pci_save_state(pdev);
  6341. if (retval)
  6342. return retval;
  6343. #endif
  6344. status = rd32(E1000_STATUS);
  6345. if (status & E1000_STATUS_LU)
  6346. wufc &= ~E1000_WUFC_LNKC;
  6347. if (wufc) {
  6348. igb_setup_rctl(adapter);
  6349. igb_set_rx_mode(netdev);
  6350. /* turn on all-multi mode if wake on multicast is enabled */
  6351. if (wufc & E1000_WUFC_MC) {
  6352. rctl = rd32(E1000_RCTL);
  6353. rctl |= E1000_RCTL_MPE;
  6354. wr32(E1000_RCTL, rctl);
  6355. }
  6356. ctrl = rd32(E1000_CTRL);
  6357. /* advertise wake from D3Cold */
  6358. #define E1000_CTRL_ADVD3WUC 0x00100000
  6359. /* phy power management enable */
  6360. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  6361. ctrl |= E1000_CTRL_ADVD3WUC;
  6362. wr32(E1000_CTRL, ctrl);
  6363. /* Allow time for pending master requests to run */
  6364. igb_disable_pcie_master(hw);
  6365. wr32(E1000_WUC, E1000_WUC_PME_EN);
  6366. wr32(E1000_WUFC, wufc);
  6367. } else {
  6368. wr32(E1000_WUC, 0);
  6369. wr32(E1000_WUFC, 0);
  6370. }
  6371. *enable_wake = wufc || adapter->en_mng_pt;
  6372. if (!*enable_wake)
  6373. igb_power_down_link(adapter);
  6374. else
  6375. igb_power_up_link(adapter);
  6376. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  6377. * would have already happened in close and is redundant.
  6378. */
  6379. igb_release_hw_control(adapter);
  6380. pci_disable_device(pdev);
  6381. return 0;
  6382. }
  6383. #ifdef CONFIG_PM
  6384. #ifdef CONFIG_PM_SLEEP
  6385. static int igb_suspend(struct device *dev)
  6386. {
  6387. int retval;
  6388. bool wake;
  6389. struct pci_dev *pdev = to_pci_dev(dev);
  6390. retval = __igb_shutdown(pdev, &wake, 0);
  6391. if (retval)
  6392. return retval;
  6393. if (wake) {
  6394. pci_prepare_to_sleep(pdev);
  6395. } else {
  6396. pci_wake_from_d3(pdev, false);
  6397. pci_set_power_state(pdev, PCI_D3hot);
  6398. }
  6399. return 0;
  6400. }
  6401. #endif /* CONFIG_PM_SLEEP */
  6402. static int igb_resume(struct device *dev)
  6403. {
  6404. struct pci_dev *pdev = to_pci_dev(dev);
  6405. struct net_device *netdev = pci_get_drvdata(pdev);
  6406. struct igb_adapter *adapter = netdev_priv(netdev);
  6407. struct e1000_hw *hw = &adapter->hw;
  6408. u32 err;
  6409. pci_set_power_state(pdev, PCI_D0);
  6410. pci_restore_state(pdev);
  6411. pci_save_state(pdev);
  6412. if (!pci_device_is_present(pdev))
  6413. return -ENODEV;
  6414. err = pci_enable_device_mem(pdev);
  6415. if (err) {
  6416. dev_err(&pdev->dev,
  6417. "igb: Cannot enable PCI device from suspend\n");
  6418. return err;
  6419. }
  6420. pci_set_master(pdev);
  6421. pci_enable_wake(pdev, PCI_D3hot, 0);
  6422. pci_enable_wake(pdev, PCI_D3cold, 0);
  6423. if (igb_init_interrupt_scheme(adapter, true)) {
  6424. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6425. return -ENOMEM;
  6426. }
  6427. igb_reset(adapter);
  6428. /* let the f/w know that the h/w is now under the control of the
  6429. * driver.
  6430. */
  6431. igb_get_hw_control(adapter);
  6432. wr32(E1000_WUS, ~0);
  6433. if (netdev->flags & IFF_UP) {
  6434. rtnl_lock();
  6435. err = __igb_open(netdev, true);
  6436. rtnl_unlock();
  6437. if (err)
  6438. return err;
  6439. }
  6440. netif_device_attach(netdev);
  6441. return 0;
  6442. }
  6443. static int igb_runtime_idle(struct device *dev)
  6444. {
  6445. struct pci_dev *pdev = to_pci_dev(dev);
  6446. struct net_device *netdev = pci_get_drvdata(pdev);
  6447. struct igb_adapter *adapter = netdev_priv(netdev);
  6448. if (!igb_has_link(adapter))
  6449. pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
  6450. return -EBUSY;
  6451. }
  6452. static int igb_runtime_suspend(struct device *dev)
  6453. {
  6454. struct pci_dev *pdev = to_pci_dev(dev);
  6455. int retval;
  6456. bool wake;
  6457. retval = __igb_shutdown(pdev, &wake, 1);
  6458. if (retval)
  6459. return retval;
  6460. if (wake) {
  6461. pci_prepare_to_sleep(pdev);
  6462. } else {
  6463. pci_wake_from_d3(pdev, false);
  6464. pci_set_power_state(pdev, PCI_D3hot);
  6465. }
  6466. return 0;
  6467. }
  6468. static int igb_runtime_resume(struct device *dev)
  6469. {
  6470. return igb_resume(dev);
  6471. }
  6472. #endif /* CONFIG_PM */
  6473. static void igb_shutdown(struct pci_dev *pdev)
  6474. {
  6475. bool wake;
  6476. __igb_shutdown(pdev, &wake, 0);
  6477. if (system_state == SYSTEM_POWER_OFF) {
  6478. pci_wake_from_d3(pdev, wake);
  6479. pci_set_power_state(pdev, PCI_D3hot);
  6480. }
  6481. }
  6482. #ifdef CONFIG_PCI_IOV
  6483. static int igb_sriov_reinit(struct pci_dev *dev)
  6484. {
  6485. struct net_device *netdev = pci_get_drvdata(dev);
  6486. struct igb_adapter *adapter = netdev_priv(netdev);
  6487. struct pci_dev *pdev = adapter->pdev;
  6488. rtnl_lock();
  6489. if (netif_running(netdev))
  6490. igb_close(netdev);
  6491. else
  6492. igb_reset(adapter);
  6493. igb_clear_interrupt_scheme(adapter);
  6494. igb_init_queue_configuration(adapter);
  6495. if (igb_init_interrupt_scheme(adapter, true)) {
  6496. rtnl_unlock();
  6497. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6498. return -ENOMEM;
  6499. }
  6500. if (netif_running(netdev))
  6501. igb_open(netdev);
  6502. rtnl_unlock();
  6503. return 0;
  6504. }
  6505. static int igb_pci_disable_sriov(struct pci_dev *dev)
  6506. {
  6507. int err = igb_disable_sriov(dev);
  6508. if (!err)
  6509. err = igb_sriov_reinit(dev);
  6510. return err;
  6511. }
  6512. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
  6513. {
  6514. int err = igb_enable_sriov(dev, num_vfs);
  6515. if (err)
  6516. goto out;
  6517. err = igb_sriov_reinit(dev);
  6518. if (!err)
  6519. return num_vfs;
  6520. out:
  6521. return err;
  6522. }
  6523. #endif
  6524. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
  6525. {
  6526. #ifdef CONFIG_PCI_IOV
  6527. if (num_vfs == 0)
  6528. return igb_pci_disable_sriov(dev);
  6529. else
  6530. return igb_pci_enable_sriov(dev, num_vfs);
  6531. #endif
  6532. return 0;
  6533. }
  6534. #ifdef CONFIG_NET_POLL_CONTROLLER
  6535. /* Polling 'interrupt' - used by things like netconsole to send skbs
  6536. * without having to re-enable interrupts. It's not called while
  6537. * the interrupt routine is executing.
  6538. */
  6539. static void igb_netpoll(struct net_device *netdev)
  6540. {
  6541. struct igb_adapter *adapter = netdev_priv(netdev);
  6542. struct e1000_hw *hw = &adapter->hw;
  6543. struct igb_q_vector *q_vector;
  6544. int i;
  6545. for (i = 0; i < adapter->num_q_vectors; i++) {
  6546. q_vector = adapter->q_vector[i];
  6547. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  6548. wr32(E1000_EIMC, q_vector->eims_value);
  6549. else
  6550. igb_irq_disable(adapter);
  6551. napi_schedule(&q_vector->napi);
  6552. }
  6553. }
  6554. #endif /* CONFIG_NET_POLL_CONTROLLER */
  6555. /**
  6556. * igb_io_error_detected - called when PCI error is detected
  6557. * @pdev: Pointer to PCI device
  6558. * @state: The current pci connection state
  6559. *
  6560. * This function is called after a PCI bus error affecting
  6561. * this device has been detected.
  6562. **/
  6563. static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
  6564. pci_channel_state_t state)
  6565. {
  6566. struct net_device *netdev = pci_get_drvdata(pdev);
  6567. struct igb_adapter *adapter = netdev_priv(netdev);
  6568. netif_device_detach(netdev);
  6569. if (state == pci_channel_io_perm_failure)
  6570. return PCI_ERS_RESULT_DISCONNECT;
  6571. if (netif_running(netdev))
  6572. igb_down(adapter);
  6573. pci_disable_device(pdev);
  6574. /* Request a slot slot reset. */
  6575. return PCI_ERS_RESULT_NEED_RESET;
  6576. }
  6577. /**
  6578. * igb_io_slot_reset - called after the pci bus has been reset.
  6579. * @pdev: Pointer to PCI device
  6580. *
  6581. * Restart the card from scratch, as if from a cold-boot. Implementation
  6582. * resembles the first-half of the igb_resume routine.
  6583. **/
  6584. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
  6585. {
  6586. struct net_device *netdev = pci_get_drvdata(pdev);
  6587. struct igb_adapter *adapter = netdev_priv(netdev);
  6588. struct e1000_hw *hw = &adapter->hw;
  6589. pci_ers_result_t result;
  6590. int err;
  6591. if (pci_enable_device_mem(pdev)) {
  6592. dev_err(&pdev->dev,
  6593. "Cannot re-enable PCI device after reset.\n");
  6594. result = PCI_ERS_RESULT_DISCONNECT;
  6595. } else {
  6596. pci_set_master(pdev);
  6597. pci_restore_state(pdev);
  6598. pci_save_state(pdev);
  6599. pci_enable_wake(pdev, PCI_D3hot, 0);
  6600. pci_enable_wake(pdev, PCI_D3cold, 0);
  6601. igb_reset(adapter);
  6602. wr32(E1000_WUS, ~0);
  6603. result = PCI_ERS_RESULT_RECOVERED;
  6604. }
  6605. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6606. if (err) {
  6607. dev_err(&pdev->dev,
  6608. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6609. err);
  6610. /* non-fatal, continue */
  6611. }
  6612. return result;
  6613. }
  6614. /**
  6615. * igb_io_resume - called when traffic can start flowing again.
  6616. * @pdev: Pointer to PCI device
  6617. *
  6618. * This callback is called when the error recovery driver tells us that
  6619. * its OK to resume normal operation. Implementation resembles the
  6620. * second-half of the igb_resume routine.
  6621. */
  6622. static void igb_io_resume(struct pci_dev *pdev)
  6623. {
  6624. struct net_device *netdev = pci_get_drvdata(pdev);
  6625. struct igb_adapter *adapter = netdev_priv(netdev);
  6626. if (netif_running(netdev)) {
  6627. if (igb_up(adapter)) {
  6628. dev_err(&pdev->dev, "igb_up failed after reset\n");
  6629. return;
  6630. }
  6631. }
  6632. netif_device_attach(netdev);
  6633. /* let the f/w know that the h/w is now under the control of the
  6634. * driver.
  6635. */
  6636. igb_get_hw_control(adapter);
  6637. }
  6638. static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
  6639. u8 qsel)
  6640. {
  6641. struct e1000_hw *hw = &adapter->hw;
  6642. u32 rar_low, rar_high;
  6643. /* HW expects these to be in network order when they are plugged
  6644. * into the registers which are little endian. In order to guarantee
  6645. * that ordering we need to do an leXX_to_cpup here in order to be
  6646. * ready for the byteswap that occurs with writel
  6647. */
  6648. rar_low = le32_to_cpup((__le32 *)(addr));
  6649. rar_high = le16_to_cpup((__le16 *)(addr + 4));
  6650. /* Indicate to hardware the Address is Valid. */
  6651. rar_high |= E1000_RAH_AV;
  6652. if (hw->mac.type == e1000_82575)
  6653. rar_high |= E1000_RAH_POOL_1 * qsel;
  6654. else
  6655. rar_high |= E1000_RAH_POOL_1 << qsel;
  6656. wr32(E1000_RAL(index), rar_low);
  6657. wrfl();
  6658. wr32(E1000_RAH(index), rar_high);
  6659. wrfl();
  6660. }
  6661. static int igb_set_vf_mac(struct igb_adapter *adapter,
  6662. int vf, unsigned char *mac_addr)
  6663. {
  6664. struct e1000_hw *hw = &adapter->hw;
  6665. /* VF MAC addresses start at end of receive addresses and moves
  6666. * towards the first, as a result a collision should not be possible
  6667. */
  6668. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  6669. memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
  6670. igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
  6671. return 0;
  6672. }
  6673. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
  6674. {
  6675. struct igb_adapter *adapter = netdev_priv(netdev);
  6676. if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
  6677. return -EINVAL;
  6678. adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
  6679. dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
  6680. dev_info(&adapter->pdev->dev,
  6681. "Reload the VF driver to make this change effective.");
  6682. if (test_bit(__IGB_DOWN, &adapter->state)) {
  6683. dev_warn(&adapter->pdev->dev,
  6684. "The VF MAC address has been set, but the PF device is not up.\n");
  6685. dev_warn(&adapter->pdev->dev,
  6686. "Bring the PF device up before attempting to use the VF device.\n");
  6687. }
  6688. return igb_set_vf_mac(adapter, vf, mac);
  6689. }
  6690. static int igb_link_mbps(int internal_link_speed)
  6691. {
  6692. switch (internal_link_speed) {
  6693. case SPEED_100:
  6694. return 100;
  6695. case SPEED_1000:
  6696. return 1000;
  6697. default:
  6698. return 0;
  6699. }
  6700. }
  6701. static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
  6702. int link_speed)
  6703. {
  6704. int rf_dec, rf_int;
  6705. u32 bcnrc_val;
  6706. if (tx_rate != 0) {
  6707. /* Calculate the rate factor values to set */
  6708. rf_int = link_speed / tx_rate;
  6709. rf_dec = (link_speed - (rf_int * tx_rate));
  6710. rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
  6711. tx_rate;
  6712. bcnrc_val = E1000_RTTBCNRC_RS_ENA;
  6713. bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
  6714. E1000_RTTBCNRC_RF_INT_MASK);
  6715. bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
  6716. } else {
  6717. bcnrc_val = 0;
  6718. }
  6719. wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
  6720. /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
  6721. * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
  6722. */
  6723. wr32(E1000_RTTBCNRM, 0x14);
  6724. wr32(E1000_RTTBCNRC, bcnrc_val);
  6725. }
  6726. static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
  6727. {
  6728. int actual_link_speed, i;
  6729. bool reset_rate = false;
  6730. /* VF TX rate limit was not set or not supported */
  6731. if ((adapter->vf_rate_link_speed == 0) ||
  6732. (adapter->hw.mac.type != e1000_82576))
  6733. return;
  6734. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6735. if (actual_link_speed != adapter->vf_rate_link_speed) {
  6736. reset_rate = true;
  6737. adapter->vf_rate_link_speed = 0;
  6738. dev_info(&adapter->pdev->dev,
  6739. "Link speed has been changed. VF Transmit rate is disabled\n");
  6740. }
  6741. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  6742. if (reset_rate)
  6743. adapter->vf_data[i].tx_rate = 0;
  6744. igb_set_vf_rate_limit(&adapter->hw, i,
  6745. adapter->vf_data[i].tx_rate,
  6746. actual_link_speed);
  6747. }
  6748. }
  6749. static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
  6750. int min_tx_rate, int max_tx_rate)
  6751. {
  6752. struct igb_adapter *adapter = netdev_priv(netdev);
  6753. struct e1000_hw *hw = &adapter->hw;
  6754. int actual_link_speed;
  6755. if (hw->mac.type != e1000_82576)
  6756. return -EOPNOTSUPP;
  6757. if (min_tx_rate)
  6758. return -EINVAL;
  6759. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6760. if ((vf >= adapter->vfs_allocated_count) ||
  6761. (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
  6762. (max_tx_rate < 0) ||
  6763. (max_tx_rate > actual_link_speed))
  6764. return -EINVAL;
  6765. adapter->vf_rate_link_speed = actual_link_speed;
  6766. adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
  6767. igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
  6768. return 0;
  6769. }
  6770. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  6771. bool setting)
  6772. {
  6773. struct igb_adapter *adapter = netdev_priv(netdev);
  6774. struct e1000_hw *hw = &adapter->hw;
  6775. u32 reg_val, reg_offset;
  6776. if (!adapter->vfs_allocated_count)
  6777. return -EOPNOTSUPP;
  6778. if (vf >= adapter->vfs_allocated_count)
  6779. return -EINVAL;
  6780. reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
  6781. reg_val = rd32(reg_offset);
  6782. if (setting)
  6783. reg_val |= (BIT(vf) |
  6784. BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
  6785. else
  6786. reg_val &= ~(BIT(vf) |
  6787. BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
  6788. wr32(reg_offset, reg_val);
  6789. adapter->vf_data[vf].spoofchk_enabled = setting;
  6790. return 0;
  6791. }
  6792. static int igb_ndo_get_vf_config(struct net_device *netdev,
  6793. int vf, struct ifla_vf_info *ivi)
  6794. {
  6795. struct igb_adapter *adapter = netdev_priv(netdev);
  6796. if (vf >= adapter->vfs_allocated_count)
  6797. return -EINVAL;
  6798. ivi->vf = vf;
  6799. memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
  6800. ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
  6801. ivi->min_tx_rate = 0;
  6802. ivi->vlan = adapter->vf_data[vf].pf_vlan;
  6803. ivi->qos = adapter->vf_data[vf].pf_qos;
  6804. ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
  6805. return 0;
  6806. }
  6807. static void igb_vmm_control(struct igb_adapter *adapter)
  6808. {
  6809. struct e1000_hw *hw = &adapter->hw;
  6810. u32 reg;
  6811. switch (hw->mac.type) {
  6812. case e1000_82575:
  6813. case e1000_i210:
  6814. case e1000_i211:
  6815. case e1000_i354:
  6816. default:
  6817. /* replication is not supported for 82575 */
  6818. return;
  6819. case e1000_82576:
  6820. /* notify HW that the MAC is adding vlan tags */
  6821. reg = rd32(E1000_DTXCTL);
  6822. reg |= E1000_DTXCTL_VLAN_ADDED;
  6823. wr32(E1000_DTXCTL, reg);
  6824. /* Fall through */
  6825. case e1000_82580:
  6826. /* enable replication vlan tag stripping */
  6827. reg = rd32(E1000_RPLOLR);
  6828. reg |= E1000_RPLOLR_STRVLAN;
  6829. wr32(E1000_RPLOLR, reg);
  6830. /* Fall through */
  6831. case e1000_i350:
  6832. /* none of the above registers are supported by i350 */
  6833. break;
  6834. }
  6835. if (adapter->vfs_allocated_count) {
  6836. igb_vmdq_set_loopback_pf(hw, true);
  6837. igb_vmdq_set_replication_pf(hw, true);
  6838. igb_vmdq_set_anti_spoofing_pf(hw, true,
  6839. adapter->vfs_allocated_count);
  6840. } else {
  6841. igb_vmdq_set_loopback_pf(hw, false);
  6842. igb_vmdq_set_replication_pf(hw, false);
  6843. }
  6844. }
  6845. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
  6846. {
  6847. struct e1000_hw *hw = &adapter->hw;
  6848. u32 dmac_thr;
  6849. u16 hwm;
  6850. if (hw->mac.type > e1000_82580) {
  6851. if (adapter->flags & IGB_FLAG_DMAC) {
  6852. u32 reg;
  6853. /* force threshold to 0. */
  6854. wr32(E1000_DMCTXTH, 0);
  6855. /* DMA Coalescing high water mark needs to be greater
  6856. * than the Rx threshold. Set hwm to PBA - max frame
  6857. * size in 16B units, capping it at PBA - 6KB.
  6858. */
  6859. hwm = 64 * (pba - 6);
  6860. reg = rd32(E1000_FCRTC);
  6861. reg &= ~E1000_FCRTC_RTH_COAL_MASK;
  6862. reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
  6863. & E1000_FCRTC_RTH_COAL_MASK);
  6864. wr32(E1000_FCRTC, reg);
  6865. /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
  6866. * frame size, capping it at PBA - 10KB.
  6867. */
  6868. dmac_thr = pba - 10;
  6869. reg = rd32(E1000_DMACR);
  6870. reg &= ~E1000_DMACR_DMACTHR_MASK;
  6871. reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
  6872. & E1000_DMACR_DMACTHR_MASK);
  6873. /* transition to L0x or L1 if available..*/
  6874. reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
  6875. /* watchdog timer= +-1000 usec in 32usec intervals */
  6876. reg |= (1000 >> 5);
  6877. /* Disable BMC-to-OS Watchdog Enable */
  6878. if (hw->mac.type != e1000_i354)
  6879. reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
  6880. wr32(E1000_DMACR, reg);
  6881. /* no lower threshold to disable
  6882. * coalescing(smart fifb)-UTRESH=0
  6883. */
  6884. wr32(E1000_DMCRTRH, 0);
  6885. reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
  6886. wr32(E1000_DMCTLX, reg);
  6887. /* free space in tx packet buffer to wake from
  6888. * DMA coal
  6889. */
  6890. wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
  6891. (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
  6892. /* make low power state decision controlled
  6893. * by DMA coal
  6894. */
  6895. reg = rd32(E1000_PCIEMISC);
  6896. reg &= ~E1000_PCIEMISC_LX_DECISION;
  6897. wr32(E1000_PCIEMISC, reg);
  6898. } /* endif adapter->dmac is not disabled */
  6899. } else if (hw->mac.type == e1000_82580) {
  6900. u32 reg = rd32(E1000_PCIEMISC);
  6901. wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
  6902. wr32(E1000_DMACR, 0);
  6903. }
  6904. }
  6905. /**
  6906. * igb_read_i2c_byte - Reads 8 bit word over I2C
  6907. * @hw: pointer to hardware structure
  6908. * @byte_offset: byte offset to read
  6909. * @dev_addr: device address
  6910. * @data: value read
  6911. *
  6912. * Performs byte read operation over I2C interface at
  6913. * a specified device address.
  6914. **/
  6915. s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6916. u8 dev_addr, u8 *data)
  6917. {
  6918. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6919. struct i2c_client *this_client = adapter->i2c_client;
  6920. s32 status;
  6921. u16 swfw_mask = 0;
  6922. if (!this_client)
  6923. return E1000_ERR_I2C;
  6924. swfw_mask = E1000_SWFW_PHY0_SM;
  6925. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6926. return E1000_ERR_SWFW_SYNC;
  6927. status = i2c_smbus_read_byte_data(this_client, byte_offset);
  6928. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6929. if (status < 0)
  6930. return E1000_ERR_I2C;
  6931. else {
  6932. *data = status;
  6933. return 0;
  6934. }
  6935. }
  6936. /**
  6937. * igb_write_i2c_byte - Writes 8 bit word over I2C
  6938. * @hw: pointer to hardware structure
  6939. * @byte_offset: byte offset to write
  6940. * @dev_addr: device address
  6941. * @data: value to write
  6942. *
  6943. * Performs byte write operation over I2C interface at
  6944. * a specified device address.
  6945. **/
  6946. s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6947. u8 dev_addr, u8 data)
  6948. {
  6949. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6950. struct i2c_client *this_client = adapter->i2c_client;
  6951. s32 status;
  6952. u16 swfw_mask = E1000_SWFW_PHY0_SM;
  6953. if (!this_client)
  6954. return E1000_ERR_I2C;
  6955. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6956. return E1000_ERR_SWFW_SYNC;
  6957. status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
  6958. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6959. if (status)
  6960. return E1000_ERR_I2C;
  6961. else
  6962. return 0;
  6963. }
  6964. int igb_reinit_queues(struct igb_adapter *adapter)
  6965. {
  6966. struct net_device *netdev = adapter->netdev;
  6967. struct pci_dev *pdev = adapter->pdev;
  6968. int err = 0;
  6969. if (netif_running(netdev))
  6970. igb_close(netdev);
  6971. igb_reset_interrupt_capability(adapter);
  6972. if (igb_init_interrupt_scheme(adapter, true)) {
  6973. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6974. return -ENOMEM;
  6975. }
  6976. if (netif_running(netdev))
  6977. err = igb_open(netdev);
  6978. return err;
  6979. }
  6980. /* igb_main.c */