tcp_output.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <trace/events/tcp.h>
  41. /* People can turn this off for buggy TCP's found in printers etc. */
  42. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  43. /* People can turn this on to work with those rare, broken TCPs that
  44. * interpret the window field as a signed quantity.
  45. */
  46. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  47. /* Default TSQ limit of four TSO segments */
  48. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  49. /* This limits the percentage of the congestion window which we
  50. * will allow a single TSO frame to consume. Building TSO frames
  51. * which are too large can cause TCP streams to be bursty.
  52. */
  53. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  54. /* By default, RFC2861 behavior. */
  55. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  56. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  57. int push_one, gfp_t gfp);
  58. /* Account for new data that has been sent to the network. */
  59. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  60. {
  61. struct inet_connection_sock *icsk = inet_csk(sk);
  62. struct tcp_sock *tp = tcp_sk(sk);
  63. unsigned int prior_packets = tp->packets_out;
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. __skb_unlink(skb, &sk->sk_write_queue);
  66. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  67. tp->packets_out += tcp_skb_pcount(skb);
  68. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  69. tcp_rearm_rto(sk);
  70. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  71. tcp_skb_pcount(skb));
  72. }
  73. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  74. * window scaling factor due to loss of precision.
  75. * If window has been shrunk, what should we make? It is not clear at all.
  76. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  77. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  78. * invalid. OK, let's make this for now:
  79. */
  80. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  81. {
  82. const struct tcp_sock *tp = tcp_sk(sk);
  83. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  84. (tp->rx_opt.wscale_ok &&
  85. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  86. return tp->snd_nxt;
  87. else
  88. return tcp_wnd_end(tp);
  89. }
  90. /* Calculate mss to advertise in SYN segment.
  91. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  92. *
  93. * 1. It is independent of path mtu.
  94. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  95. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  96. * attached devices, because some buggy hosts are confused by
  97. * large MSS.
  98. * 4. We do not make 3, we advertise MSS, calculated from first
  99. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  100. * This may be overridden via information stored in routing table.
  101. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  102. * probably even Jumbo".
  103. */
  104. static __u16 tcp_advertise_mss(struct sock *sk)
  105. {
  106. struct tcp_sock *tp = tcp_sk(sk);
  107. const struct dst_entry *dst = __sk_dst_get(sk);
  108. int mss = tp->advmss;
  109. if (dst) {
  110. unsigned int metric = dst_metric_advmss(dst);
  111. if (metric < mss) {
  112. mss = metric;
  113. tp->advmss = mss;
  114. }
  115. }
  116. return (__u16)mss;
  117. }
  118. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  119. * This is the first part of cwnd validation mechanism.
  120. */
  121. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  122. {
  123. struct tcp_sock *tp = tcp_sk(sk);
  124. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  125. u32 cwnd = tp->snd_cwnd;
  126. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  127. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  128. restart_cwnd = min(restart_cwnd, cwnd);
  129. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  130. cwnd >>= 1;
  131. tp->snd_cwnd = max(cwnd, restart_cwnd);
  132. tp->snd_cwnd_stamp = tcp_jiffies32;
  133. tp->snd_cwnd_used = 0;
  134. }
  135. /* Congestion state accounting after a packet has been sent. */
  136. static void tcp_event_data_sent(struct tcp_sock *tp,
  137. struct sock *sk)
  138. {
  139. struct inet_connection_sock *icsk = inet_csk(sk);
  140. const u32 now = tcp_jiffies32;
  141. if (tcp_packets_in_flight(tp) == 0)
  142. tcp_ca_event(sk, CA_EVENT_TX_START);
  143. tp->lsndtime = now;
  144. /* If it is a reply for ato after last received
  145. * packet, enter pingpong mode.
  146. */
  147. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  148. icsk->icsk_ack.pingpong = 1;
  149. }
  150. /* Account for an ACK we sent. */
  151. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  152. {
  153. tcp_dec_quickack_mode(sk, pkts);
  154. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  155. }
  156. u32 tcp_default_init_rwnd(u32 mss)
  157. {
  158. /* Initial receive window should be twice of TCP_INIT_CWND to
  159. * enable proper sending of new unsent data during fast recovery
  160. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  161. * limit when mss is larger than 1460.
  162. */
  163. u32 init_rwnd = TCP_INIT_CWND * 2;
  164. if (mss > 1460)
  165. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  166. return init_rwnd;
  167. }
  168. /* Determine a window scaling and initial window to offer.
  169. * Based on the assumption that the given amount of space
  170. * will be offered. Store the results in the tp structure.
  171. * NOTE: for smooth operation initial space offering should
  172. * be a multiple of mss if possible. We assume here that mss >= 1.
  173. * This MUST be enforced by all callers.
  174. */
  175. void tcp_select_initial_window(int __space, __u32 mss,
  176. __u32 *rcv_wnd, __u32 *window_clamp,
  177. int wscale_ok, __u8 *rcv_wscale,
  178. __u32 init_rcv_wnd)
  179. {
  180. unsigned int space = (__space < 0 ? 0 : __space);
  181. /* If no clamp set the clamp to the max possible scaled window */
  182. if (*window_clamp == 0)
  183. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  184. space = min(*window_clamp, space);
  185. /* Quantize space offering to a multiple of mss if possible. */
  186. if (space > mss)
  187. space = rounddown(space, mss);
  188. /* NOTE: offering an initial window larger than 32767
  189. * will break some buggy TCP stacks. If the admin tells us
  190. * it is likely we could be speaking with such a buggy stack
  191. * we will truncate our initial window offering to 32K-1
  192. * unless the remote has sent us a window scaling option,
  193. * which we interpret as a sign the remote TCP is not
  194. * misinterpreting the window field as a signed quantity.
  195. */
  196. if (sysctl_tcp_workaround_signed_windows)
  197. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  198. else
  199. (*rcv_wnd) = space;
  200. (*rcv_wscale) = 0;
  201. if (wscale_ok) {
  202. /* Set window scaling on max possible window */
  203. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  204. space = max_t(u32, space, sysctl_rmem_max);
  205. space = min_t(u32, space, *window_clamp);
  206. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  207. space >>= 1;
  208. (*rcv_wscale)++;
  209. }
  210. }
  211. if (mss > (1 << *rcv_wscale)) {
  212. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  213. init_rcv_wnd = tcp_default_init_rwnd(mss);
  214. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  215. }
  216. /* Set the clamp no higher than max representable value */
  217. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  218. }
  219. EXPORT_SYMBOL(tcp_select_initial_window);
  220. /* Chose a new window to advertise, update state in tcp_sock for the
  221. * socket, and return result with RFC1323 scaling applied. The return
  222. * value can be stuffed directly into th->window for an outgoing
  223. * frame.
  224. */
  225. static u16 tcp_select_window(struct sock *sk)
  226. {
  227. struct tcp_sock *tp = tcp_sk(sk);
  228. u32 old_win = tp->rcv_wnd;
  229. u32 cur_win = tcp_receive_window(tp);
  230. u32 new_win = __tcp_select_window(sk);
  231. /* Never shrink the offered window */
  232. if (new_win < cur_win) {
  233. /* Danger Will Robinson!
  234. * Don't update rcv_wup/rcv_wnd here or else
  235. * we will not be able to advertise a zero
  236. * window in time. --DaveM
  237. *
  238. * Relax Will Robinson.
  239. */
  240. if (new_win == 0)
  241. NET_INC_STATS(sock_net(sk),
  242. LINUX_MIB_TCPWANTZEROWINDOWADV);
  243. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  244. }
  245. tp->rcv_wnd = new_win;
  246. tp->rcv_wup = tp->rcv_nxt;
  247. /* Make sure we do not exceed the maximum possible
  248. * scaled window.
  249. */
  250. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  251. new_win = min(new_win, MAX_TCP_WINDOW);
  252. else
  253. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  254. /* RFC1323 scaling applied */
  255. new_win >>= tp->rx_opt.rcv_wscale;
  256. /* If we advertise zero window, disable fast path. */
  257. if (new_win == 0) {
  258. tp->pred_flags = 0;
  259. if (old_win)
  260. NET_INC_STATS(sock_net(sk),
  261. LINUX_MIB_TCPTOZEROWINDOWADV);
  262. } else if (old_win == 0) {
  263. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  264. }
  265. return new_win;
  266. }
  267. /* Packet ECN state for a SYN-ACK */
  268. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  269. {
  270. const struct tcp_sock *tp = tcp_sk(sk);
  271. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  272. if (!(tp->ecn_flags & TCP_ECN_OK))
  273. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  274. else if (tcp_ca_needs_ecn(sk) ||
  275. tcp_bpf_ca_needs_ecn(sk))
  276. INET_ECN_xmit(sk);
  277. }
  278. /* Packet ECN state for a SYN. */
  279. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  280. {
  281. struct tcp_sock *tp = tcp_sk(sk);
  282. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  283. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  284. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  285. if (!use_ecn) {
  286. const struct dst_entry *dst = __sk_dst_get(sk);
  287. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  288. use_ecn = true;
  289. }
  290. tp->ecn_flags = 0;
  291. if (use_ecn) {
  292. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  293. tp->ecn_flags = TCP_ECN_OK;
  294. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  295. INET_ECN_xmit(sk);
  296. }
  297. }
  298. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  299. {
  300. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  301. /* tp->ecn_flags are cleared at a later point in time when
  302. * SYN ACK is ultimatively being received.
  303. */
  304. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  305. }
  306. static void
  307. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  308. {
  309. if (inet_rsk(req)->ecn_ok)
  310. th->ece = 1;
  311. }
  312. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  313. * be sent.
  314. */
  315. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  316. struct tcphdr *th, int tcp_header_len)
  317. {
  318. struct tcp_sock *tp = tcp_sk(sk);
  319. if (tp->ecn_flags & TCP_ECN_OK) {
  320. /* Not-retransmitted data segment: set ECT and inject CWR. */
  321. if (skb->len != tcp_header_len &&
  322. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  323. INET_ECN_xmit(sk);
  324. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  325. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  326. th->cwr = 1;
  327. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  328. }
  329. } else if (!tcp_ca_needs_ecn(sk)) {
  330. /* ACK or retransmitted segment: clear ECT|CE */
  331. INET_ECN_dontxmit(sk);
  332. }
  333. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  334. th->ece = 1;
  335. }
  336. }
  337. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  338. * auto increment end seqno.
  339. */
  340. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  341. {
  342. skb->ip_summed = CHECKSUM_PARTIAL;
  343. skb->csum = 0;
  344. TCP_SKB_CB(skb)->tcp_flags = flags;
  345. TCP_SKB_CB(skb)->sacked = 0;
  346. tcp_skb_pcount_set(skb, 1);
  347. TCP_SKB_CB(skb)->seq = seq;
  348. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  349. seq++;
  350. TCP_SKB_CB(skb)->end_seq = seq;
  351. }
  352. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  353. {
  354. return tp->snd_una != tp->snd_up;
  355. }
  356. #define OPTION_SACK_ADVERTISE (1 << 0)
  357. #define OPTION_TS (1 << 1)
  358. #define OPTION_MD5 (1 << 2)
  359. #define OPTION_WSCALE (1 << 3)
  360. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  361. struct tcp_out_options {
  362. u16 options; /* bit field of OPTION_* */
  363. u16 mss; /* 0 to disable */
  364. u8 ws; /* window scale, 0 to disable */
  365. u8 num_sack_blocks; /* number of SACK blocks to include */
  366. u8 hash_size; /* bytes in hash_location */
  367. __u8 *hash_location; /* temporary pointer, overloaded */
  368. __u32 tsval, tsecr; /* need to include OPTION_TS */
  369. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  370. };
  371. /* Write previously computed TCP options to the packet.
  372. *
  373. * Beware: Something in the Internet is very sensitive to the ordering of
  374. * TCP options, we learned this through the hard way, so be careful here.
  375. * Luckily we can at least blame others for their non-compliance but from
  376. * inter-operability perspective it seems that we're somewhat stuck with
  377. * the ordering which we have been using if we want to keep working with
  378. * those broken things (not that it currently hurts anybody as there isn't
  379. * particular reason why the ordering would need to be changed).
  380. *
  381. * At least SACK_PERM as the first option is known to lead to a disaster
  382. * (but it may well be that other scenarios fail similarly).
  383. */
  384. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  385. struct tcp_out_options *opts)
  386. {
  387. u16 options = opts->options; /* mungable copy */
  388. if (unlikely(OPTION_MD5 & options)) {
  389. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  390. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  391. /* overload cookie hash location */
  392. opts->hash_location = (__u8 *)ptr;
  393. ptr += 4;
  394. }
  395. if (unlikely(opts->mss)) {
  396. *ptr++ = htonl((TCPOPT_MSS << 24) |
  397. (TCPOLEN_MSS << 16) |
  398. opts->mss);
  399. }
  400. if (likely(OPTION_TS & options)) {
  401. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  402. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  403. (TCPOLEN_SACK_PERM << 16) |
  404. (TCPOPT_TIMESTAMP << 8) |
  405. TCPOLEN_TIMESTAMP);
  406. options &= ~OPTION_SACK_ADVERTISE;
  407. } else {
  408. *ptr++ = htonl((TCPOPT_NOP << 24) |
  409. (TCPOPT_NOP << 16) |
  410. (TCPOPT_TIMESTAMP << 8) |
  411. TCPOLEN_TIMESTAMP);
  412. }
  413. *ptr++ = htonl(opts->tsval);
  414. *ptr++ = htonl(opts->tsecr);
  415. }
  416. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  417. *ptr++ = htonl((TCPOPT_NOP << 24) |
  418. (TCPOPT_NOP << 16) |
  419. (TCPOPT_SACK_PERM << 8) |
  420. TCPOLEN_SACK_PERM);
  421. }
  422. if (unlikely(OPTION_WSCALE & options)) {
  423. *ptr++ = htonl((TCPOPT_NOP << 24) |
  424. (TCPOPT_WINDOW << 16) |
  425. (TCPOLEN_WINDOW << 8) |
  426. opts->ws);
  427. }
  428. if (unlikely(opts->num_sack_blocks)) {
  429. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  430. tp->duplicate_sack : tp->selective_acks;
  431. int this_sack;
  432. *ptr++ = htonl((TCPOPT_NOP << 24) |
  433. (TCPOPT_NOP << 16) |
  434. (TCPOPT_SACK << 8) |
  435. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  436. TCPOLEN_SACK_PERBLOCK)));
  437. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  438. ++this_sack) {
  439. *ptr++ = htonl(sp[this_sack].start_seq);
  440. *ptr++ = htonl(sp[this_sack].end_seq);
  441. }
  442. tp->rx_opt.dsack = 0;
  443. }
  444. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  445. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  446. u8 *p = (u8 *)ptr;
  447. u32 len; /* Fast Open option length */
  448. if (foc->exp) {
  449. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  450. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  451. TCPOPT_FASTOPEN_MAGIC);
  452. p += TCPOLEN_EXP_FASTOPEN_BASE;
  453. } else {
  454. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  455. *p++ = TCPOPT_FASTOPEN;
  456. *p++ = len;
  457. }
  458. memcpy(p, foc->val, foc->len);
  459. if ((len & 3) == 2) {
  460. p[foc->len] = TCPOPT_NOP;
  461. p[foc->len + 1] = TCPOPT_NOP;
  462. }
  463. ptr += (len + 3) >> 2;
  464. }
  465. }
  466. /* Compute TCP options for SYN packets. This is not the final
  467. * network wire format yet.
  468. */
  469. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  470. struct tcp_out_options *opts,
  471. struct tcp_md5sig_key **md5)
  472. {
  473. struct tcp_sock *tp = tcp_sk(sk);
  474. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  475. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  476. #ifdef CONFIG_TCP_MD5SIG
  477. *md5 = tp->af_specific->md5_lookup(sk, sk);
  478. if (*md5) {
  479. opts->options |= OPTION_MD5;
  480. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  481. }
  482. #else
  483. *md5 = NULL;
  484. #endif
  485. /* We always get an MSS option. The option bytes which will be seen in
  486. * normal data packets should timestamps be used, must be in the MSS
  487. * advertised. But we subtract them from tp->mss_cache so that
  488. * calculations in tcp_sendmsg are simpler etc. So account for this
  489. * fact here if necessary. If we don't do this correctly, as a
  490. * receiver we won't recognize data packets as being full sized when we
  491. * should, and thus we won't abide by the delayed ACK rules correctly.
  492. * SACKs don't matter, we never delay an ACK when we have any of those
  493. * going out. */
  494. opts->mss = tcp_advertise_mss(sk);
  495. remaining -= TCPOLEN_MSS_ALIGNED;
  496. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  497. opts->options |= OPTION_TS;
  498. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  499. opts->tsecr = tp->rx_opt.ts_recent;
  500. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  501. }
  502. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  503. opts->ws = tp->rx_opt.rcv_wscale;
  504. opts->options |= OPTION_WSCALE;
  505. remaining -= TCPOLEN_WSCALE_ALIGNED;
  506. }
  507. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  508. opts->options |= OPTION_SACK_ADVERTISE;
  509. if (unlikely(!(OPTION_TS & opts->options)))
  510. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  511. }
  512. if (fastopen && fastopen->cookie.len >= 0) {
  513. u32 need = fastopen->cookie.len;
  514. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  515. TCPOLEN_FASTOPEN_BASE;
  516. need = (need + 3) & ~3U; /* Align to 32 bits */
  517. if (remaining >= need) {
  518. opts->options |= OPTION_FAST_OPEN_COOKIE;
  519. opts->fastopen_cookie = &fastopen->cookie;
  520. remaining -= need;
  521. tp->syn_fastopen = 1;
  522. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  523. }
  524. }
  525. return MAX_TCP_OPTION_SPACE - remaining;
  526. }
  527. /* Set up TCP options for SYN-ACKs. */
  528. static unsigned int tcp_synack_options(struct request_sock *req,
  529. unsigned int mss, struct sk_buff *skb,
  530. struct tcp_out_options *opts,
  531. const struct tcp_md5sig_key *md5,
  532. struct tcp_fastopen_cookie *foc)
  533. {
  534. struct inet_request_sock *ireq = inet_rsk(req);
  535. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  536. #ifdef CONFIG_TCP_MD5SIG
  537. if (md5) {
  538. opts->options |= OPTION_MD5;
  539. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  540. /* We can't fit any SACK blocks in a packet with MD5 + TS
  541. * options. There was discussion about disabling SACK
  542. * rather than TS in order to fit in better with old,
  543. * buggy kernels, but that was deemed to be unnecessary.
  544. */
  545. ireq->tstamp_ok &= !ireq->sack_ok;
  546. }
  547. #endif
  548. /* We always send an MSS option. */
  549. opts->mss = mss;
  550. remaining -= TCPOLEN_MSS_ALIGNED;
  551. if (likely(ireq->wscale_ok)) {
  552. opts->ws = ireq->rcv_wscale;
  553. opts->options |= OPTION_WSCALE;
  554. remaining -= TCPOLEN_WSCALE_ALIGNED;
  555. }
  556. if (likely(ireq->tstamp_ok)) {
  557. opts->options |= OPTION_TS;
  558. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  559. opts->tsecr = req->ts_recent;
  560. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  561. }
  562. if (likely(ireq->sack_ok)) {
  563. opts->options |= OPTION_SACK_ADVERTISE;
  564. if (unlikely(!ireq->tstamp_ok))
  565. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  566. }
  567. if (foc != NULL && foc->len >= 0) {
  568. u32 need = foc->len;
  569. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  570. TCPOLEN_FASTOPEN_BASE;
  571. need = (need + 3) & ~3U; /* Align to 32 bits */
  572. if (remaining >= need) {
  573. opts->options |= OPTION_FAST_OPEN_COOKIE;
  574. opts->fastopen_cookie = foc;
  575. remaining -= need;
  576. }
  577. }
  578. return MAX_TCP_OPTION_SPACE - remaining;
  579. }
  580. /* Compute TCP options for ESTABLISHED sockets. This is not the
  581. * final wire format yet.
  582. */
  583. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  584. struct tcp_out_options *opts,
  585. struct tcp_md5sig_key **md5)
  586. {
  587. struct tcp_sock *tp = tcp_sk(sk);
  588. unsigned int size = 0;
  589. unsigned int eff_sacks;
  590. opts->options = 0;
  591. #ifdef CONFIG_TCP_MD5SIG
  592. *md5 = tp->af_specific->md5_lookup(sk, sk);
  593. if (unlikely(*md5)) {
  594. opts->options |= OPTION_MD5;
  595. size += TCPOLEN_MD5SIG_ALIGNED;
  596. }
  597. #else
  598. *md5 = NULL;
  599. #endif
  600. if (likely(tp->rx_opt.tstamp_ok)) {
  601. opts->options |= OPTION_TS;
  602. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  603. opts->tsecr = tp->rx_opt.ts_recent;
  604. size += TCPOLEN_TSTAMP_ALIGNED;
  605. }
  606. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  607. if (unlikely(eff_sacks)) {
  608. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  609. opts->num_sack_blocks =
  610. min_t(unsigned int, eff_sacks,
  611. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  612. TCPOLEN_SACK_PERBLOCK);
  613. size += TCPOLEN_SACK_BASE_ALIGNED +
  614. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  615. }
  616. return size;
  617. }
  618. /* TCP SMALL QUEUES (TSQ)
  619. *
  620. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  621. * to reduce RTT and bufferbloat.
  622. * We do this using a special skb destructor (tcp_wfree).
  623. *
  624. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  625. * needs to be reallocated in a driver.
  626. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  627. *
  628. * Since transmit from skb destructor is forbidden, we use a tasklet
  629. * to process all sockets that eventually need to send more skbs.
  630. * We use one tasklet per cpu, with its own queue of sockets.
  631. */
  632. struct tsq_tasklet {
  633. struct tasklet_struct tasklet;
  634. struct list_head head; /* queue of tcp sockets */
  635. };
  636. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  637. static void tcp_tsq_handler(struct sock *sk)
  638. {
  639. if ((1 << sk->sk_state) &
  640. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  641. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  642. struct tcp_sock *tp = tcp_sk(sk);
  643. if (tp->lost_out > tp->retrans_out &&
  644. tp->snd_cwnd > tcp_packets_in_flight(tp))
  645. tcp_xmit_retransmit_queue(sk);
  646. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  647. 0, GFP_ATOMIC);
  648. }
  649. }
  650. /*
  651. * One tasklet per cpu tries to send more skbs.
  652. * We run in tasklet context but need to disable irqs when
  653. * transferring tsq->head because tcp_wfree() might
  654. * interrupt us (non NAPI drivers)
  655. */
  656. static void tcp_tasklet_func(unsigned long data)
  657. {
  658. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  659. LIST_HEAD(list);
  660. unsigned long flags;
  661. struct list_head *q, *n;
  662. struct tcp_sock *tp;
  663. struct sock *sk;
  664. local_irq_save(flags);
  665. list_splice_init(&tsq->head, &list);
  666. local_irq_restore(flags);
  667. list_for_each_safe(q, n, &list) {
  668. tp = list_entry(q, struct tcp_sock, tsq_node);
  669. list_del(&tp->tsq_node);
  670. sk = (struct sock *)tp;
  671. smp_mb__before_atomic();
  672. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  673. if (!sk->sk_lock.owned &&
  674. test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
  675. bh_lock_sock(sk);
  676. if (!sock_owned_by_user(sk)) {
  677. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  678. tcp_tsq_handler(sk);
  679. }
  680. bh_unlock_sock(sk);
  681. }
  682. sk_free(sk);
  683. }
  684. }
  685. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  686. TCPF_WRITE_TIMER_DEFERRED | \
  687. TCPF_DELACK_TIMER_DEFERRED | \
  688. TCPF_MTU_REDUCED_DEFERRED)
  689. /**
  690. * tcp_release_cb - tcp release_sock() callback
  691. * @sk: socket
  692. *
  693. * called from release_sock() to perform protocol dependent
  694. * actions before socket release.
  695. */
  696. void tcp_release_cb(struct sock *sk)
  697. {
  698. unsigned long flags, nflags;
  699. /* perform an atomic operation only if at least one flag is set */
  700. do {
  701. flags = sk->sk_tsq_flags;
  702. if (!(flags & TCP_DEFERRED_ALL))
  703. return;
  704. nflags = flags & ~TCP_DEFERRED_ALL;
  705. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  706. if (flags & TCPF_TSQ_DEFERRED)
  707. tcp_tsq_handler(sk);
  708. /* Here begins the tricky part :
  709. * We are called from release_sock() with :
  710. * 1) BH disabled
  711. * 2) sk_lock.slock spinlock held
  712. * 3) socket owned by us (sk->sk_lock.owned == 1)
  713. *
  714. * But following code is meant to be called from BH handlers,
  715. * so we should keep BH disabled, but early release socket ownership
  716. */
  717. sock_release_ownership(sk);
  718. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  719. tcp_write_timer_handler(sk);
  720. __sock_put(sk);
  721. }
  722. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  723. tcp_delack_timer_handler(sk);
  724. __sock_put(sk);
  725. }
  726. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  727. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  728. __sock_put(sk);
  729. }
  730. }
  731. EXPORT_SYMBOL(tcp_release_cb);
  732. void __init tcp_tasklet_init(void)
  733. {
  734. int i;
  735. for_each_possible_cpu(i) {
  736. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  737. INIT_LIST_HEAD(&tsq->head);
  738. tasklet_init(&tsq->tasklet,
  739. tcp_tasklet_func,
  740. (unsigned long)tsq);
  741. }
  742. }
  743. /*
  744. * Write buffer destructor automatically called from kfree_skb.
  745. * We can't xmit new skbs from this context, as we might already
  746. * hold qdisc lock.
  747. */
  748. void tcp_wfree(struct sk_buff *skb)
  749. {
  750. struct sock *sk = skb->sk;
  751. struct tcp_sock *tp = tcp_sk(sk);
  752. unsigned long flags, nval, oval;
  753. /* Keep one reference on sk_wmem_alloc.
  754. * Will be released by sk_free() from here or tcp_tasklet_func()
  755. */
  756. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  757. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  758. * Wait until our queues (qdisc + devices) are drained.
  759. * This gives :
  760. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  761. * - chance for incoming ACK (processed by another cpu maybe)
  762. * to migrate this flow (skb->ooo_okay will be eventually set)
  763. */
  764. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  765. goto out;
  766. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  767. struct tsq_tasklet *tsq;
  768. bool empty;
  769. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  770. goto out;
  771. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  772. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  773. if (nval != oval)
  774. continue;
  775. /* queue this socket to tasklet queue */
  776. local_irq_save(flags);
  777. tsq = this_cpu_ptr(&tsq_tasklet);
  778. empty = list_empty(&tsq->head);
  779. list_add(&tp->tsq_node, &tsq->head);
  780. if (empty)
  781. tasklet_schedule(&tsq->tasklet);
  782. local_irq_restore(flags);
  783. return;
  784. }
  785. out:
  786. sk_free(sk);
  787. }
  788. /* Note: Called under hard irq.
  789. * We can not call TCP stack right away.
  790. */
  791. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  792. {
  793. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  794. struct sock *sk = (struct sock *)tp;
  795. unsigned long nval, oval;
  796. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  797. struct tsq_tasklet *tsq;
  798. bool empty;
  799. if (oval & TSQF_QUEUED)
  800. break;
  801. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  802. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  803. if (nval != oval)
  804. continue;
  805. if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
  806. break;
  807. /* queue this socket to tasklet queue */
  808. tsq = this_cpu_ptr(&tsq_tasklet);
  809. empty = list_empty(&tsq->head);
  810. list_add(&tp->tsq_node, &tsq->head);
  811. if (empty)
  812. tasklet_schedule(&tsq->tasklet);
  813. break;
  814. }
  815. return HRTIMER_NORESTART;
  816. }
  817. /* BBR congestion control needs pacing.
  818. * Same remark for SO_MAX_PACING_RATE.
  819. * sch_fq packet scheduler is efficiently handling pacing,
  820. * but is not always installed/used.
  821. * Return true if TCP stack should pace packets itself.
  822. */
  823. static bool tcp_needs_internal_pacing(const struct sock *sk)
  824. {
  825. return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
  826. }
  827. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  828. {
  829. u64 len_ns;
  830. u32 rate;
  831. if (!tcp_needs_internal_pacing(sk))
  832. return;
  833. rate = sk->sk_pacing_rate;
  834. if (!rate || rate == ~0U)
  835. return;
  836. /* Should account for header sizes as sch_fq does,
  837. * but lets make things simple.
  838. */
  839. len_ns = (u64)skb->len * NSEC_PER_SEC;
  840. do_div(len_ns, rate);
  841. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  842. ktime_add_ns(ktime_get(), len_ns),
  843. HRTIMER_MODE_ABS_PINNED);
  844. }
  845. static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
  846. {
  847. skb->skb_mstamp = tp->tcp_mstamp;
  848. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  849. }
  850. /* This routine actually transmits TCP packets queued in by
  851. * tcp_do_sendmsg(). This is used by both the initial
  852. * transmission and possible later retransmissions.
  853. * All SKB's seen here are completely headerless. It is our
  854. * job to build the TCP header, and pass the packet down to
  855. * IP so it can do the same plus pass the packet off to the
  856. * device.
  857. *
  858. * We are working here with either a clone of the original
  859. * SKB, or a fresh unique copy made by the retransmit engine.
  860. */
  861. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  862. gfp_t gfp_mask)
  863. {
  864. const struct inet_connection_sock *icsk = inet_csk(sk);
  865. struct inet_sock *inet;
  866. struct tcp_sock *tp;
  867. struct tcp_skb_cb *tcb;
  868. struct tcp_out_options opts;
  869. unsigned int tcp_options_size, tcp_header_size;
  870. struct sk_buff *oskb = NULL;
  871. struct tcp_md5sig_key *md5;
  872. struct tcphdr *th;
  873. int err;
  874. BUG_ON(!skb || !tcp_skb_pcount(skb));
  875. tp = tcp_sk(sk);
  876. if (clone_it) {
  877. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  878. - tp->snd_una;
  879. oskb = skb;
  880. tcp_skb_tsorted_save(oskb) {
  881. if (unlikely(skb_cloned(oskb)))
  882. skb = pskb_copy(oskb, gfp_mask);
  883. else
  884. skb = skb_clone(oskb, gfp_mask);
  885. } tcp_skb_tsorted_restore(oskb);
  886. if (unlikely(!skb))
  887. return -ENOBUFS;
  888. }
  889. skb->skb_mstamp = tp->tcp_mstamp;
  890. inet = inet_sk(sk);
  891. tcb = TCP_SKB_CB(skb);
  892. memset(&opts, 0, sizeof(opts));
  893. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  894. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  895. else
  896. tcp_options_size = tcp_established_options(sk, skb, &opts,
  897. &md5);
  898. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  899. /* if no packet is in qdisc/device queue, then allow XPS to select
  900. * another queue. We can be called from tcp_tsq_handler()
  901. * which holds one reference to sk_wmem_alloc.
  902. *
  903. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  904. * One way to get this would be to set skb->truesize = 2 on them.
  905. */
  906. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  907. /* If we had to use memory reserve to allocate this skb,
  908. * this might cause drops if packet is looped back :
  909. * Other socket might not have SOCK_MEMALLOC.
  910. * Packets not looped back do not care about pfmemalloc.
  911. */
  912. skb->pfmemalloc = 0;
  913. skb_push(skb, tcp_header_size);
  914. skb_reset_transport_header(skb);
  915. skb_orphan(skb);
  916. skb->sk = sk;
  917. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  918. skb_set_hash_from_sk(skb, sk);
  919. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  920. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  921. /* Build TCP header and checksum it. */
  922. th = (struct tcphdr *)skb->data;
  923. th->source = inet->inet_sport;
  924. th->dest = inet->inet_dport;
  925. th->seq = htonl(tcb->seq);
  926. th->ack_seq = htonl(tp->rcv_nxt);
  927. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  928. tcb->tcp_flags);
  929. th->check = 0;
  930. th->urg_ptr = 0;
  931. /* The urg_mode check is necessary during a below snd_una win probe */
  932. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  933. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  934. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  935. th->urg = 1;
  936. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  937. th->urg_ptr = htons(0xFFFF);
  938. th->urg = 1;
  939. }
  940. }
  941. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  942. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  943. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  944. th->window = htons(tcp_select_window(sk));
  945. tcp_ecn_send(sk, skb, th, tcp_header_size);
  946. } else {
  947. /* RFC1323: The window in SYN & SYN/ACK segments
  948. * is never scaled.
  949. */
  950. th->window = htons(min(tp->rcv_wnd, 65535U));
  951. }
  952. #ifdef CONFIG_TCP_MD5SIG
  953. /* Calculate the MD5 hash, as we have all we need now */
  954. if (md5) {
  955. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  956. tp->af_specific->calc_md5_hash(opts.hash_location,
  957. md5, sk, skb);
  958. }
  959. #endif
  960. icsk->icsk_af_ops->send_check(sk, skb);
  961. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  962. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  963. if (skb->len != tcp_header_size) {
  964. tcp_event_data_sent(tp, sk);
  965. tp->data_segs_out += tcp_skb_pcount(skb);
  966. tcp_internal_pacing(sk, skb);
  967. }
  968. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  969. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  970. tcp_skb_pcount(skb));
  971. tp->segs_out += tcp_skb_pcount(skb);
  972. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  973. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  974. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  975. /* Our usage of tstamp should remain private */
  976. skb->tstamp = 0;
  977. /* Cleanup our debris for IP stacks */
  978. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  979. sizeof(struct inet6_skb_parm)));
  980. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  981. if (unlikely(err > 0)) {
  982. tcp_enter_cwr(sk);
  983. err = net_xmit_eval(err);
  984. }
  985. if (!err && oskb) {
  986. tcp_update_skb_after_send(tp, oskb);
  987. tcp_rate_skb_sent(sk, oskb);
  988. }
  989. return err;
  990. }
  991. /* This routine just queues the buffer for sending.
  992. *
  993. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  994. * otherwise socket can stall.
  995. */
  996. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  997. {
  998. struct tcp_sock *tp = tcp_sk(sk);
  999. /* Advance write_seq and place onto the write_queue. */
  1000. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  1001. __skb_header_release(skb);
  1002. tcp_add_write_queue_tail(sk, skb);
  1003. sk->sk_wmem_queued += skb->truesize;
  1004. sk_mem_charge(sk, skb->truesize);
  1005. }
  1006. /* Initialize TSO segments for a packet. */
  1007. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1008. {
  1009. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  1010. /* Avoid the costly divide in the normal
  1011. * non-TSO case.
  1012. */
  1013. tcp_skb_pcount_set(skb, 1);
  1014. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1015. } else {
  1016. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1017. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1018. }
  1019. }
  1020. /* When a modification to fackets out becomes necessary, we need to check
  1021. * skb is counted to fackets_out or not.
  1022. */
  1023. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  1024. int decr)
  1025. {
  1026. struct tcp_sock *tp = tcp_sk(sk);
  1027. if (!tp->sacked_out || tcp_is_reno(tp))
  1028. return;
  1029. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  1030. tp->fackets_out -= decr;
  1031. }
  1032. /* Pcount in the middle of the write queue got changed, we need to do various
  1033. * tweaks to fix counters
  1034. */
  1035. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1036. {
  1037. struct tcp_sock *tp = tcp_sk(sk);
  1038. tp->packets_out -= decr;
  1039. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1040. tp->sacked_out -= decr;
  1041. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1042. tp->retrans_out -= decr;
  1043. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1044. tp->lost_out -= decr;
  1045. /* Reno case is special. Sigh... */
  1046. if (tcp_is_reno(tp) && decr > 0)
  1047. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1048. tcp_adjust_fackets_out(sk, skb, decr);
  1049. if (tp->lost_skb_hint &&
  1050. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1051. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  1052. tp->lost_cnt_hint -= decr;
  1053. tcp_verify_left_out(tp);
  1054. }
  1055. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1056. {
  1057. return TCP_SKB_CB(skb)->txstamp_ack ||
  1058. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1059. }
  1060. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1061. {
  1062. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1063. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1064. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1065. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1066. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1067. shinfo->tx_flags &= ~tsflags;
  1068. shinfo2->tx_flags |= tsflags;
  1069. swap(shinfo->tskey, shinfo2->tskey);
  1070. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1071. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1072. }
  1073. }
  1074. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1075. {
  1076. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1077. TCP_SKB_CB(skb)->eor = 0;
  1078. }
  1079. /* Insert buff after skb on the write or rtx queue of sk. */
  1080. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1081. struct sk_buff *buff,
  1082. struct sock *sk,
  1083. enum tcp_queue tcp_queue)
  1084. {
  1085. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1086. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1087. else
  1088. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1089. }
  1090. /* Function to create two new TCP segments. Shrinks the given segment
  1091. * to the specified size and appends a new segment with the rest of the
  1092. * packet to the list. This won't be called frequently, I hope.
  1093. * Remember, these are still headerless SKBs at this point.
  1094. */
  1095. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1096. struct sk_buff *skb, u32 len,
  1097. unsigned int mss_now, gfp_t gfp)
  1098. {
  1099. struct tcp_sock *tp = tcp_sk(sk);
  1100. struct sk_buff *buff;
  1101. int nsize, old_factor;
  1102. int nlen;
  1103. u8 flags;
  1104. if (WARN_ON(len > skb->len))
  1105. return -EINVAL;
  1106. nsize = skb_headlen(skb) - len;
  1107. if (nsize < 0)
  1108. nsize = 0;
  1109. if (skb_unclone(skb, gfp))
  1110. return -ENOMEM;
  1111. /* Get a new skb... force flag on. */
  1112. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1113. if (!buff)
  1114. return -ENOMEM; /* We'll just try again later. */
  1115. sk->sk_wmem_queued += buff->truesize;
  1116. sk_mem_charge(sk, buff->truesize);
  1117. nlen = skb->len - len - nsize;
  1118. buff->truesize += nlen;
  1119. skb->truesize -= nlen;
  1120. /* Correct the sequence numbers. */
  1121. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1122. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1123. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1124. /* PSH and FIN should only be set in the second packet. */
  1125. flags = TCP_SKB_CB(skb)->tcp_flags;
  1126. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1127. TCP_SKB_CB(buff)->tcp_flags = flags;
  1128. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1129. tcp_skb_fragment_eor(skb, buff);
  1130. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1131. /* Copy and checksum data tail into the new buffer. */
  1132. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1133. skb_put(buff, nsize),
  1134. nsize, 0);
  1135. skb_trim(skb, len);
  1136. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1137. } else {
  1138. skb->ip_summed = CHECKSUM_PARTIAL;
  1139. skb_split(skb, buff, len);
  1140. }
  1141. buff->ip_summed = skb->ip_summed;
  1142. buff->tstamp = skb->tstamp;
  1143. tcp_fragment_tstamp(skb, buff);
  1144. old_factor = tcp_skb_pcount(skb);
  1145. /* Fix up tso_factor for both original and new SKB. */
  1146. tcp_set_skb_tso_segs(skb, mss_now);
  1147. tcp_set_skb_tso_segs(buff, mss_now);
  1148. /* Update delivered info for the new segment */
  1149. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1150. /* If this packet has been sent out already, we must
  1151. * adjust the various packet counters.
  1152. */
  1153. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1154. int diff = old_factor - tcp_skb_pcount(skb) -
  1155. tcp_skb_pcount(buff);
  1156. if (diff)
  1157. tcp_adjust_pcount(sk, skb, diff);
  1158. }
  1159. /* Link BUFF into the send queue. */
  1160. __skb_header_release(buff);
  1161. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1162. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1163. return 0;
  1164. }
  1165. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1166. * data is not copied, but immediately discarded.
  1167. */
  1168. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1169. {
  1170. struct skb_shared_info *shinfo;
  1171. int i, k, eat;
  1172. eat = min_t(int, len, skb_headlen(skb));
  1173. if (eat) {
  1174. __skb_pull(skb, eat);
  1175. len -= eat;
  1176. if (!len)
  1177. return 0;
  1178. }
  1179. eat = len;
  1180. k = 0;
  1181. shinfo = skb_shinfo(skb);
  1182. for (i = 0; i < shinfo->nr_frags; i++) {
  1183. int size = skb_frag_size(&shinfo->frags[i]);
  1184. if (size <= eat) {
  1185. skb_frag_unref(skb, i);
  1186. eat -= size;
  1187. } else {
  1188. shinfo->frags[k] = shinfo->frags[i];
  1189. if (eat) {
  1190. shinfo->frags[k].page_offset += eat;
  1191. skb_frag_size_sub(&shinfo->frags[k], eat);
  1192. eat = 0;
  1193. }
  1194. k++;
  1195. }
  1196. }
  1197. shinfo->nr_frags = k;
  1198. skb->data_len -= len;
  1199. skb->len = skb->data_len;
  1200. return len;
  1201. }
  1202. /* Remove acked data from a packet in the transmit queue. */
  1203. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1204. {
  1205. u32 delta_truesize;
  1206. if (skb_unclone(skb, GFP_ATOMIC))
  1207. return -ENOMEM;
  1208. delta_truesize = __pskb_trim_head(skb, len);
  1209. TCP_SKB_CB(skb)->seq += len;
  1210. skb->ip_summed = CHECKSUM_PARTIAL;
  1211. if (delta_truesize) {
  1212. skb->truesize -= delta_truesize;
  1213. sk->sk_wmem_queued -= delta_truesize;
  1214. sk_mem_uncharge(sk, delta_truesize);
  1215. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1216. }
  1217. /* Any change of skb->len requires recalculation of tso factor. */
  1218. if (tcp_skb_pcount(skb) > 1)
  1219. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1220. return 0;
  1221. }
  1222. /* Calculate MSS not accounting any TCP options. */
  1223. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1224. {
  1225. const struct tcp_sock *tp = tcp_sk(sk);
  1226. const struct inet_connection_sock *icsk = inet_csk(sk);
  1227. int mss_now;
  1228. /* Calculate base mss without TCP options:
  1229. It is MMS_S - sizeof(tcphdr) of rfc1122
  1230. */
  1231. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1232. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1233. if (icsk->icsk_af_ops->net_frag_header_len) {
  1234. const struct dst_entry *dst = __sk_dst_get(sk);
  1235. if (dst && dst_allfrag(dst))
  1236. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1237. }
  1238. /* Clamp it (mss_clamp does not include tcp options) */
  1239. if (mss_now > tp->rx_opt.mss_clamp)
  1240. mss_now = tp->rx_opt.mss_clamp;
  1241. /* Now subtract optional transport overhead */
  1242. mss_now -= icsk->icsk_ext_hdr_len;
  1243. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1244. if (mss_now < 48)
  1245. mss_now = 48;
  1246. return mss_now;
  1247. }
  1248. /* Calculate MSS. Not accounting for SACKs here. */
  1249. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1250. {
  1251. /* Subtract TCP options size, not including SACKs */
  1252. return __tcp_mtu_to_mss(sk, pmtu) -
  1253. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1254. }
  1255. /* Inverse of above */
  1256. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1257. {
  1258. const struct tcp_sock *tp = tcp_sk(sk);
  1259. const struct inet_connection_sock *icsk = inet_csk(sk);
  1260. int mtu;
  1261. mtu = mss +
  1262. tp->tcp_header_len +
  1263. icsk->icsk_ext_hdr_len +
  1264. icsk->icsk_af_ops->net_header_len;
  1265. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1266. if (icsk->icsk_af_ops->net_frag_header_len) {
  1267. const struct dst_entry *dst = __sk_dst_get(sk);
  1268. if (dst && dst_allfrag(dst))
  1269. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1270. }
  1271. return mtu;
  1272. }
  1273. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1274. /* MTU probing init per socket */
  1275. void tcp_mtup_init(struct sock *sk)
  1276. {
  1277. struct tcp_sock *tp = tcp_sk(sk);
  1278. struct inet_connection_sock *icsk = inet_csk(sk);
  1279. struct net *net = sock_net(sk);
  1280. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1281. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1282. icsk->icsk_af_ops->net_header_len;
  1283. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1284. icsk->icsk_mtup.probe_size = 0;
  1285. if (icsk->icsk_mtup.enabled)
  1286. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1287. }
  1288. EXPORT_SYMBOL(tcp_mtup_init);
  1289. /* This function synchronize snd mss to current pmtu/exthdr set.
  1290. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1291. for TCP options, but includes only bare TCP header.
  1292. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1293. It is minimum of user_mss and mss received with SYN.
  1294. It also does not include TCP options.
  1295. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1296. tp->mss_cache is current effective sending mss, including
  1297. all tcp options except for SACKs. It is evaluated,
  1298. taking into account current pmtu, but never exceeds
  1299. tp->rx_opt.mss_clamp.
  1300. NOTE1. rfc1122 clearly states that advertised MSS
  1301. DOES NOT include either tcp or ip options.
  1302. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1303. are READ ONLY outside this function. --ANK (980731)
  1304. */
  1305. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1306. {
  1307. struct tcp_sock *tp = tcp_sk(sk);
  1308. struct inet_connection_sock *icsk = inet_csk(sk);
  1309. int mss_now;
  1310. if (icsk->icsk_mtup.search_high > pmtu)
  1311. icsk->icsk_mtup.search_high = pmtu;
  1312. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1313. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1314. /* And store cached results */
  1315. icsk->icsk_pmtu_cookie = pmtu;
  1316. if (icsk->icsk_mtup.enabled)
  1317. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1318. tp->mss_cache = mss_now;
  1319. return mss_now;
  1320. }
  1321. EXPORT_SYMBOL(tcp_sync_mss);
  1322. /* Compute the current effective MSS, taking SACKs and IP options,
  1323. * and even PMTU discovery events into account.
  1324. */
  1325. unsigned int tcp_current_mss(struct sock *sk)
  1326. {
  1327. const struct tcp_sock *tp = tcp_sk(sk);
  1328. const struct dst_entry *dst = __sk_dst_get(sk);
  1329. u32 mss_now;
  1330. unsigned int header_len;
  1331. struct tcp_out_options opts;
  1332. struct tcp_md5sig_key *md5;
  1333. mss_now = tp->mss_cache;
  1334. if (dst) {
  1335. u32 mtu = dst_mtu(dst);
  1336. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1337. mss_now = tcp_sync_mss(sk, mtu);
  1338. }
  1339. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1340. sizeof(struct tcphdr);
  1341. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1342. * some common options. If this is an odd packet (because we have SACK
  1343. * blocks etc) then our calculated header_len will be different, and
  1344. * we have to adjust mss_now correspondingly */
  1345. if (header_len != tp->tcp_header_len) {
  1346. int delta = (int) header_len - tp->tcp_header_len;
  1347. mss_now -= delta;
  1348. }
  1349. return mss_now;
  1350. }
  1351. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1352. * As additional protections, we do not touch cwnd in retransmission phases,
  1353. * and if application hit its sndbuf limit recently.
  1354. */
  1355. static void tcp_cwnd_application_limited(struct sock *sk)
  1356. {
  1357. struct tcp_sock *tp = tcp_sk(sk);
  1358. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1359. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1360. /* Limited by application or receiver window. */
  1361. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1362. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1363. if (win_used < tp->snd_cwnd) {
  1364. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1365. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1366. }
  1367. tp->snd_cwnd_used = 0;
  1368. }
  1369. tp->snd_cwnd_stamp = tcp_jiffies32;
  1370. }
  1371. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1372. {
  1373. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1374. struct tcp_sock *tp = tcp_sk(sk);
  1375. /* Track the maximum number of outstanding packets in each
  1376. * window, and remember whether we were cwnd-limited then.
  1377. */
  1378. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1379. tp->packets_out > tp->max_packets_out) {
  1380. tp->max_packets_out = tp->packets_out;
  1381. tp->max_packets_seq = tp->snd_nxt;
  1382. tp->is_cwnd_limited = is_cwnd_limited;
  1383. }
  1384. if (tcp_is_cwnd_limited(sk)) {
  1385. /* Network is feed fully. */
  1386. tp->snd_cwnd_used = 0;
  1387. tp->snd_cwnd_stamp = tcp_jiffies32;
  1388. } else {
  1389. /* Network starves. */
  1390. if (tp->packets_out > tp->snd_cwnd_used)
  1391. tp->snd_cwnd_used = tp->packets_out;
  1392. if (sysctl_tcp_slow_start_after_idle &&
  1393. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1394. !ca_ops->cong_control)
  1395. tcp_cwnd_application_limited(sk);
  1396. /* The following conditions together indicate the starvation
  1397. * is caused by insufficient sender buffer:
  1398. * 1) just sent some data (see tcp_write_xmit)
  1399. * 2) not cwnd limited (this else condition)
  1400. * 3) no more data to send (tcp_write_queue_empty())
  1401. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1402. */
  1403. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1404. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1405. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1406. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1407. }
  1408. }
  1409. /* Minshall's variant of the Nagle send check. */
  1410. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1411. {
  1412. return after(tp->snd_sml, tp->snd_una) &&
  1413. !after(tp->snd_sml, tp->snd_nxt);
  1414. }
  1415. /* Update snd_sml if this skb is under mss
  1416. * Note that a TSO packet might end with a sub-mss segment
  1417. * The test is really :
  1418. * if ((skb->len % mss) != 0)
  1419. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1420. * But we can avoid doing the divide again given we already have
  1421. * skb_pcount = skb->len / mss_now
  1422. */
  1423. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1424. const struct sk_buff *skb)
  1425. {
  1426. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1427. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1428. }
  1429. /* Return false, if packet can be sent now without violation Nagle's rules:
  1430. * 1. It is full sized. (provided by caller in %partial bool)
  1431. * 2. Or it contains FIN. (already checked by caller)
  1432. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1433. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1434. * With Minshall's modification: all sent small packets are ACKed.
  1435. */
  1436. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1437. int nonagle)
  1438. {
  1439. return partial &&
  1440. ((nonagle & TCP_NAGLE_CORK) ||
  1441. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1442. }
  1443. /* Return how many segs we'd like on a TSO packet,
  1444. * to send one TSO packet per ms
  1445. */
  1446. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1447. int min_tso_segs)
  1448. {
  1449. u32 bytes, segs;
  1450. bytes = min(sk->sk_pacing_rate >> 10,
  1451. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1452. /* Goal is to send at least one packet per ms,
  1453. * not one big TSO packet every 100 ms.
  1454. * This preserves ACK clocking and is consistent
  1455. * with tcp_tso_should_defer() heuristic.
  1456. */
  1457. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1458. return min_t(u32, segs, sk->sk_gso_max_segs);
  1459. }
  1460. EXPORT_SYMBOL(tcp_tso_autosize);
  1461. /* Return the number of segments we want in the skb we are transmitting.
  1462. * See if congestion control module wants to decide; otherwise, autosize.
  1463. */
  1464. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1465. {
  1466. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1467. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1468. return tso_segs ? :
  1469. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1470. }
  1471. /* Returns the portion of skb which can be sent right away */
  1472. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1473. const struct sk_buff *skb,
  1474. unsigned int mss_now,
  1475. unsigned int max_segs,
  1476. int nonagle)
  1477. {
  1478. const struct tcp_sock *tp = tcp_sk(sk);
  1479. u32 partial, needed, window, max_len;
  1480. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1481. max_len = mss_now * max_segs;
  1482. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1483. return max_len;
  1484. needed = min(skb->len, window);
  1485. if (max_len <= needed)
  1486. return max_len;
  1487. partial = needed % mss_now;
  1488. /* If last segment is not a full MSS, check if Nagle rules allow us
  1489. * to include this last segment in this skb.
  1490. * Otherwise, we'll split the skb at last MSS boundary
  1491. */
  1492. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1493. return needed - partial;
  1494. return needed;
  1495. }
  1496. /* Can at least one segment of SKB be sent right now, according to the
  1497. * congestion window rules? If so, return how many segments are allowed.
  1498. */
  1499. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1500. const struct sk_buff *skb)
  1501. {
  1502. u32 in_flight, cwnd, halfcwnd;
  1503. /* Don't be strict about the congestion window for the final FIN. */
  1504. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1505. tcp_skb_pcount(skb) == 1)
  1506. return 1;
  1507. in_flight = tcp_packets_in_flight(tp);
  1508. cwnd = tp->snd_cwnd;
  1509. if (in_flight >= cwnd)
  1510. return 0;
  1511. /* For better scheduling, ensure we have at least
  1512. * 2 GSO packets in flight.
  1513. */
  1514. halfcwnd = max(cwnd >> 1, 1U);
  1515. return min(halfcwnd, cwnd - in_flight);
  1516. }
  1517. /* Initialize TSO state of a skb.
  1518. * This must be invoked the first time we consider transmitting
  1519. * SKB onto the wire.
  1520. */
  1521. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1522. {
  1523. int tso_segs = tcp_skb_pcount(skb);
  1524. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1525. tcp_set_skb_tso_segs(skb, mss_now);
  1526. tso_segs = tcp_skb_pcount(skb);
  1527. }
  1528. return tso_segs;
  1529. }
  1530. /* Return true if the Nagle test allows this packet to be
  1531. * sent now.
  1532. */
  1533. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1534. unsigned int cur_mss, int nonagle)
  1535. {
  1536. /* Nagle rule does not apply to frames, which sit in the middle of the
  1537. * write_queue (they have no chances to get new data).
  1538. *
  1539. * This is implemented in the callers, where they modify the 'nonagle'
  1540. * argument based upon the location of SKB in the send queue.
  1541. */
  1542. if (nonagle & TCP_NAGLE_PUSH)
  1543. return true;
  1544. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1545. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1546. return true;
  1547. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1548. return true;
  1549. return false;
  1550. }
  1551. /* Does at least the first segment of SKB fit into the send window? */
  1552. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1553. const struct sk_buff *skb,
  1554. unsigned int cur_mss)
  1555. {
  1556. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1557. if (skb->len > cur_mss)
  1558. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1559. return !after(end_seq, tcp_wnd_end(tp));
  1560. }
  1561. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1562. * which is put after SKB on the list. It is very much like
  1563. * tcp_fragment() except that it may make several kinds of assumptions
  1564. * in order to speed up the splitting operation. In particular, we
  1565. * know that all the data is in scatter-gather pages, and that the
  1566. * packet has never been sent out before (and thus is not cloned).
  1567. */
  1568. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1569. struct sk_buff *skb, unsigned int len,
  1570. unsigned int mss_now, gfp_t gfp)
  1571. {
  1572. struct sk_buff *buff;
  1573. int nlen = skb->len - len;
  1574. u8 flags;
  1575. /* All of a TSO frame must be composed of paged data. */
  1576. if (skb->len != skb->data_len)
  1577. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1578. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1579. if (unlikely(!buff))
  1580. return -ENOMEM;
  1581. sk->sk_wmem_queued += buff->truesize;
  1582. sk_mem_charge(sk, buff->truesize);
  1583. buff->truesize += nlen;
  1584. skb->truesize -= nlen;
  1585. /* Correct the sequence numbers. */
  1586. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1587. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1588. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1589. /* PSH and FIN should only be set in the second packet. */
  1590. flags = TCP_SKB_CB(skb)->tcp_flags;
  1591. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1592. TCP_SKB_CB(buff)->tcp_flags = flags;
  1593. /* This packet was never sent out yet, so no SACK bits. */
  1594. TCP_SKB_CB(buff)->sacked = 0;
  1595. tcp_skb_fragment_eor(skb, buff);
  1596. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1597. skb_split(skb, buff, len);
  1598. tcp_fragment_tstamp(skb, buff);
  1599. /* Fix up tso_factor for both original and new SKB. */
  1600. tcp_set_skb_tso_segs(skb, mss_now);
  1601. tcp_set_skb_tso_segs(buff, mss_now);
  1602. /* Link BUFF into the send queue. */
  1603. __skb_header_release(buff);
  1604. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1605. return 0;
  1606. }
  1607. /* Try to defer sending, if possible, in order to minimize the amount
  1608. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1609. *
  1610. * This algorithm is from John Heffner.
  1611. */
  1612. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1613. bool *is_cwnd_limited, u32 max_segs)
  1614. {
  1615. const struct inet_connection_sock *icsk = inet_csk(sk);
  1616. u32 age, send_win, cong_win, limit, in_flight;
  1617. struct tcp_sock *tp = tcp_sk(sk);
  1618. struct sk_buff *head;
  1619. int win_divisor;
  1620. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1621. goto send_now;
  1622. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1623. goto send_now;
  1624. /* Avoid bursty behavior by allowing defer
  1625. * only if the last write was recent.
  1626. */
  1627. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1628. goto send_now;
  1629. in_flight = tcp_packets_in_flight(tp);
  1630. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1631. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1632. /* From in_flight test above, we know that cwnd > in_flight. */
  1633. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1634. limit = min(send_win, cong_win);
  1635. /* If a full-sized TSO skb can be sent, do it. */
  1636. if (limit >= max_segs * tp->mss_cache)
  1637. goto send_now;
  1638. /* Middle in queue won't get any more data, full sendable already? */
  1639. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1640. goto send_now;
  1641. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1642. if (win_divisor) {
  1643. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1644. /* If at least some fraction of a window is available,
  1645. * just use it.
  1646. */
  1647. chunk /= win_divisor;
  1648. if (limit >= chunk)
  1649. goto send_now;
  1650. } else {
  1651. /* Different approach, try not to defer past a single
  1652. * ACK. Receiver should ACK every other full sized
  1653. * frame, so if we have space for more than 3 frames
  1654. * then send now.
  1655. */
  1656. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1657. goto send_now;
  1658. }
  1659. /* TODO : use tsorted_sent_queue ? */
  1660. head = tcp_rtx_queue_head(sk);
  1661. if (!head)
  1662. goto send_now;
  1663. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1664. /* If next ACK is likely to come too late (half srtt), do not defer */
  1665. if (age < (tp->srtt_us >> 4))
  1666. goto send_now;
  1667. /* Ok, it looks like it is advisable to defer. */
  1668. if (cong_win < send_win && cong_win <= skb->len)
  1669. *is_cwnd_limited = true;
  1670. return true;
  1671. send_now:
  1672. return false;
  1673. }
  1674. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1675. {
  1676. struct inet_connection_sock *icsk = inet_csk(sk);
  1677. struct tcp_sock *tp = tcp_sk(sk);
  1678. struct net *net = sock_net(sk);
  1679. u32 interval;
  1680. s32 delta;
  1681. interval = net->ipv4.sysctl_tcp_probe_interval;
  1682. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1683. if (unlikely(delta >= interval * HZ)) {
  1684. int mss = tcp_current_mss(sk);
  1685. /* Update current search range */
  1686. icsk->icsk_mtup.probe_size = 0;
  1687. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1688. sizeof(struct tcphdr) +
  1689. icsk->icsk_af_ops->net_header_len;
  1690. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1691. /* Update probe time stamp */
  1692. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1693. }
  1694. }
  1695. /* Create a new MTU probe if we are ready.
  1696. * MTU probe is regularly attempting to increase the path MTU by
  1697. * deliberately sending larger packets. This discovers routing
  1698. * changes resulting in larger path MTUs.
  1699. *
  1700. * Returns 0 if we should wait to probe (no cwnd available),
  1701. * 1 if a probe was sent,
  1702. * -1 otherwise
  1703. */
  1704. static int tcp_mtu_probe(struct sock *sk)
  1705. {
  1706. struct inet_connection_sock *icsk = inet_csk(sk);
  1707. struct tcp_sock *tp = tcp_sk(sk);
  1708. struct sk_buff *skb, *nskb, *next;
  1709. struct net *net = sock_net(sk);
  1710. int probe_size;
  1711. int size_needed;
  1712. int copy, len;
  1713. int mss_now;
  1714. int interval;
  1715. /* Not currently probing/verifying,
  1716. * not in recovery,
  1717. * have enough cwnd, and
  1718. * not SACKing (the variable headers throw things off)
  1719. */
  1720. if (likely(!icsk->icsk_mtup.enabled ||
  1721. icsk->icsk_mtup.probe_size ||
  1722. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1723. tp->snd_cwnd < 11 ||
  1724. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1725. return -1;
  1726. /* Use binary search for probe_size between tcp_mss_base,
  1727. * and current mss_clamp. if (search_high - search_low)
  1728. * smaller than a threshold, backoff from probing.
  1729. */
  1730. mss_now = tcp_current_mss(sk);
  1731. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1732. icsk->icsk_mtup.search_low) >> 1);
  1733. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1734. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1735. /* When misfortune happens, we are reprobing actively,
  1736. * and then reprobe timer has expired. We stick with current
  1737. * probing process by not resetting search range to its orignal.
  1738. */
  1739. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1740. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1741. /* Check whether enough time has elaplased for
  1742. * another round of probing.
  1743. */
  1744. tcp_mtu_check_reprobe(sk);
  1745. return -1;
  1746. }
  1747. /* Have enough data in the send queue to probe? */
  1748. if (tp->write_seq - tp->snd_nxt < size_needed)
  1749. return -1;
  1750. if (tp->snd_wnd < size_needed)
  1751. return -1;
  1752. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1753. return 0;
  1754. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1755. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1756. if (!tcp_packets_in_flight(tp))
  1757. return -1;
  1758. else
  1759. return 0;
  1760. }
  1761. /* We're allowed to probe. Build it now. */
  1762. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1763. if (!nskb)
  1764. return -1;
  1765. sk->sk_wmem_queued += nskb->truesize;
  1766. sk_mem_charge(sk, nskb->truesize);
  1767. skb = tcp_send_head(sk);
  1768. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1769. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1770. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1771. TCP_SKB_CB(nskb)->sacked = 0;
  1772. nskb->csum = 0;
  1773. nskb->ip_summed = skb->ip_summed;
  1774. tcp_insert_write_queue_before(nskb, skb, sk);
  1775. len = 0;
  1776. tcp_for_write_queue_from_safe(skb, next, sk) {
  1777. copy = min_t(int, skb->len, probe_size - len);
  1778. if (nskb->ip_summed) {
  1779. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1780. } else {
  1781. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1782. skb_put(nskb, copy),
  1783. copy, 0);
  1784. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1785. }
  1786. if (skb->len <= copy) {
  1787. /* We've eaten all the data from this skb.
  1788. * Throw it away. */
  1789. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1790. tcp_unlink_write_queue(skb, sk);
  1791. sk_wmem_free_skb(sk, skb);
  1792. } else {
  1793. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1794. ~(TCPHDR_FIN|TCPHDR_PSH);
  1795. if (!skb_shinfo(skb)->nr_frags) {
  1796. skb_pull(skb, copy);
  1797. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1798. skb->csum = csum_partial(skb->data,
  1799. skb->len, 0);
  1800. } else {
  1801. __pskb_trim_head(skb, copy);
  1802. tcp_set_skb_tso_segs(skb, mss_now);
  1803. }
  1804. TCP_SKB_CB(skb)->seq += copy;
  1805. }
  1806. len += copy;
  1807. if (len >= probe_size)
  1808. break;
  1809. }
  1810. tcp_init_tso_segs(nskb, nskb->len);
  1811. /* We're ready to send. If this fails, the probe will
  1812. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1813. */
  1814. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1815. /* Decrement cwnd here because we are sending
  1816. * effectively two packets. */
  1817. tp->snd_cwnd--;
  1818. tcp_event_new_data_sent(sk, nskb);
  1819. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1820. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1821. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1822. return 1;
  1823. }
  1824. return -1;
  1825. }
  1826. static bool tcp_pacing_check(const struct sock *sk)
  1827. {
  1828. return tcp_needs_internal_pacing(sk) &&
  1829. hrtimer_active(&tcp_sk(sk)->pacing_timer);
  1830. }
  1831. /* TCP Small Queues :
  1832. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1833. * (These limits are doubled for retransmits)
  1834. * This allows for :
  1835. * - better RTT estimation and ACK scheduling
  1836. * - faster recovery
  1837. * - high rates
  1838. * Alas, some drivers / subsystems require a fair amount
  1839. * of queued bytes to ensure line rate.
  1840. * One example is wifi aggregation (802.11 AMPDU)
  1841. */
  1842. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1843. unsigned int factor)
  1844. {
  1845. unsigned int limit;
  1846. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1847. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1848. limit <<= factor;
  1849. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1850. /* Always send skb if rtx queue is empty.
  1851. * No need to wait for TX completion to call us back,
  1852. * after softirq/tasklet schedule.
  1853. * This helps when TX completions are delayed too much.
  1854. */
  1855. if (tcp_rtx_queue_empty(sk))
  1856. return false;
  1857. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1858. /* It is possible TX completion already happened
  1859. * before we set TSQ_THROTTLED, so we must
  1860. * test again the condition.
  1861. */
  1862. smp_mb__after_atomic();
  1863. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1864. return true;
  1865. }
  1866. return false;
  1867. }
  1868. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1869. {
  1870. const u32 now = tcp_jiffies32;
  1871. enum tcp_chrono old = tp->chrono_type;
  1872. if (old > TCP_CHRONO_UNSPEC)
  1873. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1874. tp->chrono_start = now;
  1875. tp->chrono_type = new;
  1876. }
  1877. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1878. {
  1879. struct tcp_sock *tp = tcp_sk(sk);
  1880. /* If there are multiple conditions worthy of tracking in a
  1881. * chronograph then the highest priority enum takes precedence
  1882. * over the other conditions. So that if something "more interesting"
  1883. * starts happening, stop the previous chrono and start a new one.
  1884. */
  1885. if (type > tp->chrono_type)
  1886. tcp_chrono_set(tp, type);
  1887. }
  1888. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1889. {
  1890. struct tcp_sock *tp = tcp_sk(sk);
  1891. /* There are multiple conditions worthy of tracking in a
  1892. * chronograph, so that the highest priority enum takes
  1893. * precedence over the other conditions (see tcp_chrono_start).
  1894. * If a condition stops, we only stop chrono tracking if
  1895. * it's the "most interesting" or current chrono we are
  1896. * tracking and starts busy chrono if we have pending data.
  1897. */
  1898. if (tcp_rtx_and_write_queues_empty(sk))
  1899. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1900. else if (type == tp->chrono_type)
  1901. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1902. }
  1903. /* This routine writes packets to the network. It advances the
  1904. * send_head. This happens as incoming acks open up the remote
  1905. * window for us.
  1906. *
  1907. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1908. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1909. * account rare use of URG, this is not a big flaw.
  1910. *
  1911. * Send at most one packet when push_one > 0. Temporarily ignore
  1912. * cwnd limit to force at most one packet out when push_one == 2.
  1913. * Returns true, if no segments are in flight and we have queued segments,
  1914. * but cannot send anything now because of SWS or another problem.
  1915. */
  1916. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1917. int push_one, gfp_t gfp)
  1918. {
  1919. struct tcp_sock *tp = tcp_sk(sk);
  1920. struct sk_buff *skb;
  1921. unsigned int tso_segs, sent_pkts;
  1922. int cwnd_quota;
  1923. int result;
  1924. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1925. u32 max_segs;
  1926. sent_pkts = 0;
  1927. if (!push_one) {
  1928. /* Do MTU probing. */
  1929. result = tcp_mtu_probe(sk);
  1930. if (!result) {
  1931. return false;
  1932. } else if (result > 0) {
  1933. sent_pkts = 1;
  1934. }
  1935. }
  1936. max_segs = tcp_tso_segs(sk, mss_now);
  1937. tcp_mstamp_refresh(tp);
  1938. while ((skb = tcp_send_head(sk))) {
  1939. unsigned int limit;
  1940. if (tcp_pacing_check(sk))
  1941. break;
  1942. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1943. BUG_ON(!tso_segs);
  1944. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1945. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1946. tcp_update_skb_after_send(tp, skb);
  1947. goto repair; /* Skip network transmission */
  1948. }
  1949. cwnd_quota = tcp_cwnd_test(tp, skb);
  1950. if (!cwnd_quota) {
  1951. if (push_one == 2)
  1952. /* Force out a loss probe pkt. */
  1953. cwnd_quota = 1;
  1954. else
  1955. break;
  1956. }
  1957. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1958. is_rwnd_limited = true;
  1959. break;
  1960. }
  1961. if (tso_segs == 1) {
  1962. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1963. (tcp_skb_is_last(sk, skb) ?
  1964. nonagle : TCP_NAGLE_PUSH))))
  1965. break;
  1966. } else {
  1967. if (!push_one &&
  1968. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1969. max_segs))
  1970. break;
  1971. }
  1972. limit = mss_now;
  1973. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1974. limit = tcp_mss_split_point(sk, skb, mss_now,
  1975. min_t(unsigned int,
  1976. cwnd_quota,
  1977. max_segs),
  1978. nonagle);
  1979. if (skb->len > limit &&
  1980. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  1981. skb, limit, mss_now, gfp)))
  1982. break;
  1983. if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  1984. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  1985. if (tcp_small_queue_check(sk, skb, 0))
  1986. break;
  1987. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1988. break;
  1989. repair:
  1990. /* Advance the send_head. This one is sent out.
  1991. * This call will increment packets_out.
  1992. */
  1993. tcp_event_new_data_sent(sk, skb);
  1994. tcp_minshall_update(tp, mss_now, skb);
  1995. sent_pkts += tcp_skb_pcount(skb);
  1996. if (push_one)
  1997. break;
  1998. }
  1999. if (is_rwnd_limited)
  2000. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2001. else
  2002. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2003. if (likely(sent_pkts)) {
  2004. if (tcp_in_cwnd_reduction(sk))
  2005. tp->prr_out += sent_pkts;
  2006. /* Send one loss probe per tail loss episode. */
  2007. if (push_one != 2)
  2008. tcp_schedule_loss_probe(sk);
  2009. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2010. tcp_cwnd_validate(sk, is_cwnd_limited);
  2011. return false;
  2012. }
  2013. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2014. }
  2015. bool tcp_schedule_loss_probe(struct sock *sk)
  2016. {
  2017. struct inet_connection_sock *icsk = inet_csk(sk);
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. u32 timeout, rto_delta_us;
  2020. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2021. * finishes.
  2022. */
  2023. if (tp->fastopen_rsk)
  2024. return false;
  2025. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2026. * in Open state, that are either limited by cwnd or application.
  2027. */
  2028. if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
  2029. !tp->packets_out || !tcp_is_sack(tp) ||
  2030. icsk->icsk_ca_state != TCP_CA_Open)
  2031. return false;
  2032. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  2033. !tcp_write_queue_empty(sk))
  2034. return false;
  2035. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2036. * for delayed ack when there's one outstanding packet. If no RTT
  2037. * sample is available then probe after TCP_TIMEOUT_INIT.
  2038. */
  2039. if (tp->srtt_us) {
  2040. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2041. if (tp->packets_out == 1)
  2042. timeout += TCP_RTO_MIN;
  2043. else
  2044. timeout += TCP_TIMEOUT_MIN;
  2045. } else {
  2046. timeout = TCP_TIMEOUT_INIT;
  2047. }
  2048. /* If the RTO formula yields an earlier time, then use that time. */
  2049. rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2050. if (rto_delta_us > 0)
  2051. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2052. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2053. TCP_RTO_MAX);
  2054. return true;
  2055. }
  2056. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2057. * a packet is still in a qdisc or driver queue.
  2058. * In this case, there is very little point doing a retransmit !
  2059. */
  2060. static bool skb_still_in_host_queue(const struct sock *sk,
  2061. const struct sk_buff *skb)
  2062. {
  2063. if (unlikely(skb_fclone_busy(sk, skb))) {
  2064. NET_INC_STATS(sock_net(sk),
  2065. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2066. return true;
  2067. }
  2068. return false;
  2069. }
  2070. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2071. * retransmit the last segment.
  2072. */
  2073. void tcp_send_loss_probe(struct sock *sk)
  2074. {
  2075. struct tcp_sock *tp = tcp_sk(sk);
  2076. struct sk_buff *skb;
  2077. int pcount;
  2078. int mss = tcp_current_mss(sk);
  2079. skb = tcp_send_head(sk);
  2080. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2081. pcount = tp->packets_out;
  2082. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2083. if (tp->packets_out > pcount)
  2084. goto probe_sent;
  2085. goto rearm_timer;
  2086. }
  2087. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2088. /* At most one outstanding TLP retransmission. */
  2089. if (tp->tlp_high_seq)
  2090. goto rearm_timer;
  2091. /* Retransmit last segment. */
  2092. if (WARN_ON(!skb))
  2093. goto rearm_timer;
  2094. if (skb_still_in_host_queue(sk, skb))
  2095. goto rearm_timer;
  2096. pcount = tcp_skb_pcount(skb);
  2097. if (WARN_ON(!pcount))
  2098. goto rearm_timer;
  2099. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2100. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2101. (pcount - 1) * mss, mss,
  2102. GFP_ATOMIC)))
  2103. goto rearm_timer;
  2104. skb = skb_rb_next(skb);
  2105. }
  2106. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2107. goto rearm_timer;
  2108. if (__tcp_retransmit_skb(sk, skb, 1))
  2109. goto rearm_timer;
  2110. /* Record snd_nxt for loss detection. */
  2111. tp->tlp_high_seq = tp->snd_nxt;
  2112. probe_sent:
  2113. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2114. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2115. inet_csk(sk)->icsk_pending = 0;
  2116. rearm_timer:
  2117. tcp_rearm_rto(sk);
  2118. }
  2119. /* Push out any pending frames which were held back due to
  2120. * TCP_CORK or attempt at coalescing tiny packets.
  2121. * The socket must be locked by the caller.
  2122. */
  2123. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2124. int nonagle)
  2125. {
  2126. /* If we are closed, the bytes will have to remain here.
  2127. * In time closedown will finish, we empty the write queue and
  2128. * all will be happy.
  2129. */
  2130. if (unlikely(sk->sk_state == TCP_CLOSE))
  2131. return;
  2132. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2133. sk_gfp_mask(sk, GFP_ATOMIC)))
  2134. tcp_check_probe_timer(sk);
  2135. }
  2136. /* Send _single_ skb sitting at the send head. This function requires
  2137. * true push pending frames to setup probe timer etc.
  2138. */
  2139. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2140. {
  2141. struct sk_buff *skb = tcp_send_head(sk);
  2142. BUG_ON(!skb || skb->len < mss_now);
  2143. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2144. }
  2145. /* This function returns the amount that we can raise the
  2146. * usable window based on the following constraints
  2147. *
  2148. * 1. The window can never be shrunk once it is offered (RFC 793)
  2149. * 2. We limit memory per socket
  2150. *
  2151. * RFC 1122:
  2152. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2153. * RECV.NEXT + RCV.WIN fixed until:
  2154. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2155. *
  2156. * i.e. don't raise the right edge of the window until you can raise
  2157. * it at least MSS bytes.
  2158. *
  2159. * Unfortunately, the recommended algorithm breaks header prediction,
  2160. * since header prediction assumes th->window stays fixed.
  2161. *
  2162. * Strictly speaking, keeping th->window fixed violates the receiver
  2163. * side SWS prevention criteria. The problem is that under this rule
  2164. * a stream of single byte packets will cause the right side of the
  2165. * window to always advance by a single byte.
  2166. *
  2167. * Of course, if the sender implements sender side SWS prevention
  2168. * then this will not be a problem.
  2169. *
  2170. * BSD seems to make the following compromise:
  2171. *
  2172. * If the free space is less than the 1/4 of the maximum
  2173. * space available and the free space is less than 1/2 mss,
  2174. * then set the window to 0.
  2175. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2176. * Otherwise, just prevent the window from shrinking
  2177. * and from being larger than the largest representable value.
  2178. *
  2179. * This prevents incremental opening of the window in the regime
  2180. * where TCP is limited by the speed of the reader side taking
  2181. * data out of the TCP receive queue. It does nothing about
  2182. * those cases where the window is constrained on the sender side
  2183. * because the pipeline is full.
  2184. *
  2185. * BSD also seems to "accidentally" limit itself to windows that are a
  2186. * multiple of MSS, at least until the free space gets quite small.
  2187. * This would appear to be a side effect of the mbuf implementation.
  2188. * Combining these two algorithms results in the observed behavior
  2189. * of having a fixed window size at almost all times.
  2190. *
  2191. * Below we obtain similar behavior by forcing the offered window to
  2192. * a multiple of the mss when it is feasible to do so.
  2193. *
  2194. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2195. * Regular options like TIMESTAMP are taken into account.
  2196. */
  2197. u32 __tcp_select_window(struct sock *sk)
  2198. {
  2199. struct inet_connection_sock *icsk = inet_csk(sk);
  2200. struct tcp_sock *tp = tcp_sk(sk);
  2201. /* MSS for the peer's data. Previous versions used mss_clamp
  2202. * here. I don't know if the value based on our guesses
  2203. * of peer's MSS is better for the performance. It's more correct
  2204. * but may be worse for the performance because of rcv_mss
  2205. * fluctuations. --SAW 1998/11/1
  2206. */
  2207. int mss = icsk->icsk_ack.rcv_mss;
  2208. int free_space = tcp_space(sk);
  2209. int allowed_space = tcp_full_space(sk);
  2210. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2211. int window;
  2212. if (unlikely(mss > full_space)) {
  2213. mss = full_space;
  2214. if (mss <= 0)
  2215. return 0;
  2216. }
  2217. if (free_space < (full_space >> 1)) {
  2218. icsk->icsk_ack.quick = 0;
  2219. if (tcp_under_memory_pressure(sk))
  2220. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2221. 4U * tp->advmss);
  2222. /* free_space might become our new window, make sure we don't
  2223. * increase it due to wscale.
  2224. */
  2225. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2226. /* if free space is less than mss estimate, or is below 1/16th
  2227. * of the maximum allowed, try to move to zero-window, else
  2228. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2229. * new incoming data is dropped due to memory limits.
  2230. * With large window, mss test triggers way too late in order
  2231. * to announce zero window in time before rmem limit kicks in.
  2232. */
  2233. if (free_space < (allowed_space >> 4) || free_space < mss)
  2234. return 0;
  2235. }
  2236. if (free_space > tp->rcv_ssthresh)
  2237. free_space = tp->rcv_ssthresh;
  2238. /* Don't do rounding if we are using window scaling, since the
  2239. * scaled window will not line up with the MSS boundary anyway.
  2240. */
  2241. if (tp->rx_opt.rcv_wscale) {
  2242. window = free_space;
  2243. /* Advertise enough space so that it won't get scaled away.
  2244. * Import case: prevent zero window announcement if
  2245. * 1<<rcv_wscale > mss.
  2246. */
  2247. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2248. } else {
  2249. window = tp->rcv_wnd;
  2250. /* Get the largest window that is a nice multiple of mss.
  2251. * Window clamp already applied above.
  2252. * If our current window offering is within 1 mss of the
  2253. * free space we just keep it. This prevents the divide
  2254. * and multiply from happening most of the time.
  2255. * We also don't do any window rounding when the free space
  2256. * is too small.
  2257. */
  2258. if (window <= free_space - mss || window > free_space)
  2259. window = rounddown(free_space, mss);
  2260. else if (mss == full_space &&
  2261. free_space > window + (full_space >> 1))
  2262. window = free_space;
  2263. }
  2264. return window;
  2265. }
  2266. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2267. const struct sk_buff *next_skb)
  2268. {
  2269. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2270. const struct skb_shared_info *next_shinfo =
  2271. skb_shinfo(next_skb);
  2272. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2273. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2274. shinfo->tskey = next_shinfo->tskey;
  2275. TCP_SKB_CB(skb)->txstamp_ack |=
  2276. TCP_SKB_CB(next_skb)->txstamp_ack;
  2277. }
  2278. }
  2279. /* Collapses two adjacent SKB's during retransmission. */
  2280. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2281. {
  2282. struct tcp_sock *tp = tcp_sk(sk);
  2283. struct sk_buff *next_skb = skb_rb_next(skb);
  2284. int skb_size, next_skb_size;
  2285. skb_size = skb->len;
  2286. next_skb_size = next_skb->len;
  2287. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2288. if (next_skb_size) {
  2289. if (next_skb_size <= skb_availroom(skb))
  2290. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2291. next_skb_size);
  2292. else if (!skb_shift(skb, next_skb, next_skb_size))
  2293. return false;
  2294. }
  2295. tcp_highest_sack_combine(sk, next_skb, skb);
  2296. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2297. skb->ip_summed = CHECKSUM_PARTIAL;
  2298. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2299. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2300. /* Update sequence range on original skb. */
  2301. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2302. /* Merge over control information. This moves PSH/FIN etc. over */
  2303. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2304. /* All done, get rid of second SKB and account for it so
  2305. * packet counting does not break.
  2306. */
  2307. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2308. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2309. /* changed transmit queue under us so clear hints */
  2310. tcp_clear_retrans_hints_partial(tp);
  2311. if (next_skb == tp->retransmit_skb_hint)
  2312. tp->retransmit_skb_hint = skb;
  2313. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2314. tcp_skb_collapse_tstamp(skb, next_skb);
  2315. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2316. return true;
  2317. }
  2318. /* Check if coalescing SKBs is legal. */
  2319. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2320. {
  2321. if (tcp_skb_pcount(skb) > 1)
  2322. return false;
  2323. if (skb_cloned(skb))
  2324. return false;
  2325. /* Some heuristics for collapsing over SACK'd could be invented */
  2326. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2327. return false;
  2328. return true;
  2329. }
  2330. /* Collapse packets in the retransmit queue to make to create
  2331. * less packets on the wire. This is only done on retransmission.
  2332. */
  2333. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2334. int space)
  2335. {
  2336. struct tcp_sock *tp = tcp_sk(sk);
  2337. struct sk_buff *skb = to, *tmp;
  2338. bool first = true;
  2339. if (!sysctl_tcp_retrans_collapse)
  2340. return;
  2341. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2342. return;
  2343. skb_rbtree_walk_from_safe(skb, tmp) {
  2344. if (!tcp_can_collapse(sk, skb))
  2345. break;
  2346. if (!tcp_skb_can_collapse_to(to))
  2347. break;
  2348. space -= skb->len;
  2349. if (first) {
  2350. first = false;
  2351. continue;
  2352. }
  2353. if (space < 0)
  2354. break;
  2355. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2356. break;
  2357. if (!tcp_collapse_retrans(sk, to))
  2358. break;
  2359. }
  2360. }
  2361. /* This retransmits one SKB. Policy decisions and retransmit queue
  2362. * state updates are done by the caller. Returns non-zero if an
  2363. * error occurred which prevented the send.
  2364. */
  2365. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2366. {
  2367. struct inet_connection_sock *icsk = inet_csk(sk);
  2368. struct tcp_sock *tp = tcp_sk(sk);
  2369. unsigned int cur_mss;
  2370. int diff, len, err;
  2371. /* Inconclusive MTU probe */
  2372. if (icsk->icsk_mtup.probe_size)
  2373. icsk->icsk_mtup.probe_size = 0;
  2374. /* Do not sent more than we queued. 1/4 is reserved for possible
  2375. * copying overhead: fragmentation, tunneling, mangling etc.
  2376. */
  2377. if (refcount_read(&sk->sk_wmem_alloc) >
  2378. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2379. sk->sk_sndbuf))
  2380. return -EAGAIN;
  2381. if (skb_still_in_host_queue(sk, skb))
  2382. return -EBUSY;
  2383. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2384. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2385. BUG();
  2386. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2387. return -ENOMEM;
  2388. }
  2389. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2390. return -EHOSTUNREACH; /* Routing failure or similar. */
  2391. cur_mss = tcp_current_mss(sk);
  2392. /* If receiver has shrunk his window, and skb is out of
  2393. * new window, do not retransmit it. The exception is the
  2394. * case, when window is shrunk to zero. In this case
  2395. * our retransmit serves as a zero window probe.
  2396. */
  2397. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2398. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2399. return -EAGAIN;
  2400. len = cur_mss * segs;
  2401. if (skb->len > len) {
  2402. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2403. cur_mss, GFP_ATOMIC))
  2404. return -ENOMEM; /* We'll try again later. */
  2405. } else {
  2406. if (skb_unclone(skb, GFP_ATOMIC))
  2407. return -ENOMEM;
  2408. diff = tcp_skb_pcount(skb);
  2409. tcp_set_skb_tso_segs(skb, cur_mss);
  2410. diff -= tcp_skb_pcount(skb);
  2411. if (diff)
  2412. tcp_adjust_pcount(sk, skb, diff);
  2413. if (skb->len < cur_mss)
  2414. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2415. }
  2416. /* RFC3168, section 6.1.1.1. ECN fallback */
  2417. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2418. tcp_ecn_clear_syn(sk, skb);
  2419. /* Update global and local TCP statistics. */
  2420. segs = tcp_skb_pcount(skb);
  2421. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2422. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2423. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2424. tp->total_retrans += segs;
  2425. /* make sure skb->data is aligned on arches that require it
  2426. * and check if ack-trimming & collapsing extended the headroom
  2427. * beyond what csum_start can cover.
  2428. */
  2429. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2430. skb_headroom(skb) >= 0xFFFF)) {
  2431. struct sk_buff *nskb;
  2432. tcp_skb_tsorted_save(skb) {
  2433. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2434. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2435. -ENOBUFS;
  2436. } tcp_skb_tsorted_restore(skb);
  2437. if (!err)
  2438. tcp_update_skb_after_send(tp, skb);
  2439. } else {
  2440. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2441. }
  2442. if (likely(!err)) {
  2443. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2444. trace_tcp_retransmit_skb(sk, skb);
  2445. } else if (err != -EBUSY) {
  2446. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2447. }
  2448. return err;
  2449. }
  2450. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2451. {
  2452. struct tcp_sock *tp = tcp_sk(sk);
  2453. int err = __tcp_retransmit_skb(sk, skb, segs);
  2454. if (err == 0) {
  2455. #if FASTRETRANS_DEBUG > 0
  2456. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2457. net_dbg_ratelimited("retrans_out leaked\n");
  2458. }
  2459. #endif
  2460. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2461. tp->retrans_out += tcp_skb_pcount(skb);
  2462. /* Save stamp of the first retransmit. */
  2463. if (!tp->retrans_stamp)
  2464. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2465. }
  2466. if (tp->undo_retrans < 0)
  2467. tp->undo_retrans = 0;
  2468. tp->undo_retrans += tcp_skb_pcount(skb);
  2469. return err;
  2470. }
  2471. /* This gets called after a retransmit timeout, and the initially
  2472. * retransmitted data is acknowledged. It tries to continue
  2473. * resending the rest of the retransmit queue, until either
  2474. * we've sent it all or the congestion window limit is reached.
  2475. * If doing SACK, the first ACK which comes back for a timeout
  2476. * based retransmit packet might feed us FACK information again.
  2477. * If so, we use it to avoid unnecessarily retransmissions.
  2478. */
  2479. void tcp_xmit_retransmit_queue(struct sock *sk)
  2480. {
  2481. const struct inet_connection_sock *icsk = inet_csk(sk);
  2482. struct sk_buff *skb, *rtx_head = NULL, *hole = NULL;
  2483. struct tcp_sock *tp = tcp_sk(sk);
  2484. u32 max_segs;
  2485. int mib_idx;
  2486. if (!tp->packets_out)
  2487. return;
  2488. skb = tp->retransmit_skb_hint;
  2489. if (!skb) {
  2490. rtx_head = tcp_rtx_queue_head(sk);
  2491. skb = rtx_head;
  2492. }
  2493. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2494. skb_rbtree_walk_from(skb) {
  2495. __u8 sacked;
  2496. int segs;
  2497. if (tcp_pacing_check(sk))
  2498. break;
  2499. /* we could do better than to assign each time */
  2500. if (!hole)
  2501. tp->retransmit_skb_hint = skb;
  2502. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2503. if (segs <= 0)
  2504. return;
  2505. sacked = TCP_SKB_CB(skb)->sacked;
  2506. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2507. * we need to make sure not sending too bigs TSO packets
  2508. */
  2509. segs = min_t(int, segs, max_segs);
  2510. if (tp->retrans_out >= tp->lost_out) {
  2511. break;
  2512. } else if (!(sacked & TCPCB_LOST)) {
  2513. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2514. hole = skb;
  2515. continue;
  2516. } else {
  2517. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2518. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2519. else
  2520. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2521. }
  2522. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2523. continue;
  2524. if (tcp_small_queue_check(sk, skb, 1))
  2525. return;
  2526. if (tcp_retransmit_skb(sk, skb, segs))
  2527. return;
  2528. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2529. if (tcp_in_cwnd_reduction(sk))
  2530. tp->prr_out += tcp_skb_pcount(skb);
  2531. if (skb == rtx_head &&
  2532. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2533. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2534. inet_csk(sk)->icsk_rto,
  2535. TCP_RTO_MAX);
  2536. }
  2537. }
  2538. /* We allow to exceed memory limits for FIN packets to expedite
  2539. * connection tear down and (memory) recovery.
  2540. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2541. * or even be forced to close flow without any FIN.
  2542. * In general, we want to allow one skb per socket to avoid hangs
  2543. * with edge trigger epoll()
  2544. */
  2545. void sk_forced_mem_schedule(struct sock *sk, int size)
  2546. {
  2547. int amt;
  2548. if (size <= sk->sk_forward_alloc)
  2549. return;
  2550. amt = sk_mem_pages(size);
  2551. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2552. sk_memory_allocated_add(sk, amt);
  2553. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2554. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2555. }
  2556. /* Send a FIN. The caller locks the socket for us.
  2557. * We should try to send a FIN packet really hard, but eventually give up.
  2558. */
  2559. void tcp_send_fin(struct sock *sk)
  2560. {
  2561. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2562. struct tcp_sock *tp = tcp_sk(sk);
  2563. /* Optimization, tack on the FIN if we have one skb in write queue and
  2564. * this skb was not yet sent, or we are under memory pressure.
  2565. * Note: in the latter case, FIN packet will be sent after a timeout,
  2566. * as TCP stack thinks it has already been transmitted.
  2567. */
  2568. if (!tskb && tcp_under_memory_pressure(sk))
  2569. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2570. if (tskb) {
  2571. coalesce:
  2572. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2573. TCP_SKB_CB(tskb)->end_seq++;
  2574. tp->write_seq++;
  2575. if (tcp_write_queue_empty(sk)) {
  2576. /* This means tskb was already sent.
  2577. * Pretend we included the FIN on previous transmit.
  2578. * We need to set tp->snd_nxt to the value it would have
  2579. * if FIN had been sent. This is because retransmit path
  2580. * does not change tp->snd_nxt.
  2581. */
  2582. tp->snd_nxt++;
  2583. return;
  2584. }
  2585. } else {
  2586. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2587. if (unlikely(!skb)) {
  2588. if (tskb)
  2589. goto coalesce;
  2590. return;
  2591. }
  2592. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2593. skb_reserve(skb, MAX_TCP_HEADER);
  2594. sk_forced_mem_schedule(sk, skb->truesize);
  2595. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2596. tcp_init_nondata_skb(skb, tp->write_seq,
  2597. TCPHDR_ACK | TCPHDR_FIN);
  2598. tcp_queue_skb(sk, skb);
  2599. }
  2600. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2601. }
  2602. /* We get here when a process closes a file descriptor (either due to
  2603. * an explicit close() or as a byproduct of exit()'ing) and there
  2604. * was unread data in the receive queue. This behavior is recommended
  2605. * by RFC 2525, section 2.17. -DaveM
  2606. */
  2607. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2608. {
  2609. struct sk_buff *skb;
  2610. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2611. /* NOTE: No TCP options attached and we never retransmit this. */
  2612. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2613. if (!skb) {
  2614. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2615. return;
  2616. }
  2617. /* Reserve space for headers and prepare control bits. */
  2618. skb_reserve(skb, MAX_TCP_HEADER);
  2619. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2620. TCPHDR_ACK | TCPHDR_RST);
  2621. tcp_mstamp_refresh(tcp_sk(sk));
  2622. /* Send it off. */
  2623. if (tcp_transmit_skb(sk, skb, 0, priority))
  2624. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2625. }
  2626. /* Send a crossed SYN-ACK during socket establishment.
  2627. * WARNING: This routine must only be called when we have already sent
  2628. * a SYN packet that crossed the incoming SYN that caused this routine
  2629. * to get called. If this assumption fails then the initial rcv_wnd
  2630. * and rcv_wscale values will not be correct.
  2631. */
  2632. int tcp_send_synack(struct sock *sk)
  2633. {
  2634. struct sk_buff *skb;
  2635. skb = tcp_rtx_queue_head(sk);
  2636. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2637. pr_err("%s: wrong queue state\n", __func__);
  2638. return -EFAULT;
  2639. }
  2640. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2641. if (skb_cloned(skb)) {
  2642. struct sk_buff *nskb;
  2643. tcp_skb_tsorted_save(skb) {
  2644. nskb = skb_copy(skb, GFP_ATOMIC);
  2645. } tcp_skb_tsorted_restore(skb);
  2646. if (!nskb)
  2647. return -ENOMEM;
  2648. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2649. tcp_rtx_queue_unlink_and_free(skb, sk);
  2650. __skb_header_release(nskb);
  2651. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2652. sk->sk_wmem_queued += nskb->truesize;
  2653. sk_mem_charge(sk, nskb->truesize);
  2654. skb = nskb;
  2655. }
  2656. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2657. tcp_ecn_send_synack(sk, skb);
  2658. }
  2659. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2660. }
  2661. /**
  2662. * tcp_make_synack - Prepare a SYN-ACK.
  2663. * sk: listener socket
  2664. * dst: dst entry attached to the SYNACK
  2665. * req: request_sock pointer
  2666. *
  2667. * Allocate one skb and build a SYNACK packet.
  2668. * @dst is consumed : Caller should not use it again.
  2669. */
  2670. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2671. struct request_sock *req,
  2672. struct tcp_fastopen_cookie *foc,
  2673. enum tcp_synack_type synack_type)
  2674. {
  2675. struct inet_request_sock *ireq = inet_rsk(req);
  2676. const struct tcp_sock *tp = tcp_sk(sk);
  2677. struct tcp_md5sig_key *md5 = NULL;
  2678. struct tcp_out_options opts;
  2679. struct sk_buff *skb;
  2680. int tcp_header_size;
  2681. struct tcphdr *th;
  2682. int mss;
  2683. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2684. if (unlikely(!skb)) {
  2685. dst_release(dst);
  2686. return NULL;
  2687. }
  2688. /* Reserve space for headers. */
  2689. skb_reserve(skb, MAX_TCP_HEADER);
  2690. switch (synack_type) {
  2691. case TCP_SYNACK_NORMAL:
  2692. skb_set_owner_w(skb, req_to_sk(req));
  2693. break;
  2694. case TCP_SYNACK_COOKIE:
  2695. /* Under synflood, we do not attach skb to a socket,
  2696. * to avoid false sharing.
  2697. */
  2698. break;
  2699. case TCP_SYNACK_FASTOPEN:
  2700. /* sk is a const pointer, because we want to express multiple
  2701. * cpu might call us concurrently.
  2702. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2703. */
  2704. skb_set_owner_w(skb, (struct sock *)sk);
  2705. break;
  2706. }
  2707. skb_dst_set(skb, dst);
  2708. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2709. memset(&opts, 0, sizeof(opts));
  2710. #ifdef CONFIG_SYN_COOKIES
  2711. if (unlikely(req->cookie_ts))
  2712. skb->skb_mstamp = cookie_init_timestamp(req);
  2713. else
  2714. #endif
  2715. skb->skb_mstamp = tcp_clock_us();
  2716. #ifdef CONFIG_TCP_MD5SIG
  2717. rcu_read_lock();
  2718. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2719. #endif
  2720. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2721. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2722. sizeof(*th);
  2723. skb_push(skb, tcp_header_size);
  2724. skb_reset_transport_header(skb);
  2725. th = (struct tcphdr *)skb->data;
  2726. memset(th, 0, sizeof(struct tcphdr));
  2727. th->syn = 1;
  2728. th->ack = 1;
  2729. tcp_ecn_make_synack(req, th);
  2730. th->source = htons(ireq->ir_num);
  2731. th->dest = ireq->ir_rmt_port;
  2732. skb->mark = ireq->ir_mark;
  2733. /* Setting of flags are superfluous here for callers (and ECE is
  2734. * not even correctly set)
  2735. */
  2736. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2737. TCPHDR_SYN | TCPHDR_ACK);
  2738. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2739. /* XXX data is queued and acked as is. No buffer/window check */
  2740. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2741. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2742. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2743. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2744. th->doff = (tcp_header_size >> 2);
  2745. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2746. #ifdef CONFIG_TCP_MD5SIG
  2747. /* Okay, we have all we need - do the md5 hash if needed */
  2748. if (md5)
  2749. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2750. md5, req_to_sk(req), skb);
  2751. rcu_read_unlock();
  2752. #endif
  2753. /* Do not fool tcpdump (if any), clean our debris */
  2754. skb->tstamp = 0;
  2755. return skb;
  2756. }
  2757. EXPORT_SYMBOL(tcp_make_synack);
  2758. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2759. {
  2760. struct inet_connection_sock *icsk = inet_csk(sk);
  2761. const struct tcp_congestion_ops *ca;
  2762. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2763. if (ca_key == TCP_CA_UNSPEC)
  2764. return;
  2765. rcu_read_lock();
  2766. ca = tcp_ca_find_key(ca_key);
  2767. if (likely(ca && try_module_get(ca->owner))) {
  2768. module_put(icsk->icsk_ca_ops->owner);
  2769. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2770. icsk->icsk_ca_ops = ca;
  2771. }
  2772. rcu_read_unlock();
  2773. }
  2774. /* Do all connect socket setups that can be done AF independent. */
  2775. static void tcp_connect_init(struct sock *sk)
  2776. {
  2777. const struct dst_entry *dst = __sk_dst_get(sk);
  2778. struct tcp_sock *tp = tcp_sk(sk);
  2779. __u8 rcv_wscale;
  2780. u32 rcv_wnd;
  2781. /* We'll fix this up when we get a response from the other end.
  2782. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2783. */
  2784. tp->tcp_header_len = sizeof(struct tcphdr);
  2785. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2786. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2787. #ifdef CONFIG_TCP_MD5SIG
  2788. if (tp->af_specific->md5_lookup(sk, sk))
  2789. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2790. #endif
  2791. /* If user gave his TCP_MAXSEG, record it to clamp */
  2792. if (tp->rx_opt.user_mss)
  2793. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2794. tp->max_window = 0;
  2795. tcp_mtup_init(sk);
  2796. tcp_sync_mss(sk, dst_mtu(dst));
  2797. tcp_ca_dst_init(sk, dst);
  2798. if (!tp->window_clamp)
  2799. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2800. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2801. tcp_initialize_rcv_mss(sk);
  2802. /* limit the window selection if the user enforce a smaller rx buffer */
  2803. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2804. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2805. tp->window_clamp = tcp_full_space(sk);
  2806. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2807. if (rcv_wnd == 0)
  2808. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2809. tcp_select_initial_window(tcp_full_space(sk),
  2810. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2811. &tp->rcv_wnd,
  2812. &tp->window_clamp,
  2813. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2814. &rcv_wscale,
  2815. rcv_wnd);
  2816. tp->rx_opt.rcv_wscale = rcv_wscale;
  2817. tp->rcv_ssthresh = tp->rcv_wnd;
  2818. sk->sk_err = 0;
  2819. sock_reset_flag(sk, SOCK_DONE);
  2820. tp->snd_wnd = 0;
  2821. tcp_init_wl(tp, 0);
  2822. tp->snd_una = tp->write_seq;
  2823. tp->snd_sml = tp->write_seq;
  2824. tp->snd_up = tp->write_seq;
  2825. tp->snd_nxt = tp->write_seq;
  2826. if (likely(!tp->repair))
  2827. tp->rcv_nxt = 0;
  2828. else
  2829. tp->rcv_tstamp = tcp_jiffies32;
  2830. tp->rcv_wup = tp->rcv_nxt;
  2831. tp->copied_seq = tp->rcv_nxt;
  2832. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2833. inet_csk(sk)->icsk_retransmits = 0;
  2834. tcp_clear_retrans(tp);
  2835. }
  2836. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2837. {
  2838. struct tcp_sock *tp = tcp_sk(sk);
  2839. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2840. tcb->end_seq += skb->len;
  2841. __skb_header_release(skb);
  2842. sk->sk_wmem_queued += skb->truesize;
  2843. sk_mem_charge(sk, skb->truesize);
  2844. tp->write_seq = tcb->end_seq;
  2845. tp->packets_out += tcp_skb_pcount(skb);
  2846. }
  2847. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2848. * queue a data-only packet after the regular SYN, such that regular SYNs
  2849. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2850. * only the SYN sequence, the data are retransmitted in the first ACK.
  2851. * If cookie is not cached or other error occurs, falls back to send a
  2852. * regular SYN with Fast Open cookie request option.
  2853. */
  2854. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2855. {
  2856. struct tcp_sock *tp = tcp_sk(sk);
  2857. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2858. int space, err = 0;
  2859. struct sk_buff *syn_data;
  2860. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2861. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2862. goto fallback;
  2863. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2864. * user-MSS. Reserve maximum option space for middleboxes that add
  2865. * private TCP options. The cost is reduced data space in SYN :(
  2866. */
  2867. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2868. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2869. MAX_TCP_OPTION_SPACE;
  2870. space = min_t(size_t, space, fo->size);
  2871. /* limit to order-0 allocations */
  2872. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2873. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2874. if (!syn_data)
  2875. goto fallback;
  2876. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2877. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2878. if (space) {
  2879. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2880. &fo->data->msg_iter);
  2881. if (unlikely(!copied)) {
  2882. kfree_skb(syn_data);
  2883. goto fallback;
  2884. }
  2885. if (copied != space) {
  2886. skb_trim(syn_data, copied);
  2887. space = copied;
  2888. }
  2889. }
  2890. /* No more data pending in inet_wait_for_connect() */
  2891. if (space == fo->size)
  2892. fo->data = NULL;
  2893. fo->copied = space;
  2894. tcp_connect_queue_skb(sk, syn_data);
  2895. if (syn_data->len)
  2896. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2897. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2898. syn->skb_mstamp = syn_data->skb_mstamp;
  2899. /* Now full SYN+DATA was cloned and sent (or not),
  2900. * remove the SYN from the original skb (syn_data)
  2901. * we keep in write queue in case of a retransmit, as we
  2902. * also have the SYN packet (with no data) in the same queue.
  2903. */
  2904. TCP_SKB_CB(syn_data)->seq++;
  2905. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2906. if (!err) {
  2907. tp->syn_data = (fo->copied > 0);
  2908. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2909. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2910. goto done;
  2911. }
  2912. /* data was not sent, put it in write_queue */
  2913. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2914. tp->packets_out -= tcp_skb_pcount(syn_data);
  2915. fallback:
  2916. /* Send a regular SYN with Fast Open cookie request option */
  2917. if (fo->cookie.len > 0)
  2918. fo->cookie.len = 0;
  2919. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2920. if (err)
  2921. tp->syn_fastopen = 0;
  2922. done:
  2923. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2924. return err;
  2925. }
  2926. /* Build a SYN and send it off. */
  2927. int tcp_connect(struct sock *sk)
  2928. {
  2929. struct tcp_sock *tp = tcp_sk(sk);
  2930. struct sk_buff *buff;
  2931. int err;
  2932. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
  2933. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2934. return -EHOSTUNREACH; /* Routing failure or similar. */
  2935. tcp_connect_init(sk);
  2936. if (unlikely(tp->repair)) {
  2937. tcp_finish_connect(sk, NULL);
  2938. return 0;
  2939. }
  2940. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2941. if (unlikely(!buff))
  2942. return -ENOBUFS;
  2943. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2944. tcp_mstamp_refresh(tp);
  2945. tp->retrans_stamp = tcp_time_stamp(tp);
  2946. tcp_connect_queue_skb(sk, buff);
  2947. tcp_ecn_send_syn(sk, buff);
  2948. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  2949. /* Send off SYN; include data in Fast Open. */
  2950. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2951. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2952. if (err == -ECONNREFUSED)
  2953. return err;
  2954. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2955. * in order to make this packet get counted in tcpOutSegs.
  2956. */
  2957. tp->snd_nxt = tp->write_seq;
  2958. tp->pushed_seq = tp->write_seq;
  2959. buff = tcp_send_head(sk);
  2960. if (unlikely(buff)) {
  2961. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  2962. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  2963. }
  2964. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2965. /* Timer for repeating the SYN until an answer. */
  2966. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2967. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2968. return 0;
  2969. }
  2970. EXPORT_SYMBOL(tcp_connect);
  2971. /* Send out a delayed ack, the caller does the policy checking
  2972. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2973. * for details.
  2974. */
  2975. void tcp_send_delayed_ack(struct sock *sk)
  2976. {
  2977. struct inet_connection_sock *icsk = inet_csk(sk);
  2978. int ato = icsk->icsk_ack.ato;
  2979. unsigned long timeout;
  2980. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2981. if (ato > TCP_DELACK_MIN) {
  2982. const struct tcp_sock *tp = tcp_sk(sk);
  2983. int max_ato = HZ / 2;
  2984. if (icsk->icsk_ack.pingpong ||
  2985. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2986. max_ato = TCP_DELACK_MAX;
  2987. /* Slow path, intersegment interval is "high". */
  2988. /* If some rtt estimate is known, use it to bound delayed ack.
  2989. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2990. * directly.
  2991. */
  2992. if (tp->srtt_us) {
  2993. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2994. TCP_DELACK_MIN);
  2995. if (rtt < max_ato)
  2996. max_ato = rtt;
  2997. }
  2998. ato = min(ato, max_ato);
  2999. }
  3000. /* Stay within the limit we were given */
  3001. timeout = jiffies + ato;
  3002. /* Use new timeout only if there wasn't a older one earlier. */
  3003. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3004. /* If delack timer was blocked or is about to expire,
  3005. * send ACK now.
  3006. */
  3007. if (icsk->icsk_ack.blocked ||
  3008. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3009. tcp_send_ack(sk);
  3010. return;
  3011. }
  3012. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3013. timeout = icsk->icsk_ack.timeout;
  3014. }
  3015. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3016. icsk->icsk_ack.timeout = timeout;
  3017. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3018. }
  3019. /* This routine sends an ack and also updates the window. */
  3020. void tcp_send_ack(struct sock *sk)
  3021. {
  3022. struct sk_buff *buff;
  3023. /* If we have been reset, we may not send again. */
  3024. if (sk->sk_state == TCP_CLOSE)
  3025. return;
  3026. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  3027. /* We are not putting this on the write queue, so
  3028. * tcp_transmit_skb() will set the ownership to this
  3029. * sock.
  3030. */
  3031. buff = alloc_skb(MAX_TCP_HEADER,
  3032. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3033. if (unlikely(!buff)) {
  3034. inet_csk_schedule_ack(sk);
  3035. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3036. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3037. TCP_DELACK_MAX, TCP_RTO_MAX);
  3038. return;
  3039. }
  3040. /* Reserve space for headers and prepare control bits. */
  3041. skb_reserve(buff, MAX_TCP_HEADER);
  3042. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3043. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3044. * too much.
  3045. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3046. */
  3047. skb_set_tcp_pure_ack(buff);
  3048. /* Send it off, this clears delayed acks for us. */
  3049. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  3050. }
  3051. EXPORT_SYMBOL_GPL(tcp_send_ack);
  3052. /* This routine sends a packet with an out of date sequence
  3053. * number. It assumes the other end will try to ack it.
  3054. *
  3055. * Question: what should we make while urgent mode?
  3056. * 4.4BSD forces sending single byte of data. We cannot send
  3057. * out of window data, because we have SND.NXT==SND.MAX...
  3058. *
  3059. * Current solution: to send TWO zero-length segments in urgent mode:
  3060. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3061. * out-of-date with SND.UNA-1 to probe window.
  3062. */
  3063. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3064. {
  3065. struct tcp_sock *tp = tcp_sk(sk);
  3066. struct sk_buff *skb;
  3067. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3068. skb = alloc_skb(MAX_TCP_HEADER,
  3069. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3070. if (!skb)
  3071. return -1;
  3072. /* Reserve space for headers and set control bits. */
  3073. skb_reserve(skb, MAX_TCP_HEADER);
  3074. /* Use a previous sequence. This should cause the other
  3075. * end to send an ack. Don't queue or clone SKB, just
  3076. * send it.
  3077. */
  3078. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3079. NET_INC_STATS(sock_net(sk), mib);
  3080. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3081. }
  3082. /* Called from setsockopt( ... TCP_REPAIR ) */
  3083. void tcp_send_window_probe(struct sock *sk)
  3084. {
  3085. if (sk->sk_state == TCP_ESTABLISHED) {
  3086. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3087. tcp_mstamp_refresh(tcp_sk(sk));
  3088. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3089. }
  3090. }
  3091. /* Initiate keepalive or window probe from timer. */
  3092. int tcp_write_wakeup(struct sock *sk, int mib)
  3093. {
  3094. struct tcp_sock *tp = tcp_sk(sk);
  3095. struct sk_buff *skb;
  3096. if (sk->sk_state == TCP_CLOSE)
  3097. return -1;
  3098. skb = tcp_send_head(sk);
  3099. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3100. int err;
  3101. unsigned int mss = tcp_current_mss(sk);
  3102. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3103. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3104. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3105. /* We are probing the opening of a window
  3106. * but the window size is != 0
  3107. * must have been a result SWS avoidance ( sender )
  3108. */
  3109. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3110. skb->len > mss) {
  3111. seg_size = min(seg_size, mss);
  3112. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3113. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3114. skb, seg_size, mss, GFP_ATOMIC))
  3115. return -1;
  3116. } else if (!tcp_skb_pcount(skb))
  3117. tcp_set_skb_tso_segs(skb, mss);
  3118. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3119. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3120. if (!err)
  3121. tcp_event_new_data_sent(sk, skb);
  3122. return err;
  3123. } else {
  3124. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3125. tcp_xmit_probe_skb(sk, 1, mib);
  3126. return tcp_xmit_probe_skb(sk, 0, mib);
  3127. }
  3128. }
  3129. /* A window probe timeout has occurred. If window is not closed send
  3130. * a partial packet else a zero probe.
  3131. */
  3132. void tcp_send_probe0(struct sock *sk)
  3133. {
  3134. struct inet_connection_sock *icsk = inet_csk(sk);
  3135. struct tcp_sock *tp = tcp_sk(sk);
  3136. struct net *net = sock_net(sk);
  3137. unsigned long probe_max;
  3138. int err;
  3139. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3140. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3141. /* Cancel probe timer, if it is not required. */
  3142. icsk->icsk_probes_out = 0;
  3143. icsk->icsk_backoff = 0;
  3144. return;
  3145. }
  3146. if (err <= 0) {
  3147. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3148. icsk->icsk_backoff++;
  3149. icsk->icsk_probes_out++;
  3150. probe_max = TCP_RTO_MAX;
  3151. } else {
  3152. /* If packet was not sent due to local congestion,
  3153. * do not backoff and do not remember icsk_probes_out.
  3154. * Let local senders to fight for local resources.
  3155. *
  3156. * Use accumulated backoff yet.
  3157. */
  3158. if (!icsk->icsk_probes_out)
  3159. icsk->icsk_probes_out = 1;
  3160. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3161. }
  3162. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3163. tcp_probe0_when(sk, probe_max),
  3164. TCP_RTO_MAX);
  3165. }
  3166. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3167. {
  3168. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3169. struct flowi fl;
  3170. int res;
  3171. tcp_rsk(req)->txhash = net_tx_rndhash();
  3172. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3173. if (!res) {
  3174. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3175. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3176. if (unlikely(tcp_passive_fastopen(sk)))
  3177. tcp_sk(sk)->total_retrans++;
  3178. }
  3179. return res;
  3180. }
  3181. EXPORT_SYMBOL(tcp_rtx_synack);