vmscan.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmpressure.h>
  22. #include <linux/vmstat.h>
  23. #include <linux/file.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/buffer_head.h> /* for try_to_release_page(),
  27. buffer_heads_over_limit */
  28. #include <linux/mm_inline.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/compaction.h>
  35. #include <linux/notifier.h>
  36. #include <linux/rwsem.h>
  37. #include <linux/delay.h>
  38. #include <linux/kthread.h>
  39. #include <linux/freezer.h>
  40. #include <linux/memcontrol.h>
  41. #include <linux/delayacct.h>
  42. #include <linux/sysctl.h>
  43. #include <linux/oom.h>
  44. #include <linux/prefetch.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/div64.h>
  47. #include <linux/swapops.h>
  48. #include <linux/balloon_compaction.h>
  49. #include "internal.h"
  50. #define CREATE_TRACE_POINTS
  51. #include <trace/events/vmscan.h>
  52. struct scan_control {
  53. /* Incremented by the number of inactive pages that were scanned */
  54. unsigned long nr_scanned;
  55. /* Number of pages freed so far during a call to shrink_zones() */
  56. unsigned long nr_reclaimed;
  57. /* How many pages shrink_list() should reclaim */
  58. unsigned long nr_to_reclaim;
  59. unsigned long hibernation_mode;
  60. /* This context's GFP mask */
  61. gfp_t gfp_mask;
  62. int may_writepage;
  63. /* Can mapped pages be reclaimed? */
  64. int may_unmap;
  65. /* Can pages be swapped as part of reclaim? */
  66. int may_swap;
  67. int order;
  68. /* Scan (total_size >> priority) pages at once */
  69. int priority;
  70. /*
  71. * The memory cgroup that hit its limit and as a result is the
  72. * primary target of this reclaim invocation.
  73. */
  74. struct mem_cgroup *target_mem_cgroup;
  75. /*
  76. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  77. * are scanned.
  78. */
  79. nodemask_t *nodemask;
  80. };
  81. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  82. #ifdef ARCH_HAS_PREFETCH
  83. #define prefetch_prev_lru_page(_page, _base, _field) \
  84. do { \
  85. if ((_page)->lru.prev != _base) { \
  86. struct page *prev; \
  87. \
  88. prev = lru_to_page(&(_page->lru)); \
  89. prefetch(&prev->_field); \
  90. } \
  91. } while (0)
  92. #else
  93. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  94. #endif
  95. #ifdef ARCH_HAS_PREFETCHW
  96. #define prefetchw_prev_lru_page(_page, _base, _field) \
  97. do { \
  98. if ((_page)->lru.prev != _base) { \
  99. struct page *prev; \
  100. \
  101. prev = lru_to_page(&(_page->lru)); \
  102. prefetchw(&prev->_field); \
  103. } \
  104. } while (0)
  105. #else
  106. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  107. #endif
  108. /*
  109. * From 0 .. 100. Higher means more swappy.
  110. */
  111. int vm_swappiness = 60;
  112. unsigned long vm_total_pages; /* The total number of pages which the VM controls */
  113. static LIST_HEAD(shrinker_list);
  114. static DECLARE_RWSEM(shrinker_rwsem);
  115. #ifdef CONFIG_MEMCG
  116. static bool global_reclaim(struct scan_control *sc)
  117. {
  118. return !sc->target_mem_cgroup;
  119. }
  120. #else
  121. static bool global_reclaim(struct scan_control *sc)
  122. {
  123. return true;
  124. }
  125. #endif
  126. static unsigned long zone_reclaimable_pages(struct zone *zone)
  127. {
  128. int nr;
  129. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  130. zone_page_state(zone, NR_INACTIVE_FILE);
  131. if (get_nr_swap_pages() > 0)
  132. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  133. zone_page_state(zone, NR_INACTIVE_ANON);
  134. return nr;
  135. }
  136. bool zone_reclaimable(struct zone *zone)
  137. {
  138. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  139. }
  140. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  141. {
  142. if (!mem_cgroup_disabled())
  143. return mem_cgroup_get_lru_size(lruvec, lru);
  144. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  145. }
  146. /*
  147. * Add a shrinker callback to be called from the vm.
  148. */
  149. int register_shrinker(struct shrinker *shrinker)
  150. {
  151. size_t size = sizeof(*shrinker->nr_deferred);
  152. /*
  153. * If we only have one possible node in the system anyway, save
  154. * ourselves the trouble and disable NUMA aware behavior. This way we
  155. * will save memory and some small loop time later.
  156. */
  157. if (nr_node_ids == 1)
  158. shrinker->flags &= ~SHRINKER_NUMA_AWARE;
  159. if (shrinker->flags & SHRINKER_NUMA_AWARE)
  160. size *= nr_node_ids;
  161. shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
  162. if (!shrinker->nr_deferred)
  163. return -ENOMEM;
  164. down_write(&shrinker_rwsem);
  165. list_add_tail(&shrinker->list, &shrinker_list);
  166. up_write(&shrinker_rwsem);
  167. return 0;
  168. }
  169. EXPORT_SYMBOL(register_shrinker);
  170. /*
  171. * Remove one
  172. */
  173. void unregister_shrinker(struct shrinker *shrinker)
  174. {
  175. down_write(&shrinker_rwsem);
  176. list_del(&shrinker->list);
  177. up_write(&shrinker_rwsem);
  178. kfree(shrinker->nr_deferred);
  179. }
  180. EXPORT_SYMBOL(unregister_shrinker);
  181. #define SHRINK_BATCH 128
  182. static unsigned long
  183. shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
  184. unsigned long nr_pages_scanned, unsigned long lru_pages)
  185. {
  186. unsigned long freed = 0;
  187. unsigned long long delta;
  188. long total_scan;
  189. long freeable;
  190. long nr;
  191. long new_nr;
  192. int nid = shrinkctl->nid;
  193. long batch_size = shrinker->batch ? shrinker->batch
  194. : SHRINK_BATCH;
  195. freeable = shrinker->count_objects(shrinker, shrinkctl);
  196. if (freeable == 0)
  197. return 0;
  198. /*
  199. * copy the current shrinker scan count into a local variable
  200. * and zero it so that other concurrent shrinker invocations
  201. * don't also do this scanning work.
  202. */
  203. nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
  204. total_scan = nr;
  205. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  206. delta *= freeable;
  207. do_div(delta, lru_pages + 1);
  208. total_scan += delta;
  209. if (total_scan < 0) {
  210. printk(KERN_ERR
  211. "shrink_slab: %pF negative objects to delete nr=%ld\n",
  212. shrinker->scan_objects, total_scan);
  213. total_scan = freeable;
  214. }
  215. /*
  216. * We need to avoid excessive windup on filesystem shrinkers
  217. * due to large numbers of GFP_NOFS allocations causing the
  218. * shrinkers to return -1 all the time. This results in a large
  219. * nr being built up so when a shrink that can do some work
  220. * comes along it empties the entire cache due to nr >>>
  221. * freeable. This is bad for sustaining a working set in
  222. * memory.
  223. *
  224. * Hence only allow the shrinker to scan the entire cache when
  225. * a large delta change is calculated directly.
  226. */
  227. if (delta < freeable / 4)
  228. total_scan = min(total_scan, freeable / 2);
  229. /*
  230. * Avoid risking looping forever due to too large nr value:
  231. * never try to free more than twice the estimate number of
  232. * freeable entries.
  233. */
  234. if (total_scan > freeable * 2)
  235. total_scan = freeable * 2;
  236. trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
  237. nr_pages_scanned, lru_pages,
  238. freeable, delta, total_scan);
  239. /*
  240. * Normally, we should not scan less than batch_size objects in one
  241. * pass to avoid too frequent shrinker calls, but if the slab has less
  242. * than batch_size objects in total and we are really tight on memory,
  243. * we will try to reclaim all available objects, otherwise we can end
  244. * up failing allocations although there are plenty of reclaimable
  245. * objects spread over several slabs with usage less than the
  246. * batch_size.
  247. *
  248. * We detect the "tight on memory" situations by looking at the total
  249. * number of objects we want to scan (total_scan). If it is greater
  250. * than the total number of objects on slab (freeable), we must be
  251. * scanning at high prio and therefore should try to reclaim as much as
  252. * possible.
  253. */
  254. while (total_scan >= batch_size ||
  255. total_scan >= freeable) {
  256. unsigned long ret;
  257. unsigned long nr_to_scan = min(batch_size, total_scan);
  258. shrinkctl->nr_to_scan = nr_to_scan;
  259. ret = shrinker->scan_objects(shrinker, shrinkctl);
  260. if (ret == SHRINK_STOP)
  261. break;
  262. freed += ret;
  263. count_vm_events(SLABS_SCANNED, nr_to_scan);
  264. total_scan -= nr_to_scan;
  265. cond_resched();
  266. }
  267. /*
  268. * move the unused scan count back into the shrinker in a
  269. * manner that handles concurrent updates. If we exhausted the
  270. * scan, there is no need to do an update.
  271. */
  272. if (total_scan > 0)
  273. new_nr = atomic_long_add_return(total_scan,
  274. &shrinker->nr_deferred[nid]);
  275. else
  276. new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
  277. trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
  278. return freed;
  279. }
  280. /*
  281. * Call the shrink functions to age shrinkable caches
  282. *
  283. * Here we assume it costs one seek to replace a lru page and that it also
  284. * takes a seek to recreate a cache object. With this in mind we age equal
  285. * percentages of the lru and ageable caches. This should balance the seeks
  286. * generated by these structures.
  287. *
  288. * If the vm encountered mapped pages on the LRU it increase the pressure on
  289. * slab to avoid swapping.
  290. *
  291. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  292. *
  293. * `lru_pages' represents the number of on-LRU pages in all the zones which
  294. * are eligible for the caller's allocation attempt. It is used for balancing
  295. * slab reclaim versus page reclaim.
  296. *
  297. * Returns the number of slab objects which we shrunk.
  298. */
  299. unsigned long shrink_slab(struct shrink_control *shrinkctl,
  300. unsigned long nr_pages_scanned,
  301. unsigned long lru_pages)
  302. {
  303. struct shrinker *shrinker;
  304. unsigned long freed = 0;
  305. if (nr_pages_scanned == 0)
  306. nr_pages_scanned = SWAP_CLUSTER_MAX;
  307. if (!down_read_trylock(&shrinker_rwsem)) {
  308. /*
  309. * If we would return 0, our callers would understand that we
  310. * have nothing else to shrink and give up trying. By returning
  311. * 1 we keep it going and assume we'll be able to shrink next
  312. * time.
  313. */
  314. freed = 1;
  315. goto out;
  316. }
  317. list_for_each_entry(shrinker, &shrinker_list, list) {
  318. if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
  319. shrinkctl->nid = 0;
  320. freed += shrink_slab_node(shrinkctl, shrinker,
  321. nr_pages_scanned, lru_pages);
  322. continue;
  323. }
  324. for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
  325. if (node_online(shrinkctl->nid))
  326. freed += shrink_slab_node(shrinkctl, shrinker,
  327. nr_pages_scanned, lru_pages);
  328. }
  329. }
  330. up_read(&shrinker_rwsem);
  331. out:
  332. cond_resched();
  333. return freed;
  334. }
  335. static inline int is_page_cache_freeable(struct page *page)
  336. {
  337. /*
  338. * A freeable page cache page is referenced only by the caller
  339. * that isolated the page, the page cache radix tree and
  340. * optional buffer heads at page->private.
  341. */
  342. return page_count(page) - page_has_private(page) == 2;
  343. }
  344. static int may_write_to_queue(struct backing_dev_info *bdi,
  345. struct scan_control *sc)
  346. {
  347. if (current->flags & PF_SWAPWRITE)
  348. return 1;
  349. if (!bdi_write_congested(bdi))
  350. return 1;
  351. if (bdi == current->backing_dev_info)
  352. return 1;
  353. return 0;
  354. }
  355. /*
  356. * We detected a synchronous write error writing a page out. Probably
  357. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  358. * fsync(), msync() or close().
  359. *
  360. * The tricky part is that after writepage we cannot touch the mapping: nothing
  361. * prevents it from being freed up. But we have a ref on the page and once
  362. * that page is locked, the mapping is pinned.
  363. *
  364. * We're allowed to run sleeping lock_page() here because we know the caller has
  365. * __GFP_FS.
  366. */
  367. static void handle_write_error(struct address_space *mapping,
  368. struct page *page, int error)
  369. {
  370. lock_page(page);
  371. if (page_mapping(page) == mapping)
  372. mapping_set_error(mapping, error);
  373. unlock_page(page);
  374. }
  375. /* possible outcome of pageout() */
  376. typedef enum {
  377. /* failed to write page out, page is locked */
  378. PAGE_KEEP,
  379. /* move page to the active list, page is locked */
  380. PAGE_ACTIVATE,
  381. /* page has been sent to the disk successfully, page is unlocked */
  382. PAGE_SUCCESS,
  383. /* page is clean and locked */
  384. PAGE_CLEAN,
  385. } pageout_t;
  386. /*
  387. * pageout is called by shrink_page_list() for each dirty page.
  388. * Calls ->writepage().
  389. */
  390. static pageout_t pageout(struct page *page, struct address_space *mapping,
  391. struct scan_control *sc)
  392. {
  393. /*
  394. * If the page is dirty, only perform writeback if that write
  395. * will be non-blocking. To prevent this allocation from being
  396. * stalled by pagecache activity. But note that there may be
  397. * stalls if we need to run get_block(). We could test
  398. * PagePrivate for that.
  399. *
  400. * If this process is currently in __generic_file_aio_write() against
  401. * this page's queue, we can perform writeback even if that
  402. * will block.
  403. *
  404. * If the page is swapcache, write it back even if that would
  405. * block, for some throttling. This happens by accident, because
  406. * swap_backing_dev_info is bust: it doesn't reflect the
  407. * congestion state of the swapdevs. Easy to fix, if needed.
  408. */
  409. if (!is_page_cache_freeable(page))
  410. return PAGE_KEEP;
  411. if (!mapping) {
  412. /*
  413. * Some data journaling orphaned pages can have
  414. * page->mapping == NULL while being dirty with clean buffers.
  415. */
  416. if (page_has_private(page)) {
  417. if (try_to_free_buffers(page)) {
  418. ClearPageDirty(page);
  419. printk("%s: orphaned page\n", __func__);
  420. return PAGE_CLEAN;
  421. }
  422. }
  423. return PAGE_KEEP;
  424. }
  425. if (mapping->a_ops->writepage == NULL)
  426. return PAGE_ACTIVATE;
  427. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  428. return PAGE_KEEP;
  429. if (clear_page_dirty_for_io(page)) {
  430. int res;
  431. struct writeback_control wbc = {
  432. .sync_mode = WB_SYNC_NONE,
  433. .nr_to_write = SWAP_CLUSTER_MAX,
  434. .range_start = 0,
  435. .range_end = LLONG_MAX,
  436. .for_reclaim = 1,
  437. };
  438. SetPageReclaim(page);
  439. res = mapping->a_ops->writepage(page, &wbc);
  440. if (res < 0)
  441. handle_write_error(mapping, page, res);
  442. if (res == AOP_WRITEPAGE_ACTIVATE) {
  443. ClearPageReclaim(page);
  444. return PAGE_ACTIVATE;
  445. }
  446. if (!PageWriteback(page)) {
  447. /* synchronous write or broken a_ops? */
  448. ClearPageReclaim(page);
  449. }
  450. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  451. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  452. return PAGE_SUCCESS;
  453. }
  454. return PAGE_CLEAN;
  455. }
  456. /*
  457. * Same as remove_mapping, but if the page is removed from the mapping, it
  458. * gets returned with a refcount of 0.
  459. */
  460. static int __remove_mapping(struct address_space *mapping, struct page *page,
  461. bool reclaimed)
  462. {
  463. BUG_ON(!PageLocked(page));
  464. BUG_ON(mapping != page_mapping(page));
  465. spin_lock_irq(&mapping->tree_lock);
  466. /*
  467. * The non racy check for a busy page.
  468. *
  469. * Must be careful with the order of the tests. When someone has
  470. * a ref to the page, it may be possible that they dirty it then
  471. * drop the reference. So if PageDirty is tested before page_count
  472. * here, then the following race may occur:
  473. *
  474. * get_user_pages(&page);
  475. * [user mapping goes away]
  476. * write_to(page);
  477. * !PageDirty(page) [good]
  478. * SetPageDirty(page);
  479. * put_page(page);
  480. * !page_count(page) [good, discard it]
  481. *
  482. * [oops, our write_to data is lost]
  483. *
  484. * Reversing the order of the tests ensures such a situation cannot
  485. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  486. * load is not satisfied before that of page->_count.
  487. *
  488. * Note that if SetPageDirty is always performed via set_page_dirty,
  489. * and thus under tree_lock, then this ordering is not required.
  490. */
  491. if (!page_freeze_refs(page, 2))
  492. goto cannot_free;
  493. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  494. if (unlikely(PageDirty(page))) {
  495. page_unfreeze_refs(page, 2);
  496. goto cannot_free;
  497. }
  498. if (PageSwapCache(page)) {
  499. swp_entry_t swap = { .val = page_private(page) };
  500. __delete_from_swap_cache(page);
  501. spin_unlock_irq(&mapping->tree_lock);
  502. swapcache_free(swap, page);
  503. } else {
  504. void (*freepage)(struct page *);
  505. void *shadow = NULL;
  506. freepage = mapping->a_ops->freepage;
  507. /*
  508. * Remember a shadow entry for reclaimed file cache in
  509. * order to detect refaults, thus thrashing, later on.
  510. *
  511. * But don't store shadows in an address space that is
  512. * already exiting. This is not just an optizimation,
  513. * inode reclaim needs to empty out the radix tree or
  514. * the nodes are lost. Don't plant shadows behind its
  515. * back.
  516. */
  517. if (reclaimed && page_is_file_cache(page) &&
  518. !mapping_exiting(mapping))
  519. shadow = workingset_eviction(mapping, page);
  520. __delete_from_page_cache(page, shadow);
  521. spin_unlock_irq(&mapping->tree_lock);
  522. mem_cgroup_uncharge_cache_page(page);
  523. if (freepage != NULL)
  524. freepage(page);
  525. }
  526. return 1;
  527. cannot_free:
  528. spin_unlock_irq(&mapping->tree_lock);
  529. return 0;
  530. }
  531. /*
  532. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  533. * someone else has a ref on the page, abort and return 0. If it was
  534. * successfully detached, return 1. Assumes the caller has a single ref on
  535. * this page.
  536. */
  537. int remove_mapping(struct address_space *mapping, struct page *page)
  538. {
  539. if (__remove_mapping(mapping, page, false)) {
  540. /*
  541. * Unfreezing the refcount with 1 rather than 2 effectively
  542. * drops the pagecache ref for us without requiring another
  543. * atomic operation.
  544. */
  545. page_unfreeze_refs(page, 1);
  546. return 1;
  547. }
  548. return 0;
  549. }
  550. /**
  551. * putback_lru_page - put previously isolated page onto appropriate LRU list
  552. * @page: page to be put back to appropriate lru list
  553. *
  554. * Add previously isolated @page to appropriate LRU list.
  555. * Page may still be unevictable for other reasons.
  556. *
  557. * lru_lock must not be held, interrupts must be enabled.
  558. */
  559. void putback_lru_page(struct page *page)
  560. {
  561. bool is_unevictable;
  562. int was_unevictable = PageUnevictable(page);
  563. VM_BUG_ON_PAGE(PageLRU(page), page);
  564. redo:
  565. ClearPageUnevictable(page);
  566. if (page_evictable(page)) {
  567. /*
  568. * For evictable pages, we can use the cache.
  569. * In event of a race, worst case is we end up with an
  570. * unevictable page on [in]active list.
  571. * We know how to handle that.
  572. */
  573. is_unevictable = false;
  574. lru_cache_add(page);
  575. } else {
  576. /*
  577. * Put unevictable pages directly on zone's unevictable
  578. * list.
  579. */
  580. is_unevictable = true;
  581. add_page_to_unevictable_list(page);
  582. /*
  583. * When racing with an mlock or AS_UNEVICTABLE clearing
  584. * (page is unlocked) make sure that if the other thread
  585. * does not observe our setting of PG_lru and fails
  586. * isolation/check_move_unevictable_pages,
  587. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  588. * the page back to the evictable list.
  589. *
  590. * The other side is TestClearPageMlocked() or shmem_lock().
  591. */
  592. smp_mb();
  593. }
  594. /*
  595. * page's status can change while we move it among lru. If an evictable
  596. * page is on unevictable list, it never be freed. To avoid that,
  597. * check after we added it to the list, again.
  598. */
  599. if (is_unevictable && page_evictable(page)) {
  600. if (!isolate_lru_page(page)) {
  601. put_page(page);
  602. goto redo;
  603. }
  604. /* This means someone else dropped this page from LRU
  605. * So, it will be freed or putback to LRU again. There is
  606. * nothing to do here.
  607. */
  608. }
  609. if (was_unevictable && !is_unevictable)
  610. count_vm_event(UNEVICTABLE_PGRESCUED);
  611. else if (!was_unevictable && is_unevictable)
  612. count_vm_event(UNEVICTABLE_PGCULLED);
  613. put_page(page); /* drop ref from isolate */
  614. }
  615. enum page_references {
  616. PAGEREF_RECLAIM,
  617. PAGEREF_RECLAIM_CLEAN,
  618. PAGEREF_KEEP,
  619. PAGEREF_ACTIVATE,
  620. };
  621. static enum page_references page_check_references(struct page *page,
  622. struct scan_control *sc)
  623. {
  624. int referenced_ptes, referenced_page;
  625. unsigned long vm_flags;
  626. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  627. &vm_flags);
  628. referenced_page = TestClearPageReferenced(page);
  629. /*
  630. * Mlock lost the isolation race with us. Let try_to_unmap()
  631. * move the page to the unevictable list.
  632. */
  633. if (vm_flags & VM_LOCKED)
  634. return PAGEREF_RECLAIM;
  635. if (referenced_ptes) {
  636. if (PageSwapBacked(page))
  637. return PAGEREF_ACTIVATE;
  638. /*
  639. * All mapped pages start out with page table
  640. * references from the instantiating fault, so we need
  641. * to look twice if a mapped file page is used more
  642. * than once.
  643. *
  644. * Mark it and spare it for another trip around the
  645. * inactive list. Another page table reference will
  646. * lead to its activation.
  647. *
  648. * Note: the mark is set for activated pages as well
  649. * so that recently deactivated but used pages are
  650. * quickly recovered.
  651. */
  652. SetPageReferenced(page);
  653. if (referenced_page || referenced_ptes > 1)
  654. return PAGEREF_ACTIVATE;
  655. /*
  656. * Activate file-backed executable pages after first usage.
  657. */
  658. if (vm_flags & VM_EXEC)
  659. return PAGEREF_ACTIVATE;
  660. return PAGEREF_KEEP;
  661. }
  662. /* Reclaim if clean, defer dirty pages to writeback */
  663. if (referenced_page && !PageSwapBacked(page))
  664. return PAGEREF_RECLAIM_CLEAN;
  665. return PAGEREF_RECLAIM;
  666. }
  667. /* Check if a page is dirty or under writeback */
  668. static void page_check_dirty_writeback(struct page *page,
  669. bool *dirty, bool *writeback)
  670. {
  671. struct address_space *mapping;
  672. /*
  673. * Anonymous pages are not handled by flushers and must be written
  674. * from reclaim context. Do not stall reclaim based on them
  675. */
  676. if (!page_is_file_cache(page)) {
  677. *dirty = false;
  678. *writeback = false;
  679. return;
  680. }
  681. /* By default assume that the page flags are accurate */
  682. *dirty = PageDirty(page);
  683. *writeback = PageWriteback(page);
  684. /* Verify dirty/writeback state if the filesystem supports it */
  685. if (!page_has_private(page))
  686. return;
  687. mapping = page_mapping(page);
  688. if (mapping && mapping->a_ops->is_dirty_writeback)
  689. mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
  690. }
  691. /*
  692. * shrink_page_list() returns the number of reclaimed pages
  693. */
  694. static unsigned long shrink_page_list(struct list_head *page_list,
  695. struct zone *zone,
  696. struct scan_control *sc,
  697. enum ttu_flags ttu_flags,
  698. unsigned long *ret_nr_dirty,
  699. unsigned long *ret_nr_unqueued_dirty,
  700. unsigned long *ret_nr_congested,
  701. unsigned long *ret_nr_writeback,
  702. unsigned long *ret_nr_immediate,
  703. bool force_reclaim)
  704. {
  705. LIST_HEAD(ret_pages);
  706. LIST_HEAD(free_pages);
  707. int pgactivate = 0;
  708. unsigned long nr_unqueued_dirty = 0;
  709. unsigned long nr_dirty = 0;
  710. unsigned long nr_congested = 0;
  711. unsigned long nr_reclaimed = 0;
  712. unsigned long nr_writeback = 0;
  713. unsigned long nr_immediate = 0;
  714. cond_resched();
  715. mem_cgroup_uncharge_start();
  716. while (!list_empty(page_list)) {
  717. struct address_space *mapping;
  718. struct page *page;
  719. int may_enter_fs;
  720. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  721. bool dirty, writeback;
  722. cond_resched();
  723. page = lru_to_page(page_list);
  724. list_del(&page->lru);
  725. if (!trylock_page(page))
  726. goto keep;
  727. VM_BUG_ON_PAGE(PageActive(page), page);
  728. VM_BUG_ON_PAGE(page_zone(page) != zone, page);
  729. sc->nr_scanned++;
  730. if (unlikely(!page_evictable(page)))
  731. goto cull_mlocked;
  732. if (!sc->may_unmap && page_mapped(page))
  733. goto keep_locked;
  734. /* Double the slab pressure for mapped and swapcache pages */
  735. if (page_mapped(page) || PageSwapCache(page))
  736. sc->nr_scanned++;
  737. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  738. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  739. /*
  740. * The number of dirty pages determines if a zone is marked
  741. * reclaim_congested which affects wait_iff_congested. kswapd
  742. * will stall and start writing pages if the tail of the LRU
  743. * is all dirty unqueued pages.
  744. */
  745. page_check_dirty_writeback(page, &dirty, &writeback);
  746. if (dirty || writeback)
  747. nr_dirty++;
  748. if (dirty && !writeback)
  749. nr_unqueued_dirty++;
  750. /*
  751. * Treat this page as congested if the underlying BDI is or if
  752. * pages are cycling through the LRU so quickly that the
  753. * pages marked for immediate reclaim are making it to the
  754. * end of the LRU a second time.
  755. */
  756. mapping = page_mapping(page);
  757. if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
  758. (writeback && PageReclaim(page)))
  759. nr_congested++;
  760. /*
  761. * If a page at the tail of the LRU is under writeback, there
  762. * are three cases to consider.
  763. *
  764. * 1) If reclaim is encountering an excessive number of pages
  765. * under writeback and this page is both under writeback and
  766. * PageReclaim then it indicates that pages are being queued
  767. * for IO but are being recycled through the LRU before the
  768. * IO can complete. Waiting on the page itself risks an
  769. * indefinite stall if it is impossible to writeback the
  770. * page due to IO error or disconnected storage so instead
  771. * note that the LRU is being scanned too quickly and the
  772. * caller can stall after page list has been processed.
  773. *
  774. * 2) Global reclaim encounters a page, memcg encounters a
  775. * page that is not marked for immediate reclaim or
  776. * the caller does not have __GFP_IO. In this case mark
  777. * the page for immediate reclaim and continue scanning.
  778. *
  779. * __GFP_IO is checked because a loop driver thread might
  780. * enter reclaim, and deadlock if it waits on a page for
  781. * which it is needed to do the write (loop masks off
  782. * __GFP_IO|__GFP_FS for this reason); but more thought
  783. * would probably show more reasons.
  784. *
  785. * Don't require __GFP_FS, since we're not going into the
  786. * FS, just waiting on its writeback completion. Worryingly,
  787. * ext4 gfs2 and xfs allocate pages with
  788. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
  789. * may_enter_fs here is liable to OOM on them.
  790. *
  791. * 3) memcg encounters a page that is not already marked
  792. * PageReclaim. memcg does not have any dirty pages
  793. * throttling so we could easily OOM just because too many
  794. * pages are in writeback and there is nothing else to
  795. * reclaim. Wait for the writeback to complete.
  796. */
  797. if (PageWriteback(page)) {
  798. /* Case 1 above */
  799. if (current_is_kswapd() &&
  800. PageReclaim(page) &&
  801. zone_is_reclaim_writeback(zone)) {
  802. nr_immediate++;
  803. goto keep_locked;
  804. /* Case 2 above */
  805. } else if (global_reclaim(sc) ||
  806. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  807. /*
  808. * This is slightly racy - end_page_writeback()
  809. * might have just cleared PageReclaim, then
  810. * setting PageReclaim here end up interpreted
  811. * as PageReadahead - but that does not matter
  812. * enough to care. What we do want is for this
  813. * page to have PageReclaim set next time memcg
  814. * reclaim reaches the tests above, so it will
  815. * then wait_on_page_writeback() to avoid OOM;
  816. * and it's also appropriate in global reclaim.
  817. */
  818. SetPageReclaim(page);
  819. nr_writeback++;
  820. goto keep_locked;
  821. /* Case 3 above */
  822. } else {
  823. wait_on_page_writeback(page);
  824. }
  825. }
  826. if (!force_reclaim)
  827. references = page_check_references(page, sc);
  828. switch (references) {
  829. case PAGEREF_ACTIVATE:
  830. goto activate_locked;
  831. case PAGEREF_KEEP:
  832. goto keep_locked;
  833. case PAGEREF_RECLAIM:
  834. case PAGEREF_RECLAIM_CLEAN:
  835. ; /* try to reclaim the page below */
  836. }
  837. /*
  838. * Anonymous process memory has backing store?
  839. * Try to allocate it some swap space here.
  840. */
  841. if (PageAnon(page) && !PageSwapCache(page)) {
  842. if (!(sc->gfp_mask & __GFP_IO))
  843. goto keep_locked;
  844. if (!add_to_swap(page, page_list))
  845. goto activate_locked;
  846. may_enter_fs = 1;
  847. /* Adding to swap updated mapping */
  848. mapping = page_mapping(page);
  849. }
  850. /*
  851. * The page is mapped into the page tables of one or more
  852. * processes. Try to unmap it here.
  853. */
  854. if (page_mapped(page) && mapping) {
  855. switch (try_to_unmap(page, ttu_flags)) {
  856. case SWAP_FAIL:
  857. goto activate_locked;
  858. case SWAP_AGAIN:
  859. goto keep_locked;
  860. case SWAP_MLOCK:
  861. goto cull_mlocked;
  862. case SWAP_SUCCESS:
  863. ; /* try to free the page below */
  864. }
  865. }
  866. if (PageDirty(page)) {
  867. /*
  868. * Only kswapd can writeback filesystem pages to
  869. * avoid risk of stack overflow but only writeback
  870. * if many dirty pages have been encountered.
  871. */
  872. if (page_is_file_cache(page) &&
  873. (!current_is_kswapd() ||
  874. !zone_is_reclaim_dirty(zone))) {
  875. /*
  876. * Immediately reclaim when written back.
  877. * Similar in principal to deactivate_page()
  878. * except we already have the page isolated
  879. * and know it's dirty
  880. */
  881. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  882. SetPageReclaim(page);
  883. goto keep_locked;
  884. }
  885. if (references == PAGEREF_RECLAIM_CLEAN)
  886. goto keep_locked;
  887. if (!may_enter_fs)
  888. goto keep_locked;
  889. if (!sc->may_writepage)
  890. goto keep_locked;
  891. /* Page is dirty, try to write it out here */
  892. switch (pageout(page, mapping, sc)) {
  893. case PAGE_KEEP:
  894. goto keep_locked;
  895. case PAGE_ACTIVATE:
  896. goto activate_locked;
  897. case PAGE_SUCCESS:
  898. if (PageWriteback(page))
  899. goto keep;
  900. if (PageDirty(page))
  901. goto keep;
  902. /*
  903. * A synchronous write - probably a ramdisk. Go
  904. * ahead and try to reclaim the page.
  905. */
  906. if (!trylock_page(page))
  907. goto keep;
  908. if (PageDirty(page) || PageWriteback(page))
  909. goto keep_locked;
  910. mapping = page_mapping(page);
  911. case PAGE_CLEAN:
  912. ; /* try to free the page below */
  913. }
  914. }
  915. /*
  916. * If the page has buffers, try to free the buffer mappings
  917. * associated with this page. If we succeed we try to free
  918. * the page as well.
  919. *
  920. * We do this even if the page is PageDirty().
  921. * try_to_release_page() does not perform I/O, but it is
  922. * possible for a page to have PageDirty set, but it is actually
  923. * clean (all its buffers are clean). This happens if the
  924. * buffers were written out directly, with submit_bh(). ext3
  925. * will do this, as well as the blockdev mapping.
  926. * try_to_release_page() will discover that cleanness and will
  927. * drop the buffers and mark the page clean - it can be freed.
  928. *
  929. * Rarely, pages can have buffers and no ->mapping. These are
  930. * the pages which were not successfully invalidated in
  931. * truncate_complete_page(). We try to drop those buffers here
  932. * and if that worked, and the page is no longer mapped into
  933. * process address space (page_count == 1) it can be freed.
  934. * Otherwise, leave the page on the LRU so it is swappable.
  935. */
  936. if (page_has_private(page)) {
  937. if (!try_to_release_page(page, sc->gfp_mask))
  938. goto activate_locked;
  939. if (!mapping && page_count(page) == 1) {
  940. unlock_page(page);
  941. if (put_page_testzero(page))
  942. goto free_it;
  943. else {
  944. /*
  945. * rare race with speculative reference.
  946. * the speculative reference will free
  947. * this page shortly, so we may
  948. * increment nr_reclaimed here (and
  949. * leave it off the LRU).
  950. */
  951. nr_reclaimed++;
  952. continue;
  953. }
  954. }
  955. }
  956. if (!mapping || !__remove_mapping(mapping, page, true))
  957. goto keep_locked;
  958. /*
  959. * At this point, we have no other references and there is
  960. * no way to pick any more up (removed from LRU, removed
  961. * from pagecache). Can use non-atomic bitops now (and
  962. * we obviously don't have to worry about waking up a process
  963. * waiting on the page lock, because there are no references.
  964. */
  965. __clear_page_locked(page);
  966. free_it:
  967. nr_reclaimed++;
  968. /*
  969. * Is there need to periodically free_page_list? It would
  970. * appear not as the counts should be low
  971. */
  972. list_add(&page->lru, &free_pages);
  973. continue;
  974. cull_mlocked:
  975. if (PageSwapCache(page))
  976. try_to_free_swap(page);
  977. unlock_page(page);
  978. putback_lru_page(page);
  979. continue;
  980. activate_locked:
  981. /* Not a candidate for swapping, so reclaim swap space. */
  982. if (PageSwapCache(page) && vm_swap_full())
  983. try_to_free_swap(page);
  984. VM_BUG_ON_PAGE(PageActive(page), page);
  985. SetPageActive(page);
  986. pgactivate++;
  987. keep_locked:
  988. unlock_page(page);
  989. keep:
  990. list_add(&page->lru, &ret_pages);
  991. VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
  992. }
  993. free_hot_cold_page_list(&free_pages, 1);
  994. list_splice(&ret_pages, page_list);
  995. count_vm_events(PGACTIVATE, pgactivate);
  996. mem_cgroup_uncharge_end();
  997. *ret_nr_dirty += nr_dirty;
  998. *ret_nr_congested += nr_congested;
  999. *ret_nr_unqueued_dirty += nr_unqueued_dirty;
  1000. *ret_nr_writeback += nr_writeback;
  1001. *ret_nr_immediate += nr_immediate;
  1002. return nr_reclaimed;
  1003. }
  1004. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  1005. struct list_head *page_list)
  1006. {
  1007. struct scan_control sc = {
  1008. .gfp_mask = GFP_KERNEL,
  1009. .priority = DEF_PRIORITY,
  1010. .may_unmap = 1,
  1011. };
  1012. unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
  1013. struct page *page, *next;
  1014. LIST_HEAD(clean_pages);
  1015. list_for_each_entry_safe(page, next, page_list, lru) {
  1016. if (page_is_file_cache(page) && !PageDirty(page) &&
  1017. !isolated_balloon_page(page)) {
  1018. ClearPageActive(page);
  1019. list_move(&page->lru, &clean_pages);
  1020. }
  1021. }
  1022. ret = shrink_page_list(&clean_pages, zone, &sc,
  1023. TTU_UNMAP|TTU_IGNORE_ACCESS,
  1024. &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
  1025. list_splice(&clean_pages, page_list);
  1026. mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  1027. return ret;
  1028. }
  1029. /*
  1030. * Attempt to remove the specified page from its LRU. Only take this page
  1031. * if it is of the appropriate PageActive status. Pages which are being
  1032. * freed elsewhere are also ignored.
  1033. *
  1034. * page: page to consider
  1035. * mode: one of the LRU isolation modes defined above
  1036. *
  1037. * returns 0 on success, -ve errno on failure.
  1038. */
  1039. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  1040. {
  1041. int ret = -EINVAL;
  1042. /* Only take pages on the LRU. */
  1043. if (!PageLRU(page))
  1044. return ret;
  1045. /* Compaction should not handle unevictable pages but CMA can do so */
  1046. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  1047. return ret;
  1048. ret = -EBUSY;
  1049. /*
  1050. * To minimise LRU disruption, the caller can indicate that it only
  1051. * wants to isolate pages it will be able to operate on without
  1052. * blocking - clean pages for the most part.
  1053. *
  1054. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  1055. * is used by reclaim when it is cannot write to backing storage
  1056. *
  1057. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  1058. * that it is possible to migrate without blocking
  1059. */
  1060. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  1061. /* All the caller can do on PageWriteback is block */
  1062. if (PageWriteback(page))
  1063. return ret;
  1064. if (PageDirty(page)) {
  1065. struct address_space *mapping;
  1066. /* ISOLATE_CLEAN means only clean pages */
  1067. if (mode & ISOLATE_CLEAN)
  1068. return ret;
  1069. /*
  1070. * Only pages without mappings or that have a
  1071. * ->migratepage callback are possible to migrate
  1072. * without blocking
  1073. */
  1074. mapping = page_mapping(page);
  1075. if (mapping && !mapping->a_ops->migratepage)
  1076. return ret;
  1077. }
  1078. }
  1079. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  1080. return ret;
  1081. if (likely(get_page_unless_zero(page))) {
  1082. /*
  1083. * Be careful not to clear PageLRU until after we're
  1084. * sure the page is not being freed elsewhere -- the
  1085. * page release code relies on it.
  1086. */
  1087. ClearPageLRU(page);
  1088. ret = 0;
  1089. }
  1090. return ret;
  1091. }
  1092. /*
  1093. * zone->lru_lock is heavily contended. Some of the functions that
  1094. * shrink the lists perform better by taking out a batch of pages
  1095. * and working on them outside the LRU lock.
  1096. *
  1097. * For pagecache intensive workloads, this function is the hottest
  1098. * spot in the kernel (apart from copy_*_user functions).
  1099. *
  1100. * Appropriate locks must be held before calling this function.
  1101. *
  1102. * @nr_to_scan: The number of pages to look through on the list.
  1103. * @lruvec: The LRU vector to pull pages from.
  1104. * @dst: The temp list to put pages on to.
  1105. * @nr_scanned: The number of pages that were scanned.
  1106. * @sc: The scan_control struct for this reclaim session
  1107. * @mode: One of the LRU isolation modes
  1108. * @lru: LRU list id for isolating
  1109. *
  1110. * returns how many pages were moved onto *@dst.
  1111. */
  1112. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  1113. struct lruvec *lruvec, struct list_head *dst,
  1114. unsigned long *nr_scanned, struct scan_control *sc,
  1115. isolate_mode_t mode, enum lru_list lru)
  1116. {
  1117. struct list_head *src = &lruvec->lists[lru];
  1118. unsigned long nr_taken = 0;
  1119. unsigned long scan;
  1120. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  1121. struct page *page;
  1122. int nr_pages;
  1123. page = lru_to_page(src);
  1124. prefetchw_prev_lru_page(page, src, flags);
  1125. VM_BUG_ON_PAGE(!PageLRU(page), page);
  1126. switch (__isolate_lru_page(page, mode)) {
  1127. case 0:
  1128. nr_pages = hpage_nr_pages(page);
  1129. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  1130. list_move(&page->lru, dst);
  1131. nr_taken += nr_pages;
  1132. break;
  1133. case -EBUSY:
  1134. /* else it is being freed elsewhere */
  1135. list_move(&page->lru, src);
  1136. continue;
  1137. default:
  1138. BUG();
  1139. }
  1140. }
  1141. *nr_scanned = scan;
  1142. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  1143. nr_taken, mode, is_file_lru(lru));
  1144. return nr_taken;
  1145. }
  1146. /**
  1147. * isolate_lru_page - tries to isolate a page from its LRU list
  1148. * @page: page to isolate from its LRU list
  1149. *
  1150. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1151. * vmstat statistic corresponding to whatever LRU list the page was on.
  1152. *
  1153. * Returns 0 if the page was removed from an LRU list.
  1154. * Returns -EBUSY if the page was not on an LRU list.
  1155. *
  1156. * The returned page will have PageLRU() cleared. If it was found on
  1157. * the active list, it will have PageActive set. If it was found on
  1158. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1159. * may need to be cleared by the caller before letting the page go.
  1160. *
  1161. * The vmstat statistic corresponding to the list on which the page was
  1162. * found will be decremented.
  1163. *
  1164. * Restrictions:
  1165. * (1) Must be called with an elevated refcount on the page. This is a
  1166. * fundamentnal difference from isolate_lru_pages (which is called
  1167. * without a stable reference).
  1168. * (2) the lru_lock must not be held.
  1169. * (3) interrupts must be enabled.
  1170. */
  1171. int isolate_lru_page(struct page *page)
  1172. {
  1173. int ret = -EBUSY;
  1174. VM_BUG_ON_PAGE(!page_count(page), page);
  1175. if (PageLRU(page)) {
  1176. struct zone *zone = page_zone(page);
  1177. struct lruvec *lruvec;
  1178. spin_lock_irq(&zone->lru_lock);
  1179. lruvec = mem_cgroup_page_lruvec(page, zone);
  1180. if (PageLRU(page)) {
  1181. int lru = page_lru(page);
  1182. get_page(page);
  1183. ClearPageLRU(page);
  1184. del_page_from_lru_list(page, lruvec, lru);
  1185. ret = 0;
  1186. }
  1187. spin_unlock_irq(&zone->lru_lock);
  1188. }
  1189. return ret;
  1190. }
  1191. /*
  1192. * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
  1193. * then get resheduled. When there are massive number of tasks doing page
  1194. * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
  1195. * the LRU list will go small and be scanned faster than necessary, leading to
  1196. * unnecessary swapping, thrashing and OOM.
  1197. */
  1198. static int too_many_isolated(struct zone *zone, int file,
  1199. struct scan_control *sc)
  1200. {
  1201. unsigned long inactive, isolated;
  1202. if (current_is_kswapd())
  1203. return 0;
  1204. if (!global_reclaim(sc))
  1205. return 0;
  1206. if (file) {
  1207. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1208. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1209. } else {
  1210. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1211. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1212. }
  1213. /*
  1214. * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
  1215. * won't get blocked by normal direct-reclaimers, forming a circular
  1216. * deadlock.
  1217. */
  1218. if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
  1219. inactive >>= 3;
  1220. return isolated > inactive;
  1221. }
  1222. static noinline_for_stack void
  1223. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1224. {
  1225. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1226. struct zone *zone = lruvec_zone(lruvec);
  1227. LIST_HEAD(pages_to_free);
  1228. /*
  1229. * Put back any unfreeable pages.
  1230. */
  1231. while (!list_empty(page_list)) {
  1232. struct page *page = lru_to_page(page_list);
  1233. int lru;
  1234. VM_BUG_ON_PAGE(PageLRU(page), page);
  1235. list_del(&page->lru);
  1236. if (unlikely(!page_evictable(page))) {
  1237. spin_unlock_irq(&zone->lru_lock);
  1238. putback_lru_page(page);
  1239. spin_lock_irq(&zone->lru_lock);
  1240. continue;
  1241. }
  1242. lruvec = mem_cgroup_page_lruvec(page, zone);
  1243. SetPageLRU(page);
  1244. lru = page_lru(page);
  1245. add_page_to_lru_list(page, lruvec, lru);
  1246. if (is_active_lru(lru)) {
  1247. int file = is_file_lru(lru);
  1248. int numpages = hpage_nr_pages(page);
  1249. reclaim_stat->recent_rotated[file] += numpages;
  1250. }
  1251. if (put_page_testzero(page)) {
  1252. __ClearPageLRU(page);
  1253. __ClearPageActive(page);
  1254. del_page_from_lru_list(page, lruvec, lru);
  1255. if (unlikely(PageCompound(page))) {
  1256. spin_unlock_irq(&zone->lru_lock);
  1257. (*get_compound_page_dtor(page))(page);
  1258. spin_lock_irq(&zone->lru_lock);
  1259. } else
  1260. list_add(&page->lru, &pages_to_free);
  1261. }
  1262. }
  1263. /*
  1264. * To save our caller's stack, now use input list for pages to free.
  1265. */
  1266. list_splice(&pages_to_free, page_list);
  1267. }
  1268. /*
  1269. * If a kernel thread (such as nfsd for loop-back mounts) services
  1270. * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
  1271. * In that case we should only throttle if the backing device it is
  1272. * writing to is congested. In other cases it is safe to throttle.
  1273. */
  1274. static int current_may_throttle(void)
  1275. {
  1276. return !(current->flags & PF_LESS_THROTTLE) ||
  1277. current->backing_dev_info == NULL ||
  1278. bdi_write_congested(current->backing_dev_info);
  1279. }
  1280. /*
  1281. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1282. * of reclaimed pages
  1283. */
  1284. static noinline_for_stack unsigned long
  1285. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1286. struct scan_control *sc, enum lru_list lru)
  1287. {
  1288. LIST_HEAD(page_list);
  1289. unsigned long nr_scanned;
  1290. unsigned long nr_reclaimed = 0;
  1291. unsigned long nr_taken;
  1292. unsigned long nr_dirty = 0;
  1293. unsigned long nr_congested = 0;
  1294. unsigned long nr_unqueued_dirty = 0;
  1295. unsigned long nr_writeback = 0;
  1296. unsigned long nr_immediate = 0;
  1297. isolate_mode_t isolate_mode = 0;
  1298. int file = is_file_lru(lru);
  1299. struct zone *zone = lruvec_zone(lruvec);
  1300. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1301. while (unlikely(too_many_isolated(zone, file, sc))) {
  1302. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1303. /* We are about to die and free our memory. Return now. */
  1304. if (fatal_signal_pending(current))
  1305. return SWAP_CLUSTER_MAX;
  1306. }
  1307. lru_add_drain();
  1308. if (!sc->may_unmap)
  1309. isolate_mode |= ISOLATE_UNMAPPED;
  1310. if (!sc->may_writepage)
  1311. isolate_mode |= ISOLATE_CLEAN;
  1312. spin_lock_irq(&zone->lru_lock);
  1313. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1314. &nr_scanned, sc, isolate_mode, lru);
  1315. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1316. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1317. if (global_reclaim(sc)) {
  1318. zone->pages_scanned += nr_scanned;
  1319. if (current_is_kswapd())
  1320. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1321. else
  1322. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1323. }
  1324. spin_unlock_irq(&zone->lru_lock);
  1325. if (nr_taken == 0)
  1326. return 0;
  1327. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1328. &nr_dirty, &nr_unqueued_dirty, &nr_congested,
  1329. &nr_writeback, &nr_immediate,
  1330. false);
  1331. spin_lock_irq(&zone->lru_lock);
  1332. reclaim_stat->recent_scanned[file] += nr_taken;
  1333. if (global_reclaim(sc)) {
  1334. if (current_is_kswapd())
  1335. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1336. nr_reclaimed);
  1337. else
  1338. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1339. nr_reclaimed);
  1340. }
  1341. putback_inactive_pages(lruvec, &page_list);
  1342. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1343. spin_unlock_irq(&zone->lru_lock);
  1344. free_hot_cold_page_list(&page_list, 1);
  1345. /*
  1346. * If reclaim is isolating dirty pages under writeback, it implies
  1347. * that the long-lived page allocation rate is exceeding the page
  1348. * laundering rate. Either the global limits are not being effective
  1349. * at throttling processes due to the page distribution throughout
  1350. * zones or there is heavy usage of a slow backing device. The
  1351. * only option is to throttle from reclaim context which is not ideal
  1352. * as there is no guarantee the dirtying process is throttled in the
  1353. * same way balance_dirty_pages() manages.
  1354. *
  1355. * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
  1356. * of pages under pages flagged for immediate reclaim and stall if any
  1357. * are encountered in the nr_immediate check below.
  1358. */
  1359. if (nr_writeback && nr_writeback == nr_taken)
  1360. zone_set_flag(zone, ZONE_WRITEBACK);
  1361. /*
  1362. * memcg will stall in page writeback so only consider forcibly
  1363. * stalling for global reclaim
  1364. */
  1365. if (global_reclaim(sc)) {
  1366. /*
  1367. * Tag a zone as congested if all the dirty pages scanned were
  1368. * backed by a congested BDI and wait_iff_congested will stall.
  1369. */
  1370. if (nr_dirty && nr_dirty == nr_congested)
  1371. zone_set_flag(zone, ZONE_CONGESTED);
  1372. /*
  1373. * If dirty pages are scanned that are not queued for IO, it
  1374. * implies that flushers are not keeping up. In this case, flag
  1375. * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
  1376. * pages from reclaim context. It will forcibly stall in the
  1377. * next check.
  1378. */
  1379. if (nr_unqueued_dirty == nr_taken)
  1380. zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
  1381. /*
  1382. * In addition, if kswapd scans pages marked marked for
  1383. * immediate reclaim and under writeback (nr_immediate), it
  1384. * implies that pages are cycling through the LRU faster than
  1385. * they are written so also forcibly stall.
  1386. */
  1387. if ((nr_unqueued_dirty == nr_taken || nr_immediate) &&
  1388. current_may_throttle())
  1389. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1390. }
  1391. /*
  1392. * Stall direct reclaim for IO completions if underlying BDIs or zone
  1393. * is congested. Allow kswapd to continue until it starts encountering
  1394. * unqueued dirty pages or cycling through the LRU too quickly.
  1395. */
  1396. if (!sc->hibernation_mode && !current_is_kswapd() &&
  1397. current_may_throttle())
  1398. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1399. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1400. zone_idx(zone),
  1401. nr_scanned, nr_reclaimed,
  1402. sc->priority,
  1403. trace_shrink_flags(file));
  1404. return nr_reclaimed;
  1405. }
  1406. /*
  1407. * This moves pages from the active list to the inactive list.
  1408. *
  1409. * We move them the other way if the page is referenced by one or more
  1410. * processes, from rmap.
  1411. *
  1412. * If the pages are mostly unmapped, the processing is fast and it is
  1413. * appropriate to hold zone->lru_lock across the whole operation. But if
  1414. * the pages are mapped, the processing is slow (page_referenced()) so we
  1415. * should drop zone->lru_lock around each page. It's impossible to balance
  1416. * this, so instead we remove the pages from the LRU while processing them.
  1417. * It is safe to rely on PG_active against the non-LRU pages in here because
  1418. * nobody will play with that bit on a non-LRU page.
  1419. *
  1420. * The downside is that we have to touch page->_count against each page.
  1421. * But we had to alter page->flags anyway.
  1422. */
  1423. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1424. struct list_head *list,
  1425. struct list_head *pages_to_free,
  1426. enum lru_list lru)
  1427. {
  1428. struct zone *zone = lruvec_zone(lruvec);
  1429. unsigned long pgmoved = 0;
  1430. struct page *page;
  1431. int nr_pages;
  1432. while (!list_empty(list)) {
  1433. page = lru_to_page(list);
  1434. lruvec = mem_cgroup_page_lruvec(page, zone);
  1435. VM_BUG_ON_PAGE(PageLRU(page), page);
  1436. SetPageLRU(page);
  1437. nr_pages = hpage_nr_pages(page);
  1438. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1439. list_move(&page->lru, &lruvec->lists[lru]);
  1440. pgmoved += nr_pages;
  1441. if (put_page_testzero(page)) {
  1442. __ClearPageLRU(page);
  1443. __ClearPageActive(page);
  1444. del_page_from_lru_list(page, lruvec, lru);
  1445. if (unlikely(PageCompound(page))) {
  1446. spin_unlock_irq(&zone->lru_lock);
  1447. (*get_compound_page_dtor(page))(page);
  1448. spin_lock_irq(&zone->lru_lock);
  1449. } else
  1450. list_add(&page->lru, pages_to_free);
  1451. }
  1452. }
  1453. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1454. if (!is_active_lru(lru))
  1455. __count_vm_events(PGDEACTIVATE, pgmoved);
  1456. }
  1457. static void shrink_active_list(unsigned long nr_to_scan,
  1458. struct lruvec *lruvec,
  1459. struct scan_control *sc,
  1460. enum lru_list lru)
  1461. {
  1462. unsigned long nr_taken;
  1463. unsigned long nr_scanned;
  1464. unsigned long vm_flags;
  1465. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1466. LIST_HEAD(l_active);
  1467. LIST_HEAD(l_inactive);
  1468. struct page *page;
  1469. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1470. unsigned long nr_rotated = 0;
  1471. isolate_mode_t isolate_mode = 0;
  1472. int file = is_file_lru(lru);
  1473. struct zone *zone = lruvec_zone(lruvec);
  1474. lru_add_drain();
  1475. if (!sc->may_unmap)
  1476. isolate_mode |= ISOLATE_UNMAPPED;
  1477. if (!sc->may_writepage)
  1478. isolate_mode |= ISOLATE_CLEAN;
  1479. spin_lock_irq(&zone->lru_lock);
  1480. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1481. &nr_scanned, sc, isolate_mode, lru);
  1482. if (global_reclaim(sc))
  1483. zone->pages_scanned += nr_scanned;
  1484. reclaim_stat->recent_scanned[file] += nr_taken;
  1485. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1486. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1487. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1488. spin_unlock_irq(&zone->lru_lock);
  1489. while (!list_empty(&l_hold)) {
  1490. cond_resched();
  1491. page = lru_to_page(&l_hold);
  1492. list_del(&page->lru);
  1493. if (unlikely(!page_evictable(page))) {
  1494. putback_lru_page(page);
  1495. continue;
  1496. }
  1497. if (unlikely(buffer_heads_over_limit)) {
  1498. if (page_has_private(page) && trylock_page(page)) {
  1499. if (page_has_private(page))
  1500. try_to_release_page(page, 0);
  1501. unlock_page(page);
  1502. }
  1503. }
  1504. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1505. &vm_flags)) {
  1506. nr_rotated += hpage_nr_pages(page);
  1507. /*
  1508. * Identify referenced, file-backed active pages and
  1509. * give them one more trip around the active list. So
  1510. * that executable code get better chances to stay in
  1511. * memory under moderate memory pressure. Anon pages
  1512. * are not likely to be evicted by use-once streaming
  1513. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1514. * so we ignore them here.
  1515. */
  1516. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1517. list_add(&page->lru, &l_active);
  1518. continue;
  1519. }
  1520. }
  1521. ClearPageActive(page); /* we are de-activating */
  1522. list_add(&page->lru, &l_inactive);
  1523. }
  1524. /*
  1525. * Move pages back to the lru list.
  1526. */
  1527. spin_lock_irq(&zone->lru_lock);
  1528. /*
  1529. * Count referenced pages from currently used mappings as rotated,
  1530. * even though only some of them are actually re-activated. This
  1531. * helps balance scan pressure between file and anonymous pages in
  1532. * get_scan_ratio.
  1533. */
  1534. reclaim_stat->recent_rotated[file] += nr_rotated;
  1535. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1536. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1537. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1538. spin_unlock_irq(&zone->lru_lock);
  1539. free_hot_cold_page_list(&l_hold, 1);
  1540. }
  1541. #ifdef CONFIG_SWAP
  1542. static int inactive_anon_is_low_global(struct zone *zone)
  1543. {
  1544. unsigned long active, inactive;
  1545. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1546. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1547. if (inactive * zone->inactive_ratio < active)
  1548. return 1;
  1549. return 0;
  1550. }
  1551. /**
  1552. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1553. * @lruvec: LRU vector to check
  1554. *
  1555. * Returns true if the zone does not have enough inactive anon pages,
  1556. * meaning some active anon pages need to be deactivated.
  1557. */
  1558. static int inactive_anon_is_low(struct lruvec *lruvec)
  1559. {
  1560. /*
  1561. * If we don't have swap space, anonymous page deactivation
  1562. * is pointless.
  1563. */
  1564. if (!total_swap_pages)
  1565. return 0;
  1566. if (!mem_cgroup_disabled())
  1567. return mem_cgroup_inactive_anon_is_low(lruvec);
  1568. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1569. }
  1570. #else
  1571. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1572. {
  1573. return 0;
  1574. }
  1575. #endif
  1576. /**
  1577. * inactive_file_is_low - check if file pages need to be deactivated
  1578. * @lruvec: LRU vector to check
  1579. *
  1580. * When the system is doing streaming IO, memory pressure here
  1581. * ensures that active file pages get deactivated, until more
  1582. * than half of the file pages are on the inactive list.
  1583. *
  1584. * Once we get to that situation, protect the system's working
  1585. * set from being evicted by disabling active file page aging.
  1586. *
  1587. * This uses a different ratio than the anonymous pages, because
  1588. * the page cache uses a use-once replacement algorithm.
  1589. */
  1590. static int inactive_file_is_low(struct lruvec *lruvec)
  1591. {
  1592. unsigned long inactive;
  1593. unsigned long active;
  1594. inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1595. active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
  1596. return active > inactive;
  1597. }
  1598. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1599. {
  1600. if (is_file_lru(lru))
  1601. return inactive_file_is_low(lruvec);
  1602. else
  1603. return inactive_anon_is_low(lruvec);
  1604. }
  1605. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1606. struct lruvec *lruvec, struct scan_control *sc)
  1607. {
  1608. if (is_active_lru(lru)) {
  1609. if (inactive_list_is_low(lruvec, lru))
  1610. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1611. return 0;
  1612. }
  1613. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1614. }
  1615. static int vmscan_swappiness(struct scan_control *sc)
  1616. {
  1617. if (global_reclaim(sc))
  1618. return vm_swappiness;
  1619. return mem_cgroup_swappiness(sc->target_mem_cgroup);
  1620. }
  1621. enum scan_balance {
  1622. SCAN_EQUAL,
  1623. SCAN_FRACT,
  1624. SCAN_ANON,
  1625. SCAN_FILE,
  1626. };
  1627. /*
  1628. * Determine how aggressively the anon and file LRU lists should be
  1629. * scanned. The relative value of each set of LRU lists is determined
  1630. * by looking at the fraction of the pages scanned we did rotate back
  1631. * onto the active list instead of evict.
  1632. *
  1633. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1634. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1635. */
  1636. static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
  1637. unsigned long *nr)
  1638. {
  1639. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1640. u64 fraction[2];
  1641. u64 denominator = 0; /* gcc */
  1642. struct zone *zone = lruvec_zone(lruvec);
  1643. unsigned long anon_prio, file_prio;
  1644. enum scan_balance scan_balance;
  1645. unsigned long anon, file;
  1646. bool force_scan = false;
  1647. unsigned long ap, fp;
  1648. enum lru_list lru;
  1649. bool some_scanned;
  1650. int pass;
  1651. /*
  1652. * If the zone or memcg is small, nr[l] can be 0. This
  1653. * results in no scanning on this priority and a potential
  1654. * priority drop. Global direct reclaim can go to the next
  1655. * zone and tends to have no problems. Global kswapd is for
  1656. * zone balancing and it needs to scan a minimum amount. When
  1657. * reclaiming for a memcg, a priority drop can cause high
  1658. * latencies, so it's better to scan a minimum amount there as
  1659. * well.
  1660. */
  1661. if (current_is_kswapd() && !zone_reclaimable(zone))
  1662. force_scan = true;
  1663. if (!global_reclaim(sc))
  1664. force_scan = true;
  1665. /* If we have no swap space, do not bother scanning anon pages. */
  1666. if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
  1667. scan_balance = SCAN_FILE;
  1668. goto out;
  1669. }
  1670. /*
  1671. * Global reclaim will swap to prevent OOM even with no
  1672. * swappiness, but memcg users want to use this knob to
  1673. * disable swapping for individual groups completely when
  1674. * using the memory controller's swap limit feature would be
  1675. * too expensive.
  1676. */
  1677. if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
  1678. scan_balance = SCAN_FILE;
  1679. goto out;
  1680. }
  1681. /*
  1682. * Do not apply any pressure balancing cleverness when the
  1683. * system is close to OOM, scan both anon and file equally
  1684. * (unless the swappiness setting disagrees with swapping).
  1685. */
  1686. if (!sc->priority && vmscan_swappiness(sc)) {
  1687. scan_balance = SCAN_EQUAL;
  1688. goto out;
  1689. }
  1690. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1691. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1692. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1693. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1694. /*
  1695. * Prevent the reclaimer from falling into the cache trap: as
  1696. * cache pages start out inactive, every cache fault will tip
  1697. * the scan balance towards the file LRU. And as the file LRU
  1698. * shrinks, so does the window for rotation from references.
  1699. * This means we have a runaway feedback loop where a tiny
  1700. * thrashing file LRU becomes infinitely more attractive than
  1701. * anon pages. Try to detect this based on file LRU size.
  1702. */
  1703. if (global_reclaim(sc)) {
  1704. unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
  1705. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1706. scan_balance = SCAN_ANON;
  1707. goto out;
  1708. }
  1709. }
  1710. /*
  1711. * There is enough inactive page cache, do not reclaim
  1712. * anything from the anonymous working set right now.
  1713. */
  1714. if (!inactive_file_is_low(lruvec)) {
  1715. scan_balance = SCAN_FILE;
  1716. goto out;
  1717. }
  1718. scan_balance = SCAN_FRACT;
  1719. /*
  1720. * With swappiness at 100, anonymous and file have the same priority.
  1721. * This scanning priority is essentially the inverse of IO cost.
  1722. */
  1723. anon_prio = vmscan_swappiness(sc);
  1724. file_prio = 200 - anon_prio;
  1725. /*
  1726. * OK, so we have swap space and a fair amount of page cache
  1727. * pages. We use the recently rotated / recently scanned
  1728. * ratios to determine how valuable each cache is.
  1729. *
  1730. * Because workloads change over time (and to avoid overflow)
  1731. * we keep these statistics as a floating average, which ends
  1732. * up weighing recent references more than old ones.
  1733. *
  1734. * anon in [0], file in [1]
  1735. */
  1736. spin_lock_irq(&zone->lru_lock);
  1737. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1738. reclaim_stat->recent_scanned[0] /= 2;
  1739. reclaim_stat->recent_rotated[0] /= 2;
  1740. }
  1741. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1742. reclaim_stat->recent_scanned[1] /= 2;
  1743. reclaim_stat->recent_rotated[1] /= 2;
  1744. }
  1745. /*
  1746. * The amount of pressure on anon vs file pages is inversely
  1747. * proportional to the fraction of recently scanned pages on
  1748. * each list that were recently referenced and in active use.
  1749. */
  1750. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1751. ap /= reclaim_stat->recent_rotated[0] + 1;
  1752. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1753. fp /= reclaim_stat->recent_rotated[1] + 1;
  1754. spin_unlock_irq(&zone->lru_lock);
  1755. fraction[0] = ap;
  1756. fraction[1] = fp;
  1757. denominator = ap + fp + 1;
  1758. out:
  1759. some_scanned = false;
  1760. /* Only use force_scan on second pass. */
  1761. for (pass = 0; !some_scanned && pass < 2; pass++) {
  1762. for_each_evictable_lru(lru) {
  1763. int file = is_file_lru(lru);
  1764. unsigned long size;
  1765. unsigned long scan;
  1766. size = get_lru_size(lruvec, lru);
  1767. scan = size >> sc->priority;
  1768. if (!scan && pass && force_scan)
  1769. scan = min(size, SWAP_CLUSTER_MAX);
  1770. switch (scan_balance) {
  1771. case SCAN_EQUAL:
  1772. /* Scan lists relative to size */
  1773. break;
  1774. case SCAN_FRACT:
  1775. /*
  1776. * Scan types proportional to swappiness and
  1777. * their relative recent reclaim efficiency.
  1778. */
  1779. scan = div64_u64(scan * fraction[file],
  1780. denominator);
  1781. break;
  1782. case SCAN_FILE:
  1783. case SCAN_ANON:
  1784. /* Scan one type exclusively */
  1785. if ((scan_balance == SCAN_FILE) != file)
  1786. scan = 0;
  1787. break;
  1788. default:
  1789. /* Look ma, no brain */
  1790. BUG();
  1791. }
  1792. nr[lru] = scan;
  1793. /*
  1794. * Skip the second pass and don't force_scan,
  1795. * if we found something to scan.
  1796. */
  1797. some_scanned |= !!scan;
  1798. }
  1799. }
  1800. }
  1801. /*
  1802. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1803. */
  1804. static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
  1805. {
  1806. unsigned long nr[NR_LRU_LISTS];
  1807. unsigned long targets[NR_LRU_LISTS];
  1808. unsigned long nr_to_scan;
  1809. enum lru_list lru;
  1810. unsigned long nr_reclaimed = 0;
  1811. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1812. struct blk_plug plug;
  1813. bool scan_adjusted = false;
  1814. get_scan_count(lruvec, sc, nr);
  1815. /* Record the original scan target for proportional adjustments later */
  1816. memcpy(targets, nr, sizeof(nr));
  1817. blk_start_plug(&plug);
  1818. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1819. nr[LRU_INACTIVE_FILE]) {
  1820. unsigned long nr_anon, nr_file, percentage;
  1821. unsigned long nr_scanned;
  1822. for_each_evictable_lru(lru) {
  1823. if (nr[lru]) {
  1824. nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
  1825. nr[lru] -= nr_to_scan;
  1826. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1827. lruvec, sc);
  1828. }
  1829. }
  1830. if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
  1831. continue;
  1832. /*
  1833. * For global direct reclaim, reclaim only the number of pages
  1834. * requested. Less care is taken to scan proportionally as it
  1835. * is more important to minimise direct reclaim stall latency
  1836. * than it is to properly age the LRU lists.
  1837. */
  1838. if (global_reclaim(sc) && !current_is_kswapd())
  1839. break;
  1840. /*
  1841. * For kswapd and memcg, reclaim at least the number of pages
  1842. * requested. Ensure that the anon and file LRUs shrink
  1843. * proportionally what was requested by get_scan_count(). We
  1844. * stop reclaiming one LRU and reduce the amount scanning
  1845. * proportional to the original scan target.
  1846. */
  1847. nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
  1848. nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
  1849. if (nr_file > nr_anon) {
  1850. unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
  1851. targets[LRU_ACTIVE_ANON] + 1;
  1852. lru = LRU_BASE;
  1853. percentage = nr_anon * 100 / scan_target;
  1854. } else {
  1855. unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
  1856. targets[LRU_ACTIVE_FILE] + 1;
  1857. lru = LRU_FILE;
  1858. percentage = nr_file * 100 / scan_target;
  1859. }
  1860. /* Stop scanning the smaller of the LRU */
  1861. nr[lru] = 0;
  1862. nr[lru + LRU_ACTIVE] = 0;
  1863. /*
  1864. * Recalculate the other LRU scan count based on its original
  1865. * scan target and the percentage scanning already complete
  1866. */
  1867. lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
  1868. nr_scanned = targets[lru] - nr[lru];
  1869. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1870. nr[lru] -= min(nr[lru], nr_scanned);
  1871. lru += LRU_ACTIVE;
  1872. nr_scanned = targets[lru] - nr[lru];
  1873. nr[lru] = targets[lru] * (100 - percentage) / 100;
  1874. nr[lru] -= min(nr[lru], nr_scanned);
  1875. scan_adjusted = true;
  1876. }
  1877. blk_finish_plug(&plug);
  1878. sc->nr_reclaimed += nr_reclaimed;
  1879. /*
  1880. * Even if we did not try to evict anon pages at all, we want to
  1881. * rebalance the anon lru active/inactive ratio.
  1882. */
  1883. if (inactive_anon_is_low(lruvec))
  1884. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1885. sc, LRU_ACTIVE_ANON);
  1886. throttle_vm_writeout(sc->gfp_mask);
  1887. }
  1888. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1889. static bool in_reclaim_compaction(struct scan_control *sc)
  1890. {
  1891. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  1892. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1893. sc->priority < DEF_PRIORITY - 2))
  1894. return true;
  1895. return false;
  1896. }
  1897. /*
  1898. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1899. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1900. * true if more pages should be reclaimed such that when the page allocator
  1901. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1902. * It will give up earlier than that if there is difficulty reclaiming pages.
  1903. */
  1904. static inline bool should_continue_reclaim(struct zone *zone,
  1905. unsigned long nr_reclaimed,
  1906. unsigned long nr_scanned,
  1907. struct scan_control *sc)
  1908. {
  1909. unsigned long pages_for_compaction;
  1910. unsigned long inactive_lru_pages;
  1911. /* If not in reclaim/compaction mode, stop */
  1912. if (!in_reclaim_compaction(sc))
  1913. return false;
  1914. /* Consider stopping depending on scan and reclaim activity */
  1915. if (sc->gfp_mask & __GFP_REPEAT) {
  1916. /*
  1917. * For __GFP_REPEAT allocations, stop reclaiming if the
  1918. * full LRU list has been scanned and we are still failing
  1919. * to reclaim pages. This full LRU scan is potentially
  1920. * expensive but a __GFP_REPEAT caller really wants to succeed
  1921. */
  1922. if (!nr_reclaimed && !nr_scanned)
  1923. return false;
  1924. } else {
  1925. /*
  1926. * For non-__GFP_REPEAT allocations which can presumably
  1927. * fail without consequence, stop if we failed to reclaim
  1928. * any pages from the last SWAP_CLUSTER_MAX number of
  1929. * pages that were scanned. This will return to the
  1930. * caller faster at the risk reclaim/compaction and
  1931. * the resulting allocation attempt fails
  1932. */
  1933. if (!nr_reclaimed)
  1934. return false;
  1935. }
  1936. /*
  1937. * If we have not reclaimed enough pages for compaction and the
  1938. * inactive lists are large enough, continue reclaiming
  1939. */
  1940. pages_for_compaction = (2UL << sc->order);
  1941. inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
  1942. if (get_nr_swap_pages() > 0)
  1943. inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
  1944. if (sc->nr_reclaimed < pages_for_compaction &&
  1945. inactive_lru_pages > pages_for_compaction)
  1946. return true;
  1947. /* If compaction would go ahead or the allocation would succeed, stop */
  1948. switch (compaction_suitable(zone, sc->order)) {
  1949. case COMPACT_PARTIAL:
  1950. case COMPACT_CONTINUE:
  1951. return false;
  1952. default:
  1953. return true;
  1954. }
  1955. }
  1956. static void shrink_zone(struct zone *zone, struct scan_control *sc)
  1957. {
  1958. unsigned long nr_reclaimed, nr_scanned;
  1959. do {
  1960. struct mem_cgroup *root = sc->target_mem_cgroup;
  1961. struct mem_cgroup_reclaim_cookie reclaim = {
  1962. .zone = zone,
  1963. .priority = sc->priority,
  1964. };
  1965. struct mem_cgroup *memcg;
  1966. nr_reclaimed = sc->nr_reclaimed;
  1967. nr_scanned = sc->nr_scanned;
  1968. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1969. do {
  1970. struct lruvec *lruvec;
  1971. lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1972. shrink_lruvec(lruvec, sc);
  1973. /*
  1974. * Direct reclaim and kswapd have to scan all memory
  1975. * cgroups to fulfill the overall scan target for the
  1976. * zone.
  1977. *
  1978. * Limit reclaim, on the other hand, only cares about
  1979. * nr_to_reclaim pages to be reclaimed and it will
  1980. * retry with decreasing priority if one round over the
  1981. * whole hierarchy is not sufficient.
  1982. */
  1983. if (!global_reclaim(sc) &&
  1984. sc->nr_reclaimed >= sc->nr_to_reclaim) {
  1985. mem_cgroup_iter_break(root, memcg);
  1986. break;
  1987. }
  1988. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1989. } while (memcg);
  1990. vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
  1991. sc->nr_scanned - nr_scanned,
  1992. sc->nr_reclaimed - nr_reclaimed);
  1993. } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
  1994. sc->nr_scanned - nr_scanned, sc));
  1995. }
  1996. /* Returns true if compaction should go ahead for a high-order request */
  1997. static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
  1998. {
  1999. unsigned long balance_gap, watermark;
  2000. bool watermark_ok;
  2001. /* Do not consider compaction for orders reclaim is meant to satisfy */
  2002. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
  2003. return false;
  2004. /*
  2005. * Compaction takes time to run and there are potentially other
  2006. * callers using the pages just freed. Continue reclaiming until
  2007. * there is a buffer of free pages available to give compaction
  2008. * a reasonable chance of completing and allocating the page
  2009. */
  2010. balance_gap = min(low_wmark_pages(zone),
  2011. (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2012. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2013. watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
  2014. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  2015. /*
  2016. * If compaction is deferred, reclaim up to a point where
  2017. * compaction will have a chance of success when re-enabled
  2018. */
  2019. if (compaction_deferred(zone, sc->order))
  2020. return watermark_ok;
  2021. /* If compaction is not ready to start, keep reclaiming */
  2022. if (!compaction_suitable(zone, sc->order))
  2023. return false;
  2024. return watermark_ok;
  2025. }
  2026. /*
  2027. * This is the direct reclaim path, for page-allocating processes. We only
  2028. * try to reclaim pages from zones which will satisfy the caller's allocation
  2029. * request.
  2030. *
  2031. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  2032. * Because:
  2033. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  2034. * allocation or
  2035. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  2036. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  2037. * zone defense algorithm.
  2038. *
  2039. * If a zone is deemed to be full of pinned pages then just give it a light
  2040. * scan then give up on it.
  2041. *
  2042. * This function returns true if a zone is being reclaimed for a costly
  2043. * high-order allocation and compaction is ready to begin. This indicates to
  2044. * the caller that it should consider retrying the allocation instead of
  2045. * further reclaim.
  2046. */
  2047. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  2048. {
  2049. struct zoneref *z;
  2050. struct zone *zone;
  2051. unsigned long nr_soft_reclaimed;
  2052. unsigned long nr_soft_scanned;
  2053. unsigned long lru_pages = 0;
  2054. bool aborted_reclaim = false;
  2055. struct reclaim_state *reclaim_state = current->reclaim_state;
  2056. gfp_t orig_mask;
  2057. struct shrink_control shrink = {
  2058. .gfp_mask = sc->gfp_mask,
  2059. };
  2060. enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
  2061. /*
  2062. * If the number of buffer_heads in the machine exceeds the maximum
  2063. * allowed level, force direct reclaim to scan the highmem zone as
  2064. * highmem pages could be pinning lowmem pages storing buffer_heads
  2065. */
  2066. orig_mask = sc->gfp_mask;
  2067. if (buffer_heads_over_limit)
  2068. sc->gfp_mask |= __GFP_HIGHMEM;
  2069. nodes_clear(shrink.nodes_to_scan);
  2070. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2071. gfp_zone(sc->gfp_mask), sc->nodemask) {
  2072. if (!populated_zone(zone))
  2073. continue;
  2074. /*
  2075. * Take care memory controller reclaiming has small influence
  2076. * to global LRU.
  2077. */
  2078. if (global_reclaim(sc)) {
  2079. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2080. continue;
  2081. lru_pages += zone_reclaimable_pages(zone);
  2082. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  2083. if (sc->priority != DEF_PRIORITY &&
  2084. !zone_reclaimable(zone))
  2085. continue; /* Let kswapd poll it */
  2086. if (IS_ENABLED(CONFIG_COMPACTION)) {
  2087. /*
  2088. * If we already have plenty of memory free for
  2089. * compaction in this zone, don't free any more.
  2090. * Even though compaction is invoked for any
  2091. * non-zero order, only frequent costly order
  2092. * reclamation is disruptive enough to become a
  2093. * noticeable problem, like transparent huge
  2094. * page allocations.
  2095. */
  2096. if ((zonelist_zone_idx(z) <= requested_highidx)
  2097. && compaction_ready(zone, sc)) {
  2098. aborted_reclaim = true;
  2099. continue;
  2100. }
  2101. }
  2102. /*
  2103. * This steals pages from memory cgroups over softlimit
  2104. * and returns the number of reclaimed pages and
  2105. * scanned pages. This works for global memory pressure
  2106. * and balancing, not for a memcg's limit.
  2107. */
  2108. nr_soft_scanned = 0;
  2109. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2110. sc->order, sc->gfp_mask,
  2111. &nr_soft_scanned);
  2112. sc->nr_reclaimed += nr_soft_reclaimed;
  2113. sc->nr_scanned += nr_soft_scanned;
  2114. /* need some check for avoid more shrink_zone() */
  2115. }
  2116. shrink_zone(zone, sc);
  2117. }
  2118. /*
  2119. * Don't shrink slabs when reclaiming memory from over limit cgroups
  2120. * but do shrink slab at least once when aborting reclaim for
  2121. * compaction to avoid unevenly scanning file/anon LRU pages over slab
  2122. * pages.
  2123. */
  2124. if (global_reclaim(sc)) {
  2125. shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2126. if (reclaim_state) {
  2127. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2128. reclaim_state->reclaimed_slab = 0;
  2129. }
  2130. }
  2131. /*
  2132. * Restore to original mask to avoid the impact on the caller if we
  2133. * promoted it to __GFP_HIGHMEM.
  2134. */
  2135. sc->gfp_mask = orig_mask;
  2136. return aborted_reclaim;
  2137. }
  2138. /* All zones in zonelist are unreclaimable? */
  2139. static bool all_unreclaimable(struct zonelist *zonelist,
  2140. struct scan_control *sc)
  2141. {
  2142. struct zoneref *z;
  2143. struct zone *zone;
  2144. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2145. gfp_zone(sc->gfp_mask), sc->nodemask) {
  2146. if (!populated_zone(zone))
  2147. continue;
  2148. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2149. continue;
  2150. if (zone_reclaimable(zone))
  2151. return false;
  2152. }
  2153. return true;
  2154. }
  2155. /*
  2156. * This is the main entry point to direct page reclaim.
  2157. *
  2158. * If a full scan of the inactive list fails to free enough memory then we
  2159. * are "out of memory" and something needs to be killed.
  2160. *
  2161. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  2162. * high - the zone may be full of dirty or under-writeback pages, which this
  2163. * caller can't do much about. We kick the writeback threads and take explicit
  2164. * naps in the hope that some of these pages can be written. But if the
  2165. * allocating task holds filesystem locks which prevent writeout this might not
  2166. * work, and the allocation attempt will fail.
  2167. *
  2168. * returns: 0, if no pages reclaimed
  2169. * else, the number of pages reclaimed
  2170. */
  2171. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  2172. struct scan_control *sc)
  2173. {
  2174. unsigned long total_scanned = 0;
  2175. unsigned long writeback_threshold;
  2176. bool aborted_reclaim;
  2177. delayacct_freepages_start();
  2178. if (global_reclaim(sc))
  2179. count_vm_event(ALLOCSTALL);
  2180. do {
  2181. vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
  2182. sc->priority);
  2183. sc->nr_scanned = 0;
  2184. aborted_reclaim = shrink_zones(zonelist, sc);
  2185. total_scanned += sc->nr_scanned;
  2186. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  2187. goto out;
  2188. /*
  2189. * If we're getting trouble reclaiming, start doing
  2190. * writepage even in laptop mode.
  2191. */
  2192. if (sc->priority < DEF_PRIORITY - 2)
  2193. sc->may_writepage = 1;
  2194. /*
  2195. * Try to write back as many pages as we just scanned. This
  2196. * tends to cause slow streaming writers to write data to the
  2197. * disk smoothly, at the dirtying rate, which is nice. But
  2198. * that's undesirable in laptop mode, where we *want* lumpy
  2199. * writeout. So in laptop mode, write out the whole world.
  2200. */
  2201. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  2202. if (total_scanned > writeback_threshold) {
  2203. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  2204. WB_REASON_TRY_TO_FREE_PAGES);
  2205. sc->may_writepage = 1;
  2206. }
  2207. } while (--sc->priority >= 0 && !aborted_reclaim);
  2208. out:
  2209. delayacct_freepages_end();
  2210. if (sc->nr_reclaimed)
  2211. return sc->nr_reclaimed;
  2212. /*
  2213. * As hibernation is going on, kswapd is freezed so that it can't mark
  2214. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  2215. * check.
  2216. */
  2217. if (oom_killer_disabled)
  2218. return 0;
  2219. /* Aborted reclaim to try compaction? don't OOM, then */
  2220. if (aborted_reclaim)
  2221. return 1;
  2222. /* top priority shrink_zones still had more to do? don't OOM, then */
  2223. if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
  2224. return 1;
  2225. return 0;
  2226. }
  2227. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  2228. {
  2229. struct zone *zone;
  2230. unsigned long pfmemalloc_reserve = 0;
  2231. unsigned long free_pages = 0;
  2232. int i;
  2233. bool wmark_ok;
  2234. for (i = 0; i <= ZONE_NORMAL; i++) {
  2235. zone = &pgdat->node_zones[i];
  2236. if (!populated_zone(zone))
  2237. continue;
  2238. pfmemalloc_reserve += min_wmark_pages(zone);
  2239. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  2240. }
  2241. /* If there are no reserves (unexpected config) then do not throttle */
  2242. if (!pfmemalloc_reserve)
  2243. return true;
  2244. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  2245. /* kswapd must be awake if processes are being throttled */
  2246. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  2247. pgdat->classzone_idx = min(pgdat->classzone_idx,
  2248. (enum zone_type)ZONE_NORMAL);
  2249. wake_up_interruptible(&pgdat->kswapd_wait);
  2250. }
  2251. return wmark_ok;
  2252. }
  2253. /*
  2254. * Throttle direct reclaimers if backing storage is backed by the network
  2255. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  2256. * depleted. kswapd will continue to make progress and wake the processes
  2257. * when the low watermark is reached.
  2258. *
  2259. * Returns true if a fatal signal was delivered during throttling. If this
  2260. * happens, the page allocator should not consider triggering the OOM killer.
  2261. */
  2262. static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  2263. nodemask_t *nodemask)
  2264. {
  2265. struct zoneref *z;
  2266. struct zone *zone;
  2267. pg_data_t *pgdat = NULL;
  2268. /*
  2269. * Kernel threads should not be throttled as they may be indirectly
  2270. * responsible for cleaning pages necessary for reclaim to make forward
  2271. * progress. kjournald for example may enter direct reclaim while
  2272. * committing a transaction where throttling it could forcing other
  2273. * processes to block on log_wait_commit().
  2274. */
  2275. if (current->flags & PF_KTHREAD)
  2276. goto out;
  2277. /*
  2278. * If a fatal signal is pending, this process should not throttle.
  2279. * It should return quickly so it can exit and free its memory
  2280. */
  2281. if (fatal_signal_pending(current))
  2282. goto out;
  2283. /*
  2284. * Check if the pfmemalloc reserves are ok by finding the first node
  2285. * with a usable ZONE_NORMAL or lower zone. The expectation is that
  2286. * GFP_KERNEL will be required for allocating network buffers when
  2287. * swapping over the network so ZONE_HIGHMEM is unusable.
  2288. *
  2289. * Throttling is based on the first usable node and throttled processes
  2290. * wait on a queue until kswapd makes progress and wakes them. There
  2291. * is an affinity then between processes waking up and where reclaim
  2292. * progress has been made assuming the process wakes on the same node.
  2293. * More importantly, processes running on remote nodes will not compete
  2294. * for remote pfmemalloc reserves and processes on different nodes
  2295. * should make reasonable progress.
  2296. */
  2297. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2298. gfp_mask, nodemask) {
  2299. if (zone_idx(zone) > ZONE_NORMAL)
  2300. continue;
  2301. /* Throttle based on the first usable node */
  2302. pgdat = zone->zone_pgdat;
  2303. if (pfmemalloc_watermark_ok(pgdat))
  2304. goto out;
  2305. break;
  2306. }
  2307. /* If no zone was usable by the allocation flags then do not throttle */
  2308. if (!pgdat)
  2309. goto out;
  2310. /* Account for the throttling */
  2311. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  2312. /*
  2313. * If the caller cannot enter the filesystem, it's possible that it
  2314. * is due to the caller holding an FS lock or performing a journal
  2315. * transaction in the case of a filesystem like ext[3|4]. In this case,
  2316. * it is not safe to block on pfmemalloc_wait as kswapd could be
  2317. * blocked waiting on the same lock. Instead, throttle for up to a
  2318. * second before continuing.
  2319. */
  2320. if (!(gfp_mask & __GFP_FS)) {
  2321. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  2322. pfmemalloc_watermark_ok(pgdat), HZ);
  2323. goto check_pending;
  2324. }
  2325. /* Throttle until kswapd wakes the process */
  2326. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  2327. pfmemalloc_watermark_ok(pgdat));
  2328. check_pending:
  2329. if (fatal_signal_pending(current))
  2330. return true;
  2331. out:
  2332. return false;
  2333. }
  2334. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2335. gfp_t gfp_mask, nodemask_t *nodemask)
  2336. {
  2337. unsigned long nr_reclaimed;
  2338. struct scan_control sc = {
  2339. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  2340. .may_writepage = !laptop_mode,
  2341. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2342. .may_unmap = 1,
  2343. .may_swap = 1,
  2344. .order = order,
  2345. .priority = DEF_PRIORITY,
  2346. .target_mem_cgroup = NULL,
  2347. .nodemask = nodemask,
  2348. };
  2349. /*
  2350. * Do not enter reclaim if fatal signal was delivered while throttled.
  2351. * 1 is returned so that the page allocator does not OOM kill at this
  2352. * point.
  2353. */
  2354. if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
  2355. return 1;
  2356. trace_mm_vmscan_direct_reclaim_begin(order,
  2357. sc.may_writepage,
  2358. gfp_mask);
  2359. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2360. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2361. return nr_reclaimed;
  2362. }
  2363. #ifdef CONFIG_MEMCG
  2364. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2365. gfp_t gfp_mask, bool noswap,
  2366. struct zone *zone,
  2367. unsigned long *nr_scanned)
  2368. {
  2369. struct scan_control sc = {
  2370. .nr_scanned = 0,
  2371. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2372. .may_writepage = !laptop_mode,
  2373. .may_unmap = 1,
  2374. .may_swap = !noswap,
  2375. .order = 0,
  2376. .priority = 0,
  2377. .target_mem_cgroup = memcg,
  2378. };
  2379. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2380. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2381. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2382. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2383. sc.may_writepage,
  2384. sc.gfp_mask);
  2385. /*
  2386. * NOTE: Although we can get the priority field, using it
  2387. * here is not a good idea, since it limits the pages we can scan.
  2388. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2389. * will pick up pages from other mem cgroup's as well. We hack
  2390. * the priority and make it zero.
  2391. */
  2392. shrink_lruvec(lruvec, &sc);
  2393. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2394. *nr_scanned = sc.nr_scanned;
  2395. return sc.nr_reclaimed;
  2396. }
  2397. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2398. gfp_t gfp_mask,
  2399. bool noswap)
  2400. {
  2401. struct zonelist *zonelist;
  2402. unsigned long nr_reclaimed;
  2403. int nid;
  2404. struct scan_control sc = {
  2405. .may_writepage = !laptop_mode,
  2406. .may_unmap = 1,
  2407. .may_swap = !noswap,
  2408. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2409. .order = 0,
  2410. .priority = DEF_PRIORITY,
  2411. .target_mem_cgroup = memcg,
  2412. .nodemask = NULL, /* we don't care the placement */
  2413. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2414. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2415. };
  2416. /*
  2417. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2418. * take care of from where we get pages. So the node where we start the
  2419. * scan does not need to be the current node.
  2420. */
  2421. nid = mem_cgroup_select_victim_node(memcg);
  2422. zonelist = NODE_DATA(nid)->node_zonelists;
  2423. trace_mm_vmscan_memcg_reclaim_begin(0,
  2424. sc.may_writepage,
  2425. sc.gfp_mask);
  2426. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2427. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2428. return nr_reclaimed;
  2429. }
  2430. #endif
  2431. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2432. {
  2433. struct mem_cgroup *memcg;
  2434. if (!total_swap_pages)
  2435. return;
  2436. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2437. do {
  2438. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2439. if (inactive_anon_is_low(lruvec))
  2440. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2441. sc, LRU_ACTIVE_ANON);
  2442. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2443. } while (memcg);
  2444. }
  2445. static bool zone_balanced(struct zone *zone, int order,
  2446. unsigned long balance_gap, int classzone_idx)
  2447. {
  2448. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
  2449. balance_gap, classzone_idx, 0))
  2450. return false;
  2451. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2452. !compaction_suitable(zone, order))
  2453. return false;
  2454. return true;
  2455. }
  2456. /*
  2457. * pgdat_balanced() is used when checking if a node is balanced.
  2458. *
  2459. * For order-0, all zones must be balanced!
  2460. *
  2461. * For high-order allocations only zones that meet watermarks and are in a
  2462. * zone allowed by the callers classzone_idx are added to balanced_pages. The
  2463. * total of balanced pages must be at least 25% of the zones allowed by
  2464. * classzone_idx for the node to be considered balanced. Forcing all zones to
  2465. * be balanced for high orders can cause excessive reclaim when there are
  2466. * imbalanced zones.
  2467. * The choice of 25% is due to
  2468. * o a 16M DMA zone that is balanced will not balance a zone on any
  2469. * reasonable sized machine
  2470. * o On all other machines, the top zone must be at least a reasonable
  2471. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2472. * would need to be at least 256M for it to be balance a whole node.
  2473. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2474. * to balance a node on its own. These seemed like reasonable ratios.
  2475. */
  2476. static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
  2477. {
  2478. unsigned long managed_pages = 0;
  2479. unsigned long balanced_pages = 0;
  2480. int i;
  2481. /* Check the watermark levels */
  2482. for (i = 0; i <= classzone_idx; i++) {
  2483. struct zone *zone = pgdat->node_zones + i;
  2484. if (!populated_zone(zone))
  2485. continue;
  2486. managed_pages += zone->managed_pages;
  2487. /*
  2488. * A special case here:
  2489. *
  2490. * balance_pgdat() skips over all_unreclaimable after
  2491. * DEF_PRIORITY. Effectively, it considers them balanced so
  2492. * they must be considered balanced here as well!
  2493. */
  2494. if (!zone_reclaimable(zone)) {
  2495. balanced_pages += zone->managed_pages;
  2496. continue;
  2497. }
  2498. if (zone_balanced(zone, order, 0, i))
  2499. balanced_pages += zone->managed_pages;
  2500. else if (!order)
  2501. return false;
  2502. }
  2503. if (order)
  2504. return balanced_pages >= (managed_pages >> 2);
  2505. else
  2506. return true;
  2507. }
  2508. /*
  2509. * Prepare kswapd for sleeping. This verifies that there are no processes
  2510. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2511. *
  2512. * Returns true if kswapd is ready to sleep
  2513. */
  2514. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2515. int classzone_idx)
  2516. {
  2517. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2518. if (remaining)
  2519. return false;
  2520. /*
  2521. * There is a potential race between when kswapd checks its watermarks
  2522. * and a process gets throttled. There is also a potential race if
  2523. * processes get throttled, kswapd wakes, a large process exits therby
  2524. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2525. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2526. * so wake them now if necessary. If necessary, processes will wake
  2527. * kswapd and get throttled again
  2528. */
  2529. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2530. wake_up(&pgdat->pfmemalloc_wait);
  2531. return false;
  2532. }
  2533. return pgdat_balanced(pgdat, order, classzone_idx);
  2534. }
  2535. /*
  2536. * kswapd shrinks the zone by the number of pages required to reach
  2537. * the high watermark.
  2538. *
  2539. * Returns true if kswapd scanned at least the requested number of pages to
  2540. * reclaim or if the lack of progress was due to pages under writeback.
  2541. * This is used to determine if the scanning priority needs to be raised.
  2542. */
  2543. static bool kswapd_shrink_zone(struct zone *zone,
  2544. int classzone_idx,
  2545. struct scan_control *sc,
  2546. unsigned long lru_pages,
  2547. unsigned long *nr_attempted)
  2548. {
  2549. int testorder = sc->order;
  2550. unsigned long balance_gap;
  2551. struct reclaim_state *reclaim_state = current->reclaim_state;
  2552. struct shrink_control shrink = {
  2553. .gfp_mask = sc->gfp_mask,
  2554. };
  2555. bool lowmem_pressure;
  2556. /* Reclaim above the high watermark. */
  2557. sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
  2558. /*
  2559. * Kswapd reclaims only single pages with compaction enabled. Trying
  2560. * too hard to reclaim until contiguous free pages have become
  2561. * available can hurt performance by evicting too much useful data
  2562. * from memory. Do not reclaim more than needed for compaction.
  2563. */
  2564. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  2565. compaction_suitable(zone, sc->order) !=
  2566. COMPACT_SKIPPED)
  2567. testorder = 0;
  2568. /*
  2569. * We put equal pressure on every zone, unless one zone has way too
  2570. * many pages free already. The "too many pages" is defined as the
  2571. * high wmark plus a "gap" where the gap is either the low
  2572. * watermark or 1% of the zone, whichever is smaller.
  2573. */
  2574. balance_gap = min(low_wmark_pages(zone),
  2575. (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2576. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2577. /*
  2578. * If there is no low memory pressure or the zone is balanced then no
  2579. * reclaim is necessary
  2580. */
  2581. lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
  2582. if (!lowmem_pressure && zone_balanced(zone, testorder,
  2583. balance_gap, classzone_idx))
  2584. return true;
  2585. shrink_zone(zone, sc);
  2586. nodes_clear(shrink.nodes_to_scan);
  2587. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  2588. reclaim_state->reclaimed_slab = 0;
  2589. shrink_slab(&shrink, sc->nr_scanned, lru_pages);
  2590. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  2591. /* Account for the number of pages attempted to reclaim */
  2592. *nr_attempted += sc->nr_to_reclaim;
  2593. zone_clear_flag(zone, ZONE_WRITEBACK);
  2594. /*
  2595. * If a zone reaches its high watermark, consider it to be no longer
  2596. * congested. It's possible there are dirty pages backed by congested
  2597. * BDIs but as pressure is relieved, speculatively avoid congestion
  2598. * waits.
  2599. */
  2600. if (zone_reclaimable(zone) &&
  2601. zone_balanced(zone, testorder, 0, classzone_idx)) {
  2602. zone_clear_flag(zone, ZONE_CONGESTED);
  2603. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2604. }
  2605. return sc->nr_scanned >= sc->nr_to_reclaim;
  2606. }
  2607. /*
  2608. * For kswapd, balance_pgdat() will work across all this node's zones until
  2609. * they are all at high_wmark_pages(zone).
  2610. *
  2611. * Returns the final order kswapd was reclaiming at
  2612. *
  2613. * There is special handling here for zones which are full of pinned pages.
  2614. * This can happen if the pages are all mlocked, or if they are all used by
  2615. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2616. * What we do is to detect the case where all pages in the zone have been
  2617. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2618. * dead and from now on, only perform a short scan. Basically we're polling
  2619. * the zone for when the problem goes away.
  2620. *
  2621. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2622. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2623. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2624. * lower zones regardless of the number of free pages in the lower zones. This
  2625. * interoperates with the page allocator fallback scheme to ensure that aging
  2626. * of pages is balanced across the zones.
  2627. */
  2628. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2629. int *classzone_idx)
  2630. {
  2631. int i;
  2632. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2633. unsigned long nr_soft_reclaimed;
  2634. unsigned long nr_soft_scanned;
  2635. struct scan_control sc = {
  2636. .gfp_mask = GFP_KERNEL,
  2637. .priority = DEF_PRIORITY,
  2638. .may_unmap = 1,
  2639. .may_swap = 1,
  2640. .may_writepage = !laptop_mode,
  2641. .order = order,
  2642. .target_mem_cgroup = NULL,
  2643. };
  2644. count_vm_event(PAGEOUTRUN);
  2645. do {
  2646. unsigned long lru_pages = 0;
  2647. unsigned long nr_attempted = 0;
  2648. bool raise_priority = true;
  2649. bool pgdat_needs_compaction = (order > 0);
  2650. sc.nr_reclaimed = 0;
  2651. /*
  2652. * Scan in the highmem->dma direction for the highest
  2653. * zone which needs scanning
  2654. */
  2655. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2656. struct zone *zone = pgdat->node_zones + i;
  2657. if (!populated_zone(zone))
  2658. continue;
  2659. if (sc.priority != DEF_PRIORITY &&
  2660. !zone_reclaimable(zone))
  2661. continue;
  2662. /*
  2663. * Do some background aging of the anon list, to give
  2664. * pages a chance to be referenced before reclaiming.
  2665. */
  2666. age_active_anon(zone, &sc);
  2667. /*
  2668. * If the number of buffer_heads in the machine
  2669. * exceeds the maximum allowed level and this node
  2670. * has a highmem zone, force kswapd to reclaim from
  2671. * it to relieve lowmem pressure.
  2672. */
  2673. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2674. end_zone = i;
  2675. break;
  2676. }
  2677. if (!zone_balanced(zone, order, 0, 0)) {
  2678. end_zone = i;
  2679. break;
  2680. } else {
  2681. /*
  2682. * If balanced, clear the dirty and congested
  2683. * flags
  2684. */
  2685. zone_clear_flag(zone, ZONE_CONGESTED);
  2686. zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
  2687. }
  2688. }
  2689. if (i < 0)
  2690. goto out;
  2691. for (i = 0; i <= end_zone; i++) {
  2692. struct zone *zone = pgdat->node_zones + i;
  2693. if (!populated_zone(zone))
  2694. continue;
  2695. lru_pages += zone_reclaimable_pages(zone);
  2696. /*
  2697. * If any zone is currently balanced then kswapd will
  2698. * not call compaction as it is expected that the
  2699. * necessary pages are already available.
  2700. */
  2701. if (pgdat_needs_compaction &&
  2702. zone_watermark_ok(zone, order,
  2703. low_wmark_pages(zone),
  2704. *classzone_idx, 0))
  2705. pgdat_needs_compaction = false;
  2706. }
  2707. /*
  2708. * If we're getting trouble reclaiming, start doing writepage
  2709. * even in laptop mode.
  2710. */
  2711. if (sc.priority < DEF_PRIORITY - 2)
  2712. sc.may_writepage = 1;
  2713. /*
  2714. * Now scan the zone in the dma->highmem direction, stopping
  2715. * at the last zone which needs scanning.
  2716. *
  2717. * We do this because the page allocator works in the opposite
  2718. * direction. This prevents the page allocator from allocating
  2719. * pages behind kswapd's direction of progress, which would
  2720. * cause too much scanning of the lower zones.
  2721. */
  2722. for (i = 0; i <= end_zone; i++) {
  2723. struct zone *zone = pgdat->node_zones + i;
  2724. if (!populated_zone(zone))
  2725. continue;
  2726. if (sc.priority != DEF_PRIORITY &&
  2727. !zone_reclaimable(zone))
  2728. continue;
  2729. sc.nr_scanned = 0;
  2730. nr_soft_scanned = 0;
  2731. /*
  2732. * Call soft limit reclaim before calling shrink_zone.
  2733. */
  2734. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2735. order, sc.gfp_mask,
  2736. &nr_soft_scanned);
  2737. sc.nr_reclaimed += nr_soft_reclaimed;
  2738. /*
  2739. * There should be no need to raise the scanning
  2740. * priority if enough pages are already being scanned
  2741. * that that high watermark would be met at 100%
  2742. * efficiency.
  2743. */
  2744. if (kswapd_shrink_zone(zone, end_zone, &sc,
  2745. lru_pages, &nr_attempted))
  2746. raise_priority = false;
  2747. }
  2748. /*
  2749. * If the low watermark is met there is no need for processes
  2750. * to be throttled on pfmemalloc_wait as they should not be
  2751. * able to safely make forward progress. Wake them
  2752. */
  2753. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2754. pfmemalloc_watermark_ok(pgdat))
  2755. wake_up(&pgdat->pfmemalloc_wait);
  2756. /*
  2757. * Fragmentation may mean that the system cannot be rebalanced
  2758. * for high-order allocations in all zones. If twice the
  2759. * allocation size has been reclaimed and the zones are still
  2760. * not balanced then recheck the watermarks at order-0 to
  2761. * prevent kswapd reclaiming excessively. Assume that a
  2762. * process requested a high-order can direct reclaim/compact.
  2763. */
  2764. if (order && sc.nr_reclaimed >= 2UL << order)
  2765. order = sc.order = 0;
  2766. /* Check if kswapd should be suspending */
  2767. if (try_to_freeze() || kthread_should_stop())
  2768. break;
  2769. /*
  2770. * Compact if necessary and kswapd is reclaiming at least the
  2771. * high watermark number of pages as requsted
  2772. */
  2773. if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
  2774. compact_pgdat(pgdat, order);
  2775. /*
  2776. * Raise priority if scanning rate is too low or there was no
  2777. * progress in reclaiming pages
  2778. */
  2779. if (raise_priority || !sc.nr_reclaimed)
  2780. sc.priority--;
  2781. } while (sc.priority >= 1 &&
  2782. !pgdat_balanced(pgdat, order, *classzone_idx));
  2783. out:
  2784. /*
  2785. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2786. * makes a decision on the order we were last reclaiming at. However,
  2787. * if another caller entered the allocator slow path while kswapd
  2788. * was awake, order will remain at the higher level
  2789. */
  2790. *classzone_idx = end_zone;
  2791. return order;
  2792. }
  2793. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2794. {
  2795. long remaining = 0;
  2796. DEFINE_WAIT(wait);
  2797. if (freezing(current) || kthread_should_stop())
  2798. return;
  2799. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2800. /* Try to sleep for a short interval */
  2801. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2802. remaining = schedule_timeout(HZ/10);
  2803. finish_wait(&pgdat->kswapd_wait, &wait);
  2804. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2805. }
  2806. /*
  2807. * After a short sleep, check if it was a premature sleep. If not, then
  2808. * go fully to sleep until explicitly woken up.
  2809. */
  2810. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2811. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2812. /*
  2813. * vmstat counters are not perfectly accurate and the estimated
  2814. * value for counters such as NR_FREE_PAGES can deviate from the
  2815. * true value by nr_online_cpus * threshold. To avoid the zone
  2816. * watermarks being breached while under pressure, we reduce the
  2817. * per-cpu vmstat threshold while kswapd is awake and restore
  2818. * them before going back to sleep.
  2819. */
  2820. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2821. /*
  2822. * Compaction records what page blocks it recently failed to
  2823. * isolate pages from and skips them in the future scanning.
  2824. * When kswapd is going to sleep, it is reasonable to assume
  2825. * that pages and compaction may succeed so reset the cache.
  2826. */
  2827. reset_isolation_suitable(pgdat);
  2828. if (!kthread_should_stop())
  2829. schedule();
  2830. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2831. } else {
  2832. if (remaining)
  2833. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2834. else
  2835. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2836. }
  2837. finish_wait(&pgdat->kswapd_wait, &wait);
  2838. }
  2839. /*
  2840. * The background pageout daemon, started as a kernel thread
  2841. * from the init process.
  2842. *
  2843. * This basically trickles out pages so that we have _some_
  2844. * free memory available even if there is no other activity
  2845. * that frees anything up. This is needed for things like routing
  2846. * etc, where we otherwise might have all activity going on in
  2847. * asynchronous contexts that cannot page things out.
  2848. *
  2849. * If there are applications that are active memory-allocators
  2850. * (most normal use), this basically shouldn't matter.
  2851. */
  2852. static int kswapd(void *p)
  2853. {
  2854. unsigned long order, new_order;
  2855. unsigned balanced_order;
  2856. int classzone_idx, new_classzone_idx;
  2857. int balanced_classzone_idx;
  2858. pg_data_t *pgdat = (pg_data_t*)p;
  2859. struct task_struct *tsk = current;
  2860. struct reclaim_state reclaim_state = {
  2861. .reclaimed_slab = 0,
  2862. };
  2863. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2864. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2865. if (!cpumask_empty(cpumask))
  2866. set_cpus_allowed_ptr(tsk, cpumask);
  2867. current->reclaim_state = &reclaim_state;
  2868. /*
  2869. * Tell the memory management that we're a "memory allocator",
  2870. * and that if we need more memory we should get access to it
  2871. * regardless (see "__alloc_pages()"). "kswapd" should
  2872. * never get caught in the normal page freeing logic.
  2873. *
  2874. * (Kswapd normally doesn't need memory anyway, but sometimes
  2875. * you need a small amount of memory in order to be able to
  2876. * page out something else, and this flag essentially protects
  2877. * us from recursively trying to free more memory as we're
  2878. * trying to free the first piece of memory in the first place).
  2879. */
  2880. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2881. set_freezable();
  2882. order = new_order = 0;
  2883. balanced_order = 0;
  2884. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2885. balanced_classzone_idx = classzone_idx;
  2886. for ( ; ; ) {
  2887. bool ret;
  2888. /*
  2889. * If the last balance_pgdat was unsuccessful it's unlikely a
  2890. * new request of a similar or harder type will succeed soon
  2891. * so consider going to sleep on the basis we reclaimed at
  2892. */
  2893. if (balanced_classzone_idx >= new_classzone_idx &&
  2894. balanced_order == new_order) {
  2895. new_order = pgdat->kswapd_max_order;
  2896. new_classzone_idx = pgdat->classzone_idx;
  2897. pgdat->kswapd_max_order = 0;
  2898. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2899. }
  2900. if (order < new_order || classzone_idx > new_classzone_idx) {
  2901. /*
  2902. * Don't sleep if someone wants a larger 'order'
  2903. * allocation or has tigher zone constraints
  2904. */
  2905. order = new_order;
  2906. classzone_idx = new_classzone_idx;
  2907. } else {
  2908. kswapd_try_to_sleep(pgdat, balanced_order,
  2909. balanced_classzone_idx);
  2910. order = pgdat->kswapd_max_order;
  2911. classzone_idx = pgdat->classzone_idx;
  2912. new_order = order;
  2913. new_classzone_idx = classzone_idx;
  2914. pgdat->kswapd_max_order = 0;
  2915. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2916. }
  2917. ret = try_to_freeze();
  2918. if (kthread_should_stop())
  2919. break;
  2920. /*
  2921. * We can speed up thawing tasks if we don't call balance_pgdat
  2922. * after returning from the refrigerator
  2923. */
  2924. if (!ret) {
  2925. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2926. balanced_classzone_idx = classzone_idx;
  2927. balanced_order = balance_pgdat(pgdat, order,
  2928. &balanced_classzone_idx);
  2929. }
  2930. }
  2931. current->reclaim_state = NULL;
  2932. return 0;
  2933. }
  2934. /*
  2935. * A zone is low on free memory, so wake its kswapd task to service it.
  2936. */
  2937. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2938. {
  2939. pg_data_t *pgdat;
  2940. if (!populated_zone(zone))
  2941. return;
  2942. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2943. return;
  2944. pgdat = zone->zone_pgdat;
  2945. if (pgdat->kswapd_max_order < order) {
  2946. pgdat->kswapd_max_order = order;
  2947. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2948. }
  2949. if (!waitqueue_active(&pgdat->kswapd_wait))
  2950. return;
  2951. if (zone_balanced(zone, order, 0, 0))
  2952. return;
  2953. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2954. wake_up_interruptible(&pgdat->kswapd_wait);
  2955. }
  2956. #ifdef CONFIG_HIBERNATION
  2957. /*
  2958. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2959. * freed pages.
  2960. *
  2961. * Rather than trying to age LRUs the aim is to preserve the overall
  2962. * LRU order by reclaiming preferentially
  2963. * inactive > active > active referenced > active mapped
  2964. */
  2965. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2966. {
  2967. struct reclaim_state reclaim_state;
  2968. struct scan_control sc = {
  2969. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2970. .may_swap = 1,
  2971. .may_unmap = 1,
  2972. .may_writepage = 1,
  2973. .nr_to_reclaim = nr_to_reclaim,
  2974. .hibernation_mode = 1,
  2975. .order = 0,
  2976. .priority = DEF_PRIORITY,
  2977. };
  2978. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2979. struct task_struct *p = current;
  2980. unsigned long nr_reclaimed;
  2981. p->flags |= PF_MEMALLOC;
  2982. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2983. reclaim_state.reclaimed_slab = 0;
  2984. p->reclaim_state = &reclaim_state;
  2985. nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
  2986. p->reclaim_state = NULL;
  2987. lockdep_clear_current_reclaim_state();
  2988. p->flags &= ~PF_MEMALLOC;
  2989. return nr_reclaimed;
  2990. }
  2991. #endif /* CONFIG_HIBERNATION */
  2992. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2993. not required for correctness. So if the last cpu in a node goes
  2994. away, we get changed to run anywhere: as the first one comes back,
  2995. restore their cpu bindings. */
  2996. static int cpu_callback(struct notifier_block *nfb, unsigned long action,
  2997. void *hcpu)
  2998. {
  2999. int nid;
  3000. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  3001. for_each_node_state(nid, N_MEMORY) {
  3002. pg_data_t *pgdat = NODE_DATA(nid);
  3003. const struct cpumask *mask;
  3004. mask = cpumask_of_node(pgdat->node_id);
  3005. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  3006. /* One of our CPUs online: restore mask */
  3007. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  3008. }
  3009. }
  3010. return NOTIFY_OK;
  3011. }
  3012. /*
  3013. * This kswapd start function will be called by init and node-hot-add.
  3014. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  3015. */
  3016. int kswapd_run(int nid)
  3017. {
  3018. pg_data_t *pgdat = NODE_DATA(nid);
  3019. int ret = 0;
  3020. if (pgdat->kswapd)
  3021. return 0;
  3022. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  3023. if (IS_ERR(pgdat->kswapd)) {
  3024. /* failure at boot is fatal */
  3025. BUG_ON(system_state == SYSTEM_BOOTING);
  3026. pr_err("Failed to start kswapd on node %d\n", nid);
  3027. ret = PTR_ERR(pgdat->kswapd);
  3028. pgdat->kswapd = NULL;
  3029. }
  3030. return ret;
  3031. }
  3032. /*
  3033. * Called by memory hotplug when all memory in a node is offlined. Caller must
  3034. * hold mem_hotplug_begin/end().
  3035. */
  3036. void kswapd_stop(int nid)
  3037. {
  3038. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  3039. if (kswapd) {
  3040. kthread_stop(kswapd);
  3041. NODE_DATA(nid)->kswapd = NULL;
  3042. }
  3043. }
  3044. static int __init kswapd_init(void)
  3045. {
  3046. int nid;
  3047. swap_setup();
  3048. for_each_node_state(nid, N_MEMORY)
  3049. kswapd_run(nid);
  3050. hotcpu_notifier(cpu_callback, 0);
  3051. return 0;
  3052. }
  3053. module_init(kswapd_init)
  3054. #ifdef CONFIG_NUMA
  3055. /*
  3056. * Zone reclaim mode
  3057. *
  3058. * If non-zero call zone_reclaim when the number of free pages falls below
  3059. * the watermarks.
  3060. */
  3061. int zone_reclaim_mode __read_mostly;
  3062. #define RECLAIM_OFF 0
  3063. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  3064. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  3065. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  3066. /*
  3067. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  3068. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  3069. * a zone.
  3070. */
  3071. #define ZONE_RECLAIM_PRIORITY 4
  3072. /*
  3073. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  3074. * occur.
  3075. */
  3076. int sysctl_min_unmapped_ratio = 1;
  3077. /*
  3078. * If the number of slab pages in a zone grows beyond this percentage then
  3079. * slab reclaim needs to occur.
  3080. */
  3081. int sysctl_min_slab_ratio = 5;
  3082. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  3083. {
  3084. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  3085. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  3086. zone_page_state(zone, NR_ACTIVE_FILE);
  3087. /*
  3088. * It's possible for there to be more file mapped pages than
  3089. * accounted for by the pages on the file LRU lists because
  3090. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  3091. */
  3092. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  3093. }
  3094. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  3095. static long zone_pagecache_reclaimable(struct zone *zone)
  3096. {
  3097. long nr_pagecache_reclaimable;
  3098. long delta = 0;
  3099. /*
  3100. * If RECLAIM_SWAP is set, then all file pages are considered
  3101. * potentially reclaimable. Otherwise, we have to worry about
  3102. * pages like swapcache and zone_unmapped_file_pages() provides
  3103. * a better estimate
  3104. */
  3105. if (zone_reclaim_mode & RECLAIM_SWAP)
  3106. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  3107. else
  3108. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  3109. /* If we can't clean pages, remove dirty pages from consideration */
  3110. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  3111. delta += zone_page_state(zone, NR_FILE_DIRTY);
  3112. /* Watch for any possible underflows due to delta */
  3113. if (unlikely(delta > nr_pagecache_reclaimable))
  3114. delta = nr_pagecache_reclaimable;
  3115. return nr_pagecache_reclaimable - delta;
  3116. }
  3117. /*
  3118. * Try to free up some pages from this zone through reclaim.
  3119. */
  3120. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3121. {
  3122. /* Minimum pages needed in order to stay on node */
  3123. const unsigned long nr_pages = 1 << order;
  3124. struct task_struct *p = current;
  3125. struct reclaim_state reclaim_state;
  3126. struct scan_control sc = {
  3127. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  3128. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  3129. .may_swap = 1,
  3130. .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
  3131. .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
  3132. .order = order,
  3133. .priority = ZONE_RECLAIM_PRIORITY,
  3134. };
  3135. struct shrink_control shrink = {
  3136. .gfp_mask = sc.gfp_mask,
  3137. };
  3138. unsigned long nr_slab_pages0, nr_slab_pages1;
  3139. cond_resched();
  3140. /*
  3141. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  3142. * and we also need to be able to write out pages for RECLAIM_WRITE
  3143. * and RECLAIM_SWAP.
  3144. */
  3145. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  3146. lockdep_set_current_reclaim_state(gfp_mask);
  3147. reclaim_state.reclaimed_slab = 0;
  3148. p->reclaim_state = &reclaim_state;
  3149. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  3150. /*
  3151. * Free memory by calling shrink zone with increasing
  3152. * priorities until we have enough memory freed.
  3153. */
  3154. do {
  3155. shrink_zone(zone, &sc);
  3156. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  3157. }
  3158. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3159. if (nr_slab_pages0 > zone->min_slab_pages) {
  3160. /*
  3161. * shrink_slab() does not currently allow us to determine how
  3162. * many pages were freed in this zone. So we take the current
  3163. * number of slab pages and shake the slab until it is reduced
  3164. * by the same nr_pages that we used for reclaiming unmapped
  3165. * pages.
  3166. */
  3167. nodes_clear(shrink.nodes_to_scan);
  3168. node_set(zone_to_nid(zone), shrink.nodes_to_scan);
  3169. for (;;) {
  3170. unsigned long lru_pages = zone_reclaimable_pages(zone);
  3171. /* No reclaimable slab or very low memory pressure */
  3172. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  3173. break;
  3174. /* Freed enough memory */
  3175. nr_slab_pages1 = zone_page_state(zone,
  3176. NR_SLAB_RECLAIMABLE);
  3177. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  3178. break;
  3179. }
  3180. /*
  3181. * Update nr_reclaimed by the number of slab pages we
  3182. * reclaimed from this zone.
  3183. */
  3184. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  3185. if (nr_slab_pages1 < nr_slab_pages0)
  3186. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  3187. }
  3188. p->reclaim_state = NULL;
  3189. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  3190. lockdep_clear_current_reclaim_state();
  3191. return sc.nr_reclaimed >= nr_pages;
  3192. }
  3193. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  3194. {
  3195. int node_id;
  3196. int ret;
  3197. /*
  3198. * Zone reclaim reclaims unmapped file backed pages and
  3199. * slab pages if we are over the defined limits.
  3200. *
  3201. * A small portion of unmapped file backed pages is needed for
  3202. * file I/O otherwise pages read by file I/O will be immediately
  3203. * thrown out if the zone is overallocated. So we do not reclaim
  3204. * if less than a specified percentage of the zone is used by
  3205. * unmapped file backed pages.
  3206. */
  3207. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  3208. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  3209. return ZONE_RECLAIM_FULL;
  3210. if (!zone_reclaimable(zone))
  3211. return ZONE_RECLAIM_FULL;
  3212. /*
  3213. * Do not scan if the allocation should not be delayed.
  3214. */
  3215. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  3216. return ZONE_RECLAIM_NOSCAN;
  3217. /*
  3218. * Only run zone reclaim on the local zone or on zones that do not
  3219. * have associated processors. This will favor the local processor
  3220. * over remote processors and spread off node memory allocations
  3221. * as wide as possible.
  3222. */
  3223. node_id = zone_to_nid(zone);
  3224. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  3225. return ZONE_RECLAIM_NOSCAN;
  3226. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  3227. return ZONE_RECLAIM_NOSCAN;
  3228. ret = __zone_reclaim(zone, gfp_mask, order);
  3229. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  3230. if (!ret)
  3231. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  3232. return ret;
  3233. }
  3234. #endif
  3235. /*
  3236. * page_evictable - test whether a page is evictable
  3237. * @page: the page to test
  3238. *
  3239. * Test whether page is evictable--i.e., should be placed on active/inactive
  3240. * lists vs unevictable list.
  3241. *
  3242. * Reasons page might not be evictable:
  3243. * (1) page's mapping marked unevictable
  3244. * (2) page is part of an mlocked VMA
  3245. *
  3246. */
  3247. int page_evictable(struct page *page)
  3248. {
  3249. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  3250. }
  3251. #ifdef CONFIG_SHMEM
  3252. /**
  3253. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  3254. * @pages: array of pages to check
  3255. * @nr_pages: number of pages to check
  3256. *
  3257. * Checks pages for evictability and moves them to the appropriate lru list.
  3258. *
  3259. * This function is only used for SysV IPC SHM_UNLOCK.
  3260. */
  3261. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  3262. {
  3263. struct lruvec *lruvec;
  3264. struct zone *zone = NULL;
  3265. int pgscanned = 0;
  3266. int pgrescued = 0;
  3267. int i;
  3268. for (i = 0; i < nr_pages; i++) {
  3269. struct page *page = pages[i];
  3270. struct zone *pagezone;
  3271. pgscanned++;
  3272. pagezone = page_zone(page);
  3273. if (pagezone != zone) {
  3274. if (zone)
  3275. spin_unlock_irq(&zone->lru_lock);
  3276. zone = pagezone;
  3277. spin_lock_irq(&zone->lru_lock);
  3278. }
  3279. lruvec = mem_cgroup_page_lruvec(page, zone);
  3280. if (!PageLRU(page) || !PageUnevictable(page))
  3281. continue;
  3282. if (page_evictable(page)) {
  3283. enum lru_list lru = page_lru_base_type(page);
  3284. VM_BUG_ON_PAGE(PageActive(page), page);
  3285. ClearPageUnevictable(page);
  3286. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3287. add_page_to_lru_list(page, lruvec, lru);
  3288. pgrescued++;
  3289. }
  3290. }
  3291. if (zone) {
  3292. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3293. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3294. spin_unlock_irq(&zone->lru_lock);
  3295. }
  3296. }
  3297. #endif /* CONFIG_SHMEM */
  3298. static void warn_scan_unevictable_pages(void)
  3299. {
  3300. printk_once(KERN_WARNING
  3301. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3302. "disabled for lack of a legitimate use case. If you have "
  3303. "one, please send an email to linux-mm@kvack.org.\n",
  3304. current->comm);
  3305. }
  3306. /*
  3307. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3308. * all nodes' unevictable lists for evictable pages
  3309. */
  3310. unsigned long scan_unevictable_pages;
  3311. int scan_unevictable_handler(struct ctl_table *table, int write,
  3312. void __user *buffer,
  3313. size_t *length, loff_t *ppos)
  3314. {
  3315. warn_scan_unevictable_pages();
  3316. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3317. scan_unevictable_pages = 0;
  3318. return 0;
  3319. }
  3320. #ifdef CONFIG_NUMA
  3321. /*
  3322. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3323. * a specified node's per zone unevictable lists for evictable pages.
  3324. */
  3325. static ssize_t read_scan_unevictable_node(struct device *dev,
  3326. struct device_attribute *attr,
  3327. char *buf)
  3328. {
  3329. warn_scan_unevictable_pages();
  3330. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3331. }
  3332. static ssize_t write_scan_unevictable_node(struct device *dev,
  3333. struct device_attribute *attr,
  3334. const char *buf, size_t count)
  3335. {
  3336. warn_scan_unevictable_pages();
  3337. return 1;
  3338. }
  3339. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3340. read_scan_unevictable_node,
  3341. write_scan_unevictable_node);
  3342. int scan_unevictable_register_node(struct node *node)
  3343. {
  3344. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3345. }
  3346. void scan_unevictable_unregister_node(struct node *node)
  3347. {
  3348. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3349. }
  3350. #endif