mm.h 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/bug.h>
  7. #include <linux/list.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/atomic.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/mm_types.h>
  13. #include <linux/range.h>
  14. #include <linux/pfn.h>
  15. #include <linux/bit_spinlock.h>
  16. #include <linux/shrinker.h>
  17. struct mempolicy;
  18. struct anon_vma;
  19. struct anon_vma_chain;
  20. struct file_ra_state;
  21. struct user_struct;
  22. struct writeback_control;
  23. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  24. extern unsigned long max_mapnr;
  25. static inline void set_max_mapnr(unsigned long limit)
  26. {
  27. max_mapnr = limit;
  28. }
  29. #else
  30. static inline void set_max_mapnr(unsigned long limit) { }
  31. #endif
  32. extern unsigned long totalram_pages;
  33. extern void * high_memory;
  34. extern int page_cluster;
  35. #ifdef CONFIG_SYSCTL
  36. extern int sysctl_legacy_va_layout;
  37. #else
  38. #define sysctl_legacy_va_layout 0
  39. #endif
  40. #include <asm/page.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/processor.h>
  43. #ifndef __pa_symbol
  44. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  45. #endif
  46. extern unsigned long sysctl_user_reserve_kbytes;
  47. extern unsigned long sysctl_admin_reserve_kbytes;
  48. extern int sysctl_overcommit_memory;
  49. extern int sysctl_overcommit_ratio;
  50. extern unsigned long sysctl_overcommit_kbytes;
  51. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  52. size_t *, loff_t *);
  53. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  54. size_t *, loff_t *);
  55. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  56. /* to align the pointer to the (next) page boundary */
  57. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  58. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  59. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  60. /*
  61. * Linux kernel virtual memory manager primitives.
  62. * The idea being to have a "virtual" mm in the same way
  63. * we have a virtual fs - giving a cleaner interface to the
  64. * mm details, and allowing different kinds of memory mappings
  65. * (from shared memory to executable loading to arbitrary
  66. * mmap() functions).
  67. */
  68. extern struct kmem_cache *vm_area_cachep;
  69. #ifndef CONFIG_MMU
  70. extern struct rb_root nommu_region_tree;
  71. extern struct rw_semaphore nommu_region_sem;
  72. extern unsigned int kobjsize(const void *objp);
  73. #endif
  74. /*
  75. * vm_flags in vm_area_struct, see mm_types.h.
  76. */
  77. #define VM_NONE 0x00000000
  78. #define VM_READ 0x00000001 /* currently active flags */
  79. #define VM_WRITE 0x00000002
  80. #define VM_EXEC 0x00000004
  81. #define VM_SHARED 0x00000008
  82. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  83. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  84. #define VM_MAYWRITE 0x00000020
  85. #define VM_MAYEXEC 0x00000040
  86. #define VM_MAYSHARE 0x00000080
  87. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  88. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  89. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  90. #define VM_LOCKED 0x00002000
  91. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  92. /* Used by sys_madvise() */
  93. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  94. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  95. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  96. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  97. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  98. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  99. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  100. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  101. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  102. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  103. #ifdef CONFIG_MEM_SOFT_DIRTY
  104. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  105. #else
  106. # define VM_SOFTDIRTY 0
  107. #endif
  108. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  109. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  110. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  111. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  112. #if defined(CONFIG_X86)
  113. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  114. #elif defined(CONFIG_PPC)
  115. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  116. #elif defined(CONFIG_PARISC)
  117. # define VM_GROWSUP VM_ARCH_1
  118. #elif defined(CONFIG_METAG)
  119. # define VM_GROWSUP VM_ARCH_1
  120. #elif defined(CONFIG_IA64)
  121. # define VM_GROWSUP VM_ARCH_1
  122. #elif !defined(CONFIG_MMU)
  123. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  124. #endif
  125. #ifndef VM_GROWSUP
  126. # define VM_GROWSUP VM_NONE
  127. #endif
  128. /* Bits set in the VMA until the stack is in its final location */
  129. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  130. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  131. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  132. #endif
  133. #ifdef CONFIG_STACK_GROWSUP
  134. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  135. #else
  136. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  137. #endif
  138. /*
  139. * Special vmas that are non-mergable, non-mlock()able.
  140. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  141. */
  142. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
  143. /*
  144. * mapping from the currently active vm_flags protection bits (the
  145. * low four bits) to a page protection mask..
  146. */
  147. extern pgprot_t protection_map[16];
  148. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  149. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  150. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  151. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  152. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  153. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  154. #define FAULT_FLAG_TRIED 0x40 /* second try */
  155. #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
  156. /*
  157. * vm_fault is filled by the the pagefault handler and passed to the vma's
  158. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  159. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  160. *
  161. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  162. * is used, one may implement ->remap_pages to get nonlinear mapping support.
  163. */
  164. struct vm_fault {
  165. unsigned int flags; /* FAULT_FLAG_xxx flags */
  166. pgoff_t pgoff; /* Logical page offset based on vma */
  167. void __user *virtual_address; /* Faulting virtual address */
  168. struct page *page; /* ->fault handlers should return a
  169. * page here, unless VM_FAULT_NOPAGE
  170. * is set (which is also implied by
  171. * VM_FAULT_ERROR).
  172. */
  173. };
  174. /*
  175. * These are the virtual MM functions - opening of an area, closing and
  176. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  177. * to the functions called when a no-page or a wp-page exception occurs.
  178. */
  179. struct vm_operations_struct {
  180. void (*open)(struct vm_area_struct * area);
  181. void (*close)(struct vm_area_struct * area);
  182. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  183. /* notification that a previously read-only page is about to become
  184. * writable, if an error is returned it will cause a SIGBUS */
  185. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  186. /* called by access_process_vm when get_user_pages() fails, typically
  187. * for use by special VMAs that can switch between memory and hardware
  188. */
  189. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  190. void *buf, int len, int write);
  191. #ifdef CONFIG_NUMA
  192. /*
  193. * set_policy() op must add a reference to any non-NULL @new mempolicy
  194. * to hold the policy upon return. Caller should pass NULL @new to
  195. * remove a policy and fall back to surrounding context--i.e. do not
  196. * install a MPOL_DEFAULT policy, nor the task or system default
  197. * mempolicy.
  198. */
  199. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  200. /*
  201. * get_policy() op must add reference [mpol_get()] to any policy at
  202. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  203. * in mm/mempolicy.c will do this automatically.
  204. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  205. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  206. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  207. * must return NULL--i.e., do not "fallback" to task or system default
  208. * policy.
  209. */
  210. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  211. unsigned long addr);
  212. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  213. const nodemask_t *to, unsigned long flags);
  214. #endif
  215. /* called by sys_remap_file_pages() to populate non-linear mapping */
  216. int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
  217. unsigned long size, pgoff_t pgoff);
  218. };
  219. struct mmu_gather;
  220. struct inode;
  221. #define page_private(page) ((page)->private)
  222. #define set_page_private(page, v) ((page)->private = (v))
  223. /* It's valid only if the page is free path or free_list */
  224. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  225. {
  226. page->index = migratetype;
  227. }
  228. /* It's valid only if the page is free path or free_list */
  229. static inline int get_freepage_migratetype(struct page *page)
  230. {
  231. return page->index;
  232. }
  233. /*
  234. * FIXME: take this include out, include page-flags.h in
  235. * files which need it (119 of them)
  236. */
  237. #include <linux/page-flags.h>
  238. #include <linux/huge_mm.h>
  239. /*
  240. * Methods to modify the page usage count.
  241. *
  242. * What counts for a page usage:
  243. * - cache mapping (page->mapping)
  244. * - private data (page->private)
  245. * - page mapped in a task's page tables, each mapping
  246. * is counted separately
  247. *
  248. * Also, many kernel routines increase the page count before a critical
  249. * routine so they can be sure the page doesn't go away from under them.
  250. */
  251. /*
  252. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  253. */
  254. static inline int put_page_testzero(struct page *page)
  255. {
  256. VM_BUG_ON(atomic_read(&page->_count) == 0);
  257. return atomic_dec_and_test(&page->_count);
  258. }
  259. /*
  260. * Try to grab a ref unless the page has a refcount of zero, return false if
  261. * that is the case.
  262. * This can be called when MMU is off so it must not access
  263. * any of the virtual mappings.
  264. */
  265. static inline int get_page_unless_zero(struct page *page)
  266. {
  267. return atomic_inc_not_zero(&page->_count);
  268. }
  269. /*
  270. * Try to drop a ref unless the page has a refcount of one, return false if
  271. * that is the case.
  272. * This is to make sure that the refcount won't become zero after this drop.
  273. * This can be called when MMU is off so it must not access
  274. * any of the virtual mappings.
  275. */
  276. static inline int put_page_unless_one(struct page *page)
  277. {
  278. return atomic_add_unless(&page->_count, -1, 1);
  279. }
  280. extern int page_is_ram(unsigned long pfn);
  281. /* Support for virtually mapped pages */
  282. struct page *vmalloc_to_page(const void *addr);
  283. unsigned long vmalloc_to_pfn(const void *addr);
  284. /*
  285. * Determine if an address is within the vmalloc range
  286. *
  287. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  288. * is no special casing required.
  289. */
  290. static inline int is_vmalloc_addr(const void *x)
  291. {
  292. #ifdef CONFIG_MMU
  293. unsigned long addr = (unsigned long)x;
  294. return addr >= VMALLOC_START && addr < VMALLOC_END;
  295. #else
  296. return 0;
  297. #endif
  298. }
  299. #ifdef CONFIG_MMU
  300. extern int is_vmalloc_or_module_addr(const void *x);
  301. #else
  302. static inline int is_vmalloc_or_module_addr(const void *x)
  303. {
  304. return 0;
  305. }
  306. #endif
  307. static inline void compound_lock(struct page *page)
  308. {
  309. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  310. VM_BUG_ON(PageSlab(page));
  311. bit_spin_lock(PG_compound_lock, &page->flags);
  312. #endif
  313. }
  314. static inline void compound_unlock(struct page *page)
  315. {
  316. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  317. VM_BUG_ON(PageSlab(page));
  318. bit_spin_unlock(PG_compound_lock, &page->flags);
  319. #endif
  320. }
  321. static inline unsigned long compound_lock_irqsave(struct page *page)
  322. {
  323. unsigned long uninitialized_var(flags);
  324. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  325. local_irq_save(flags);
  326. compound_lock(page);
  327. #endif
  328. return flags;
  329. }
  330. static inline void compound_unlock_irqrestore(struct page *page,
  331. unsigned long flags)
  332. {
  333. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  334. compound_unlock(page);
  335. local_irq_restore(flags);
  336. #endif
  337. }
  338. static inline struct page *compound_head(struct page *page)
  339. {
  340. if (unlikely(PageTail(page)))
  341. return page->first_page;
  342. return page;
  343. }
  344. /*
  345. * The atomic page->_mapcount, starts from -1: so that transitions
  346. * both from it and to it can be tracked, using atomic_inc_and_test
  347. * and atomic_add_negative(-1).
  348. */
  349. static inline void page_mapcount_reset(struct page *page)
  350. {
  351. atomic_set(&(page)->_mapcount, -1);
  352. }
  353. static inline int page_mapcount(struct page *page)
  354. {
  355. return atomic_read(&(page)->_mapcount) + 1;
  356. }
  357. static inline int page_count(struct page *page)
  358. {
  359. return atomic_read(&compound_head(page)->_count);
  360. }
  361. #ifdef CONFIG_HUGETLB_PAGE
  362. extern int PageHeadHuge(struct page *page_head);
  363. #else /* CONFIG_HUGETLB_PAGE */
  364. static inline int PageHeadHuge(struct page *page_head)
  365. {
  366. return 0;
  367. }
  368. #endif /* CONFIG_HUGETLB_PAGE */
  369. static inline bool __compound_tail_refcounted(struct page *page)
  370. {
  371. return !PageSlab(page) && !PageHeadHuge(page);
  372. }
  373. /*
  374. * This takes a head page as parameter and tells if the
  375. * tail page reference counting can be skipped.
  376. *
  377. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  378. * any given page where they return true here, until all tail pins
  379. * have been released.
  380. */
  381. static inline bool compound_tail_refcounted(struct page *page)
  382. {
  383. VM_BUG_ON(!PageHead(page));
  384. return __compound_tail_refcounted(page);
  385. }
  386. static inline void get_huge_page_tail(struct page *page)
  387. {
  388. /*
  389. * __split_huge_page_refcount() cannot run from under us.
  390. */
  391. VM_BUG_ON(!PageTail(page));
  392. VM_BUG_ON(page_mapcount(page) < 0);
  393. VM_BUG_ON(atomic_read(&page->_count) != 0);
  394. if (compound_tail_refcounted(page->first_page))
  395. atomic_inc(&page->_mapcount);
  396. }
  397. extern bool __get_page_tail(struct page *page);
  398. static inline void get_page(struct page *page)
  399. {
  400. if (unlikely(PageTail(page)))
  401. if (likely(__get_page_tail(page)))
  402. return;
  403. /*
  404. * Getting a normal page or the head of a compound page
  405. * requires to already have an elevated page->_count.
  406. */
  407. VM_BUG_ON(atomic_read(&page->_count) <= 0);
  408. atomic_inc(&page->_count);
  409. }
  410. static inline struct page *virt_to_head_page(const void *x)
  411. {
  412. struct page *page = virt_to_page(x);
  413. return compound_head(page);
  414. }
  415. /*
  416. * Setup the page count before being freed into the page allocator for
  417. * the first time (boot or memory hotplug)
  418. */
  419. static inline void init_page_count(struct page *page)
  420. {
  421. atomic_set(&page->_count, 1);
  422. }
  423. /*
  424. * PageBuddy() indicate that the page is free and in the buddy system
  425. * (see mm/page_alloc.c).
  426. *
  427. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  428. * -2 so that an underflow of the page_mapcount() won't be mistaken
  429. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  430. * efficiently by most CPU architectures.
  431. */
  432. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  433. static inline int PageBuddy(struct page *page)
  434. {
  435. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  436. }
  437. static inline void __SetPageBuddy(struct page *page)
  438. {
  439. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  440. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  441. }
  442. static inline void __ClearPageBuddy(struct page *page)
  443. {
  444. VM_BUG_ON(!PageBuddy(page));
  445. atomic_set(&page->_mapcount, -1);
  446. }
  447. void put_page(struct page *page);
  448. void put_pages_list(struct list_head *pages);
  449. void split_page(struct page *page, unsigned int order);
  450. int split_free_page(struct page *page);
  451. /*
  452. * Compound pages have a destructor function. Provide a
  453. * prototype for that function and accessor functions.
  454. * These are _only_ valid on the head of a PG_compound page.
  455. */
  456. typedef void compound_page_dtor(struct page *);
  457. static inline void set_compound_page_dtor(struct page *page,
  458. compound_page_dtor *dtor)
  459. {
  460. page[1].lru.next = (void *)dtor;
  461. }
  462. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  463. {
  464. return (compound_page_dtor *)page[1].lru.next;
  465. }
  466. static inline int compound_order(struct page *page)
  467. {
  468. if (!PageHead(page))
  469. return 0;
  470. return (unsigned long)page[1].lru.prev;
  471. }
  472. static inline void set_compound_order(struct page *page, unsigned long order)
  473. {
  474. page[1].lru.prev = (void *)order;
  475. }
  476. #ifdef CONFIG_MMU
  477. /*
  478. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  479. * servicing faults for write access. In the normal case, do always want
  480. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  481. * that do not have writing enabled, when used by access_process_vm.
  482. */
  483. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  484. {
  485. if (likely(vma->vm_flags & VM_WRITE))
  486. pte = pte_mkwrite(pte);
  487. return pte;
  488. }
  489. #endif
  490. /*
  491. * Multiple processes may "see" the same page. E.g. for untouched
  492. * mappings of /dev/null, all processes see the same page full of
  493. * zeroes, and text pages of executables and shared libraries have
  494. * only one copy in memory, at most, normally.
  495. *
  496. * For the non-reserved pages, page_count(page) denotes a reference count.
  497. * page_count() == 0 means the page is free. page->lru is then used for
  498. * freelist management in the buddy allocator.
  499. * page_count() > 0 means the page has been allocated.
  500. *
  501. * Pages are allocated by the slab allocator in order to provide memory
  502. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  503. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  504. * unless a particular usage is carefully commented. (the responsibility of
  505. * freeing the kmalloc memory is the caller's, of course).
  506. *
  507. * A page may be used by anyone else who does a __get_free_page().
  508. * In this case, page_count still tracks the references, and should only
  509. * be used through the normal accessor functions. The top bits of page->flags
  510. * and page->virtual store page management information, but all other fields
  511. * are unused and could be used privately, carefully. The management of this
  512. * page is the responsibility of the one who allocated it, and those who have
  513. * subsequently been given references to it.
  514. *
  515. * The other pages (we may call them "pagecache pages") are completely
  516. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  517. * The following discussion applies only to them.
  518. *
  519. * A pagecache page contains an opaque `private' member, which belongs to the
  520. * page's address_space. Usually, this is the address of a circular list of
  521. * the page's disk buffers. PG_private must be set to tell the VM to call
  522. * into the filesystem to release these pages.
  523. *
  524. * A page may belong to an inode's memory mapping. In this case, page->mapping
  525. * is the pointer to the inode, and page->index is the file offset of the page,
  526. * in units of PAGE_CACHE_SIZE.
  527. *
  528. * If pagecache pages are not associated with an inode, they are said to be
  529. * anonymous pages. These may become associated with the swapcache, and in that
  530. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  531. *
  532. * In either case (swapcache or inode backed), the pagecache itself holds one
  533. * reference to the page. Setting PG_private should also increment the
  534. * refcount. The each user mapping also has a reference to the page.
  535. *
  536. * The pagecache pages are stored in a per-mapping radix tree, which is
  537. * rooted at mapping->page_tree, and indexed by offset.
  538. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  539. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  540. *
  541. * All pagecache pages may be subject to I/O:
  542. * - inode pages may need to be read from disk,
  543. * - inode pages which have been modified and are MAP_SHARED may need
  544. * to be written back to the inode on disk,
  545. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  546. * modified may need to be swapped out to swap space and (later) to be read
  547. * back into memory.
  548. */
  549. /*
  550. * The zone field is never updated after free_area_init_core()
  551. * sets it, so none of the operations on it need to be atomic.
  552. */
  553. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  554. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  555. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  556. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  557. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  558. /*
  559. * Define the bit shifts to access each section. For non-existent
  560. * sections we define the shift as 0; that plus a 0 mask ensures
  561. * the compiler will optimise away reference to them.
  562. */
  563. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  564. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  565. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  566. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  567. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  568. #ifdef NODE_NOT_IN_PAGE_FLAGS
  569. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  570. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  571. SECTIONS_PGOFF : ZONES_PGOFF)
  572. #else
  573. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  574. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  575. NODES_PGOFF : ZONES_PGOFF)
  576. #endif
  577. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  578. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  579. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  580. #endif
  581. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  582. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  583. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  584. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
  585. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  586. static inline enum zone_type page_zonenum(const struct page *page)
  587. {
  588. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  589. }
  590. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  591. #define SECTION_IN_PAGE_FLAGS
  592. #endif
  593. /*
  594. * The identification function is mainly used by the buddy allocator for
  595. * determining if two pages could be buddies. We are not really identifying
  596. * the zone since we could be using the section number id if we do not have
  597. * node id available in page flags.
  598. * We only guarantee that it will return the same value for two combinable
  599. * pages in a zone.
  600. */
  601. static inline int page_zone_id(struct page *page)
  602. {
  603. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  604. }
  605. static inline int zone_to_nid(struct zone *zone)
  606. {
  607. #ifdef CONFIG_NUMA
  608. return zone->node;
  609. #else
  610. return 0;
  611. #endif
  612. }
  613. #ifdef NODE_NOT_IN_PAGE_FLAGS
  614. extern int page_to_nid(const struct page *page);
  615. #else
  616. static inline int page_to_nid(const struct page *page)
  617. {
  618. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  619. }
  620. #endif
  621. #ifdef CONFIG_NUMA_BALANCING
  622. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  623. {
  624. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  625. }
  626. static inline int cpupid_to_pid(int cpupid)
  627. {
  628. return cpupid & LAST__PID_MASK;
  629. }
  630. static inline int cpupid_to_cpu(int cpupid)
  631. {
  632. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  633. }
  634. static inline int cpupid_to_nid(int cpupid)
  635. {
  636. return cpu_to_node(cpupid_to_cpu(cpupid));
  637. }
  638. static inline bool cpupid_pid_unset(int cpupid)
  639. {
  640. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  641. }
  642. static inline bool cpupid_cpu_unset(int cpupid)
  643. {
  644. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  645. }
  646. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  647. {
  648. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  649. }
  650. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  651. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  652. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  653. {
  654. return xchg(&page->_last_cpupid, cpupid);
  655. }
  656. static inline int page_cpupid_last(struct page *page)
  657. {
  658. return page->_last_cpupid;
  659. }
  660. static inline void page_cpupid_reset_last(struct page *page)
  661. {
  662. page->_last_cpupid = -1;
  663. }
  664. #else
  665. static inline int page_cpupid_last(struct page *page)
  666. {
  667. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  668. }
  669. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  670. static inline void page_cpupid_reset_last(struct page *page)
  671. {
  672. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  673. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  674. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  675. }
  676. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  677. #else /* !CONFIG_NUMA_BALANCING */
  678. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  679. {
  680. return page_to_nid(page); /* XXX */
  681. }
  682. static inline int page_cpupid_last(struct page *page)
  683. {
  684. return page_to_nid(page); /* XXX */
  685. }
  686. static inline int cpupid_to_nid(int cpupid)
  687. {
  688. return -1;
  689. }
  690. static inline int cpupid_to_pid(int cpupid)
  691. {
  692. return -1;
  693. }
  694. static inline int cpupid_to_cpu(int cpupid)
  695. {
  696. return -1;
  697. }
  698. static inline int cpu_pid_to_cpupid(int nid, int pid)
  699. {
  700. return -1;
  701. }
  702. static inline bool cpupid_pid_unset(int cpupid)
  703. {
  704. return 1;
  705. }
  706. static inline void page_cpupid_reset_last(struct page *page)
  707. {
  708. }
  709. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  710. {
  711. return false;
  712. }
  713. #endif /* CONFIG_NUMA_BALANCING */
  714. static inline struct zone *page_zone(const struct page *page)
  715. {
  716. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  717. }
  718. #ifdef SECTION_IN_PAGE_FLAGS
  719. static inline void set_page_section(struct page *page, unsigned long section)
  720. {
  721. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  722. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  723. }
  724. static inline unsigned long page_to_section(const struct page *page)
  725. {
  726. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  727. }
  728. #endif
  729. static inline void set_page_zone(struct page *page, enum zone_type zone)
  730. {
  731. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  732. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  733. }
  734. static inline void set_page_node(struct page *page, unsigned long node)
  735. {
  736. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  737. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  738. }
  739. static inline void set_page_links(struct page *page, enum zone_type zone,
  740. unsigned long node, unsigned long pfn)
  741. {
  742. set_page_zone(page, zone);
  743. set_page_node(page, node);
  744. #ifdef SECTION_IN_PAGE_FLAGS
  745. set_page_section(page, pfn_to_section_nr(pfn));
  746. #endif
  747. }
  748. /*
  749. * Some inline functions in vmstat.h depend on page_zone()
  750. */
  751. #include <linux/vmstat.h>
  752. static __always_inline void *lowmem_page_address(const struct page *page)
  753. {
  754. return __va(PFN_PHYS(page_to_pfn(page)));
  755. }
  756. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  757. #define HASHED_PAGE_VIRTUAL
  758. #endif
  759. #if defined(WANT_PAGE_VIRTUAL)
  760. static inline void *page_address(const struct page *page)
  761. {
  762. return page->virtual;
  763. }
  764. static inline void set_page_address(struct page *page, void *address)
  765. {
  766. page->virtual = address;
  767. }
  768. #define page_address_init() do { } while(0)
  769. #endif
  770. #if defined(HASHED_PAGE_VIRTUAL)
  771. void *page_address(const struct page *page);
  772. void set_page_address(struct page *page, void *virtual);
  773. void page_address_init(void);
  774. #endif
  775. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  776. #define page_address(page) lowmem_page_address(page)
  777. #define set_page_address(page, address) do { } while(0)
  778. #define page_address_init() do { } while(0)
  779. #endif
  780. /*
  781. * On an anonymous page mapped into a user virtual memory area,
  782. * page->mapping points to its anon_vma, not to a struct address_space;
  783. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  784. *
  785. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  786. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  787. * and then page->mapping points, not to an anon_vma, but to a private
  788. * structure which KSM associates with that merged page. See ksm.h.
  789. *
  790. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  791. *
  792. * Please note that, confusingly, "page_mapping" refers to the inode
  793. * address_space which maps the page from disk; whereas "page_mapped"
  794. * refers to user virtual address space into which the page is mapped.
  795. */
  796. #define PAGE_MAPPING_ANON 1
  797. #define PAGE_MAPPING_KSM 2
  798. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  799. extern struct address_space *page_mapping(struct page *page);
  800. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  801. static inline void *page_rmapping(struct page *page)
  802. {
  803. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  804. }
  805. extern struct address_space *__page_file_mapping(struct page *);
  806. static inline
  807. struct address_space *page_file_mapping(struct page *page)
  808. {
  809. if (unlikely(PageSwapCache(page)))
  810. return __page_file_mapping(page);
  811. return page->mapping;
  812. }
  813. static inline int PageAnon(struct page *page)
  814. {
  815. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  816. }
  817. /*
  818. * Return the pagecache index of the passed page. Regular pagecache pages
  819. * use ->index whereas swapcache pages use ->private
  820. */
  821. static inline pgoff_t page_index(struct page *page)
  822. {
  823. if (unlikely(PageSwapCache(page)))
  824. return page_private(page);
  825. return page->index;
  826. }
  827. extern pgoff_t __page_file_index(struct page *page);
  828. /*
  829. * Return the file index of the page. Regular pagecache pages use ->index
  830. * whereas swapcache pages use swp_offset(->private)
  831. */
  832. static inline pgoff_t page_file_index(struct page *page)
  833. {
  834. if (unlikely(PageSwapCache(page)))
  835. return __page_file_index(page);
  836. return page->index;
  837. }
  838. /*
  839. * Return true if this page is mapped into pagetables.
  840. */
  841. static inline int page_mapped(struct page *page)
  842. {
  843. return atomic_read(&(page)->_mapcount) >= 0;
  844. }
  845. /*
  846. * Different kinds of faults, as returned by handle_mm_fault().
  847. * Used to decide whether a process gets delivered SIGBUS or
  848. * just gets major/minor fault counters bumped up.
  849. */
  850. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  851. #define VM_FAULT_OOM 0x0001
  852. #define VM_FAULT_SIGBUS 0x0002
  853. #define VM_FAULT_MAJOR 0x0004
  854. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  855. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  856. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  857. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  858. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  859. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  860. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  861. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  862. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  863. VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
  864. /* Encode hstate index for a hwpoisoned large page */
  865. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  866. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  867. /*
  868. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  869. */
  870. extern void pagefault_out_of_memory(void);
  871. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  872. /*
  873. * Flags passed to show_mem() and show_free_areas() to suppress output in
  874. * various contexts.
  875. */
  876. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  877. extern void show_free_areas(unsigned int flags);
  878. extern bool skip_free_areas_node(unsigned int flags, int nid);
  879. int shmem_zero_setup(struct vm_area_struct *);
  880. extern int can_do_mlock(void);
  881. extern int user_shm_lock(size_t, struct user_struct *);
  882. extern void user_shm_unlock(size_t, struct user_struct *);
  883. /*
  884. * Parameter block passed down to zap_pte_range in exceptional cases.
  885. */
  886. struct zap_details {
  887. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  888. struct address_space *check_mapping; /* Check page->mapping if set */
  889. pgoff_t first_index; /* Lowest page->index to unmap */
  890. pgoff_t last_index; /* Highest page->index to unmap */
  891. };
  892. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  893. pte_t pte);
  894. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  895. unsigned long size);
  896. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  897. unsigned long size, struct zap_details *);
  898. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  899. unsigned long start, unsigned long end);
  900. /**
  901. * mm_walk - callbacks for walk_page_range
  902. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  903. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  904. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  905. * this handler is required to be able to handle
  906. * pmd_trans_huge() pmds. They may simply choose to
  907. * split_huge_page() instead of handling it explicitly.
  908. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  909. * @pte_hole: if set, called for each hole at all levels
  910. * @hugetlb_entry: if set, called for each hugetlb entry
  911. * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
  912. * is used.
  913. *
  914. * (see walk_page_range for more details)
  915. */
  916. struct mm_walk {
  917. int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
  918. unsigned long next, struct mm_walk *walk);
  919. int (*pud_entry)(pud_t *pud, unsigned long addr,
  920. unsigned long next, struct mm_walk *walk);
  921. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  922. unsigned long next, struct mm_walk *walk);
  923. int (*pte_entry)(pte_t *pte, unsigned long addr,
  924. unsigned long next, struct mm_walk *walk);
  925. int (*pte_hole)(unsigned long addr, unsigned long next,
  926. struct mm_walk *walk);
  927. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  928. unsigned long addr, unsigned long next,
  929. struct mm_walk *walk);
  930. struct mm_struct *mm;
  931. void *private;
  932. };
  933. int walk_page_range(unsigned long addr, unsigned long end,
  934. struct mm_walk *walk);
  935. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  936. unsigned long end, unsigned long floor, unsigned long ceiling);
  937. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  938. struct vm_area_struct *vma);
  939. void unmap_mapping_range(struct address_space *mapping,
  940. loff_t const holebegin, loff_t const holelen, int even_cows);
  941. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  942. unsigned long *pfn);
  943. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  944. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  945. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  946. void *buf, int len, int write);
  947. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  948. loff_t const holebegin, loff_t const holelen)
  949. {
  950. unmap_mapping_range(mapping, holebegin, holelen, 0);
  951. }
  952. extern void truncate_pagecache(struct inode *inode, loff_t new);
  953. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  954. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  955. int truncate_inode_page(struct address_space *mapping, struct page *page);
  956. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  957. int invalidate_inode_page(struct page *page);
  958. #ifdef CONFIG_MMU
  959. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  960. unsigned long address, unsigned int flags);
  961. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  962. unsigned long address, unsigned int fault_flags);
  963. #else
  964. static inline int handle_mm_fault(struct mm_struct *mm,
  965. struct vm_area_struct *vma, unsigned long address,
  966. unsigned int flags)
  967. {
  968. /* should never happen if there's no MMU */
  969. BUG();
  970. return VM_FAULT_SIGBUS;
  971. }
  972. static inline int fixup_user_fault(struct task_struct *tsk,
  973. struct mm_struct *mm, unsigned long address,
  974. unsigned int fault_flags)
  975. {
  976. /* should never happen if there's no MMU */
  977. BUG();
  978. return -EFAULT;
  979. }
  980. #endif
  981. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  982. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  983. void *buf, int len, int write);
  984. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  985. unsigned long start, unsigned long nr_pages,
  986. unsigned int foll_flags, struct page **pages,
  987. struct vm_area_struct **vmas, int *nonblocking);
  988. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  989. unsigned long start, unsigned long nr_pages,
  990. int write, int force, struct page **pages,
  991. struct vm_area_struct **vmas);
  992. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  993. struct page **pages);
  994. struct kvec;
  995. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  996. struct page **pages);
  997. int get_kernel_page(unsigned long start, int write, struct page **pages);
  998. struct page *get_dump_page(unsigned long addr);
  999. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1000. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1001. unsigned int length);
  1002. int __set_page_dirty_nobuffers(struct page *page);
  1003. int __set_page_dirty_no_writeback(struct page *page);
  1004. int redirty_page_for_writepage(struct writeback_control *wbc,
  1005. struct page *page);
  1006. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1007. void account_page_writeback(struct page *page);
  1008. int set_page_dirty(struct page *page);
  1009. int set_page_dirty_lock(struct page *page);
  1010. int clear_page_dirty_for_io(struct page *page);
  1011. /* Is the vma a continuation of the stack vma above it? */
  1012. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1013. {
  1014. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1015. }
  1016. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1017. unsigned long addr)
  1018. {
  1019. return (vma->vm_flags & VM_GROWSDOWN) &&
  1020. (vma->vm_start == addr) &&
  1021. !vma_growsdown(vma->vm_prev, addr);
  1022. }
  1023. /* Is the vma a continuation of the stack vma below it? */
  1024. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1025. {
  1026. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1027. }
  1028. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1029. unsigned long addr)
  1030. {
  1031. return (vma->vm_flags & VM_GROWSUP) &&
  1032. (vma->vm_end == addr) &&
  1033. !vma_growsup(vma->vm_next, addr);
  1034. }
  1035. extern pid_t
  1036. vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
  1037. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1038. unsigned long old_addr, struct vm_area_struct *new_vma,
  1039. unsigned long new_addr, unsigned long len,
  1040. bool need_rmap_locks);
  1041. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1042. unsigned long end, pgprot_t newprot,
  1043. int dirty_accountable, int prot_numa);
  1044. extern int mprotect_fixup(struct vm_area_struct *vma,
  1045. struct vm_area_struct **pprev, unsigned long start,
  1046. unsigned long end, unsigned long newflags);
  1047. /*
  1048. * doesn't attempt to fault and will return short.
  1049. */
  1050. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1051. struct page **pages);
  1052. /*
  1053. * per-process(per-mm_struct) statistics.
  1054. */
  1055. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1056. {
  1057. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1058. #ifdef SPLIT_RSS_COUNTING
  1059. /*
  1060. * counter is updated in asynchronous manner and may go to minus.
  1061. * But it's never be expected number for users.
  1062. */
  1063. if (val < 0)
  1064. val = 0;
  1065. #endif
  1066. return (unsigned long)val;
  1067. }
  1068. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1069. {
  1070. atomic_long_add(value, &mm->rss_stat.count[member]);
  1071. }
  1072. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1073. {
  1074. atomic_long_inc(&mm->rss_stat.count[member]);
  1075. }
  1076. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1077. {
  1078. atomic_long_dec(&mm->rss_stat.count[member]);
  1079. }
  1080. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1081. {
  1082. return get_mm_counter(mm, MM_FILEPAGES) +
  1083. get_mm_counter(mm, MM_ANONPAGES);
  1084. }
  1085. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1086. {
  1087. return max(mm->hiwater_rss, get_mm_rss(mm));
  1088. }
  1089. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1090. {
  1091. return max(mm->hiwater_vm, mm->total_vm);
  1092. }
  1093. static inline void update_hiwater_rss(struct mm_struct *mm)
  1094. {
  1095. unsigned long _rss = get_mm_rss(mm);
  1096. if ((mm)->hiwater_rss < _rss)
  1097. (mm)->hiwater_rss = _rss;
  1098. }
  1099. static inline void update_hiwater_vm(struct mm_struct *mm)
  1100. {
  1101. if (mm->hiwater_vm < mm->total_vm)
  1102. mm->hiwater_vm = mm->total_vm;
  1103. }
  1104. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1105. struct mm_struct *mm)
  1106. {
  1107. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1108. if (*maxrss < hiwater_rss)
  1109. *maxrss = hiwater_rss;
  1110. }
  1111. #if defined(SPLIT_RSS_COUNTING)
  1112. void sync_mm_rss(struct mm_struct *mm);
  1113. #else
  1114. static inline void sync_mm_rss(struct mm_struct *mm)
  1115. {
  1116. }
  1117. #endif
  1118. int vma_wants_writenotify(struct vm_area_struct *vma);
  1119. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1120. spinlock_t **ptl);
  1121. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1122. spinlock_t **ptl)
  1123. {
  1124. pte_t *ptep;
  1125. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1126. return ptep;
  1127. }
  1128. #ifdef __PAGETABLE_PUD_FOLDED
  1129. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1130. unsigned long address)
  1131. {
  1132. return 0;
  1133. }
  1134. #else
  1135. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1136. #endif
  1137. #ifdef __PAGETABLE_PMD_FOLDED
  1138. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1139. unsigned long address)
  1140. {
  1141. return 0;
  1142. }
  1143. #else
  1144. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1145. #endif
  1146. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1147. pmd_t *pmd, unsigned long address);
  1148. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1149. /*
  1150. * The following ifdef needed to get the 4level-fixup.h header to work.
  1151. * Remove it when 4level-fixup.h has been removed.
  1152. */
  1153. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1154. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1155. {
  1156. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1157. NULL: pud_offset(pgd, address);
  1158. }
  1159. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1160. {
  1161. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1162. NULL: pmd_offset(pud, address);
  1163. }
  1164. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1165. #if USE_SPLIT_PTE_PTLOCKS
  1166. #if ALLOC_SPLIT_PTLOCKS
  1167. void __init ptlock_cache_init(void);
  1168. extern bool ptlock_alloc(struct page *page);
  1169. extern void ptlock_free(struct page *page);
  1170. static inline spinlock_t *ptlock_ptr(struct page *page)
  1171. {
  1172. return page->ptl;
  1173. }
  1174. #else /* ALLOC_SPLIT_PTLOCKS */
  1175. static inline void ptlock_cache_init(void)
  1176. {
  1177. }
  1178. static inline bool ptlock_alloc(struct page *page)
  1179. {
  1180. return true;
  1181. }
  1182. static inline void ptlock_free(struct page *page)
  1183. {
  1184. }
  1185. static inline spinlock_t *ptlock_ptr(struct page *page)
  1186. {
  1187. return &page->ptl;
  1188. }
  1189. #endif /* ALLOC_SPLIT_PTLOCKS */
  1190. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1191. {
  1192. return ptlock_ptr(pmd_page(*pmd));
  1193. }
  1194. static inline bool ptlock_init(struct page *page)
  1195. {
  1196. /*
  1197. * prep_new_page() initialize page->private (and therefore page->ptl)
  1198. * with 0. Make sure nobody took it in use in between.
  1199. *
  1200. * It can happen if arch try to use slab for page table allocation:
  1201. * slab code uses page->slab_cache and page->first_page (for tail
  1202. * pages), which share storage with page->ptl.
  1203. */
  1204. VM_BUG_ON(*(unsigned long *)&page->ptl);
  1205. if (!ptlock_alloc(page))
  1206. return false;
  1207. spin_lock_init(ptlock_ptr(page));
  1208. return true;
  1209. }
  1210. /* Reset page->mapping so free_pages_check won't complain. */
  1211. static inline void pte_lock_deinit(struct page *page)
  1212. {
  1213. page->mapping = NULL;
  1214. ptlock_free(page);
  1215. }
  1216. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1217. /*
  1218. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1219. */
  1220. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1221. {
  1222. return &mm->page_table_lock;
  1223. }
  1224. static inline void ptlock_cache_init(void) {}
  1225. static inline bool ptlock_init(struct page *page) { return true; }
  1226. static inline void pte_lock_deinit(struct page *page) {}
  1227. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1228. static inline void pgtable_init(void)
  1229. {
  1230. ptlock_cache_init();
  1231. pgtable_cache_init();
  1232. }
  1233. static inline bool pgtable_page_ctor(struct page *page)
  1234. {
  1235. inc_zone_page_state(page, NR_PAGETABLE);
  1236. return ptlock_init(page);
  1237. }
  1238. static inline void pgtable_page_dtor(struct page *page)
  1239. {
  1240. pte_lock_deinit(page);
  1241. dec_zone_page_state(page, NR_PAGETABLE);
  1242. }
  1243. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1244. ({ \
  1245. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1246. pte_t *__pte = pte_offset_map(pmd, address); \
  1247. *(ptlp) = __ptl; \
  1248. spin_lock(__ptl); \
  1249. __pte; \
  1250. })
  1251. #define pte_unmap_unlock(pte, ptl) do { \
  1252. spin_unlock(ptl); \
  1253. pte_unmap(pte); \
  1254. } while (0)
  1255. #define pte_alloc_map(mm, vma, pmd, address) \
  1256. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1257. pmd, address))? \
  1258. NULL: pte_offset_map(pmd, address))
  1259. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1260. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1261. pmd, address))? \
  1262. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1263. #define pte_alloc_kernel(pmd, address) \
  1264. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1265. NULL: pte_offset_kernel(pmd, address))
  1266. #if USE_SPLIT_PMD_PTLOCKS
  1267. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1268. {
  1269. return ptlock_ptr(virt_to_page(pmd));
  1270. }
  1271. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1272. {
  1273. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1274. page->pmd_huge_pte = NULL;
  1275. #endif
  1276. return ptlock_init(page);
  1277. }
  1278. static inline void pgtable_pmd_page_dtor(struct page *page)
  1279. {
  1280. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1281. VM_BUG_ON(page->pmd_huge_pte);
  1282. #endif
  1283. ptlock_free(page);
  1284. }
  1285. #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
  1286. #else
  1287. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1288. {
  1289. return &mm->page_table_lock;
  1290. }
  1291. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1292. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1293. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1294. #endif
  1295. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1296. {
  1297. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1298. spin_lock(ptl);
  1299. return ptl;
  1300. }
  1301. extern void free_area_init(unsigned long * zones_size);
  1302. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1303. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1304. extern void free_initmem(void);
  1305. /*
  1306. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1307. * into the buddy system. The freed pages will be poisoned with pattern
  1308. * "poison" if it's within range [0, UCHAR_MAX].
  1309. * Return pages freed into the buddy system.
  1310. */
  1311. extern unsigned long free_reserved_area(void *start, void *end,
  1312. int poison, char *s);
  1313. #ifdef CONFIG_HIGHMEM
  1314. /*
  1315. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1316. * and totalram_pages.
  1317. */
  1318. extern void free_highmem_page(struct page *page);
  1319. #endif
  1320. extern void adjust_managed_page_count(struct page *page, long count);
  1321. extern void mem_init_print_info(const char *str);
  1322. /* Free the reserved page into the buddy system, so it gets managed. */
  1323. static inline void __free_reserved_page(struct page *page)
  1324. {
  1325. ClearPageReserved(page);
  1326. init_page_count(page);
  1327. __free_page(page);
  1328. }
  1329. static inline void free_reserved_page(struct page *page)
  1330. {
  1331. __free_reserved_page(page);
  1332. adjust_managed_page_count(page, 1);
  1333. }
  1334. static inline void mark_page_reserved(struct page *page)
  1335. {
  1336. SetPageReserved(page);
  1337. adjust_managed_page_count(page, -1);
  1338. }
  1339. /*
  1340. * Default method to free all the __init memory into the buddy system.
  1341. * The freed pages will be poisoned with pattern "poison" if it's within
  1342. * range [0, UCHAR_MAX].
  1343. * Return pages freed into the buddy system.
  1344. */
  1345. static inline unsigned long free_initmem_default(int poison)
  1346. {
  1347. extern char __init_begin[], __init_end[];
  1348. return free_reserved_area(&__init_begin, &__init_end,
  1349. poison, "unused kernel");
  1350. }
  1351. static inline unsigned long get_num_physpages(void)
  1352. {
  1353. int nid;
  1354. unsigned long phys_pages = 0;
  1355. for_each_online_node(nid)
  1356. phys_pages += node_present_pages(nid);
  1357. return phys_pages;
  1358. }
  1359. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1360. /*
  1361. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1362. * zones, allocate the backing mem_map and account for memory holes in a more
  1363. * architecture independent manner. This is a substitute for creating the
  1364. * zone_sizes[] and zholes_size[] arrays and passing them to
  1365. * free_area_init_node()
  1366. *
  1367. * An architecture is expected to register range of page frames backed by
  1368. * physical memory with memblock_add[_node]() before calling
  1369. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1370. * usage, an architecture is expected to do something like
  1371. *
  1372. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1373. * max_highmem_pfn};
  1374. * for_each_valid_physical_page_range()
  1375. * memblock_add_node(base, size, nid)
  1376. * free_area_init_nodes(max_zone_pfns);
  1377. *
  1378. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1379. * registered physical page range. Similarly
  1380. * sparse_memory_present_with_active_regions() calls memory_present() for
  1381. * each range when SPARSEMEM is enabled.
  1382. *
  1383. * See mm/page_alloc.c for more information on each function exposed by
  1384. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1385. */
  1386. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1387. unsigned long node_map_pfn_alignment(void);
  1388. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1389. unsigned long end_pfn);
  1390. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1391. unsigned long end_pfn);
  1392. extern void get_pfn_range_for_nid(unsigned int nid,
  1393. unsigned long *start_pfn, unsigned long *end_pfn);
  1394. extern unsigned long find_min_pfn_with_active_regions(void);
  1395. extern void free_bootmem_with_active_regions(int nid,
  1396. unsigned long max_low_pfn);
  1397. extern void sparse_memory_present_with_active_regions(int nid);
  1398. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1399. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1400. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1401. static inline int __early_pfn_to_nid(unsigned long pfn)
  1402. {
  1403. return 0;
  1404. }
  1405. #else
  1406. /* please see mm/page_alloc.c */
  1407. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1408. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1409. /* there is a per-arch backend function. */
  1410. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1411. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1412. #endif
  1413. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1414. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1415. unsigned long, enum memmap_context);
  1416. extern void setup_per_zone_wmarks(void);
  1417. extern int __meminit init_per_zone_wmark_min(void);
  1418. extern void mem_init(void);
  1419. extern void __init mmap_init(void);
  1420. extern void show_mem(unsigned int flags);
  1421. extern void si_meminfo(struct sysinfo * val);
  1422. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1423. extern __printf(3, 4)
  1424. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1425. extern void setup_per_cpu_pageset(void);
  1426. extern void zone_pcp_update(struct zone *zone);
  1427. extern void zone_pcp_reset(struct zone *zone);
  1428. /* page_alloc.c */
  1429. extern int min_free_kbytes;
  1430. /* nommu.c */
  1431. extern atomic_long_t mmap_pages_allocated;
  1432. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1433. /* interval_tree.c */
  1434. void vma_interval_tree_insert(struct vm_area_struct *node,
  1435. struct rb_root *root);
  1436. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1437. struct vm_area_struct *prev,
  1438. struct rb_root *root);
  1439. void vma_interval_tree_remove(struct vm_area_struct *node,
  1440. struct rb_root *root);
  1441. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1442. unsigned long start, unsigned long last);
  1443. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1444. unsigned long start, unsigned long last);
  1445. #define vma_interval_tree_foreach(vma, root, start, last) \
  1446. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1447. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1448. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1449. struct list_head *list)
  1450. {
  1451. list_add_tail(&vma->shared.nonlinear, list);
  1452. }
  1453. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1454. struct rb_root *root);
  1455. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1456. struct rb_root *root);
  1457. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1458. struct rb_root *root, unsigned long start, unsigned long last);
  1459. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1460. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1461. #ifdef CONFIG_DEBUG_VM_RB
  1462. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1463. #endif
  1464. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1465. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1466. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1467. /* mmap.c */
  1468. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1469. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1470. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1471. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1472. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1473. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1474. struct mempolicy *);
  1475. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1476. extern int split_vma(struct mm_struct *,
  1477. struct vm_area_struct *, unsigned long addr, int new_below);
  1478. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1479. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1480. struct rb_node **, struct rb_node *);
  1481. extern void unlink_file_vma(struct vm_area_struct *);
  1482. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1483. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1484. bool *need_rmap_locks);
  1485. extern void exit_mmap(struct mm_struct *);
  1486. extern int mm_take_all_locks(struct mm_struct *mm);
  1487. extern void mm_drop_all_locks(struct mm_struct *mm);
  1488. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1489. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1490. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1491. extern int install_special_mapping(struct mm_struct *mm,
  1492. unsigned long addr, unsigned long len,
  1493. unsigned long flags, struct page **pages);
  1494. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1495. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1496. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1497. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1498. unsigned long len, unsigned long prot, unsigned long flags,
  1499. unsigned long pgoff, unsigned long *populate);
  1500. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1501. #ifdef CONFIG_MMU
  1502. extern int __mm_populate(unsigned long addr, unsigned long len,
  1503. int ignore_errors);
  1504. static inline void mm_populate(unsigned long addr, unsigned long len)
  1505. {
  1506. /* Ignore errors */
  1507. (void) __mm_populate(addr, len, 1);
  1508. }
  1509. #else
  1510. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1511. #endif
  1512. /* These take the mm semaphore themselves */
  1513. extern unsigned long vm_brk(unsigned long, unsigned long);
  1514. extern int vm_munmap(unsigned long, size_t);
  1515. extern unsigned long vm_mmap(struct file *, unsigned long,
  1516. unsigned long, unsigned long,
  1517. unsigned long, unsigned long);
  1518. struct vm_unmapped_area_info {
  1519. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1520. unsigned long flags;
  1521. unsigned long length;
  1522. unsigned long low_limit;
  1523. unsigned long high_limit;
  1524. unsigned long align_mask;
  1525. unsigned long align_offset;
  1526. };
  1527. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1528. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1529. /*
  1530. * Search for an unmapped address range.
  1531. *
  1532. * We are looking for a range that:
  1533. * - does not intersect with any VMA;
  1534. * - is contained within the [low_limit, high_limit) interval;
  1535. * - is at least the desired size.
  1536. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1537. */
  1538. static inline unsigned long
  1539. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1540. {
  1541. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1542. return unmapped_area(info);
  1543. else
  1544. return unmapped_area_topdown(info);
  1545. }
  1546. /* truncate.c */
  1547. extern void truncate_inode_pages(struct address_space *, loff_t);
  1548. extern void truncate_inode_pages_range(struct address_space *,
  1549. loff_t lstart, loff_t lend);
  1550. /* generic vm_area_ops exported for stackable file systems */
  1551. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1552. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1553. /* mm/page-writeback.c */
  1554. int write_one_page(struct page *page, int wait);
  1555. void task_dirty_inc(struct task_struct *tsk);
  1556. /* readahead.c */
  1557. #define VM_MAX_READAHEAD 128 /* kbytes */
  1558. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1559. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1560. pgoff_t offset, unsigned long nr_to_read);
  1561. void page_cache_sync_readahead(struct address_space *mapping,
  1562. struct file_ra_state *ra,
  1563. struct file *filp,
  1564. pgoff_t offset,
  1565. unsigned long size);
  1566. void page_cache_async_readahead(struct address_space *mapping,
  1567. struct file_ra_state *ra,
  1568. struct file *filp,
  1569. struct page *pg,
  1570. pgoff_t offset,
  1571. unsigned long size);
  1572. unsigned long max_sane_readahead(unsigned long nr);
  1573. unsigned long ra_submit(struct file_ra_state *ra,
  1574. struct address_space *mapping,
  1575. struct file *filp);
  1576. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1577. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1578. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1579. extern int expand_downwards(struct vm_area_struct *vma,
  1580. unsigned long address);
  1581. #if VM_GROWSUP
  1582. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1583. #else
  1584. #define expand_upwards(vma, address) do { } while (0)
  1585. #endif
  1586. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1587. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1588. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1589. struct vm_area_struct **pprev);
  1590. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1591. NULL if none. Assume start_addr < end_addr. */
  1592. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1593. {
  1594. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1595. if (vma && end_addr <= vma->vm_start)
  1596. vma = NULL;
  1597. return vma;
  1598. }
  1599. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1600. {
  1601. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1602. }
  1603. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1604. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1605. unsigned long vm_start, unsigned long vm_end)
  1606. {
  1607. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1608. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1609. vma = NULL;
  1610. return vma;
  1611. }
  1612. #ifdef CONFIG_MMU
  1613. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1614. #else
  1615. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1616. {
  1617. return __pgprot(0);
  1618. }
  1619. #endif
  1620. #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
  1621. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1622. unsigned long start, unsigned long end);
  1623. #endif
  1624. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1625. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1626. unsigned long pfn, unsigned long size, pgprot_t);
  1627. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1628. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1629. unsigned long pfn);
  1630. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1631. unsigned long pfn);
  1632. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1633. struct page *follow_page_mask(struct vm_area_struct *vma,
  1634. unsigned long address, unsigned int foll_flags,
  1635. unsigned int *page_mask);
  1636. static inline struct page *follow_page(struct vm_area_struct *vma,
  1637. unsigned long address, unsigned int foll_flags)
  1638. {
  1639. unsigned int unused_page_mask;
  1640. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1641. }
  1642. #define FOLL_WRITE 0x01 /* check pte is writable */
  1643. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1644. #define FOLL_GET 0x04 /* do get_page on page */
  1645. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1646. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1647. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1648. * and return without waiting upon it */
  1649. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1650. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1651. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1652. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1653. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1654. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1655. void *data);
  1656. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1657. unsigned long size, pte_fn_t fn, void *data);
  1658. #ifdef CONFIG_PROC_FS
  1659. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1660. #else
  1661. static inline void vm_stat_account(struct mm_struct *mm,
  1662. unsigned long flags, struct file *file, long pages)
  1663. {
  1664. mm->total_vm += pages;
  1665. }
  1666. #endif /* CONFIG_PROC_FS */
  1667. #ifdef CONFIG_DEBUG_PAGEALLOC
  1668. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1669. #ifdef CONFIG_HIBERNATION
  1670. extern bool kernel_page_present(struct page *page);
  1671. #endif /* CONFIG_HIBERNATION */
  1672. #else
  1673. static inline void
  1674. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1675. #ifdef CONFIG_HIBERNATION
  1676. static inline bool kernel_page_present(struct page *page) { return true; }
  1677. #endif /* CONFIG_HIBERNATION */
  1678. #endif
  1679. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1680. #ifdef __HAVE_ARCH_GATE_AREA
  1681. int in_gate_area_no_mm(unsigned long addr);
  1682. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1683. #else
  1684. int in_gate_area_no_mm(unsigned long addr);
  1685. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1686. #endif /* __HAVE_ARCH_GATE_AREA */
  1687. #ifdef CONFIG_SYSCTL
  1688. extern int sysctl_drop_caches;
  1689. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1690. void __user *, size_t *, loff_t *);
  1691. #endif
  1692. unsigned long shrink_slab(struct shrink_control *shrink,
  1693. unsigned long nr_pages_scanned,
  1694. unsigned long lru_pages);
  1695. #ifndef CONFIG_MMU
  1696. #define randomize_va_space 0
  1697. #else
  1698. extern int randomize_va_space;
  1699. #endif
  1700. const char * arch_vma_name(struct vm_area_struct *vma);
  1701. void print_vma_addr(char *prefix, unsigned long rip);
  1702. void sparse_mem_maps_populate_node(struct page **map_map,
  1703. unsigned long pnum_begin,
  1704. unsigned long pnum_end,
  1705. unsigned long map_count,
  1706. int nodeid);
  1707. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1708. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1709. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1710. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1711. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1712. void *vmemmap_alloc_block(unsigned long size, int node);
  1713. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1714. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1715. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1716. int node);
  1717. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1718. void vmemmap_populate_print_last(void);
  1719. #ifdef CONFIG_MEMORY_HOTPLUG
  1720. void vmemmap_free(unsigned long start, unsigned long end);
  1721. #endif
  1722. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1723. unsigned long size);
  1724. enum mf_flags {
  1725. MF_COUNT_INCREASED = 1 << 0,
  1726. MF_ACTION_REQUIRED = 1 << 1,
  1727. MF_MUST_KILL = 1 << 2,
  1728. MF_SOFT_OFFLINE = 1 << 3,
  1729. };
  1730. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1731. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1732. extern int unpoison_memory(unsigned long pfn);
  1733. extern int sysctl_memory_failure_early_kill;
  1734. extern int sysctl_memory_failure_recovery;
  1735. extern void shake_page(struct page *p, int access);
  1736. extern atomic_long_t num_poisoned_pages;
  1737. extern int soft_offline_page(struct page *page, int flags);
  1738. extern void dump_page(struct page *page);
  1739. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1740. extern void clear_huge_page(struct page *page,
  1741. unsigned long addr,
  1742. unsigned int pages_per_huge_page);
  1743. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1744. unsigned long addr, struct vm_area_struct *vma,
  1745. unsigned int pages_per_huge_page);
  1746. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1747. #ifdef CONFIG_DEBUG_PAGEALLOC
  1748. extern unsigned int _debug_guardpage_minorder;
  1749. static inline unsigned int debug_guardpage_minorder(void)
  1750. {
  1751. return _debug_guardpage_minorder;
  1752. }
  1753. static inline bool page_is_guard(struct page *page)
  1754. {
  1755. return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  1756. }
  1757. #else
  1758. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1759. static inline bool page_is_guard(struct page *page) { return false; }
  1760. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1761. #if MAX_NUMNODES > 1
  1762. void __init setup_nr_node_ids(void);
  1763. #else
  1764. static inline void setup_nr_node_ids(void) {}
  1765. #endif
  1766. #endif /* __KERNEL__ */
  1767. #endif /* _LINUX_MM_H */