mm.h 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/resource.h>
  19. #include <linux/page_ext.h>
  20. #include <linux/err.h>
  21. struct mempolicy;
  22. struct anon_vma;
  23. struct anon_vma_chain;
  24. struct file_ra_state;
  25. struct user_struct;
  26. struct writeback_control;
  27. struct bdi_writeback;
  28. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  29. extern unsigned long max_mapnr;
  30. static inline void set_max_mapnr(unsigned long limit)
  31. {
  32. max_mapnr = limit;
  33. }
  34. #else
  35. static inline void set_max_mapnr(unsigned long limit) { }
  36. #endif
  37. extern unsigned long totalram_pages;
  38. extern void * high_memory;
  39. extern int page_cluster;
  40. #ifdef CONFIG_SYSCTL
  41. extern int sysctl_legacy_va_layout;
  42. #else
  43. #define sysctl_legacy_va_layout 0
  44. #endif
  45. #include <asm/page.h>
  46. #include <asm/pgtable.h>
  47. #include <asm/processor.h>
  48. #ifndef __pa_symbol
  49. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  50. #endif
  51. /*
  52. * To prevent common memory management code establishing
  53. * a zero page mapping on a read fault.
  54. * This macro should be defined within <asm/pgtable.h>.
  55. * s390 does this to prevent multiplexing of hardware bits
  56. * related to the physical page in case of virtualization.
  57. */
  58. #ifndef mm_forbids_zeropage
  59. #define mm_forbids_zeropage(X) (0)
  60. #endif
  61. extern unsigned long sysctl_user_reserve_kbytes;
  62. extern unsigned long sysctl_admin_reserve_kbytes;
  63. extern int sysctl_overcommit_memory;
  64. extern int sysctl_overcommit_ratio;
  65. extern unsigned long sysctl_overcommit_kbytes;
  66. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  67. size_t *, loff_t *);
  68. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  69. size_t *, loff_t *);
  70. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  71. /* to align the pointer to the (next) page boundary */
  72. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  73. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  74. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  75. /*
  76. * Linux kernel virtual memory manager primitives.
  77. * The idea being to have a "virtual" mm in the same way
  78. * we have a virtual fs - giving a cleaner interface to the
  79. * mm details, and allowing different kinds of memory mappings
  80. * (from shared memory to executable loading to arbitrary
  81. * mmap() functions).
  82. */
  83. extern struct kmem_cache *vm_area_cachep;
  84. #ifndef CONFIG_MMU
  85. extern struct rb_root nommu_region_tree;
  86. extern struct rw_semaphore nommu_region_sem;
  87. extern unsigned int kobjsize(const void *objp);
  88. #endif
  89. /*
  90. * vm_flags in vm_area_struct, see mm_types.h.
  91. */
  92. #define VM_NONE 0x00000000
  93. #define VM_READ 0x00000001 /* currently active flags */
  94. #define VM_WRITE 0x00000002
  95. #define VM_EXEC 0x00000004
  96. #define VM_SHARED 0x00000008
  97. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  98. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  99. #define VM_MAYWRITE 0x00000020
  100. #define VM_MAYEXEC 0x00000040
  101. #define VM_MAYSHARE 0x00000080
  102. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  103. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  104. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  105. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  106. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  107. #define VM_LOCKED 0x00002000
  108. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  109. /* Used by sys_madvise() */
  110. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  111. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  112. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  113. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  114. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  115. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  116. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  117. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  118. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  119. #define VM_ARCH_2 0x02000000
  120. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  121. #ifdef CONFIG_MEM_SOFT_DIRTY
  122. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  123. #else
  124. # define VM_SOFTDIRTY 0
  125. #endif
  126. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  127. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  128. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  129. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  130. #if defined(CONFIG_X86)
  131. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  132. #elif defined(CONFIG_PPC)
  133. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  134. #elif defined(CONFIG_PARISC)
  135. # define VM_GROWSUP VM_ARCH_1
  136. #elif defined(CONFIG_METAG)
  137. # define VM_GROWSUP VM_ARCH_1
  138. #elif defined(CONFIG_IA64)
  139. # define VM_GROWSUP VM_ARCH_1
  140. #elif !defined(CONFIG_MMU)
  141. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  142. #endif
  143. #if defined(CONFIG_X86)
  144. /* MPX specific bounds table or bounds directory */
  145. # define VM_MPX VM_ARCH_2
  146. #endif
  147. #ifndef VM_GROWSUP
  148. # define VM_GROWSUP VM_NONE
  149. #endif
  150. /* Bits set in the VMA until the stack is in its final location */
  151. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  152. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  153. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  154. #endif
  155. #ifdef CONFIG_STACK_GROWSUP
  156. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  157. #else
  158. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  159. #endif
  160. /*
  161. * Special vmas that are non-mergable, non-mlock()able.
  162. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  163. */
  164. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  165. /* This mask defines which mm->def_flags a process can inherit its parent */
  166. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  167. /* This mask is used to clear all the VMA flags used by mlock */
  168. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  169. /*
  170. * mapping from the currently active vm_flags protection bits (the
  171. * low four bits) to a page protection mask..
  172. */
  173. extern pgprot_t protection_map[16];
  174. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  175. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  176. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  177. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  178. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  179. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  180. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  181. /*
  182. * vm_fault is filled by the the pagefault handler and passed to the vma's
  183. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  184. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  185. *
  186. * pgoff should be used in favour of virtual_address, if possible.
  187. */
  188. struct vm_fault {
  189. unsigned int flags; /* FAULT_FLAG_xxx flags */
  190. pgoff_t pgoff; /* Logical page offset based on vma */
  191. void __user *virtual_address; /* Faulting virtual address */
  192. struct page *cow_page; /* Handler may choose to COW */
  193. struct page *page; /* ->fault handlers should return a
  194. * page here, unless VM_FAULT_NOPAGE
  195. * is set (which is also implied by
  196. * VM_FAULT_ERROR).
  197. */
  198. /* for ->map_pages() only */
  199. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  200. * max_pgoff inclusive */
  201. pte_t *pte; /* pte entry associated with ->pgoff */
  202. };
  203. /*
  204. * These are the virtual MM functions - opening of an area, closing and
  205. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  206. * to the functions called when a no-page or a wp-page exception occurs.
  207. */
  208. struct vm_operations_struct {
  209. void (*open)(struct vm_area_struct * area);
  210. void (*close)(struct vm_area_struct * area);
  211. int (*mremap)(struct vm_area_struct * area);
  212. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  213. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  214. pmd_t *, unsigned int flags);
  215. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  216. /* notification that a previously read-only page is about to become
  217. * writable, if an error is returned it will cause a SIGBUS */
  218. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  219. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  220. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  221. /* called by access_process_vm when get_user_pages() fails, typically
  222. * for use by special VMAs that can switch between memory and hardware
  223. */
  224. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  225. void *buf, int len, int write);
  226. /* Called by the /proc/PID/maps code to ask the vma whether it
  227. * has a special name. Returning non-NULL will also cause this
  228. * vma to be dumped unconditionally. */
  229. const char *(*name)(struct vm_area_struct *vma);
  230. #ifdef CONFIG_NUMA
  231. /*
  232. * set_policy() op must add a reference to any non-NULL @new mempolicy
  233. * to hold the policy upon return. Caller should pass NULL @new to
  234. * remove a policy and fall back to surrounding context--i.e. do not
  235. * install a MPOL_DEFAULT policy, nor the task or system default
  236. * mempolicy.
  237. */
  238. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  239. /*
  240. * get_policy() op must add reference [mpol_get()] to any policy at
  241. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  242. * in mm/mempolicy.c will do this automatically.
  243. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  244. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  245. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  246. * must return NULL--i.e., do not "fallback" to task or system default
  247. * policy.
  248. */
  249. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  250. unsigned long addr);
  251. #endif
  252. /*
  253. * Called by vm_normal_page() for special PTEs to find the
  254. * page for @addr. This is useful if the default behavior
  255. * (using pte_page()) would not find the correct page.
  256. */
  257. struct page *(*find_special_page)(struct vm_area_struct *vma,
  258. unsigned long addr);
  259. };
  260. struct mmu_gather;
  261. struct inode;
  262. #define page_private(page) ((page)->private)
  263. #define set_page_private(page, v) ((page)->private = (v))
  264. /*
  265. * FIXME: take this include out, include page-flags.h in
  266. * files which need it (119 of them)
  267. */
  268. #include <linux/page-flags.h>
  269. #include <linux/huge_mm.h>
  270. /*
  271. * Methods to modify the page usage count.
  272. *
  273. * What counts for a page usage:
  274. * - cache mapping (page->mapping)
  275. * - private data (page->private)
  276. * - page mapped in a task's page tables, each mapping
  277. * is counted separately
  278. *
  279. * Also, many kernel routines increase the page count before a critical
  280. * routine so they can be sure the page doesn't go away from under them.
  281. */
  282. /*
  283. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  284. */
  285. static inline int put_page_testzero(struct page *page)
  286. {
  287. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  288. return atomic_dec_and_test(&page->_count);
  289. }
  290. /*
  291. * Try to grab a ref unless the page has a refcount of zero, return false if
  292. * that is the case.
  293. * This can be called when MMU is off so it must not access
  294. * any of the virtual mappings.
  295. */
  296. static inline int get_page_unless_zero(struct page *page)
  297. {
  298. return atomic_inc_not_zero(&page->_count);
  299. }
  300. extern int page_is_ram(unsigned long pfn);
  301. enum {
  302. REGION_INTERSECTS,
  303. REGION_DISJOINT,
  304. REGION_MIXED,
  305. };
  306. int region_intersects(resource_size_t offset, size_t size, const char *type);
  307. /* Support for virtually mapped pages */
  308. struct page *vmalloc_to_page(const void *addr);
  309. unsigned long vmalloc_to_pfn(const void *addr);
  310. /*
  311. * Determine if an address is within the vmalloc range
  312. *
  313. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  314. * is no special casing required.
  315. */
  316. static inline int is_vmalloc_addr(const void *x)
  317. {
  318. #ifdef CONFIG_MMU
  319. unsigned long addr = (unsigned long)x;
  320. return addr >= VMALLOC_START && addr < VMALLOC_END;
  321. #else
  322. return 0;
  323. #endif
  324. }
  325. #ifdef CONFIG_MMU
  326. extern int is_vmalloc_or_module_addr(const void *x);
  327. #else
  328. static inline int is_vmalloc_or_module_addr(const void *x)
  329. {
  330. return 0;
  331. }
  332. #endif
  333. extern void kvfree(const void *addr);
  334. static inline void compound_lock(struct page *page)
  335. {
  336. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  337. VM_BUG_ON_PAGE(PageSlab(page), page);
  338. bit_spin_lock(PG_compound_lock, &page->flags);
  339. #endif
  340. }
  341. static inline void compound_unlock(struct page *page)
  342. {
  343. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  344. VM_BUG_ON_PAGE(PageSlab(page), page);
  345. bit_spin_unlock(PG_compound_lock, &page->flags);
  346. #endif
  347. }
  348. static inline unsigned long compound_lock_irqsave(struct page *page)
  349. {
  350. unsigned long uninitialized_var(flags);
  351. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  352. local_irq_save(flags);
  353. compound_lock(page);
  354. #endif
  355. return flags;
  356. }
  357. static inline void compound_unlock_irqrestore(struct page *page,
  358. unsigned long flags)
  359. {
  360. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  361. compound_unlock(page);
  362. local_irq_restore(flags);
  363. #endif
  364. }
  365. static inline struct page *compound_head_by_tail(struct page *tail)
  366. {
  367. struct page *head = tail->first_page;
  368. /*
  369. * page->first_page may be a dangling pointer to an old
  370. * compound page, so recheck that it is still a tail
  371. * page before returning.
  372. */
  373. smp_rmb();
  374. if (likely(PageTail(tail)))
  375. return head;
  376. return tail;
  377. }
  378. /*
  379. * Since either compound page could be dismantled asynchronously in THP
  380. * or we access asynchronously arbitrary positioned struct page, there
  381. * would be tail flag race. To handle this race, we should call
  382. * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
  383. */
  384. static inline struct page *compound_head(struct page *page)
  385. {
  386. if (unlikely(PageTail(page)))
  387. return compound_head_by_tail(page);
  388. return page;
  389. }
  390. /*
  391. * If we access compound page synchronously such as access to
  392. * allocated page, there is no need to handle tail flag race, so we can
  393. * check tail flag directly without any synchronization primitive.
  394. */
  395. static inline struct page *compound_head_fast(struct page *page)
  396. {
  397. if (unlikely(PageTail(page)))
  398. return page->first_page;
  399. return page;
  400. }
  401. /*
  402. * The atomic page->_mapcount, starts from -1: so that transitions
  403. * both from it and to it can be tracked, using atomic_inc_and_test
  404. * and atomic_add_negative(-1).
  405. */
  406. static inline void page_mapcount_reset(struct page *page)
  407. {
  408. atomic_set(&(page)->_mapcount, -1);
  409. }
  410. static inline int page_mapcount(struct page *page)
  411. {
  412. VM_BUG_ON_PAGE(PageSlab(page), page);
  413. return atomic_read(&page->_mapcount) + 1;
  414. }
  415. static inline int page_count(struct page *page)
  416. {
  417. return atomic_read(&compound_head(page)->_count);
  418. }
  419. static inline bool __compound_tail_refcounted(struct page *page)
  420. {
  421. return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
  422. }
  423. /*
  424. * This takes a head page as parameter and tells if the
  425. * tail page reference counting can be skipped.
  426. *
  427. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  428. * any given page where they return true here, until all tail pins
  429. * have been released.
  430. */
  431. static inline bool compound_tail_refcounted(struct page *page)
  432. {
  433. VM_BUG_ON_PAGE(!PageHead(page), page);
  434. return __compound_tail_refcounted(page);
  435. }
  436. static inline void get_huge_page_tail(struct page *page)
  437. {
  438. /*
  439. * __split_huge_page_refcount() cannot run from under us.
  440. */
  441. VM_BUG_ON_PAGE(!PageTail(page), page);
  442. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  443. VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
  444. if (compound_tail_refcounted(page->first_page))
  445. atomic_inc(&page->_mapcount);
  446. }
  447. extern bool __get_page_tail(struct page *page);
  448. static inline void get_page(struct page *page)
  449. {
  450. if (unlikely(PageTail(page)))
  451. if (likely(__get_page_tail(page)))
  452. return;
  453. /*
  454. * Getting a normal page or the head of a compound page
  455. * requires to already have an elevated page->_count.
  456. */
  457. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  458. atomic_inc(&page->_count);
  459. }
  460. static inline struct page *virt_to_head_page(const void *x)
  461. {
  462. struct page *page = virt_to_page(x);
  463. /*
  464. * We don't need to worry about synchronization of tail flag
  465. * when we call virt_to_head_page() since it is only called for
  466. * already allocated page and this page won't be freed until
  467. * this virt_to_head_page() is finished. So use _fast variant.
  468. */
  469. return compound_head_fast(page);
  470. }
  471. /*
  472. * Setup the page count before being freed into the page allocator for
  473. * the first time (boot or memory hotplug)
  474. */
  475. static inline void init_page_count(struct page *page)
  476. {
  477. atomic_set(&page->_count, 1);
  478. }
  479. void put_page(struct page *page);
  480. void put_pages_list(struct list_head *pages);
  481. void split_page(struct page *page, unsigned int order);
  482. int split_free_page(struct page *page);
  483. /*
  484. * Compound pages have a destructor function. Provide a
  485. * prototype for that function and accessor functions.
  486. * These are _only_ valid on the head of a PG_compound page.
  487. */
  488. static inline void set_compound_page_dtor(struct page *page,
  489. compound_page_dtor *dtor)
  490. {
  491. page[1].compound_dtor = dtor;
  492. }
  493. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  494. {
  495. return page[1].compound_dtor;
  496. }
  497. static inline int compound_order(struct page *page)
  498. {
  499. if (!PageHead(page))
  500. return 0;
  501. return page[1].compound_order;
  502. }
  503. static inline void set_compound_order(struct page *page, unsigned long order)
  504. {
  505. page[1].compound_order = order;
  506. }
  507. #ifdef CONFIG_MMU
  508. /*
  509. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  510. * servicing faults for write access. In the normal case, do always want
  511. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  512. * that do not have writing enabled, when used by access_process_vm.
  513. */
  514. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  515. {
  516. if (likely(vma->vm_flags & VM_WRITE))
  517. pte = pte_mkwrite(pte);
  518. return pte;
  519. }
  520. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  521. struct page *page, pte_t *pte, bool write, bool anon);
  522. #endif
  523. /*
  524. * Multiple processes may "see" the same page. E.g. for untouched
  525. * mappings of /dev/null, all processes see the same page full of
  526. * zeroes, and text pages of executables and shared libraries have
  527. * only one copy in memory, at most, normally.
  528. *
  529. * For the non-reserved pages, page_count(page) denotes a reference count.
  530. * page_count() == 0 means the page is free. page->lru is then used for
  531. * freelist management in the buddy allocator.
  532. * page_count() > 0 means the page has been allocated.
  533. *
  534. * Pages are allocated by the slab allocator in order to provide memory
  535. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  536. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  537. * unless a particular usage is carefully commented. (the responsibility of
  538. * freeing the kmalloc memory is the caller's, of course).
  539. *
  540. * A page may be used by anyone else who does a __get_free_page().
  541. * In this case, page_count still tracks the references, and should only
  542. * be used through the normal accessor functions. The top bits of page->flags
  543. * and page->virtual store page management information, but all other fields
  544. * are unused and could be used privately, carefully. The management of this
  545. * page is the responsibility of the one who allocated it, and those who have
  546. * subsequently been given references to it.
  547. *
  548. * The other pages (we may call them "pagecache pages") are completely
  549. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  550. * The following discussion applies only to them.
  551. *
  552. * A pagecache page contains an opaque `private' member, which belongs to the
  553. * page's address_space. Usually, this is the address of a circular list of
  554. * the page's disk buffers. PG_private must be set to tell the VM to call
  555. * into the filesystem to release these pages.
  556. *
  557. * A page may belong to an inode's memory mapping. In this case, page->mapping
  558. * is the pointer to the inode, and page->index is the file offset of the page,
  559. * in units of PAGE_CACHE_SIZE.
  560. *
  561. * If pagecache pages are not associated with an inode, they are said to be
  562. * anonymous pages. These may become associated with the swapcache, and in that
  563. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  564. *
  565. * In either case (swapcache or inode backed), the pagecache itself holds one
  566. * reference to the page. Setting PG_private should also increment the
  567. * refcount. The each user mapping also has a reference to the page.
  568. *
  569. * The pagecache pages are stored in a per-mapping radix tree, which is
  570. * rooted at mapping->page_tree, and indexed by offset.
  571. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  572. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  573. *
  574. * All pagecache pages may be subject to I/O:
  575. * - inode pages may need to be read from disk,
  576. * - inode pages which have been modified and are MAP_SHARED may need
  577. * to be written back to the inode on disk,
  578. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  579. * modified may need to be swapped out to swap space and (later) to be read
  580. * back into memory.
  581. */
  582. /*
  583. * The zone field is never updated after free_area_init_core()
  584. * sets it, so none of the operations on it need to be atomic.
  585. */
  586. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  587. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  588. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  589. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  590. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  591. /*
  592. * Define the bit shifts to access each section. For non-existent
  593. * sections we define the shift as 0; that plus a 0 mask ensures
  594. * the compiler will optimise away reference to them.
  595. */
  596. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  597. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  598. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  599. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  600. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  601. #ifdef NODE_NOT_IN_PAGE_FLAGS
  602. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  603. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  604. SECTIONS_PGOFF : ZONES_PGOFF)
  605. #else
  606. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  607. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  608. NODES_PGOFF : ZONES_PGOFF)
  609. #endif
  610. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  611. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  612. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  613. #endif
  614. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  615. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  616. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  617. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  618. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  619. static inline enum zone_type page_zonenum(const struct page *page)
  620. {
  621. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  622. }
  623. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  624. #define SECTION_IN_PAGE_FLAGS
  625. #endif
  626. /*
  627. * The identification function is mainly used by the buddy allocator for
  628. * determining if two pages could be buddies. We are not really identifying
  629. * the zone since we could be using the section number id if we do not have
  630. * node id available in page flags.
  631. * We only guarantee that it will return the same value for two combinable
  632. * pages in a zone.
  633. */
  634. static inline int page_zone_id(struct page *page)
  635. {
  636. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  637. }
  638. static inline int zone_to_nid(struct zone *zone)
  639. {
  640. #ifdef CONFIG_NUMA
  641. return zone->node;
  642. #else
  643. return 0;
  644. #endif
  645. }
  646. #ifdef NODE_NOT_IN_PAGE_FLAGS
  647. extern int page_to_nid(const struct page *page);
  648. #else
  649. static inline int page_to_nid(const struct page *page)
  650. {
  651. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  652. }
  653. #endif
  654. #ifdef CONFIG_NUMA_BALANCING
  655. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  656. {
  657. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  658. }
  659. static inline int cpupid_to_pid(int cpupid)
  660. {
  661. return cpupid & LAST__PID_MASK;
  662. }
  663. static inline int cpupid_to_cpu(int cpupid)
  664. {
  665. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  666. }
  667. static inline int cpupid_to_nid(int cpupid)
  668. {
  669. return cpu_to_node(cpupid_to_cpu(cpupid));
  670. }
  671. static inline bool cpupid_pid_unset(int cpupid)
  672. {
  673. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  674. }
  675. static inline bool cpupid_cpu_unset(int cpupid)
  676. {
  677. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  678. }
  679. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  680. {
  681. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  682. }
  683. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  684. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  685. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  686. {
  687. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  688. }
  689. static inline int page_cpupid_last(struct page *page)
  690. {
  691. return page->_last_cpupid;
  692. }
  693. static inline void page_cpupid_reset_last(struct page *page)
  694. {
  695. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  696. }
  697. #else
  698. static inline int page_cpupid_last(struct page *page)
  699. {
  700. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  701. }
  702. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  703. static inline void page_cpupid_reset_last(struct page *page)
  704. {
  705. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  706. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  707. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  708. }
  709. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  710. #else /* !CONFIG_NUMA_BALANCING */
  711. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  712. {
  713. return page_to_nid(page); /* XXX */
  714. }
  715. static inline int page_cpupid_last(struct page *page)
  716. {
  717. return page_to_nid(page); /* XXX */
  718. }
  719. static inline int cpupid_to_nid(int cpupid)
  720. {
  721. return -1;
  722. }
  723. static inline int cpupid_to_pid(int cpupid)
  724. {
  725. return -1;
  726. }
  727. static inline int cpupid_to_cpu(int cpupid)
  728. {
  729. return -1;
  730. }
  731. static inline int cpu_pid_to_cpupid(int nid, int pid)
  732. {
  733. return -1;
  734. }
  735. static inline bool cpupid_pid_unset(int cpupid)
  736. {
  737. return 1;
  738. }
  739. static inline void page_cpupid_reset_last(struct page *page)
  740. {
  741. }
  742. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  743. {
  744. return false;
  745. }
  746. #endif /* CONFIG_NUMA_BALANCING */
  747. static inline struct zone *page_zone(const struct page *page)
  748. {
  749. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  750. }
  751. #ifdef SECTION_IN_PAGE_FLAGS
  752. static inline void set_page_section(struct page *page, unsigned long section)
  753. {
  754. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  755. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  756. }
  757. static inline unsigned long page_to_section(const struct page *page)
  758. {
  759. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  760. }
  761. #endif
  762. static inline void set_page_zone(struct page *page, enum zone_type zone)
  763. {
  764. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  765. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  766. }
  767. static inline void set_page_node(struct page *page, unsigned long node)
  768. {
  769. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  770. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  771. }
  772. static inline void set_page_links(struct page *page, enum zone_type zone,
  773. unsigned long node, unsigned long pfn)
  774. {
  775. set_page_zone(page, zone);
  776. set_page_node(page, node);
  777. #ifdef SECTION_IN_PAGE_FLAGS
  778. set_page_section(page, pfn_to_section_nr(pfn));
  779. #endif
  780. }
  781. #ifdef CONFIG_MEMCG
  782. static inline struct mem_cgroup *page_memcg(struct page *page)
  783. {
  784. return page->mem_cgroup;
  785. }
  786. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  787. {
  788. page->mem_cgroup = memcg;
  789. }
  790. #else
  791. static inline struct mem_cgroup *page_memcg(struct page *page)
  792. {
  793. return NULL;
  794. }
  795. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  796. {
  797. }
  798. #endif
  799. /*
  800. * Some inline functions in vmstat.h depend on page_zone()
  801. */
  802. #include <linux/vmstat.h>
  803. static __always_inline void *lowmem_page_address(const struct page *page)
  804. {
  805. return __va(PFN_PHYS(page_to_pfn(page)));
  806. }
  807. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  808. #define HASHED_PAGE_VIRTUAL
  809. #endif
  810. #if defined(WANT_PAGE_VIRTUAL)
  811. static inline void *page_address(const struct page *page)
  812. {
  813. return page->virtual;
  814. }
  815. static inline void set_page_address(struct page *page, void *address)
  816. {
  817. page->virtual = address;
  818. }
  819. #define page_address_init() do { } while(0)
  820. #endif
  821. #if defined(HASHED_PAGE_VIRTUAL)
  822. void *page_address(const struct page *page);
  823. void set_page_address(struct page *page, void *virtual);
  824. void page_address_init(void);
  825. #endif
  826. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  827. #define page_address(page) lowmem_page_address(page)
  828. #define set_page_address(page, address) do { } while(0)
  829. #define page_address_init() do { } while(0)
  830. #endif
  831. extern void *page_rmapping(struct page *page);
  832. extern struct anon_vma *page_anon_vma(struct page *page);
  833. extern struct address_space *page_mapping(struct page *page);
  834. extern struct address_space *__page_file_mapping(struct page *);
  835. static inline
  836. struct address_space *page_file_mapping(struct page *page)
  837. {
  838. if (unlikely(PageSwapCache(page)))
  839. return __page_file_mapping(page);
  840. return page->mapping;
  841. }
  842. /*
  843. * Return the pagecache index of the passed page. Regular pagecache pages
  844. * use ->index whereas swapcache pages use ->private
  845. */
  846. static inline pgoff_t page_index(struct page *page)
  847. {
  848. if (unlikely(PageSwapCache(page)))
  849. return page_private(page);
  850. return page->index;
  851. }
  852. extern pgoff_t __page_file_index(struct page *page);
  853. /*
  854. * Return the file index of the page. Regular pagecache pages use ->index
  855. * whereas swapcache pages use swp_offset(->private)
  856. */
  857. static inline pgoff_t page_file_index(struct page *page)
  858. {
  859. if (unlikely(PageSwapCache(page)))
  860. return __page_file_index(page);
  861. return page->index;
  862. }
  863. /*
  864. * Return true if this page is mapped into pagetables.
  865. */
  866. static inline int page_mapped(struct page *page)
  867. {
  868. return atomic_read(&(page)->_mapcount) >= 0;
  869. }
  870. /*
  871. * Return true only if the page has been allocated with
  872. * ALLOC_NO_WATERMARKS and the low watermark was not
  873. * met implying that the system is under some pressure.
  874. */
  875. static inline bool page_is_pfmemalloc(struct page *page)
  876. {
  877. /*
  878. * Page index cannot be this large so this must be
  879. * a pfmemalloc page.
  880. */
  881. return page->index == -1UL;
  882. }
  883. /*
  884. * Only to be called by the page allocator on a freshly allocated
  885. * page.
  886. */
  887. static inline void set_page_pfmemalloc(struct page *page)
  888. {
  889. page->index = -1UL;
  890. }
  891. static inline void clear_page_pfmemalloc(struct page *page)
  892. {
  893. page->index = 0;
  894. }
  895. /*
  896. * Different kinds of faults, as returned by handle_mm_fault().
  897. * Used to decide whether a process gets delivered SIGBUS or
  898. * just gets major/minor fault counters bumped up.
  899. */
  900. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  901. #define VM_FAULT_OOM 0x0001
  902. #define VM_FAULT_SIGBUS 0x0002
  903. #define VM_FAULT_MAJOR 0x0004
  904. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  905. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  906. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  907. #define VM_FAULT_SIGSEGV 0x0040
  908. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  909. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  910. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  911. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  912. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  913. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  914. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  915. VM_FAULT_FALLBACK)
  916. /* Encode hstate index for a hwpoisoned large page */
  917. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  918. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  919. /*
  920. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  921. */
  922. extern void pagefault_out_of_memory(void);
  923. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  924. /*
  925. * Flags passed to show_mem() and show_free_areas() to suppress output in
  926. * various contexts.
  927. */
  928. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  929. extern void show_free_areas(unsigned int flags);
  930. extern bool skip_free_areas_node(unsigned int flags, int nid);
  931. int shmem_zero_setup(struct vm_area_struct *);
  932. #ifdef CONFIG_SHMEM
  933. bool shmem_mapping(struct address_space *mapping);
  934. #else
  935. static inline bool shmem_mapping(struct address_space *mapping)
  936. {
  937. return false;
  938. }
  939. #endif
  940. extern int can_do_mlock(void);
  941. extern int user_shm_lock(size_t, struct user_struct *);
  942. extern void user_shm_unlock(size_t, struct user_struct *);
  943. /*
  944. * Parameter block passed down to zap_pte_range in exceptional cases.
  945. */
  946. struct zap_details {
  947. struct address_space *check_mapping; /* Check page->mapping if set */
  948. pgoff_t first_index; /* Lowest page->index to unmap */
  949. pgoff_t last_index; /* Highest page->index to unmap */
  950. };
  951. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  952. pte_t pte);
  953. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  954. unsigned long size);
  955. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  956. unsigned long size, struct zap_details *);
  957. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  958. unsigned long start, unsigned long end);
  959. /**
  960. * mm_walk - callbacks for walk_page_range
  961. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  962. * this handler is required to be able to handle
  963. * pmd_trans_huge() pmds. They may simply choose to
  964. * split_huge_page() instead of handling it explicitly.
  965. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  966. * @pte_hole: if set, called for each hole at all levels
  967. * @hugetlb_entry: if set, called for each hugetlb entry
  968. * @test_walk: caller specific callback function to determine whether
  969. * we walk over the current vma or not. A positive returned
  970. * value means "do page table walk over the current vma,"
  971. * and a negative one means "abort current page table walk
  972. * right now." 0 means "skip the current vma."
  973. * @mm: mm_struct representing the target process of page table walk
  974. * @vma: vma currently walked (NULL if walking outside vmas)
  975. * @private: private data for callbacks' usage
  976. *
  977. * (see the comment on walk_page_range() for more details)
  978. */
  979. struct mm_walk {
  980. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  981. unsigned long next, struct mm_walk *walk);
  982. int (*pte_entry)(pte_t *pte, unsigned long addr,
  983. unsigned long next, struct mm_walk *walk);
  984. int (*pte_hole)(unsigned long addr, unsigned long next,
  985. struct mm_walk *walk);
  986. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  987. unsigned long addr, unsigned long next,
  988. struct mm_walk *walk);
  989. int (*test_walk)(unsigned long addr, unsigned long next,
  990. struct mm_walk *walk);
  991. struct mm_struct *mm;
  992. struct vm_area_struct *vma;
  993. void *private;
  994. };
  995. int walk_page_range(unsigned long addr, unsigned long end,
  996. struct mm_walk *walk);
  997. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  998. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  999. unsigned long end, unsigned long floor, unsigned long ceiling);
  1000. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1001. struct vm_area_struct *vma);
  1002. void unmap_mapping_range(struct address_space *mapping,
  1003. loff_t const holebegin, loff_t const holelen, int even_cows);
  1004. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1005. unsigned long *pfn);
  1006. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1007. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1008. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1009. void *buf, int len, int write);
  1010. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1011. loff_t const holebegin, loff_t const holelen)
  1012. {
  1013. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1014. }
  1015. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1016. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1017. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1018. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1019. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1020. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1021. int invalidate_inode_page(struct page *page);
  1022. #ifdef CONFIG_MMU
  1023. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1024. unsigned long address, unsigned int flags);
  1025. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1026. unsigned long address, unsigned int fault_flags);
  1027. #else
  1028. static inline int handle_mm_fault(struct mm_struct *mm,
  1029. struct vm_area_struct *vma, unsigned long address,
  1030. unsigned int flags)
  1031. {
  1032. /* should never happen if there's no MMU */
  1033. BUG();
  1034. return VM_FAULT_SIGBUS;
  1035. }
  1036. static inline int fixup_user_fault(struct task_struct *tsk,
  1037. struct mm_struct *mm, unsigned long address,
  1038. unsigned int fault_flags)
  1039. {
  1040. /* should never happen if there's no MMU */
  1041. BUG();
  1042. return -EFAULT;
  1043. }
  1044. #endif
  1045. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1046. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1047. void *buf, int len, int write);
  1048. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1049. unsigned long start, unsigned long nr_pages,
  1050. unsigned int foll_flags, struct page **pages,
  1051. struct vm_area_struct **vmas, int *nonblocking);
  1052. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1053. unsigned long start, unsigned long nr_pages,
  1054. int write, int force, struct page **pages,
  1055. struct vm_area_struct **vmas);
  1056. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1057. unsigned long start, unsigned long nr_pages,
  1058. int write, int force, struct page **pages,
  1059. int *locked);
  1060. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1061. unsigned long start, unsigned long nr_pages,
  1062. int write, int force, struct page **pages,
  1063. unsigned int gup_flags);
  1064. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1065. unsigned long start, unsigned long nr_pages,
  1066. int write, int force, struct page **pages);
  1067. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1068. struct page **pages);
  1069. /* Container for pinned pfns / pages */
  1070. struct frame_vector {
  1071. unsigned int nr_allocated; /* Number of frames we have space for */
  1072. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1073. bool got_ref; /* Did we pin pages by getting page ref? */
  1074. bool is_pfns; /* Does array contain pages or pfns? */
  1075. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1076. * pfns_vector_pages() or pfns_vector_pfns()
  1077. * for access */
  1078. };
  1079. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1080. void frame_vector_destroy(struct frame_vector *vec);
  1081. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1082. bool write, bool force, struct frame_vector *vec);
  1083. void put_vaddr_frames(struct frame_vector *vec);
  1084. int frame_vector_to_pages(struct frame_vector *vec);
  1085. void frame_vector_to_pfns(struct frame_vector *vec);
  1086. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1087. {
  1088. return vec->nr_frames;
  1089. }
  1090. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1091. {
  1092. if (vec->is_pfns) {
  1093. int err = frame_vector_to_pages(vec);
  1094. if (err)
  1095. return ERR_PTR(err);
  1096. }
  1097. return (struct page **)(vec->ptrs);
  1098. }
  1099. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1100. {
  1101. if (!vec->is_pfns)
  1102. frame_vector_to_pfns(vec);
  1103. return (unsigned long *)(vec->ptrs);
  1104. }
  1105. struct kvec;
  1106. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1107. struct page **pages);
  1108. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1109. struct page *get_dump_page(unsigned long addr);
  1110. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1111. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1112. unsigned int length);
  1113. int __set_page_dirty_nobuffers(struct page *page);
  1114. int __set_page_dirty_no_writeback(struct page *page);
  1115. int redirty_page_for_writepage(struct writeback_control *wbc,
  1116. struct page *page);
  1117. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1118. struct mem_cgroup *memcg);
  1119. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1120. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1121. int set_page_dirty(struct page *page);
  1122. int set_page_dirty_lock(struct page *page);
  1123. void cancel_dirty_page(struct page *page);
  1124. int clear_page_dirty_for_io(struct page *page);
  1125. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1126. /* Is the vma a continuation of the stack vma above it? */
  1127. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1128. {
  1129. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1130. }
  1131. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1132. {
  1133. return !vma->vm_ops;
  1134. }
  1135. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1136. unsigned long addr)
  1137. {
  1138. return (vma->vm_flags & VM_GROWSDOWN) &&
  1139. (vma->vm_start == addr) &&
  1140. !vma_growsdown(vma->vm_prev, addr);
  1141. }
  1142. /* Is the vma a continuation of the stack vma below it? */
  1143. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1144. {
  1145. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1146. }
  1147. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1148. unsigned long addr)
  1149. {
  1150. return (vma->vm_flags & VM_GROWSUP) &&
  1151. (vma->vm_end == addr) &&
  1152. !vma_growsup(vma->vm_next, addr);
  1153. }
  1154. extern struct task_struct *task_of_stack(struct task_struct *task,
  1155. struct vm_area_struct *vma, bool in_group);
  1156. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1157. unsigned long old_addr, struct vm_area_struct *new_vma,
  1158. unsigned long new_addr, unsigned long len,
  1159. bool need_rmap_locks);
  1160. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1161. unsigned long end, pgprot_t newprot,
  1162. int dirty_accountable, int prot_numa);
  1163. extern int mprotect_fixup(struct vm_area_struct *vma,
  1164. struct vm_area_struct **pprev, unsigned long start,
  1165. unsigned long end, unsigned long newflags);
  1166. /*
  1167. * doesn't attempt to fault and will return short.
  1168. */
  1169. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1170. struct page **pages);
  1171. /*
  1172. * per-process(per-mm_struct) statistics.
  1173. */
  1174. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1175. {
  1176. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1177. #ifdef SPLIT_RSS_COUNTING
  1178. /*
  1179. * counter is updated in asynchronous manner and may go to minus.
  1180. * But it's never be expected number for users.
  1181. */
  1182. if (val < 0)
  1183. val = 0;
  1184. #endif
  1185. return (unsigned long)val;
  1186. }
  1187. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1188. {
  1189. atomic_long_add(value, &mm->rss_stat.count[member]);
  1190. }
  1191. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1192. {
  1193. atomic_long_inc(&mm->rss_stat.count[member]);
  1194. }
  1195. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1196. {
  1197. atomic_long_dec(&mm->rss_stat.count[member]);
  1198. }
  1199. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1200. {
  1201. return get_mm_counter(mm, MM_FILEPAGES) +
  1202. get_mm_counter(mm, MM_ANONPAGES);
  1203. }
  1204. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1205. {
  1206. return max(mm->hiwater_rss, get_mm_rss(mm));
  1207. }
  1208. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1209. {
  1210. return max(mm->hiwater_vm, mm->total_vm);
  1211. }
  1212. static inline void update_hiwater_rss(struct mm_struct *mm)
  1213. {
  1214. unsigned long _rss = get_mm_rss(mm);
  1215. if ((mm)->hiwater_rss < _rss)
  1216. (mm)->hiwater_rss = _rss;
  1217. }
  1218. static inline void update_hiwater_vm(struct mm_struct *mm)
  1219. {
  1220. if (mm->hiwater_vm < mm->total_vm)
  1221. mm->hiwater_vm = mm->total_vm;
  1222. }
  1223. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1224. {
  1225. mm->hiwater_rss = get_mm_rss(mm);
  1226. }
  1227. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1228. struct mm_struct *mm)
  1229. {
  1230. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1231. if (*maxrss < hiwater_rss)
  1232. *maxrss = hiwater_rss;
  1233. }
  1234. #if defined(SPLIT_RSS_COUNTING)
  1235. void sync_mm_rss(struct mm_struct *mm);
  1236. #else
  1237. static inline void sync_mm_rss(struct mm_struct *mm)
  1238. {
  1239. }
  1240. #endif
  1241. int vma_wants_writenotify(struct vm_area_struct *vma);
  1242. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1243. spinlock_t **ptl);
  1244. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1245. spinlock_t **ptl)
  1246. {
  1247. pte_t *ptep;
  1248. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1249. return ptep;
  1250. }
  1251. #ifdef __PAGETABLE_PUD_FOLDED
  1252. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1253. unsigned long address)
  1254. {
  1255. return 0;
  1256. }
  1257. #else
  1258. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1259. #endif
  1260. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1261. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1262. unsigned long address)
  1263. {
  1264. return 0;
  1265. }
  1266. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1267. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1268. {
  1269. return 0;
  1270. }
  1271. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1272. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1273. #else
  1274. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1275. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1276. {
  1277. atomic_long_set(&mm->nr_pmds, 0);
  1278. }
  1279. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1280. {
  1281. return atomic_long_read(&mm->nr_pmds);
  1282. }
  1283. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1284. {
  1285. atomic_long_inc(&mm->nr_pmds);
  1286. }
  1287. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1288. {
  1289. atomic_long_dec(&mm->nr_pmds);
  1290. }
  1291. #endif
  1292. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1293. pmd_t *pmd, unsigned long address);
  1294. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1295. /*
  1296. * The following ifdef needed to get the 4level-fixup.h header to work.
  1297. * Remove it when 4level-fixup.h has been removed.
  1298. */
  1299. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1300. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1301. {
  1302. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1303. NULL: pud_offset(pgd, address);
  1304. }
  1305. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1306. {
  1307. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1308. NULL: pmd_offset(pud, address);
  1309. }
  1310. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1311. #if USE_SPLIT_PTE_PTLOCKS
  1312. #if ALLOC_SPLIT_PTLOCKS
  1313. void __init ptlock_cache_init(void);
  1314. extern bool ptlock_alloc(struct page *page);
  1315. extern void ptlock_free(struct page *page);
  1316. static inline spinlock_t *ptlock_ptr(struct page *page)
  1317. {
  1318. return page->ptl;
  1319. }
  1320. #else /* ALLOC_SPLIT_PTLOCKS */
  1321. static inline void ptlock_cache_init(void)
  1322. {
  1323. }
  1324. static inline bool ptlock_alloc(struct page *page)
  1325. {
  1326. return true;
  1327. }
  1328. static inline void ptlock_free(struct page *page)
  1329. {
  1330. }
  1331. static inline spinlock_t *ptlock_ptr(struct page *page)
  1332. {
  1333. return &page->ptl;
  1334. }
  1335. #endif /* ALLOC_SPLIT_PTLOCKS */
  1336. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1337. {
  1338. return ptlock_ptr(pmd_page(*pmd));
  1339. }
  1340. static inline bool ptlock_init(struct page *page)
  1341. {
  1342. /*
  1343. * prep_new_page() initialize page->private (and therefore page->ptl)
  1344. * with 0. Make sure nobody took it in use in between.
  1345. *
  1346. * It can happen if arch try to use slab for page table allocation:
  1347. * slab code uses page->slab_cache and page->first_page (for tail
  1348. * pages), which share storage with page->ptl.
  1349. */
  1350. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1351. if (!ptlock_alloc(page))
  1352. return false;
  1353. spin_lock_init(ptlock_ptr(page));
  1354. return true;
  1355. }
  1356. /* Reset page->mapping so free_pages_check won't complain. */
  1357. static inline void pte_lock_deinit(struct page *page)
  1358. {
  1359. page->mapping = NULL;
  1360. ptlock_free(page);
  1361. }
  1362. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1363. /*
  1364. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1365. */
  1366. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1367. {
  1368. return &mm->page_table_lock;
  1369. }
  1370. static inline void ptlock_cache_init(void) {}
  1371. static inline bool ptlock_init(struct page *page) { return true; }
  1372. static inline void pte_lock_deinit(struct page *page) {}
  1373. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1374. static inline void pgtable_init(void)
  1375. {
  1376. ptlock_cache_init();
  1377. pgtable_cache_init();
  1378. }
  1379. static inline bool pgtable_page_ctor(struct page *page)
  1380. {
  1381. if (!ptlock_init(page))
  1382. return false;
  1383. inc_zone_page_state(page, NR_PAGETABLE);
  1384. return true;
  1385. }
  1386. static inline void pgtable_page_dtor(struct page *page)
  1387. {
  1388. pte_lock_deinit(page);
  1389. dec_zone_page_state(page, NR_PAGETABLE);
  1390. }
  1391. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1392. ({ \
  1393. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1394. pte_t *__pte = pte_offset_map(pmd, address); \
  1395. *(ptlp) = __ptl; \
  1396. spin_lock(__ptl); \
  1397. __pte; \
  1398. })
  1399. #define pte_unmap_unlock(pte, ptl) do { \
  1400. spin_unlock(ptl); \
  1401. pte_unmap(pte); \
  1402. } while (0)
  1403. #define pte_alloc_map(mm, vma, pmd, address) \
  1404. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1405. pmd, address))? \
  1406. NULL: pte_offset_map(pmd, address))
  1407. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1408. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1409. pmd, address))? \
  1410. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1411. #define pte_alloc_kernel(pmd, address) \
  1412. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1413. NULL: pte_offset_kernel(pmd, address))
  1414. #if USE_SPLIT_PMD_PTLOCKS
  1415. static struct page *pmd_to_page(pmd_t *pmd)
  1416. {
  1417. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1418. return virt_to_page((void *)((unsigned long) pmd & mask));
  1419. }
  1420. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1421. {
  1422. return ptlock_ptr(pmd_to_page(pmd));
  1423. }
  1424. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1425. {
  1426. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1427. page->pmd_huge_pte = NULL;
  1428. #endif
  1429. return ptlock_init(page);
  1430. }
  1431. static inline void pgtable_pmd_page_dtor(struct page *page)
  1432. {
  1433. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1434. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1435. #endif
  1436. ptlock_free(page);
  1437. }
  1438. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1439. #else
  1440. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1441. {
  1442. return &mm->page_table_lock;
  1443. }
  1444. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1445. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1446. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1447. #endif
  1448. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1449. {
  1450. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1451. spin_lock(ptl);
  1452. return ptl;
  1453. }
  1454. extern void free_area_init(unsigned long * zones_size);
  1455. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1456. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1457. extern void free_initmem(void);
  1458. /*
  1459. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1460. * into the buddy system. The freed pages will be poisoned with pattern
  1461. * "poison" if it's within range [0, UCHAR_MAX].
  1462. * Return pages freed into the buddy system.
  1463. */
  1464. extern unsigned long free_reserved_area(void *start, void *end,
  1465. int poison, char *s);
  1466. #ifdef CONFIG_HIGHMEM
  1467. /*
  1468. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1469. * and totalram_pages.
  1470. */
  1471. extern void free_highmem_page(struct page *page);
  1472. #endif
  1473. extern void adjust_managed_page_count(struct page *page, long count);
  1474. extern void mem_init_print_info(const char *str);
  1475. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1476. /* Free the reserved page into the buddy system, so it gets managed. */
  1477. static inline void __free_reserved_page(struct page *page)
  1478. {
  1479. ClearPageReserved(page);
  1480. init_page_count(page);
  1481. __free_page(page);
  1482. }
  1483. static inline void free_reserved_page(struct page *page)
  1484. {
  1485. __free_reserved_page(page);
  1486. adjust_managed_page_count(page, 1);
  1487. }
  1488. static inline void mark_page_reserved(struct page *page)
  1489. {
  1490. SetPageReserved(page);
  1491. adjust_managed_page_count(page, -1);
  1492. }
  1493. /*
  1494. * Default method to free all the __init memory into the buddy system.
  1495. * The freed pages will be poisoned with pattern "poison" if it's within
  1496. * range [0, UCHAR_MAX].
  1497. * Return pages freed into the buddy system.
  1498. */
  1499. static inline unsigned long free_initmem_default(int poison)
  1500. {
  1501. extern char __init_begin[], __init_end[];
  1502. return free_reserved_area(&__init_begin, &__init_end,
  1503. poison, "unused kernel");
  1504. }
  1505. static inline unsigned long get_num_physpages(void)
  1506. {
  1507. int nid;
  1508. unsigned long phys_pages = 0;
  1509. for_each_online_node(nid)
  1510. phys_pages += node_present_pages(nid);
  1511. return phys_pages;
  1512. }
  1513. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1514. /*
  1515. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1516. * zones, allocate the backing mem_map and account for memory holes in a more
  1517. * architecture independent manner. This is a substitute for creating the
  1518. * zone_sizes[] and zholes_size[] arrays and passing them to
  1519. * free_area_init_node()
  1520. *
  1521. * An architecture is expected to register range of page frames backed by
  1522. * physical memory with memblock_add[_node]() before calling
  1523. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1524. * usage, an architecture is expected to do something like
  1525. *
  1526. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1527. * max_highmem_pfn};
  1528. * for_each_valid_physical_page_range()
  1529. * memblock_add_node(base, size, nid)
  1530. * free_area_init_nodes(max_zone_pfns);
  1531. *
  1532. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1533. * registered physical page range. Similarly
  1534. * sparse_memory_present_with_active_regions() calls memory_present() for
  1535. * each range when SPARSEMEM is enabled.
  1536. *
  1537. * See mm/page_alloc.c for more information on each function exposed by
  1538. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1539. */
  1540. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1541. unsigned long node_map_pfn_alignment(void);
  1542. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1543. unsigned long end_pfn);
  1544. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1545. unsigned long end_pfn);
  1546. extern void get_pfn_range_for_nid(unsigned int nid,
  1547. unsigned long *start_pfn, unsigned long *end_pfn);
  1548. extern unsigned long find_min_pfn_with_active_regions(void);
  1549. extern void free_bootmem_with_active_regions(int nid,
  1550. unsigned long max_low_pfn);
  1551. extern void sparse_memory_present_with_active_regions(int nid);
  1552. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1553. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1554. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1555. static inline int __early_pfn_to_nid(unsigned long pfn,
  1556. struct mminit_pfnnid_cache *state)
  1557. {
  1558. return 0;
  1559. }
  1560. #else
  1561. /* please see mm/page_alloc.c */
  1562. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1563. /* there is a per-arch backend function. */
  1564. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1565. struct mminit_pfnnid_cache *state);
  1566. #endif
  1567. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1568. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1569. unsigned long, enum memmap_context);
  1570. extern void setup_per_zone_wmarks(void);
  1571. extern int __meminit init_per_zone_wmark_min(void);
  1572. extern void mem_init(void);
  1573. extern void __init mmap_init(void);
  1574. extern void show_mem(unsigned int flags);
  1575. extern void si_meminfo(struct sysinfo * val);
  1576. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1577. extern __printf(3, 4)
  1578. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1579. extern void setup_per_cpu_pageset(void);
  1580. extern void zone_pcp_update(struct zone *zone);
  1581. extern void zone_pcp_reset(struct zone *zone);
  1582. /* page_alloc.c */
  1583. extern int min_free_kbytes;
  1584. /* nommu.c */
  1585. extern atomic_long_t mmap_pages_allocated;
  1586. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1587. /* interval_tree.c */
  1588. void vma_interval_tree_insert(struct vm_area_struct *node,
  1589. struct rb_root *root);
  1590. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1591. struct vm_area_struct *prev,
  1592. struct rb_root *root);
  1593. void vma_interval_tree_remove(struct vm_area_struct *node,
  1594. struct rb_root *root);
  1595. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1596. unsigned long start, unsigned long last);
  1597. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1598. unsigned long start, unsigned long last);
  1599. #define vma_interval_tree_foreach(vma, root, start, last) \
  1600. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1601. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1602. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1603. struct rb_root *root);
  1604. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1605. struct rb_root *root);
  1606. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1607. struct rb_root *root, unsigned long start, unsigned long last);
  1608. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1609. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1610. #ifdef CONFIG_DEBUG_VM_RB
  1611. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1612. #endif
  1613. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1614. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1615. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1616. /* mmap.c */
  1617. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1618. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1619. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1620. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1621. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1622. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1623. struct mempolicy *, struct vm_userfaultfd_ctx);
  1624. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1625. extern int split_vma(struct mm_struct *,
  1626. struct vm_area_struct *, unsigned long addr, int new_below);
  1627. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1628. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1629. struct rb_node **, struct rb_node *);
  1630. extern void unlink_file_vma(struct vm_area_struct *);
  1631. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1632. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1633. bool *need_rmap_locks);
  1634. extern void exit_mmap(struct mm_struct *);
  1635. static inline int check_data_rlimit(unsigned long rlim,
  1636. unsigned long new,
  1637. unsigned long start,
  1638. unsigned long end_data,
  1639. unsigned long start_data)
  1640. {
  1641. if (rlim < RLIM_INFINITY) {
  1642. if (((new - start) + (end_data - start_data)) > rlim)
  1643. return -ENOSPC;
  1644. }
  1645. return 0;
  1646. }
  1647. extern int mm_take_all_locks(struct mm_struct *mm);
  1648. extern void mm_drop_all_locks(struct mm_struct *mm);
  1649. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1650. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1651. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1652. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1653. unsigned long addr, unsigned long len,
  1654. unsigned long flags,
  1655. const struct vm_special_mapping *spec);
  1656. /* This is an obsolete alternative to _install_special_mapping. */
  1657. extern int install_special_mapping(struct mm_struct *mm,
  1658. unsigned long addr, unsigned long len,
  1659. unsigned long flags, struct page **pages);
  1660. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1661. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1662. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1663. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1664. unsigned long len, unsigned long prot, unsigned long flags,
  1665. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1666. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1667. static inline unsigned long
  1668. do_mmap_pgoff(struct file *file, unsigned long addr,
  1669. unsigned long len, unsigned long prot, unsigned long flags,
  1670. unsigned long pgoff, unsigned long *populate)
  1671. {
  1672. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1673. }
  1674. #ifdef CONFIG_MMU
  1675. extern int __mm_populate(unsigned long addr, unsigned long len,
  1676. int ignore_errors);
  1677. static inline void mm_populate(unsigned long addr, unsigned long len)
  1678. {
  1679. /* Ignore errors */
  1680. (void) __mm_populate(addr, len, 1);
  1681. }
  1682. #else
  1683. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1684. #endif
  1685. /* These take the mm semaphore themselves */
  1686. extern unsigned long vm_brk(unsigned long, unsigned long);
  1687. extern int vm_munmap(unsigned long, size_t);
  1688. extern unsigned long vm_mmap(struct file *, unsigned long,
  1689. unsigned long, unsigned long,
  1690. unsigned long, unsigned long);
  1691. struct vm_unmapped_area_info {
  1692. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1693. unsigned long flags;
  1694. unsigned long length;
  1695. unsigned long low_limit;
  1696. unsigned long high_limit;
  1697. unsigned long align_mask;
  1698. unsigned long align_offset;
  1699. };
  1700. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1701. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1702. /*
  1703. * Search for an unmapped address range.
  1704. *
  1705. * We are looking for a range that:
  1706. * - does not intersect with any VMA;
  1707. * - is contained within the [low_limit, high_limit) interval;
  1708. * - is at least the desired size.
  1709. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1710. */
  1711. static inline unsigned long
  1712. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1713. {
  1714. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1715. return unmapped_area_topdown(info);
  1716. else
  1717. return unmapped_area(info);
  1718. }
  1719. /* truncate.c */
  1720. extern void truncate_inode_pages(struct address_space *, loff_t);
  1721. extern void truncate_inode_pages_range(struct address_space *,
  1722. loff_t lstart, loff_t lend);
  1723. extern void truncate_inode_pages_final(struct address_space *);
  1724. /* generic vm_area_ops exported for stackable file systems */
  1725. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1726. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1727. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1728. /* mm/page-writeback.c */
  1729. int write_one_page(struct page *page, int wait);
  1730. void task_dirty_inc(struct task_struct *tsk);
  1731. /* readahead.c */
  1732. #define VM_MAX_READAHEAD 128 /* kbytes */
  1733. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1734. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1735. pgoff_t offset, unsigned long nr_to_read);
  1736. void page_cache_sync_readahead(struct address_space *mapping,
  1737. struct file_ra_state *ra,
  1738. struct file *filp,
  1739. pgoff_t offset,
  1740. unsigned long size);
  1741. void page_cache_async_readahead(struct address_space *mapping,
  1742. struct file_ra_state *ra,
  1743. struct file *filp,
  1744. struct page *pg,
  1745. pgoff_t offset,
  1746. unsigned long size);
  1747. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1748. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1749. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1750. extern int expand_downwards(struct vm_area_struct *vma,
  1751. unsigned long address);
  1752. #if VM_GROWSUP
  1753. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1754. #else
  1755. #define expand_upwards(vma, address) (0)
  1756. #endif
  1757. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1758. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1759. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1760. struct vm_area_struct **pprev);
  1761. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1762. NULL if none. Assume start_addr < end_addr. */
  1763. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1764. {
  1765. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1766. if (vma && end_addr <= vma->vm_start)
  1767. vma = NULL;
  1768. return vma;
  1769. }
  1770. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1771. {
  1772. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1773. }
  1774. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1775. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1776. unsigned long vm_start, unsigned long vm_end)
  1777. {
  1778. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1779. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1780. vma = NULL;
  1781. return vma;
  1782. }
  1783. #ifdef CONFIG_MMU
  1784. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1785. void vma_set_page_prot(struct vm_area_struct *vma);
  1786. #else
  1787. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1788. {
  1789. return __pgprot(0);
  1790. }
  1791. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1792. {
  1793. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1794. }
  1795. #endif
  1796. #ifdef CONFIG_NUMA_BALANCING
  1797. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1798. unsigned long start, unsigned long end);
  1799. #endif
  1800. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1801. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1802. unsigned long pfn, unsigned long size, pgprot_t);
  1803. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1804. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1805. unsigned long pfn);
  1806. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1807. unsigned long pfn);
  1808. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1809. struct page *follow_page_mask(struct vm_area_struct *vma,
  1810. unsigned long address, unsigned int foll_flags,
  1811. unsigned int *page_mask);
  1812. static inline struct page *follow_page(struct vm_area_struct *vma,
  1813. unsigned long address, unsigned int foll_flags)
  1814. {
  1815. unsigned int unused_page_mask;
  1816. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1817. }
  1818. #define FOLL_WRITE 0x01 /* check pte is writable */
  1819. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1820. #define FOLL_GET 0x04 /* do get_page on page */
  1821. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1822. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1823. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1824. * and return without waiting upon it */
  1825. #define FOLL_POPULATE 0x40 /* fault in page */
  1826. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1827. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1828. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1829. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1830. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1831. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1832. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1833. void *data);
  1834. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1835. unsigned long size, pte_fn_t fn, void *data);
  1836. #ifdef CONFIG_PROC_FS
  1837. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1838. #else
  1839. static inline void vm_stat_account(struct mm_struct *mm,
  1840. unsigned long flags, struct file *file, long pages)
  1841. {
  1842. mm->total_vm += pages;
  1843. }
  1844. #endif /* CONFIG_PROC_FS */
  1845. #ifdef CONFIG_DEBUG_PAGEALLOC
  1846. extern bool _debug_pagealloc_enabled;
  1847. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1848. static inline bool debug_pagealloc_enabled(void)
  1849. {
  1850. return _debug_pagealloc_enabled;
  1851. }
  1852. static inline void
  1853. kernel_map_pages(struct page *page, int numpages, int enable)
  1854. {
  1855. if (!debug_pagealloc_enabled())
  1856. return;
  1857. __kernel_map_pages(page, numpages, enable);
  1858. }
  1859. #ifdef CONFIG_HIBERNATION
  1860. extern bool kernel_page_present(struct page *page);
  1861. #endif /* CONFIG_HIBERNATION */
  1862. #else
  1863. static inline void
  1864. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1865. #ifdef CONFIG_HIBERNATION
  1866. static inline bool kernel_page_present(struct page *page) { return true; }
  1867. #endif /* CONFIG_HIBERNATION */
  1868. #endif
  1869. #ifdef __HAVE_ARCH_GATE_AREA
  1870. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1871. extern int in_gate_area_no_mm(unsigned long addr);
  1872. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1873. #else
  1874. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1875. {
  1876. return NULL;
  1877. }
  1878. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1879. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1880. {
  1881. return 0;
  1882. }
  1883. #endif /* __HAVE_ARCH_GATE_AREA */
  1884. #ifdef CONFIG_SYSCTL
  1885. extern int sysctl_drop_caches;
  1886. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1887. void __user *, size_t *, loff_t *);
  1888. #endif
  1889. void drop_slab(void);
  1890. void drop_slab_node(int nid);
  1891. #ifndef CONFIG_MMU
  1892. #define randomize_va_space 0
  1893. #else
  1894. extern int randomize_va_space;
  1895. #endif
  1896. const char * arch_vma_name(struct vm_area_struct *vma);
  1897. void print_vma_addr(char *prefix, unsigned long rip);
  1898. void sparse_mem_maps_populate_node(struct page **map_map,
  1899. unsigned long pnum_begin,
  1900. unsigned long pnum_end,
  1901. unsigned long map_count,
  1902. int nodeid);
  1903. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1904. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1905. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1906. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1907. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1908. void *vmemmap_alloc_block(unsigned long size, int node);
  1909. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1910. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1911. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1912. int node);
  1913. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1914. void vmemmap_populate_print_last(void);
  1915. #ifdef CONFIG_MEMORY_HOTPLUG
  1916. void vmemmap_free(unsigned long start, unsigned long end);
  1917. #endif
  1918. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1919. unsigned long size);
  1920. enum mf_flags {
  1921. MF_COUNT_INCREASED = 1 << 0,
  1922. MF_ACTION_REQUIRED = 1 << 1,
  1923. MF_MUST_KILL = 1 << 2,
  1924. MF_SOFT_OFFLINE = 1 << 3,
  1925. };
  1926. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1927. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1928. extern int unpoison_memory(unsigned long pfn);
  1929. extern int get_hwpoison_page(struct page *page);
  1930. extern void put_hwpoison_page(struct page *page);
  1931. extern int sysctl_memory_failure_early_kill;
  1932. extern int sysctl_memory_failure_recovery;
  1933. extern void shake_page(struct page *p, int access);
  1934. extern atomic_long_t num_poisoned_pages;
  1935. extern int soft_offline_page(struct page *page, int flags);
  1936. /*
  1937. * Error handlers for various types of pages.
  1938. */
  1939. enum mf_result {
  1940. MF_IGNORED, /* Error: cannot be handled */
  1941. MF_FAILED, /* Error: handling failed */
  1942. MF_DELAYED, /* Will be handled later */
  1943. MF_RECOVERED, /* Successfully recovered */
  1944. };
  1945. enum mf_action_page_type {
  1946. MF_MSG_KERNEL,
  1947. MF_MSG_KERNEL_HIGH_ORDER,
  1948. MF_MSG_SLAB,
  1949. MF_MSG_DIFFERENT_COMPOUND,
  1950. MF_MSG_POISONED_HUGE,
  1951. MF_MSG_HUGE,
  1952. MF_MSG_FREE_HUGE,
  1953. MF_MSG_UNMAP_FAILED,
  1954. MF_MSG_DIRTY_SWAPCACHE,
  1955. MF_MSG_CLEAN_SWAPCACHE,
  1956. MF_MSG_DIRTY_MLOCKED_LRU,
  1957. MF_MSG_CLEAN_MLOCKED_LRU,
  1958. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  1959. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  1960. MF_MSG_DIRTY_LRU,
  1961. MF_MSG_CLEAN_LRU,
  1962. MF_MSG_TRUNCATED_LRU,
  1963. MF_MSG_BUDDY,
  1964. MF_MSG_BUDDY_2ND,
  1965. MF_MSG_UNKNOWN,
  1966. };
  1967. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1968. extern void clear_huge_page(struct page *page,
  1969. unsigned long addr,
  1970. unsigned int pages_per_huge_page);
  1971. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1972. unsigned long addr, struct vm_area_struct *vma,
  1973. unsigned int pages_per_huge_page);
  1974. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1975. extern struct page_ext_operations debug_guardpage_ops;
  1976. extern struct page_ext_operations page_poisoning_ops;
  1977. #ifdef CONFIG_DEBUG_PAGEALLOC
  1978. extern unsigned int _debug_guardpage_minorder;
  1979. extern bool _debug_guardpage_enabled;
  1980. static inline unsigned int debug_guardpage_minorder(void)
  1981. {
  1982. return _debug_guardpage_minorder;
  1983. }
  1984. static inline bool debug_guardpage_enabled(void)
  1985. {
  1986. return _debug_guardpage_enabled;
  1987. }
  1988. static inline bool page_is_guard(struct page *page)
  1989. {
  1990. struct page_ext *page_ext;
  1991. if (!debug_guardpage_enabled())
  1992. return false;
  1993. page_ext = lookup_page_ext(page);
  1994. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  1995. }
  1996. #else
  1997. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1998. static inline bool debug_guardpage_enabled(void) { return false; }
  1999. static inline bool page_is_guard(struct page *page) { return false; }
  2000. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2001. #if MAX_NUMNODES > 1
  2002. void __init setup_nr_node_ids(void);
  2003. #else
  2004. static inline void setup_nr_node_ids(void) {}
  2005. #endif
  2006. #endif /* __KERNEL__ */
  2007. #endif /* _LINUX_MM_H */