spi-omap2-mcspi.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. /*
  2. * OMAP2 McSPI controller driver
  3. *
  4. * Copyright (C) 2005, 2006 Nokia Corporation
  5. * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
  6. * Juha Yrj�l� <juha.yrjola@nokia.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/delay.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dmaengine.h>
  25. #include <linux/omap-dma.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/err.h>
  28. #include <linux/clk.h>
  29. #include <linux/io.h>
  30. #include <linux/slab.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/of.h>
  33. #include <linux/of_device.h>
  34. #include <linux/gcd.h>
  35. #include <linux/spi/spi.h>
  36. #include <linux/gpio.h>
  37. #include <linux/platform_data/spi-omap2-mcspi.h>
  38. #define OMAP2_MCSPI_MAX_FREQ 48000000
  39. #define OMAP2_MCSPI_MAX_DIVIDER 4096
  40. #define OMAP2_MCSPI_MAX_FIFODEPTH 64
  41. #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
  42. #define SPI_AUTOSUSPEND_TIMEOUT 2000
  43. #define OMAP2_MCSPI_REVISION 0x00
  44. #define OMAP2_MCSPI_SYSSTATUS 0x14
  45. #define OMAP2_MCSPI_IRQSTATUS 0x18
  46. #define OMAP2_MCSPI_IRQENABLE 0x1c
  47. #define OMAP2_MCSPI_WAKEUPENABLE 0x20
  48. #define OMAP2_MCSPI_SYST 0x24
  49. #define OMAP2_MCSPI_MODULCTRL 0x28
  50. #define OMAP2_MCSPI_XFERLEVEL 0x7c
  51. /* per-channel banks, 0x14 bytes each, first is: */
  52. #define OMAP2_MCSPI_CHCONF0 0x2c
  53. #define OMAP2_MCSPI_CHSTAT0 0x30
  54. #define OMAP2_MCSPI_CHCTRL0 0x34
  55. #define OMAP2_MCSPI_TX0 0x38
  56. #define OMAP2_MCSPI_RX0 0x3c
  57. /* per-register bitmasks: */
  58. #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
  59. #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
  60. #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
  61. #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
  62. #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
  63. #define OMAP2_MCSPI_CHCONF_POL BIT(1)
  64. #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
  65. #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
  66. #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
  67. #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
  68. #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
  69. #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
  70. #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
  71. #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
  72. #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
  73. #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
  74. #define OMAP2_MCSPI_CHCONF_IS BIT(18)
  75. #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
  76. #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
  77. #define OMAP2_MCSPI_CHCONF_FFET BIT(27)
  78. #define OMAP2_MCSPI_CHCONF_FFER BIT(28)
  79. #define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
  80. #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
  81. #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
  82. #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
  83. #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
  84. #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
  85. #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
  86. #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
  87. /* We have 2 DMA channels per CS, one for RX and one for TX */
  88. struct omap2_mcspi_dma {
  89. struct dma_chan *dma_tx;
  90. struct dma_chan *dma_rx;
  91. int dma_tx_sync_dev;
  92. int dma_rx_sync_dev;
  93. struct completion dma_tx_completion;
  94. struct completion dma_rx_completion;
  95. char dma_rx_ch_name[14];
  96. char dma_tx_ch_name[14];
  97. };
  98. /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
  99. * cache operations; better heuristics consider wordsize and bitrate.
  100. */
  101. #define DMA_MIN_BYTES 160
  102. /*
  103. * Used for context save and restore, structure members to be updated whenever
  104. * corresponding registers are modified.
  105. */
  106. struct omap2_mcspi_regs {
  107. u32 modulctrl;
  108. u32 wakeupenable;
  109. struct list_head cs;
  110. };
  111. struct omap2_mcspi {
  112. struct spi_master *master;
  113. /* Virtual base address of the controller */
  114. void __iomem *base;
  115. unsigned long phys;
  116. /* SPI1 has 4 channels, while SPI2 has 2 */
  117. struct omap2_mcspi_dma *dma_channels;
  118. struct device *dev;
  119. struct omap2_mcspi_regs ctx;
  120. int fifo_depth;
  121. unsigned int pin_dir:1;
  122. };
  123. struct omap2_mcspi_cs {
  124. void __iomem *base;
  125. unsigned long phys;
  126. int word_len;
  127. u16 mode;
  128. struct list_head node;
  129. /* Context save and restore shadow register */
  130. u32 chconf0, chctrl0;
  131. };
  132. static inline void mcspi_write_reg(struct spi_master *master,
  133. int idx, u32 val)
  134. {
  135. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  136. writel_relaxed(val, mcspi->base + idx);
  137. }
  138. static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
  139. {
  140. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  141. return readl_relaxed(mcspi->base + idx);
  142. }
  143. static inline void mcspi_write_cs_reg(const struct spi_device *spi,
  144. int idx, u32 val)
  145. {
  146. struct omap2_mcspi_cs *cs = spi->controller_state;
  147. writel_relaxed(val, cs->base + idx);
  148. }
  149. static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
  150. {
  151. struct omap2_mcspi_cs *cs = spi->controller_state;
  152. return readl_relaxed(cs->base + idx);
  153. }
  154. static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
  155. {
  156. struct omap2_mcspi_cs *cs = spi->controller_state;
  157. return cs->chconf0;
  158. }
  159. static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
  160. {
  161. struct omap2_mcspi_cs *cs = spi->controller_state;
  162. cs->chconf0 = val;
  163. mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
  164. mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
  165. }
  166. static inline int mcspi_bytes_per_word(int word_len)
  167. {
  168. if (word_len <= 8)
  169. return 1;
  170. else if (word_len <= 16)
  171. return 2;
  172. else /* word_len <= 32 */
  173. return 4;
  174. }
  175. static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
  176. int is_read, int enable)
  177. {
  178. u32 l, rw;
  179. l = mcspi_cached_chconf0(spi);
  180. if (is_read) /* 1 is read, 0 write */
  181. rw = OMAP2_MCSPI_CHCONF_DMAR;
  182. else
  183. rw = OMAP2_MCSPI_CHCONF_DMAW;
  184. if (enable)
  185. l |= rw;
  186. else
  187. l &= ~rw;
  188. mcspi_write_chconf0(spi, l);
  189. }
  190. static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
  191. {
  192. struct omap2_mcspi_cs *cs = spi->controller_state;
  193. u32 l;
  194. l = cs->chctrl0;
  195. if (enable)
  196. l |= OMAP2_MCSPI_CHCTRL_EN;
  197. else
  198. l &= ~OMAP2_MCSPI_CHCTRL_EN;
  199. cs->chctrl0 = l;
  200. mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
  201. /* Flash post-writes */
  202. mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
  203. }
  204. static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
  205. {
  206. u32 l;
  207. if (spi->controller_state) {
  208. l = mcspi_cached_chconf0(spi);
  209. if (enable)
  210. l &= ~OMAP2_MCSPI_CHCONF_FORCE;
  211. else
  212. l |= OMAP2_MCSPI_CHCONF_FORCE;
  213. mcspi_write_chconf0(spi, l);
  214. }
  215. }
  216. static void omap2_mcspi_set_master_mode(struct spi_master *master)
  217. {
  218. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  219. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  220. u32 l;
  221. /*
  222. * Setup when switching from (reset default) slave mode
  223. * to single-channel master mode
  224. */
  225. l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
  226. l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
  227. l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
  228. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
  229. ctx->modulctrl = l;
  230. }
  231. static void omap2_mcspi_set_fifo(const struct spi_device *spi,
  232. struct spi_transfer *t, int enable)
  233. {
  234. struct spi_master *master = spi->master;
  235. struct omap2_mcspi_cs *cs = spi->controller_state;
  236. struct omap2_mcspi *mcspi;
  237. unsigned int wcnt;
  238. int max_fifo_depth, fifo_depth, bytes_per_word;
  239. u32 chconf, xferlevel;
  240. mcspi = spi_master_get_devdata(master);
  241. chconf = mcspi_cached_chconf0(spi);
  242. if (enable) {
  243. bytes_per_word = mcspi_bytes_per_word(cs->word_len);
  244. if (t->len % bytes_per_word != 0)
  245. goto disable_fifo;
  246. if (t->rx_buf != NULL && t->tx_buf != NULL)
  247. max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
  248. else
  249. max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
  250. fifo_depth = gcd(t->len, max_fifo_depth);
  251. if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
  252. goto disable_fifo;
  253. wcnt = t->len / bytes_per_word;
  254. if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
  255. goto disable_fifo;
  256. xferlevel = wcnt << 16;
  257. if (t->rx_buf != NULL) {
  258. chconf |= OMAP2_MCSPI_CHCONF_FFER;
  259. xferlevel |= (fifo_depth - 1) << 8;
  260. }
  261. if (t->tx_buf != NULL) {
  262. chconf |= OMAP2_MCSPI_CHCONF_FFET;
  263. xferlevel |= fifo_depth - 1;
  264. }
  265. mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
  266. mcspi_write_chconf0(spi, chconf);
  267. mcspi->fifo_depth = fifo_depth;
  268. return;
  269. }
  270. disable_fifo:
  271. if (t->rx_buf != NULL)
  272. chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
  273. if (t->tx_buf != NULL)
  274. chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
  275. mcspi_write_chconf0(spi, chconf);
  276. mcspi->fifo_depth = 0;
  277. }
  278. static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
  279. {
  280. struct spi_master *spi_cntrl = mcspi->master;
  281. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  282. struct omap2_mcspi_cs *cs;
  283. /* McSPI: context restore */
  284. mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
  285. mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
  286. list_for_each_entry(cs, &ctx->cs, node)
  287. writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  288. }
  289. static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
  290. {
  291. unsigned long timeout;
  292. timeout = jiffies + msecs_to_jiffies(1000);
  293. while (!(readl_relaxed(reg) & bit)) {
  294. if (time_after(jiffies, timeout)) {
  295. if (!(readl_relaxed(reg) & bit))
  296. return -ETIMEDOUT;
  297. else
  298. return 0;
  299. }
  300. cpu_relax();
  301. }
  302. return 0;
  303. }
  304. static void omap2_mcspi_rx_callback(void *data)
  305. {
  306. struct spi_device *spi = data;
  307. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  308. struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  309. /* We must disable the DMA RX request */
  310. omap2_mcspi_set_dma_req(spi, 1, 0);
  311. complete(&mcspi_dma->dma_rx_completion);
  312. }
  313. static void omap2_mcspi_tx_callback(void *data)
  314. {
  315. struct spi_device *spi = data;
  316. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  317. struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  318. /* We must disable the DMA TX request */
  319. omap2_mcspi_set_dma_req(spi, 0, 0);
  320. complete(&mcspi_dma->dma_tx_completion);
  321. }
  322. static void omap2_mcspi_tx_dma(struct spi_device *spi,
  323. struct spi_transfer *xfer,
  324. struct dma_slave_config cfg)
  325. {
  326. struct omap2_mcspi *mcspi;
  327. struct omap2_mcspi_dma *mcspi_dma;
  328. unsigned int count;
  329. mcspi = spi_master_get_devdata(spi->master);
  330. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  331. count = xfer->len;
  332. if (mcspi_dma->dma_tx) {
  333. struct dma_async_tx_descriptor *tx;
  334. struct scatterlist sg;
  335. dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
  336. sg_init_table(&sg, 1);
  337. sg_dma_address(&sg) = xfer->tx_dma;
  338. sg_dma_len(&sg) = xfer->len;
  339. tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
  340. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  341. if (tx) {
  342. tx->callback = omap2_mcspi_tx_callback;
  343. tx->callback_param = spi;
  344. dmaengine_submit(tx);
  345. } else {
  346. /* FIXME: fall back to PIO? */
  347. }
  348. }
  349. dma_async_issue_pending(mcspi_dma->dma_tx);
  350. omap2_mcspi_set_dma_req(spi, 0, 1);
  351. }
  352. static unsigned
  353. omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
  354. struct dma_slave_config cfg,
  355. unsigned es)
  356. {
  357. struct omap2_mcspi *mcspi;
  358. struct omap2_mcspi_dma *mcspi_dma;
  359. unsigned int count, dma_count;
  360. u32 l;
  361. int elements = 0;
  362. int word_len, element_count;
  363. struct omap2_mcspi_cs *cs = spi->controller_state;
  364. mcspi = spi_master_get_devdata(spi->master);
  365. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  366. count = xfer->len;
  367. dma_count = xfer->len;
  368. if (mcspi->fifo_depth == 0)
  369. dma_count -= es;
  370. word_len = cs->word_len;
  371. l = mcspi_cached_chconf0(spi);
  372. if (word_len <= 8)
  373. element_count = count;
  374. else if (word_len <= 16)
  375. element_count = count >> 1;
  376. else /* word_len <= 32 */
  377. element_count = count >> 2;
  378. if (mcspi_dma->dma_rx) {
  379. struct dma_async_tx_descriptor *tx;
  380. struct scatterlist sg;
  381. dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
  382. if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
  383. dma_count -= es;
  384. sg_init_table(&sg, 1);
  385. sg_dma_address(&sg) = xfer->rx_dma;
  386. sg_dma_len(&sg) = dma_count;
  387. tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
  388. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
  389. DMA_CTRL_ACK);
  390. if (tx) {
  391. tx->callback = omap2_mcspi_rx_callback;
  392. tx->callback_param = spi;
  393. dmaengine_submit(tx);
  394. } else {
  395. /* FIXME: fall back to PIO? */
  396. }
  397. }
  398. dma_async_issue_pending(mcspi_dma->dma_rx);
  399. omap2_mcspi_set_dma_req(spi, 1, 1);
  400. wait_for_completion(&mcspi_dma->dma_rx_completion);
  401. dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
  402. DMA_FROM_DEVICE);
  403. if (mcspi->fifo_depth > 0)
  404. return count;
  405. omap2_mcspi_set_enable(spi, 0);
  406. elements = element_count - 1;
  407. if (l & OMAP2_MCSPI_CHCONF_TURBO) {
  408. elements--;
  409. if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
  410. & OMAP2_MCSPI_CHSTAT_RXS)) {
  411. u32 w;
  412. w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
  413. if (word_len <= 8)
  414. ((u8 *)xfer->rx_buf)[elements++] = w;
  415. else if (word_len <= 16)
  416. ((u16 *)xfer->rx_buf)[elements++] = w;
  417. else /* word_len <= 32 */
  418. ((u32 *)xfer->rx_buf)[elements++] = w;
  419. } else {
  420. int bytes_per_word = mcspi_bytes_per_word(word_len);
  421. dev_err(&spi->dev, "DMA RX penultimate word empty\n");
  422. count -= (bytes_per_word << 1);
  423. omap2_mcspi_set_enable(spi, 1);
  424. return count;
  425. }
  426. }
  427. if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
  428. & OMAP2_MCSPI_CHSTAT_RXS)) {
  429. u32 w;
  430. w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
  431. if (word_len <= 8)
  432. ((u8 *)xfer->rx_buf)[elements] = w;
  433. else if (word_len <= 16)
  434. ((u16 *)xfer->rx_buf)[elements] = w;
  435. else /* word_len <= 32 */
  436. ((u32 *)xfer->rx_buf)[elements] = w;
  437. } else {
  438. dev_err(&spi->dev, "DMA RX last word empty\n");
  439. count -= mcspi_bytes_per_word(word_len);
  440. }
  441. omap2_mcspi_set_enable(spi, 1);
  442. return count;
  443. }
  444. static unsigned
  445. omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
  446. {
  447. struct omap2_mcspi *mcspi;
  448. struct omap2_mcspi_cs *cs = spi->controller_state;
  449. struct omap2_mcspi_dma *mcspi_dma;
  450. unsigned int count;
  451. u32 l;
  452. u8 *rx;
  453. const u8 *tx;
  454. struct dma_slave_config cfg;
  455. enum dma_slave_buswidth width;
  456. unsigned es;
  457. u32 burst;
  458. void __iomem *chstat_reg;
  459. void __iomem *irqstat_reg;
  460. int wait_res;
  461. mcspi = spi_master_get_devdata(spi->master);
  462. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  463. l = mcspi_cached_chconf0(spi);
  464. if (cs->word_len <= 8) {
  465. width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  466. es = 1;
  467. } else if (cs->word_len <= 16) {
  468. width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  469. es = 2;
  470. } else {
  471. width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  472. es = 4;
  473. }
  474. count = xfer->len;
  475. burst = 1;
  476. if (mcspi->fifo_depth > 0) {
  477. if (count > mcspi->fifo_depth)
  478. burst = mcspi->fifo_depth / es;
  479. else
  480. burst = count / es;
  481. }
  482. memset(&cfg, 0, sizeof(cfg));
  483. cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
  484. cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
  485. cfg.src_addr_width = width;
  486. cfg.dst_addr_width = width;
  487. cfg.src_maxburst = burst;
  488. cfg.dst_maxburst = burst;
  489. rx = xfer->rx_buf;
  490. tx = xfer->tx_buf;
  491. if (tx != NULL)
  492. omap2_mcspi_tx_dma(spi, xfer, cfg);
  493. if (rx != NULL)
  494. count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
  495. if (tx != NULL) {
  496. wait_for_completion(&mcspi_dma->dma_tx_completion);
  497. dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
  498. DMA_TO_DEVICE);
  499. if (mcspi->fifo_depth > 0) {
  500. irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
  501. if (mcspi_wait_for_reg_bit(irqstat_reg,
  502. OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
  503. dev_err(&spi->dev, "EOW timed out\n");
  504. mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
  505. OMAP2_MCSPI_IRQSTATUS_EOW);
  506. }
  507. /* for TX_ONLY mode, be sure all words have shifted out */
  508. if (rx == NULL) {
  509. chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
  510. if (mcspi->fifo_depth > 0) {
  511. wait_res = mcspi_wait_for_reg_bit(chstat_reg,
  512. OMAP2_MCSPI_CHSTAT_TXFFE);
  513. if (wait_res < 0)
  514. dev_err(&spi->dev, "TXFFE timed out\n");
  515. } else {
  516. wait_res = mcspi_wait_for_reg_bit(chstat_reg,
  517. OMAP2_MCSPI_CHSTAT_TXS);
  518. if (wait_res < 0)
  519. dev_err(&spi->dev, "TXS timed out\n");
  520. }
  521. if (wait_res >= 0 &&
  522. (mcspi_wait_for_reg_bit(chstat_reg,
  523. OMAP2_MCSPI_CHSTAT_EOT) < 0))
  524. dev_err(&spi->dev, "EOT timed out\n");
  525. }
  526. }
  527. return count;
  528. }
  529. static unsigned
  530. omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
  531. {
  532. struct omap2_mcspi *mcspi;
  533. struct omap2_mcspi_cs *cs = spi->controller_state;
  534. unsigned int count, c;
  535. u32 l;
  536. void __iomem *base = cs->base;
  537. void __iomem *tx_reg;
  538. void __iomem *rx_reg;
  539. void __iomem *chstat_reg;
  540. int word_len;
  541. mcspi = spi_master_get_devdata(spi->master);
  542. count = xfer->len;
  543. c = count;
  544. word_len = cs->word_len;
  545. l = mcspi_cached_chconf0(spi);
  546. /* We store the pre-calculated register addresses on stack to speed
  547. * up the transfer loop. */
  548. tx_reg = base + OMAP2_MCSPI_TX0;
  549. rx_reg = base + OMAP2_MCSPI_RX0;
  550. chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
  551. if (c < (word_len>>3))
  552. return 0;
  553. if (word_len <= 8) {
  554. u8 *rx;
  555. const u8 *tx;
  556. rx = xfer->rx_buf;
  557. tx = xfer->tx_buf;
  558. do {
  559. c -= 1;
  560. if (tx != NULL) {
  561. if (mcspi_wait_for_reg_bit(chstat_reg,
  562. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  563. dev_err(&spi->dev, "TXS timed out\n");
  564. goto out;
  565. }
  566. dev_vdbg(&spi->dev, "write-%d %02x\n",
  567. word_len, *tx);
  568. writel_relaxed(*tx++, tx_reg);
  569. }
  570. if (rx != NULL) {
  571. if (mcspi_wait_for_reg_bit(chstat_reg,
  572. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  573. dev_err(&spi->dev, "RXS timed out\n");
  574. goto out;
  575. }
  576. if (c == 1 && tx == NULL &&
  577. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  578. omap2_mcspi_set_enable(spi, 0);
  579. *rx++ = readl_relaxed(rx_reg);
  580. dev_vdbg(&spi->dev, "read-%d %02x\n",
  581. word_len, *(rx - 1));
  582. if (mcspi_wait_for_reg_bit(chstat_reg,
  583. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  584. dev_err(&spi->dev,
  585. "RXS timed out\n");
  586. goto out;
  587. }
  588. c = 0;
  589. } else if (c == 0 && tx == NULL) {
  590. omap2_mcspi_set_enable(spi, 0);
  591. }
  592. *rx++ = readl_relaxed(rx_reg);
  593. dev_vdbg(&spi->dev, "read-%d %02x\n",
  594. word_len, *(rx - 1));
  595. }
  596. } while (c);
  597. } else if (word_len <= 16) {
  598. u16 *rx;
  599. const u16 *tx;
  600. rx = xfer->rx_buf;
  601. tx = xfer->tx_buf;
  602. do {
  603. c -= 2;
  604. if (tx != NULL) {
  605. if (mcspi_wait_for_reg_bit(chstat_reg,
  606. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  607. dev_err(&spi->dev, "TXS timed out\n");
  608. goto out;
  609. }
  610. dev_vdbg(&spi->dev, "write-%d %04x\n",
  611. word_len, *tx);
  612. writel_relaxed(*tx++, tx_reg);
  613. }
  614. if (rx != NULL) {
  615. if (mcspi_wait_for_reg_bit(chstat_reg,
  616. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  617. dev_err(&spi->dev, "RXS timed out\n");
  618. goto out;
  619. }
  620. if (c == 2 && tx == NULL &&
  621. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  622. omap2_mcspi_set_enable(spi, 0);
  623. *rx++ = readl_relaxed(rx_reg);
  624. dev_vdbg(&spi->dev, "read-%d %04x\n",
  625. word_len, *(rx - 1));
  626. if (mcspi_wait_for_reg_bit(chstat_reg,
  627. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  628. dev_err(&spi->dev,
  629. "RXS timed out\n");
  630. goto out;
  631. }
  632. c = 0;
  633. } else if (c == 0 && tx == NULL) {
  634. omap2_mcspi_set_enable(spi, 0);
  635. }
  636. *rx++ = readl_relaxed(rx_reg);
  637. dev_vdbg(&spi->dev, "read-%d %04x\n",
  638. word_len, *(rx - 1));
  639. }
  640. } while (c >= 2);
  641. } else if (word_len <= 32) {
  642. u32 *rx;
  643. const u32 *tx;
  644. rx = xfer->rx_buf;
  645. tx = xfer->tx_buf;
  646. do {
  647. c -= 4;
  648. if (tx != NULL) {
  649. if (mcspi_wait_for_reg_bit(chstat_reg,
  650. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  651. dev_err(&spi->dev, "TXS timed out\n");
  652. goto out;
  653. }
  654. dev_vdbg(&spi->dev, "write-%d %08x\n",
  655. word_len, *tx);
  656. writel_relaxed(*tx++, tx_reg);
  657. }
  658. if (rx != NULL) {
  659. if (mcspi_wait_for_reg_bit(chstat_reg,
  660. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  661. dev_err(&spi->dev, "RXS timed out\n");
  662. goto out;
  663. }
  664. if (c == 4 && tx == NULL &&
  665. (l & OMAP2_MCSPI_CHCONF_TURBO)) {
  666. omap2_mcspi_set_enable(spi, 0);
  667. *rx++ = readl_relaxed(rx_reg);
  668. dev_vdbg(&spi->dev, "read-%d %08x\n",
  669. word_len, *(rx - 1));
  670. if (mcspi_wait_for_reg_bit(chstat_reg,
  671. OMAP2_MCSPI_CHSTAT_RXS) < 0) {
  672. dev_err(&spi->dev,
  673. "RXS timed out\n");
  674. goto out;
  675. }
  676. c = 0;
  677. } else if (c == 0 && tx == NULL) {
  678. omap2_mcspi_set_enable(spi, 0);
  679. }
  680. *rx++ = readl_relaxed(rx_reg);
  681. dev_vdbg(&spi->dev, "read-%d %08x\n",
  682. word_len, *(rx - 1));
  683. }
  684. } while (c >= 4);
  685. }
  686. /* for TX_ONLY mode, be sure all words have shifted out */
  687. if (xfer->rx_buf == NULL) {
  688. if (mcspi_wait_for_reg_bit(chstat_reg,
  689. OMAP2_MCSPI_CHSTAT_TXS) < 0) {
  690. dev_err(&spi->dev, "TXS timed out\n");
  691. } else if (mcspi_wait_for_reg_bit(chstat_reg,
  692. OMAP2_MCSPI_CHSTAT_EOT) < 0)
  693. dev_err(&spi->dev, "EOT timed out\n");
  694. /* disable chan to purge rx datas received in TX_ONLY transfer,
  695. * otherwise these rx datas will affect the direct following
  696. * RX_ONLY transfer.
  697. */
  698. omap2_mcspi_set_enable(spi, 0);
  699. }
  700. out:
  701. omap2_mcspi_set_enable(spi, 1);
  702. return count - c;
  703. }
  704. static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
  705. {
  706. u32 div;
  707. for (div = 0; div < 15; div++)
  708. if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
  709. return div;
  710. return 15;
  711. }
  712. /* called only when no transfer is active to this device */
  713. static int omap2_mcspi_setup_transfer(struct spi_device *spi,
  714. struct spi_transfer *t)
  715. {
  716. struct omap2_mcspi_cs *cs = spi->controller_state;
  717. struct omap2_mcspi *mcspi;
  718. struct spi_master *spi_cntrl;
  719. u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
  720. u8 word_len = spi->bits_per_word;
  721. u32 speed_hz = spi->max_speed_hz;
  722. mcspi = spi_master_get_devdata(spi->master);
  723. spi_cntrl = mcspi->master;
  724. if (t != NULL && t->bits_per_word)
  725. word_len = t->bits_per_word;
  726. cs->word_len = word_len;
  727. if (t && t->speed_hz)
  728. speed_hz = t->speed_hz;
  729. speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
  730. if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
  731. clkd = omap2_mcspi_calc_divisor(speed_hz);
  732. speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
  733. clkg = 0;
  734. } else {
  735. div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
  736. speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
  737. clkd = (div - 1) & 0xf;
  738. extclk = (div - 1) >> 4;
  739. clkg = OMAP2_MCSPI_CHCONF_CLKG;
  740. }
  741. l = mcspi_cached_chconf0(spi);
  742. /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
  743. * REVISIT: this controller could support SPI_3WIRE mode.
  744. */
  745. if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
  746. l &= ~OMAP2_MCSPI_CHCONF_IS;
  747. l &= ~OMAP2_MCSPI_CHCONF_DPE1;
  748. l |= OMAP2_MCSPI_CHCONF_DPE0;
  749. } else {
  750. l |= OMAP2_MCSPI_CHCONF_IS;
  751. l |= OMAP2_MCSPI_CHCONF_DPE1;
  752. l &= ~OMAP2_MCSPI_CHCONF_DPE0;
  753. }
  754. /* wordlength */
  755. l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
  756. l |= (word_len - 1) << 7;
  757. /* set chipselect polarity; manage with FORCE */
  758. if (!(spi->mode & SPI_CS_HIGH))
  759. l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
  760. else
  761. l &= ~OMAP2_MCSPI_CHCONF_EPOL;
  762. /* set clock divisor */
  763. l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
  764. l |= clkd << 2;
  765. /* set clock granularity */
  766. l &= ~OMAP2_MCSPI_CHCONF_CLKG;
  767. l |= clkg;
  768. if (clkg) {
  769. cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
  770. cs->chctrl0 |= extclk << 8;
  771. mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
  772. }
  773. /* set SPI mode 0..3 */
  774. if (spi->mode & SPI_CPOL)
  775. l |= OMAP2_MCSPI_CHCONF_POL;
  776. else
  777. l &= ~OMAP2_MCSPI_CHCONF_POL;
  778. if (spi->mode & SPI_CPHA)
  779. l |= OMAP2_MCSPI_CHCONF_PHA;
  780. else
  781. l &= ~OMAP2_MCSPI_CHCONF_PHA;
  782. mcspi_write_chconf0(spi, l);
  783. cs->mode = spi->mode;
  784. dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
  785. speed_hz,
  786. (spi->mode & SPI_CPHA) ? "trailing" : "leading",
  787. (spi->mode & SPI_CPOL) ? "inverted" : "normal");
  788. return 0;
  789. }
  790. /*
  791. * Note that we currently allow DMA only if we get a channel
  792. * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
  793. */
  794. static int omap2_mcspi_request_dma(struct spi_device *spi)
  795. {
  796. struct spi_master *master = spi->master;
  797. struct omap2_mcspi *mcspi;
  798. struct omap2_mcspi_dma *mcspi_dma;
  799. dma_cap_mask_t mask;
  800. unsigned sig;
  801. mcspi = spi_master_get_devdata(master);
  802. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  803. init_completion(&mcspi_dma->dma_rx_completion);
  804. init_completion(&mcspi_dma->dma_tx_completion);
  805. dma_cap_zero(mask);
  806. dma_cap_set(DMA_SLAVE, mask);
  807. sig = mcspi_dma->dma_rx_sync_dev;
  808. mcspi_dma->dma_rx =
  809. dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
  810. &sig, &master->dev,
  811. mcspi_dma->dma_rx_ch_name);
  812. if (!mcspi_dma->dma_rx)
  813. goto no_dma;
  814. sig = mcspi_dma->dma_tx_sync_dev;
  815. mcspi_dma->dma_tx =
  816. dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
  817. &sig, &master->dev,
  818. mcspi_dma->dma_tx_ch_name);
  819. if (!mcspi_dma->dma_tx) {
  820. dma_release_channel(mcspi_dma->dma_rx);
  821. mcspi_dma->dma_rx = NULL;
  822. goto no_dma;
  823. }
  824. return 0;
  825. no_dma:
  826. dev_warn(&spi->dev, "not using DMA for McSPI\n");
  827. return -EAGAIN;
  828. }
  829. static int omap2_mcspi_setup(struct spi_device *spi)
  830. {
  831. int ret;
  832. struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
  833. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  834. struct omap2_mcspi_dma *mcspi_dma;
  835. struct omap2_mcspi_cs *cs = spi->controller_state;
  836. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  837. if (!cs) {
  838. cs = kzalloc(sizeof *cs, GFP_KERNEL);
  839. if (!cs)
  840. return -ENOMEM;
  841. cs->base = mcspi->base + spi->chip_select * 0x14;
  842. cs->phys = mcspi->phys + spi->chip_select * 0x14;
  843. cs->mode = 0;
  844. cs->chconf0 = 0;
  845. cs->chctrl0 = 0;
  846. spi->controller_state = cs;
  847. /* Link this to context save list */
  848. list_add_tail(&cs->node, &ctx->cs);
  849. }
  850. if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
  851. ret = omap2_mcspi_request_dma(spi);
  852. if (ret < 0 && ret != -EAGAIN)
  853. return ret;
  854. }
  855. if (gpio_is_valid(spi->cs_gpio)) {
  856. if (gpio_request(spi->cs_gpio, dev_name(&spi->dev)) == 0)
  857. gpio_direction_output(spi->cs_gpio,
  858. !(spi->mode & SPI_CS_HIGH));
  859. }
  860. ret = pm_runtime_get_sync(mcspi->dev);
  861. if (ret < 0)
  862. return ret;
  863. ret = omap2_mcspi_setup_transfer(spi, NULL);
  864. pm_runtime_mark_last_busy(mcspi->dev);
  865. pm_runtime_put_autosuspend(mcspi->dev);
  866. return ret;
  867. }
  868. static void omap2_mcspi_cleanup(struct spi_device *spi)
  869. {
  870. struct omap2_mcspi *mcspi;
  871. struct omap2_mcspi_dma *mcspi_dma;
  872. struct omap2_mcspi_cs *cs;
  873. mcspi = spi_master_get_devdata(spi->master);
  874. if (spi->controller_state) {
  875. /* Unlink controller state from context save list */
  876. cs = spi->controller_state;
  877. list_del(&cs->node);
  878. kfree(cs);
  879. }
  880. if (spi->chip_select < spi->master->num_chipselect) {
  881. mcspi_dma = &mcspi->dma_channels[spi->chip_select];
  882. if (mcspi_dma->dma_rx) {
  883. dma_release_channel(mcspi_dma->dma_rx);
  884. mcspi_dma->dma_rx = NULL;
  885. }
  886. if (mcspi_dma->dma_tx) {
  887. dma_release_channel(mcspi_dma->dma_tx);
  888. mcspi_dma->dma_tx = NULL;
  889. }
  890. }
  891. if (gpio_is_valid(spi->cs_gpio))
  892. gpio_free(spi->cs_gpio);
  893. }
  894. static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
  895. struct spi_device *spi, struct spi_transfer *t)
  896. {
  897. /* We only enable one channel at a time -- the one whose message is
  898. * -- although this controller would gladly
  899. * arbitrate among multiple channels. This corresponds to "single
  900. * channel" master mode. As a side effect, we need to manage the
  901. * chipselect with the FORCE bit ... CS != channel enable.
  902. */
  903. struct spi_master *master;
  904. struct omap2_mcspi_dma *mcspi_dma;
  905. struct omap2_mcspi_cs *cs;
  906. struct omap2_mcspi_device_config *cd;
  907. int par_override = 0;
  908. int status = 0;
  909. u32 chconf;
  910. master = spi->master;
  911. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  912. cs = spi->controller_state;
  913. cd = spi->controller_data;
  914. /*
  915. * The slave driver could have changed spi->mode in which case
  916. * it will be different from cs->mode (the current hardware setup).
  917. * If so, set par_override (even though its not a parity issue) so
  918. * omap2_mcspi_setup_transfer will be called to configure the hardware
  919. * with the correct mode on the first iteration of the loop below.
  920. */
  921. if (spi->mode != cs->mode)
  922. par_override = 1;
  923. omap2_mcspi_set_enable(spi, 0);
  924. if (par_override ||
  925. (t->speed_hz != spi->max_speed_hz) ||
  926. (t->bits_per_word != spi->bits_per_word)) {
  927. par_override = 1;
  928. status = omap2_mcspi_setup_transfer(spi, t);
  929. if (status < 0)
  930. goto out;
  931. if (t->speed_hz == spi->max_speed_hz &&
  932. t->bits_per_word == spi->bits_per_word)
  933. par_override = 0;
  934. }
  935. if (cd && cd->cs_per_word) {
  936. chconf = mcspi->ctx.modulctrl;
  937. chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
  938. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
  939. mcspi->ctx.modulctrl =
  940. mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
  941. }
  942. chconf = mcspi_cached_chconf0(spi);
  943. chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
  944. chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
  945. if (t->tx_buf == NULL)
  946. chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
  947. else if (t->rx_buf == NULL)
  948. chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
  949. if (cd && cd->turbo_mode && t->tx_buf == NULL) {
  950. /* Turbo mode is for more than one word */
  951. if (t->len > ((cs->word_len + 7) >> 3))
  952. chconf |= OMAP2_MCSPI_CHCONF_TURBO;
  953. }
  954. mcspi_write_chconf0(spi, chconf);
  955. if (t->len) {
  956. unsigned count;
  957. if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
  958. (t->len >= DMA_MIN_BYTES))
  959. omap2_mcspi_set_fifo(spi, t, 1);
  960. omap2_mcspi_set_enable(spi, 1);
  961. /* RX_ONLY mode needs dummy data in TX reg */
  962. if (t->tx_buf == NULL)
  963. writel_relaxed(0, cs->base
  964. + OMAP2_MCSPI_TX0);
  965. if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
  966. (t->len >= DMA_MIN_BYTES))
  967. count = omap2_mcspi_txrx_dma(spi, t);
  968. else
  969. count = omap2_mcspi_txrx_pio(spi, t);
  970. if (count != t->len) {
  971. status = -EIO;
  972. goto out;
  973. }
  974. }
  975. if (t->delay_usecs)
  976. udelay(t->delay_usecs);
  977. omap2_mcspi_set_enable(spi, 0);
  978. if (mcspi->fifo_depth > 0)
  979. omap2_mcspi_set_fifo(spi, t, 0);
  980. out:
  981. /* Restore defaults if they were overriden */
  982. if (par_override) {
  983. par_override = 0;
  984. status = omap2_mcspi_setup_transfer(spi, NULL);
  985. }
  986. if (cd && cd->cs_per_word) {
  987. chconf = mcspi->ctx.modulctrl;
  988. chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
  989. mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
  990. mcspi->ctx.modulctrl =
  991. mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
  992. }
  993. omap2_mcspi_set_enable(spi, 0);
  994. if (mcspi->fifo_depth > 0 && t)
  995. omap2_mcspi_set_fifo(spi, t, 0);
  996. return status;
  997. }
  998. static int omap2_mcspi_transfer_one(struct spi_master *master,
  999. struct spi_device *spi, struct spi_transfer *t)
  1000. {
  1001. struct omap2_mcspi *mcspi;
  1002. struct omap2_mcspi_dma *mcspi_dma;
  1003. const void *tx_buf = t->tx_buf;
  1004. void *rx_buf = t->rx_buf;
  1005. unsigned len = t->len;
  1006. mcspi = spi_master_get_devdata(master);
  1007. mcspi_dma = mcspi->dma_channels + spi->chip_select;
  1008. if ((len && !(rx_buf || tx_buf))) {
  1009. dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
  1010. t->speed_hz,
  1011. len,
  1012. tx_buf ? "tx" : "",
  1013. rx_buf ? "rx" : "",
  1014. t->bits_per_word);
  1015. return -EINVAL;
  1016. }
  1017. if (len < DMA_MIN_BYTES)
  1018. goto skip_dma_map;
  1019. if (mcspi_dma->dma_tx && tx_buf != NULL) {
  1020. t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
  1021. len, DMA_TO_DEVICE);
  1022. if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
  1023. dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
  1024. 'T', len);
  1025. return -EINVAL;
  1026. }
  1027. }
  1028. if (mcspi_dma->dma_rx && rx_buf != NULL) {
  1029. t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
  1030. DMA_FROM_DEVICE);
  1031. if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
  1032. dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
  1033. 'R', len);
  1034. if (tx_buf != NULL)
  1035. dma_unmap_single(mcspi->dev, t->tx_dma,
  1036. len, DMA_TO_DEVICE);
  1037. return -EINVAL;
  1038. }
  1039. }
  1040. skip_dma_map:
  1041. return omap2_mcspi_work_one(mcspi, spi, t);
  1042. }
  1043. static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
  1044. {
  1045. struct spi_master *master = mcspi->master;
  1046. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  1047. int ret = 0;
  1048. ret = pm_runtime_get_sync(mcspi->dev);
  1049. if (ret < 0)
  1050. return ret;
  1051. mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
  1052. OMAP2_MCSPI_WAKEUPENABLE_WKEN);
  1053. ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
  1054. omap2_mcspi_set_master_mode(master);
  1055. pm_runtime_mark_last_busy(mcspi->dev);
  1056. pm_runtime_put_autosuspend(mcspi->dev);
  1057. return 0;
  1058. }
  1059. static int omap_mcspi_runtime_resume(struct device *dev)
  1060. {
  1061. struct omap2_mcspi *mcspi;
  1062. struct spi_master *master;
  1063. master = dev_get_drvdata(dev);
  1064. mcspi = spi_master_get_devdata(master);
  1065. omap2_mcspi_restore_ctx(mcspi);
  1066. return 0;
  1067. }
  1068. static struct omap2_mcspi_platform_config omap2_pdata = {
  1069. .regs_offset = 0,
  1070. };
  1071. static struct omap2_mcspi_platform_config omap4_pdata = {
  1072. .regs_offset = OMAP4_MCSPI_REG_OFFSET,
  1073. };
  1074. static const struct of_device_id omap_mcspi_of_match[] = {
  1075. {
  1076. .compatible = "ti,omap2-mcspi",
  1077. .data = &omap2_pdata,
  1078. },
  1079. {
  1080. .compatible = "ti,omap4-mcspi",
  1081. .data = &omap4_pdata,
  1082. },
  1083. { },
  1084. };
  1085. MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
  1086. static int omap2_mcspi_probe(struct platform_device *pdev)
  1087. {
  1088. struct spi_master *master;
  1089. const struct omap2_mcspi_platform_config *pdata;
  1090. struct omap2_mcspi *mcspi;
  1091. struct resource *r;
  1092. int status = 0, i;
  1093. u32 regs_offset = 0;
  1094. static int bus_num = 1;
  1095. struct device_node *node = pdev->dev.of_node;
  1096. const struct of_device_id *match;
  1097. master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
  1098. if (master == NULL) {
  1099. dev_dbg(&pdev->dev, "master allocation failed\n");
  1100. return -ENOMEM;
  1101. }
  1102. /* the spi->mode bits understood by this driver: */
  1103. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1104. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1105. master->setup = omap2_mcspi_setup;
  1106. master->auto_runtime_pm = true;
  1107. master->transfer_one = omap2_mcspi_transfer_one;
  1108. master->set_cs = omap2_mcspi_set_cs;
  1109. master->cleanup = omap2_mcspi_cleanup;
  1110. master->dev.of_node = node;
  1111. master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
  1112. master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
  1113. platform_set_drvdata(pdev, master);
  1114. mcspi = spi_master_get_devdata(master);
  1115. mcspi->master = master;
  1116. match = of_match_device(omap_mcspi_of_match, &pdev->dev);
  1117. if (match) {
  1118. u32 num_cs = 1; /* default number of chipselect */
  1119. pdata = match->data;
  1120. of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
  1121. master->num_chipselect = num_cs;
  1122. master->bus_num = bus_num++;
  1123. if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
  1124. mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
  1125. } else {
  1126. pdata = dev_get_platdata(&pdev->dev);
  1127. master->num_chipselect = pdata->num_cs;
  1128. if (pdev->id != -1)
  1129. master->bus_num = pdev->id;
  1130. mcspi->pin_dir = pdata->pin_dir;
  1131. }
  1132. regs_offset = pdata->regs_offset;
  1133. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1134. if (r == NULL) {
  1135. status = -ENODEV;
  1136. goto free_master;
  1137. }
  1138. r->start += regs_offset;
  1139. r->end += regs_offset;
  1140. mcspi->phys = r->start;
  1141. mcspi->base = devm_ioremap_resource(&pdev->dev, r);
  1142. if (IS_ERR(mcspi->base)) {
  1143. status = PTR_ERR(mcspi->base);
  1144. goto free_master;
  1145. }
  1146. mcspi->dev = &pdev->dev;
  1147. INIT_LIST_HEAD(&mcspi->ctx.cs);
  1148. mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
  1149. sizeof(struct omap2_mcspi_dma),
  1150. GFP_KERNEL);
  1151. if (mcspi->dma_channels == NULL) {
  1152. status = -ENOMEM;
  1153. goto free_master;
  1154. }
  1155. for (i = 0; i < master->num_chipselect; i++) {
  1156. char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
  1157. char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
  1158. struct resource *dma_res;
  1159. sprintf(dma_rx_ch_name, "rx%d", i);
  1160. if (!pdev->dev.of_node) {
  1161. dma_res =
  1162. platform_get_resource_byname(pdev,
  1163. IORESOURCE_DMA,
  1164. dma_rx_ch_name);
  1165. if (!dma_res) {
  1166. dev_dbg(&pdev->dev,
  1167. "cannot get DMA RX channel\n");
  1168. status = -ENODEV;
  1169. break;
  1170. }
  1171. mcspi->dma_channels[i].dma_rx_sync_dev =
  1172. dma_res->start;
  1173. }
  1174. sprintf(dma_tx_ch_name, "tx%d", i);
  1175. if (!pdev->dev.of_node) {
  1176. dma_res =
  1177. platform_get_resource_byname(pdev,
  1178. IORESOURCE_DMA,
  1179. dma_tx_ch_name);
  1180. if (!dma_res) {
  1181. dev_dbg(&pdev->dev,
  1182. "cannot get DMA TX channel\n");
  1183. status = -ENODEV;
  1184. break;
  1185. }
  1186. mcspi->dma_channels[i].dma_tx_sync_dev =
  1187. dma_res->start;
  1188. }
  1189. }
  1190. if (status < 0)
  1191. goto free_master;
  1192. pm_runtime_use_autosuspend(&pdev->dev);
  1193. pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
  1194. pm_runtime_enable(&pdev->dev);
  1195. status = omap2_mcspi_master_setup(mcspi);
  1196. if (status < 0)
  1197. goto disable_pm;
  1198. status = devm_spi_register_master(&pdev->dev, master);
  1199. if (status < 0)
  1200. goto disable_pm;
  1201. return status;
  1202. disable_pm:
  1203. pm_runtime_disable(&pdev->dev);
  1204. free_master:
  1205. spi_master_put(master);
  1206. return status;
  1207. }
  1208. static int omap2_mcspi_remove(struct platform_device *pdev)
  1209. {
  1210. struct spi_master *master = platform_get_drvdata(pdev);
  1211. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  1212. pm_runtime_put_sync(mcspi->dev);
  1213. pm_runtime_disable(&pdev->dev);
  1214. return 0;
  1215. }
  1216. /* work with hotplug and coldplug */
  1217. MODULE_ALIAS("platform:omap2_mcspi");
  1218. #ifdef CONFIG_SUSPEND
  1219. /*
  1220. * When SPI wake up from off-mode, CS is in activate state. If it was in
  1221. * unactive state when driver was suspend, then force it to unactive state at
  1222. * wake up.
  1223. */
  1224. static int omap2_mcspi_resume(struct device *dev)
  1225. {
  1226. struct spi_master *master = dev_get_drvdata(dev);
  1227. struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
  1228. struct omap2_mcspi_regs *ctx = &mcspi->ctx;
  1229. struct omap2_mcspi_cs *cs;
  1230. pm_runtime_get_sync(mcspi->dev);
  1231. list_for_each_entry(cs, &ctx->cs, node) {
  1232. if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
  1233. /*
  1234. * We need to toggle CS state for OMAP take this
  1235. * change in account.
  1236. */
  1237. cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
  1238. writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  1239. cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
  1240. writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
  1241. }
  1242. }
  1243. pm_runtime_mark_last_busy(mcspi->dev);
  1244. pm_runtime_put_autosuspend(mcspi->dev);
  1245. return 0;
  1246. }
  1247. #else
  1248. #define omap2_mcspi_resume NULL
  1249. #endif
  1250. static const struct dev_pm_ops omap2_mcspi_pm_ops = {
  1251. .resume = omap2_mcspi_resume,
  1252. .runtime_resume = omap_mcspi_runtime_resume,
  1253. };
  1254. static struct platform_driver omap2_mcspi_driver = {
  1255. .driver = {
  1256. .name = "omap2_mcspi",
  1257. .pm = &omap2_mcspi_pm_ops,
  1258. .of_match_table = omap_mcspi_of_match,
  1259. },
  1260. .probe = omap2_mcspi_probe,
  1261. .remove = omap2_mcspi_remove,
  1262. };
  1263. module_platform_driver(omap2_mcspi_driver);
  1264. MODULE_LICENSE("GPL");