md.c 233 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. if (mddev == NULL || mddev->pers == NULL
  226. || !mddev->ready) {
  227. bio_io_error(bio);
  228. return;
  229. }
  230. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  231. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  232. return;
  233. }
  234. smp_rmb(); /* Ensure implications of 'active' are visible */
  235. rcu_read_lock();
  236. if (mddev->suspended) {
  237. DEFINE_WAIT(__wait);
  238. for (;;) {
  239. prepare_to_wait(&mddev->sb_wait, &__wait,
  240. TASK_UNINTERRUPTIBLE);
  241. if (!mddev->suspended)
  242. break;
  243. rcu_read_unlock();
  244. schedule();
  245. rcu_read_lock();
  246. }
  247. finish_wait(&mddev->sb_wait, &__wait);
  248. }
  249. atomic_inc(&mddev->active_io);
  250. rcu_read_unlock();
  251. /*
  252. * save the sectors now since our bio can
  253. * go away inside make_request
  254. */
  255. sectors = bio_sectors(bio);
  256. mddev->pers->make_request(mddev, bio);
  257. cpu = part_stat_lock();
  258. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  259. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  260. part_stat_unlock();
  261. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  262. wake_up(&mddev->sb_wait);
  263. }
  264. /* mddev_suspend makes sure no new requests are submitted
  265. * to the device, and that any requests that have been submitted
  266. * are completely handled.
  267. * Once mddev_detach() is called and completes, the module will be
  268. * completely unused.
  269. */
  270. void mddev_suspend(struct mddev *mddev)
  271. {
  272. BUG_ON(mddev->suspended);
  273. mddev->suspended = 1;
  274. synchronize_rcu();
  275. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  276. mddev->pers->quiesce(mddev, 1);
  277. del_timer_sync(&mddev->safemode_timer);
  278. }
  279. EXPORT_SYMBOL_GPL(mddev_suspend);
  280. void mddev_resume(struct mddev *mddev)
  281. {
  282. mddev->suspended = 0;
  283. wake_up(&mddev->sb_wait);
  284. mddev->pers->quiesce(mddev, 0);
  285. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  286. md_wakeup_thread(mddev->thread);
  287. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  288. }
  289. EXPORT_SYMBOL_GPL(mddev_resume);
  290. int mddev_congested(struct mddev *mddev, int bits)
  291. {
  292. struct md_personality *pers = mddev->pers;
  293. int ret = 0;
  294. rcu_read_lock();
  295. if (mddev->suspended)
  296. ret = 1;
  297. else if (pers && pers->congested)
  298. ret = pers->congested(mddev, bits);
  299. rcu_read_unlock();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mddev_congested);
  303. static int md_congested(void *data, int bits)
  304. {
  305. struct mddev *mddev = data;
  306. return mddev_congested(mddev, bits);
  307. }
  308. static int md_mergeable_bvec(struct request_queue *q,
  309. struct bvec_merge_data *bvm,
  310. struct bio_vec *biovec)
  311. {
  312. struct mddev *mddev = q->queuedata;
  313. int ret;
  314. rcu_read_lock();
  315. if (mddev->suspended) {
  316. /* Must always allow one vec */
  317. if (bvm->bi_size == 0)
  318. ret = biovec->bv_len;
  319. else
  320. ret = 0;
  321. } else {
  322. struct md_personality *pers = mddev->pers;
  323. if (pers && pers->mergeable_bvec)
  324. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  325. else
  326. ret = biovec->bv_len;
  327. }
  328. rcu_read_unlock();
  329. return ret;
  330. }
  331. /*
  332. * Generic flush handling for md
  333. */
  334. static void md_end_flush(struct bio *bio, int err)
  335. {
  336. struct md_rdev *rdev = bio->bi_private;
  337. struct mddev *mddev = rdev->mddev;
  338. rdev_dec_pending(rdev, mddev);
  339. if (atomic_dec_and_test(&mddev->flush_pending)) {
  340. /* The pre-request flush has finished */
  341. queue_work(md_wq, &mddev->flush_work);
  342. }
  343. bio_put(bio);
  344. }
  345. static void md_submit_flush_data(struct work_struct *ws);
  346. static void submit_flushes(struct work_struct *ws)
  347. {
  348. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  349. struct md_rdev *rdev;
  350. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  351. atomic_set(&mddev->flush_pending, 1);
  352. rcu_read_lock();
  353. rdev_for_each_rcu(rdev, mddev)
  354. if (rdev->raid_disk >= 0 &&
  355. !test_bit(Faulty, &rdev->flags)) {
  356. /* Take two references, one is dropped
  357. * when request finishes, one after
  358. * we reclaim rcu_read_lock
  359. */
  360. struct bio *bi;
  361. atomic_inc(&rdev->nr_pending);
  362. atomic_inc(&rdev->nr_pending);
  363. rcu_read_unlock();
  364. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  365. bi->bi_end_io = md_end_flush;
  366. bi->bi_private = rdev;
  367. bi->bi_bdev = rdev->bdev;
  368. atomic_inc(&mddev->flush_pending);
  369. submit_bio(WRITE_FLUSH, bi);
  370. rcu_read_lock();
  371. rdev_dec_pending(rdev, mddev);
  372. }
  373. rcu_read_unlock();
  374. if (atomic_dec_and_test(&mddev->flush_pending))
  375. queue_work(md_wq, &mddev->flush_work);
  376. }
  377. static void md_submit_flush_data(struct work_struct *ws)
  378. {
  379. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  380. struct bio *bio = mddev->flush_bio;
  381. if (bio->bi_iter.bi_size == 0)
  382. /* an empty barrier - all done */
  383. bio_endio(bio, 0);
  384. else {
  385. bio->bi_rw &= ~REQ_FLUSH;
  386. mddev->pers->make_request(mddev, bio);
  387. }
  388. mddev->flush_bio = NULL;
  389. wake_up(&mddev->sb_wait);
  390. }
  391. void md_flush_request(struct mddev *mddev, struct bio *bio)
  392. {
  393. spin_lock_irq(&mddev->lock);
  394. wait_event_lock_irq(mddev->sb_wait,
  395. !mddev->flush_bio,
  396. mddev->lock);
  397. mddev->flush_bio = bio;
  398. spin_unlock_irq(&mddev->lock);
  399. INIT_WORK(&mddev->flush_work, submit_flushes);
  400. queue_work(md_wq, &mddev->flush_work);
  401. }
  402. EXPORT_SYMBOL(md_flush_request);
  403. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  404. {
  405. struct mddev *mddev = cb->data;
  406. md_wakeup_thread(mddev->thread);
  407. kfree(cb);
  408. }
  409. EXPORT_SYMBOL(md_unplug);
  410. static inline struct mddev *mddev_get(struct mddev *mddev)
  411. {
  412. atomic_inc(&mddev->active);
  413. return mddev;
  414. }
  415. static void mddev_delayed_delete(struct work_struct *ws);
  416. static void mddev_put(struct mddev *mddev)
  417. {
  418. struct bio_set *bs = NULL;
  419. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  420. return;
  421. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  422. mddev->ctime == 0 && !mddev->hold_active) {
  423. /* Array is not configured at all, and not held active,
  424. * so destroy it */
  425. list_del_init(&mddev->all_mddevs);
  426. bs = mddev->bio_set;
  427. mddev->bio_set = NULL;
  428. if (mddev->gendisk) {
  429. /* We did a probe so need to clean up. Call
  430. * queue_work inside the spinlock so that
  431. * flush_workqueue() after mddev_find will
  432. * succeed in waiting for the work to be done.
  433. */
  434. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  435. queue_work(md_misc_wq, &mddev->del_work);
  436. } else
  437. kfree(mddev);
  438. }
  439. spin_unlock(&all_mddevs_lock);
  440. if (bs)
  441. bioset_free(bs);
  442. }
  443. void mddev_init(struct mddev *mddev)
  444. {
  445. mutex_init(&mddev->open_mutex);
  446. mutex_init(&mddev->reconfig_mutex);
  447. mutex_init(&mddev->bitmap_info.mutex);
  448. INIT_LIST_HEAD(&mddev->disks);
  449. INIT_LIST_HEAD(&mddev->all_mddevs);
  450. init_timer(&mddev->safemode_timer);
  451. atomic_set(&mddev->active, 1);
  452. atomic_set(&mddev->openers, 0);
  453. atomic_set(&mddev->active_io, 0);
  454. spin_lock_init(&mddev->lock);
  455. atomic_set(&mddev->flush_pending, 0);
  456. init_waitqueue_head(&mddev->sb_wait);
  457. init_waitqueue_head(&mddev->recovery_wait);
  458. mddev->reshape_position = MaxSector;
  459. mddev->reshape_backwards = 0;
  460. mddev->last_sync_action = "none";
  461. mddev->resync_min = 0;
  462. mddev->resync_max = MaxSector;
  463. mddev->level = LEVEL_NONE;
  464. }
  465. EXPORT_SYMBOL_GPL(mddev_init);
  466. static struct mddev *mddev_find(dev_t unit)
  467. {
  468. struct mddev *mddev, *new = NULL;
  469. if (unit && MAJOR(unit) != MD_MAJOR)
  470. unit &= ~((1<<MdpMinorShift)-1);
  471. retry:
  472. spin_lock(&all_mddevs_lock);
  473. if (unit) {
  474. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  475. if (mddev->unit == unit) {
  476. mddev_get(mddev);
  477. spin_unlock(&all_mddevs_lock);
  478. kfree(new);
  479. return mddev;
  480. }
  481. if (new) {
  482. list_add(&new->all_mddevs, &all_mddevs);
  483. spin_unlock(&all_mddevs_lock);
  484. new->hold_active = UNTIL_IOCTL;
  485. return new;
  486. }
  487. } else if (new) {
  488. /* find an unused unit number */
  489. static int next_minor = 512;
  490. int start = next_minor;
  491. int is_free = 0;
  492. int dev = 0;
  493. while (!is_free) {
  494. dev = MKDEV(MD_MAJOR, next_minor);
  495. next_minor++;
  496. if (next_minor > MINORMASK)
  497. next_minor = 0;
  498. if (next_minor == start) {
  499. /* Oh dear, all in use. */
  500. spin_unlock(&all_mddevs_lock);
  501. kfree(new);
  502. return NULL;
  503. }
  504. is_free = 1;
  505. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  506. if (mddev->unit == dev) {
  507. is_free = 0;
  508. break;
  509. }
  510. }
  511. new->unit = dev;
  512. new->md_minor = MINOR(dev);
  513. new->hold_active = UNTIL_STOP;
  514. list_add(&new->all_mddevs, &all_mddevs);
  515. spin_unlock(&all_mddevs_lock);
  516. return new;
  517. }
  518. spin_unlock(&all_mddevs_lock);
  519. new = kzalloc(sizeof(*new), GFP_KERNEL);
  520. if (!new)
  521. return NULL;
  522. new->unit = unit;
  523. if (MAJOR(unit) == MD_MAJOR)
  524. new->md_minor = MINOR(unit);
  525. else
  526. new->md_minor = MINOR(unit) >> MdpMinorShift;
  527. mddev_init(new);
  528. goto retry;
  529. }
  530. static struct attribute_group md_redundancy_group;
  531. void mddev_unlock(struct mddev *mddev)
  532. {
  533. if (mddev->to_remove) {
  534. /* These cannot be removed under reconfig_mutex as
  535. * an access to the files will try to take reconfig_mutex
  536. * while holding the file unremovable, which leads to
  537. * a deadlock.
  538. * So hold set sysfs_active while the remove in happeing,
  539. * and anything else which might set ->to_remove or my
  540. * otherwise change the sysfs namespace will fail with
  541. * -EBUSY if sysfs_active is still set.
  542. * We set sysfs_active under reconfig_mutex and elsewhere
  543. * test it under the same mutex to ensure its correct value
  544. * is seen.
  545. */
  546. struct attribute_group *to_remove = mddev->to_remove;
  547. mddev->to_remove = NULL;
  548. mddev->sysfs_active = 1;
  549. mutex_unlock(&mddev->reconfig_mutex);
  550. if (mddev->kobj.sd) {
  551. if (to_remove != &md_redundancy_group)
  552. sysfs_remove_group(&mddev->kobj, to_remove);
  553. if (mddev->pers == NULL ||
  554. mddev->pers->sync_request == NULL) {
  555. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  556. if (mddev->sysfs_action)
  557. sysfs_put(mddev->sysfs_action);
  558. mddev->sysfs_action = NULL;
  559. }
  560. }
  561. mddev->sysfs_active = 0;
  562. } else
  563. mutex_unlock(&mddev->reconfig_mutex);
  564. /* As we've dropped the mutex we need a spinlock to
  565. * make sure the thread doesn't disappear
  566. */
  567. spin_lock(&pers_lock);
  568. md_wakeup_thread(mddev->thread);
  569. spin_unlock(&pers_lock);
  570. }
  571. EXPORT_SYMBOL_GPL(mddev_unlock);
  572. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  573. {
  574. struct md_rdev *rdev;
  575. rdev_for_each_rcu(rdev, mddev)
  576. if (rdev->desc_nr == nr)
  577. return rdev;
  578. return NULL;
  579. }
  580. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  581. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  582. {
  583. struct md_rdev *rdev;
  584. rdev_for_each(rdev, mddev)
  585. if (rdev->bdev->bd_dev == dev)
  586. return rdev;
  587. return NULL;
  588. }
  589. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  590. {
  591. struct md_rdev *rdev;
  592. rdev_for_each_rcu(rdev, mddev)
  593. if (rdev->bdev->bd_dev == dev)
  594. return rdev;
  595. return NULL;
  596. }
  597. static struct md_personality *find_pers(int level, char *clevel)
  598. {
  599. struct md_personality *pers;
  600. list_for_each_entry(pers, &pers_list, list) {
  601. if (level != LEVEL_NONE && pers->level == level)
  602. return pers;
  603. if (strcmp(pers->name, clevel)==0)
  604. return pers;
  605. }
  606. return NULL;
  607. }
  608. /* return the offset of the super block in 512byte sectors */
  609. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  610. {
  611. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  612. return MD_NEW_SIZE_SECTORS(num_sectors);
  613. }
  614. static int alloc_disk_sb(struct md_rdev *rdev)
  615. {
  616. rdev->sb_page = alloc_page(GFP_KERNEL);
  617. if (!rdev->sb_page) {
  618. printk(KERN_ALERT "md: out of memory.\n");
  619. return -ENOMEM;
  620. }
  621. return 0;
  622. }
  623. void md_rdev_clear(struct md_rdev *rdev)
  624. {
  625. if (rdev->sb_page) {
  626. put_page(rdev->sb_page);
  627. rdev->sb_loaded = 0;
  628. rdev->sb_page = NULL;
  629. rdev->sb_start = 0;
  630. rdev->sectors = 0;
  631. }
  632. if (rdev->bb_page) {
  633. put_page(rdev->bb_page);
  634. rdev->bb_page = NULL;
  635. }
  636. kfree(rdev->badblocks.page);
  637. rdev->badblocks.page = NULL;
  638. }
  639. EXPORT_SYMBOL_GPL(md_rdev_clear);
  640. static void super_written(struct bio *bio, int error)
  641. {
  642. struct md_rdev *rdev = bio->bi_private;
  643. struct mddev *mddev = rdev->mddev;
  644. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  645. printk("md: super_written gets error=%d, uptodate=%d\n",
  646. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  647. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  648. md_error(mddev, rdev);
  649. }
  650. if (atomic_dec_and_test(&mddev->pending_writes))
  651. wake_up(&mddev->sb_wait);
  652. bio_put(bio);
  653. }
  654. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  655. sector_t sector, int size, struct page *page)
  656. {
  657. /* write first size bytes of page to sector of rdev
  658. * Increment mddev->pending_writes before returning
  659. * and decrement it on completion, waking up sb_wait
  660. * if zero is reached.
  661. * If an error occurred, call md_error
  662. */
  663. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  664. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  665. bio->bi_iter.bi_sector = sector;
  666. bio_add_page(bio, page, size, 0);
  667. bio->bi_private = rdev;
  668. bio->bi_end_io = super_written;
  669. atomic_inc(&mddev->pending_writes);
  670. submit_bio(WRITE_FLUSH_FUA, bio);
  671. }
  672. void md_super_wait(struct mddev *mddev)
  673. {
  674. /* wait for all superblock writes that were scheduled to complete */
  675. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  676. }
  677. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  678. struct page *page, int rw, bool metadata_op)
  679. {
  680. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  681. int ret;
  682. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  683. rdev->meta_bdev : rdev->bdev;
  684. if (metadata_op)
  685. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  686. else if (rdev->mddev->reshape_position != MaxSector &&
  687. (rdev->mddev->reshape_backwards ==
  688. (sector >= rdev->mddev->reshape_position)))
  689. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  690. else
  691. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  692. bio_add_page(bio, page, size, 0);
  693. submit_bio_wait(rw, bio);
  694. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  695. bio_put(bio);
  696. return ret;
  697. }
  698. EXPORT_SYMBOL_GPL(sync_page_io);
  699. static int read_disk_sb(struct md_rdev *rdev, int size)
  700. {
  701. char b[BDEVNAME_SIZE];
  702. if (rdev->sb_loaded)
  703. return 0;
  704. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  705. goto fail;
  706. rdev->sb_loaded = 1;
  707. return 0;
  708. fail:
  709. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  710. bdevname(rdev->bdev,b));
  711. return -EINVAL;
  712. }
  713. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  714. {
  715. return sb1->set_uuid0 == sb2->set_uuid0 &&
  716. sb1->set_uuid1 == sb2->set_uuid1 &&
  717. sb1->set_uuid2 == sb2->set_uuid2 &&
  718. sb1->set_uuid3 == sb2->set_uuid3;
  719. }
  720. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  721. {
  722. int ret;
  723. mdp_super_t *tmp1, *tmp2;
  724. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  725. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  726. if (!tmp1 || !tmp2) {
  727. ret = 0;
  728. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  729. goto abort;
  730. }
  731. *tmp1 = *sb1;
  732. *tmp2 = *sb2;
  733. /*
  734. * nr_disks is not constant
  735. */
  736. tmp1->nr_disks = 0;
  737. tmp2->nr_disks = 0;
  738. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  739. abort:
  740. kfree(tmp1);
  741. kfree(tmp2);
  742. return ret;
  743. }
  744. static u32 md_csum_fold(u32 csum)
  745. {
  746. csum = (csum & 0xffff) + (csum >> 16);
  747. return (csum & 0xffff) + (csum >> 16);
  748. }
  749. static unsigned int calc_sb_csum(mdp_super_t *sb)
  750. {
  751. u64 newcsum = 0;
  752. u32 *sb32 = (u32*)sb;
  753. int i;
  754. unsigned int disk_csum, csum;
  755. disk_csum = sb->sb_csum;
  756. sb->sb_csum = 0;
  757. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  758. newcsum += sb32[i];
  759. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  760. #ifdef CONFIG_ALPHA
  761. /* This used to use csum_partial, which was wrong for several
  762. * reasons including that different results are returned on
  763. * different architectures. It isn't critical that we get exactly
  764. * the same return value as before (we always csum_fold before
  765. * testing, and that removes any differences). However as we
  766. * know that csum_partial always returned a 16bit value on
  767. * alphas, do a fold to maximise conformity to previous behaviour.
  768. */
  769. sb->sb_csum = md_csum_fold(disk_csum);
  770. #else
  771. sb->sb_csum = disk_csum;
  772. #endif
  773. return csum;
  774. }
  775. /*
  776. * Handle superblock details.
  777. * We want to be able to handle multiple superblock formats
  778. * so we have a common interface to them all, and an array of
  779. * different handlers.
  780. * We rely on user-space to write the initial superblock, and support
  781. * reading and updating of superblocks.
  782. * Interface methods are:
  783. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  784. * loads and validates a superblock on dev.
  785. * if refdev != NULL, compare superblocks on both devices
  786. * Return:
  787. * 0 - dev has a superblock that is compatible with refdev
  788. * 1 - dev has a superblock that is compatible and newer than refdev
  789. * so dev should be used as the refdev in future
  790. * -EINVAL superblock incompatible or invalid
  791. * -othererror e.g. -EIO
  792. *
  793. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  794. * Verify that dev is acceptable into mddev.
  795. * The first time, mddev->raid_disks will be 0, and data from
  796. * dev should be merged in. Subsequent calls check that dev
  797. * is new enough. Return 0 or -EINVAL
  798. *
  799. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  800. * Update the superblock for rdev with data in mddev
  801. * This does not write to disc.
  802. *
  803. */
  804. struct super_type {
  805. char *name;
  806. struct module *owner;
  807. int (*load_super)(struct md_rdev *rdev,
  808. struct md_rdev *refdev,
  809. int minor_version);
  810. int (*validate_super)(struct mddev *mddev,
  811. struct md_rdev *rdev);
  812. void (*sync_super)(struct mddev *mddev,
  813. struct md_rdev *rdev);
  814. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  815. sector_t num_sectors);
  816. int (*allow_new_offset)(struct md_rdev *rdev,
  817. unsigned long long new_offset);
  818. };
  819. /*
  820. * Check that the given mddev has no bitmap.
  821. *
  822. * This function is called from the run method of all personalities that do not
  823. * support bitmaps. It prints an error message and returns non-zero if mddev
  824. * has a bitmap. Otherwise, it returns 0.
  825. *
  826. */
  827. int md_check_no_bitmap(struct mddev *mddev)
  828. {
  829. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  830. return 0;
  831. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  832. mdname(mddev), mddev->pers->name);
  833. return 1;
  834. }
  835. EXPORT_SYMBOL(md_check_no_bitmap);
  836. /*
  837. * load_super for 0.90.0
  838. */
  839. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  840. {
  841. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  842. mdp_super_t *sb;
  843. int ret;
  844. /*
  845. * Calculate the position of the superblock (512byte sectors),
  846. * it's at the end of the disk.
  847. *
  848. * It also happens to be a multiple of 4Kb.
  849. */
  850. rdev->sb_start = calc_dev_sboffset(rdev);
  851. ret = read_disk_sb(rdev, MD_SB_BYTES);
  852. if (ret) return ret;
  853. ret = -EINVAL;
  854. bdevname(rdev->bdev, b);
  855. sb = page_address(rdev->sb_page);
  856. if (sb->md_magic != MD_SB_MAGIC) {
  857. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  858. b);
  859. goto abort;
  860. }
  861. if (sb->major_version != 0 ||
  862. sb->minor_version < 90 ||
  863. sb->minor_version > 91) {
  864. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  865. sb->major_version, sb->minor_version,
  866. b);
  867. goto abort;
  868. }
  869. if (sb->raid_disks <= 0)
  870. goto abort;
  871. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  872. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  873. b);
  874. goto abort;
  875. }
  876. rdev->preferred_minor = sb->md_minor;
  877. rdev->data_offset = 0;
  878. rdev->new_data_offset = 0;
  879. rdev->sb_size = MD_SB_BYTES;
  880. rdev->badblocks.shift = -1;
  881. if (sb->level == LEVEL_MULTIPATH)
  882. rdev->desc_nr = -1;
  883. else
  884. rdev->desc_nr = sb->this_disk.number;
  885. if (!refdev) {
  886. ret = 1;
  887. } else {
  888. __u64 ev1, ev2;
  889. mdp_super_t *refsb = page_address(refdev->sb_page);
  890. if (!uuid_equal(refsb, sb)) {
  891. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  892. b, bdevname(refdev->bdev,b2));
  893. goto abort;
  894. }
  895. if (!sb_equal(refsb, sb)) {
  896. printk(KERN_WARNING "md: %s has same UUID"
  897. " but different superblock to %s\n",
  898. b, bdevname(refdev->bdev, b2));
  899. goto abort;
  900. }
  901. ev1 = md_event(sb);
  902. ev2 = md_event(refsb);
  903. if (ev1 > ev2)
  904. ret = 1;
  905. else
  906. ret = 0;
  907. }
  908. rdev->sectors = rdev->sb_start;
  909. /* Limit to 4TB as metadata cannot record more than that.
  910. * (not needed for Linear and RAID0 as metadata doesn't
  911. * record this size)
  912. */
  913. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  914. rdev->sectors = (2ULL << 32) - 2;
  915. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  916. /* "this cannot possibly happen" ... */
  917. ret = -EINVAL;
  918. abort:
  919. return ret;
  920. }
  921. /*
  922. * validate_super for 0.90.0
  923. */
  924. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  925. {
  926. mdp_disk_t *desc;
  927. mdp_super_t *sb = page_address(rdev->sb_page);
  928. __u64 ev1 = md_event(sb);
  929. rdev->raid_disk = -1;
  930. clear_bit(Faulty, &rdev->flags);
  931. clear_bit(In_sync, &rdev->flags);
  932. clear_bit(Bitmap_sync, &rdev->flags);
  933. clear_bit(WriteMostly, &rdev->flags);
  934. if (mddev->raid_disks == 0) {
  935. mddev->major_version = 0;
  936. mddev->minor_version = sb->minor_version;
  937. mddev->patch_version = sb->patch_version;
  938. mddev->external = 0;
  939. mddev->chunk_sectors = sb->chunk_size >> 9;
  940. mddev->ctime = sb->ctime;
  941. mddev->utime = sb->utime;
  942. mddev->level = sb->level;
  943. mddev->clevel[0] = 0;
  944. mddev->layout = sb->layout;
  945. mddev->raid_disks = sb->raid_disks;
  946. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  947. mddev->events = ev1;
  948. mddev->bitmap_info.offset = 0;
  949. mddev->bitmap_info.space = 0;
  950. /* bitmap can use 60 K after the 4K superblocks */
  951. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  952. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  953. mddev->reshape_backwards = 0;
  954. if (mddev->minor_version >= 91) {
  955. mddev->reshape_position = sb->reshape_position;
  956. mddev->delta_disks = sb->delta_disks;
  957. mddev->new_level = sb->new_level;
  958. mddev->new_layout = sb->new_layout;
  959. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  960. if (mddev->delta_disks < 0)
  961. mddev->reshape_backwards = 1;
  962. } else {
  963. mddev->reshape_position = MaxSector;
  964. mddev->delta_disks = 0;
  965. mddev->new_level = mddev->level;
  966. mddev->new_layout = mddev->layout;
  967. mddev->new_chunk_sectors = mddev->chunk_sectors;
  968. }
  969. if (sb->state & (1<<MD_SB_CLEAN))
  970. mddev->recovery_cp = MaxSector;
  971. else {
  972. if (sb->events_hi == sb->cp_events_hi &&
  973. sb->events_lo == sb->cp_events_lo) {
  974. mddev->recovery_cp = sb->recovery_cp;
  975. } else
  976. mddev->recovery_cp = 0;
  977. }
  978. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  979. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  980. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  981. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  982. mddev->max_disks = MD_SB_DISKS;
  983. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  984. mddev->bitmap_info.file == NULL) {
  985. mddev->bitmap_info.offset =
  986. mddev->bitmap_info.default_offset;
  987. mddev->bitmap_info.space =
  988. mddev->bitmap_info.default_space;
  989. }
  990. } else if (mddev->pers == NULL) {
  991. /* Insist on good event counter while assembling, except
  992. * for spares (which don't need an event count) */
  993. ++ev1;
  994. if (sb->disks[rdev->desc_nr].state & (
  995. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  996. if (ev1 < mddev->events)
  997. return -EINVAL;
  998. } else if (mddev->bitmap) {
  999. /* if adding to array with a bitmap, then we can accept an
  1000. * older device ... but not too old.
  1001. */
  1002. if (ev1 < mddev->bitmap->events_cleared)
  1003. return 0;
  1004. if (ev1 < mddev->events)
  1005. set_bit(Bitmap_sync, &rdev->flags);
  1006. } else {
  1007. if (ev1 < mddev->events)
  1008. /* just a hot-add of a new device, leave raid_disk at -1 */
  1009. return 0;
  1010. }
  1011. if (mddev->level != LEVEL_MULTIPATH) {
  1012. desc = sb->disks + rdev->desc_nr;
  1013. if (desc->state & (1<<MD_DISK_FAULTY))
  1014. set_bit(Faulty, &rdev->flags);
  1015. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1016. desc->raid_disk < mddev->raid_disks */) {
  1017. set_bit(In_sync, &rdev->flags);
  1018. rdev->raid_disk = desc->raid_disk;
  1019. rdev->saved_raid_disk = desc->raid_disk;
  1020. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1021. /* active but not in sync implies recovery up to
  1022. * reshape position. We don't know exactly where
  1023. * that is, so set to zero for now */
  1024. if (mddev->minor_version >= 91) {
  1025. rdev->recovery_offset = 0;
  1026. rdev->raid_disk = desc->raid_disk;
  1027. }
  1028. }
  1029. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1030. set_bit(WriteMostly, &rdev->flags);
  1031. } else /* MULTIPATH are always insync */
  1032. set_bit(In_sync, &rdev->flags);
  1033. return 0;
  1034. }
  1035. /*
  1036. * sync_super for 0.90.0
  1037. */
  1038. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1039. {
  1040. mdp_super_t *sb;
  1041. struct md_rdev *rdev2;
  1042. int next_spare = mddev->raid_disks;
  1043. /* make rdev->sb match mddev data..
  1044. *
  1045. * 1/ zero out disks
  1046. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1047. * 3/ any empty disks < next_spare become removed
  1048. *
  1049. * disks[0] gets initialised to REMOVED because
  1050. * we cannot be sure from other fields if it has
  1051. * been initialised or not.
  1052. */
  1053. int i;
  1054. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1055. rdev->sb_size = MD_SB_BYTES;
  1056. sb = page_address(rdev->sb_page);
  1057. memset(sb, 0, sizeof(*sb));
  1058. sb->md_magic = MD_SB_MAGIC;
  1059. sb->major_version = mddev->major_version;
  1060. sb->patch_version = mddev->patch_version;
  1061. sb->gvalid_words = 0; /* ignored */
  1062. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1063. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1064. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1065. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1066. sb->ctime = mddev->ctime;
  1067. sb->level = mddev->level;
  1068. sb->size = mddev->dev_sectors / 2;
  1069. sb->raid_disks = mddev->raid_disks;
  1070. sb->md_minor = mddev->md_minor;
  1071. sb->not_persistent = 0;
  1072. sb->utime = mddev->utime;
  1073. sb->state = 0;
  1074. sb->events_hi = (mddev->events>>32);
  1075. sb->events_lo = (u32)mddev->events;
  1076. if (mddev->reshape_position == MaxSector)
  1077. sb->minor_version = 90;
  1078. else {
  1079. sb->minor_version = 91;
  1080. sb->reshape_position = mddev->reshape_position;
  1081. sb->new_level = mddev->new_level;
  1082. sb->delta_disks = mddev->delta_disks;
  1083. sb->new_layout = mddev->new_layout;
  1084. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1085. }
  1086. mddev->minor_version = sb->minor_version;
  1087. if (mddev->in_sync)
  1088. {
  1089. sb->recovery_cp = mddev->recovery_cp;
  1090. sb->cp_events_hi = (mddev->events>>32);
  1091. sb->cp_events_lo = (u32)mddev->events;
  1092. if (mddev->recovery_cp == MaxSector)
  1093. sb->state = (1<< MD_SB_CLEAN);
  1094. } else
  1095. sb->recovery_cp = 0;
  1096. sb->layout = mddev->layout;
  1097. sb->chunk_size = mddev->chunk_sectors << 9;
  1098. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1099. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1100. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1101. rdev_for_each(rdev2, mddev) {
  1102. mdp_disk_t *d;
  1103. int desc_nr;
  1104. int is_active = test_bit(In_sync, &rdev2->flags);
  1105. if (rdev2->raid_disk >= 0 &&
  1106. sb->minor_version >= 91)
  1107. /* we have nowhere to store the recovery_offset,
  1108. * but if it is not below the reshape_position,
  1109. * we can piggy-back on that.
  1110. */
  1111. is_active = 1;
  1112. if (rdev2->raid_disk < 0 ||
  1113. test_bit(Faulty, &rdev2->flags))
  1114. is_active = 0;
  1115. if (is_active)
  1116. desc_nr = rdev2->raid_disk;
  1117. else
  1118. desc_nr = next_spare++;
  1119. rdev2->desc_nr = desc_nr;
  1120. d = &sb->disks[rdev2->desc_nr];
  1121. nr_disks++;
  1122. d->number = rdev2->desc_nr;
  1123. d->major = MAJOR(rdev2->bdev->bd_dev);
  1124. d->minor = MINOR(rdev2->bdev->bd_dev);
  1125. if (is_active)
  1126. d->raid_disk = rdev2->raid_disk;
  1127. else
  1128. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1129. if (test_bit(Faulty, &rdev2->flags))
  1130. d->state = (1<<MD_DISK_FAULTY);
  1131. else if (is_active) {
  1132. d->state = (1<<MD_DISK_ACTIVE);
  1133. if (test_bit(In_sync, &rdev2->flags))
  1134. d->state |= (1<<MD_DISK_SYNC);
  1135. active++;
  1136. working++;
  1137. } else {
  1138. d->state = 0;
  1139. spare++;
  1140. working++;
  1141. }
  1142. if (test_bit(WriteMostly, &rdev2->flags))
  1143. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1144. }
  1145. /* now set the "removed" and "faulty" bits on any missing devices */
  1146. for (i=0 ; i < mddev->raid_disks ; i++) {
  1147. mdp_disk_t *d = &sb->disks[i];
  1148. if (d->state == 0 && d->number == 0) {
  1149. d->number = i;
  1150. d->raid_disk = i;
  1151. d->state = (1<<MD_DISK_REMOVED);
  1152. d->state |= (1<<MD_DISK_FAULTY);
  1153. failed++;
  1154. }
  1155. }
  1156. sb->nr_disks = nr_disks;
  1157. sb->active_disks = active;
  1158. sb->working_disks = working;
  1159. sb->failed_disks = failed;
  1160. sb->spare_disks = spare;
  1161. sb->this_disk = sb->disks[rdev->desc_nr];
  1162. sb->sb_csum = calc_sb_csum(sb);
  1163. }
  1164. /*
  1165. * rdev_size_change for 0.90.0
  1166. */
  1167. static unsigned long long
  1168. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1169. {
  1170. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1171. return 0; /* component must fit device */
  1172. if (rdev->mddev->bitmap_info.offset)
  1173. return 0; /* can't move bitmap */
  1174. rdev->sb_start = calc_dev_sboffset(rdev);
  1175. if (!num_sectors || num_sectors > rdev->sb_start)
  1176. num_sectors = rdev->sb_start;
  1177. /* Limit to 4TB as metadata cannot record more than that.
  1178. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1179. */
  1180. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1181. num_sectors = (2ULL << 32) - 2;
  1182. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1183. rdev->sb_page);
  1184. md_super_wait(rdev->mddev);
  1185. return num_sectors;
  1186. }
  1187. static int
  1188. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1189. {
  1190. /* non-zero offset changes not possible with v0.90 */
  1191. return new_offset == 0;
  1192. }
  1193. /*
  1194. * version 1 superblock
  1195. */
  1196. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1197. {
  1198. __le32 disk_csum;
  1199. u32 csum;
  1200. unsigned long long newcsum;
  1201. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1202. __le32 *isuper = (__le32*)sb;
  1203. disk_csum = sb->sb_csum;
  1204. sb->sb_csum = 0;
  1205. newcsum = 0;
  1206. for (; size >= 4; size -= 4)
  1207. newcsum += le32_to_cpu(*isuper++);
  1208. if (size == 2)
  1209. newcsum += le16_to_cpu(*(__le16*) isuper);
  1210. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1211. sb->sb_csum = disk_csum;
  1212. return cpu_to_le32(csum);
  1213. }
  1214. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1215. int acknowledged);
  1216. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1217. {
  1218. struct mdp_superblock_1 *sb;
  1219. int ret;
  1220. sector_t sb_start;
  1221. sector_t sectors;
  1222. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1223. int bmask;
  1224. /*
  1225. * Calculate the position of the superblock in 512byte sectors.
  1226. * It is always aligned to a 4K boundary and
  1227. * depeding on minor_version, it can be:
  1228. * 0: At least 8K, but less than 12K, from end of device
  1229. * 1: At start of device
  1230. * 2: 4K from start of device.
  1231. */
  1232. switch(minor_version) {
  1233. case 0:
  1234. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1235. sb_start -= 8*2;
  1236. sb_start &= ~(sector_t)(4*2-1);
  1237. break;
  1238. case 1:
  1239. sb_start = 0;
  1240. break;
  1241. case 2:
  1242. sb_start = 8;
  1243. break;
  1244. default:
  1245. return -EINVAL;
  1246. }
  1247. rdev->sb_start = sb_start;
  1248. /* superblock is rarely larger than 1K, but it can be larger,
  1249. * and it is safe to read 4k, so we do that
  1250. */
  1251. ret = read_disk_sb(rdev, 4096);
  1252. if (ret) return ret;
  1253. sb = page_address(rdev->sb_page);
  1254. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1255. sb->major_version != cpu_to_le32(1) ||
  1256. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1257. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1258. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1259. return -EINVAL;
  1260. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1261. printk("md: invalid superblock checksum on %s\n",
  1262. bdevname(rdev->bdev,b));
  1263. return -EINVAL;
  1264. }
  1265. if (le64_to_cpu(sb->data_size) < 10) {
  1266. printk("md: data_size too small on %s\n",
  1267. bdevname(rdev->bdev,b));
  1268. return -EINVAL;
  1269. }
  1270. if (sb->pad0 ||
  1271. sb->pad3[0] ||
  1272. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1273. /* Some padding is non-zero, might be a new feature */
  1274. return -EINVAL;
  1275. rdev->preferred_minor = 0xffff;
  1276. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1277. rdev->new_data_offset = rdev->data_offset;
  1278. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1279. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1280. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1281. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1282. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1283. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1284. if (rdev->sb_size & bmask)
  1285. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1286. if (minor_version
  1287. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1288. return -EINVAL;
  1289. if (minor_version
  1290. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1291. return -EINVAL;
  1292. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1293. rdev->desc_nr = -1;
  1294. else
  1295. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1296. if (!rdev->bb_page) {
  1297. rdev->bb_page = alloc_page(GFP_KERNEL);
  1298. if (!rdev->bb_page)
  1299. return -ENOMEM;
  1300. }
  1301. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1302. rdev->badblocks.count == 0) {
  1303. /* need to load the bad block list.
  1304. * Currently we limit it to one page.
  1305. */
  1306. s32 offset;
  1307. sector_t bb_sector;
  1308. u64 *bbp;
  1309. int i;
  1310. int sectors = le16_to_cpu(sb->bblog_size);
  1311. if (sectors > (PAGE_SIZE / 512))
  1312. return -EINVAL;
  1313. offset = le32_to_cpu(sb->bblog_offset);
  1314. if (offset == 0)
  1315. return -EINVAL;
  1316. bb_sector = (long long)offset;
  1317. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1318. rdev->bb_page, READ, true))
  1319. return -EIO;
  1320. bbp = (u64 *)page_address(rdev->bb_page);
  1321. rdev->badblocks.shift = sb->bblog_shift;
  1322. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1323. u64 bb = le64_to_cpu(*bbp);
  1324. int count = bb & (0x3ff);
  1325. u64 sector = bb >> 10;
  1326. sector <<= sb->bblog_shift;
  1327. count <<= sb->bblog_shift;
  1328. if (bb + 1 == 0)
  1329. break;
  1330. if (md_set_badblocks(&rdev->badblocks,
  1331. sector, count, 1) == 0)
  1332. return -EINVAL;
  1333. }
  1334. } else if (sb->bblog_offset != 0)
  1335. rdev->badblocks.shift = 0;
  1336. if (!refdev) {
  1337. ret = 1;
  1338. } else {
  1339. __u64 ev1, ev2;
  1340. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1341. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1342. sb->level != refsb->level ||
  1343. sb->layout != refsb->layout ||
  1344. sb->chunksize != refsb->chunksize) {
  1345. printk(KERN_WARNING "md: %s has strangely different"
  1346. " superblock to %s\n",
  1347. bdevname(rdev->bdev,b),
  1348. bdevname(refdev->bdev,b2));
  1349. return -EINVAL;
  1350. }
  1351. ev1 = le64_to_cpu(sb->events);
  1352. ev2 = le64_to_cpu(refsb->events);
  1353. if (ev1 > ev2)
  1354. ret = 1;
  1355. else
  1356. ret = 0;
  1357. }
  1358. if (minor_version) {
  1359. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1360. sectors -= rdev->data_offset;
  1361. } else
  1362. sectors = rdev->sb_start;
  1363. if (sectors < le64_to_cpu(sb->data_size))
  1364. return -EINVAL;
  1365. rdev->sectors = le64_to_cpu(sb->data_size);
  1366. return ret;
  1367. }
  1368. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1369. {
  1370. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1371. __u64 ev1 = le64_to_cpu(sb->events);
  1372. rdev->raid_disk = -1;
  1373. clear_bit(Faulty, &rdev->flags);
  1374. clear_bit(In_sync, &rdev->flags);
  1375. clear_bit(Bitmap_sync, &rdev->flags);
  1376. clear_bit(WriteMostly, &rdev->flags);
  1377. if (mddev->raid_disks == 0) {
  1378. mddev->major_version = 1;
  1379. mddev->patch_version = 0;
  1380. mddev->external = 0;
  1381. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1382. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1383. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1384. mddev->level = le32_to_cpu(sb->level);
  1385. mddev->clevel[0] = 0;
  1386. mddev->layout = le32_to_cpu(sb->layout);
  1387. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1388. mddev->dev_sectors = le64_to_cpu(sb->size);
  1389. mddev->events = ev1;
  1390. mddev->bitmap_info.offset = 0;
  1391. mddev->bitmap_info.space = 0;
  1392. /* Default location for bitmap is 1K after superblock
  1393. * using 3K - total of 4K
  1394. */
  1395. mddev->bitmap_info.default_offset = 1024 >> 9;
  1396. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1397. mddev->reshape_backwards = 0;
  1398. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1399. memcpy(mddev->uuid, sb->set_uuid, 16);
  1400. mddev->max_disks = (4096-256)/2;
  1401. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1402. mddev->bitmap_info.file == NULL) {
  1403. mddev->bitmap_info.offset =
  1404. (__s32)le32_to_cpu(sb->bitmap_offset);
  1405. /* Metadata doesn't record how much space is available.
  1406. * For 1.0, we assume we can use up to the superblock
  1407. * if before, else to 4K beyond superblock.
  1408. * For others, assume no change is possible.
  1409. */
  1410. if (mddev->minor_version > 0)
  1411. mddev->bitmap_info.space = 0;
  1412. else if (mddev->bitmap_info.offset > 0)
  1413. mddev->bitmap_info.space =
  1414. 8 - mddev->bitmap_info.offset;
  1415. else
  1416. mddev->bitmap_info.space =
  1417. -mddev->bitmap_info.offset;
  1418. }
  1419. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1420. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1421. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1422. mddev->new_level = le32_to_cpu(sb->new_level);
  1423. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1424. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1425. if (mddev->delta_disks < 0 ||
  1426. (mddev->delta_disks == 0 &&
  1427. (le32_to_cpu(sb->feature_map)
  1428. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1429. mddev->reshape_backwards = 1;
  1430. } else {
  1431. mddev->reshape_position = MaxSector;
  1432. mddev->delta_disks = 0;
  1433. mddev->new_level = mddev->level;
  1434. mddev->new_layout = mddev->layout;
  1435. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1436. }
  1437. } else if (mddev->pers == NULL) {
  1438. /* Insist of good event counter while assembling, except for
  1439. * spares (which don't need an event count) */
  1440. ++ev1;
  1441. if (rdev->desc_nr >= 0 &&
  1442. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1443. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1444. if (ev1 < mddev->events)
  1445. return -EINVAL;
  1446. } else if (mddev->bitmap) {
  1447. /* If adding to array with a bitmap, then we can accept an
  1448. * older device, but not too old.
  1449. */
  1450. if (ev1 < mddev->bitmap->events_cleared)
  1451. return 0;
  1452. if (ev1 < mddev->events)
  1453. set_bit(Bitmap_sync, &rdev->flags);
  1454. } else {
  1455. if (ev1 < mddev->events)
  1456. /* just a hot-add of a new device, leave raid_disk at -1 */
  1457. return 0;
  1458. }
  1459. if (mddev->level != LEVEL_MULTIPATH) {
  1460. int role;
  1461. if (rdev->desc_nr < 0 ||
  1462. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1463. role = 0xffff;
  1464. rdev->desc_nr = -1;
  1465. } else
  1466. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1467. switch(role) {
  1468. case 0xffff: /* spare */
  1469. break;
  1470. case 0xfffe: /* faulty */
  1471. set_bit(Faulty, &rdev->flags);
  1472. break;
  1473. default:
  1474. rdev->saved_raid_disk = role;
  1475. if ((le32_to_cpu(sb->feature_map) &
  1476. MD_FEATURE_RECOVERY_OFFSET)) {
  1477. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1478. if (!(le32_to_cpu(sb->feature_map) &
  1479. MD_FEATURE_RECOVERY_BITMAP))
  1480. rdev->saved_raid_disk = -1;
  1481. } else
  1482. set_bit(In_sync, &rdev->flags);
  1483. rdev->raid_disk = role;
  1484. break;
  1485. }
  1486. if (sb->devflags & WriteMostly1)
  1487. set_bit(WriteMostly, &rdev->flags);
  1488. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1489. set_bit(Replacement, &rdev->flags);
  1490. } else /* MULTIPATH are always insync */
  1491. set_bit(In_sync, &rdev->flags);
  1492. return 0;
  1493. }
  1494. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1495. {
  1496. struct mdp_superblock_1 *sb;
  1497. struct md_rdev *rdev2;
  1498. int max_dev, i;
  1499. /* make rdev->sb match mddev and rdev data. */
  1500. sb = page_address(rdev->sb_page);
  1501. sb->feature_map = 0;
  1502. sb->pad0 = 0;
  1503. sb->recovery_offset = cpu_to_le64(0);
  1504. memset(sb->pad3, 0, sizeof(sb->pad3));
  1505. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1506. sb->events = cpu_to_le64(mddev->events);
  1507. if (mddev->in_sync)
  1508. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1509. else
  1510. sb->resync_offset = cpu_to_le64(0);
  1511. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1512. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1513. sb->size = cpu_to_le64(mddev->dev_sectors);
  1514. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1515. sb->level = cpu_to_le32(mddev->level);
  1516. sb->layout = cpu_to_le32(mddev->layout);
  1517. if (test_bit(WriteMostly, &rdev->flags))
  1518. sb->devflags |= WriteMostly1;
  1519. else
  1520. sb->devflags &= ~WriteMostly1;
  1521. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1522. sb->data_size = cpu_to_le64(rdev->sectors);
  1523. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1524. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1525. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1526. }
  1527. if (rdev->raid_disk >= 0 &&
  1528. !test_bit(In_sync, &rdev->flags)) {
  1529. sb->feature_map |=
  1530. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1531. sb->recovery_offset =
  1532. cpu_to_le64(rdev->recovery_offset);
  1533. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1534. sb->feature_map |=
  1535. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1536. }
  1537. if (test_bit(Replacement, &rdev->flags))
  1538. sb->feature_map |=
  1539. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1540. if (mddev->reshape_position != MaxSector) {
  1541. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1542. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1543. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1544. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1545. sb->new_level = cpu_to_le32(mddev->new_level);
  1546. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1547. if (mddev->delta_disks == 0 &&
  1548. mddev->reshape_backwards)
  1549. sb->feature_map
  1550. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1551. if (rdev->new_data_offset != rdev->data_offset) {
  1552. sb->feature_map
  1553. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1554. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1555. - rdev->data_offset));
  1556. }
  1557. }
  1558. if (rdev->badblocks.count == 0)
  1559. /* Nothing to do for bad blocks*/ ;
  1560. else if (sb->bblog_offset == 0)
  1561. /* Cannot record bad blocks on this device */
  1562. md_error(mddev, rdev);
  1563. else {
  1564. struct badblocks *bb = &rdev->badblocks;
  1565. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1566. u64 *p = bb->page;
  1567. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1568. if (bb->changed) {
  1569. unsigned seq;
  1570. retry:
  1571. seq = read_seqbegin(&bb->lock);
  1572. memset(bbp, 0xff, PAGE_SIZE);
  1573. for (i = 0 ; i < bb->count ; i++) {
  1574. u64 internal_bb = p[i];
  1575. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1576. | BB_LEN(internal_bb));
  1577. bbp[i] = cpu_to_le64(store_bb);
  1578. }
  1579. bb->changed = 0;
  1580. if (read_seqretry(&bb->lock, seq))
  1581. goto retry;
  1582. bb->sector = (rdev->sb_start +
  1583. (int)le32_to_cpu(sb->bblog_offset));
  1584. bb->size = le16_to_cpu(sb->bblog_size);
  1585. }
  1586. }
  1587. max_dev = 0;
  1588. rdev_for_each(rdev2, mddev)
  1589. if (rdev2->desc_nr+1 > max_dev)
  1590. max_dev = rdev2->desc_nr+1;
  1591. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1592. int bmask;
  1593. sb->max_dev = cpu_to_le32(max_dev);
  1594. rdev->sb_size = max_dev * 2 + 256;
  1595. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1596. if (rdev->sb_size & bmask)
  1597. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1598. } else
  1599. max_dev = le32_to_cpu(sb->max_dev);
  1600. for (i=0; i<max_dev;i++)
  1601. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1602. rdev_for_each(rdev2, mddev) {
  1603. i = rdev2->desc_nr;
  1604. if (test_bit(Faulty, &rdev2->flags))
  1605. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1606. else if (test_bit(In_sync, &rdev2->flags))
  1607. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1608. else if (rdev2->raid_disk >= 0)
  1609. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1610. else
  1611. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1612. }
  1613. sb->sb_csum = calc_sb_1_csum(sb);
  1614. }
  1615. static unsigned long long
  1616. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1617. {
  1618. struct mdp_superblock_1 *sb;
  1619. sector_t max_sectors;
  1620. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1621. return 0; /* component must fit device */
  1622. if (rdev->data_offset != rdev->new_data_offset)
  1623. return 0; /* too confusing */
  1624. if (rdev->sb_start < rdev->data_offset) {
  1625. /* minor versions 1 and 2; superblock before data */
  1626. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1627. max_sectors -= rdev->data_offset;
  1628. if (!num_sectors || num_sectors > max_sectors)
  1629. num_sectors = max_sectors;
  1630. } else if (rdev->mddev->bitmap_info.offset) {
  1631. /* minor version 0 with bitmap we can't move */
  1632. return 0;
  1633. } else {
  1634. /* minor version 0; superblock after data */
  1635. sector_t sb_start;
  1636. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1637. sb_start &= ~(sector_t)(4*2 - 1);
  1638. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1639. if (!num_sectors || num_sectors > max_sectors)
  1640. num_sectors = max_sectors;
  1641. rdev->sb_start = sb_start;
  1642. }
  1643. sb = page_address(rdev->sb_page);
  1644. sb->data_size = cpu_to_le64(num_sectors);
  1645. sb->super_offset = rdev->sb_start;
  1646. sb->sb_csum = calc_sb_1_csum(sb);
  1647. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1648. rdev->sb_page);
  1649. md_super_wait(rdev->mddev);
  1650. return num_sectors;
  1651. }
  1652. static int
  1653. super_1_allow_new_offset(struct md_rdev *rdev,
  1654. unsigned long long new_offset)
  1655. {
  1656. /* All necessary checks on new >= old have been done */
  1657. struct bitmap *bitmap;
  1658. if (new_offset >= rdev->data_offset)
  1659. return 1;
  1660. /* with 1.0 metadata, there is no metadata to tread on
  1661. * so we can always move back */
  1662. if (rdev->mddev->minor_version == 0)
  1663. return 1;
  1664. /* otherwise we must be sure not to step on
  1665. * any metadata, so stay:
  1666. * 36K beyond start of superblock
  1667. * beyond end of badblocks
  1668. * beyond write-intent bitmap
  1669. */
  1670. if (rdev->sb_start + (32+4)*2 > new_offset)
  1671. return 0;
  1672. bitmap = rdev->mddev->bitmap;
  1673. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1674. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1675. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1676. return 0;
  1677. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1678. return 0;
  1679. return 1;
  1680. }
  1681. static struct super_type super_types[] = {
  1682. [0] = {
  1683. .name = "0.90.0",
  1684. .owner = THIS_MODULE,
  1685. .load_super = super_90_load,
  1686. .validate_super = super_90_validate,
  1687. .sync_super = super_90_sync,
  1688. .rdev_size_change = super_90_rdev_size_change,
  1689. .allow_new_offset = super_90_allow_new_offset,
  1690. },
  1691. [1] = {
  1692. .name = "md-1",
  1693. .owner = THIS_MODULE,
  1694. .load_super = super_1_load,
  1695. .validate_super = super_1_validate,
  1696. .sync_super = super_1_sync,
  1697. .rdev_size_change = super_1_rdev_size_change,
  1698. .allow_new_offset = super_1_allow_new_offset,
  1699. },
  1700. };
  1701. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1702. {
  1703. if (mddev->sync_super) {
  1704. mddev->sync_super(mddev, rdev);
  1705. return;
  1706. }
  1707. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1708. super_types[mddev->major_version].sync_super(mddev, rdev);
  1709. }
  1710. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1711. {
  1712. struct md_rdev *rdev, *rdev2;
  1713. rcu_read_lock();
  1714. rdev_for_each_rcu(rdev, mddev1)
  1715. rdev_for_each_rcu(rdev2, mddev2)
  1716. if (rdev->bdev->bd_contains ==
  1717. rdev2->bdev->bd_contains) {
  1718. rcu_read_unlock();
  1719. return 1;
  1720. }
  1721. rcu_read_unlock();
  1722. return 0;
  1723. }
  1724. static LIST_HEAD(pending_raid_disks);
  1725. /*
  1726. * Try to register data integrity profile for an mddev
  1727. *
  1728. * This is called when an array is started and after a disk has been kicked
  1729. * from the array. It only succeeds if all working and active component devices
  1730. * are integrity capable with matching profiles.
  1731. */
  1732. int md_integrity_register(struct mddev *mddev)
  1733. {
  1734. struct md_rdev *rdev, *reference = NULL;
  1735. if (list_empty(&mddev->disks))
  1736. return 0; /* nothing to do */
  1737. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1738. return 0; /* shouldn't register, or already is */
  1739. rdev_for_each(rdev, mddev) {
  1740. /* skip spares and non-functional disks */
  1741. if (test_bit(Faulty, &rdev->flags))
  1742. continue;
  1743. if (rdev->raid_disk < 0)
  1744. continue;
  1745. if (!reference) {
  1746. /* Use the first rdev as the reference */
  1747. reference = rdev;
  1748. continue;
  1749. }
  1750. /* does this rdev's profile match the reference profile? */
  1751. if (blk_integrity_compare(reference->bdev->bd_disk,
  1752. rdev->bdev->bd_disk) < 0)
  1753. return -EINVAL;
  1754. }
  1755. if (!reference || !bdev_get_integrity(reference->bdev))
  1756. return 0;
  1757. /*
  1758. * All component devices are integrity capable and have matching
  1759. * profiles, register the common profile for the md device.
  1760. */
  1761. if (blk_integrity_register(mddev->gendisk,
  1762. bdev_get_integrity(reference->bdev)) != 0) {
  1763. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1764. mdname(mddev));
  1765. return -EINVAL;
  1766. }
  1767. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1768. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1769. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1770. mdname(mddev));
  1771. return -EINVAL;
  1772. }
  1773. return 0;
  1774. }
  1775. EXPORT_SYMBOL(md_integrity_register);
  1776. /* Disable data integrity if non-capable/non-matching disk is being added */
  1777. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1778. {
  1779. struct blk_integrity *bi_rdev;
  1780. struct blk_integrity *bi_mddev;
  1781. if (!mddev->gendisk)
  1782. return;
  1783. bi_rdev = bdev_get_integrity(rdev->bdev);
  1784. bi_mddev = blk_get_integrity(mddev->gendisk);
  1785. if (!bi_mddev) /* nothing to do */
  1786. return;
  1787. if (rdev->raid_disk < 0) /* skip spares */
  1788. return;
  1789. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1790. rdev->bdev->bd_disk) >= 0)
  1791. return;
  1792. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1793. blk_integrity_unregister(mddev->gendisk);
  1794. }
  1795. EXPORT_SYMBOL(md_integrity_add_rdev);
  1796. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1797. {
  1798. char b[BDEVNAME_SIZE];
  1799. struct kobject *ko;
  1800. char *s;
  1801. int err;
  1802. /* prevent duplicates */
  1803. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1804. return -EEXIST;
  1805. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1806. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1807. rdev->sectors < mddev->dev_sectors)) {
  1808. if (mddev->pers) {
  1809. /* Cannot change size, so fail
  1810. * If mddev->level <= 0, then we don't care
  1811. * about aligning sizes (e.g. linear)
  1812. */
  1813. if (mddev->level > 0)
  1814. return -ENOSPC;
  1815. } else
  1816. mddev->dev_sectors = rdev->sectors;
  1817. }
  1818. /* Verify rdev->desc_nr is unique.
  1819. * If it is -1, assign a free number, else
  1820. * check number is not in use
  1821. */
  1822. rcu_read_lock();
  1823. if (rdev->desc_nr < 0) {
  1824. int choice = 0;
  1825. if (mddev->pers)
  1826. choice = mddev->raid_disks;
  1827. while (md_find_rdev_nr_rcu(mddev, choice))
  1828. choice++;
  1829. rdev->desc_nr = choice;
  1830. } else {
  1831. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1832. rcu_read_unlock();
  1833. return -EBUSY;
  1834. }
  1835. }
  1836. rcu_read_unlock();
  1837. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1838. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1839. mdname(mddev), mddev->max_disks);
  1840. return -EBUSY;
  1841. }
  1842. bdevname(rdev->bdev,b);
  1843. while ( (s=strchr(b, '/')) != NULL)
  1844. *s = '!';
  1845. rdev->mddev = mddev;
  1846. printk(KERN_INFO "md: bind<%s>\n", b);
  1847. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1848. goto fail;
  1849. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1850. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1851. /* failure here is OK */;
  1852. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1853. list_add_rcu(&rdev->same_set, &mddev->disks);
  1854. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1855. /* May as well allow recovery to be retried once */
  1856. mddev->recovery_disabled++;
  1857. return 0;
  1858. fail:
  1859. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1860. b, mdname(mddev));
  1861. return err;
  1862. }
  1863. static void md_delayed_delete(struct work_struct *ws)
  1864. {
  1865. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1866. kobject_del(&rdev->kobj);
  1867. kobject_put(&rdev->kobj);
  1868. }
  1869. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1870. {
  1871. char b[BDEVNAME_SIZE];
  1872. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1873. list_del_rcu(&rdev->same_set);
  1874. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1875. rdev->mddev = NULL;
  1876. sysfs_remove_link(&rdev->kobj, "block");
  1877. sysfs_put(rdev->sysfs_state);
  1878. rdev->sysfs_state = NULL;
  1879. rdev->badblocks.count = 0;
  1880. /* We need to delay this, otherwise we can deadlock when
  1881. * writing to 'remove' to "dev/state". We also need
  1882. * to delay it due to rcu usage.
  1883. */
  1884. synchronize_rcu();
  1885. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1886. kobject_get(&rdev->kobj);
  1887. queue_work(md_misc_wq, &rdev->del_work);
  1888. }
  1889. /*
  1890. * prevent the device from being mounted, repartitioned or
  1891. * otherwise reused by a RAID array (or any other kernel
  1892. * subsystem), by bd_claiming the device.
  1893. */
  1894. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1895. {
  1896. int err = 0;
  1897. struct block_device *bdev;
  1898. char b[BDEVNAME_SIZE];
  1899. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1900. shared ? (struct md_rdev *)lock_rdev : rdev);
  1901. if (IS_ERR(bdev)) {
  1902. printk(KERN_ERR "md: could not open %s.\n",
  1903. __bdevname(dev, b));
  1904. return PTR_ERR(bdev);
  1905. }
  1906. rdev->bdev = bdev;
  1907. return err;
  1908. }
  1909. static void unlock_rdev(struct md_rdev *rdev)
  1910. {
  1911. struct block_device *bdev = rdev->bdev;
  1912. rdev->bdev = NULL;
  1913. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1914. }
  1915. void md_autodetect_dev(dev_t dev);
  1916. static void export_rdev(struct md_rdev *rdev)
  1917. {
  1918. char b[BDEVNAME_SIZE];
  1919. printk(KERN_INFO "md: export_rdev(%s)\n",
  1920. bdevname(rdev->bdev,b));
  1921. md_rdev_clear(rdev);
  1922. #ifndef MODULE
  1923. if (test_bit(AutoDetected, &rdev->flags))
  1924. md_autodetect_dev(rdev->bdev->bd_dev);
  1925. #endif
  1926. unlock_rdev(rdev);
  1927. kobject_put(&rdev->kobj);
  1928. }
  1929. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1930. {
  1931. unbind_rdev_from_array(rdev);
  1932. export_rdev(rdev);
  1933. }
  1934. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1935. static void export_array(struct mddev *mddev)
  1936. {
  1937. struct md_rdev *rdev;
  1938. while (!list_empty(&mddev->disks)) {
  1939. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1940. same_set);
  1941. md_kick_rdev_from_array(rdev);
  1942. }
  1943. mddev->raid_disks = 0;
  1944. mddev->major_version = 0;
  1945. }
  1946. static void sync_sbs(struct mddev *mddev, int nospares)
  1947. {
  1948. /* Update each superblock (in-memory image), but
  1949. * if we are allowed to, skip spares which already
  1950. * have the right event counter, or have one earlier
  1951. * (which would mean they aren't being marked as dirty
  1952. * with the rest of the array)
  1953. */
  1954. struct md_rdev *rdev;
  1955. rdev_for_each(rdev, mddev) {
  1956. if (rdev->sb_events == mddev->events ||
  1957. (nospares &&
  1958. rdev->raid_disk < 0 &&
  1959. rdev->sb_events+1 == mddev->events)) {
  1960. /* Don't update this superblock */
  1961. rdev->sb_loaded = 2;
  1962. } else {
  1963. sync_super(mddev, rdev);
  1964. rdev->sb_loaded = 1;
  1965. }
  1966. }
  1967. }
  1968. void md_update_sb(struct mddev *mddev, int force_change)
  1969. {
  1970. struct md_rdev *rdev;
  1971. int sync_req;
  1972. int nospares = 0;
  1973. int any_badblocks_changed = 0;
  1974. if (mddev->ro) {
  1975. if (force_change)
  1976. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1977. return;
  1978. }
  1979. repeat:
  1980. /* First make sure individual recovery_offsets are correct */
  1981. rdev_for_each(rdev, mddev) {
  1982. if (rdev->raid_disk >= 0 &&
  1983. mddev->delta_disks >= 0 &&
  1984. !test_bit(In_sync, &rdev->flags) &&
  1985. mddev->curr_resync_completed > rdev->recovery_offset)
  1986. rdev->recovery_offset = mddev->curr_resync_completed;
  1987. }
  1988. if (!mddev->persistent) {
  1989. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1990. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1991. if (!mddev->external) {
  1992. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1993. rdev_for_each(rdev, mddev) {
  1994. if (rdev->badblocks.changed) {
  1995. rdev->badblocks.changed = 0;
  1996. md_ack_all_badblocks(&rdev->badblocks);
  1997. md_error(mddev, rdev);
  1998. }
  1999. clear_bit(Blocked, &rdev->flags);
  2000. clear_bit(BlockedBadBlocks, &rdev->flags);
  2001. wake_up(&rdev->blocked_wait);
  2002. }
  2003. }
  2004. wake_up(&mddev->sb_wait);
  2005. return;
  2006. }
  2007. spin_lock(&mddev->lock);
  2008. mddev->utime = get_seconds();
  2009. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2010. force_change = 1;
  2011. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2012. /* just a clean<-> dirty transition, possibly leave spares alone,
  2013. * though if events isn't the right even/odd, we will have to do
  2014. * spares after all
  2015. */
  2016. nospares = 1;
  2017. if (force_change)
  2018. nospares = 0;
  2019. if (mddev->degraded)
  2020. /* If the array is degraded, then skipping spares is both
  2021. * dangerous and fairly pointless.
  2022. * Dangerous because a device that was removed from the array
  2023. * might have a event_count that still looks up-to-date,
  2024. * so it can be re-added without a resync.
  2025. * Pointless because if there are any spares to skip,
  2026. * then a recovery will happen and soon that array won't
  2027. * be degraded any more and the spare can go back to sleep then.
  2028. */
  2029. nospares = 0;
  2030. sync_req = mddev->in_sync;
  2031. /* If this is just a dirty<->clean transition, and the array is clean
  2032. * and 'events' is odd, we can roll back to the previous clean state */
  2033. if (nospares
  2034. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2035. && mddev->can_decrease_events
  2036. && mddev->events != 1) {
  2037. mddev->events--;
  2038. mddev->can_decrease_events = 0;
  2039. } else {
  2040. /* otherwise we have to go forward and ... */
  2041. mddev->events ++;
  2042. mddev->can_decrease_events = nospares;
  2043. }
  2044. /*
  2045. * This 64-bit counter should never wrap.
  2046. * Either we are in around ~1 trillion A.C., assuming
  2047. * 1 reboot per second, or we have a bug...
  2048. */
  2049. WARN_ON(mddev->events == 0);
  2050. rdev_for_each(rdev, mddev) {
  2051. if (rdev->badblocks.changed)
  2052. any_badblocks_changed++;
  2053. if (test_bit(Faulty, &rdev->flags))
  2054. set_bit(FaultRecorded, &rdev->flags);
  2055. }
  2056. sync_sbs(mddev, nospares);
  2057. spin_unlock(&mddev->lock);
  2058. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2059. mdname(mddev), mddev->in_sync);
  2060. bitmap_update_sb(mddev->bitmap);
  2061. rdev_for_each(rdev, mddev) {
  2062. char b[BDEVNAME_SIZE];
  2063. if (rdev->sb_loaded != 1)
  2064. continue; /* no noise on spare devices */
  2065. if (!test_bit(Faulty, &rdev->flags)) {
  2066. md_super_write(mddev,rdev,
  2067. rdev->sb_start, rdev->sb_size,
  2068. rdev->sb_page);
  2069. pr_debug("md: (write) %s's sb offset: %llu\n",
  2070. bdevname(rdev->bdev, b),
  2071. (unsigned long long)rdev->sb_start);
  2072. rdev->sb_events = mddev->events;
  2073. if (rdev->badblocks.size) {
  2074. md_super_write(mddev, rdev,
  2075. rdev->badblocks.sector,
  2076. rdev->badblocks.size << 9,
  2077. rdev->bb_page);
  2078. rdev->badblocks.size = 0;
  2079. }
  2080. } else
  2081. pr_debug("md: %s (skipping faulty)\n",
  2082. bdevname(rdev->bdev, b));
  2083. if (mddev->level == LEVEL_MULTIPATH)
  2084. /* only need to write one superblock... */
  2085. break;
  2086. }
  2087. md_super_wait(mddev);
  2088. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2089. spin_lock(&mddev->lock);
  2090. if (mddev->in_sync != sync_req ||
  2091. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2092. /* have to write it out again */
  2093. spin_unlock(&mddev->lock);
  2094. goto repeat;
  2095. }
  2096. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2097. spin_unlock(&mddev->lock);
  2098. wake_up(&mddev->sb_wait);
  2099. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2100. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2101. rdev_for_each(rdev, mddev) {
  2102. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2103. clear_bit(Blocked, &rdev->flags);
  2104. if (any_badblocks_changed)
  2105. md_ack_all_badblocks(&rdev->badblocks);
  2106. clear_bit(BlockedBadBlocks, &rdev->flags);
  2107. wake_up(&rdev->blocked_wait);
  2108. }
  2109. }
  2110. EXPORT_SYMBOL(md_update_sb);
  2111. static int add_bound_rdev(struct md_rdev *rdev)
  2112. {
  2113. struct mddev *mddev = rdev->mddev;
  2114. int err = 0;
  2115. if (!mddev->pers->hot_remove_disk) {
  2116. /* If there is hot_add_disk but no hot_remove_disk
  2117. * then added disks for geometry changes,
  2118. * and should be added immediately.
  2119. */
  2120. super_types[mddev->major_version].
  2121. validate_super(mddev, rdev);
  2122. err = mddev->pers->hot_add_disk(mddev, rdev);
  2123. if (err) {
  2124. unbind_rdev_from_array(rdev);
  2125. export_rdev(rdev);
  2126. return err;
  2127. }
  2128. }
  2129. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2130. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2131. if (mddev->degraded)
  2132. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2133. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2134. md_new_event(mddev);
  2135. md_wakeup_thread(mddev->thread);
  2136. return 0;
  2137. }
  2138. /* words written to sysfs files may, or may not, be \n terminated.
  2139. * We want to accept with case. For this we use cmd_match.
  2140. */
  2141. static int cmd_match(const char *cmd, const char *str)
  2142. {
  2143. /* See if cmd, written into a sysfs file, matches
  2144. * str. They must either be the same, or cmd can
  2145. * have a trailing newline
  2146. */
  2147. while (*cmd && *str && *cmd == *str) {
  2148. cmd++;
  2149. str++;
  2150. }
  2151. if (*cmd == '\n')
  2152. cmd++;
  2153. if (*str || *cmd)
  2154. return 0;
  2155. return 1;
  2156. }
  2157. struct rdev_sysfs_entry {
  2158. struct attribute attr;
  2159. ssize_t (*show)(struct md_rdev *, char *);
  2160. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2161. };
  2162. static ssize_t
  2163. state_show(struct md_rdev *rdev, char *page)
  2164. {
  2165. char *sep = "";
  2166. size_t len = 0;
  2167. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2168. if (test_bit(Faulty, &flags) ||
  2169. rdev->badblocks.unacked_exist) {
  2170. len+= sprintf(page+len, "%sfaulty",sep);
  2171. sep = ",";
  2172. }
  2173. if (test_bit(In_sync, &flags)) {
  2174. len += sprintf(page+len, "%sin_sync",sep);
  2175. sep = ",";
  2176. }
  2177. if (test_bit(WriteMostly, &flags)) {
  2178. len += sprintf(page+len, "%swrite_mostly",sep);
  2179. sep = ",";
  2180. }
  2181. if (test_bit(Blocked, &flags) ||
  2182. (rdev->badblocks.unacked_exist
  2183. && !test_bit(Faulty, &flags))) {
  2184. len += sprintf(page+len, "%sblocked", sep);
  2185. sep = ",";
  2186. }
  2187. if (!test_bit(Faulty, &flags) &&
  2188. !test_bit(In_sync, &flags)) {
  2189. len += sprintf(page+len, "%sspare", sep);
  2190. sep = ",";
  2191. }
  2192. if (test_bit(WriteErrorSeen, &flags)) {
  2193. len += sprintf(page+len, "%swrite_error", sep);
  2194. sep = ",";
  2195. }
  2196. if (test_bit(WantReplacement, &flags)) {
  2197. len += sprintf(page+len, "%swant_replacement", sep);
  2198. sep = ",";
  2199. }
  2200. if (test_bit(Replacement, &flags)) {
  2201. len += sprintf(page+len, "%sreplacement", sep);
  2202. sep = ",";
  2203. }
  2204. return len+sprintf(page+len, "\n");
  2205. }
  2206. static ssize_t
  2207. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2208. {
  2209. /* can write
  2210. * faulty - simulates an error
  2211. * remove - disconnects the device
  2212. * writemostly - sets write_mostly
  2213. * -writemostly - clears write_mostly
  2214. * blocked - sets the Blocked flags
  2215. * -blocked - clears the Blocked and possibly simulates an error
  2216. * insync - sets Insync providing device isn't active
  2217. * -insync - clear Insync for a device with a slot assigned,
  2218. * so that it gets rebuilt based on bitmap
  2219. * write_error - sets WriteErrorSeen
  2220. * -write_error - clears WriteErrorSeen
  2221. */
  2222. int err = -EINVAL;
  2223. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2224. md_error(rdev->mddev, rdev);
  2225. if (test_bit(Faulty, &rdev->flags))
  2226. err = 0;
  2227. else
  2228. err = -EBUSY;
  2229. } else if (cmd_match(buf, "remove")) {
  2230. if (rdev->raid_disk >= 0)
  2231. err = -EBUSY;
  2232. else {
  2233. struct mddev *mddev = rdev->mddev;
  2234. if (mddev_is_clustered(mddev))
  2235. md_cluster_ops->remove_disk(mddev, rdev);
  2236. md_kick_rdev_from_array(rdev);
  2237. if (mddev_is_clustered(mddev))
  2238. md_cluster_ops->metadata_update_start(mddev);
  2239. if (mddev->pers)
  2240. md_update_sb(mddev, 1);
  2241. md_new_event(mddev);
  2242. if (mddev_is_clustered(mddev))
  2243. md_cluster_ops->metadata_update_finish(mddev);
  2244. err = 0;
  2245. }
  2246. } else if (cmd_match(buf, "writemostly")) {
  2247. set_bit(WriteMostly, &rdev->flags);
  2248. err = 0;
  2249. } else if (cmd_match(buf, "-writemostly")) {
  2250. clear_bit(WriteMostly, &rdev->flags);
  2251. err = 0;
  2252. } else if (cmd_match(buf, "blocked")) {
  2253. set_bit(Blocked, &rdev->flags);
  2254. err = 0;
  2255. } else if (cmd_match(buf, "-blocked")) {
  2256. if (!test_bit(Faulty, &rdev->flags) &&
  2257. rdev->badblocks.unacked_exist) {
  2258. /* metadata handler doesn't understand badblocks,
  2259. * so we need to fail the device
  2260. */
  2261. md_error(rdev->mddev, rdev);
  2262. }
  2263. clear_bit(Blocked, &rdev->flags);
  2264. clear_bit(BlockedBadBlocks, &rdev->flags);
  2265. wake_up(&rdev->blocked_wait);
  2266. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2267. md_wakeup_thread(rdev->mddev->thread);
  2268. err = 0;
  2269. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2270. set_bit(In_sync, &rdev->flags);
  2271. err = 0;
  2272. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2273. if (rdev->mddev->pers == NULL) {
  2274. clear_bit(In_sync, &rdev->flags);
  2275. rdev->saved_raid_disk = rdev->raid_disk;
  2276. rdev->raid_disk = -1;
  2277. err = 0;
  2278. }
  2279. } else if (cmd_match(buf, "write_error")) {
  2280. set_bit(WriteErrorSeen, &rdev->flags);
  2281. err = 0;
  2282. } else if (cmd_match(buf, "-write_error")) {
  2283. clear_bit(WriteErrorSeen, &rdev->flags);
  2284. err = 0;
  2285. } else if (cmd_match(buf, "want_replacement")) {
  2286. /* Any non-spare device that is not a replacement can
  2287. * become want_replacement at any time, but we then need to
  2288. * check if recovery is needed.
  2289. */
  2290. if (rdev->raid_disk >= 0 &&
  2291. !test_bit(Replacement, &rdev->flags))
  2292. set_bit(WantReplacement, &rdev->flags);
  2293. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2294. md_wakeup_thread(rdev->mddev->thread);
  2295. err = 0;
  2296. } else if (cmd_match(buf, "-want_replacement")) {
  2297. /* Clearing 'want_replacement' is always allowed.
  2298. * Once replacements starts it is too late though.
  2299. */
  2300. err = 0;
  2301. clear_bit(WantReplacement, &rdev->flags);
  2302. } else if (cmd_match(buf, "replacement")) {
  2303. /* Can only set a device as a replacement when array has not
  2304. * yet been started. Once running, replacement is automatic
  2305. * from spares, or by assigning 'slot'.
  2306. */
  2307. if (rdev->mddev->pers)
  2308. err = -EBUSY;
  2309. else {
  2310. set_bit(Replacement, &rdev->flags);
  2311. err = 0;
  2312. }
  2313. } else if (cmd_match(buf, "-replacement")) {
  2314. /* Similarly, can only clear Replacement before start */
  2315. if (rdev->mddev->pers)
  2316. err = -EBUSY;
  2317. else {
  2318. clear_bit(Replacement, &rdev->flags);
  2319. err = 0;
  2320. }
  2321. } else if (cmd_match(buf, "re-add")) {
  2322. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2323. /* clear_bit is performed _after_ all the devices
  2324. * have their local Faulty bit cleared. If any writes
  2325. * happen in the meantime in the local node, they
  2326. * will land in the local bitmap, which will be synced
  2327. * by this node eventually
  2328. */
  2329. if (!mddev_is_clustered(rdev->mddev) ||
  2330. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2331. clear_bit(Faulty, &rdev->flags);
  2332. err = add_bound_rdev(rdev);
  2333. }
  2334. } else
  2335. err = -EBUSY;
  2336. }
  2337. if (!err)
  2338. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2339. return err ? err : len;
  2340. }
  2341. static struct rdev_sysfs_entry rdev_state =
  2342. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2343. static ssize_t
  2344. errors_show(struct md_rdev *rdev, char *page)
  2345. {
  2346. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2347. }
  2348. static ssize_t
  2349. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2350. {
  2351. char *e;
  2352. unsigned long n = simple_strtoul(buf, &e, 10);
  2353. if (*buf && (*e == 0 || *e == '\n')) {
  2354. atomic_set(&rdev->corrected_errors, n);
  2355. return len;
  2356. }
  2357. return -EINVAL;
  2358. }
  2359. static struct rdev_sysfs_entry rdev_errors =
  2360. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2361. static ssize_t
  2362. slot_show(struct md_rdev *rdev, char *page)
  2363. {
  2364. if (rdev->raid_disk < 0)
  2365. return sprintf(page, "none\n");
  2366. else
  2367. return sprintf(page, "%d\n", rdev->raid_disk);
  2368. }
  2369. static ssize_t
  2370. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2371. {
  2372. char *e;
  2373. int err;
  2374. int slot = simple_strtoul(buf, &e, 10);
  2375. if (strncmp(buf, "none", 4)==0)
  2376. slot = -1;
  2377. else if (e==buf || (*e && *e!= '\n'))
  2378. return -EINVAL;
  2379. if (rdev->mddev->pers && slot == -1) {
  2380. /* Setting 'slot' on an active array requires also
  2381. * updating the 'rd%d' link, and communicating
  2382. * with the personality with ->hot_*_disk.
  2383. * For now we only support removing
  2384. * failed/spare devices. This normally happens automatically,
  2385. * but not when the metadata is externally managed.
  2386. */
  2387. if (rdev->raid_disk == -1)
  2388. return -EEXIST;
  2389. /* personality does all needed checks */
  2390. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2391. return -EINVAL;
  2392. clear_bit(Blocked, &rdev->flags);
  2393. remove_and_add_spares(rdev->mddev, rdev);
  2394. if (rdev->raid_disk >= 0)
  2395. return -EBUSY;
  2396. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2397. md_wakeup_thread(rdev->mddev->thread);
  2398. } else if (rdev->mddev->pers) {
  2399. /* Activating a spare .. or possibly reactivating
  2400. * if we ever get bitmaps working here.
  2401. */
  2402. if (rdev->raid_disk != -1)
  2403. return -EBUSY;
  2404. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2405. return -EBUSY;
  2406. if (rdev->mddev->pers->hot_add_disk == NULL)
  2407. return -EINVAL;
  2408. if (slot >= rdev->mddev->raid_disks &&
  2409. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2410. return -ENOSPC;
  2411. rdev->raid_disk = slot;
  2412. if (test_bit(In_sync, &rdev->flags))
  2413. rdev->saved_raid_disk = slot;
  2414. else
  2415. rdev->saved_raid_disk = -1;
  2416. clear_bit(In_sync, &rdev->flags);
  2417. clear_bit(Bitmap_sync, &rdev->flags);
  2418. err = rdev->mddev->pers->
  2419. hot_add_disk(rdev->mddev, rdev);
  2420. if (err) {
  2421. rdev->raid_disk = -1;
  2422. return err;
  2423. } else
  2424. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2425. if (sysfs_link_rdev(rdev->mddev, rdev))
  2426. /* failure here is OK */;
  2427. /* don't wakeup anyone, leave that to userspace. */
  2428. } else {
  2429. if (slot >= rdev->mddev->raid_disks &&
  2430. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2431. return -ENOSPC;
  2432. rdev->raid_disk = slot;
  2433. /* assume it is working */
  2434. clear_bit(Faulty, &rdev->flags);
  2435. clear_bit(WriteMostly, &rdev->flags);
  2436. set_bit(In_sync, &rdev->flags);
  2437. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2438. }
  2439. return len;
  2440. }
  2441. static struct rdev_sysfs_entry rdev_slot =
  2442. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2443. static ssize_t
  2444. offset_show(struct md_rdev *rdev, char *page)
  2445. {
  2446. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2447. }
  2448. static ssize_t
  2449. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2450. {
  2451. unsigned long long offset;
  2452. if (kstrtoull(buf, 10, &offset) < 0)
  2453. return -EINVAL;
  2454. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2455. return -EBUSY;
  2456. if (rdev->sectors && rdev->mddev->external)
  2457. /* Must set offset before size, so overlap checks
  2458. * can be sane */
  2459. return -EBUSY;
  2460. rdev->data_offset = offset;
  2461. rdev->new_data_offset = offset;
  2462. return len;
  2463. }
  2464. static struct rdev_sysfs_entry rdev_offset =
  2465. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2466. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2467. {
  2468. return sprintf(page, "%llu\n",
  2469. (unsigned long long)rdev->new_data_offset);
  2470. }
  2471. static ssize_t new_offset_store(struct md_rdev *rdev,
  2472. const char *buf, size_t len)
  2473. {
  2474. unsigned long long new_offset;
  2475. struct mddev *mddev = rdev->mddev;
  2476. if (kstrtoull(buf, 10, &new_offset) < 0)
  2477. return -EINVAL;
  2478. if (mddev->sync_thread ||
  2479. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2480. return -EBUSY;
  2481. if (new_offset == rdev->data_offset)
  2482. /* reset is always permitted */
  2483. ;
  2484. else if (new_offset > rdev->data_offset) {
  2485. /* must not push array size beyond rdev_sectors */
  2486. if (new_offset - rdev->data_offset
  2487. + mddev->dev_sectors > rdev->sectors)
  2488. return -E2BIG;
  2489. }
  2490. /* Metadata worries about other space details. */
  2491. /* decreasing the offset is inconsistent with a backwards
  2492. * reshape.
  2493. */
  2494. if (new_offset < rdev->data_offset &&
  2495. mddev->reshape_backwards)
  2496. return -EINVAL;
  2497. /* Increasing offset is inconsistent with forwards
  2498. * reshape. reshape_direction should be set to
  2499. * 'backwards' first.
  2500. */
  2501. if (new_offset > rdev->data_offset &&
  2502. !mddev->reshape_backwards)
  2503. return -EINVAL;
  2504. if (mddev->pers && mddev->persistent &&
  2505. !super_types[mddev->major_version]
  2506. .allow_new_offset(rdev, new_offset))
  2507. return -E2BIG;
  2508. rdev->new_data_offset = new_offset;
  2509. if (new_offset > rdev->data_offset)
  2510. mddev->reshape_backwards = 1;
  2511. else if (new_offset < rdev->data_offset)
  2512. mddev->reshape_backwards = 0;
  2513. return len;
  2514. }
  2515. static struct rdev_sysfs_entry rdev_new_offset =
  2516. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2517. static ssize_t
  2518. rdev_size_show(struct md_rdev *rdev, char *page)
  2519. {
  2520. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2521. }
  2522. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2523. {
  2524. /* check if two start/length pairs overlap */
  2525. if (s1+l1 <= s2)
  2526. return 0;
  2527. if (s2+l2 <= s1)
  2528. return 0;
  2529. return 1;
  2530. }
  2531. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2532. {
  2533. unsigned long long blocks;
  2534. sector_t new;
  2535. if (kstrtoull(buf, 10, &blocks) < 0)
  2536. return -EINVAL;
  2537. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2538. return -EINVAL; /* sector conversion overflow */
  2539. new = blocks * 2;
  2540. if (new != blocks * 2)
  2541. return -EINVAL; /* unsigned long long to sector_t overflow */
  2542. *sectors = new;
  2543. return 0;
  2544. }
  2545. static ssize_t
  2546. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2547. {
  2548. struct mddev *my_mddev = rdev->mddev;
  2549. sector_t oldsectors = rdev->sectors;
  2550. sector_t sectors;
  2551. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2552. return -EINVAL;
  2553. if (rdev->data_offset != rdev->new_data_offset)
  2554. return -EINVAL; /* too confusing */
  2555. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2556. if (my_mddev->persistent) {
  2557. sectors = super_types[my_mddev->major_version].
  2558. rdev_size_change(rdev, sectors);
  2559. if (!sectors)
  2560. return -EBUSY;
  2561. } else if (!sectors)
  2562. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2563. rdev->data_offset;
  2564. if (!my_mddev->pers->resize)
  2565. /* Cannot change size for RAID0 or Linear etc */
  2566. return -EINVAL;
  2567. }
  2568. if (sectors < my_mddev->dev_sectors)
  2569. return -EINVAL; /* component must fit device */
  2570. rdev->sectors = sectors;
  2571. if (sectors > oldsectors && my_mddev->external) {
  2572. /* Need to check that all other rdevs with the same
  2573. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2574. * the rdev lists safely.
  2575. * This check does not provide a hard guarantee, it
  2576. * just helps avoid dangerous mistakes.
  2577. */
  2578. struct mddev *mddev;
  2579. int overlap = 0;
  2580. struct list_head *tmp;
  2581. rcu_read_lock();
  2582. for_each_mddev(mddev, tmp) {
  2583. struct md_rdev *rdev2;
  2584. rdev_for_each(rdev2, mddev)
  2585. if (rdev->bdev == rdev2->bdev &&
  2586. rdev != rdev2 &&
  2587. overlaps(rdev->data_offset, rdev->sectors,
  2588. rdev2->data_offset,
  2589. rdev2->sectors)) {
  2590. overlap = 1;
  2591. break;
  2592. }
  2593. if (overlap) {
  2594. mddev_put(mddev);
  2595. break;
  2596. }
  2597. }
  2598. rcu_read_unlock();
  2599. if (overlap) {
  2600. /* Someone else could have slipped in a size
  2601. * change here, but doing so is just silly.
  2602. * We put oldsectors back because we *know* it is
  2603. * safe, and trust userspace not to race with
  2604. * itself
  2605. */
  2606. rdev->sectors = oldsectors;
  2607. return -EBUSY;
  2608. }
  2609. }
  2610. return len;
  2611. }
  2612. static struct rdev_sysfs_entry rdev_size =
  2613. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2614. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2615. {
  2616. unsigned long long recovery_start = rdev->recovery_offset;
  2617. if (test_bit(In_sync, &rdev->flags) ||
  2618. recovery_start == MaxSector)
  2619. return sprintf(page, "none\n");
  2620. return sprintf(page, "%llu\n", recovery_start);
  2621. }
  2622. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2623. {
  2624. unsigned long long recovery_start;
  2625. if (cmd_match(buf, "none"))
  2626. recovery_start = MaxSector;
  2627. else if (kstrtoull(buf, 10, &recovery_start))
  2628. return -EINVAL;
  2629. if (rdev->mddev->pers &&
  2630. rdev->raid_disk >= 0)
  2631. return -EBUSY;
  2632. rdev->recovery_offset = recovery_start;
  2633. if (recovery_start == MaxSector)
  2634. set_bit(In_sync, &rdev->flags);
  2635. else
  2636. clear_bit(In_sync, &rdev->flags);
  2637. return len;
  2638. }
  2639. static struct rdev_sysfs_entry rdev_recovery_start =
  2640. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2641. static ssize_t
  2642. badblocks_show(struct badblocks *bb, char *page, int unack);
  2643. static ssize_t
  2644. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2645. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2646. {
  2647. return badblocks_show(&rdev->badblocks, page, 0);
  2648. }
  2649. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2650. {
  2651. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2652. /* Maybe that ack was all we needed */
  2653. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2654. wake_up(&rdev->blocked_wait);
  2655. return rv;
  2656. }
  2657. static struct rdev_sysfs_entry rdev_bad_blocks =
  2658. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2659. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2660. {
  2661. return badblocks_show(&rdev->badblocks, page, 1);
  2662. }
  2663. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2664. {
  2665. return badblocks_store(&rdev->badblocks, page, len, 1);
  2666. }
  2667. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2668. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2669. static struct attribute *rdev_default_attrs[] = {
  2670. &rdev_state.attr,
  2671. &rdev_errors.attr,
  2672. &rdev_slot.attr,
  2673. &rdev_offset.attr,
  2674. &rdev_new_offset.attr,
  2675. &rdev_size.attr,
  2676. &rdev_recovery_start.attr,
  2677. &rdev_bad_blocks.attr,
  2678. &rdev_unack_bad_blocks.attr,
  2679. NULL,
  2680. };
  2681. static ssize_t
  2682. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2683. {
  2684. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2685. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2686. if (!entry->show)
  2687. return -EIO;
  2688. if (!rdev->mddev)
  2689. return -EBUSY;
  2690. return entry->show(rdev, page);
  2691. }
  2692. static ssize_t
  2693. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2694. const char *page, size_t length)
  2695. {
  2696. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2697. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2698. ssize_t rv;
  2699. struct mddev *mddev = rdev->mddev;
  2700. if (!entry->store)
  2701. return -EIO;
  2702. if (!capable(CAP_SYS_ADMIN))
  2703. return -EACCES;
  2704. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2705. if (!rv) {
  2706. if (rdev->mddev == NULL)
  2707. rv = -EBUSY;
  2708. else
  2709. rv = entry->store(rdev, page, length);
  2710. mddev_unlock(mddev);
  2711. }
  2712. return rv;
  2713. }
  2714. static void rdev_free(struct kobject *ko)
  2715. {
  2716. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2717. kfree(rdev);
  2718. }
  2719. static const struct sysfs_ops rdev_sysfs_ops = {
  2720. .show = rdev_attr_show,
  2721. .store = rdev_attr_store,
  2722. };
  2723. static struct kobj_type rdev_ktype = {
  2724. .release = rdev_free,
  2725. .sysfs_ops = &rdev_sysfs_ops,
  2726. .default_attrs = rdev_default_attrs,
  2727. };
  2728. int md_rdev_init(struct md_rdev *rdev)
  2729. {
  2730. rdev->desc_nr = -1;
  2731. rdev->saved_raid_disk = -1;
  2732. rdev->raid_disk = -1;
  2733. rdev->flags = 0;
  2734. rdev->data_offset = 0;
  2735. rdev->new_data_offset = 0;
  2736. rdev->sb_events = 0;
  2737. rdev->last_read_error.tv_sec = 0;
  2738. rdev->last_read_error.tv_nsec = 0;
  2739. rdev->sb_loaded = 0;
  2740. rdev->bb_page = NULL;
  2741. atomic_set(&rdev->nr_pending, 0);
  2742. atomic_set(&rdev->read_errors, 0);
  2743. atomic_set(&rdev->corrected_errors, 0);
  2744. INIT_LIST_HEAD(&rdev->same_set);
  2745. init_waitqueue_head(&rdev->blocked_wait);
  2746. /* Add space to store bad block list.
  2747. * This reserves the space even on arrays where it cannot
  2748. * be used - I wonder if that matters
  2749. */
  2750. rdev->badblocks.count = 0;
  2751. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2752. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2753. seqlock_init(&rdev->badblocks.lock);
  2754. if (rdev->badblocks.page == NULL)
  2755. return -ENOMEM;
  2756. return 0;
  2757. }
  2758. EXPORT_SYMBOL_GPL(md_rdev_init);
  2759. /*
  2760. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2761. *
  2762. * mark the device faulty if:
  2763. *
  2764. * - the device is nonexistent (zero size)
  2765. * - the device has no valid superblock
  2766. *
  2767. * a faulty rdev _never_ has rdev->sb set.
  2768. */
  2769. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2770. {
  2771. char b[BDEVNAME_SIZE];
  2772. int err;
  2773. struct md_rdev *rdev;
  2774. sector_t size;
  2775. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2776. if (!rdev) {
  2777. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2778. return ERR_PTR(-ENOMEM);
  2779. }
  2780. err = md_rdev_init(rdev);
  2781. if (err)
  2782. goto abort_free;
  2783. err = alloc_disk_sb(rdev);
  2784. if (err)
  2785. goto abort_free;
  2786. err = lock_rdev(rdev, newdev, super_format == -2);
  2787. if (err)
  2788. goto abort_free;
  2789. kobject_init(&rdev->kobj, &rdev_ktype);
  2790. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2791. if (!size) {
  2792. printk(KERN_WARNING
  2793. "md: %s has zero or unknown size, marking faulty!\n",
  2794. bdevname(rdev->bdev,b));
  2795. err = -EINVAL;
  2796. goto abort_free;
  2797. }
  2798. if (super_format >= 0) {
  2799. err = super_types[super_format].
  2800. load_super(rdev, NULL, super_minor);
  2801. if (err == -EINVAL) {
  2802. printk(KERN_WARNING
  2803. "md: %s does not have a valid v%d.%d "
  2804. "superblock, not importing!\n",
  2805. bdevname(rdev->bdev,b),
  2806. super_format, super_minor);
  2807. goto abort_free;
  2808. }
  2809. if (err < 0) {
  2810. printk(KERN_WARNING
  2811. "md: could not read %s's sb, not importing!\n",
  2812. bdevname(rdev->bdev,b));
  2813. goto abort_free;
  2814. }
  2815. }
  2816. return rdev;
  2817. abort_free:
  2818. if (rdev->bdev)
  2819. unlock_rdev(rdev);
  2820. md_rdev_clear(rdev);
  2821. kfree(rdev);
  2822. return ERR_PTR(err);
  2823. }
  2824. /*
  2825. * Check a full RAID array for plausibility
  2826. */
  2827. static void analyze_sbs(struct mddev *mddev)
  2828. {
  2829. int i;
  2830. struct md_rdev *rdev, *freshest, *tmp;
  2831. char b[BDEVNAME_SIZE];
  2832. freshest = NULL;
  2833. rdev_for_each_safe(rdev, tmp, mddev)
  2834. switch (super_types[mddev->major_version].
  2835. load_super(rdev, freshest, mddev->minor_version)) {
  2836. case 1:
  2837. freshest = rdev;
  2838. break;
  2839. case 0:
  2840. break;
  2841. default:
  2842. printk( KERN_ERR \
  2843. "md: fatal superblock inconsistency in %s"
  2844. " -- removing from array\n",
  2845. bdevname(rdev->bdev,b));
  2846. md_kick_rdev_from_array(rdev);
  2847. }
  2848. super_types[mddev->major_version].
  2849. validate_super(mddev, freshest);
  2850. i = 0;
  2851. rdev_for_each_safe(rdev, tmp, mddev) {
  2852. if (mddev->max_disks &&
  2853. (rdev->desc_nr >= mddev->max_disks ||
  2854. i > mddev->max_disks)) {
  2855. printk(KERN_WARNING
  2856. "md: %s: %s: only %d devices permitted\n",
  2857. mdname(mddev), bdevname(rdev->bdev, b),
  2858. mddev->max_disks);
  2859. md_kick_rdev_from_array(rdev);
  2860. continue;
  2861. }
  2862. if (rdev != freshest) {
  2863. if (super_types[mddev->major_version].
  2864. validate_super(mddev, rdev)) {
  2865. printk(KERN_WARNING "md: kicking non-fresh %s"
  2866. " from array!\n",
  2867. bdevname(rdev->bdev,b));
  2868. md_kick_rdev_from_array(rdev);
  2869. continue;
  2870. }
  2871. /* No device should have a Candidate flag
  2872. * when reading devices
  2873. */
  2874. if (test_bit(Candidate, &rdev->flags)) {
  2875. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2876. bdevname(rdev->bdev, b));
  2877. md_kick_rdev_from_array(rdev);
  2878. }
  2879. }
  2880. if (mddev->level == LEVEL_MULTIPATH) {
  2881. rdev->desc_nr = i++;
  2882. rdev->raid_disk = rdev->desc_nr;
  2883. set_bit(In_sync, &rdev->flags);
  2884. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2885. rdev->raid_disk = -1;
  2886. clear_bit(In_sync, &rdev->flags);
  2887. }
  2888. }
  2889. }
  2890. /* Read a fixed-point number.
  2891. * Numbers in sysfs attributes should be in "standard" units where
  2892. * possible, so time should be in seconds.
  2893. * However we internally use a a much smaller unit such as
  2894. * milliseconds or jiffies.
  2895. * This function takes a decimal number with a possible fractional
  2896. * component, and produces an integer which is the result of
  2897. * multiplying that number by 10^'scale'.
  2898. * all without any floating-point arithmetic.
  2899. */
  2900. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2901. {
  2902. unsigned long result = 0;
  2903. long decimals = -1;
  2904. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2905. if (*cp == '.')
  2906. decimals = 0;
  2907. else if (decimals < scale) {
  2908. unsigned int value;
  2909. value = *cp - '0';
  2910. result = result * 10 + value;
  2911. if (decimals >= 0)
  2912. decimals++;
  2913. }
  2914. cp++;
  2915. }
  2916. if (*cp == '\n')
  2917. cp++;
  2918. if (*cp)
  2919. return -EINVAL;
  2920. if (decimals < 0)
  2921. decimals = 0;
  2922. while (decimals < scale) {
  2923. result *= 10;
  2924. decimals ++;
  2925. }
  2926. *res = result;
  2927. return 0;
  2928. }
  2929. static void md_safemode_timeout(unsigned long data);
  2930. static ssize_t
  2931. safe_delay_show(struct mddev *mddev, char *page)
  2932. {
  2933. int msec = (mddev->safemode_delay*1000)/HZ;
  2934. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2935. }
  2936. static ssize_t
  2937. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2938. {
  2939. unsigned long msec;
  2940. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2941. return -EINVAL;
  2942. if (msec == 0)
  2943. mddev->safemode_delay = 0;
  2944. else {
  2945. unsigned long old_delay = mddev->safemode_delay;
  2946. unsigned long new_delay = (msec*HZ)/1000;
  2947. if (new_delay == 0)
  2948. new_delay = 1;
  2949. mddev->safemode_delay = new_delay;
  2950. if (new_delay < old_delay || old_delay == 0)
  2951. mod_timer(&mddev->safemode_timer, jiffies+1);
  2952. }
  2953. return len;
  2954. }
  2955. static struct md_sysfs_entry md_safe_delay =
  2956. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2957. static ssize_t
  2958. level_show(struct mddev *mddev, char *page)
  2959. {
  2960. struct md_personality *p;
  2961. int ret;
  2962. spin_lock(&mddev->lock);
  2963. p = mddev->pers;
  2964. if (p)
  2965. ret = sprintf(page, "%s\n", p->name);
  2966. else if (mddev->clevel[0])
  2967. ret = sprintf(page, "%s\n", mddev->clevel);
  2968. else if (mddev->level != LEVEL_NONE)
  2969. ret = sprintf(page, "%d\n", mddev->level);
  2970. else
  2971. ret = 0;
  2972. spin_unlock(&mddev->lock);
  2973. return ret;
  2974. }
  2975. static ssize_t
  2976. level_store(struct mddev *mddev, const char *buf, size_t len)
  2977. {
  2978. char clevel[16];
  2979. ssize_t rv;
  2980. size_t slen = len;
  2981. struct md_personality *pers, *oldpers;
  2982. long level;
  2983. void *priv, *oldpriv;
  2984. struct md_rdev *rdev;
  2985. if (slen == 0 || slen >= sizeof(clevel))
  2986. return -EINVAL;
  2987. rv = mddev_lock(mddev);
  2988. if (rv)
  2989. return rv;
  2990. if (mddev->pers == NULL) {
  2991. strncpy(mddev->clevel, buf, slen);
  2992. if (mddev->clevel[slen-1] == '\n')
  2993. slen--;
  2994. mddev->clevel[slen] = 0;
  2995. mddev->level = LEVEL_NONE;
  2996. rv = len;
  2997. goto out_unlock;
  2998. }
  2999. rv = -EROFS;
  3000. if (mddev->ro)
  3001. goto out_unlock;
  3002. /* request to change the personality. Need to ensure:
  3003. * - array is not engaged in resync/recovery/reshape
  3004. * - old personality can be suspended
  3005. * - new personality will access other array.
  3006. */
  3007. rv = -EBUSY;
  3008. if (mddev->sync_thread ||
  3009. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3010. mddev->reshape_position != MaxSector ||
  3011. mddev->sysfs_active)
  3012. goto out_unlock;
  3013. rv = -EINVAL;
  3014. if (!mddev->pers->quiesce) {
  3015. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3016. mdname(mddev), mddev->pers->name);
  3017. goto out_unlock;
  3018. }
  3019. /* Now find the new personality */
  3020. strncpy(clevel, buf, slen);
  3021. if (clevel[slen-1] == '\n')
  3022. slen--;
  3023. clevel[slen] = 0;
  3024. if (kstrtol(clevel, 10, &level))
  3025. level = LEVEL_NONE;
  3026. if (request_module("md-%s", clevel) != 0)
  3027. request_module("md-level-%s", clevel);
  3028. spin_lock(&pers_lock);
  3029. pers = find_pers(level, clevel);
  3030. if (!pers || !try_module_get(pers->owner)) {
  3031. spin_unlock(&pers_lock);
  3032. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3033. rv = -EINVAL;
  3034. goto out_unlock;
  3035. }
  3036. spin_unlock(&pers_lock);
  3037. if (pers == mddev->pers) {
  3038. /* Nothing to do! */
  3039. module_put(pers->owner);
  3040. rv = len;
  3041. goto out_unlock;
  3042. }
  3043. if (!pers->takeover) {
  3044. module_put(pers->owner);
  3045. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3046. mdname(mddev), clevel);
  3047. rv = -EINVAL;
  3048. goto out_unlock;
  3049. }
  3050. rdev_for_each(rdev, mddev)
  3051. rdev->new_raid_disk = rdev->raid_disk;
  3052. /* ->takeover must set new_* and/or delta_disks
  3053. * if it succeeds, and may set them when it fails.
  3054. */
  3055. priv = pers->takeover(mddev);
  3056. if (IS_ERR(priv)) {
  3057. mddev->new_level = mddev->level;
  3058. mddev->new_layout = mddev->layout;
  3059. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3060. mddev->raid_disks -= mddev->delta_disks;
  3061. mddev->delta_disks = 0;
  3062. mddev->reshape_backwards = 0;
  3063. module_put(pers->owner);
  3064. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3065. mdname(mddev), clevel);
  3066. rv = PTR_ERR(priv);
  3067. goto out_unlock;
  3068. }
  3069. /* Looks like we have a winner */
  3070. mddev_suspend(mddev);
  3071. mddev_detach(mddev);
  3072. spin_lock(&mddev->lock);
  3073. oldpers = mddev->pers;
  3074. oldpriv = mddev->private;
  3075. mddev->pers = pers;
  3076. mddev->private = priv;
  3077. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3078. mddev->level = mddev->new_level;
  3079. mddev->layout = mddev->new_layout;
  3080. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3081. mddev->delta_disks = 0;
  3082. mddev->reshape_backwards = 0;
  3083. mddev->degraded = 0;
  3084. spin_unlock(&mddev->lock);
  3085. if (oldpers->sync_request == NULL &&
  3086. mddev->external) {
  3087. /* We are converting from a no-redundancy array
  3088. * to a redundancy array and metadata is managed
  3089. * externally so we need to be sure that writes
  3090. * won't block due to a need to transition
  3091. * clean->dirty
  3092. * until external management is started.
  3093. */
  3094. mddev->in_sync = 0;
  3095. mddev->safemode_delay = 0;
  3096. mddev->safemode = 0;
  3097. }
  3098. oldpers->free(mddev, oldpriv);
  3099. if (oldpers->sync_request == NULL &&
  3100. pers->sync_request != NULL) {
  3101. /* need to add the md_redundancy_group */
  3102. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3103. printk(KERN_WARNING
  3104. "md: cannot register extra attributes for %s\n",
  3105. mdname(mddev));
  3106. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3107. }
  3108. if (oldpers->sync_request != NULL &&
  3109. pers->sync_request == NULL) {
  3110. /* need to remove the md_redundancy_group */
  3111. if (mddev->to_remove == NULL)
  3112. mddev->to_remove = &md_redundancy_group;
  3113. }
  3114. rdev_for_each(rdev, mddev) {
  3115. if (rdev->raid_disk < 0)
  3116. continue;
  3117. if (rdev->new_raid_disk >= mddev->raid_disks)
  3118. rdev->new_raid_disk = -1;
  3119. if (rdev->new_raid_disk == rdev->raid_disk)
  3120. continue;
  3121. sysfs_unlink_rdev(mddev, rdev);
  3122. }
  3123. rdev_for_each(rdev, mddev) {
  3124. if (rdev->raid_disk < 0)
  3125. continue;
  3126. if (rdev->new_raid_disk == rdev->raid_disk)
  3127. continue;
  3128. rdev->raid_disk = rdev->new_raid_disk;
  3129. if (rdev->raid_disk < 0)
  3130. clear_bit(In_sync, &rdev->flags);
  3131. else {
  3132. if (sysfs_link_rdev(mddev, rdev))
  3133. printk(KERN_WARNING "md: cannot register rd%d"
  3134. " for %s after level change\n",
  3135. rdev->raid_disk, mdname(mddev));
  3136. }
  3137. }
  3138. if (pers->sync_request == NULL) {
  3139. /* this is now an array without redundancy, so
  3140. * it must always be in_sync
  3141. */
  3142. mddev->in_sync = 1;
  3143. del_timer_sync(&mddev->safemode_timer);
  3144. }
  3145. blk_set_stacking_limits(&mddev->queue->limits);
  3146. pers->run(mddev);
  3147. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3148. mddev_resume(mddev);
  3149. if (!mddev->thread)
  3150. md_update_sb(mddev, 1);
  3151. sysfs_notify(&mddev->kobj, NULL, "level");
  3152. md_new_event(mddev);
  3153. rv = len;
  3154. out_unlock:
  3155. mddev_unlock(mddev);
  3156. return rv;
  3157. }
  3158. static struct md_sysfs_entry md_level =
  3159. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3160. static ssize_t
  3161. layout_show(struct mddev *mddev, char *page)
  3162. {
  3163. /* just a number, not meaningful for all levels */
  3164. if (mddev->reshape_position != MaxSector &&
  3165. mddev->layout != mddev->new_layout)
  3166. return sprintf(page, "%d (%d)\n",
  3167. mddev->new_layout, mddev->layout);
  3168. return sprintf(page, "%d\n", mddev->layout);
  3169. }
  3170. static ssize_t
  3171. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3172. {
  3173. char *e;
  3174. unsigned long n = simple_strtoul(buf, &e, 10);
  3175. int err;
  3176. if (!*buf || (*e && *e != '\n'))
  3177. return -EINVAL;
  3178. err = mddev_lock(mddev);
  3179. if (err)
  3180. return err;
  3181. if (mddev->pers) {
  3182. if (mddev->pers->check_reshape == NULL)
  3183. err = -EBUSY;
  3184. else if (mddev->ro)
  3185. err = -EROFS;
  3186. else {
  3187. mddev->new_layout = n;
  3188. err = mddev->pers->check_reshape(mddev);
  3189. if (err)
  3190. mddev->new_layout = mddev->layout;
  3191. }
  3192. } else {
  3193. mddev->new_layout = n;
  3194. if (mddev->reshape_position == MaxSector)
  3195. mddev->layout = n;
  3196. }
  3197. mddev_unlock(mddev);
  3198. return err ?: len;
  3199. }
  3200. static struct md_sysfs_entry md_layout =
  3201. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3202. static ssize_t
  3203. raid_disks_show(struct mddev *mddev, char *page)
  3204. {
  3205. if (mddev->raid_disks == 0)
  3206. return 0;
  3207. if (mddev->reshape_position != MaxSector &&
  3208. mddev->delta_disks != 0)
  3209. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3210. mddev->raid_disks - mddev->delta_disks);
  3211. return sprintf(page, "%d\n", mddev->raid_disks);
  3212. }
  3213. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3214. static ssize_t
  3215. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3216. {
  3217. char *e;
  3218. int err;
  3219. unsigned long n = simple_strtoul(buf, &e, 10);
  3220. if (!*buf || (*e && *e != '\n'))
  3221. return -EINVAL;
  3222. err = mddev_lock(mddev);
  3223. if (err)
  3224. return err;
  3225. if (mddev->pers)
  3226. err = update_raid_disks(mddev, n);
  3227. else if (mddev->reshape_position != MaxSector) {
  3228. struct md_rdev *rdev;
  3229. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3230. err = -EINVAL;
  3231. rdev_for_each(rdev, mddev) {
  3232. if (olddisks < n &&
  3233. rdev->data_offset < rdev->new_data_offset)
  3234. goto out_unlock;
  3235. if (olddisks > n &&
  3236. rdev->data_offset > rdev->new_data_offset)
  3237. goto out_unlock;
  3238. }
  3239. err = 0;
  3240. mddev->delta_disks = n - olddisks;
  3241. mddev->raid_disks = n;
  3242. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3243. } else
  3244. mddev->raid_disks = n;
  3245. out_unlock:
  3246. mddev_unlock(mddev);
  3247. return err ? err : len;
  3248. }
  3249. static struct md_sysfs_entry md_raid_disks =
  3250. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3251. static ssize_t
  3252. chunk_size_show(struct mddev *mddev, char *page)
  3253. {
  3254. if (mddev->reshape_position != MaxSector &&
  3255. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3256. return sprintf(page, "%d (%d)\n",
  3257. mddev->new_chunk_sectors << 9,
  3258. mddev->chunk_sectors << 9);
  3259. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3260. }
  3261. static ssize_t
  3262. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3263. {
  3264. int err;
  3265. char *e;
  3266. unsigned long n = simple_strtoul(buf, &e, 10);
  3267. if (!*buf || (*e && *e != '\n'))
  3268. return -EINVAL;
  3269. err = mddev_lock(mddev);
  3270. if (err)
  3271. return err;
  3272. if (mddev->pers) {
  3273. if (mddev->pers->check_reshape == NULL)
  3274. err = -EBUSY;
  3275. else if (mddev->ro)
  3276. err = -EROFS;
  3277. else {
  3278. mddev->new_chunk_sectors = n >> 9;
  3279. err = mddev->pers->check_reshape(mddev);
  3280. if (err)
  3281. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3282. }
  3283. } else {
  3284. mddev->new_chunk_sectors = n >> 9;
  3285. if (mddev->reshape_position == MaxSector)
  3286. mddev->chunk_sectors = n >> 9;
  3287. }
  3288. mddev_unlock(mddev);
  3289. return err ?: len;
  3290. }
  3291. static struct md_sysfs_entry md_chunk_size =
  3292. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3293. static ssize_t
  3294. resync_start_show(struct mddev *mddev, char *page)
  3295. {
  3296. if (mddev->recovery_cp == MaxSector)
  3297. return sprintf(page, "none\n");
  3298. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3299. }
  3300. static ssize_t
  3301. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3302. {
  3303. int err;
  3304. char *e;
  3305. unsigned long long n = simple_strtoull(buf, &e, 10);
  3306. err = mddev_lock(mddev);
  3307. if (err)
  3308. return err;
  3309. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3310. err = -EBUSY;
  3311. else if (cmd_match(buf, "none"))
  3312. n = MaxSector;
  3313. else if (!*buf || (*e && *e != '\n'))
  3314. err = -EINVAL;
  3315. if (!err) {
  3316. mddev->recovery_cp = n;
  3317. if (mddev->pers)
  3318. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3319. }
  3320. mddev_unlock(mddev);
  3321. return err ?: len;
  3322. }
  3323. static struct md_sysfs_entry md_resync_start =
  3324. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3325. resync_start_show, resync_start_store);
  3326. /*
  3327. * The array state can be:
  3328. *
  3329. * clear
  3330. * No devices, no size, no level
  3331. * Equivalent to STOP_ARRAY ioctl
  3332. * inactive
  3333. * May have some settings, but array is not active
  3334. * all IO results in error
  3335. * When written, doesn't tear down array, but just stops it
  3336. * suspended (not supported yet)
  3337. * All IO requests will block. The array can be reconfigured.
  3338. * Writing this, if accepted, will block until array is quiescent
  3339. * readonly
  3340. * no resync can happen. no superblocks get written.
  3341. * write requests fail
  3342. * read-auto
  3343. * like readonly, but behaves like 'clean' on a write request.
  3344. *
  3345. * clean - no pending writes, but otherwise active.
  3346. * When written to inactive array, starts without resync
  3347. * If a write request arrives then
  3348. * if metadata is known, mark 'dirty' and switch to 'active'.
  3349. * if not known, block and switch to write-pending
  3350. * If written to an active array that has pending writes, then fails.
  3351. * active
  3352. * fully active: IO and resync can be happening.
  3353. * When written to inactive array, starts with resync
  3354. *
  3355. * write-pending
  3356. * clean, but writes are blocked waiting for 'active' to be written.
  3357. *
  3358. * active-idle
  3359. * like active, but no writes have been seen for a while (100msec).
  3360. *
  3361. */
  3362. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3363. write_pending, active_idle, bad_word};
  3364. static char *array_states[] = {
  3365. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3366. "write-pending", "active-idle", NULL };
  3367. static int match_word(const char *word, char **list)
  3368. {
  3369. int n;
  3370. for (n=0; list[n]; n++)
  3371. if (cmd_match(word, list[n]))
  3372. break;
  3373. return n;
  3374. }
  3375. static ssize_t
  3376. array_state_show(struct mddev *mddev, char *page)
  3377. {
  3378. enum array_state st = inactive;
  3379. if (mddev->pers)
  3380. switch(mddev->ro) {
  3381. case 1:
  3382. st = readonly;
  3383. break;
  3384. case 2:
  3385. st = read_auto;
  3386. break;
  3387. case 0:
  3388. if (mddev->in_sync)
  3389. st = clean;
  3390. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3391. st = write_pending;
  3392. else if (mddev->safemode)
  3393. st = active_idle;
  3394. else
  3395. st = active;
  3396. }
  3397. else {
  3398. if (list_empty(&mddev->disks) &&
  3399. mddev->raid_disks == 0 &&
  3400. mddev->dev_sectors == 0)
  3401. st = clear;
  3402. else
  3403. st = inactive;
  3404. }
  3405. return sprintf(page, "%s\n", array_states[st]);
  3406. }
  3407. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3408. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3409. static int do_md_run(struct mddev *mddev);
  3410. static int restart_array(struct mddev *mddev);
  3411. static ssize_t
  3412. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3413. {
  3414. int err;
  3415. enum array_state st = match_word(buf, array_states);
  3416. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3417. /* don't take reconfig_mutex when toggling between
  3418. * clean and active
  3419. */
  3420. spin_lock(&mddev->lock);
  3421. if (st == active) {
  3422. restart_array(mddev);
  3423. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3424. wake_up(&mddev->sb_wait);
  3425. err = 0;
  3426. } else /* st == clean */ {
  3427. restart_array(mddev);
  3428. if (atomic_read(&mddev->writes_pending) == 0) {
  3429. if (mddev->in_sync == 0) {
  3430. mddev->in_sync = 1;
  3431. if (mddev->safemode == 1)
  3432. mddev->safemode = 0;
  3433. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3434. }
  3435. err = 0;
  3436. } else
  3437. err = -EBUSY;
  3438. }
  3439. spin_unlock(&mddev->lock);
  3440. return err;
  3441. }
  3442. err = mddev_lock(mddev);
  3443. if (err)
  3444. return err;
  3445. err = -EINVAL;
  3446. switch(st) {
  3447. case bad_word:
  3448. break;
  3449. case clear:
  3450. /* stopping an active array */
  3451. err = do_md_stop(mddev, 0, NULL);
  3452. break;
  3453. case inactive:
  3454. /* stopping an active array */
  3455. if (mddev->pers)
  3456. err = do_md_stop(mddev, 2, NULL);
  3457. else
  3458. err = 0; /* already inactive */
  3459. break;
  3460. case suspended:
  3461. break; /* not supported yet */
  3462. case readonly:
  3463. if (mddev->pers)
  3464. err = md_set_readonly(mddev, NULL);
  3465. else {
  3466. mddev->ro = 1;
  3467. set_disk_ro(mddev->gendisk, 1);
  3468. err = do_md_run(mddev);
  3469. }
  3470. break;
  3471. case read_auto:
  3472. if (mddev->pers) {
  3473. if (mddev->ro == 0)
  3474. err = md_set_readonly(mddev, NULL);
  3475. else if (mddev->ro == 1)
  3476. err = restart_array(mddev);
  3477. if (err == 0) {
  3478. mddev->ro = 2;
  3479. set_disk_ro(mddev->gendisk, 0);
  3480. }
  3481. } else {
  3482. mddev->ro = 2;
  3483. err = do_md_run(mddev);
  3484. }
  3485. break;
  3486. case clean:
  3487. if (mddev->pers) {
  3488. restart_array(mddev);
  3489. spin_lock(&mddev->lock);
  3490. if (atomic_read(&mddev->writes_pending) == 0) {
  3491. if (mddev->in_sync == 0) {
  3492. mddev->in_sync = 1;
  3493. if (mddev->safemode == 1)
  3494. mddev->safemode = 0;
  3495. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3496. }
  3497. err = 0;
  3498. } else
  3499. err = -EBUSY;
  3500. spin_unlock(&mddev->lock);
  3501. } else
  3502. err = -EINVAL;
  3503. break;
  3504. case active:
  3505. if (mddev->pers) {
  3506. restart_array(mddev);
  3507. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3508. wake_up(&mddev->sb_wait);
  3509. err = 0;
  3510. } else {
  3511. mddev->ro = 0;
  3512. set_disk_ro(mddev->gendisk, 0);
  3513. err = do_md_run(mddev);
  3514. }
  3515. break;
  3516. case write_pending:
  3517. case active_idle:
  3518. /* these cannot be set */
  3519. break;
  3520. }
  3521. if (!err) {
  3522. if (mddev->hold_active == UNTIL_IOCTL)
  3523. mddev->hold_active = 0;
  3524. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3525. }
  3526. mddev_unlock(mddev);
  3527. return err ?: len;
  3528. }
  3529. static struct md_sysfs_entry md_array_state =
  3530. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3531. static ssize_t
  3532. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3533. return sprintf(page, "%d\n",
  3534. atomic_read(&mddev->max_corr_read_errors));
  3535. }
  3536. static ssize_t
  3537. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3538. {
  3539. char *e;
  3540. unsigned long n = simple_strtoul(buf, &e, 10);
  3541. if (*buf && (*e == 0 || *e == '\n')) {
  3542. atomic_set(&mddev->max_corr_read_errors, n);
  3543. return len;
  3544. }
  3545. return -EINVAL;
  3546. }
  3547. static struct md_sysfs_entry max_corr_read_errors =
  3548. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3549. max_corrected_read_errors_store);
  3550. static ssize_t
  3551. null_show(struct mddev *mddev, char *page)
  3552. {
  3553. return -EINVAL;
  3554. }
  3555. static ssize_t
  3556. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3557. {
  3558. /* buf must be %d:%d\n? giving major and minor numbers */
  3559. /* The new device is added to the array.
  3560. * If the array has a persistent superblock, we read the
  3561. * superblock to initialise info and check validity.
  3562. * Otherwise, only checking done is that in bind_rdev_to_array,
  3563. * which mainly checks size.
  3564. */
  3565. char *e;
  3566. int major = simple_strtoul(buf, &e, 10);
  3567. int minor;
  3568. dev_t dev;
  3569. struct md_rdev *rdev;
  3570. int err;
  3571. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3572. return -EINVAL;
  3573. minor = simple_strtoul(e+1, &e, 10);
  3574. if (*e && *e != '\n')
  3575. return -EINVAL;
  3576. dev = MKDEV(major, minor);
  3577. if (major != MAJOR(dev) ||
  3578. minor != MINOR(dev))
  3579. return -EOVERFLOW;
  3580. flush_workqueue(md_misc_wq);
  3581. err = mddev_lock(mddev);
  3582. if (err)
  3583. return err;
  3584. if (mddev->persistent) {
  3585. rdev = md_import_device(dev, mddev->major_version,
  3586. mddev->minor_version);
  3587. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3588. struct md_rdev *rdev0
  3589. = list_entry(mddev->disks.next,
  3590. struct md_rdev, same_set);
  3591. err = super_types[mddev->major_version]
  3592. .load_super(rdev, rdev0, mddev->minor_version);
  3593. if (err < 0)
  3594. goto out;
  3595. }
  3596. } else if (mddev->external)
  3597. rdev = md_import_device(dev, -2, -1);
  3598. else
  3599. rdev = md_import_device(dev, -1, -1);
  3600. if (IS_ERR(rdev))
  3601. return PTR_ERR(rdev);
  3602. err = bind_rdev_to_array(rdev, mddev);
  3603. out:
  3604. if (err)
  3605. export_rdev(rdev);
  3606. mddev_unlock(mddev);
  3607. return err ? err : len;
  3608. }
  3609. static struct md_sysfs_entry md_new_device =
  3610. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3611. static ssize_t
  3612. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3613. {
  3614. char *end;
  3615. unsigned long chunk, end_chunk;
  3616. int err;
  3617. err = mddev_lock(mddev);
  3618. if (err)
  3619. return err;
  3620. if (!mddev->bitmap)
  3621. goto out;
  3622. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3623. while (*buf) {
  3624. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3625. if (buf == end) break;
  3626. if (*end == '-') { /* range */
  3627. buf = end + 1;
  3628. end_chunk = simple_strtoul(buf, &end, 0);
  3629. if (buf == end) break;
  3630. }
  3631. if (*end && !isspace(*end)) break;
  3632. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3633. buf = skip_spaces(end);
  3634. }
  3635. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3636. out:
  3637. mddev_unlock(mddev);
  3638. return len;
  3639. }
  3640. static struct md_sysfs_entry md_bitmap =
  3641. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3642. static ssize_t
  3643. size_show(struct mddev *mddev, char *page)
  3644. {
  3645. return sprintf(page, "%llu\n",
  3646. (unsigned long long)mddev->dev_sectors / 2);
  3647. }
  3648. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3649. static ssize_t
  3650. size_store(struct mddev *mddev, const char *buf, size_t len)
  3651. {
  3652. /* If array is inactive, we can reduce the component size, but
  3653. * not increase it (except from 0).
  3654. * If array is active, we can try an on-line resize
  3655. */
  3656. sector_t sectors;
  3657. int err = strict_blocks_to_sectors(buf, &sectors);
  3658. if (err < 0)
  3659. return err;
  3660. err = mddev_lock(mddev);
  3661. if (err)
  3662. return err;
  3663. if (mddev->pers) {
  3664. if (mddev_is_clustered(mddev))
  3665. md_cluster_ops->metadata_update_start(mddev);
  3666. err = update_size(mddev, sectors);
  3667. md_update_sb(mddev, 1);
  3668. if (mddev_is_clustered(mddev))
  3669. md_cluster_ops->metadata_update_finish(mddev);
  3670. } else {
  3671. if (mddev->dev_sectors == 0 ||
  3672. mddev->dev_sectors > sectors)
  3673. mddev->dev_sectors = sectors;
  3674. else
  3675. err = -ENOSPC;
  3676. }
  3677. mddev_unlock(mddev);
  3678. return err ? err : len;
  3679. }
  3680. static struct md_sysfs_entry md_size =
  3681. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3682. /* Metadata version.
  3683. * This is one of
  3684. * 'none' for arrays with no metadata (good luck...)
  3685. * 'external' for arrays with externally managed metadata,
  3686. * or N.M for internally known formats
  3687. */
  3688. static ssize_t
  3689. metadata_show(struct mddev *mddev, char *page)
  3690. {
  3691. if (mddev->persistent)
  3692. return sprintf(page, "%d.%d\n",
  3693. mddev->major_version, mddev->minor_version);
  3694. else if (mddev->external)
  3695. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3696. else
  3697. return sprintf(page, "none\n");
  3698. }
  3699. static ssize_t
  3700. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3701. {
  3702. int major, minor;
  3703. char *e;
  3704. int err;
  3705. /* Changing the details of 'external' metadata is
  3706. * always permitted. Otherwise there must be
  3707. * no devices attached to the array.
  3708. */
  3709. err = mddev_lock(mddev);
  3710. if (err)
  3711. return err;
  3712. err = -EBUSY;
  3713. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3714. ;
  3715. else if (!list_empty(&mddev->disks))
  3716. goto out_unlock;
  3717. err = 0;
  3718. if (cmd_match(buf, "none")) {
  3719. mddev->persistent = 0;
  3720. mddev->external = 0;
  3721. mddev->major_version = 0;
  3722. mddev->minor_version = 90;
  3723. goto out_unlock;
  3724. }
  3725. if (strncmp(buf, "external:", 9) == 0) {
  3726. size_t namelen = len-9;
  3727. if (namelen >= sizeof(mddev->metadata_type))
  3728. namelen = sizeof(mddev->metadata_type)-1;
  3729. strncpy(mddev->metadata_type, buf+9, namelen);
  3730. mddev->metadata_type[namelen] = 0;
  3731. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3732. mddev->metadata_type[--namelen] = 0;
  3733. mddev->persistent = 0;
  3734. mddev->external = 1;
  3735. mddev->major_version = 0;
  3736. mddev->minor_version = 90;
  3737. goto out_unlock;
  3738. }
  3739. major = simple_strtoul(buf, &e, 10);
  3740. err = -EINVAL;
  3741. if (e==buf || *e != '.')
  3742. goto out_unlock;
  3743. buf = e+1;
  3744. minor = simple_strtoul(buf, &e, 10);
  3745. if (e==buf || (*e && *e != '\n') )
  3746. goto out_unlock;
  3747. err = -ENOENT;
  3748. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3749. goto out_unlock;
  3750. mddev->major_version = major;
  3751. mddev->minor_version = minor;
  3752. mddev->persistent = 1;
  3753. mddev->external = 0;
  3754. err = 0;
  3755. out_unlock:
  3756. mddev_unlock(mddev);
  3757. return err ?: len;
  3758. }
  3759. static struct md_sysfs_entry md_metadata =
  3760. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3761. static ssize_t
  3762. action_show(struct mddev *mddev, char *page)
  3763. {
  3764. char *type = "idle";
  3765. unsigned long recovery = mddev->recovery;
  3766. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3767. type = "frozen";
  3768. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3769. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3770. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3771. type = "reshape";
  3772. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3773. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3774. type = "resync";
  3775. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3776. type = "check";
  3777. else
  3778. type = "repair";
  3779. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3780. type = "recover";
  3781. }
  3782. return sprintf(page, "%s\n", type);
  3783. }
  3784. static ssize_t
  3785. action_store(struct mddev *mddev, const char *page, size_t len)
  3786. {
  3787. if (!mddev->pers || !mddev->pers->sync_request)
  3788. return -EINVAL;
  3789. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3790. if (cmd_match(page, "frozen"))
  3791. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3792. else
  3793. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3794. flush_workqueue(md_misc_wq);
  3795. if (mddev->sync_thread) {
  3796. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3797. if (mddev_lock(mddev) == 0) {
  3798. md_reap_sync_thread(mddev);
  3799. mddev_unlock(mddev);
  3800. }
  3801. }
  3802. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3803. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3804. return -EBUSY;
  3805. else if (cmd_match(page, "resync"))
  3806. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3807. else if (cmd_match(page, "recover")) {
  3808. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3809. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3810. } else if (cmd_match(page, "reshape")) {
  3811. int err;
  3812. if (mddev->pers->start_reshape == NULL)
  3813. return -EINVAL;
  3814. err = mddev_lock(mddev);
  3815. if (!err) {
  3816. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3817. err = mddev->pers->start_reshape(mddev);
  3818. mddev_unlock(mddev);
  3819. }
  3820. if (err)
  3821. return err;
  3822. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3823. } else {
  3824. if (cmd_match(page, "check"))
  3825. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3826. else if (!cmd_match(page, "repair"))
  3827. return -EINVAL;
  3828. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3829. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3830. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3831. }
  3832. if (mddev->ro == 2) {
  3833. /* A write to sync_action is enough to justify
  3834. * canceling read-auto mode
  3835. */
  3836. mddev->ro = 0;
  3837. md_wakeup_thread(mddev->sync_thread);
  3838. }
  3839. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3840. md_wakeup_thread(mddev->thread);
  3841. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3842. return len;
  3843. }
  3844. static struct md_sysfs_entry md_scan_mode =
  3845. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3846. static ssize_t
  3847. last_sync_action_show(struct mddev *mddev, char *page)
  3848. {
  3849. return sprintf(page, "%s\n", mddev->last_sync_action);
  3850. }
  3851. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3852. static ssize_t
  3853. mismatch_cnt_show(struct mddev *mddev, char *page)
  3854. {
  3855. return sprintf(page, "%llu\n",
  3856. (unsigned long long)
  3857. atomic64_read(&mddev->resync_mismatches));
  3858. }
  3859. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3860. static ssize_t
  3861. sync_min_show(struct mddev *mddev, char *page)
  3862. {
  3863. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3864. mddev->sync_speed_min ? "local": "system");
  3865. }
  3866. static ssize_t
  3867. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3868. {
  3869. int min;
  3870. char *e;
  3871. if (strncmp(buf, "system", 6)==0) {
  3872. mddev->sync_speed_min = 0;
  3873. return len;
  3874. }
  3875. min = simple_strtoul(buf, &e, 10);
  3876. if (buf == e || (*e && *e != '\n') || min <= 0)
  3877. return -EINVAL;
  3878. mddev->sync_speed_min = min;
  3879. return len;
  3880. }
  3881. static struct md_sysfs_entry md_sync_min =
  3882. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3883. static ssize_t
  3884. sync_max_show(struct mddev *mddev, char *page)
  3885. {
  3886. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3887. mddev->sync_speed_max ? "local": "system");
  3888. }
  3889. static ssize_t
  3890. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3891. {
  3892. int max;
  3893. char *e;
  3894. if (strncmp(buf, "system", 6)==0) {
  3895. mddev->sync_speed_max = 0;
  3896. return len;
  3897. }
  3898. max = simple_strtoul(buf, &e, 10);
  3899. if (buf == e || (*e && *e != '\n') || max <= 0)
  3900. return -EINVAL;
  3901. mddev->sync_speed_max = max;
  3902. return len;
  3903. }
  3904. static struct md_sysfs_entry md_sync_max =
  3905. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3906. static ssize_t
  3907. degraded_show(struct mddev *mddev, char *page)
  3908. {
  3909. return sprintf(page, "%d\n", mddev->degraded);
  3910. }
  3911. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3912. static ssize_t
  3913. sync_force_parallel_show(struct mddev *mddev, char *page)
  3914. {
  3915. return sprintf(page, "%d\n", mddev->parallel_resync);
  3916. }
  3917. static ssize_t
  3918. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3919. {
  3920. long n;
  3921. if (kstrtol(buf, 10, &n))
  3922. return -EINVAL;
  3923. if (n != 0 && n != 1)
  3924. return -EINVAL;
  3925. mddev->parallel_resync = n;
  3926. if (mddev->sync_thread)
  3927. wake_up(&resync_wait);
  3928. return len;
  3929. }
  3930. /* force parallel resync, even with shared block devices */
  3931. static struct md_sysfs_entry md_sync_force_parallel =
  3932. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3933. sync_force_parallel_show, sync_force_parallel_store);
  3934. static ssize_t
  3935. sync_speed_show(struct mddev *mddev, char *page)
  3936. {
  3937. unsigned long resync, dt, db;
  3938. if (mddev->curr_resync == 0)
  3939. return sprintf(page, "none\n");
  3940. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3941. dt = (jiffies - mddev->resync_mark) / HZ;
  3942. if (!dt) dt++;
  3943. db = resync - mddev->resync_mark_cnt;
  3944. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3945. }
  3946. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3947. static ssize_t
  3948. sync_completed_show(struct mddev *mddev, char *page)
  3949. {
  3950. unsigned long long max_sectors, resync;
  3951. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3952. return sprintf(page, "none\n");
  3953. if (mddev->curr_resync == 1 ||
  3954. mddev->curr_resync == 2)
  3955. return sprintf(page, "delayed\n");
  3956. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3957. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3958. max_sectors = mddev->resync_max_sectors;
  3959. else
  3960. max_sectors = mddev->dev_sectors;
  3961. resync = mddev->curr_resync_completed;
  3962. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3963. }
  3964. static struct md_sysfs_entry md_sync_completed =
  3965. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3966. static ssize_t
  3967. min_sync_show(struct mddev *mddev, char *page)
  3968. {
  3969. return sprintf(page, "%llu\n",
  3970. (unsigned long long)mddev->resync_min);
  3971. }
  3972. static ssize_t
  3973. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3974. {
  3975. unsigned long long min;
  3976. int err;
  3977. if (kstrtoull(buf, 10, &min))
  3978. return -EINVAL;
  3979. spin_lock(&mddev->lock);
  3980. err = -EINVAL;
  3981. if (min > mddev->resync_max)
  3982. goto out_unlock;
  3983. err = -EBUSY;
  3984. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3985. goto out_unlock;
  3986. /* Round down to multiple of 4K for safety */
  3987. mddev->resync_min = round_down(min, 8);
  3988. err = 0;
  3989. out_unlock:
  3990. spin_unlock(&mddev->lock);
  3991. return err ?: len;
  3992. }
  3993. static struct md_sysfs_entry md_min_sync =
  3994. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3995. static ssize_t
  3996. max_sync_show(struct mddev *mddev, char *page)
  3997. {
  3998. if (mddev->resync_max == MaxSector)
  3999. return sprintf(page, "max\n");
  4000. else
  4001. return sprintf(page, "%llu\n",
  4002. (unsigned long long)mddev->resync_max);
  4003. }
  4004. static ssize_t
  4005. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4006. {
  4007. int err;
  4008. spin_lock(&mddev->lock);
  4009. if (strncmp(buf, "max", 3) == 0)
  4010. mddev->resync_max = MaxSector;
  4011. else {
  4012. unsigned long long max;
  4013. int chunk;
  4014. err = -EINVAL;
  4015. if (kstrtoull(buf, 10, &max))
  4016. goto out_unlock;
  4017. if (max < mddev->resync_min)
  4018. goto out_unlock;
  4019. err = -EBUSY;
  4020. if (max < mddev->resync_max &&
  4021. mddev->ro == 0 &&
  4022. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4023. goto out_unlock;
  4024. /* Must be a multiple of chunk_size */
  4025. chunk = mddev->chunk_sectors;
  4026. if (chunk) {
  4027. sector_t temp = max;
  4028. err = -EINVAL;
  4029. if (sector_div(temp, chunk))
  4030. goto out_unlock;
  4031. }
  4032. mddev->resync_max = max;
  4033. }
  4034. wake_up(&mddev->recovery_wait);
  4035. err = 0;
  4036. out_unlock:
  4037. spin_unlock(&mddev->lock);
  4038. return err ?: len;
  4039. }
  4040. static struct md_sysfs_entry md_max_sync =
  4041. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4042. static ssize_t
  4043. suspend_lo_show(struct mddev *mddev, char *page)
  4044. {
  4045. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4046. }
  4047. static ssize_t
  4048. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4049. {
  4050. char *e;
  4051. unsigned long long new = simple_strtoull(buf, &e, 10);
  4052. unsigned long long old;
  4053. int err;
  4054. if (buf == e || (*e && *e != '\n'))
  4055. return -EINVAL;
  4056. err = mddev_lock(mddev);
  4057. if (err)
  4058. return err;
  4059. err = -EINVAL;
  4060. if (mddev->pers == NULL ||
  4061. mddev->pers->quiesce == NULL)
  4062. goto unlock;
  4063. old = mddev->suspend_lo;
  4064. mddev->suspend_lo = new;
  4065. if (new >= old)
  4066. /* Shrinking suspended region */
  4067. mddev->pers->quiesce(mddev, 2);
  4068. else {
  4069. /* Expanding suspended region - need to wait */
  4070. mddev->pers->quiesce(mddev, 1);
  4071. mddev->pers->quiesce(mddev, 0);
  4072. }
  4073. err = 0;
  4074. unlock:
  4075. mddev_unlock(mddev);
  4076. return err ?: len;
  4077. }
  4078. static struct md_sysfs_entry md_suspend_lo =
  4079. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4080. static ssize_t
  4081. suspend_hi_show(struct mddev *mddev, char *page)
  4082. {
  4083. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4084. }
  4085. static ssize_t
  4086. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4087. {
  4088. char *e;
  4089. unsigned long long new = simple_strtoull(buf, &e, 10);
  4090. unsigned long long old;
  4091. int err;
  4092. if (buf == e || (*e && *e != '\n'))
  4093. return -EINVAL;
  4094. err = mddev_lock(mddev);
  4095. if (err)
  4096. return err;
  4097. err = -EINVAL;
  4098. if (mddev->pers == NULL ||
  4099. mddev->pers->quiesce == NULL)
  4100. goto unlock;
  4101. old = mddev->suspend_hi;
  4102. mddev->suspend_hi = new;
  4103. if (new <= old)
  4104. /* Shrinking suspended region */
  4105. mddev->pers->quiesce(mddev, 2);
  4106. else {
  4107. /* Expanding suspended region - need to wait */
  4108. mddev->pers->quiesce(mddev, 1);
  4109. mddev->pers->quiesce(mddev, 0);
  4110. }
  4111. err = 0;
  4112. unlock:
  4113. mddev_unlock(mddev);
  4114. return err ?: len;
  4115. }
  4116. static struct md_sysfs_entry md_suspend_hi =
  4117. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4118. static ssize_t
  4119. reshape_position_show(struct mddev *mddev, char *page)
  4120. {
  4121. if (mddev->reshape_position != MaxSector)
  4122. return sprintf(page, "%llu\n",
  4123. (unsigned long long)mddev->reshape_position);
  4124. strcpy(page, "none\n");
  4125. return 5;
  4126. }
  4127. static ssize_t
  4128. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4129. {
  4130. struct md_rdev *rdev;
  4131. char *e;
  4132. int err;
  4133. unsigned long long new = simple_strtoull(buf, &e, 10);
  4134. if (buf == e || (*e && *e != '\n'))
  4135. return -EINVAL;
  4136. err = mddev_lock(mddev);
  4137. if (err)
  4138. return err;
  4139. err = -EBUSY;
  4140. if (mddev->pers)
  4141. goto unlock;
  4142. mddev->reshape_position = new;
  4143. mddev->delta_disks = 0;
  4144. mddev->reshape_backwards = 0;
  4145. mddev->new_level = mddev->level;
  4146. mddev->new_layout = mddev->layout;
  4147. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4148. rdev_for_each(rdev, mddev)
  4149. rdev->new_data_offset = rdev->data_offset;
  4150. err = 0;
  4151. unlock:
  4152. mddev_unlock(mddev);
  4153. return err ?: len;
  4154. }
  4155. static struct md_sysfs_entry md_reshape_position =
  4156. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4157. reshape_position_store);
  4158. static ssize_t
  4159. reshape_direction_show(struct mddev *mddev, char *page)
  4160. {
  4161. return sprintf(page, "%s\n",
  4162. mddev->reshape_backwards ? "backwards" : "forwards");
  4163. }
  4164. static ssize_t
  4165. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4166. {
  4167. int backwards = 0;
  4168. int err;
  4169. if (cmd_match(buf, "forwards"))
  4170. backwards = 0;
  4171. else if (cmd_match(buf, "backwards"))
  4172. backwards = 1;
  4173. else
  4174. return -EINVAL;
  4175. if (mddev->reshape_backwards == backwards)
  4176. return len;
  4177. err = mddev_lock(mddev);
  4178. if (err)
  4179. return err;
  4180. /* check if we are allowed to change */
  4181. if (mddev->delta_disks)
  4182. err = -EBUSY;
  4183. else if (mddev->persistent &&
  4184. mddev->major_version == 0)
  4185. err = -EINVAL;
  4186. else
  4187. mddev->reshape_backwards = backwards;
  4188. mddev_unlock(mddev);
  4189. return err ?: len;
  4190. }
  4191. static struct md_sysfs_entry md_reshape_direction =
  4192. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4193. reshape_direction_store);
  4194. static ssize_t
  4195. array_size_show(struct mddev *mddev, char *page)
  4196. {
  4197. if (mddev->external_size)
  4198. return sprintf(page, "%llu\n",
  4199. (unsigned long long)mddev->array_sectors/2);
  4200. else
  4201. return sprintf(page, "default\n");
  4202. }
  4203. static ssize_t
  4204. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4205. {
  4206. sector_t sectors;
  4207. int err;
  4208. err = mddev_lock(mddev);
  4209. if (err)
  4210. return err;
  4211. if (strncmp(buf, "default", 7) == 0) {
  4212. if (mddev->pers)
  4213. sectors = mddev->pers->size(mddev, 0, 0);
  4214. else
  4215. sectors = mddev->array_sectors;
  4216. mddev->external_size = 0;
  4217. } else {
  4218. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4219. err = -EINVAL;
  4220. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4221. err = -E2BIG;
  4222. else
  4223. mddev->external_size = 1;
  4224. }
  4225. if (!err) {
  4226. mddev->array_sectors = sectors;
  4227. if (mddev->pers) {
  4228. set_capacity(mddev->gendisk, mddev->array_sectors);
  4229. revalidate_disk(mddev->gendisk);
  4230. }
  4231. }
  4232. mddev_unlock(mddev);
  4233. return err ?: len;
  4234. }
  4235. static struct md_sysfs_entry md_array_size =
  4236. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4237. array_size_store);
  4238. static struct attribute *md_default_attrs[] = {
  4239. &md_level.attr,
  4240. &md_layout.attr,
  4241. &md_raid_disks.attr,
  4242. &md_chunk_size.attr,
  4243. &md_size.attr,
  4244. &md_resync_start.attr,
  4245. &md_metadata.attr,
  4246. &md_new_device.attr,
  4247. &md_safe_delay.attr,
  4248. &md_array_state.attr,
  4249. &md_reshape_position.attr,
  4250. &md_reshape_direction.attr,
  4251. &md_array_size.attr,
  4252. &max_corr_read_errors.attr,
  4253. NULL,
  4254. };
  4255. static struct attribute *md_redundancy_attrs[] = {
  4256. &md_scan_mode.attr,
  4257. &md_last_scan_mode.attr,
  4258. &md_mismatches.attr,
  4259. &md_sync_min.attr,
  4260. &md_sync_max.attr,
  4261. &md_sync_speed.attr,
  4262. &md_sync_force_parallel.attr,
  4263. &md_sync_completed.attr,
  4264. &md_min_sync.attr,
  4265. &md_max_sync.attr,
  4266. &md_suspend_lo.attr,
  4267. &md_suspend_hi.attr,
  4268. &md_bitmap.attr,
  4269. &md_degraded.attr,
  4270. NULL,
  4271. };
  4272. static struct attribute_group md_redundancy_group = {
  4273. .name = NULL,
  4274. .attrs = md_redundancy_attrs,
  4275. };
  4276. static ssize_t
  4277. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4278. {
  4279. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4280. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4281. ssize_t rv;
  4282. if (!entry->show)
  4283. return -EIO;
  4284. spin_lock(&all_mddevs_lock);
  4285. if (list_empty(&mddev->all_mddevs)) {
  4286. spin_unlock(&all_mddevs_lock);
  4287. return -EBUSY;
  4288. }
  4289. mddev_get(mddev);
  4290. spin_unlock(&all_mddevs_lock);
  4291. rv = entry->show(mddev, page);
  4292. mddev_put(mddev);
  4293. return rv;
  4294. }
  4295. static ssize_t
  4296. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4297. const char *page, size_t length)
  4298. {
  4299. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4300. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4301. ssize_t rv;
  4302. if (!entry->store)
  4303. return -EIO;
  4304. if (!capable(CAP_SYS_ADMIN))
  4305. return -EACCES;
  4306. spin_lock(&all_mddevs_lock);
  4307. if (list_empty(&mddev->all_mddevs)) {
  4308. spin_unlock(&all_mddevs_lock);
  4309. return -EBUSY;
  4310. }
  4311. mddev_get(mddev);
  4312. spin_unlock(&all_mddevs_lock);
  4313. rv = entry->store(mddev, page, length);
  4314. mddev_put(mddev);
  4315. return rv;
  4316. }
  4317. static void md_free(struct kobject *ko)
  4318. {
  4319. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4320. if (mddev->sysfs_state)
  4321. sysfs_put(mddev->sysfs_state);
  4322. if (mddev->queue)
  4323. blk_cleanup_queue(mddev->queue);
  4324. if (mddev->gendisk) {
  4325. del_gendisk(mddev->gendisk);
  4326. put_disk(mddev->gendisk);
  4327. }
  4328. kfree(mddev);
  4329. }
  4330. static const struct sysfs_ops md_sysfs_ops = {
  4331. .show = md_attr_show,
  4332. .store = md_attr_store,
  4333. };
  4334. static struct kobj_type md_ktype = {
  4335. .release = md_free,
  4336. .sysfs_ops = &md_sysfs_ops,
  4337. .default_attrs = md_default_attrs,
  4338. };
  4339. int mdp_major = 0;
  4340. static void mddev_delayed_delete(struct work_struct *ws)
  4341. {
  4342. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4343. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4344. kobject_del(&mddev->kobj);
  4345. kobject_put(&mddev->kobj);
  4346. }
  4347. static int md_alloc(dev_t dev, char *name)
  4348. {
  4349. static DEFINE_MUTEX(disks_mutex);
  4350. struct mddev *mddev = mddev_find(dev);
  4351. struct gendisk *disk;
  4352. int partitioned;
  4353. int shift;
  4354. int unit;
  4355. int error;
  4356. if (!mddev)
  4357. return -ENODEV;
  4358. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4359. shift = partitioned ? MdpMinorShift : 0;
  4360. unit = MINOR(mddev->unit) >> shift;
  4361. /* wait for any previous instance of this device to be
  4362. * completely removed (mddev_delayed_delete).
  4363. */
  4364. flush_workqueue(md_misc_wq);
  4365. mutex_lock(&disks_mutex);
  4366. error = -EEXIST;
  4367. if (mddev->gendisk)
  4368. goto abort;
  4369. if (name) {
  4370. /* Need to ensure that 'name' is not a duplicate.
  4371. */
  4372. struct mddev *mddev2;
  4373. spin_lock(&all_mddevs_lock);
  4374. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4375. if (mddev2->gendisk &&
  4376. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4377. spin_unlock(&all_mddevs_lock);
  4378. goto abort;
  4379. }
  4380. spin_unlock(&all_mddevs_lock);
  4381. }
  4382. error = -ENOMEM;
  4383. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4384. if (!mddev->queue)
  4385. goto abort;
  4386. mddev->queue->queuedata = mddev;
  4387. blk_queue_make_request(mddev->queue, md_make_request);
  4388. blk_set_stacking_limits(&mddev->queue->limits);
  4389. disk = alloc_disk(1 << shift);
  4390. if (!disk) {
  4391. blk_cleanup_queue(mddev->queue);
  4392. mddev->queue = NULL;
  4393. goto abort;
  4394. }
  4395. disk->major = MAJOR(mddev->unit);
  4396. disk->first_minor = unit << shift;
  4397. if (name)
  4398. strcpy(disk->disk_name, name);
  4399. else if (partitioned)
  4400. sprintf(disk->disk_name, "md_d%d", unit);
  4401. else
  4402. sprintf(disk->disk_name, "md%d", unit);
  4403. disk->fops = &md_fops;
  4404. disk->private_data = mddev;
  4405. disk->queue = mddev->queue;
  4406. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4407. /* Allow extended partitions. This makes the
  4408. * 'mdp' device redundant, but we can't really
  4409. * remove it now.
  4410. */
  4411. disk->flags |= GENHD_FL_EXT_DEVT;
  4412. mddev->gendisk = disk;
  4413. /* As soon as we call add_disk(), another thread could get
  4414. * through to md_open, so make sure it doesn't get too far
  4415. */
  4416. mutex_lock(&mddev->open_mutex);
  4417. add_disk(disk);
  4418. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4419. &disk_to_dev(disk)->kobj, "%s", "md");
  4420. if (error) {
  4421. /* This isn't possible, but as kobject_init_and_add is marked
  4422. * __must_check, we must do something with the result
  4423. */
  4424. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4425. disk->disk_name);
  4426. error = 0;
  4427. }
  4428. if (mddev->kobj.sd &&
  4429. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4430. printk(KERN_DEBUG "pointless warning\n");
  4431. mutex_unlock(&mddev->open_mutex);
  4432. abort:
  4433. mutex_unlock(&disks_mutex);
  4434. if (!error && mddev->kobj.sd) {
  4435. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4436. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4437. }
  4438. mddev_put(mddev);
  4439. return error;
  4440. }
  4441. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4442. {
  4443. md_alloc(dev, NULL);
  4444. return NULL;
  4445. }
  4446. static int add_named_array(const char *val, struct kernel_param *kp)
  4447. {
  4448. /* val must be "md_*" where * is not all digits.
  4449. * We allocate an array with a large free minor number, and
  4450. * set the name to val. val must not already be an active name.
  4451. */
  4452. int len = strlen(val);
  4453. char buf[DISK_NAME_LEN];
  4454. while (len && val[len-1] == '\n')
  4455. len--;
  4456. if (len >= DISK_NAME_LEN)
  4457. return -E2BIG;
  4458. strlcpy(buf, val, len+1);
  4459. if (strncmp(buf, "md_", 3) != 0)
  4460. return -EINVAL;
  4461. return md_alloc(0, buf);
  4462. }
  4463. static void md_safemode_timeout(unsigned long data)
  4464. {
  4465. struct mddev *mddev = (struct mddev *) data;
  4466. if (!atomic_read(&mddev->writes_pending)) {
  4467. mddev->safemode = 1;
  4468. if (mddev->external)
  4469. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4470. }
  4471. md_wakeup_thread(mddev->thread);
  4472. }
  4473. static int start_dirty_degraded;
  4474. int md_run(struct mddev *mddev)
  4475. {
  4476. int err;
  4477. struct md_rdev *rdev;
  4478. struct md_personality *pers;
  4479. if (list_empty(&mddev->disks))
  4480. /* cannot run an array with no devices.. */
  4481. return -EINVAL;
  4482. if (mddev->pers)
  4483. return -EBUSY;
  4484. /* Cannot run until previous stop completes properly */
  4485. if (mddev->sysfs_active)
  4486. return -EBUSY;
  4487. /*
  4488. * Analyze all RAID superblock(s)
  4489. */
  4490. if (!mddev->raid_disks) {
  4491. if (!mddev->persistent)
  4492. return -EINVAL;
  4493. analyze_sbs(mddev);
  4494. }
  4495. if (mddev->level != LEVEL_NONE)
  4496. request_module("md-level-%d", mddev->level);
  4497. else if (mddev->clevel[0])
  4498. request_module("md-%s", mddev->clevel);
  4499. /*
  4500. * Drop all container device buffers, from now on
  4501. * the only valid external interface is through the md
  4502. * device.
  4503. */
  4504. rdev_for_each(rdev, mddev) {
  4505. if (test_bit(Faulty, &rdev->flags))
  4506. continue;
  4507. sync_blockdev(rdev->bdev);
  4508. invalidate_bdev(rdev->bdev);
  4509. /* perform some consistency tests on the device.
  4510. * We don't want the data to overlap the metadata,
  4511. * Internal Bitmap issues have been handled elsewhere.
  4512. */
  4513. if (rdev->meta_bdev) {
  4514. /* Nothing to check */;
  4515. } else if (rdev->data_offset < rdev->sb_start) {
  4516. if (mddev->dev_sectors &&
  4517. rdev->data_offset + mddev->dev_sectors
  4518. > rdev->sb_start) {
  4519. printk("md: %s: data overlaps metadata\n",
  4520. mdname(mddev));
  4521. return -EINVAL;
  4522. }
  4523. } else {
  4524. if (rdev->sb_start + rdev->sb_size/512
  4525. > rdev->data_offset) {
  4526. printk("md: %s: metadata overlaps data\n",
  4527. mdname(mddev));
  4528. return -EINVAL;
  4529. }
  4530. }
  4531. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4532. }
  4533. if (mddev->bio_set == NULL)
  4534. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4535. spin_lock(&pers_lock);
  4536. pers = find_pers(mddev->level, mddev->clevel);
  4537. if (!pers || !try_module_get(pers->owner)) {
  4538. spin_unlock(&pers_lock);
  4539. if (mddev->level != LEVEL_NONE)
  4540. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4541. mddev->level);
  4542. else
  4543. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4544. mddev->clevel);
  4545. return -EINVAL;
  4546. }
  4547. spin_unlock(&pers_lock);
  4548. if (mddev->level != pers->level) {
  4549. mddev->level = pers->level;
  4550. mddev->new_level = pers->level;
  4551. }
  4552. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4553. if (mddev->reshape_position != MaxSector &&
  4554. pers->start_reshape == NULL) {
  4555. /* This personality cannot handle reshaping... */
  4556. module_put(pers->owner);
  4557. return -EINVAL;
  4558. }
  4559. if (pers->sync_request) {
  4560. /* Warn if this is a potentially silly
  4561. * configuration.
  4562. */
  4563. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4564. struct md_rdev *rdev2;
  4565. int warned = 0;
  4566. rdev_for_each(rdev, mddev)
  4567. rdev_for_each(rdev2, mddev) {
  4568. if (rdev < rdev2 &&
  4569. rdev->bdev->bd_contains ==
  4570. rdev2->bdev->bd_contains) {
  4571. printk(KERN_WARNING
  4572. "%s: WARNING: %s appears to be"
  4573. " on the same physical disk as"
  4574. " %s.\n",
  4575. mdname(mddev),
  4576. bdevname(rdev->bdev,b),
  4577. bdevname(rdev2->bdev,b2));
  4578. warned = 1;
  4579. }
  4580. }
  4581. if (warned)
  4582. printk(KERN_WARNING
  4583. "True protection against single-disk"
  4584. " failure might be compromised.\n");
  4585. }
  4586. mddev->recovery = 0;
  4587. /* may be over-ridden by personality */
  4588. mddev->resync_max_sectors = mddev->dev_sectors;
  4589. mddev->ok_start_degraded = start_dirty_degraded;
  4590. if (start_readonly && mddev->ro == 0)
  4591. mddev->ro = 2; /* read-only, but switch on first write */
  4592. err = pers->run(mddev);
  4593. if (err)
  4594. printk(KERN_ERR "md: pers->run() failed ...\n");
  4595. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4596. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4597. " but 'external_size' not in effect?\n", __func__);
  4598. printk(KERN_ERR
  4599. "md: invalid array_size %llu > default size %llu\n",
  4600. (unsigned long long)mddev->array_sectors / 2,
  4601. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4602. err = -EINVAL;
  4603. }
  4604. if (err == 0 && pers->sync_request &&
  4605. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4606. struct bitmap *bitmap;
  4607. bitmap = bitmap_create(mddev, -1);
  4608. if (IS_ERR(bitmap)) {
  4609. err = PTR_ERR(bitmap);
  4610. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4611. mdname(mddev), err);
  4612. } else
  4613. mddev->bitmap = bitmap;
  4614. }
  4615. if (err) {
  4616. mddev_detach(mddev);
  4617. if (mddev->private)
  4618. pers->free(mddev, mddev->private);
  4619. module_put(pers->owner);
  4620. bitmap_destroy(mddev);
  4621. return err;
  4622. }
  4623. if (mddev->queue) {
  4624. mddev->queue->backing_dev_info.congested_data = mddev;
  4625. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4626. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4627. }
  4628. if (pers->sync_request) {
  4629. if (mddev->kobj.sd &&
  4630. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4631. printk(KERN_WARNING
  4632. "md: cannot register extra attributes for %s\n",
  4633. mdname(mddev));
  4634. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4635. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4636. mddev->ro = 0;
  4637. atomic_set(&mddev->writes_pending,0);
  4638. atomic_set(&mddev->max_corr_read_errors,
  4639. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4640. mddev->safemode = 0;
  4641. mddev->safemode_timer.function = md_safemode_timeout;
  4642. mddev->safemode_timer.data = (unsigned long) mddev;
  4643. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4644. mddev->in_sync = 1;
  4645. smp_wmb();
  4646. spin_lock(&mddev->lock);
  4647. mddev->pers = pers;
  4648. mddev->ready = 1;
  4649. spin_unlock(&mddev->lock);
  4650. rdev_for_each(rdev, mddev)
  4651. if (rdev->raid_disk >= 0)
  4652. if (sysfs_link_rdev(mddev, rdev))
  4653. /* failure here is OK */;
  4654. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4655. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4656. md_update_sb(mddev, 0);
  4657. md_new_event(mddev);
  4658. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4659. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4660. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4661. return 0;
  4662. }
  4663. EXPORT_SYMBOL_GPL(md_run);
  4664. static int do_md_run(struct mddev *mddev)
  4665. {
  4666. int err;
  4667. err = md_run(mddev);
  4668. if (err)
  4669. goto out;
  4670. err = bitmap_load(mddev);
  4671. if (err) {
  4672. bitmap_destroy(mddev);
  4673. goto out;
  4674. }
  4675. md_wakeup_thread(mddev->thread);
  4676. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4677. set_capacity(mddev->gendisk, mddev->array_sectors);
  4678. revalidate_disk(mddev->gendisk);
  4679. mddev->changed = 1;
  4680. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4681. out:
  4682. return err;
  4683. }
  4684. static int restart_array(struct mddev *mddev)
  4685. {
  4686. struct gendisk *disk = mddev->gendisk;
  4687. /* Complain if it has no devices */
  4688. if (list_empty(&mddev->disks))
  4689. return -ENXIO;
  4690. if (!mddev->pers)
  4691. return -EINVAL;
  4692. if (!mddev->ro)
  4693. return -EBUSY;
  4694. mddev->safemode = 0;
  4695. mddev->ro = 0;
  4696. set_disk_ro(disk, 0);
  4697. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4698. mdname(mddev));
  4699. /* Kick recovery or resync if necessary */
  4700. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4701. md_wakeup_thread(mddev->thread);
  4702. md_wakeup_thread(mddev->sync_thread);
  4703. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4704. return 0;
  4705. }
  4706. static void md_clean(struct mddev *mddev)
  4707. {
  4708. mddev->array_sectors = 0;
  4709. mddev->external_size = 0;
  4710. mddev->dev_sectors = 0;
  4711. mddev->raid_disks = 0;
  4712. mddev->recovery_cp = 0;
  4713. mddev->resync_min = 0;
  4714. mddev->resync_max = MaxSector;
  4715. mddev->reshape_position = MaxSector;
  4716. mddev->external = 0;
  4717. mddev->persistent = 0;
  4718. mddev->level = LEVEL_NONE;
  4719. mddev->clevel[0] = 0;
  4720. mddev->flags = 0;
  4721. mddev->ro = 0;
  4722. mddev->metadata_type[0] = 0;
  4723. mddev->chunk_sectors = 0;
  4724. mddev->ctime = mddev->utime = 0;
  4725. mddev->layout = 0;
  4726. mddev->max_disks = 0;
  4727. mddev->events = 0;
  4728. mddev->can_decrease_events = 0;
  4729. mddev->delta_disks = 0;
  4730. mddev->reshape_backwards = 0;
  4731. mddev->new_level = LEVEL_NONE;
  4732. mddev->new_layout = 0;
  4733. mddev->new_chunk_sectors = 0;
  4734. mddev->curr_resync = 0;
  4735. atomic64_set(&mddev->resync_mismatches, 0);
  4736. mddev->suspend_lo = mddev->suspend_hi = 0;
  4737. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4738. mddev->recovery = 0;
  4739. mddev->in_sync = 0;
  4740. mddev->changed = 0;
  4741. mddev->degraded = 0;
  4742. mddev->safemode = 0;
  4743. mddev->merge_check_needed = 0;
  4744. mddev->bitmap_info.offset = 0;
  4745. mddev->bitmap_info.default_offset = 0;
  4746. mddev->bitmap_info.default_space = 0;
  4747. mddev->bitmap_info.chunksize = 0;
  4748. mddev->bitmap_info.daemon_sleep = 0;
  4749. mddev->bitmap_info.max_write_behind = 0;
  4750. }
  4751. static void __md_stop_writes(struct mddev *mddev)
  4752. {
  4753. if (mddev_is_clustered(mddev))
  4754. md_cluster_ops->metadata_update_start(mddev);
  4755. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4756. flush_workqueue(md_misc_wq);
  4757. if (mddev->sync_thread) {
  4758. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4759. md_reap_sync_thread(mddev);
  4760. }
  4761. del_timer_sync(&mddev->safemode_timer);
  4762. bitmap_flush(mddev);
  4763. md_super_wait(mddev);
  4764. if (mddev->ro == 0 &&
  4765. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4766. /* mark array as shutdown cleanly */
  4767. mddev->in_sync = 1;
  4768. md_update_sb(mddev, 1);
  4769. }
  4770. if (mddev_is_clustered(mddev))
  4771. md_cluster_ops->metadata_update_finish(mddev);
  4772. }
  4773. void md_stop_writes(struct mddev *mddev)
  4774. {
  4775. mddev_lock_nointr(mddev);
  4776. __md_stop_writes(mddev);
  4777. mddev_unlock(mddev);
  4778. }
  4779. EXPORT_SYMBOL_GPL(md_stop_writes);
  4780. static void mddev_detach(struct mddev *mddev)
  4781. {
  4782. struct bitmap *bitmap = mddev->bitmap;
  4783. /* wait for behind writes to complete */
  4784. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4785. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4786. mdname(mddev));
  4787. /* need to kick something here to make sure I/O goes? */
  4788. wait_event(bitmap->behind_wait,
  4789. atomic_read(&bitmap->behind_writes) == 0);
  4790. }
  4791. if (mddev->pers && mddev->pers->quiesce) {
  4792. mddev->pers->quiesce(mddev, 1);
  4793. mddev->pers->quiesce(mddev, 0);
  4794. }
  4795. md_unregister_thread(&mddev->thread);
  4796. if (mddev->queue)
  4797. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4798. }
  4799. static void __md_stop(struct mddev *mddev)
  4800. {
  4801. struct md_personality *pers = mddev->pers;
  4802. mddev_detach(mddev);
  4803. spin_lock(&mddev->lock);
  4804. mddev->ready = 0;
  4805. mddev->pers = NULL;
  4806. spin_unlock(&mddev->lock);
  4807. pers->free(mddev, mddev->private);
  4808. if (pers->sync_request && mddev->to_remove == NULL)
  4809. mddev->to_remove = &md_redundancy_group;
  4810. module_put(pers->owner);
  4811. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4812. }
  4813. void md_stop(struct mddev *mddev)
  4814. {
  4815. /* stop the array and free an attached data structures.
  4816. * This is called from dm-raid
  4817. */
  4818. __md_stop(mddev);
  4819. bitmap_destroy(mddev);
  4820. if (mddev->bio_set)
  4821. bioset_free(mddev->bio_set);
  4822. }
  4823. EXPORT_SYMBOL_GPL(md_stop);
  4824. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4825. {
  4826. int err = 0;
  4827. int did_freeze = 0;
  4828. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4829. did_freeze = 1;
  4830. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4831. md_wakeup_thread(mddev->thread);
  4832. }
  4833. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4834. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4835. if (mddev->sync_thread)
  4836. /* Thread might be blocked waiting for metadata update
  4837. * which will now never happen */
  4838. wake_up_process(mddev->sync_thread->tsk);
  4839. mddev_unlock(mddev);
  4840. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4841. &mddev->recovery));
  4842. mddev_lock_nointr(mddev);
  4843. mutex_lock(&mddev->open_mutex);
  4844. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4845. mddev->sync_thread ||
  4846. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4847. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4848. printk("md: %s still in use.\n",mdname(mddev));
  4849. if (did_freeze) {
  4850. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4851. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4852. md_wakeup_thread(mddev->thread);
  4853. }
  4854. err = -EBUSY;
  4855. goto out;
  4856. }
  4857. if (mddev->pers) {
  4858. __md_stop_writes(mddev);
  4859. err = -ENXIO;
  4860. if (mddev->ro==1)
  4861. goto out;
  4862. mddev->ro = 1;
  4863. set_disk_ro(mddev->gendisk, 1);
  4864. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4865. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4866. md_wakeup_thread(mddev->thread);
  4867. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4868. err = 0;
  4869. }
  4870. out:
  4871. mutex_unlock(&mddev->open_mutex);
  4872. return err;
  4873. }
  4874. /* mode:
  4875. * 0 - completely stop and dis-assemble array
  4876. * 2 - stop but do not disassemble array
  4877. */
  4878. static int do_md_stop(struct mddev *mddev, int mode,
  4879. struct block_device *bdev)
  4880. {
  4881. struct gendisk *disk = mddev->gendisk;
  4882. struct md_rdev *rdev;
  4883. int did_freeze = 0;
  4884. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4885. did_freeze = 1;
  4886. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4887. md_wakeup_thread(mddev->thread);
  4888. }
  4889. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4890. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4891. if (mddev->sync_thread)
  4892. /* Thread might be blocked waiting for metadata update
  4893. * which will now never happen */
  4894. wake_up_process(mddev->sync_thread->tsk);
  4895. mddev_unlock(mddev);
  4896. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4897. !test_bit(MD_RECOVERY_RUNNING,
  4898. &mddev->recovery)));
  4899. mddev_lock_nointr(mddev);
  4900. mutex_lock(&mddev->open_mutex);
  4901. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4902. mddev->sysfs_active ||
  4903. mddev->sync_thread ||
  4904. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4905. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4906. printk("md: %s still in use.\n",mdname(mddev));
  4907. mutex_unlock(&mddev->open_mutex);
  4908. if (did_freeze) {
  4909. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4910. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4911. md_wakeup_thread(mddev->thread);
  4912. }
  4913. return -EBUSY;
  4914. }
  4915. if (mddev->pers) {
  4916. if (mddev->ro)
  4917. set_disk_ro(disk, 0);
  4918. __md_stop_writes(mddev);
  4919. __md_stop(mddev);
  4920. mddev->queue->merge_bvec_fn = NULL;
  4921. mddev->queue->backing_dev_info.congested_fn = NULL;
  4922. /* tell userspace to handle 'inactive' */
  4923. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4924. rdev_for_each(rdev, mddev)
  4925. if (rdev->raid_disk >= 0)
  4926. sysfs_unlink_rdev(mddev, rdev);
  4927. set_capacity(disk, 0);
  4928. mutex_unlock(&mddev->open_mutex);
  4929. mddev->changed = 1;
  4930. revalidate_disk(disk);
  4931. if (mddev->ro)
  4932. mddev->ro = 0;
  4933. } else
  4934. mutex_unlock(&mddev->open_mutex);
  4935. /*
  4936. * Free resources if final stop
  4937. */
  4938. if (mode == 0) {
  4939. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4940. bitmap_destroy(mddev);
  4941. if (mddev->bitmap_info.file) {
  4942. struct file *f = mddev->bitmap_info.file;
  4943. spin_lock(&mddev->lock);
  4944. mddev->bitmap_info.file = NULL;
  4945. spin_unlock(&mddev->lock);
  4946. fput(f);
  4947. }
  4948. mddev->bitmap_info.offset = 0;
  4949. export_array(mddev);
  4950. md_clean(mddev);
  4951. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4952. if (mddev->hold_active == UNTIL_STOP)
  4953. mddev->hold_active = 0;
  4954. }
  4955. blk_integrity_unregister(disk);
  4956. md_new_event(mddev);
  4957. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4958. return 0;
  4959. }
  4960. #ifndef MODULE
  4961. static void autorun_array(struct mddev *mddev)
  4962. {
  4963. struct md_rdev *rdev;
  4964. int err;
  4965. if (list_empty(&mddev->disks))
  4966. return;
  4967. printk(KERN_INFO "md: running: ");
  4968. rdev_for_each(rdev, mddev) {
  4969. char b[BDEVNAME_SIZE];
  4970. printk("<%s>", bdevname(rdev->bdev,b));
  4971. }
  4972. printk("\n");
  4973. err = do_md_run(mddev);
  4974. if (err) {
  4975. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4976. do_md_stop(mddev, 0, NULL);
  4977. }
  4978. }
  4979. /*
  4980. * lets try to run arrays based on all disks that have arrived
  4981. * until now. (those are in pending_raid_disks)
  4982. *
  4983. * the method: pick the first pending disk, collect all disks with
  4984. * the same UUID, remove all from the pending list and put them into
  4985. * the 'same_array' list. Then order this list based on superblock
  4986. * update time (freshest comes first), kick out 'old' disks and
  4987. * compare superblocks. If everything's fine then run it.
  4988. *
  4989. * If "unit" is allocated, then bump its reference count
  4990. */
  4991. static void autorun_devices(int part)
  4992. {
  4993. struct md_rdev *rdev0, *rdev, *tmp;
  4994. struct mddev *mddev;
  4995. char b[BDEVNAME_SIZE];
  4996. printk(KERN_INFO "md: autorun ...\n");
  4997. while (!list_empty(&pending_raid_disks)) {
  4998. int unit;
  4999. dev_t dev;
  5000. LIST_HEAD(candidates);
  5001. rdev0 = list_entry(pending_raid_disks.next,
  5002. struct md_rdev, same_set);
  5003. printk(KERN_INFO "md: considering %s ...\n",
  5004. bdevname(rdev0->bdev,b));
  5005. INIT_LIST_HEAD(&candidates);
  5006. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5007. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5008. printk(KERN_INFO "md: adding %s ...\n",
  5009. bdevname(rdev->bdev,b));
  5010. list_move(&rdev->same_set, &candidates);
  5011. }
  5012. /*
  5013. * now we have a set of devices, with all of them having
  5014. * mostly sane superblocks. It's time to allocate the
  5015. * mddev.
  5016. */
  5017. if (part) {
  5018. dev = MKDEV(mdp_major,
  5019. rdev0->preferred_minor << MdpMinorShift);
  5020. unit = MINOR(dev) >> MdpMinorShift;
  5021. } else {
  5022. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5023. unit = MINOR(dev);
  5024. }
  5025. if (rdev0->preferred_minor != unit) {
  5026. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5027. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5028. break;
  5029. }
  5030. md_probe(dev, NULL, NULL);
  5031. mddev = mddev_find(dev);
  5032. if (!mddev || !mddev->gendisk) {
  5033. if (mddev)
  5034. mddev_put(mddev);
  5035. printk(KERN_ERR
  5036. "md: cannot allocate memory for md drive.\n");
  5037. break;
  5038. }
  5039. if (mddev_lock(mddev))
  5040. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5041. mdname(mddev));
  5042. else if (mddev->raid_disks || mddev->major_version
  5043. || !list_empty(&mddev->disks)) {
  5044. printk(KERN_WARNING
  5045. "md: %s already running, cannot run %s\n",
  5046. mdname(mddev), bdevname(rdev0->bdev,b));
  5047. mddev_unlock(mddev);
  5048. } else {
  5049. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5050. mddev->persistent = 1;
  5051. rdev_for_each_list(rdev, tmp, &candidates) {
  5052. list_del_init(&rdev->same_set);
  5053. if (bind_rdev_to_array(rdev, mddev))
  5054. export_rdev(rdev);
  5055. }
  5056. autorun_array(mddev);
  5057. mddev_unlock(mddev);
  5058. }
  5059. /* on success, candidates will be empty, on error
  5060. * it won't...
  5061. */
  5062. rdev_for_each_list(rdev, tmp, &candidates) {
  5063. list_del_init(&rdev->same_set);
  5064. export_rdev(rdev);
  5065. }
  5066. mddev_put(mddev);
  5067. }
  5068. printk(KERN_INFO "md: ... autorun DONE.\n");
  5069. }
  5070. #endif /* !MODULE */
  5071. static int get_version(void __user *arg)
  5072. {
  5073. mdu_version_t ver;
  5074. ver.major = MD_MAJOR_VERSION;
  5075. ver.minor = MD_MINOR_VERSION;
  5076. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5077. if (copy_to_user(arg, &ver, sizeof(ver)))
  5078. return -EFAULT;
  5079. return 0;
  5080. }
  5081. static int get_array_info(struct mddev *mddev, void __user *arg)
  5082. {
  5083. mdu_array_info_t info;
  5084. int nr,working,insync,failed,spare;
  5085. struct md_rdev *rdev;
  5086. nr = working = insync = failed = spare = 0;
  5087. rcu_read_lock();
  5088. rdev_for_each_rcu(rdev, mddev) {
  5089. nr++;
  5090. if (test_bit(Faulty, &rdev->flags))
  5091. failed++;
  5092. else {
  5093. working++;
  5094. if (test_bit(In_sync, &rdev->flags))
  5095. insync++;
  5096. else
  5097. spare++;
  5098. }
  5099. }
  5100. rcu_read_unlock();
  5101. info.major_version = mddev->major_version;
  5102. info.minor_version = mddev->minor_version;
  5103. info.patch_version = MD_PATCHLEVEL_VERSION;
  5104. info.ctime = mddev->ctime;
  5105. info.level = mddev->level;
  5106. info.size = mddev->dev_sectors / 2;
  5107. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5108. info.size = -1;
  5109. info.nr_disks = nr;
  5110. info.raid_disks = mddev->raid_disks;
  5111. info.md_minor = mddev->md_minor;
  5112. info.not_persistent= !mddev->persistent;
  5113. info.utime = mddev->utime;
  5114. info.state = 0;
  5115. if (mddev->in_sync)
  5116. info.state = (1<<MD_SB_CLEAN);
  5117. if (mddev->bitmap && mddev->bitmap_info.offset)
  5118. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5119. if (mddev_is_clustered(mddev))
  5120. info.state |= (1<<MD_SB_CLUSTERED);
  5121. info.active_disks = insync;
  5122. info.working_disks = working;
  5123. info.failed_disks = failed;
  5124. info.spare_disks = spare;
  5125. info.layout = mddev->layout;
  5126. info.chunk_size = mddev->chunk_sectors << 9;
  5127. if (copy_to_user(arg, &info, sizeof(info)))
  5128. return -EFAULT;
  5129. return 0;
  5130. }
  5131. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5132. {
  5133. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5134. char *ptr;
  5135. int err;
  5136. file = kmalloc(sizeof(*file), GFP_NOIO);
  5137. if (!file)
  5138. return -ENOMEM;
  5139. err = 0;
  5140. spin_lock(&mddev->lock);
  5141. /* bitmap disabled, zero the first byte and copy out */
  5142. if (!mddev->bitmap_info.file)
  5143. file->pathname[0] = '\0';
  5144. else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
  5145. file->pathname, sizeof(file->pathname))),
  5146. IS_ERR(ptr))
  5147. err = PTR_ERR(ptr);
  5148. else
  5149. memmove(file->pathname, ptr,
  5150. sizeof(file->pathname)-(ptr-file->pathname));
  5151. spin_unlock(&mddev->lock);
  5152. if (err == 0 &&
  5153. copy_to_user(arg, file, sizeof(*file)))
  5154. err = -EFAULT;
  5155. kfree(file);
  5156. return err;
  5157. }
  5158. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5159. {
  5160. mdu_disk_info_t info;
  5161. struct md_rdev *rdev;
  5162. if (copy_from_user(&info, arg, sizeof(info)))
  5163. return -EFAULT;
  5164. rcu_read_lock();
  5165. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5166. if (rdev) {
  5167. info.major = MAJOR(rdev->bdev->bd_dev);
  5168. info.minor = MINOR(rdev->bdev->bd_dev);
  5169. info.raid_disk = rdev->raid_disk;
  5170. info.state = 0;
  5171. if (test_bit(Faulty, &rdev->flags))
  5172. info.state |= (1<<MD_DISK_FAULTY);
  5173. else if (test_bit(In_sync, &rdev->flags)) {
  5174. info.state |= (1<<MD_DISK_ACTIVE);
  5175. info.state |= (1<<MD_DISK_SYNC);
  5176. }
  5177. if (test_bit(WriteMostly, &rdev->flags))
  5178. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5179. } else {
  5180. info.major = info.minor = 0;
  5181. info.raid_disk = -1;
  5182. info.state = (1<<MD_DISK_REMOVED);
  5183. }
  5184. rcu_read_unlock();
  5185. if (copy_to_user(arg, &info, sizeof(info)))
  5186. return -EFAULT;
  5187. return 0;
  5188. }
  5189. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5190. {
  5191. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5192. struct md_rdev *rdev;
  5193. dev_t dev = MKDEV(info->major,info->minor);
  5194. if (mddev_is_clustered(mddev) &&
  5195. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5196. pr_err("%s: Cannot add to clustered mddev.\n",
  5197. mdname(mddev));
  5198. return -EINVAL;
  5199. }
  5200. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5201. return -EOVERFLOW;
  5202. if (!mddev->raid_disks) {
  5203. int err;
  5204. /* expecting a device which has a superblock */
  5205. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5206. if (IS_ERR(rdev)) {
  5207. printk(KERN_WARNING
  5208. "md: md_import_device returned %ld\n",
  5209. PTR_ERR(rdev));
  5210. return PTR_ERR(rdev);
  5211. }
  5212. if (!list_empty(&mddev->disks)) {
  5213. struct md_rdev *rdev0
  5214. = list_entry(mddev->disks.next,
  5215. struct md_rdev, same_set);
  5216. err = super_types[mddev->major_version]
  5217. .load_super(rdev, rdev0, mddev->minor_version);
  5218. if (err < 0) {
  5219. printk(KERN_WARNING
  5220. "md: %s has different UUID to %s\n",
  5221. bdevname(rdev->bdev,b),
  5222. bdevname(rdev0->bdev,b2));
  5223. export_rdev(rdev);
  5224. return -EINVAL;
  5225. }
  5226. }
  5227. err = bind_rdev_to_array(rdev, mddev);
  5228. if (err)
  5229. export_rdev(rdev);
  5230. return err;
  5231. }
  5232. /*
  5233. * add_new_disk can be used once the array is assembled
  5234. * to add "hot spares". They must already have a superblock
  5235. * written
  5236. */
  5237. if (mddev->pers) {
  5238. int err;
  5239. if (!mddev->pers->hot_add_disk) {
  5240. printk(KERN_WARNING
  5241. "%s: personality does not support diskops!\n",
  5242. mdname(mddev));
  5243. return -EINVAL;
  5244. }
  5245. if (mddev->persistent)
  5246. rdev = md_import_device(dev, mddev->major_version,
  5247. mddev->minor_version);
  5248. else
  5249. rdev = md_import_device(dev, -1, -1);
  5250. if (IS_ERR(rdev)) {
  5251. printk(KERN_WARNING
  5252. "md: md_import_device returned %ld\n",
  5253. PTR_ERR(rdev));
  5254. return PTR_ERR(rdev);
  5255. }
  5256. /* set saved_raid_disk if appropriate */
  5257. if (!mddev->persistent) {
  5258. if (info->state & (1<<MD_DISK_SYNC) &&
  5259. info->raid_disk < mddev->raid_disks) {
  5260. rdev->raid_disk = info->raid_disk;
  5261. set_bit(In_sync, &rdev->flags);
  5262. clear_bit(Bitmap_sync, &rdev->flags);
  5263. } else
  5264. rdev->raid_disk = -1;
  5265. rdev->saved_raid_disk = rdev->raid_disk;
  5266. } else
  5267. super_types[mddev->major_version].
  5268. validate_super(mddev, rdev);
  5269. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5270. rdev->raid_disk != info->raid_disk) {
  5271. /* This was a hot-add request, but events doesn't
  5272. * match, so reject it.
  5273. */
  5274. export_rdev(rdev);
  5275. return -EINVAL;
  5276. }
  5277. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5278. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5279. set_bit(WriteMostly, &rdev->flags);
  5280. else
  5281. clear_bit(WriteMostly, &rdev->flags);
  5282. /*
  5283. * check whether the device shows up in other nodes
  5284. */
  5285. if (mddev_is_clustered(mddev)) {
  5286. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5287. /* Through --cluster-confirm */
  5288. set_bit(Candidate, &rdev->flags);
  5289. err = md_cluster_ops->new_disk_ack(mddev, true);
  5290. if (err) {
  5291. export_rdev(rdev);
  5292. return err;
  5293. }
  5294. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5295. /* --add initiated by this node */
  5296. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5297. if (err) {
  5298. md_cluster_ops->add_new_disk_finish(mddev);
  5299. export_rdev(rdev);
  5300. return err;
  5301. }
  5302. }
  5303. }
  5304. rdev->raid_disk = -1;
  5305. err = bind_rdev_to_array(rdev, mddev);
  5306. if (err)
  5307. export_rdev(rdev);
  5308. else
  5309. err = add_bound_rdev(rdev);
  5310. if (mddev_is_clustered(mddev) &&
  5311. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5312. md_cluster_ops->add_new_disk_finish(mddev);
  5313. return err;
  5314. }
  5315. /* otherwise, add_new_disk is only allowed
  5316. * for major_version==0 superblocks
  5317. */
  5318. if (mddev->major_version != 0) {
  5319. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5320. mdname(mddev));
  5321. return -EINVAL;
  5322. }
  5323. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5324. int err;
  5325. rdev = md_import_device(dev, -1, 0);
  5326. if (IS_ERR(rdev)) {
  5327. printk(KERN_WARNING
  5328. "md: error, md_import_device() returned %ld\n",
  5329. PTR_ERR(rdev));
  5330. return PTR_ERR(rdev);
  5331. }
  5332. rdev->desc_nr = info->number;
  5333. if (info->raid_disk < mddev->raid_disks)
  5334. rdev->raid_disk = info->raid_disk;
  5335. else
  5336. rdev->raid_disk = -1;
  5337. if (rdev->raid_disk < mddev->raid_disks)
  5338. if (info->state & (1<<MD_DISK_SYNC))
  5339. set_bit(In_sync, &rdev->flags);
  5340. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5341. set_bit(WriteMostly, &rdev->flags);
  5342. if (!mddev->persistent) {
  5343. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5344. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5345. } else
  5346. rdev->sb_start = calc_dev_sboffset(rdev);
  5347. rdev->sectors = rdev->sb_start;
  5348. err = bind_rdev_to_array(rdev, mddev);
  5349. if (err) {
  5350. export_rdev(rdev);
  5351. return err;
  5352. }
  5353. }
  5354. return 0;
  5355. }
  5356. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5357. {
  5358. char b[BDEVNAME_SIZE];
  5359. struct md_rdev *rdev;
  5360. rdev = find_rdev(mddev, dev);
  5361. if (!rdev)
  5362. return -ENXIO;
  5363. if (mddev_is_clustered(mddev))
  5364. md_cluster_ops->metadata_update_start(mddev);
  5365. clear_bit(Blocked, &rdev->flags);
  5366. remove_and_add_spares(mddev, rdev);
  5367. if (rdev->raid_disk >= 0)
  5368. goto busy;
  5369. if (mddev_is_clustered(mddev))
  5370. md_cluster_ops->remove_disk(mddev, rdev);
  5371. md_kick_rdev_from_array(rdev);
  5372. md_update_sb(mddev, 1);
  5373. md_new_event(mddev);
  5374. if (mddev_is_clustered(mddev))
  5375. md_cluster_ops->metadata_update_finish(mddev);
  5376. return 0;
  5377. busy:
  5378. if (mddev_is_clustered(mddev))
  5379. md_cluster_ops->metadata_update_cancel(mddev);
  5380. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5381. bdevname(rdev->bdev,b), mdname(mddev));
  5382. return -EBUSY;
  5383. }
  5384. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5385. {
  5386. char b[BDEVNAME_SIZE];
  5387. int err;
  5388. struct md_rdev *rdev;
  5389. if (!mddev->pers)
  5390. return -ENODEV;
  5391. if (mddev->major_version != 0) {
  5392. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5393. " version-0 superblocks.\n",
  5394. mdname(mddev));
  5395. return -EINVAL;
  5396. }
  5397. if (!mddev->pers->hot_add_disk) {
  5398. printk(KERN_WARNING
  5399. "%s: personality does not support diskops!\n",
  5400. mdname(mddev));
  5401. return -EINVAL;
  5402. }
  5403. rdev = md_import_device(dev, -1, 0);
  5404. if (IS_ERR(rdev)) {
  5405. printk(KERN_WARNING
  5406. "md: error, md_import_device() returned %ld\n",
  5407. PTR_ERR(rdev));
  5408. return -EINVAL;
  5409. }
  5410. if (mddev->persistent)
  5411. rdev->sb_start = calc_dev_sboffset(rdev);
  5412. else
  5413. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5414. rdev->sectors = rdev->sb_start;
  5415. if (test_bit(Faulty, &rdev->flags)) {
  5416. printk(KERN_WARNING
  5417. "md: can not hot-add faulty %s disk to %s!\n",
  5418. bdevname(rdev->bdev,b), mdname(mddev));
  5419. err = -EINVAL;
  5420. goto abort_export;
  5421. }
  5422. if (mddev_is_clustered(mddev))
  5423. md_cluster_ops->metadata_update_start(mddev);
  5424. clear_bit(In_sync, &rdev->flags);
  5425. rdev->desc_nr = -1;
  5426. rdev->saved_raid_disk = -1;
  5427. err = bind_rdev_to_array(rdev, mddev);
  5428. if (err)
  5429. goto abort_clustered;
  5430. /*
  5431. * The rest should better be atomic, we can have disk failures
  5432. * noticed in interrupt contexts ...
  5433. */
  5434. rdev->raid_disk = -1;
  5435. md_update_sb(mddev, 1);
  5436. if (mddev_is_clustered(mddev))
  5437. md_cluster_ops->metadata_update_finish(mddev);
  5438. /*
  5439. * Kick recovery, maybe this spare has to be added to the
  5440. * array immediately.
  5441. */
  5442. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5443. md_wakeup_thread(mddev->thread);
  5444. md_new_event(mddev);
  5445. return 0;
  5446. abort_clustered:
  5447. if (mddev_is_clustered(mddev))
  5448. md_cluster_ops->metadata_update_cancel(mddev);
  5449. abort_export:
  5450. export_rdev(rdev);
  5451. return err;
  5452. }
  5453. static int set_bitmap_file(struct mddev *mddev, int fd)
  5454. {
  5455. int err = 0;
  5456. if (mddev->pers) {
  5457. if (!mddev->pers->quiesce || !mddev->thread)
  5458. return -EBUSY;
  5459. if (mddev->recovery || mddev->sync_thread)
  5460. return -EBUSY;
  5461. /* we should be able to change the bitmap.. */
  5462. }
  5463. if (fd >= 0) {
  5464. struct inode *inode;
  5465. struct file *f;
  5466. if (mddev->bitmap || mddev->bitmap_info.file)
  5467. return -EEXIST; /* cannot add when bitmap is present */
  5468. f = fget(fd);
  5469. if (f == NULL) {
  5470. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5471. mdname(mddev));
  5472. return -EBADF;
  5473. }
  5474. inode = f->f_mapping->host;
  5475. if (!S_ISREG(inode->i_mode)) {
  5476. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5477. mdname(mddev));
  5478. err = -EBADF;
  5479. } else if (!(f->f_mode & FMODE_WRITE)) {
  5480. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5481. mdname(mddev));
  5482. err = -EBADF;
  5483. } else if (atomic_read(&inode->i_writecount) != 1) {
  5484. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5485. mdname(mddev));
  5486. err = -EBUSY;
  5487. }
  5488. if (err) {
  5489. fput(f);
  5490. return err;
  5491. }
  5492. mddev->bitmap_info.file = f;
  5493. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5494. } else if (mddev->bitmap == NULL)
  5495. return -ENOENT; /* cannot remove what isn't there */
  5496. err = 0;
  5497. if (mddev->pers) {
  5498. mddev->pers->quiesce(mddev, 1);
  5499. if (fd >= 0) {
  5500. struct bitmap *bitmap;
  5501. bitmap = bitmap_create(mddev, -1);
  5502. if (!IS_ERR(bitmap)) {
  5503. mddev->bitmap = bitmap;
  5504. err = bitmap_load(mddev);
  5505. } else
  5506. err = PTR_ERR(bitmap);
  5507. }
  5508. if (fd < 0 || err) {
  5509. bitmap_destroy(mddev);
  5510. fd = -1; /* make sure to put the file */
  5511. }
  5512. mddev->pers->quiesce(mddev, 0);
  5513. }
  5514. if (fd < 0) {
  5515. struct file *f = mddev->bitmap_info.file;
  5516. if (f) {
  5517. spin_lock(&mddev->lock);
  5518. mddev->bitmap_info.file = NULL;
  5519. spin_unlock(&mddev->lock);
  5520. fput(f);
  5521. }
  5522. }
  5523. return err;
  5524. }
  5525. /*
  5526. * set_array_info is used two different ways
  5527. * The original usage is when creating a new array.
  5528. * In this usage, raid_disks is > 0 and it together with
  5529. * level, size, not_persistent,layout,chunksize determine the
  5530. * shape of the array.
  5531. * This will always create an array with a type-0.90.0 superblock.
  5532. * The newer usage is when assembling an array.
  5533. * In this case raid_disks will be 0, and the major_version field is
  5534. * use to determine which style super-blocks are to be found on the devices.
  5535. * The minor and patch _version numbers are also kept incase the
  5536. * super_block handler wishes to interpret them.
  5537. */
  5538. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5539. {
  5540. if (info->raid_disks == 0) {
  5541. /* just setting version number for superblock loading */
  5542. if (info->major_version < 0 ||
  5543. info->major_version >= ARRAY_SIZE(super_types) ||
  5544. super_types[info->major_version].name == NULL) {
  5545. /* maybe try to auto-load a module? */
  5546. printk(KERN_INFO
  5547. "md: superblock version %d not known\n",
  5548. info->major_version);
  5549. return -EINVAL;
  5550. }
  5551. mddev->major_version = info->major_version;
  5552. mddev->minor_version = info->minor_version;
  5553. mddev->patch_version = info->patch_version;
  5554. mddev->persistent = !info->not_persistent;
  5555. /* ensure mddev_put doesn't delete this now that there
  5556. * is some minimal configuration.
  5557. */
  5558. mddev->ctime = get_seconds();
  5559. return 0;
  5560. }
  5561. mddev->major_version = MD_MAJOR_VERSION;
  5562. mddev->minor_version = MD_MINOR_VERSION;
  5563. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5564. mddev->ctime = get_seconds();
  5565. mddev->level = info->level;
  5566. mddev->clevel[0] = 0;
  5567. mddev->dev_sectors = 2 * (sector_t)info->size;
  5568. mddev->raid_disks = info->raid_disks;
  5569. /* don't set md_minor, it is determined by which /dev/md* was
  5570. * openned
  5571. */
  5572. if (info->state & (1<<MD_SB_CLEAN))
  5573. mddev->recovery_cp = MaxSector;
  5574. else
  5575. mddev->recovery_cp = 0;
  5576. mddev->persistent = ! info->not_persistent;
  5577. mddev->external = 0;
  5578. mddev->layout = info->layout;
  5579. mddev->chunk_sectors = info->chunk_size >> 9;
  5580. mddev->max_disks = MD_SB_DISKS;
  5581. if (mddev->persistent)
  5582. mddev->flags = 0;
  5583. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5584. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5585. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5586. mddev->bitmap_info.offset = 0;
  5587. mddev->reshape_position = MaxSector;
  5588. /*
  5589. * Generate a 128 bit UUID
  5590. */
  5591. get_random_bytes(mddev->uuid, 16);
  5592. mddev->new_level = mddev->level;
  5593. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5594. mddev->new_layout = mddev->layout;
  5595. mddev->delta_disks = 0;
  5596. mddev->reshape_backwards = 0;
  5597. return 0;
  5598. }
  5599. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5600. {
  5601. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5602. if (mddev->external_size)
  5603. return;
  5604. mddev->array_sectors = array_sectors;
  5605. }
  5606. EXPORT_SYMBOL(md_set_array_sectors);
  5607. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5608. {
  5609. struct md_rdev *rdev;
  5610. int rv;
  5611. int fit = (num_sectors == 0);
  5612. if (mddev->pers->resize == NULL)
  5613. return -EINVAL;
  5614. /* The "num_sectors" is the number of sectors of each device that
  5615. * is used. This can only make sense for arrays with redundancy.
  5616. * linear and raid0 always use whatever space is available. We can only
  5617. * consider changing this number if no resync or reconstruction is
  5618. * happening, and if the new size is acceptable. It must fit before the
  5619. * sb_start or, if that is <data_offset, it must fit before the size
  5620. * of each device. If num_sectors is zero, we find the largest size
  5621. * that fits.
  5622. */
  5623. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5624. mddev->sync_thread)
  5625. return -EBUSY;
  5626. if (mddev->ro)
  5627. return -EROFS;
  5628. rdev_for_each(rdev, mddev) {
  5629. sector_t avail = rdev->sectors;
  5630. if (fit && (num_sectors == 0 || num_sectors > avail))
  5631. num_sectors = avail;
  5632. if (avail < num_sectors)
  5633. return -ENOSPC;
  5634. }
  5635. rv = mddev->pers->resize(mddev, num_sectors);
  5636. if (!rv)
  5637. revalidate_disk(mddev->gendisk);
  5638. return rv;
  5639. }
  5640. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5641. {
  5642. int rv;
  5643. struct md_rdev *rdev;
  5644. /* change the number of raid disks */
  5645. if (mddev->pers->check_reshape == NULL)
  5646. return -EINVAL;
  5647. if (mddev->ro)
  5648. return -EROFS;
  5649. if (raid_disks <= 0 ||
  5650. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5651. return -EINVAL;
  5652. if (mddev->sync_thread ||
  5653. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5654. mddev->reshape_position != MaxSector)
  5655. return -EBUSY;
  5656. rdev_for_each(rdev, mddev) {
  5657. if (mddev->raid_disks < raid_disks &&
  5658. rdev->data_offset < rdev->new_data_offset)
  5659. return -EINVAL;
  5660. if (mddev->raid_disks > raid_disks &&
  5661. rdev->data_offset > rdev->new_data_offset)
  5662. return -EINVAL;
  5663. }
  5664. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5665. if (mddev->delta_disks < 0)
  5666. mddev->reshape_backwards = 1;
  5667. else if (mddev->delta_disks > 0)
  5668. mddev->reshape_backwards = 0;
  5669. rv = mddev->pers->check_reshape(mddev);
  5670. if (rv < 0) {
  5671. mddev->delta_disks = 0;
  5672. mddev->reshape_backwards = 0;
  5673. }
  5674. return rv;
  5675. }
  5676. /*
  5677. * update_array_info is used to change the configuration of an
  5678. * on-line array.
  5679. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5680. * fields in the info are checked against the array.
  5681. * Any differences that cannot be handled will cause an error.
  5682. * Normally, only one change can be managed at a time.
  5683. */
  5684. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5685. {
  5686. int rv = 0;
  5687. int cnt = 0;
  5688. int state = 0;
  5689. /* calculate expected state,ignoring low bits */
  5690. if (mddev->bitmap && mddev->bitmap_info.offset)
  5691. state |= (1 << MD_SB_BITMAP_PRESENT);
  5692. if (mddev->major_version != info->major_version ||
  5693. mddev->minor_version != info->minor_version ||
  5694. /* mddev->patch_version != info->patch_version || */
  5695. mddev->ctime != info->ctime ||
  5696. mddev->level != info->level ||
  5697. /* mddev->layout != info->layout || */
  5698. !mddev->persistent != info->not_persistent||
  5699. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5700. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5701. ((state^info->state) & 0xfffffe00)
  5702. )
  5703. return -EINVAL;
  5704. /* Check there is only one change */
  5705. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5706. cnt++;
  5707. if (mddev->raid_disks != info->raid_disks)
  5708. cnt++;
  5709. if (mddev->layout != info->layout)
  5710. cnt++;
  5711. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5712. cnt++;
  5713. if (cnt == 0)
  5714. return 0;
  5715. if (cnt > 1)
  5716. return -EINVAL;
  5717. if (mddev->layout != info->layout) {
  5718. /* Change layout
  5719. * we don't need to do anything at the md level, the
  5720. * personality will take care of it all.
  5721. */
  5722. if (mddev->pers->check_reshape == NULL)
  5723. return -EINVAL;
  5724. else {
  5725. mddev->new_layout = info->layout;
  5726. rv = mddev->pers->check_reshape(mddev);
  5727. if (rv)
  5728. mddev->new_layout = mddev->layout;
  5729. return rv;
  5730. }
  5731. }
  5732. if (mddev_is_clustered(mddev))
  5733. md_cluster_ops->metadata_update_start(mddev);
  5734. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5735. rv = update_size(mddev, (sector_t)info->size * 2);
  5736. if (mddev->raid_disks != info->raid_disks)
  5737. rv = update_raid_disks(mddev, info->raid_disks);
  5738. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5739. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5740. rv = -EINVAL;
  5741. goto err;
  5742. }
  5743. if (mddev->recovery || mddev->sync_thread) {
  5744. rv = -EBUSY;
  5745. goto err;
  5746. }
  5747. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5748. struct bitmap *bitmap;
  5749. /* add the bitmap */
  5750. if (mddev->bitmap) {
  5751. rv = -EEXIST;
  5752. goto err;
  5753. }
  5754. if (mddev->bitmap_info.default_offset == 0) {
  5755. rv = -EINVAL;
  5756. goto err;
  5757. }
  5758. mddev->bitmap_info.offset =
  5759. mddev->bitmap_info.default_offset;
  5760. mddev->bitmap_info.space =
  5761. mddev->bitmap_info.default_space;
  5762. mddev->pers->quiesce(mddev, 1);
  5763. bitmap = bitmap_create(mddev, -1);
  5764. if (!IS_ERR(bitmap)) {
  5765. mddev->bitmap = bitmap;
  5766. rv = bitmap_load(mddev);
  5767. } else
  5768. rv = PTR_ERR(bitmap);
  5769. if (rv)
  5770. bitmap_destroy(mddev);
  5771. mddev->pers->quiesce(mddev, 0);
  5772. } else {
  5773. /* remove the bitmap */
  5774. if (!mddev->bitmap) {
  5775. rv = -ENOENT;
  5776. goto err;
  5777. }
  5778. if (mddev->bitmap->storage.file) {
  5779. rv = -EINVAL;
  5780. goto err;
  5781. }
  5782. mddev->pers->quiesce(mddev, 1);
  5783. bitmap_destroy(mddev);
  5784. mddev->pers->quiesce(mddev, 0);
  5785. mddev->bitmap_info.offset = 0;
  5786. }
  5787. }
  5788. md_update_sb(mddev, 1);
  5789. if (mddev_is_clustered(mddev))
  5790. md_cluster_ops->metadata_update_finish(mddev);
  5791. return rv;
  5792. err:
  5793. if (mddev_is_clustered(mddev))
  5794. md_cluster_ops->metadata_update_cancel(mddev);
  5795. return rv;
  5796. }
  5797. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5798. {
  5799. struct md_rdev *rdev;
  5800. int err = 0;
  5801. if (mddev->pers == NULL)
  5802. return -ENODEV;
  5803. rcu_read_lock();
  5804. rdev = find_rdev_rcu(mddev, dev);
  5805. if (!rdev)
  5806. err = -ENODEV;
  5807. else {
  5808. md_error(mddev, rdev);
  5809. if (!test_bit(Faulty, &rdev->flags))
  5810. err = -EBUSY;
  5811. }
  5812. rcu_read_unlock();
  5813. return err;
  5814. }
  5815. /*
  5816. * We have a problem here : there is no easy way to give a CHS
  5817. * virtual geometry. We currently pretend that we have a 2 heads
  5818. * 4 sectors (with a BIG number of cylinders...). This drives
  5819. * dosfs just mad... ;-)
  5820. */
  5821. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5822. {
  5823. struct mddev *mddev = bdev->bd_disk->private_data;
  5824. geo->heads = 2;
  5825. geo->sectors = 4;
  5826. geo->cylinders = mddev->array_sectors / 8;
  5827. return 0;
  5828. }
  5829. static inline bool md_ioctl_valid(unsigned int cmd)
  5830. {
  5831. switch (cmd) {
  5832. case ADD_NEW_DISK:
  5833. case BLKROSET:
  5834. case GET_ARRAY_INFO:
  5835. case GET_BITMAP_FILE:
  5836. case GET_DISK_INFO:
  5837. case HOT_ADD_DISK:
  5838. case HOT_REMOVE_DISK:
  5839. case RAID_AUTORUN:
  5840. case RAID_VERSION:
  5841. case RESTART_ARRAY_RW:
  5842. case RUN_ARRAY:
  5843. case SET_ARRAY_INFO:
  5844. case SET_BITMAP_FILE:
  5845. case SET_DISK_FAULTY:
  5846. case STOP_ARRAY:
  5847. case STOP_ARRAY_RO:
  5848. case CLUSTERED_DISK_NACK:
  5849. return true;
  5850. default:
  5851. return false;
  5852. }
  5853. }
  5854. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5855. unsigned int cmd, unsigned long arg)
  5856. {
  5857. int err = 0;
  5858. void __user *argp = (void __user *)arg;
  5859. struct mddev *mddev = NULL;
  5860. int ro;
  5861. if (!md_ioctl_valid(cmd))
  5862. return -ENOTTY;
  5863. switch (cmd) {
  5864. case RAID_VERSION:
  5865. case GET_ARRAY_INFO:
  5866. case GET_DISK_INFO:
  5867. break;
  5868. default:
  5869. if (!capable(CAP_SYS_ADMIN))
  5870. return -EACCES;
  5871. }
  5872. /*
  5873. * Commands dealing with the RAID driver but not any
  5874. * particular array:
  5875. */
  5876. switch (cmd) {
  5877. case RAID_VERSION:
  5878. err = get_version(argp);
  5879. goto out;
  5880. #ifndef MODULE
  5881. case RAID_AUTORUN:
  5882. err = 0;
  5883. autostart_arrays(arg);
  5884. goto out;
  5885. #endif
  5886. default:;
  5887. }
  5888. /*
  5889. * Commands creating/starting a new array:
  5890. */
  5891. mddev = bdev->bd_disk->private_data;
  5892. if (!mddev) {
  5893. BUG();
  5894. goto out;
  5895. }
  5896. /* Some actions do not requires the mutex */
  5897. switch (cmd) {
  5898. case GET_ARRAY_INFO:
  5899. if (!mddev->raid_disks && !mddev->external)
  5900. err = -ENODEV;
  5901. else
  5902. err = get_array_info(mddev, argp);
  5903. goto out;
  5904. case GET_DISK_INFO:
  5905. if (!mddev->raid_disks && !mddev->external)
  5906. err = -ENODEV;
  5907. else
  5908. err = get_disk_info(mddev, argp);
  5909. goto out;
  5910. case SET_DISK_FAULTY:
  5911. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5912. goto out;
  5913. case GET_BITMAP_FILE:
  5914. err = get_bitmap_file(mddev, argp);
  5915. goto out;
  5916. }
  5917. if (cmd == ADD_NEW_DISK)
  5918. /* need to ensure md_delayed_delete() has completed */
  5919. flush_workqueue(md_misc_wq);
  5920. if (cmd == HOT_REMOVE_DISK)
  5921. /* need to ensure recovery thread has run */
  5922. wait_event_interruptible_timeout(mddev->sb_wait,
  5923. !test_bit(MD_RECOVERY_NEEDED,
  5924. &mddev->flags),
  5925. msecs_to_jiffies(5000));
  5926. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5927. /* Need to flush page cache, and ensure no-one else opens
  5928. * and writes
  5929. */
  5930. mutex_lock(&mddev->open_mutex);
  5931. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5932. mutex_unlock(&mddev->open_mutex);
  5933. err = -EBUSY;
  5934. goto out;
  5935. }
  5936. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5937. mutex_unlock(&mddev->open_mutex);
  5938. sync_blockdev(bdev);
  5939. }
  5940. err = mddev_lock(mddev);
  5941. if (err) {
  5942. printk(KERN_INFO
  5943. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5944. err, cmd);
  5945. goto out;
  5946. }
  5947. if (cmd == SET_ARRAY_INFO) {
  5948. mdu_array_info_t info;
  5949. if (!arg)
  5950. memset(&info, 0, sizeof(info));
  5951. else if (copy_from_user(&info, argp, sizeof(info))) {
  5952. err = -EFAULT;
  5953. goto unlock;
  5954. }
  5955. if (mddev->pers) {
  5956. err = update_array_info(mddev, &info);
  5957. if (err) {
  5958. printk(KERN_WARNING "md: couldn't update"
  5959. " array info. %d\n", err);
  5960. goto unlock;
  5961. }
  5962. goto unlock;
  5963. }
  5964. if (!list_empty(&mddev->disks)) {
  5965. printk(KERN_WARNING
  5966. "md: array %s already has disks!\n",
  5967. mdname(mddev));
  5968. err = -EBUSY;
  5969. goto unlock;
  5970. }
  5971. if (mddev->raid_disks) {
  5972. printk(KERN_WARNING
  5973. "md: array %s already initialised!\n",
  5974. mdname(mddev));
  5975. err = -EBUSY;
  5976. goto unlock;
  5977. }
  5978. err = set_array_info(mddev, &info);
  5979. if (err) {
  5980. printk(KERN_WARNING "md: couldn't set"
  5981. " array info. %d\n", err);
  5982. goto unlock;
  5983. }
  5984. goto unlock;
  5985. }
  5986. /*
  5987. * Commands querying/configuring an existing array:
  5988. */
  5989. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5990. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5991. if ((!mddev->raid_disks && !mddev->external)
  5992. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5993. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5994. && cmd != GET_BITMAP_FILE) {
  5995. err = -ENODEV;
  5996. goto unlock;
  5997. }
  5998. /*
  5999. * Commands even a read-only array can execute:
  6000. */
  6001. switch (cmd) {
  6002. case RESTART_ARRAY_RW:
  6003. err = restart_array(mddev);
  6004. goto unlock;
  6005. case STOP_ARRAY:
  6006. err = do_md_stop(mddev, 0, bdev);
  6007. goto unlock;
  6008. case STOP_ARRAY_RO:
  6009. err = md_set_readonly(mddev, bdev);
  6010. goto unlock;
  6011. case HOT_REMOVE_DISK:
  6012. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6013. goto unlock;
  6014. case ADD_NEW_DISK:
  6015. /* We can support ADD_NEW_DISK on read-only arrays
  6016. * on if we are re-adding a preexisting device.
  6017. * So require mddev->pers and MD_DISK_SYNC.
  6018. */
  6019. if (mddev->pers) {
  6020. mdu_disk_info_t info;
  6021. if (copy_from_user(&info, argp, sizeof(info)))
  6022. err = -EFAULT;
  6023. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6024. /* Need to clear read-only for this */
  6025. break;
  6026. else
  6027. err = add_new_disk(mddev, &info);
  6028. goto unlock;
  6029. }
  6030. break;
  6031. case BLKROSET:
  6032. if (get_user(ro, (int __user *)(arg))) {
  6033. err = -EFAULT;
  6034. goto unlock;
  6035. }
  6036. err = -EINVAL;
  6037. /* if the bdev is going readonly the value of mddev->ro
  6038. * does not matter, no writes are coming
  6039. */
  6040. if (ro)
  6041. goto unlock;
  6042. /* are we are already prepared for writes? */
  6043. if (mddev->ro != 1)
  6044. goto unlock;
  6045. /* transitioning to readauto need only happen for
  6046. * arrays that call md_write_start
  6047. */
  6048. if (mddev->pers) {
  6049. err = restart_array(mddev);
  6050. if (err == 0) {
  6051. mddev->ro = 2;
  6052. set_disk_ro(mddev->gendisk, 0);
  6053. }
  6054. }
  6055. goto unlock;
  6056. }
  6057. /*
  6058. * The remaining ioctls are changing the state of the
  6059. * superblock, so we do not allow them on read-only arrays.
  6060. */
  6061. if (mddev->ro && mddev->pers) {
  6062. if (mddev->ro == 2) {
  6063. mddev->ro = 0;
  6064. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6065. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6066. /* mddev_unlock will wake thread */
  6067. /* If a device failed while we were read-only, we
  6068. * need to make sure the metadata is updated now.
  6069. */
  6070. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6071. mddev_unlock(mddev);
  6072. wait_event(mddev->sb_wait,
  6073. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6074. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6075. mddev_lock_nointr(mddev);
  6076. }
  6077. } else {
  6078. err = -EROFS;
  6079. goto unlock;
  6080. }
  6081. }
  6082. switch (cmd) {
  6083. case ADD_NEW_DISK:
  6084. {
  6085. mdu_disk_info_t info;
  6086. if (copy_from_user(&info, argp, sizeof(info)))
  6087. err = -EFAULT;
  6088. else
  6089. err = add_new_disk(mddev, &info);
  6090. goto unlock;
  6091. }
  6092. case CLUSTERED_DISK_NACK:
  6093. if (mddev_is_clustered(mddev))
  6094. md_cluster_ops->new_disk_ack(mddev, false);
  6095. else
  6096. err = -EINVAL;
  6097. goto unlock;
  6098. case HOT_ADD_DISK:
  6099. err = hot_add_disk(mddev, new_decode_dev(arg));
  6100. goto unlock;
  6101. case RUN_ARRAY:
  6102. err = do_md_run(mddev);
  6103. goto unlock;
  6104. case SET_BITMAP_FILE:
  6105. err = set_bitmap_file(mddev, (int)arg);
  6106. goto unlock;
  6107. default:
  6108. err = -EINVAL;
  6109. goto unlock;
  6110. }
  6111. unlock:
  6112. if (mddev->hold_active == UNTIL_IOCTL &&
  6113. err != -EINVAL)
  6114. mddev->hold_active = 0;
  6115. mddev_unlock(mddev);
  6116. out:
  6117. return err;
  6118. }
  6119. #ifdef CONFIG_COMPAT
  6120. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6121. unsigned int cmd, unsigned long arg)
  6122. {
  6123. switch (cmd) {
  6124. case HOT_REMOVE_DISK:
  6125. case HOT_ADD_DISK:
  6126. case SET_DISK_FAULTY:
  6127. case SET_BITMAP_FILE:
  6128. /* These take in integer arg, do not convert */
  6129. break;
  6130. default:
  6131. arg = (unsigned long)compat_ptr(arg);
  6132. break;
  6133. }
  6134. return md_ioctl(bdev, mode, cmd, arg);
  6135. }
  6136. #endif /* CONFIG_COMPAT */
  6137. static int md_open(struct block_device *bdev, fmode_t mode)
  6138. {
  6139. /*
  6140. * Succeed if we can lock the mddev, which confirms that
  6141. * it isn't being stopped right now.
  6142. */
  6143. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6144. int err;
  6145. if (!mddev)
  6146. return -ENODEV;
  6147. if (mddev->gendisk != bdev->bd_disk) {
  6148. /* we are racing with mddev_put which is discarding this
  6149. * bd_disk.
  6150. */
  6151. mddev_put(mddev);
  6152. /* Wait until bdev->bd_disk is definitely gone */
  6153. flush_workqueue(md_misc_wq);
  6154. /* Then retry the open from the top */
  6155. return -ERESTARTSYS;
  6156. }
  6157. BUG_ON(mddev != bdev->bd_disk->private_data);
  6158. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6159. goto out;
  6160. err = 0;
  6161. atomic_inc(&mddev->openers);
  6162. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6163. mutex_unlock(&mddev->open_mutex);
  6164. check_disk_change(bdev);
  6165. out:
  6166. return err;
  6167. }
  6168. static void md_release(struct gendisk *disk, fmode_t mode)
  6169. {
  6170. struct mddev *mddev = disk->private_data;
  6171. BUG_ON(!mddev);
  6172. atomic_dec(&mddev->openers);
  6173. mddev_put(mddev);
  6174. }
  6175. static int md_media_changed(struct gendisk *disk)
  6176. {
  6177. struct mddev *mddev = disk->private_data;
  6178. return mddev->changed;
  6179. }
  6180. static int md_revalidate(struct gendisk *disk)
  6181. {
  6182. struct mddev *mddev = disk->private_data;
  6183. mddev->changed = 0;
  6184. return 0;
  6185. }
  6186. static const struct block_device_operations md_fops =
  6187. {
  6188. .owner = THIS_MODULE,
  6189. .open = md_open,
  6190. .release = md_release,
  6191. .ioctl = md_ioctl,
  6192. #ifdef CONFIG_COMPAT
  6193. .compat_ioctl = md_compat_ioctl,
  6194. #endif
  6195. .getgeo = md_getgeo,
  6196. .media_changed = md_media_changed,
  6197. .revalidate_disk= md_revalidate,
  6198. };
  6199. static int md_thread(void *arg)
  6200. {
  6201. struct md_thread *thread = arg;
  6202. /*
  6203. * md_thread is a 'system-thread', it's priority should be very
  6204. * high. We avoid resource deadlocks individually in each
  6205. * raid personality. (RAID5 does preallocation) We also use RR and
  6206. * the very same RT priority as kswapd, thus we will never get
  6207. * into a priority inversion deadlock.
  6208. *
  6209. * we definitely have to have equal or higher priority than
  6210. * bdflush, otherwise bdflush will deadlock if there are too
  6211. * many dirty RAID5 blocks.
  6212. */
  6213. allow_signal(SIGKILL);
  6214. while (!kthread_should_stop()) {
  6215. /* We need to wait INTERRUPTIBLE so that
  6216. * we don't add to the load-average.
  6217. * That means we need to be sure no signals are
  6218. * pending
  6219. */
  6220. if (signal_pending(current))
  6221. flush_signals(current);
  6222. wait_event_interruptible_timeout
  6223. (thread->wqueue,
  6224. test_bit(THREAD_WAKEUP, &thread->flags)
  6225. || kthread_should_stop(),
  6226. thread->timeout);
  6227. clear_bit(THREAD_WAKEUP, &thread->flags);
  6228. if (!kthread_should_stop())
  6229. thread->run(thread);
  6230. }
  6231. return 0;
  6232. }
  6233. void md_wakeup_thread(struct md_thread *thread)
  6234. {
  6235. if (thread) {
  6236. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6237. set_bit(THREAD_WAKEUP, &thread->flags);
  6238. wake_up(&thread->wqueue);
  6239. }
  6240. }
  6241. EXPORT_SYMBOL(md_wakeup_thread);
  6242. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6243. struct mddev *mddev, const char *name)
  6244. {
  6245. struct md_thread *thread;
  6246. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6247. if (!thread)
  6248. return NULL;
  6249. init_waitqueue_head(&thread->wqueue);
  6250. thread->run = run;
  6251. thread->mddev = mddev;
  6252. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6253. thread->tsk = kthread_run(md_thread, thread,
  6254. "%s_%s",
  6255. mdname(thread->mddev),
  6256. name);
  6257. if (IS_ERR(thread->tsk)) {
  6258. kfree(thread);
  6259. return NULL;
  6260. }
  6261. return thread;
  6262. }
  6263. EXPORT_SYMBOL(md_register_thread);
  6264. void md_unregister_thread(struct md_thread **threadp)
  6265. {
  6266. struct md_thread *thread = *threadp;
  6267. if (!thread)
  6268. return;
  6269. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6270. /* Locking ensures that mddev_unlock does not wake_up a
  6271. * non-existent thread
  6272. */
  6273. spin_lock(&pers_lock);
  6274. *threadp = NULL;
  6275. spin_unlock(&pers_lock);
  6276. kthread_stop(thread->tsk);
  6277. kfree(thread);
  6278. }
  6279. EXPORT_SYMBOL(md_unregister_thread);
  6280. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6281. {
  6282. if (!rdev || test_bit(Faulty, &rdev->flags))
  6283. return;
  6284. if (!mddev->pers || !mddev->pers->error_handler)
  6285. return;
  6286. mddev->pers->error_handler(mddev,rdev);
  6287. if (mddev->degraded)
  6288. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6289. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6290. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6291. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6292. md_wakeup_thread(mddev->thread);
  6293. if (mddev->event_work.func)
  6294. queue_work(md_misc_wq, &mddev->event_work);
  6295. md_new_event_inintr(mddev);
  6296. }
  6297. EXPORT_SYMBOL(md_error);
  6298. /* seq_file implementation /proc/mdstat */
  6299. static void status_unused(struct seq_file *seq)
  6300. {
  6301. int i = 0;
  6302. struct md_rdev *rdev;
  6303. seq_printf(seq, "unused devices: ");
  6304. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6305. char b[BDEVNAME_SIZE];
  6306. i++;
  6307. seq_printf(seq, "%s ",
  6308. bdevname(rdev->bdev,b));
  6309. }
  6310. if (!i)
  6311. seq_printf(seq, "<none>");
  6312. seq_printf(seq, "\n");
  6313. }
  6314. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  6315. {
  6316. sector_t max_sectors, resync, res;
  6317. unsigned long dt, db;
  6318. sector_t rt;
  6319. int scale;
  6320. unsigned int per_milli;
  6321. if (mddev->curr_resync <= 3)
  6322. resync = 0;
  6323. else
  6324. resync = mddev->curr_resync
  6325. - atomic_read(&mddev->recovery_active);
  6326. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6327. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6328. max_sectors = mddev->resync_max_sectors;
  6329. else
  6330. max_sectors = mddev->dev_sectors;
  6331. WARN_ON(max_sectors == 0);
  6332. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6333. * in a sector_t, and (max_sectors>>scale) will fit in a
  6334. * u32, as those are the requirements for sector_div.
  6335. * Thus 'scale' must be at least 10
  6336. */
  6337. scale = 10;
  6338. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6339. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6340. scale++;
  6341. }
  6342. res = (resync>>scale)*1000;
  6343. sector_div(res, (u32)((max_sectors>>scale)+1));
  6344. per_milli = res;
  6345. {
  6346. int i, x = per_milli/50, y = 20-x;
  6347. seq_printf(seq, "[");
  6348. for (i = 0; i < x; i++)
  6349. seq_printf(seq, "=");
  6350. seq_printf(seq, ">");
  6351. for (i = 0; i < y; i++)
  6352. seq_printf(seq, ".");
  6353. seq_printf(seq, "] ");
  6354. }
  6355. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6356. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6357. "reshape" :
  6358. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6359. "check" :
  6360. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6361. "resync" : "recovery"))),
  6362. per_milli/10, per_milli % 10,
  6363. (unsigned long long) resync/2,
  6364. (unsigned long long) max_sectors/2);
  6365. /*
  6366. * dt: time from mark until now
  6367. * db: blocks written from mark until now
  6368. * rt: remaining time
  6369. *
  6370. * rt is a sector_t, so could be 32bit or 64bit.
  6371. * So we divide before multiply in case it is 32bit and close
  6372. * to the limit.
  6373. * We scale the divisor (db) by 32 to avoid losing precision
  6374. * near the end of resync when the number of remaining sectors
  6375. * is close to 'db'.
  6376. * We then divide rt by 32 after multiplying by db to compensate.
  6377. * The '+1' avoids division by zero if db is very small.
  6378. */
  6379. dt = ((jiffies - mddev->resync_mark) / HZ);
  6380. if (!dt) dt++;
  6381. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6382. - mddev->resync_mark_cnt;
  6383. rt = max_sectors - resync; /* number of remaining sectors */
  6384. sector_div(rt, db/32+1);
  6385. rt *= dt;
  6386. rt >>= 5;
  6387. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6388. ((unsigned long)rt % 60)/6);
  6389. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6390. }
  6391. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6392. {
  6393. struct list_head *tmp;
  6394. loff_t l = *pos;
  6395. struct mddev *mddev;
  6396. if (l >= 0x10000)
  6397. return NULL;
  6398. if (!l--)
  6399. /* header */
  6400. return (void*)1;
  6401. spin_lock(&all_mddevs_lock);
  6402. list_for_each(tmp,&all_mddevs)
  6403. if (!l--) {
  6404. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6405. mddev_get(mddev);
  6406. spin_unlock(&all_mddevs_lock);
  6407. return mddev;
  6408. }
  6409. spin_unlock(&all_mddevs_lock);
  6410. if (!l--)
  6411. return (void*)2;/* tail */
  6412. return NULL;
  6413. }
  6414. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6415. {
  6416. struct list_head *tmp;
  6417. struct mddev *next_mddev, *mddev = v;
  6418. ++*pos;
  6419. if (v == (void*)2)
  6420. return NULL;
  6421. spin_lock(&all_mddevs_lock);
  6422. if (v == (void*)1)
  6423. tmp = all_mddevs.next;
  6424. else
  6425. tmp = mddev->all_mddevs.next;
  6426. if (tmp != &all_mddevs)
  6427. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6428. else {
  6429. next_mddev = (void*)2;
  6430. *pos = 0x10000;
  6431. }
  6432. spin_unlock(&all_mddevs_lock);
  6433. if (v != (void*)1)
  6434. mddev_put(mddev);
  6435. return next_mddev;
  6436. }
  6437. static void md_seq_stop(struct seq_file *seq, void *v)
  6438. {
  6439. struct mddev *mddev = v;
  6440. if (mddev && v != (void*)1 && v != (void*)2)
  6441. mddev_put(mddev);
  6442. }
  6443. static int md_seq_show(struct seq_file *seq, void *v)
  6444. {
  6445. struct mddev *mddev = v;
  6446. sector_t sectors;
  6447. struct md_rdev *rdev;
  6448. if (v == (void*)1) {
  6449. struct md_personality *pers;
  6450. seq_printf(seq, "Personalities : ");
  6451. spin_lock(&pers_lock);
  6452. list_for_each_entry(pers, &pers_list, list)
  6453. seq_printf(seq, "[%s] ", pers->name);
  6454. spin_unlock(&pers_lock);
  6455. seq_printf(seq, "\n");
  6456. seq->poll_event = atomic_read(&md_event_count);
  6457. return 0;
  6458. }
  6459. if (v == (void*)2) {
  6460. status_unused(seq);
  6461. return 0;
  6462. }
  6463. spin_lock(&mddev->lock);
  6464. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6465. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6466. mddev->pers ? "" : "in");
  6467. if (mddev->pers) {
  6468. if (mddev->ro==1)
  6469. seq_printf(seq, " (read-only)");
  6470. if (mddev->ro==2)
  6471. seq_printf(seq, " (auto-read-only)");
  6472. seq_printf(seq, " %s", mddev->pers->name);
  6473. }
  6474. sectors = 0;
  6475. rcu_read_lock();
  6476. rdev_for_each_rcu(rdev, mddev) {
  6477. char b[BDEVNAME_SIZE];
  6478. seq_printf(seq, " %s[%d]",
  6479. bdevname(rdev->bdev,b), rdev->desc_nr);
  6480. if (test_bit(WriteMostly, &rdev->flags))
  6481. seq_printf(seq, "(W)");
  6482. if (test_bit(Faulty, &rdev->flags)) {
  6483. seq_printf(seq, "(F)");
  6484. continue;
  6485. }
  6486. if (rdev->raid_disk < 0)
  6487. seq_printf(seq, "(S)"); /* spare */
  6488. if (test_bit(Replacement, &rdev->flags))
  6489. seq_printf(seq, "(R)");
  6490. sectors += rdev->sectors;
  6491. }
  6492. rcu_read_unlock();
  6493. if (!list_empty(&mddev->disks)) {
  6494. if (mddev->pers)
  6495. seq_printf(seq, "\n %llu blocks",
  6496. (unsigned long long)
  6497. mddev->array_sectors / 2);
  6498. else
  6499. seq_printf(seq, "\n %llu blocks",
  6500. (unsigned long long)sectors / 2);
  6501. }
  6502. if (mddev->persistent) {
  6503. if (mddev->major_version != 0 ||
  6504. mddev->minor_version != 90) {
  6505. seq_printf(seq," super %d.%d",
  6506. mddev->major_version,
  6507. mddev->minor_version);
  6508. }
  6509. } else if (mddev->external)
  6510. seq_printf(seq, " super external:%s",
  6511. mddev->metadata_type);
  6512. else
  6513. seq_printf(seq, " super non-persistent");
  6514. if (mddev->pers) {
  6515. mddev->pers->status(seq, mddev);
  6516. seq_printf(seq, "\n ");
  6517. if (mddev->pers->sync_request) {
  6518. if (mddev->curr_resync > 2) {
  6519. status_resync(seq, mddev);
  6520. seq_printf(seq, "\n ");
  6521. } else if (mddev->curr_resync >= 1)
  6522. seq_printf(seq, "\tresync=DELAYED\n ");
  6523. else if (mddev->recovery_cp < MaxSector)
  6524. seq_printf(seq, "\tresync=PENDING\n ");
  6525. }
  6526. } else
  6527. seq_printf(seq, "\n ");
  6528. bitmap_status(seq, mddev->bitmap);
  6529. seq_printf(seq, "\n");
  6530. }
  6531. spin_unlock(&mddev->lock);
  6532. return 0;
  6533. }
  6534. static const struct seq_operations md_seq_ops = {
  6535. .start = md_seq_start,
  6536. .next = md_seq_next,
  6537. .stop = md_seq_stop,
  6538. .show = md_seq_show,
  6539. };
  6540. static int md_seq_open(struct inode *inode, struct file *file)
  6541. {
  6542. struct seq_file *seq;
  6543. int error;
  6544. error = seq_open(file, &md_seq_ops);
  6545. if (error)
  6546. return error;
  6547. seq = file->private_data;
  6548. seq->poll_event = atomic_read(&md_event_count);
  6549. return error;
  6550. }
  6551. static int md_unloading;
  6552. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6553. {
  6554. struct seq_file *seq = filp->private_data;
  6555. int mask;
  6556. if (md_unloading)
  6557. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6558. poll_wait(filp, &md_event_waiters, wait);
  6559. /* always allow read */
  6560. mask = POLLIN | POLLRDNORM;
  6561. if (seq->poll_event != atomic_read(&md_event_count))
  6562. mask |= POLLERR | POLLPRI;
  6563. return mask;
  6564. }
  6565. static const struct file_operations md_seq_fops = {
  6566. .owner = THIS_MODULE,
  6567. .open = md_seq_open,
  6568. .read = seq_read,
  6569. .llseek = seq_lseek,
  6570. .release = seq_release_private,
  6571. .poll = mdstat_poll,
  6572. };
  6573. int register_md_personality(struct md_personality *p)
  6574. {
  6575. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6576. p->name, p->level);
  6577. spin_lock(&pers_lock);
  6578. list_add_tail(&p->list, &pers_list);
  6579. spin_unlock(&pers_lock);
  6580. return 0;
  6581. }
  6582. EXPORT_SYMBOL(register_md_personality);
  6583. int unregister_md_personality(struct md_personality *p)
  6584. {
  6585. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6586. spin_lock(&pers_lock);
  6587. list_del_init(&p->list);
  6588. spin_unlock(&pers_lock);
  6589. return 0;
  6590. }
  6591. EXPORT_SYMBOL(unregister_md_personality);
  6592. int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
  6593. {
  6594. if (md_cluster_ops != NULL)
  6595. return -EALREADY;
  6596. spin_lock(&pers_lock);
  6597. md_cluster_ops = ops;
  6598. md_cluster_mod = module;
  6599. spin_unlock(&pers_lock);
  6600. return 0;
  6601. }
  6602. EXPORT_SYMBOL(register_md_cluster_operations);
  6603. int unregister_md_cluster_operations(void)
  6604. {
  6605. spin_lock(&pers_lock);
  6606. md_cluster_ops = NULL;
  6607. spin_unlock(&pers_lock);
  6608. return 0;
  6609. }
  6610. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6611. int md_setup_cluster(struct mddev *mddev, int nodes)
  6612. {
  6613. int err;
  6614. err = request_module("md-cluster");
  6615. if (err) {
  6616. pr_err("md-cluster module not found.\n");
  6617. return err;
  6618. }
  6619. spin_lock(&pers_lock);
  6620. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6621. spin_unlock(&pers_lock);
  6622. return -ENOENT;
  6623. }
  6624. spin_unlock(&pers_lock);
  6625. return md_cluster_ops->join(mddev, nodes);
  6626. }
  6627. void md_cluster_stop(struct mddev *mddev)
  6628. {
  6629. if (!md_cluster_ops)
  6630. return;
  6631. md_cluster_ops->leave(mddev);
  6632. module_put(md_cluster_mod);
  6633. }
  6634. static int is_mddev_idle(struct mddev *mddev, int init)
  6635. {
  6636. struct md_rdev *rdev;
  6637. int idle;
  6638. int curr_events;
  6639. idle = 1;
  6640. rcu_read_lock();
  6641. rdev_for_each_rcu(rdev, mddev) {
  6642. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6643. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6644. (int)part_stat_read(&disk->part0, sectors[1]) -
  6645. atomic_read(&disk->sync_io);
  6646. /* sync IO will cause sync_io to increase before the disk_stats
  6647. * as sync_io is counted when a request starts, and
  6648. * disk_stats is counted when it completes.
  6649. * So resync activity will cause curr_events to be smaller than
  6650. * when there was no such activity.
  6651. * non-sync IO will cause disk_stat to increase without
  6652. * increasing sync_io so curr_events will (eventually)
  6653. * be larger than it was before. Once it becomes
  6654. * substantially larger, the test below will cause
  6655. * the array to appear non-idle, and resync will slow
  6656. * down.
  6657. * If there is a lot of outstanding resync activity when
  6658. * we set last_event to curr_events, then all that activity
  6659. * completing might cause the array to appear non-idle
  6660. * and resync will be slowed down even though there might
  6661. * not have been non-resync activity. This will only
  6662. * happen once though. 'last_events' will soon reflect
  6663. * the state where there is little or no outstanding
  6664. * resync requests, and further resync activity will
  6665. * always make curr_events less than last_events.
  6666. *
  6667. */
  6668. if (init || curr_events - rdev->last_events > 64) {
  6669. rdev->last_events = curr_events;
  6670. idle = 0;
  6671. }
  6672. }
  6673. rcu_read_unlock();
  6674. return idle;
  6675. }
  6676. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6677. {
  6678. /* another "blocks" (512byte) blocks have been synced */
  6679. atomic_sub(blocks, &mddev->recovery_active);
  6680. wake_up(&mddev->recovery_wait);
  6681. if (!ok) {
  6682. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6683. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6684. md_wakeup_thread(mddev->thread);
  6685. // stop recovery, signal do_sync ....
  6686. }
  6687. }
  6688. EXPORT_SYMBOL(md_done_sync);
  6689. /* md_write_start(mddev, bi)
  6690. * If we need to update some array metadata (e.g. 'active' flag
  6691. * in superblock) before writing, schedule a superblock update
  6692. * and wait for it to complete.
  6693. */
  6694. void md_write_start(struct mddev *mddev, struct bio *bi)
  6695. {
  6696. int did_change = 0;
  6697. if (bio_data_dir(bi) != WRITE)
  6698. return;
  6699. BUG_ON(mddev->ro == 1);
  6700. if (mddev->ro == 2) {
  6701. /* need to switch to read/write */
  6702. mddev->ro = 0;
  6703. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6704. md_wakeup_thread(mddev->thread);
  6705. md_wakeup_thread(mddev->sync_thread);
  6706. did_change = 1;
  6707. }
  6708. atomic_inc(&mddev->writes_pending);
  6709. if (mddev->safemode == 1)
  6710. mddev->safemode = 0;
  6711. if (mddev->in_sync) {
  6712. spin_lock(&mddev->lock);
  6713. if (mddev->in_sync) {
  6714. mddev->in_sync = 0;
  6715. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6716. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6717. md_wakeup_thread(mddev->thread);
  6718. did_change = 1;
  6719. }
  6720. spin_unlock(&mddev->lock);
  6721. }
  6722. if (did_change)
  6723. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6724. wait_event(mddev->sb_wait,
  6725. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6726. }
  6727. EXPORT_SYMBOL(md_write_start);
  6728. void md_write_end(struct mddev *mddev)
  6729. {
  6730. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6731. if (mddev->safemode == 2)
  6732. md_wakeup_thread(mddev->thread);
  6733. else if (mddev->safemode_delay)
  6734. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6735. }
  6736. }
  6737. EXPORT_SYMBOL(md_write_end);
  6738. /* md_allow_write(mddev)
  6739. * Calling this ensures that the array is marked 'active' so that writes
  6740. * may proceed without blocking. It is important to call this before
  6741. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6742. * Must be called with mddev_lock held.
  6743. *
  6744. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6745. * is dropped, so return -EAGAIN after notifying userspace.
  6746. */
  6747. int md_allow_write(struct mddev *mddev)
  6748. {
  6749. if (!mddev->pers)
  6750. return 0;
  6751. if (mddev->ro)
  6752. return 0;
  6753. if (!mddev->pers->sync_request)
  6754. return 0;
  6755. spin_lock(&mddev->lock);
  6756. if (mddev->in_sync) {
  6757. mddev->in_sync = 0;
  6758. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6759. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6760. if (mddev->safemode_delay &&
  6761. mddev->safemode == 0)
  6762. mddev->safemode = 1;
  6763. spin_unlock(&mddev->lock);
  6764. if (mddev_is_clustered(mddev))
  6765. md_cluster_ops->metadata_update_start(mddev);
  6766. md_update_sb(mddev, 0);
  6767. if (mddev_is_clustered(mddev))
  6768. md_cluster_ops->metadata_update_finish(mddev);
  6769. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6770. } else
  6771. spin_unlock(&mddev->lock);
  6772. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6773. return -EAGAIN;
  6774. else
  6775. return 0;
  6776. }
  6777. EXPORT_SYMBOL_GPL(md_allow_write);
  6778. #define SYNC_MARKS 10
  6779. #define SYNC_MARK_STEP (3*HZ)
  6780. #define UPDATE_FREQUENCY (5*60*HZ)
  6781. void md_do_sync(struct md_thread *thread)
  6782. {
  6783. struct mddev *mddev = thread->mddev;
  6784. struct mddev *mddev2;
  6785. unsigned int currspeed = 0,
  6786. window;
  6787. sector_t max_sectors,j, io_sectors, recovery_done;
  6788. unsigned long mark[SYNC_MARKS];
  6789. unsigned long update_time;
  6790. sector_t mark_cnt[SYNC_MARKS];
  6791. int last_mark,m;
  6792. struct list_head *tmp;
  6793. sector_t last_check;
  6794. int skipped = 0;
  6795. struct md_rdev *rdev;
  6796. char *desc, *action = NULL;
  6797. struct blk_plug plug;
  6798. /* just incase thread restarts... */
  6799. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6800. return;
  6801. if (mddev->ro) {/* never try to sync a read-only array */
  6802. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6803. return;
  6804. }
  6805. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6806. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6807. desc = "data-check";
  6808. action = "check";
  6809. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6810. desc = "requested-resync";
  6811. action = "repair";
  6812. } else
  6813. desc = "resync";
  6814. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6815. desc = "reshape";
  6816. else
  6817. desc = "recovery";
  6818. mddev->last_sync_action = action ?: desc;
  6819. /* we overload curr_resync somewhat here.
  6820. * 0 == not engaged in resync at all
  6821. * 2 == checking that there is no conflict with another sync
  6822. * 1 == like 2, but have yielded to allow conflicting resync to
  6823. * commense
  6824. * other == active in resync - this many blocks
  6825. *
  6826. * Before starting a resync we must have set curr_resync to
  6827. * 2, and then checked that every "conflicting" array has curr_resync
  6828. * less than ours. When we find one that is the same or higher
  6829. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6830. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6831. * This will mean we have to start checking from the beginning again.
  6832. *
  6833. */
  6834. do {
  6835. mddev->curr_resync = 2;
  6836. try_again:
  6837. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6838. goto skip;
  6839. for_each_mddev(mddev2, tmp) {
  6840. if (mddev2 == mddev)
  6841. continue;
  6842. if (!mddev->parallel_resync
  6843. && mddev2->curr_resync
  6844. && match_mddev_units(mddev, mddev2)) {
  6845. DEFINE_WAIT(wq);
  6846. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6847. /* arbitrarily yield */
  6848. mddev->curr_resync = 1;
  6849. wake_up(&resync_wait);
  6850. }
  6851. if (mddev > mddev2 && mddev->curr_resync == 1)
  6852. /* no need to wait here, we can wait the next
  6853. * time 'round when curr_resync == 2
  6854. */
  6855. continue;
  6856. /* We need to wait 'interruptible' so as not to
  6857. * contribute to the load average, and not to
  6858. * be caught by 'softlockup'
  6859. */
  6860. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6861. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6862. mddev2->curr_resync >= mddev->curr_resync) {
  6863. printk(KERN_INFO "md: delaying %s of %s"
  6864. " until %s has finished (they"
  6865. " share one or more physical units)\n",
  6866. desc, mdname(mddev), mdname(mddev2));
  6867. mddev_put(mddev2);
  6868. if (signal_pending(current))
  6869. flush_signals(current);
  6870. schedule();
  6871. finish_wait(&resync_wait, &wq);
  6872. goto try_again;
  6873. }
  6874. finish_wait(&resync_wait, &wq);
  6875. }
  6876. }
  6877. } while (mddev->curr_resync < 2);
  6878. j = 0;
  6879. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6880. /* resync follows the size requested by the personality,
  6881. * which defaults to physical size, but can be virtual size
  6882. */
  6883. max_sectors = mddev->resync_max_sectors;
  6884. atomic64_set(&mddev->resync_mismatches, 0);
  6885. /* we don't use the checkpoint if there's a bitmap */
  6886. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6887. j = mddev->resync_min;
  6888. else if (!mddev->bitmap)
  6889. j = mddev->recovery_cp;
  6890. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6891. max_sectors = mddev->resync_max_sectors;
  6892. else {
  6893. /* recovery follows the physical size of devices */
  6894. max_sectors = mddev->dev_sectors;
  6895. j = MaxSector;
  6896. rcu_read_lock();
  6897. rdev_for_each_rcu(rdev, mddev)
  6898. if (rdev->raid_disk >= 0 &&
  6899. !test_bit(Faulty, &rdev->flags) &&
  6900. !test_bit(In_sync, &rdev->flags) &&
  6901. rdev->recovery_offset < j)
  6902. j = rdev->recovery_offset;
  6903. rcu_read_unlock();
  6904. /* If there is a bitmap, we need to make sure all
  6905. * writes that started before we added a spare
  6906. * complete before we start doing a recovery.
  6907. * Otherwise the write might complete and (via
  6908. * bitmap_endwrite) set a bit in the bitmap after the
  6909. * recovery has checked that bit and skipped that
  6910. * region.
  6911. */
  6912. if (mddev->bitmap) {
  6913. mddev->pers->quiesce(mddev, 1);
  6914. mddev->pers->quiesce(mddev, 0);
  6915. }
  6916. }
  6917. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6918. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6919. " %d KB/sec/disk.\n", speed_min(mddev));
  6920. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6921. "(but not more than %d KB/sec) for %s.\n",
  6922. speed_max(mddev), desc);
  6923. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6924. io_sectors = 0;
  6925. for (m = 0; m < SYNC_MARKS; m++) {
  6926. mark[m] = jiffies;
  6927. mark_cnt[m] = io_sectors;
  6928. }
  6929. last_mark = 0;
  6930. mddev->resync_mark = mark[last_mark];
  6931. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6932. /*
  6933. * Tune reconstruction:
  6934. */
  6935. window = 32*(PAGE_SIZE/512);
  6936. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6937. window/2, (unsigned long long)max_sectors/2);
  6938. atomic_set(&mddev->recovery_active, 0);
  6939. last_check = 0;
  6940. if (j>2) {
  6941. printk(KERN_INFO
  6942. "md: resuming %s of %s from checkpoint.\n",
  6943. desc, mdname(mddev));
  6944. mddev->curr_resync = j;
  6945. } else
  6946. mddev->curr_resync = 3; /* no longer delayed */
  6947. mddev->curr_resync_completed = j;
  6948. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6949. md_new_event(mddev);
  6950. update_time = jiffies;
  6951. if (mddev_is_clustered(mddev))
  6952. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6953. blk_start_plug(&plug);
  6954. while (j < max_sectors) {
  6955. sector_t sectors;
  6956. skipped = 0;
  6957. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6958. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6959. (mddev->curr_resync - mddev->curr_resync_completed)
  6960. > (max_sectors >> 4)) ||
  6961. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6962. (j - mddev->curr_resync_completed)*2
  6963. >= mddev->resync_max - mddev->curr_resync_completed
  6964. )) {
  6965. /* time to update curr_resync_completed */
  6966. wait_event(mddev->recovery_wait,
  6967. atomic_read(&mddev->recovery_active) == 0);
  6968. mddev->curr_resync_completed = j;
  6969. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6970. j > mddev->recovery_cp)
  6971. mddev->recovery_cp = j;
  6972. update_time = jiffies;
  6973. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6974. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6975. }
  6976. while (j >= mddev->resync_max &&
  6977. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6978. /* As this condition is controlled by user-space,
  6979. * we can block indefinitely, so use '_interruptible'
  6980. * to avoid triggering warnings.
  6981. */
  6982. flush_signals(current); /* just in case */
  6983. wait_event_interruptible(mddev->recovery_wait,
  6984. mddev->resync_max > j
  6985. || test_bit(MD_RECOVERY_INTR,
  6986. &mddev->recovery));
  6987. }
  6988. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6989. break;
  6990. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  6991. if (sectors == 0) {
  6992. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6993. break;
  6994. }
  6995. if (!skipped) { /* actual IO requested */
  6996. io_sectors += sectors;
  6997. atomic_add(sectors, &mddev->recovery_active);
  6998. }
  6999. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7000. break;
  7001. j += sectors;
  7002. if (j > 2)
  7003. mddev->curr_resync = j;
  7004. if (mddev_is_clustered(mddev))
  7005. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  7006. mddev->curr_mark_cnt = io_sectors;
  7007. if (last_check == 0)
  7008. /* this is the earliest that rebuild will be
  7009. * visible in /proc/mdstat
  7010. */
  7011. md_new_event(mddev);
  7012. if (last_check + window > io_sectors || j == max_sectors)
  7013. continue;
  7014. last_check = io_sectors;
  7015. repeat:
  7016. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7017. /* step marks */
  7018. int next = (last_mark+1) % SYNC_MARKS;
  7019. mddev->resync_mark = mark[next];
  7020. mddev->resync_mark_cnt = mark_cnt[next];
  7021. mark[next] = jiffies;
  7022. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7023. last_mark = next;
  7024. }
  7025. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7026. break;
  7027. /*
  7028. * this loop exits only if either when we are slower than
  7029. * the 'hard' speed limit, or the system was IO-idle for
  7030. * a jiffy.
  7031. * the system might be non-idle CPU-wise, but we only care
  7032. * about not overloading the IO subsystem. (things like an
  7033. * e2fsck being done on the RAID array should execute fast)
  7034. */
  7035. cond_resched();
  7036. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7037. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7038. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7039. if (currspeed > speed_min(mddev)) {
  7040. if (currspeed > speed_max(mddev)) {
  7041. msleep(500);
  7042. goto repeat;
  7043. }
  7044. if (!is_mddev_idle(mddev, 0)) {
  7045. /*
  7046. * Give other IO more of a chance.
  7047. * The faster the devices, the less we wait.
  7048. */
  7049. wait_event(mddev->recovery_wait,
  7050. !atomic_read(&mddev->recovery_active));
  7051. }
  7052. }
  7053. }
  7054. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7055. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7056. ? "interrupted" : "done");
  7057. /*
  7058. * this also signals 'finished resyncing' to md_stop
  7059. */
  7060. blk_finish_plug(&plug);
  7061. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7062. /* tell personality that we are finished */
  7063. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7064. if (mddev_is_clustered(mddev))
  7065. md_cluster_ops->resync_finish(mddev);
  7066. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7067. mddev->curr_resync > 2) {
  7068. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7069. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7070. if (mddev->curr_resync >= mddev->recovery_cp) {
  7071. printk(KERN_INFO
  7072. "md: checkpointing %s of %s.\n",
  7073. desc, mdname(mddev));
  7074. if (test_bit(MD_RECOVERY_ERROR,
  7075. &mddev->recovery))
  7076. mddev->recovery_cp =
  7077. mddev->curr_resync_completed;
  7078. else
  7079. mddev->recovery_cp =
  7080. mddev->curr_resync;
  7081. }
  7082. } else
  7083. mddev->recovery_cp = MaxSector;
  7084. } else {
  7085. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7086. mddev->curr_resync = MaxSector;
  7087. rcu_read_lock();
  7088. rdev_for_each_rcu(rdev, mddev)
  7089. if (rdev->raid_disk >= 0 &&
  7090. mddev->delta_disks >= 0 &&
  7091. !test_bit(Faulty, &rdev->flags) &&
  7092. !test_bit(In_sync, &rdev->flags) &&
  7093. rdev->recovery_offset < mddev->curr_resync)
  7094. rdev->recovery_offset = mddev->curr_resync;
  7095. rcu_read_unlock();
  7096. }
  7097. }
  7098. skip:
  7099. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7100. spin_lock(&mddev->lock);
  7101. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7102. /* We completed so min/max setting can be forgotten if used. */
  7103. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7104. mddev->resync_min = 0;
  7105. mddev->resync_max = MaxSector;
  7106. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7107. mddev->resync_min = mddev->curr_resync_completed;
  7108. mddev->curr_resync = 0;
  7109. spin_unlock(&mddev->lock);
  7110. wake_up(&resync_wait);
  7111. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7112. md_wakeup_thread(mddev->thread);
  7113. return;
  7114. }
  7115. EXPORT_SYMBOL_GPL(md_do_sync);
  7116. static int remove_and_add_spares(struct mddev *mddev,
  7117. struct md_rdev *this)
  7118. {
  7119. struct md_rdev *rdev;
  7120. int spares = 0;
  7121. int removed = 0;
  7122. rdev_for_each(rdev, mddev)
  7123. if ((this == NULL || rdev == this) &&
  7124. rdev->raid_disk >= 0 &&
  7125. !test_bit(Blocked, &rdev->flags) &&
  7126. (test_bit(Faulty, &rdev->flags) ||
  7127. ! test_bit(In_sync, &rdev->flags)) &&
  7128. atomic_read(&rdev->nr_pending)==0) {
  7129. if (mddev->pers->hot_remove_disk(
  7130. mddev, rdev) == 0) {
  7131. sysfs_unlink_rdev(mddev, rdev);
  7132. rdev->raid_disk = -1;
  7133. removed++;
  7134. }
  7135. }
  7136. if (removed && mddev->kobj.sd)
  7137. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7138. if (this)
  7139. goto no_add;
  7140. rdev_for_each(rdev, mddev) {
  7141. if (rdev->raid_disk >= 0 &&
  7142. !test_bit(In_sync, &rdev->flags) &&
  7143. !test_bit(Faulty, &rdev->flags))
  7144. spares++;
  7145. if (rdev->raid_disk >= 0)
  7146. continue;
  7147. if (test_bit(Faulty, &rdev->flags))
  7148. continue;
  7149. if (mddev->ro &&
  7150. ! (rdev->saved_raid_disk >= 0 &&
  7151. !test_bit(Bitmap_sync, &rdev->flags)))
  7152. continue;
  7153. if (rdev->saved_raid_disk < 0)
  7154. rdev->recovery_offset = 0;
  7155. if (mddev->pers->
  7156. hot_add_disk(mddev, rdev) == 0) {
  7157. if (sysfs_link_rdev(mddev, rdev))
  7158. /* failure here is OK */;
  7159. spares++;
  7160. md_new_event(mddev);
  7161. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7162. }
  7163. }
  7164. no_add:
  7165. if (removed)
  7166. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7167. return spares;
  7168. }
  7169. static void md_start_sync(struct work_struct *ws)
  7170. {
  7171. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7172. mddev->sync_thread = md_register_thread(md_do_sync,
  7173. mddev,
  7174. "resync");
  7175. if (!mddev->sync_thread) {
  7176. printk(KERN_ERR "%s: could not start resync"
  7177. " thread...\n",
  7178. mdname(mddev));
  7179. /* leave the spares where they are, it shouldn't hurt */
  7180. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7181. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7182. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7183. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7184. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7185. wake_up(&resync_wait);
  7186. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7187. &mddev->recovery))
  7188. if (mddev->sysfs_action)
  7189. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7190. } else
  7191. md_wakeup_thread(mddev->sync_thread);
  7192. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7193. md_new_event(mddev);
  7194. }
  7195. /*
  7196. * This routine is regularly called by all per-raid-array threads to
  7197. * deal with generic issues like resync and super-block update.
  7198. * Raid personalities that don't have a thread (linear/raid0) do not
  7199. * need this as they never do any recovery or update the superblock.
  7200. *
  7201. * It does not do any resync itself, but rather "forks" off other threads
  7202. * to do that as needed.
  7203. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7204. * "->recovery" and create a thread at ->sync_thread.
  7205. * When the thread finishes it sets MD_RECOVERY_DONE
  7206. * and wakeups up this thread which will reap the thread and finish up.
  7207. * This thread also removes any faulty devices (with nr_pending == 0).
  7208. *
  7209. * The overall approach is:
  7210. * 1/ if the superblock needs updating, update it.
  7211. * 2/ If a recovery thread is running, don't do anything else.
  7212. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7213. * 4/ If there are any faulty devices, remove them.
  7214. * 5/ If array is degraded, try to add spares devices
  7215. * 6/ If array has spares or is not in-sync, start a resync thread.
  7216. */
  7217. void md_check_recovery(struct mddev *mddev)
  7218. {
  7219. if (mddev->suspended)
  7220. return;
  7221. if (mddev->bitmap)
  7222. bitmap_daemon_work(mddev);
  7223. if (signal_pending(current)) {
  7224. if (mddev->pers->sync_request && !mddev->external) {
  7225. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7226. mdname(mddev));
  7227. mddev->safemode = 2;
  7228. }
  7229. flush_signals(current);
  7230. }
  7231. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7232. return;
  7233. if ( ! (
  7234. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7235. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7236. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7237. (mddev->external == 0 && mddev->safemode == 1) ||
  7238. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7239. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7240. ))
  7241. return;
  7242. if (mddev_trylock(mddev)) {
  7243. int spares = 0;
  7244. if (mddev->ro) {
  7245. /* On a read-only array we can:
  7246. * - remove failed devices
  7247. * - add already-in_sync devices if the array itself
  7248. * is in-sync.
  7249. * As we only add devices that are already in-sync,
  7250. * we can activate the spares immediately.
  7251. */
  7252. remove_and_add_spares(mddev, NULL);
  7253. /* There is no thread, but we need to call
  7254. * ->spare_active and clear saved_raid_disk
  7255. */
  7256. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7257. md_reap_sync_thread(mddev);
  7258. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7259. goto unlock;
  7260. }
  7261. if (!mddev->external) {
  7262. int did_change = 0;
  7263. spin_lock(&mddev->lock);
  7264. if (mddev->safemode &&
  7265. !atomic_read(&mddev->writes_pending) &&
  7266. !mddev->in_sync &&
  7267. mddev->recovery_cp == MaxSector) {
  7268. mddev->in_sync = 1;
  7269. did_change = 1;
  7270. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7271. }
  7272. if (mddev->safemode == 1)
  7273. mddev->safemode = 0;
  7274. spin_unlock(&mddev->lock);
  7275. if (did_change)
  7276. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7277. }
  7278. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7279. if (mddev_is_clustered(mddev))
  7280. md_cluster_ops->metadata_update_start(mddev);
  7281. md_update_sb(mddev, 0);
  7282. if (mddev_is_clustered(mddev))
  7283. md_cluster_ops->metadata_update_finish(mddev);
  7284. }
  7285. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7286. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7287. /* resync/recovery still happening */
  7288. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7289. goto unlock;
  7290. }
  7291. if (mddev->sync_thread) {
  7292. md_reap_sync_thread(mddev);
  7293. goto unlock;
  7294. }
  7295. /* Set RUNNING before clearing NEEDED to avoid
  7296. * any transients in the value of "sync_action".
  7297. */
  7298. mddev->curr_resync_completed = 0;
  7299. spin_lock(&mddev->lock);
  7300. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7301. spin_unlock(&mddev->lock);
  7302. /* Clear some bits that don't mean anything, but
  7303. * might be left set
  7304. */
  7305. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7306. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7307. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7308. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7309. goto not_running;
  7310. /* no recovery is running.
  7311. * remove any failed drives, then
  7312. * add spares if possible.
  7313. * Spares are also removed and re-added, to allow
  7314. * the personality to fail the re-add.
  7315. */
  7316. if (mddev->reshape_position != MaxSector) {
  7317. if (mddev->pers->check_reshape == NULL ||
  7318. mddev->pers->check_reshape(mddev) != 0)
  7319. /* Cannot proceed */
  7320. goto not_running;
  7321. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7322. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7323. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7324. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7325. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7326. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7327. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7328. } else if (mddev->recovery_cp < MaxSector) {
  7329. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7330. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7331. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7332. /* nothing to be done ... */
  7333. goto not_running;
  7334. if (mddev->pers->sync_request) {
  7335. if (spares) {
  7336. /* We are adding a device or devices to an array
  7337. * which has the bitmap stored on all devices.
  7338. * So make sure all bitmap pages get written
  7339. */
  7340. bitmap_write_all(mddev->bitmap);
  7341. }
  7342. INIT_WORK(&mddev->del_work, md_start_sync);
  7343. queue_work(md_misc_wq, &mddev->del_work);
  7344. goto unlock;
  7345. }
  7346. not_running:
  7347. if (!mddev->sync_thread) {
  7348. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7349. wake_up(&resync_wait);
  7350. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7351. &mddev->recovery))
  7352. if (mddev->sysfs_action)
  7353. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7354. }
  7355. unlock:
  7356. wake_up(&mddev->sb_wait);
  7357. mddev_unlock(mddev);
  7358. }
  7359. }
  7360. EXPORT_SYMBOL(md_check_recovery);
  7361. void md_reap_sync_thread(struct mddev *mddev)
  7362. {
  7363. struct md_rdev *rdev;
  7364. /* resync has finished, collect result */
  7365. md_unregister_thread(&mddev->sync_thread);
  7366. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7367. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7368. /* success...*/
  7369. /* activate any spares */
  7370. if (mddev->pers->spare_active(mddev)) {
  7371. sysfs_notify(&mddev->kobj, NULL,
  7372. "degraded");
  7373. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7374. }
  7375. }
  7376. if (mddev_is_clustered(mddev))
  7377. md_cluster_ops->metadata_update_start(mddev);
  7378. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7379. mddev->pers->finish_reshape)
  7380. mddev->pers->finish_reshape(mddev);
  7381. /* If array is no-longer degraded, then any saved_raid_disk
  7382. * information must be scrapped.
  7383. */
  7384. if (!mddev->degraded)
  7385. rdev_for_each(rdev, mddev)
  7386. rdev->saved_raid_disk = -1;
  7387. md_update_sb(mddev, 1);
  7388. if (mddev_is_clustered(mddev))
  7389. md_cluster_ops->metadata_update_finish(mddev);
  7390. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7391. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7392. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7393. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7394. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7395. wake_up(&resync_wait);
  7396. /* flag recovery needed just to double check */
  7397. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7398. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7399. md_new_event(mddev);
  7400. if (mddev->event_work.func)
  7401. queue_work(md_misc_wq, &mddev->event_work);
  7402. }
  7403. EXPORT_SYMBOL(md_reap_sync_thread);
  7404. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7405. {
  7406. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7407. wait_event_timeout(rdev->blocked_wait,
  7408. !test_bit(Blocked, &rdev->flags) &&
  7409. !test_bit(BlockedBadBlocks, &rdev->flags),
  7410. msecs_to_jiffies(5000));
  7411. rdev_dec_pending(rdev, mddev);
  7412. }
  7413. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7414. void md_finish_reshape(struct mddev *mddev)
  7415. {
  7416. /* called be personality module when reshape completes. */
  7417. struct md_rdev *rdev;
  7418. rdev_for_each(rdev, mddev) {
  7419. if (rdev->data_offset > rdev->new_data_offset)
  7420. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7421. else
  7422. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7423. rdev->data_offset = rdev->new_data_offset;
  7424. }
  7425. }
  7426. EXPORT_SYMBOL(md_finish_reshape);
  7427. /* Bad block management.
  7428. * We can record which blocks on each device are 'bad' and so just
  7429. * fail those blocks, or that stripe, rather than the whole device.
  7430. * Entries in the bad-block table are 64bits wide. This comprises:
  7431. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7432. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7433. * A 'shift' can be set so that larger blocks are tracked and
  7434. * consequently larger devices can be covered.
  7435. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7436. *
  7437. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7438. * might need to retry if it is very unlucky.
  7439. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7440. * so we use the write_seqlock_irq variant.
  7441. *
  7442. * When looking for a bad block we specify a range and want to
  7443. * know if any block in the range is bad. So we binary-search
  7444. * to the last range that starts at-or-before the given endpoint,
  7445. * (or "before the sector after the target range")
  7446. * then see if it ends after the given start.
  7447. * We return
  7448. * 0 if there are no known bad blocks in the range
  7449. * 1 if there are known bad block which are all acknowledged
  7450. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7451. * plus the start/length of the first bad section we overlap.
  7452. */
  7453. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7454. sector_t *first_bad, int *bad_sectors)
  7455. {
  7456. int hi;
  7457. int lo;
  7458. u64 *p = bb->page;
  7459. int rv;
  7460. sector_t target = s + sectors;
  7461. unsigned seq;
  7462. if (bb->shift > 0) {
  7463. /* round the start down, and the end up */
  7464. s >>= bb->shift;
  7465. target += (1<<bb->shift) - 1;
  7466. target >>= bb->shift;
  7467. sectors = target - s;
  7468. }
  7469. /* 'target' is now the first block after the bad range */
  7470. retry:
  7471. seq = read_seqbegin(&bb->lock);
  7472. lo = 0;
  7473. rv = 0;
  7474. hi = bb->count;
  7475. /* Binary search between lo and hi for 'target'
  7476. * i.e. for the last range that starts before 'target'
  7477. */
  7478. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7479. * are known not to be the last range before target.
  7480. * VARIANT: hi-lo is the number of possible
  7481. * ranges, and decreases until it reaches 1
  7482. */
  7483. while (hi - lo > 1) {
  7484. int mid = (lo + hi) / 2;
  7485. sector_t a = BB_OFFSET(p[mid]);
  7486. if (a < target)
  7487. /* This could still be the one, earlier ranges
  7488. * could not. */
  7489. lo = mid;
  7490. else
  7491. /* This and later ranges are definitely out. */
  7492. hi = mid;
  7493. }
  7494. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7495. if (hi > lo) {
  7496. /* need to check all range that end after 's' to see if
  7497. * any are unacknowledged.
  7498. */
  7499. while (lo >= 0 &&
  7500. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7501. if (BB_OFFSET(p[lo]) < target) {
  7502. /* starts before the end, and finishes after
  7503. * the start, so they must overlap
  7504. */
  7505. if (rv != -1 && BB_ACK(p[lo]))
  7506. rv = 1;
  7507. else
  7508. rv = -1;
  7509. *first_bad = BB_OFFSET(p[lo]);
  7510. *bad_sectors = BB_LEN(p[lo]);
  7511. }
  7512. lo--;
  7513. }
  7514. }
  7515. if (read_seqretry(&bb->lock, seq))
  7516. goto retry;
  7517. return rv;
  7518. }
  7519. EXPORT_SYMBOL_GPL(md_is_badblock);
  7520. /*
  7521. * Add a range of bad blocks to the table.
  7522. * This might extend the table, or might contract it
  7523. * if two adjacent ranges can be merged.
  7524. * We binary-search to find the 'insertion' point, then
  7525. * decide how best to handle it.
  7526. */
  7527. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7528. int acknowledged)
  7529. {
  7530. u64 *p;
  7531. int lo, hi;
  7532. int rv = 1;
  7533. unsigned long flags;
  7534. if (bb->shift < 0)
  7535. /* badblocks are disabled */
  7536. return 0;
  7537. if (bb->shift) {
  7538. /* round the start down, and the end up */
  7539. sector_t next = s + sectors;
  7540. s >>= bb->shift;
  7541. next += (1<<bb->shift) - 1;
  7542. next >>= bb->shift;
  7543. sectors = next - s;
  7544. }
  7545. write_seqlock_irqsave(&bb->lock, flags);
  7546. p = bb->page;
  7547. lo = 0;
  7548. hi = bb->count;
  7549. /* Find the last range that starts at-or-before 's' */
  7550. while (hi - lo > 1) {
  7551. int mid = (lo + hi) / 2;
  7552. sector_t a = BB_OFFSET(p[mid]);
  7553. if (a <= s)
  7554. lo = mid;
  7555. else
  7556. hi = mid;
  7557. }
  7558. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7559. hi = lo;
  7560. if (hi > lo) {
  7561. /* we found a range that might merge with the start
  7562. * of our new range
  7563. */
  7564. sector_t a = BB_OFFSET(p[lo]);
  7565. sector_t e = a + BB_LEN(p[lo]);
  7566. int ack = BB_ACK(p[lo]);
  7567. if (e >= s) {
  7568. /* Yes, we can merge with a previous range */
  7569. if (s == a && s + sectors >= e)
  7570. /* new range covers old */
  7571. ack = acknowledged;
  7572. else
  7573. ack = ack && acknowledged;
  7574. if (e < s + sectors)
  7575. e = s + sectors;
  7576. if (e - a <= BB_MAX_LEN) {
  7577. p[lo] = BB_MAKE(a, e-a, ack);
  7578. s = e;
  7579. } else {
  7580. /* does not all fit in one range,
  7581. * make p[lo] maximal
  7582. */
  7583. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7584. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7585. s = a + BB_MAX_LEN;
  7586. }
  7587. sectors = e - s;
  7588. }
  7589. }
  7590. if (sectors && hi < bb->count) {
  7591. /* 'hi' points to the first range that starts after 's'.
  7592. * Maybe we can merge with the start of that range */
  7593. sector_t a = BB_OFFSET(p[hi]);
  7594. sector_t e = a + BB_LEN(p[hi]);
  7595. int ack = BB_ACK(p[hi]);
  7596. if (a <= s + sectors) {
  7597. /* merging is possible */
  7598. if (e <= s + sectors) {
  7599. /* full overlap */
  7600. e = s + sectors;
  7601. ack = acknowledged;
  7602. } else
  7603. ack = ack && acknowledged;
  7604. a = s;
  7605. if (e - a <= BB_MAX_LEN) {
  7606. p[hi] = BB_MAKE(a, e-a, ack);
  7607. s = e;
  7608. } else {
  7609. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7610. s = a + BB_MAX_LEN;
  7611. }
  7612. sectors = e - s;
  7613. lo = hi;
  7614. hi++;
  7615. }
  7616. }
  7617. if (sectors == 0 && hi < bb->count) {
  7618. /* we might be able to combine lo and hi */
  7619. /* Note: 's' is at the end of 'lo' */
  7620. sector_t a = BB_OFFSET(p[hi]);
  7621. int lolen = BB_LEN(p[lo]);
  7622. int hilen = BB_LEN(p[hi]);
  7623. int newlen = lolen + hilen - (s - a);
  7624. if (s >= a && newlen < BB_MAX_LEN) {
  7625. /* yes, we can combine them */
  7626. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7627. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7628. memmove(p + hi, p + hi + 1,
  7629. (bb->count - hi - 1) * 8);
  7630. bb->count--;
  7631. }
  7632. }
  7633. while (sectors) {
  7634. /* didn't merge (it all).
  7635. * Need to add a range just before 'hi' */
  7636. if (bb->count >= MD_MAX_BADBLOCKS) {
  7637. /* No room for more */
  7638. rv = 0;
  7639. break;
  7640. } else {
  7641. int this_sectors = sectors;
  7642. memmove(p + hi + 1, p + hi,
  7643. (bb->count - hi) * 8);
  7644. bb->count++;
  7645. if (this_sectors > BB_MAX_LEN)
  7646. this_sectors = BB_MAX_LEN;
  7647. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7648. sectors -= this_sectors;
  7649. s += this_sectors;
  7650. }
  7651. }
  7652. bb->changed = 1;
  7653. if (!acknowledged)
  7654. bb->unacked_exist = 1;
  7655. write_sequnlock_irqrestore(&bb->lock, flags);
  7656. return rv;
  7657. }
  7658. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7659. int is_new)
  7660. {
  7661. int rv;
  7662. if (is_new)
  7663. s += rdev->new_data_offset;
  7664. else
  7665. s += rdev->data_offset;
  7666. rv = md_set_badblocks(&rdev->badblocks,
  7667. s, sectors, 0);
  7668. if (rv) {
  7669. /* Make sure they get written out promptly */
  7670. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7671. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7672. md_wakeup_thread(rdev->mddev->thread);
  7673. }
  7674. return rv;
  7675. }
  7676. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7677. /*
  7678. * Remove a range of bad blocks from the table.
  7679. * This may involve extending the table if we spilt a region,
  7680. * but it must not fail. So if the table becomes full, we just
  7681. * drop the remove request.
  7682. */
  7683. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7684. {
  7685. u64 *p;
  7686. int lo, hi;
  7687. sector_t target = s + sectors;
  7688. int rv = 0;
  7689. if (bb->shift > 0) {
  7690. /* When clearing we round the start up and the end down.
  7691. * This should not matter as the shift should align with
  7692. * the block size and no rounding should ever be needed.
  7693. * However it is better the think a block is bad when it
  7694. * isn't than to think a block is not bad when it is.
  7695. */
  7696. s += (1<<bb->shift) - 1;
  7697. s >>= bb->shift;
  7698. target >>= bb->shift;
  7699. sectors = target - s;
  7700. }
  7701. write_seqlock_irq(&bb->lock);
  7702. p = bb->page;
  7703. lo = 0;
  7704. hi = bb->count;
  7705. /* Find the last range that starts before 'target' */
  7706. while (hi - lo > 1) {
  7707. int mid = (lo + hi) / 2;
  7708. sector_t a = BB_OFFSET(p[mid]);
  7709. if (a < target)
  7710. lo = mid;
  7711. else
  7712. hi = mid;
  7713. }
  7714. if (hi > lo) {
  7715. /* p[lo] is the last range that could overlap the
  7716. * current range. Earlier ranges could also overlap,
  7717. * but only this one can overlap the end of the range.
  7718. */
  7719. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7720. /* Partial overlap, leave the tail of this range */
  7721. int ack = BB_ACK(p[lo]);
  7722. sector_t a = BB_OFFSET(p[lo]);
  7723. sector_t end = a + BB_LEN(p[lo]);
  7724. if (a < s) {
  7725. /* we need to split this range */
  7726. if (bb->count >= MD_MAX_BADBLOCKS) {
  7727. rv = -ENOSPC;
  7728. goto out;
  7729. }
  7730. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7731. bb->count++;
  7732. p[lo] = BB_MAKE(a, s-a, ack);
  7733. lo++;
  7734. }
  7735. p[lo] = BB_MAKE(target, end - target, ack);
  7736. /* there is no longer an overlap */
  7737. hi = lo;
  7738. lo--;
  7739. }
  7740. while (lo >= 0 &&
  7741. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7742. /* This range does overlap */
  7743. if (BB_OFFSET(p[lo]) < s) {
  7744. /* Keep the early parts of this range. */
  7745. int ack = BB_ACK(p[lo]);
  7746. sector_t start = BB_OFFSET(p[lo]);
  7747. p[lo] = BB_MAKE(start, s - start, ack);
  7748. /* now low doesn't overlap, so.. */
  7749. break;
  7750. }
  7751. lo--;
  7752. }
  7753. /* 'lo' is strictly before, 'hi' is strictly after,
  7754. * anything between needs to be discarded
  7755. */
  7756. if (hi - lo > 1) {
  7757. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7758. bb->count -= (hi - lo - 1);
  7759. }
  7760. }
  7761. bb->changed = 1;
  7762. out:
  7763. write_sequnlock_irq(&bb->lock);
  7764. return rv;
  7765. }
  7766. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7767. int is_new)
  7768. {
  7769. if (is_new)
  7770. s += rdev->new_data_offset;
  7771. else
  7772. s += rdev->data_offset;
  7773. return md_clear_badblocks(&rdev->badblocks,
  7774. s, sectors);
  7775. }
  7776. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7777. /*
  7778. * Acknowledge all bad blocks in a list.
  7779. * This only succeeds if ->changed is clear. It is used by
  7780. * in-kernel metadata updates
  7781. */
  7782. void md_ack_all_badblocks(struct badblocks *bb)
  7783. {
  7784. if (bb->page == NULL || bb->changed)
  7785. /* no point even trying */
  7786. return;
  7787. write_seqlock_irq(&bb->lock);
  7788. if (bb->changed == 0 && bb->unacked_exist) {
  7789. u64 *p = bb->page;
  7790. int i;
  7791. for (i = 0; i < bb->count ; i++) {
  7792. if (!BB_ACK(p[i])) {
  7793. sector_t start = BB_OFFSET(p[i]);
  7794. int len = BB_LEN(p[i]);
  7795. p[i] = BB_MAKE(start, len, 1);
  7796. }
  7797. }
  7798. bb->unacked_exist = 0;
  7799. }
  7800. write_sequnlock_irq(&bb->lock);
  7801. }
  7802. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7803. /* sysfs access to bad-blocks list.
  7804. * We present two files.
  7805. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7806. * are recorded as bad. The list is truncated to fit within
  7807. * the one-page limit of sysfs.
  7808. * Writing "sector length" to this file adds an acknowledged
  7809. * bad block list.
  7810. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7811. * been acknowledged. Writing to this file adds bad blocks
  7812. * without acknowledging them. This is largely for testing.
  7813. */
  7814. static ssize_t
  7815. badblocks_show(struct badblocks *bb, char *page, int unack)
  7816. {
  7817. size_t len;
  7818. int i;
  7819. u64 *p = bb->page;
  7820. unsigned seq;
  7821. if (bb->shift < 0)
  7822. return 0;
  7823. retry:
  7824. seq = read_seqbegin(&bb->lock);
  7825. len = 0;
  7826. i = 0;
  7827. while (len < PAGE_SIZE && i < bb->count) {
  7828. sector_t s = BB_OFFSET(p[i]);
  7829. unsigned int length = BB_LEN(p[i]);
  7830. int ack = BB_ACK(p[i]);
  7831. i++;
  7832. if (unack && ack)
  7833. continue;
  7834. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7835. (unsigned long long)s << bb->shift,
  7836. length << bb->shift);
  7837. }
  7838. if (unack && len == 0)
  7839. bb->unacked_exist = 0;
  7840. if (read_seqretry(&bb->lock, seq))
  7841. goto retry;
  7842. return len;
  7843. }
  7844. #define DO_DEBUG 1
  7845. static ssize_t
  7846. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7847. {
  7848. unsigned long long sector;
  7849. int length;
  7850. char newline;
  7851. #ifdef DO_DEBUG
  7852. /* Allow clearing via sysfs *only* for testing/debugging.
  7853. * Normally only a successful write may clear a badblock
  7854. */
  7855. int clear = 0;
  7856. if (page[0] == '-') {
  7857. clear = 1;
  7858. page++;
  7859. }
  7860. #endif /* DO_DEBUG */
  7861. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7862. case 3:
  7863. if (newline != '\n')
  7864. return -EINVAL;
  7865. case 2:
  7866. if (length <= 0)
  7867. return -EINVAL;
  7868. break;
  7869. default:
  7870. return -EINVAL;
  7871. }
  7872. #ifdef DO_DEBUG
  7873. if (clear) {
  7874. md_clear_badblocks(bb, sector, length);
  7875. return len;
  7876. }
  7877. #endif /* DO_DEBUG */
  7878. if (md_set_badblocks(bb, sector, length, !unack))
  7879. return len;
  7880. else
  7881. return -ENOSPC;
  7882. }
  7883. static int md_notify_reboot(struct notifier_block *this,
  7884. unsigned long code, void *x)
  7885. {
  7886. struct list_head *tmp;
  7887. struct mddev *mddev;
  7888. int need_delay = 0;
  7889. for_each_mddev(mddev, tmp) {
  7890. if (mddev_trylock(mddev)) {
  7891. if (mddev->pers)
  7892. __md_stop_writes(mddev);
  7893. if (mddev->persistent)
  7894. mddev->safemode = 2;
  7895. mddev_unlock(mddev);
  7896. }
  7897. need_delay = 1;
  7898. }
  7899. /*
  7900. * certain more exotic SCSI devices are known to be
  7901. * volatile wrt too early system reboots. While the
  7902. * right place to handle this issue is the given
  7903. * driver, we do want to have a safe RAID driver ...
  7904. */
  7905. if (need_delay)
  7906. mdelay(1000*1);
  7907. return NOTIFY_DONE;
  7908. }
  7909. static struct notifier_block md_notifier = {
  7910. .notifier_call = md_notify_reboot,
  7911. .next = NULL,
  7912. .priority = INT_MAX, /* before any real devices */
  7913. };
  7914. static void md_geninit(void)
  7915. {
  7916. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7917. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7918. }
  7919. static int __init md_init(void)
  7920. {
  7921. int ret = -ENOMEM;
  7922. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7923. if (!md_wq)
  7924. goto err_wq;
  7925. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7926. if (!md_misc_wq)
  7927. goto err_misc_wq;
  7928. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7929. goto err_md;
  7930. if ((ret = register_blkdev(0, "mdp")) < 0)
  7931. goto err_mdp;
  7932. mdp_major = ret;
  7933. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7934. md_probe, NULL, NULL);
  7935. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7936. md_probe, NULL, NULL);
  7937. register_reboot_notifier(&md_notifier);
  7938. raid_table_header = register_sysctl_table(raid_root_table);
  7939. md_geninit();
  7940. return 0;
  7941. err_mdp:
  7942. unregister_blkdev(MD_MAJOR, "md");
  7943. err_md:
  7944. destroy_workqueue(md_misc_wq);
  7945. err_misc_wq:
  7946. destroy_workqueue(md_wq);
  7947. err_wq:
  7948. return ret;
  7949. }
  7950. void md_reload_sb(struct mddev *mddev)
  7951. {
  7952. struct md_rdev *rdev, *tmp;
  7953. rdev_for_each_safe(rdev, tmp, mddev) {
  7954. rdev->sb_loaded = 0;
  7955. ClearPageUptodate(rdev->sb_page);
  7956. }
  7957. mddev->raid_disks = 0;
  7958. analyze_sbs(mddev);
  7959. rdev_for_each_safe(rdev, tmp, mddev) {
  7960. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  7961. /* since we don't write to faulty devices, we figure out if the
  7962. * disk is faulty by comparing events
  7963. */
  7964. if (mddev->events > sb->events)
  7965. set_bit(Faulty, &rdev->flags);
  7966. }
  7967. }
  7968. EXPORT_SYMBOL(md_reload_sb);
  7969. #ifndef MODULE
  7970. /*
  7971. * Searches all registered partitions for autorun RAID arrays
  7972. * at boot time.
  7973. */
  7974. static LIST_HEAD(all_detected_devices);
  7975. struct detected_devices_node {
  7976. struct list_head list;
  7977. dev_t dev;
  7978. };
  7979. void md_autodetect_dev(dev_t dev)
  7980. {
  7981. struct detected_devices_node *node_detected_dev;
  7982. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7983. if (node_detected_dev) {
  7984. node_detected_dev->dev = dev;
  7985. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7986. } else {
  7987. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7988. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7989. }
  7990. }
  7991. static void autostart_arrays(int part)
  7992. {
  7993. struct md_rdev *rdev;
  7994. struct detected_devices_node *node_detected_dev;
  7995. dev_t dev;
  7996. int i_scanned, i_passed;
  7997. i_scanned = 0;
  7998. i_passed = 0;
  7999. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  8000. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  8001. i_scanned++;
  8002. node_detected_dev = list_entry(all_detected_devices.next,
  8003. struct detected_devices_node, list);
  8004. list_del(&node_detected_dev->list);
  8005. dev = node_detected_dev->dev;
  8006. kfree(node_detected_dev);
  8007. rdev = md_import_device(dev,0, 90);
  8008. if (IS_ERR(rdev))
  8009. continue;
  8010. if (test_bit(Faulty, &rdev->flags))
  8011. continue;
  8012. set_bit(AutoDetected, &rdev->flags);
  8013. list_add(&rdev->same_set, &pending_raid_disks);
  8014. i_passed++;
  8015. }
  8016. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8017. i_scanned, i_passed);
  8018. autorun_devices(part);
  8019. }
  8020. #endif /* !MODULE */
  8021. static __exit void md_exit(void)
  8022. {
  8023. struct mddev *mddev;
  8024. struct list_head *tmp;
  8025. int delay = 1;
  8026. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8027. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8028. unregister_blkdev(MD_MAJOR,"md");
  8029. unregister_blkdev(mdp_major, "mdp");
  8030. unregister_reboot_notifier(&md_notifier);
  8031. unregister_sysctl_table(raid_table_header);
  8032. /* We cannot unload the modules while some process is
  8033. * waiting for us in select() or poll() - wake them up
  8034. */
  8035. md_unloading = 1;
  8036. while (waitqueue_active(&md_event_waiters)) {
  8037. /* not safe to leave yet */
  8038. wake_up(&md_event_waiters);
  8039. msleep(delay);
  8040. delay += delay;
  8041. }
  8042. remove_proc_entry("mdstat", NULL);
  8043. for_each_mddev(mddev, tmp) {
  8044. export_array(mddev);
  8045. mddev->hold_active = 0;
  8046. }
  8047. destroy_workqueue(md_misc_wq);
  8048. destroy_workqueue(md_wq);
  8049. }
  8050. subsys_initcall(md_init);
  8051. module_exit(md_exit)
  8052. static int get_ro(char *buffer, struct kernel_param *kp)
  8053. {
  8054. return sprintf(buffer, "%d", start_readonly);
  8055. }
  8056. static int set_ro(const char *val, struct kernel_param *kp)
  8057. {
  8058. char *e;
  8059. int num = simple_strtoul(val, &e, 10);
  8060. if (*val && (*e == '\0' || *e == '\n')) {
  8061. start_readonly = num;
  8062. return 0;
  8063. }
  8064. return -EINVAL;
  8065. }
  8066. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8067. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8068. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8069. MODULE_LICENSE("GPL");
  8070. MODULE_DESCRIPTION("MD RAID framework");
  8071. MODULE_ALIAS("md");
  8072. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);