tlbflush.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _ASM_X86_TLBFLUSH_H
  3. #define _ASM_X86_TLBFLUSH_H
  4. #include <linux/mm.h>
  5. #include <linux/sched.h>
  6. #include <asm/processor.h>
  7. #include <asm/cpufeature.h>
  8. #include <asm/special_insns.h>
  9. #include <asm/smp.h>
  10. static inline void __invpcid(unsigned long pcid, unsigned long addr,
  11. unsigned long type)
  12. {
  13. struct { u64 d[2]; } desc = { { pcid, addr } };
  14. /*
  15. * The memory clobber is because the whole point is to invalidate
  16. * stale TLB entries and, especially if we're flushing global
  17. * mappings, we don't want the compiler to reorder any subsequent
  18. * memory accesses before the TLB flush.
  19. *
  20. * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and
  21. * invpcid (%rcx), %rax in long mode.
  22. */
  23. asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01"
  24. : : "m" (desc), "a" (type), "c" (&desc) : "memory");
  25. }
  26. #define INVPCID_TYPE_INDIV_ADDR 0
  27. #define INVPCID_TYPE_SINGLE_CTXT 1
  28. #define INVPCID_TYPE_ALL_INCL_GLOBAL 2
  29. #define INVPCID_TYPE_ALL_NON_GLOBAL 3
  30. /* Flush all mappings for a given pcid and addr, not including globals. */
  31. static inline void invpcid_flush_one(unsigned long pcid,
  32. unsigned long addr)
  33. {
  34. __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR);
  35. }
  36. /* Flush all mappings for a given PCID, not including globals. */
  37. static inline void invpcid_flush_single_context(unsigned long pcid)
  38. {
  39. __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT);
  40. }
  41. /* Flush all mappings, including globals, for all PCIDs. */
  42. static inline void invpcid_flush_all(void)
  43. {
  44. __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL);
  45. }
  46. /* Flush all mappings for all PCIDs except globals. */
  47. static inline void invpcid_flush_all_nonglobals(void)
  48. {
  49. __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL);
  50. }
  51. static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
  52. {
  53. /*
  54. * Bump the generation count. This also serves as a full barrier
  55. * that synchronizes with switch_mm(): callers are required to order
  56. * their read of mm_cpumask after their writes to the paging
  57. * structures.
  58. */
  59. return atomic64_inc_return(&mm->context.tlb_gen);
  60. }
  61. /* There are 12 bits of space for ASIDS in CR3 */
  62. #define CR3_HW_ASID_BITS 12
  63. /*
  64. * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  65. * user/kernel switches
  66. */
  67. #define PTI_CONSUMED_ASID_BITS 0
  68. #define CR3_AVAIL_ASID_BITS (CR3_HW_ASID_BITS - PTI_CONSUMED_ASID_BITS)
  69. /*
  70. * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
  71. * for them being zero-based. Another -1 is because ASID 0 is reserved for
  72. * use by non-PCID-aware users.
  73. */
  74. #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_ASID_BITS) - 2)
  75. static inline u16 kern_pcid(u16 asid)
  76. {
  77. VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  78. /*
  79. * If PCID is on, ASID-aware code paths put the ASID+1 into the
  80. * PCID bits. This serves two purposes. It prevents a nasty
  81. * situation in which PCID-unaware code saves CR3, loads some other
  82. * value (with PCID == 0), and then restores CR3, thus corrupting
  83. * the TLB for ASID 0 if the saved ASID was nonzero. It also means
  84. * that any bugs involving loading a PCID-enabled CR3 with
  85. * CR4.PCIDE off will trigger deterministically.
  86. */
  87. return asid + 1;
  88. }
  89. struct pgd_t;
  90. static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
  91. {
  92. if (static_cpu_has(X86_FEATURE_PCID)) {
  93. return __sme_pa(pgd) | kern_pcid(asid);
  94. } else {
  95. VM_WARN_ON_ONCE(asid != 0);
  96. return __sme_pa(pgd);
  97. }
  98. }
  99. static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
  100. {
  101. VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
  102. VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
  103. return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
  104. }
  105. #ifdef CONFIG_PARAVIRT
  106. #include <asm/paravirt.h>
  107. #else
  108. #define __flush_tlb() __native_flush_tlb()
  109. #define __flush_tlb_global() __native_flush_tlb_global()
  110. #define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
  111. #endif
  112. static inline bool tlb_defer_switch_to_init_mm(void)
  113. {
  114. /*
  115. * If we have PCID, then switching to init_mm is reasonably
  116. * fast. If we don't have PCID, then switching to init_mm is
  117. * quite slow, so we try to defer it in the hopes that we can
  118. * avoid it entirely. The latter approach runs the risk of
  119. * receiving otherwise unnecessary IPIs.
  120. *
  121. * This choice is just a heuristic. The tlb code can handle this
  122. * function returning true or false regardless of whether we have
  123. * PCID.
  124. */
  125. return !static_cpu_has(X86_FEATURE_PCID);
  126. }
  127. /*
  128. * 6 because 6 should be plenty and struct tlb_state will fit in
  129. * two cache lines.
  130. */
  131. #define TLB_NR_DYN_ASIDS 6
  132. struct tlb_context {
  133. u64 ctx_id;
  134. u64 tlb_gen;
  135. };
  136. struct tlb_state {
  137. /*
  138. * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
  139. * are on. This means that it may not match current->active_mm,
  140. * which will contain the previous user mm when we're in lazy TLB
  141. * mode even if we've already switched back to swapper_pg_dir.
  142. */
  143. struct mm_struct *loaded_mm;
  144. u16 loaded_mm_asid;
  145. u16 next_asid;
  146. /*
  147. * We can be in one of several states:
  148. *
  149. * - Actively using an mm. Our CPU's bit will be set in
  150. * mm_cpumask(loaded_mm) and is_lazy == false;
  151. *
  152. * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
  153. * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
  154. *
  155. * - Lazily using a real mm. loaded_mm != &init_mm, our bit
  156. * is set in mm_cpumask(loaded_mm), but is_lazy == true.
  157. * We're heuristically guessing that the CR3 load we
  158. * skipped more than makes up for the overhead added by
  159. * lazy mode.
  160. */
  161. bool is_lazy;
  162. /*
  163. * Access to this CR4 shadow and to H/W CR4 is protected by
  164. * disabling interrupts when modifying either one.
  165. */
  166. unsigned long cr4;
  167. /*
  168. * This is a list of all contexts that might exist in the TLB.
  169. * There is one per ASID that we use, and the ASID (what the
  170. * CPU calls PCID) is the index into ctxts.
  171. *
  172. * For each context, ctx_id indicates which mm the TLB's user
  173. * entries came from. As an invariant, the TLB will never
  174. * contain entries that are out-of-date as when that mm reached
  175. * the tlb_gen in the list.
  176. *
  177. * To be clear, this means that it's legal for the TLB code to
  178. * flush the TLB without updating tlb_gen. This can happen
  179. * (for now, at least) due to paravirt remote flushes.
  180. *
  181. * NB: context 0 is a bit special, since it's also used by
  182. * various bits of init code. This is fine -- code that
  183. * isn't aware of PCID will end up harmlessly flushing
  184. * context 0.
  185. */
  186. struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
  187. };
  188. DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
  189. /* Initialize cr4 shadow for this CPU. */
  190. static inline void cr4_init_shadow(void)
  191. {
  192. this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
  193. }
  194. /* Set in this cpu's CR4. */
  195. static inline void cr4_set_bits(unsigned long mask)
  196. {
  197. unsigned long cr4;
  198. cr4 = this_cpu_read(cpu_tlbstate.cr4);
  199. if ((cr4 | mask) != cr4) {
  200. cr4 |= mask;
  201. this_cpu_write(cpu_tlbstate.cr4, cr4);
  202. __write_cr4(cr4);
  203. }
  204. }
  205. /* Clear in this cpu's CR4. */
  206. static inline void cr4_clear_bits(unsigned long mask)
  207. {
  208. unsigned long cr4;
  209. cr4 = this_cpu_read(cpu_tlbstate.cr4);
  210. if ((cr4 & ~mask) != cr4) {
  211. cr4 &= ~mask;
  212. this_cpu_write(cpu_tlbstate.cr4, cr4);
  213. __write_cr4(cr4);
  214. }
  215. }
  216. static inline void cr4_toggle_bits(unsigned long mask)
  217. {
  218. unsigned long cr4;
  219. cr4 = this_cpu_read(cpu_tlbstate.cr4);
  220. cr4 ^= mask;
  221. this_cpu_write(cpu_tlbstate.cr4, cr4);
  222. __write_cr4(cr4);
  223. }
  224. /* Read the CR4 shadow. */
  225. static inline unsigned long cr4_read_shadow(void)
  226. {
  227. return this_cpu_read(cpu_tlbstate.cr4);
  228. }
  229. /*
  230. * Save some of cr4 feature set we're using (e.g. Pentium 4MB
  231. * enable and PPro Global page enable), so that any CPU's that boot
  232. * up after us can get the correct flags. This should only be used
  233. * during boot on the boot cpu.
  234. */
  235. extern unsigned long mmu_cr4_features;
  236. extern u32 *trampoline_cr4_features;
  237. static inline void cr4_set_bits_and_update_boot(unsigned long mask)
  238. {
  239. mmu_cr4_features |= mask;
  240. if (trampoline_cr4_features)
  241. *trampoline_cr4_features = mmu_cr4_features;
  242. cr4_set_bits(mask);
  243. }
  244. extern void initialize_tlbstate_and_flush(void);
  245. /*
  246. * flush the entire current user mapping
  247. */
  248. static inline void __native_flush_tlb(void)
  249. {
  250. /*
  251. * If current->mm == NULL then we borrow a mm which may change during a
  252. * task switch and therefore we must not be preempted while we write CR3
  253. * back:
  254. */
  255. preempt_disable();
  256. native_write_cr3(__native_read_cr3());
  257. preempt_enable();
  258. }
  259. /*
  260. * flush everything
  261. */
  262. static inline void __native_flush_tlb_global(void)
  263. {
  264. unsigned long cr4, flags;
  265. if (static_cpu_has(X86_FEATURE_INVPCID)) {
  266. /*
  267. * Using INVPCID is considerably faster than a pair of writes
  268. * to CR4 sandwiched inside an IRQ flag save/restore.
  269. */
  270. invpcid_flush_all();
  271. return;
  272. }
  273. /*
  274. * Read-modify-write to CR4 - protect it from preemption and
  275. * from interrupts. (Use the raw variant because this code can
  276. * be called from deep inside debugging code.)
  277. */
  278. raw_local_irq_save(flags);
  279. cr4 = this_cpu_read(cpu_tlbstate.cr4);
  280. /* toggle PGE */
  281. native_write_cr4(cr4 ^ X86_CR4_PGE);
  282. /* write old PGE again and flush TLBs */
  283. native_write_cr4(cr4);
  284. raw_local_irq_restore(flags);
  285. }
  286. /*
  287. * flush one page in the user mapping
  288. */
  289. static inline void __native_flush_tlb_single(unsigned long addr)
  290. {
  291. asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
  292. }
  293. /*
  294. * flush everything
  295. */
  296. static inline void __flush_tlb_all(void)
  297. {
  298. if (boot_cpu_has(X86_FEATURE_PGE)) {
  299. __flush_tlb_global();
  300. } else {
  301. /*
  302. * !PGE -> !PCID (setup_pcid()), thus every flush is total.
  303. */
  304. __flush_tlb();
  305. }
  306. /*
  307. * Note: if we somehow had PCID but not PGE, then this wouldn't work --
  308. * we'd end up flushing kernel translations for the current ASID but
  309. * we might fail to flush kernel translations for other cached ASIDs.
  310. *
  311. * To avoid this issue, we force PCID off if PGE is off.
  312. */
  313. }
  314. /*
  315. * flush one page in the kernel mapping
  316. */
  317. static inline void __flush_tlb_one(unsigned long addr)
  318. {
  319. count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
  320. __flush_tlb_single(addr);
  321. }
  322. #define TLB_FLUSH_ALL -1UL
  323. /*
  324. * TLB flushing:
  325. *
  326. * - flush_tlb_all() flushes all processes TLBs
  327. * - flush_tlb_mm(mm) flushes the specified mm context TLB's
  328. * - flush_tlb_page(vma, vmaddr) flushes one page
  329. * - flush_tlb_range(vma, start, end) flushes a range of pages
  330. * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
  331. * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
  332. *
  333. * ..but the i386 has somewhat limited tlb flushing capabilities,
  334. * and page-granular flushes are available only on i486 and up.
  335. */
  336. struct flush_tlb_info {
  337. /*
  338. * We support several kinds of flushes.
  339. *
  340. * - Fully flush a single mm. .mm will be set, .end will be
  341. * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
  342. * which the IPI sender is trying to catch us up.
  343. *
  344. * - Partially flush a single mm. .mm will be set, .start and
  345. * .end will indicate the range, and .new_tlb_gen will be set
  346. * such that the changes between generation .new_tlb_gen-1 and
  347. * .new_tlb_gen are entirely contained in the indicated range.
  348. *
  349. * - Fully flush all mms whose tlb_gens have been updated. .mm
  350. * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
  351. * will be zero.
  352. */
  353. struct mm_struct *mm;
  354. unsigned long start;
  355. unsigned long end;
  356. u64 new_tlb_gen;
  357. };
  358. #define local_flush_tlb() __flush_tlb()
  359. #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
  360. #define flush_tlb_range(vma, start, end) \
  361. flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
  362. extern void flush_tlb_all(void);
  363. extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
  364. unsigned long end, unsigned long vmflag);
  365. extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
  366. static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
  367. {
  368. flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
  369. }
  370. void native_flush_tlb_others(const struct cpumask *cpumask,
  371. const struct flush_tlb_info *info);
  372. static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
  373. struct mm_struct *mm)
  374. {
  375. inc_mm_tlb_gen(mm);
  376. cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
  377. }
  378. extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
  379. #ifndef CONFIG_PARAVIRT
  380. #define flush_tlb_others(mask, info) \
  381. native_flush_tlb_others(mask, info)
  382. #endif
  383. #endif /* _ASM_X86_TLBFLUSH_H */