fair.c 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  4. *
  5. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  6. *
  7. * Interactivity improvements by Mike Galbraith
  8. * (C) 2007 Mike Galbraith <efault@gmx.de>
  9. *
  10. * Various enhancements by Dmitry Adamushko.
  11. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12. *
  13. * Group scheduling enhancements by Srivatsa Vaddagiri
  14. * Copyright IBM Corporation, 2007
  15. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16. *
  17. * Scaled math optimizations by Thomas Gleixner
  18. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19. *
  20. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22. */
  23. #include "sched.h"
  24. #include <trace/events/sched.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. *
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. */
  38. unsigned int sysctl_sched_latency = 6000000ULL;
  39. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  40. /*
  41. * The initial- and re-scaling of tunables is configurable
  42. *
  43. * Options are:
  44. *
  45. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  46. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  47. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  48. *
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. */
  51. enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  52. /*
  53. * Minimal preemption granularity for CPU-bound tasks:
  54. *
  55. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  56. */
  57. unsigned int sysctl_sched_min_granularity = 750000ULL;
  58. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  59. /*
  60. * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  61. */
  62. static unsigned int sched_nr_latency = 8;
  63. /*
  64. * After fork, child runs first. If set to 0 (default) then
  65. * parent will (try to) run first.
  66. */
  67. unsigned int sysctl_sched_child_runs_first __read_mostly;
  68. /*
  69. * SCHED_OTHER wake-up granularity.
  70. *
  71. * This option delays the preemption effects of decoupled workloads
  72. * and reduces their over-scheduling. Synchronous workloads will still
  73. * have immediate wakeup/sleep latencies.
  74. *
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. */
  77. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  78. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  79. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  80. #ifdef CONFIG_SMP
  81. /*
  82. * For asym packing, by default the lower numbered CPU has higher priority.
  83. */
  84. int __weak arch_asym_cpu_priority(int cpu)
  85. {
  86. return -cpu;
  87. }
  88. #endif
  89. #ifdef CONFIG_CFS_BANDWIDTH
  90. /*
  91. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  92. * each time a cfs_rq requests quota.
  93. *
  94. * Note: in the case that the slice exceeds the runtime remaining (either due
  95. * to consumption or the quota being specified to be smaller than the slice)
  96. * we will always only issue the remaining available time.
  97. *
  98. * (default: 5 msec, units: microseconds)
  99. */
  100. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  101. #endif
  102. /*
  103. * The margin used when comparing utilization with CPU capacity:
  104. * util * margin < capacity * 1024
  105. *
  106. * (default: ~20%)
  107. */
  108. unsigned int capacity_margin = 1280;
  109. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  110. {
  111. lw->weight += inc;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  115. {
  116. lw->weight -= dec;
  117. lw->inv_weight = 0;
  118. }
  119. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  120. {
  121. lw->weight = w;
  122. lw->inv_weight = 0;
  123. }
  124. /*
  125. * Increase the granularity value when there are more CPUs,
  126. * because with more CPUs the 'effective latency' as visible
  127. * to users decreases. But the relationship is not linear,
  128. * so pick a second-best guess by going with the log2 of the
  129. * number of CPUs.
  130. *
  131. * This idea comes from the SD scheduler of Con Kolivas:
  132. */
  133. static unsigned int get_update_sysctl_factor(void)
  134. {
  135. unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  136. unsigned int factor;
  137. switch (sysctl_sched_tunable_scaling) {
  138. case SCHED_TUNABLESCALING_NONE:
  139. factor = 1;
  140. break;
  141. case SCHED_TUNABLESCALING_LINEAR:
  142. factor = cpus;
  143. break;
  144. case SCHED_TUNABLESCALING_LOG:
  145. default:
  146. factor = 1 + ilog2(cpus);
  147. break;
  148. }
  149. return factor;
  150. }
  151. static void update_sysctl(void)
  152. {
  153. unsigned int factor = get_update_sysctl_factor();
  154. #define SET_SYSCTL(name) \
  155. (sysctl_##name = (factor) * normalized_sysctl_##name)
  156. SET_SYSCTL(sched_min_granularity);
  157. SET_SYSCTL(sched_latency);
  158. SET_SYSCTL(sched_wakeup_granularity);
  159. #undef SET_SYSCTL
  160. }
  161. void sched_init_granularity(void)
  162. {
  163. update_sysctl();
  164. }
  165. #define WMULT_CONST (~0U)
  166. #define WMULT_SHIFT 32
  167. static void __update_inv_weight(struct load_weight *lw)
  168. {
  169. unsigned long w;
  170. if (likely(lw->inv_weight))
  171. return;
  172. w = scale_load_down(lw->weight);
  173. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  174. lw->inv_weight = 1;
  175. else if (unlikely(!w))
  176. lw->inv_weight = WMULT_CONST;
  177. else
  178. lw->inv_weight = WMULT_CONST / w;
  179. }
  180. /*
  181. * delta_exec * weight / lw.weight
  182. * OR
  183. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  184. *
  185. * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
  186. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  187. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  188. *
  189. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  190. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  191. */
  192. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  193. {
  194. u64 fact = scale_load_down(weight);
  195. int shift = WMULT_SHIFT;
  196. __update_inv_weight(lw);
  197. if (unlikely(fact >> 32)) {
  198. while (fact >> 32) {
  199. fact >>= 1;
  200. shift--;
  201. }
  202. }
  203. /* hint to use a 32x32->64 mul */
  204. fact = (u64)(u32)fact * lw->inv_weight;
  205. while (fact >> 32) {
  206. fact >>= 1;
  207. shift--;
  208. }
  209. return mul_u64_u32_shr(delta_exec, fact, shift);
  210. }
  211. const struct sched_class fair_sched_class;
  212. /**************************************************************
  213. * CFS operations on generic schedulable entities:
  214. */
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. /* cpu runqueue to which this cfs_rq is attached */
  217. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  218. {
  219. return cfs_rq->rq;
  220. }
  221. /* An entity is a task if it doesn't "own" a runqueue */
  222. #define entity_is_task(se) (!se->my_q)
  223. static inline struct task_struct *task_of(struct sched_entity *se)
  224. {
  225. SCHED_WARN_ON(!entity_is_task(se));
  226. return container_of(se, struct task_struct, se);
  227. }
  228. /* Walk up scheduling entities hierarchy */
  229. #define for_each_sched_entity(se) \
  230. for (; se; se = se->parent)
  231. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  232. {
  233. return p->se.cfs_rq;
  234. }
  235. /* runqueue on which this entity is (to be) queued */
  236. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  237. {
  238. return se->cfs_rq;
  239. }
  240. /* runqueue "owned" by this group */
  241. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  242. {
  243. return grp->my_q;
  244. }
  245. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  246. {
  247. if (!cfs_rq->on_list) {
  248. struct rq *rq = rq_of(cfs_rq);
  249. int cpu = cpu_of(rq);
  250. /*
  251. * Ensure we either appear before our parent (if already
  252. * enqueued) or force our parent to appear after us when it is
  253. * enqueued. The fact that we always enqueue bottom-up
  254. * reduces this to two cases and a special case for the root
  255. * cfs_rq. Furthermore, it also means that we will always reset
  256. * tmp_alone_branch either when the branch is connected
  257. * to a tree or when we reach the beg of the tree
  258. */
  259. if (cfs_rq->tg->parent &&
  260. cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
  261. /*
  262. * If parent is already on the list, we add the child
  263. * just before. Thanks to circular linked property of
  264. * the list, this means to put the child at the tail
  265. * of the list that starts by parent.
  266. */
  267. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  268. &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
  269. /*
  270. * The branch is now connected to its tree so we can
  271. * reset tmp_alone_branch to the beginning of the
  272. * list.
  273. */
  274. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  275. } else if (!cfs_rq->tg->parent) {
  276. /*
  277. * cfs rq without parent should be put
  278. * at the tail of the list.
  279. */
  280. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  281. &rq->leaf_cfs_rq_list);
  282. /*
  283. * We have reach the beg of a tree so we can reset
  284. * tmp_alone_branch to the beginning of the list.
  285. */
  286. rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
  287. } else {
  288. /*
  289. * The parent has not already been added so we want to
  290. * make sure that it will be put after us.
  291. * tmp_alone_branch points to the beg of the branch
  292. * where we will add parent.
  293. */
  294. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  295. rq->tmp_alone_branch);
  296. /*
  297. * update tmp_alone_branch to points to the new beg
  298. * of the branch
  299. */
  300. rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
  301. }
  302. cfs_rq->on_list = 1;
  303. }
  304. }
  305. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  306. {
  307. if (cfs_rq->on_list) {
  308. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  309. cfs_rq->on_list = 0;
  310. }
  311. }
  312. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  313. #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
  314. list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
  315. leaf_cfs_rq_list)
  316. /* Do the two (enqueued) entities belong to the same group ? */
  317. static inline struct cfs_rq *
  318. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  319. {
  320. if (se->cfs_rq == pse->cfs_rq)
  321. return se->cfs_rq;
  322. return NULL;
  323. }
  324. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  325. {
  326. return se->parent;
  327. }
  328. static void
  329. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  330. {
  331. int se_depth, pse_depth;
  332. /*
  333. * preemption test can be made between sibling entities who are in the
  334. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  335. * both tasks until we find their ancestors who are siblings of common
  336. * parent.
  337. */
  338. /* First walk up until both entities are at same depth */
  339. se_depth = (*se)->depth;
  340. pse_depth = (*pse)->depth;
  341. while (se_depth > pse_depth) {
  342. se_depth--;
  343. *se = parent_entity(*se);
  344. }
  345. while (pse_depth > se_depth) {
  346. pse_depth--;
  347. *pse = parent_entity(*pse);
  348. }
  349. while (!is_same_group(*se, *pse)) {
  350. *se = parent_entity(*se);
  351. *pse = parent_entity(*pse);
  352. }
  353. }
  354. #else /* !CONFIG_FAIR_GROUP_SCHED */
  355. static inline struct task_struct *task_of(struct sched_entity *se)
  356. {
  357. return container_of(se, struct task_struct, se);
  358. }
  359. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  360. {
  361. return container_of(cfs_rq, struct rq, cfs);
  362. }
  363. #define entity_is_task(se) 1
  364. #define for_each_sched_entity(se) \
  365. for (; se; se = NULL)
  366. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  367. {
  368. return &task_rq(p)->cfs;
  369. }
  370. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  371. {
  372. struct task_struct *p = task_of(se);
  373. struct rq *rq = task_rq(p);
  374. return &rq->cfs;
  375. }
  376. /* runqueue "owned" by this group */
  377. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  378. {
  379. return NULL;
  380. }
  381. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  382. {
  383. }
  384. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  385. {
  386. }
  387. #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
  388. for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
  389. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  390. {
  391. return NULL;
  392. }
  393. static inline void
  394. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  395. {
  396. }
  397. #endif /* CONFIG_FAIR_GROUP_SCHED */
  398. static __always_inline
  399. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  400. /**************************************************************
  401. * Scheduling class tree data structure manipulation methods:
  402. */
  403. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  404. {
  405. s64 delta = (s64)(vruntime - max_vruntime);
  406. if (delta > 0)
  407. max_vruntime = vruntime;
  408. return max_vruntime;
  409. }
  410. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  411. {
  412. s64 delta = (s64)(vruntime - min_vruntime);
  413. if (delta < 0)
  414. min_vruntime = vruntime;
  415. return min_vruntime;
  416. }
  417. static inline int entity_before(struct sched_entity *a,
  418. struct sched_entity *b)
  419. {
  420. return (s64)(a->vruntime - b->vruntime) < 0;
  421. }
  422. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  423. {
  424. struct sched_entity *curr = cfs_rq->curr;
  425. struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
  426. u64 vruntime = cfs_rq->min_vruntime;
  427. if (curr) {
  428. if (curr->on_rq)
  429. vruntime = curr->vruntime;
  430. else
  431. curr = NULL;
  432. }
  433. if (leftmost) { /* non-empty tree */
  434. struct sched_entity *se;
  435. se = rb_entry(leftmost, struct sched_entity, run_node);
  436. if (!curr)
  437. vruntime = se->vruntime;
  438. else
  439. vruntime = min_vruntime(vruntime, se->vruntime);
  440. }
  441. /* ensure we never gain time by being placed backwards. */
  442. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  443. #ifndef CONFIG_64BIT
  444. smp_wmb();
  445. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  446. #endif
  447. }
  448. /*
  449. * Enqueue an entity into the rb-tree:
  450. */
  451. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  452. {
  453. struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
  454. struct rb_node *parent = NULL;
  455. struct sched_entity *entry;
  456. bool leftmost = true;
  457. /*
  458. * Find the right place in the rbtree:
  459. */
  460. while (*link) {
  461. parent = *link;
  462. entry = rb_entry(parent, struct sched_entity, run_node);
  463. /*
  464. * We dont care about collisions. Nodes with
  465. * the same key stay together.
  466. */
  467. if (entity_before(se, entry)) {
  468. link = &parent->rb_left;
  469. } else {
  470. link = &parent->rb_right;
  471. leftmost = false;
  472. }
  473. }
  474. rb_link_node(&se->run_node, parent, link);
  475. rb_insert_color_cached(&se->run_node,
  476. &cfs_rq->tasks_timeline, leftmost);
  477. }
  478. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  479. {
  480. rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
  481. }
  482. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  483. {
  484. struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
  485. if (!left)
  486. return NULL;
  487. return rb_entry(left, struct sched_entity, run_node);
  488. }
  489. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  490. {
  491. struct rb_node *next = rb_next(&se->run_node);
  492. if (!next)
  493. return NULL;
  494. return rb_entry(next, struct sched_entity, run_node);
  495. }
  496. #ifdef CONFIG_SCHED_DEBUG
  497. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  498. {
  499. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
  500. if (!last)
  501. return NULL;
  502. return rb_entry(last, struct sched_entity, run_node);
  503. }
  504. /**************************************************************
  505. * Scheduling class statistics methods:
  506. */
  507. int sched_proc_update_handler(struct ctl_table *table, int write,
  508. void __user *buffer, size_t *lenp,
  509. loff_t *ppos)
  510. {
  511. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  512. unsigned int factor = get_update_sysctl_factor();
  513. if (ret || !write)
  514. return ret;
  515. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  516. sysctl_sched_min_granularity);
  517. #define WRT_SYSCTL(name) \
  518. (normalized_sysctl_##name = sysctl_##name / (factor))
  519. WRT_SYSCTL(sched_min_granularity);
  520. WRT_SYSCTL(sched_latency);
  521. WRT_SYSCTL(sched_wakeup_granularity);
  522. #undef WRT_SYSCTL
  523. return 0;
  524. }
  525. #endif
  526. /*
  527. * delta /= w
  528. */
  529. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  530. {
  531. if (unlikely(se->load.weight != NICE_0_LOAD))
  532. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  533. return delta;
  534. }
  535. /*
  536. * The idea is to set a period in which each task runs once.
  537. *
  538. * When there are too many tasks (sched_nr_latency) we have to stretch
  539. * this period because otherwise the slices get too small.
  540. *
  541. * p = (nr <= nl) ? l : l*nr/nl
  542. */
  543. static u64 __sched_period(unsigned long nr_running)
  544. {
  545. if (unlikely(nr_running > sched_nr_latency))
  546. return nr_running * sysctl_sched_min_granularity;
  547. else
  548. return sysctl_sched_latency;
  549. }
  550. /*
  551. * We calculate the wall-time slice from the period by taking a part
  552. * proportional to the weight.
  553. *
  554. * s = p*P[w/rw]
  555. */
  556. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  557. {
  558. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  559. for_each_sched_entity(se) {
  560. struct load_weight *load;
  561. struct load_weight lw;
  562. cfs_rq = cfs_rq_of(se);
  563. load = &cfs_rq->load;
  564. if (unlikely(!se->on_rq)) {
  565. lw = cfs_rq->load;
  566. update_load_add(&lw, se->load.weight);
  567. load = &lw;
  568. }
  569. slice = __calc_delta(slice, se->load.weight, load);
  570. }
  571. return slice;
  572. }
  573. /*
  574. * We calculate the vruntime slice of a to-be-inserted task.
  575. *
  576. * vs = s/w
  577. */
  578. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  579. {
  580. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  581. }
  582. #ifdef CONFIG_SMP
  583. #include "sched-pelt.h"
  584. static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
  585. static unsigned long task_h_load(struct task_struct *p);
  586. /* Give new sched_entity start runnable values to heavy its load in infant time */
  587. void init_entity_runnable_average(struct sched_entity *se)
  588. {
  589. struct sched_avg *sa = &se->avg;
  590. memset(sa, 0, sizeof(*sa));
  591. /*
  592. * Tasks are intialized with full load to be seen as heavy tasks until
  593. * they get a chance to stabilize to their real load level.
  594. * Group entities are intialized with zero load to reflect the fact that
  595. * nothing has been attached to the task group yet.
  596. */
  597. if (entity_is_task(se))
  598. sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
  599. se->runnable_weight = se->load.weight;
  600. /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  601. }
  602. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  603. static void attach_entity_cfs_rq(struct sched_entity *se);
  604. /*
  605. * With new tasks being created, their initial util_avgs are extrapolated
  606. * based on the cfs_rq's current util_avg:
  607. *
  608. * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
  609. *
  610. * However, in many cases, the above util_avg does not give a desired
  611. * value. Moreover, the sum of the util_avgs may be divergent, such
  612. * as when the series is a harmonic series.
  613. *
  614. * To solve this problem, we also cap the util_avg of successive tasks to
  615. * only 1/2 of the left utilization budget:
  616. *
  617. * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
  618. *
  619. * where n denotes the nth task.
  620. *
  621. * For example, a simplest series from the beginning would be like:
  622. *
  623. * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
  624. * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
  625. *
  626. * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
  627. * if util_avg > util_avg_cap.
  628. */
  629. void post_init_entity_util_avg(struct sched_entity *se)
  630. {
  631. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  632. struct sched_avg *sa = &se->avg;
  633. long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
  634. if (cap > 0) {
  635. if (cfs_rq->avg.util_avg != 0) {
  636. sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
  637. sa->util_avg /= (cfs_rq->avg.load_avg + 1);
  638. if (sa->util_avg > cap)
  639. sa->util_avg = cap;
  640. } else {
  641. sa->util_avg = cap;
  642. }
  643. }
  644. if (entity_is_task(se)) {
  645. struct task_struct *p = task_of(se);
  646. if (p->sched_class != &fair_sched_class) {
  647. /*
  648. * For !fair tasks do:
  649. *
  650. update_cfs_rq_load_avg(now, cfs_rq);
  651. attach_entity_load_avg(cfs_rq, se, 0);
  652. switched_from_fair(rq, p);
  653. *
  654. * such that the next switched_to_fair() has the
  655. * expected state.
  656. */
  657. se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
  658. return;
  659. }
  660. }
  661. attach_entity_cfs_rq(se);
  662. }
  663. #else /* !CONFIG_SMP */
  664. void init_entity_runnable_average(struct sched_entity *se)
  665. {
  666. }
  667. void post_init_entity_util_avg(struct sched_entity *se)
  668. {
  669. }
  670. static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  671. {
  672. }
  673. #endif /* CONFIG_SMP */
  674. /*
  675. * Update the current task's runtime statistics.
  676. */
  677. static void update_curr(struct cfs_rq *cfs_rq)
  678. {
  679. struct sched_entity *curr = cfs_rq->curr;
  680. u64 now = rq_clock_task(rq_of(cfs_rq));
  681. u64 delta_exec;
  682. if (unlikely(!curr))
  683. return;
  684. delta_exec = now - curr->exec_start;
  685. if (unlikely((s64)delta_exec <= 0))
  686. return;
  687. curr->exec_start = now;
  688. schedstat_set(curr->statistics.exec_max,
  689. max(delta_exec, curr->statistics.exec_max));
  690. curr->sum_exec_runtime += delta_exec;
  691. schedstat_add(cfs_rq->exec_clock, delta_exec);
  692. curr->vruntime += calc_delta_fair(delta_exec, curr);
  693. update_min_vruntime(cfs_rq);
  694. if (entity_is_task(curr)) {
  695. struct task_struct *curtask = task_of(curr);
  696. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  697. cgroup_account_cputime(curtask, delta_exec);
  698. account_group_exec_runtime(curtask, delta_exec);
  699. }
  700. account_cfs_rq_runtime(cfs_rq, delta_exec);
  701. }
  702. static void update_curr_fair(struct rq *rq)
  703. {
  704. update_curr(cfs_rq_of(&rq->curr->se));
  705. }
  706. static inline void
  707. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  708. {
  709. u64 wait_start, prev_wait_start;
  710. if (!schedstat_enabled())
  711. return;
  712. wait_start = rq_clock(rq_of(cfs_rq));
  713. prev_wait_start = schedstat_val(se->statistics.wait_start);
  714. if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
  715. likely(wait_start > prev_wait_start))
  716. wait_start -= prev_wait_start;
  717. __schedstat_set(se->statistics.wait_start, wait_start);
  718. }
  719. static inline void
  720. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  721. {
  722. struct task_struct *p;
  723. u64 delta;
  724. if (!schedstat_enabled())
  725. return;
  726. delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
  727. if (entity_is_task(se)) {
  728. p = task_of(se);
  729. if (task_on_rq_migrating(p)) {
  730. /*
  731. * Preserve migrating task's wait time so wait_start
  732. * time stamp can be adjusted to accumulate wait time
  733. * prior to migration.
  734. */
  735. __schedstat_set(se->statistics.wait_start, delta);
  736. return;
  737. }
  738. trace_sched_stat_wait(p, delta);
  739. }
  740. __schedstat_set(se->statistics.wait_max,
  741. max(schedstat_val(se->statistics.wait_max), delta));
  742. __schedstat_inc(se->statistics.wait_count);
  743. __schedstat_add(se->statistics.wait_sum, delta);
  744. __schedstat_set(se->statistics.wait_start, 0);
  745. }
  746. static inline void
  747. update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  748. {
  749. struct task_struct *tsk = NULL;
  750. u64 sleep_start, block_start;
  751. if (!schedstat_enabled())
  752. return;
  753. sleep_start = schedstat_val(se->statistics.sleep_start);
  754. block_start = schedstat_val(se->statistics.block_start);
  755. if (entity_is_task(se))
  756. tsk = task_of(se);
  757. if (sleep_start) {
  758. u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
  759. if ((s64)delta < 0)
  760. delta = 0;
  761. if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
  762. __schedstat_set(se->statistics.sleep_max, delta);
  763. __schedstat_set(se->statistics.sleep_start, 0);
  764. __schedstat_add(se->statistics.sum_sleep_runtime, delta);
  765. if (tsk) {
  766. account_scheduler_latency(tsk, delta >> 10, 1);
  767. trace_sched_stat_sleep(tsk, delta);
  768. }
  769. }
  770. if (block_start) {
  771. u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
  772. if ((s64)delta < 0)
  773. delta = 0;
  774. if (unlikely(delta > schedstat_val(se->statistics.block_max)))
  775. __schedstat_set(se->statistics.block_max, delta);
  776. __schedstat_set(se->statistics.block_start, 0);
  777. __schedstat_add(se->statistics.sum_sleep_runtime, delta);
  778. if (tsk) {
  779. if (tsk->in_iowait) {
  780. __schedstat_add(se->statistics.iowait_sum, delta);
  781. __schedstat_inc(se->statistics.iowait_count);
  782. trace_sched_stat_iowait(tsk, delta);
  783. }
  784. trace_sched_stat_blocked(tsk, delta);
  785. /*
  786. * Blocking time is in units of nanosecs, so shift by
  787. * 20 to get a milliseconds-range estimation of the
  788. * amount of time that the task spent sleeping:
  789. */
  790. if (unlikely(prof_on == SLEEP_PROFILING)) {
  791. profile_hits(SLEEP_PROFILING,
  792. (void *)get_wchan(tsk),
  793. delta >> 20);
  794. }
  795. account_scheduler_latency(tsk, delta >> 10, 0);
  796. }
  797. }
  798. }
  799. /*
  800. * Task is being enqueued - update stats:
  801. */
  802. static inline void
  803. update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  804. {
  805. if (!schedstat_enabled())
  806. return;
  807. /*
  808. * Are we enqueueing a waiting task? (for current tasks
  809. * a dequeue/enqueue event is a NOP)
  810. */
  811. if (se != cfs_rq->curr)
  812. update_stats_wait_start(cfs_rq, se);
  813. if (flags & ENQUEUE_WAKEUP)
  814. update_stats_enqueue_sleeper(cfs_rq, se);
  815. }
  816. static inline void
  817. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  818. {
  819. if (!schedstat_enabled())
  820. return;
  821. /*
  822. * Mark the end of the wait period if dequeueing a
  823. * waiting task:
  824. */
  825. if (se != cfs_rq->curr)
  826. update_stats_wait_end(cfs_rq, se);
  827. if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
  828. struct task_struct *tsk = task_of(se);
  829. if (tsk->state & TASK_INTERRUPTIBLE)
  830. __schedstat_set(se->statistics.sleep_start,
  831. rq_clock(rq_of(cfs_rq)));
  832. if (tsk->state & TASK_UNINTERRUPTIBLE)
  833. __schedstat_set(se->statistics.block_start,
  834. rq_clock(rq_of(cfs_rq)));
  835. }
  836. }
  837. /*
  838. * We are picking a new current task - update its stats:
  839. */
  840. static inline void
  841. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  842. {
  843. /*
  844. * We are starting a new run period:
  845. */
  846. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  847. }
  848. /**************************************************
  849. * Scheduling class queueing methods:
  850. */
  851. #ifdef CONFIG_NUMA_BALANCING
  852. /*
  853. * Approximate time to scan a full NUMA task in ms. The task scan period is
  854. * calculated based on the tasks virtual memory size and
  855. * numa_balancing_scan_size.
  856. */
  857. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  858. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  859. /* Portion of address space to scan in MB */
  860. unsigned int sysctl_numa_balancing_scan_size = 256;
  861. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  862. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  863. struct numa_group {
  864. atomic_t refcount;
  865. spinlock_t lock; /* nr_tasks, tasks */
  866. int nr_tasks;
  867. pid_t gid;
  868. int active_nodes;
  869. struct rcu_head rcu;
  870. unsigned long total_faults;
  871. unsigned long max_faults_cpu;
  872. /*
  873. * Faults_cpu is used to decide whether memory should move
  874. * towards the CPU. As a consequence, these stats are weighted
  875. * more by CPU use than by memory faults.
  876. */
  877. unsigned long *faults_cpu;
  878. unsigned long faults[0];
  879. };
  880. static inline unsigned long group_faults_priv(struct numa_group *ng);
  881. static inline unsigned long group_faults_shared(struct numa_group *ng);
  882. static unsigned int task_nr_scan_windows(struct task_struct *p)
  883. {
  884. unsigned long rss = 0;
  885. unsigned long nr_scan_pages;
  886. /*
  887. * Calculations based on RSS as non-present and empty pages are skipped
  888. * by the PTE scanner and NUMA hinting faults should be trapped based
  889. * on resident pages
  890. */
  891. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  892. rss = get_mm_rss(p->mm);
  893. if (!rss)
  894. rss = nr_scan_pages;
  895. rss = round_up(rss, nr_scan_pages);
  896. return rss / nr_scan_pages;
  897. }
  898. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  899. #define MAX_SCAN_WINDOW 2560
  900. static unsigned int task_scan_min(struct task_struct *p)
  901. {
  902. unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
  903. unsigned int scan, floor;
  904. unsigned int windows = 1;
  905. if (scan_size < MAX_SCAN_WINDOW)
  906. windows = MAX_SCAN_WINDOW / scan_size;
  907. floor = 1000 / windows;
  908. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  909. return max_t(unsigned int, floor, scan);
  910. }
  911. static unsigned int task_scan_start(struct task_struct *p)
  912. {
  913. unsigned long smin = task_scan_min(p);
  914. unsigned long period = smin;
  915. /* Scale the maximum scan period with the amount of shared memory. */
  916. if (p->numa_group) {
  917. struct numa_group *ng = p->numa_group;
  918. unsigned long shared = group_faults_shared(ng);
  919. unsigned long private = group_faults_priv(ng);
  920. period *= atomic_read(&ng->refcount);
  921. period *= shared + 1;
  922. period /= private + shared + 1;
  923. }
  924. return max(smin, period);
  925. }
  926. static unsigned int task_scan_max(struct task_struct *p)
  927. {
  928. unsigned long smin = task_scan_min(p);
  929. unsigned long smax;
  930. /* Watch for min being lower than max due to floor calculations */
  931. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  932. /* Scale the maximum scan period with the amount of shared memory. */
  933. if (p->numa_group) {
  934. struct numa_group *ng = p->numa_group;
  935. unsigned long shared = group_faults_shared(ng);
  936. unsigned long private = group_faults_priv(ng);
  937. unsigned long period = smax;
  938. period *= atomic_read(&ng->refcount);
  939. period *= shared + 1;
  940. period /= private + shared + 1;
  941. smax = max(smax, period);
  942. }
  943. return max(smin, smax);
  944. }
  945. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  946. {
  947. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  948. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  949. }
  950. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  951. {
  952. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  953. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  954. }
  955. /* Shared or private faults. */
  956. #define NR_NUMA_HINT_FAULT_TYPES 2
  957. /* Memory and CPU locality */
  958. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  959. /* Averaged statistics, and temporary buffers. */
  960. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  961. pid_t task_numa_group_id(struct task_struct *p)
  962. {
  963. return p->numa_group ? p->numa_group->gid : 0;
  964. }
  965. /*
  966. * The averaged statistics, shared & private, memory & CPU,
  967. * occupy the first half of the array. The second half of the
  968. * array is for current counters, which are averaged into the
  969. * first set by task_numa_placement.
  970. */
  971. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  972. {
  973. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  974. }
  975. static inline unsigned long task_faults(struct task_struct *p, int nid)
  976. {
  977. if (!p->numa_faults)
  978. return 0;
  979. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  980. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  981. }
  982. static inline unsigned long group_faults(struct task_struct *p, int nid)
  983. {
  984. if (!p->numa_group)
  985. return 0;
  986. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  987. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  988. }
  989. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  990. {
  991. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  992. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  993. }
  994. static inline unsigned long group_faults_priv(struct numa_group *ng)
  995. {
  996. unsigned long faults = 0;
  997. int node;
  998. for_each_online_node(node) {
  999. faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
  1000. }
  1001. return faults;
  1002. }
  1003. static inline unsigned long group_faults_shared(struct numa_group *ng)
  1004. {
  1005. unsigned long faults = 0;
  1006. int node;
  1007. for_each_online_node(node) {
  1008. faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
  1009. }
  1010. return faults;
  1011. }
  1012. /*
  1013. * A node triggering more than 1/3 as many NUMA faults as the maximum is
  1014. * considered part of a numa group's pseudo-interleaving set. Migrations
  1015. * between these nodes are slowed down, to allow things to settle down.
  1016. */
  1017. #define ACTIVE_NODE_FRACTION 3
  1018. static bool numa_is_active_node(int nid, struct numa_group *ng)
  1019. {
  1020. return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
  1021. }
  1022. /* Handle placement on systems where not all nodes are directly connected. */
  1023. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  1024. int maxdist, bool task)
  1025. {
  1026. unsigned long score = 0;
  1027. int node;
  1028. /*
  1029. * All nodes are directly connected, and the same distance
  1030. * from each other. No need for fancy placement algorithms.
  1031. */
  1032. if (sched_numa_topology_type == NUMA_DIRECT)
  1033. return 0;
  1034. /*
  1035. * This code is called for each node, introducing N^2 complexity,
  1036. * which should be ok given the number of nodes rarely exceeds 8.
  1037. */
  1038. for_each_online_node(node) {
  1039. unsigned long faults;
  1040. int dist = node_distance(nid, node);
  1041. /*
  1042. * The furthest away nodes in the system are not interesting
  1043. * for placement; nid was already counted.
  1044. */
  1045. if (dist == sched_max_numa_distance || node == nid)
  1046. continue;
  1047. /*
  1048. * On systems with a backplane NUMA topology, compare groups
  1049. * of nodes, and move tasks towards the group with the most
  1050. * memory accesses. When comparing two nodes at distance
  1051. * "hoplimit", only nodes closer by than "hoplimit" are part
  1052. * of each group. Skip other nodes.
  1053. */
  1054. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1055. dist > maxdist)
  1056. continue;
  1057. /* Add up the faults from nearby nodes. */
  1058. if (task)
  1059. faults = task_faults(p, node);
  1060. else
  1061. faults = group_faults(p, node);
  1062. /*
  1063. * On systems with a glueless mesh NUMA topology, there are
  1064. * no fixed "groups of nodes". Instead, nodes that are not
  1065. * directly connected bounce traffic through intermediate
  1066. * nodes; a numa_group can occupy any set of nodes.
  1067. * The further away a node is, the less the faults count.
  1068. * This seems to result in good task placement.
  1069. */
  1070. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1071. faults *= (sched_max_numa_distance - dist);
  1072. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  1073. }
  1074. score += faults;
  1075. }
  1076. return score;
  1077. }
  1078. /*
  1079. * These return the fraction of accesses done by a particular task, or
  1080. * task group, on a particular numa node. The group weight is given a
  1081. * larger multiplier, in order to group tasks together that are almost
  1082. * evenly spread out between numa nodes.
  1083. */
  1084. static inline unsigned long task_weight(struct task_struct *p, int nid,
  1085. int dist)
  1086. {
  1087. unsigned long faults, total_faults;
  1088. if (!p->numa_faults)
  1089. return 0;
  1090. total_faults = p->total_numa_faults;
  1091. if (!total_faults)
  1092. return 0;
  1093. faults = task_faults(p, nid);
  1094. faults += score_nearby_nodes(p, nid, dist, true);
  1095. return 1000 * faults / total_faults;
  1096. }
  1097. static inline unsigned long group_weight(struct task_struct *p, int nid,
  1098. int dist)
  1099. {
  1100. unsigned long faults, total_faults;
  1101. if (!p->numa_group)
  1102. return 0;
  1103. total_faults = p->numa_group->total_faults;
  1104. if (!total_faults)
  1105. return 0;
  1106. faults = group_faults(p, nid);
  1107. faults += score_nearby_nodes(p, nid, dist, false);
  1108. return 1000 * faults / total_faults;
  1109. }
  1110. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  1111. int src_nid, int dst_cpu)
  1112. {
  1113. struct numa_group *ng = p->numa_group;
  1114. int dst_nid = cpu_to_node(dst_cpu);
  1115. int last_cpupid, this_cpupid;
  1116. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  1117. /*
  1118. * Multi-stage node selection is used in conjunction with a periodic
  1119. * migration fault to build a temporal task<->page relation. By using
  1120. * a two-stage filter we remove short/unlikely relations.
  1121. *
  1122. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  1123. * a task's usage of a particular page (n_p) per total usage of this
  1124. * page (n_t) (in a given time-span) to a probability.
  1125. *
  1126. * Our periodic faults will sample this probability and getting the
  1127. * same result twice in a row, given these samples are fully
  1128. * independent, is then given by P(n)^2, provided our sample period
  1129. * is sufficiently short compared to the usage pattern.
  1130. *
  1131. * This quadric squishes small probabilities, making it less likely we
  1132. * act on an unlikely task<->page relation.
  1133. */
  1134. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  1135. if (!cpupid_pid_unset(last_cpupid) &&
  1136. cpupid_to_nid(last_cpupid) != dst_nid)
  1137. return false;
  1138. /* Always allow migrate on private faults */
  1139. if (cpupid_match_pid(p, last_cpupid))
  1140. return true;
  1141. /* A shared fault, but p->numa_group has not been set up yet. */
  1142. if (!ng)
  1143. return true;
  1144. /*
  1145. * Destination node is much more heavily used than the source
  1146. * node? Allow migration.
  1147. */
  1148. if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
  1149. ACTIVE_NODE_FRACTION)
  1150. return true;
  1151. /*
  1152. * Distribute memory according to CPU & memory use on each node,
  1153. * with 3/4 hysteresis to avoid unnecessary memory migrations:
  1154. *
  1155. * faults_cpu(dst) 3 faults_cpu(src)
  1156. * --------------- * - > ---------------
  1157. * faults_mem(dst) 4 faults_mem(src)
  1158. */
  1159. return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
  1160. group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
  1161. }
  1162. static unsigned long weighted_cpuload(struct rq *rq);
  1163. static unsigned long source_load(int cpu, int type);
  1164. static unsigned long target_load(int cpu, int type);
  1165. static unsigned long capacity_of(int cpu);
  1166. /* Cached statistics for all CPUs within a node */
  1167. struct numa_stats {
  1168. unsigned long nr_running;
  1169. unsigned long load;
  1170. /* Total compute capacity of CPUs on a node */
  1171. unsigned long compute_capacity;
  1172. /* Approximate capacity in terms of runnable tasks on a node */
  1173. unsigned long task_capacity;
  1174. int has_free_capacity;
  1175. };
  1176. /*
  1177. * XXX borrowed from update_sg_lb_stats
  1178. */
  1179. static void update_numa_stats(struct numa_stats *ns, int nid)
  1180. {
  1181. int smt, cpu, cpus = 0;
  1182. unsigned long capacity;
  1183. memset(ns, 0, sizeof(*ns));
  1184. for_each_cpu(cpu, cpumask_of_node(nid)) {
  1185. struct rq *rq = cpu_rq(cpu);
  1186. ns->nr_running += rq->nr_running;
  1187. ns->load += weighted_cpuload(rq);
  1188. ns->compute_capacity += capacity_of(cpu);
  1189. cpus++;
  1190. }
  1191. /*
  1192. * If we raced with hotplug and there are no CPUs left in our mask
  1193. * the @ns structure is NULL'ed and task_numa_compare() will
  1194. * not find this node attractive.
  1195. *
  1196. * We'll either bail at !has_free_capacity, or we'll detect a huge
  1197. * imbalance and bail there.
  1198. */
  1199. if (!cpus)
  1200. return;
  1201. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  1202. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  1203. capacity = cpus / smt; /* cores */
  1204. ns->task_capacity = min_t(unsigned, capacity,
  1205. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  1206. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  1207. }
  1208. struct task_numa_env {
  1209. struct task_struct *p;
  1210. int src_cpu, src_nid;
  1211. int dst_cpu, dst_nid;
  1212. struct numa_stats src_stats, dst_stats;
  1213. int imbalance_pct;
  1214. int dist;
  1215. struct task_struct *best_task;
  1216. long best_imp;
  1217. int best_cpu;
  1218. };
  1219. static void task_numa_assign(struct task_numa_env *env,
  1220. struct task_struct *p, long imp)
  1221. {
  1222. if (env->best_task)
  1223. put_task_struct(env->best_task);
  1224. if (p)
  1225. get_task_struct(p);
  1226. env->best_task = p;
  1227. env->best_imp = imp;
  1228. env->best_cpu = env->dst_cpu;
  1229. }
  1230. static bool load_too_imbalanced(long src_load, long dst_load,
  1231. struct task_numa_env *env)
  1232. {
  1233. long imb, old_imb;
  1234. long orig_src_load, orig_dst_load;
  1235. long src_capacity, dst_capacity;
  1236. /*
  1237. * The load is corrected for the CPU capacity available on each node.
  1238. *
  1239. * src_load dst_load
  1240. * ------------ vs ---------
  1241. * src_capacity dst_capacity
  1242. */
  1243. src_capacity = env->src_stats.compute_capacity;
  1244. dst_capacity = env->dst_stats.compute_capacity;
  1245. /* We care about the slope of the imbalance, not the direction. */
  1246. if (dst_load < src_load)
  1247. swap(dst_load, src_load);
  1248. /* Is the difference below the threshold? */
  1249. imb = dst_load * src_capacity * 100 -
  1250. src_load * dst_capacity * env->imbalance_pct;
  1251. if (imb <= 0)
  1252. return false;
  1253. /*
  1254. * The imbalance is above the allowed threshold.
  1255. * Compare it with the old imbalance.
  1256. */
  1257. orig_src_load = env->src_stats.load;
  1258. orig_dst_load = env->dst_stats.load;
  1259. if (orig_dst_load < orig_src_load)
  1260. swap(orig_dst_load, orig_src_load);
  1261. old_imb = orig_dst_load * src_capacity * 100 -
  1262. orig_src_load * dst_capacity * env->imbalance_pct;
  1263. /* Would this change make things worse? */
  1264. return (imb > old_imb);
  1265. }
  1266. /*
  1267. * This checks if the overall compute and NUMA accesses of the system would
  1268. * be improved if the source tasks was migrated to the target dst_cpu taking
  1269. * into account that it might be best if task running on the dst_cpu should
  1270. * be exchanged with the source task
  1271. */
  1272. static void task_numa_compare(struct task_numa_env *env,
  1273. long taskimp, long groupimp)
  1274. {
  1275. struct rq *src_rq = cpu_rq(env->src_cpu);
  1276. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1277. struct task_struct *cur;
  1278. long src_load, dst_load;
  1279. long load;
  1280. long imp = env->p->numa_group ? groupimp : taskimp;
  1281. long moveimp = imp;
  1282. int dist = env->dist;
  1283. rcu_read_lock();
  1284. cur = task_rcu_dereference(&dst_rq->curr);
  1285. if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
  1286. cur = NULL;
  1287. /*
  1288. * Because we have preemption enabled we can get migrated around and
  1289. * end try selecting ourselves (current == env->p) as a swap candidate.
  1290. */
  1291. if (cur == env->p)
  1292. goto unlock;
  1293. /*
  1294. * "imp" is the fault differential for the source task between the
  1295. * source and destination node. Calculate the total differential for
  1296. * the source task and potential destination task. The more negative
  1297. * the value is, the more rmeote accesses that would be expected to
  1298. * be incurred if the tasks were swapped.
  1299. */
  1300. if (cur) {
  1301. /* Skip this swap candidate if cannot move to the source CPU: */
  1302. if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
  1303. goto unlock;
  1304. /*
  1305. * If dst and source tasks are in the same NUMA group, or not
  1306. * in any group then look only at task weights.
  1307. */
  1308. if (cur->numa_group == env->p->numa_group) {
  1309. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1310. task_weight(cur, env->dst_nid, dist);
  1311. /*
  1312. * Add some hysteresis to prevent swapping the
  1313. * tasks within a group over tiny differences.
  1314. */
  1315. if (cur->numa_group)
  1316. imp -= imp/16;
  1317. } else {
  1318. /*
  1319. * Compare the group weights. If a task is all by
  1320. * itself (not part of a group), use the task weight
  1321. * instead.
  1322. */
  1323. if (cur->numa_group)
  1324. imp += group_weight(cur, env->src_nid, dist) -
  1325. group_weight(cur, env->dst_nid, dist);
  1326. else
  1327. imp += task_weight(cur, env->src_nid, dist) -
  1328. task_weight(cur, env->dst_nid, dist);
  1329. }
  1330. }
  1331. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1332. goto unlock;
  1333. if (!cur) {
  1334. /* Is there capacity at our destination? */
  1335. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1336. !env->dst_stats.has_free_capacity)
  1337. goto unlock;
  1338. goto balance;
  1339. }
  1340. /* Balance doesn't matter much if we're running a task per CPU: */
  1341. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1342. dst_rq->nr_running == 1)
  1343. goto assign;
  1344. /*
  1345. * In the overloaded case, try and keep the load balanced.
  1346. */
  1347. balance:
  1348. load = task_h_load(env->p);
  1349. dst_load = env->dst_stats.load + load;
  1350. src_load = env->src_stats.load - load;
  1351. if (moveimp > imp && moveimp > env->best_imp) {
  1352. /*
  1353. * If the improvement from just moving env->p direction is
  1354. * better than swapping tasks around, check if a move is
  1355. * possible. Store a slightly smaller score than moveimp,
  1356. * so an actually idle CPU will win.
  1357. */
  1358. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1359. imp = moveimp - 1;
  1360. cur = NULL;
  1361. goto assign;
  1362. }
  1363. }
  1364. if (imp <= env->best_imp)
  1365. goto unlock;
  1366. if (cur) {
  1367. load = task_h_load(cur);
  1368. dst_load -= load;
  1369. src_load += load;
  1370. }
  1371. if (load_too_imbalanced(src_load, dst_load, env))
  1372. goto unlock;
  1373. /*
  1374. * One idle CPU per node is evaluated for a task numa move.
  1375. * Call select_idle_sibling to maybe find a better one.
  1376. */
  1377. if (!cur) {
  1378. /*
  1379. * select_idle_siblings() uses an per-CPU cpumask that
  1380. * can be used from IRQ context.
  1381. */
  1382. local_irq_disable();
  1383. env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
  1384. env->dst_cpu);
  1385. local_irq_enable();
  1386. }
  1387. assign:
  1388. task_numa_assign(env, cur, imp);
  1389. unlock:
  1390. rcu_read_unlock();
  1391. }
  1392. static void task_numa_find_cpu(struct task_numa_env *env,
  1393. long taskimp, long groupimp)
  1394. {
  1395. int cpu;
  1396. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1397. /* Skip this CPU if the source task cannot migrate */
  1398. if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
  1399. continue;
  1400. env->dst_cpu = cpu;
  1401. task_numa_compare(env, taskimp, groupimp);
  1402. }
  1403. }
  1404. /* Only move tasks to a NUMA node less busy than the current node. */
  1405. static bool numa_has_capacity(struct task_numa_env *env)
  1406. {
  1407. struct numa_stats *src = &env->src_stats;
  1408. struct numa_stats *dst = &env->dst_stats;
  1409. if (src->has_free_capacity && !dst->has_free_capacity)
  1410. return false;
  1411. /*
  1412. * Only consider a task move if the source has a higher load
  1413. * than the destination, corrected for CPU capacity on each node.
  1414. *
  1415. * src->load dst->load
  1416. * --------------------- vs ---------------------
  1417. * src->compute_capacity dst->compute_capacity
  1418. */
  1419. if (src->load * dst->compute_capacity * env->imbalance_pct >
  1420. dst->load * src->compute_capacity * 100)
  1421. return true;
  1422. return false;
  1423. }
  1424. static int task_numa_migrate(struct task_struct *p)
  1425. {
  1426. struct task_numa_env env = {
  1427. .p = p,
  1428. .src_cpu = task_cpu(p),
  1429. .src_nid = task_node(p),
  1430. .imbalance_pct = 112,
  1431. .best_task = NULL,
  1432. .best_imp = 0,
  1433. .best_cpu = -1,
  1434. };
  1435. struct sched_domain *sd;
  1436. unsigned long taskweight, groupweight;
  1437. int nid, ret, dist;
  1438. long taskimp, groupimp;
  1439. /*
  1440. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1441. * imbalance and would be the first to start moving tasks about.
  1442. *
  1443. * And we want to avoid any moving of tasks about, as that would create
  1444. * random movement of tasks -- counter the numa conditions we're trying
  1445. * to satisfy here.
  1446. */
  1447. rcu_read_lock();
  1448. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1449. if (sd)
  1450. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1451. rcu_read_unlock();
  1452. /*
  1453. * Cpusets can break the scheduler domain tree into smaller
  1454. * balance domains, some of which do not cross NUMA boundaries.
  1455. * Tasks that are "trapped" in such domains cannot be migrated
  1456. * elsewhere, so there is no point in (re)trying.
  1457. */
  1458. if (unlikely(!sd)) {
  1459. p->numa_preferred_nid = task_node(p);
  1460. return -EINVAL;
  1461. }
  1462. env.dst_nid = p->numa_preferred_nid;
  1463. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1464. taskweight = task_weight(p, env.src_nid, dist);
  1465. groupweight = group_weight(p, env.src_nid, dist);
  1466. update_numa_stats(&env.src_stats, env.src_nid);
  1467. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1468. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1469. update_numa_stats(&env.dst_stats, env.dst_nid);
  1470. /* Try to find a spot on the preferred nid. */
  1471. if (numa_has_capacity(&env))
  1472. task_numa_find_cpu(&env, taskimp, groupimp);
  1473. /*
  1474. * Look at other nodes in these cases:
  1475. * - there is no space available on the preferred_nid
  1476. * - the task is part of a numa_group that is interleaved across
  1477. * multiple NUMA nodes; in order to better consolidate the group,
  1478. * we need to check other locations.
  1479. */
  1480. if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
  1481. for_each_online_node(nid) {
  1482. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1483. continue;
  1484. dist = node_distance(env.src_nid, env.dst_nid);
  1485. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1486. dist != env.dist) {
  1487. taskweight = task_weight(p, env.src_nid, dist);
  1488. groupweight = group_weight(p, env.src_nid, dist);
  1489. }
  1490. /* Only consider nodes where both task and groups benefit */
  1491. taskimp = task_weight(p, nid, dist) - taskweight;
  1492. groupimp = group_weight(p, nid, dist) - groupweight;
  1493. if (taskimp < 0 && groupimp < 0)
  1494. continue;
  1495. env.dist = dist;
  1496. env.dst_nid = nid;
  1497. update_numa_stats(&env.dst_stats, env.dst_nid);
  1498. if (numa_has_capacity(&env))
  1499. task_numa_find_cpu(&env, taskimp, groupimp);
  1500. }
  1501. }
  1502. /*
  1503. * If the task is part of a workload that spans multiple NUMA nodes,
  1504. * and is migrating into one of the workload's active nodes, remember
  1505. * this node as the task's preferred numa node, so the workload can
  1506. * settle down.
  1507. * A task that migrated to a second choice node will be better off
  1508. * trying for a better one later. Do not set the preferred node here.
  1509. */
  1510. if (p->numa_group) {
  1511. struct numa_group *ng = p->numa_group;
  1512. if (env.best_cpu == -1)
  1513. nid = env.src_nid;
  1514. else
  1515. nid = env.dst_nid;
  1516. if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
  1517. sched_setnuma(p, env.dst_nid);
  1518. }
  1519. /* No better CPU than the current one was found. */
  1520. if (env.best_cpu == -1)
  1521. return -EAGAIN;
  1522. /*
  1523. * Reset the scan period if the task is being rescheduled on an
  1524. * alternative node to recheck if the tasks is now properly placed.
  1525. */
  1526. p->numa_scan_period = task_scan_start(p);
  1527. if (env.best_task == NULL) {
  1528. ret = migrate_task_to(p, env.best_cpu);
  1529. if (ret != 0)
  1530. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1531. return ret;
  1532. }
  1533. ret = migrate_swap(p, env.best_task);
  1534. if (ret != 0)
  1535. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1536. put_task_struct(env.best_task);
  1537. return ret;
  1538. }
  1539. /* Attempt to migrate a task to a CPU on the preferred node. */
  1540. static void numa_migrate_preferred(struct task_struct *p)
  1541. {
  1542. unsigned long interval = HZ;
  1543. unsigned long numa_migrate_retry;
  1544. /* This task has no NUMA fault statistics yet */
  1545. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1546. return;
  1547. /* Periodically retry migrating the task to the preferred node */
  1548. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1549. numa_migrate_retry = jiffies + interval;
  1550. /*
  1551. * Check that the new retry threshold is after the current one. If
  1552. * the retry is in the future, it implies that wake_affine has
  1553. * temporarily asked NUMA balancing to backoff from placement.
  1554. */
  1555. if (numa_migrate_retry > p->numa_migrate_retry)
  1556. return;
  1557. /* Safe to try placing the task on the preferred node */
  1558. p->numa_migrate_retry = numa_migrate_retry;
  1559. /* Success if task is already running on preferred CPU */
  1560. if (task_node(p) == p->numa_preferred_nid)
  1561. return;
  1562. /* Otherwise, try migrate to a CPU on the preferred node */
  1563. task_numa_migrate(p);
  1564. }
  1565. /*
  1566. * Find out how many nodes on the workload is actively running on. Do this by
  1567. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1568. * be different from the set of nodes where the workload's memory is currently
  1569. * located.
  1570. */
  1571. static void numa_group_count_active_nodes(struct numa_group *numa_group)
  1572. {
  1573. unsigned long faults, max_faults = 0;
  1574. int nid, active_nodes = 0;
  1575. for_each_online_node(nid) {
  1576. faults = group_faults_cpu(numa_group, nid);
  1577. if (faults > max_faults)
  1578. max_faults = faults;
  1579. }
  1580. for_each_online_node(nid) {
  1581. faults = group_faults_cpu(numa_group, nid);
  1582. if (faults * ACTIVE_NODE_FRACTION > max_faults)
  1583. active_nodes++;
  1584. }
  1585. numa_group->max_faults_cpu = max_faults;
  1586. numa_group->active_nodes = active_nodes;
  1587. }
  1588. /*
  1589. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1590. * increments. The more local the fault statistics are, the higher the scan
  1591. * period will be for the next scan window. If local/(local+remote) ratio is
  1592. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1593. * the scan period will decrease. Aim for 70% local accesses.
  1594. */
  1595. #define NUMA_PERIOD_SLOTS 10
  1596. #define NUMA_PERIOD_THRESHOLD 7
  1597. /*
  1598. * Increase the scan period (slow down scanning) if the majority of
  1599. * our memory is already on our local node, or if the majority of
  1600. * the page accesses are shared with other processes.
  1601. * Otherwise, decrease the scan period.
  1602. */
  1603. static void update_task_scan_period(struct task_struct *p,
  1604. unsigned long shared, unsigned long private)
  1605. {
  1606. unsigned int period_slot;
  1607. int lr_ratio, ps_ratio;
  1608. int diff;
  1609. unsigned long remote = p->numa_faults_locality[0];
  1610. unsigned long local = p->numa_faults_locality[1];
  1611. /*
  1612. * If there were no record hinting faults then either the task is
  1613. * completely idle or all activity is areas that are not of interest
  1614. * to automatic numa balancing. Related to that, if there were failed
  1615. * migration then it implies we are migrating too quickly or the local
  1616. * node is overloaded. In either case, scan slower
  1617. */
  1618. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1619. p->numa_scan_period = min(p->numa_scan_period_max,
  1620. p->numa_scan_period << 1);
  1621. p->mm->numa_next_scan = jiffies +
  1622. msecs_to_jiffies(p->numa_scan_period);
  1623. return;
  1624. }
  1625. /*
  1626. * Prepare to scale scan period relative to the current period.
  1627. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1628. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1629. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1630. */
  1631. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1632. lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1633. ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
  1634. if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
  1635. /*
  1636. * Most memory accesses are local. There is no need to
  1637. * do fast NUMA scanning, since memory is already local.
  1638. */
  1639. int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
  1640. if (!slot)
  1641. slot = 1;
  1642. diff = slot * period_slot;
  1643. } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
  1644. /*
  1645. * Most memory accesses are shared with other tasks.
  1646. * There is no point in continuing fast NUMA scanning,
  1647. * since other tasks may just move the memory elsewhere.
  1648. */
  1649. int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
  1650. if (!slot)
  1651. slot = 1;
  1652. diff = slot * period_slot;
  1653. } else {
  1654. /*
  1655. * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
  1656. * yet they are not on the local NUMA node. Speed up
  1657. * NUMA scanning to get the memory moved over.
  1658. */
  1659. int ratio = max(lr_ratio, ps_ratio);
  1660. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1661. }
  1662. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1663. task_scan_min(p), task_scan_max(p));
  1664. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1665. }
  1666. /*
  1667. * Get the fraction of time the task has been running since the last
  1668. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1669. * decays those on a 32ms period, which is orders of magnitude off
  1670. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1671. * stats only if the task is so new there are no NUMA statistics yet.
  1672. */
  1673. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1674. {
  1675. u64 runtime, delta, now;
  1676. /* Use the start of this time slice to avoid calculations. */
  1677. now = p->se.exec_start;
  1678. runtime = p->se.sum_exec_runtime;
  1679. if (p->last_task_numa_placement) {
  1680. delta = runtime - p->last_sum_exec_runtime;
  1681. *period = now - p->last_task_numa_placement;
  1682. } else {
  1683. delta = p->se.avg.load_sum;
  1684. *period = LOAD_AVG_MAX;
  1685. }
  1686. p->last_sum_exec_runtime = runtime;
  1687. p->last_task_numa_placement = now;
  1688. return delta;
  1689. }
  1690. /*
  1691. * Determine the preferred nid for a task in a numa_group. This needs to
  1692. * be done in a way that produces consistent results with group_weight,
  1693. * otherwise workloads might not converge.
  1694. */
  1695. static int preferred_group_nid(struct task_struct *p, int nid)
  1696. {
  1697. nodemask_t nodes;
  1698. int dist;
  1699. /* Direct connections between all NUMA nodes. */
  1700. if (sched_numa_topology_type == NUMA_DIRECT)
  1701. return nid;
  1702. /*
  1703. * On a system with glueless mesh NUMA topology, group_weight
  1704. * scores nodes according to the number of NUMA hinting faults on
  1705. * both the node itself, and on nearby nodes.
  1706. */
  1707. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1708. unsigned long score, max_score = 0;
  1709. int node, max_node = nid;
  1710. dist = sched_max_numa_distance;
  1711. for_each_online_node(node) {
  1712. score = group_weight(p, node, dist);
  1713. if (score > max_score) {
  1714. max_score = score;
  1715. max_node = node;
  1716. }
  1717. }
  1718. return max_node;
  1719. }
  1720. /*
  1721. * Finding the preferred nid in a system with NUMA backplane
  1722. * interconnect topology is more involved. The goal is to locate
  1723. * tasks from numa_groups near each other in the system, and
  1724. * untangle workloads from different sides of the system. This requires
  1725. * searching down the hierarchy of node groups, recursively searching
  1726. * inside the highest scoring group of nodes. The nodemask tricks
  1727. * keep the complexity of the search down.
  1728. */
  1729. nodes = node_online_map;
  1730. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1731. unsigned long max_faults = 0;
  1732. nodemask_t max_group = NODE_MASK_NONE;
  1733. int a, b;
  1734. /* Are there nodes at this distance from each other? */
  1735. if (!find_numa_distance(dist))
  1736. continue;
  1737. for_each_node_mask(a, nodes) {
  1738. unsigned long faults = 0;
  1739. nodemask_t this_group;
  1740. nodes_clear(this_group);
  1741. /* Sum group's NUMA faults; includes a==b case. */
  1742. for_each_node_mask(b, nodes) {
  1743. if (node_distance(a, b) < dist) {
  1744. faults += group_faults(p, b);
  1745. node_set(b, this_group);
  1746. node_clear(b, nodes);
  1747. }
  1748. }
  1749. /* Remember the top group. */
  1750. if (faults > max_faults) {
  1751. max_faults = faults;
  1752. max_group = this_group;
  1753. /*
  1754. * subtle: at the smallest distance there is
  1755. * just one node left in each "group", the
  1756. * winner is the preferred nid.
  1757. */
  1758. nid = a;
  1759. }
  1760. }
  1761. /* Next round, evaluate the nodes within max_group. */
  1762. if (!max_faults)
  1763. break;
  1764. nodes = max_group;
  1765. }
  1766. return nid;
  1767. }
  1768. static void task_numa_placement(struct task_struct *p)
  1769. {
  1770. int seq, nid, max_nid = -1, max_group_nid = -1;
  1771. unsigned long max_faults = 0, max_group_faults = 0;
  1772. unsigned long fault_types[2] = { 0, 0 };
  1773. unsigned long total_faults;
  1774. u64 runtime, period;
  1775. spinlock_t *group_lock = NULL;
  1776. /*
  1777. * The p->mm->numa_scan_seq field gets updated without
  1778. * exclusive access. Use READ_ONCE() here to ensure
  1779. * that the field is read in a single access:
  1780. */
  1781. seq = READ_ONCE(p->mm->numa_scan_seq);
  1782. if (p->numa_scan_seq == seq)
  1783. return;
  1784. p->numa_scan_seq = seq;
  1785. p->numa_scan_period_max = task_scan_max(p);
  1786. total_faults = p->numa_faults_locality[0] +
  1787. p->numa_faults_locality[1];
  1788. runtime = numa_get_avg_runtime(p, &period);
  1789. /* If the task is part of a group prevent parallel updates to group stats */
  1790. if (p->numa_group) {
  1791. group_lock = &p->numa_group->lock;
  1792. spin_lock_irq(group_lock);
  1793. }
  1794. /* Find the node with the highest number of faults */
  1795. for_each_online_node(nid) {
  1796. /* Keep track of the offsets in numa_faults array */
  1797. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1798. unsigned long faults = 0, group_faults = 0;
  1799. int priv;
  1800. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1801. long diff, f_diff, f_weight;
  1802. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1803. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1804. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1805. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1806. /* Decay existing window, copy faults since last scan */
  1807. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1808. fault_types[priv] += p->numa_faults[membuf_idx];
  1809. p->numa_faults[membuf_idx] = 0;
  1810. /*
  1811. * Normalize the faults_from, so all tasks in a group
  1812. * count according to CPU use, instead of by the raw
  1813. * number of faults. Tasks with little runtime have
  1814. * little over-all impact on throughput, and thus their
  1815. * faults are less important.
  1816. */
  1817. f_weight = div64_u64(runtime << 16, period + 1);
  1818. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1819. (total_faults + 1);
  1820. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1821. p->numa_faults[cpubuf_idx] = 0;
  1822. p->numa_faults[mem_idx] += diff;
  1823. p->numa_faults[cpu_idx] += f_diff;
  1824. faults += p->numa_faults[mem_idx];
  1825. p->total_numa_faults += diff;
  1826. if (p->numa_group) {
  1827. /*
  1828. * safe because we can only change our own group
  1829. *
  1830. * mem_idx represents the offset for a given
  1831. * nid and priv in a specific region because it
  1832. * is at the beginning of the numa_faults array.
  1833. */
  1834. p->numa_group->faults[mem_idx] += diff;
  1835. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1836. p->numa_group->total_faults += diff;
  1837. group_faults += p->numa_group->faults[mem_idx];
  1838. }
  1839. }
  1840. if (faults > max_faults) {
  1841. max_faults = faults;
  1842. max_nid = nid;
  1843. }
  1844. if (group_faults > max_group_faults) {
  1845. max_group_faults = group_faults;
  1846. max_group_nid = nid;
  1847. }
  1848. }
  1849. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1850. if (p->numa_group) {
  1851. numa_group_count_active_nodes(p->numa_group);
  1852. spin_unlock_irq(group_lock);
  1853. max_nid = preferred_group_nid(p, max_group_nid);
  1854. }
  1855. if (max_faults) {
  1856. /* Set the new preferred node */
  1857. if (max_nid != p->numa_preferred_nid)
  1858. sched_setnuma(p, max_nid);
  1859. if (task_node(p) != p->numa_preferred_nid)
  1860. numa_migrate_preferred(p);
  1861. }
  1862. }
  1863. static inline int get_numa_group(struct numa_group *grp)
  1864. {
  1865. return atomic_inc_not_zero(&grp->refcount);
  1866. }
  1867. static inline void put_numa_group(struct numa_group *grp)
  1868. {
  1869. if (atomic_dec_and_test(&grp->refcount))
  1870. kfree_rcu(grp, rcu);
  1871. }
  1872. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1873. int *priv)
  1874. {
  1875. struct numa_group *grp, *my_grp;
  1876. struct task_struct *tsk;
  1877. bool join = false;
  1878. int cpu = cpupid_to_cpu(cpupid);
  1879. int i;
  1880. if (unlikely(!p->numa_group)) {
  1881. unsigned int size = sizeof(struct numa_group) +
  1882. 4*nr_node_ids*sizeof(unsigned long);
  1883. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1884. if (!grp)
  1885. return;
  1886. atomic_set(&grp->refcount, 1);
  1887. grp->active_nodes = 1;
  1888. grp->max_faults_cpu = 0;
  1889. spin_lock_init(&grp->lock);
  1890. grp->gid = p->pid;
  1891. /* Second half of the array tracks nids where faults happen */
  1892. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1893. nr_node_ids;
  1894. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1895. grp->faults[i] = p->numa_faults[i];
  1896. grp->total_faults = p->total_numa_faults;
  1897. grp->nr_tasks++;
  1898. rcu_assign_pointer(p->numa_group, grp);
  1899. }
  1900. rcu_read_lock();
  1901. tsk = READ_ONCE(cpu_rq(cpu)->curr);
  1902. if (!cpupid_match_pid(tsk, cpupid))
  1903. goto no_join;
  1904. grp = rcu_dereference(tsk->numa_group);
  1905. if (!grp)
  1906. goto no_join;
  1907. my_grp = p->numa_group;
  1908. if (grp == my_grp)
  1909. goto no_join;
  1910. /*
  1911. * Only join the other group if its bigger; if we're the bigger group,
  1912. * the other task will join us.
  1913. */
  1914. if (my_grp->nr_tasks > grp->nr_tasks)
  1915. goto no_join;
  1916. /*
  1917. * Tie-break on the grp address.
  1918. */
  1919. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1920. goto no_join;
  1921. /* Always join threads in the same process. */
  1922. if (tsk->mm == current->mm)
  1923. join = true;
  1924. /* Simple filter to avoid false positives due to PID collisions */
  1925. if (flags & TNF_SHARED)
  1926. join = true;
  1927. /* Update priv based on whether false sharing was detected */
  1928. *priv = !join;
  1929. if (join && !get_numa_group(grp))
  1930. goto no_join;
  1931. rcu_read_unlock();
  1932. if (!join)
  1933. return;
  1934. BUG_ON(irqs_disabled());
  1935. double_lock_irq(&my_grp->lock, &grp->lock);
  1936. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1937. my_grp->faults[i] -= p->numa_faults[i];
  1938. grp->faults[i] += p->numa_faults[i];
  1939. }
  1940. my_grp->total_faults -= p->total_numa_faults;
  1941. grp->total_faults += p->total_numa_faults;
  1942. my_grp->nr_tasks--;
  1943. grp->nr_tasks++;
  1944. spin_unlock(&my_grp->lock);
  1945. spin_unlock_irq(&grp->lock);
  1946. rcu_assign_pointer(p->numa_group, grp);
  1947. put_numa_group(my_grp);
  1948. return;
  1949. no_join:
  1950. rcu_read_unlock();
  1951. return;
  1952. }
  1953. void task_numa_free(struct task_struct *p)
  1954. {
  1955. struct numa_group *grp = p->numa_group;
  1956. void *numa_faults = p->numa_faults;
  1957. unsigned long flags;
  1958. int i;
  1959. if (grp) {
  1960. spin_lock_irqsave(&grp->lock, flags);
  1961. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1962. grp->faults[i] -= p->numa_faults[i];
  1963. grp->total_faults -= p->total_numa_faults;
  1964. grp->nr_tasks--;
  1965. spin_unlock_irqrestore(&grp->lock, flags);
  1966. RCU_INIT_POINTER(p->numa_group, NULL);
  1967. put_numa_group(grp);
  1968. }
  1969. p->numa_faults = NULL;
  1970. kfree(numa_faults);
  1971. }
  1972. /*
  1973. * Got a PROT_NONE fault for a page on @node.
  1974. */
  1975. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1976. {
  1977. struct task_struct *p = current;
  1978. bool migrated = flags & TNF_MIGRATED;
  1979. int cpu_node = task_node(current);
  1980. int local = !!(flags & TNF_FAULT_LOCAL);
  1981. struct numa_group *ng;
  1982. int priv;
  1983. if (!static_branch_likely(&sched_numa_balancing))
  1984. return;
  1985. /* for example, ksmd faulting in a user's mm */
  1986. if (!p->mm)
  1987. return;
  1988. /* Allocate buffer to track faults on a per-node basis */
  1989. if (unlikely(!p->numa_faults)) {
  1990. int size = sizeof(*p->numa_faults) *
  1991. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1992. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1993. if (!p->numa_faults)
  1994. return;
  1995. p->total_numa_faults = 0;
  1996. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1997. }
  1998. /*
  1999. * First accesses are treated as private, otherwise consider accesses
  2000. * to be private if the accessing pid has not changed
  2001. */
  2002. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  2003. priv = 1;
  2004. } else {
  2005. priv = cpupid_match_pid(p, last_cpupid);
  2006. if (!priv && !(flags & TNF_NO_GROUP))
  2007. task_numa_group(p, last_cpupid, flags, &priv);
  2008. }
  2009. /*
  2010. * If a workload spans multiple NUMA nodes, a shared fault that
  2011. * occurs wholly within the set of nodes that the workload is
  2012. * actively using should be counted as local. This allows the
  2013. * scan rate to slow down when a workload has settled down.
  2014. */
  2015. ng = p->numa_group;
  2016. if (!priv && !local && ng && ng->active_nodes > 1 &&
  2017. numa_is_active_node(cpu_node, ng) &&
  2018. numa_is_active_node(mem_node, ng))
  2019. local = 1;
  2020. task_numa_placement(p);
  2021. /*
  2022. * Retry task to preferred node migration periodically, in case it
  2023. * case it previously failed, or the scheduler moved us.
  2024. */
  2025. if (time_after(jiffies, p->numa_migrate_retry))
  2026. numa_migrate_preferred(p);
  2027. if (migrated)
  2028. p->numa_pages_migrated += pages;
  2029. if (flags & TNF_MIGRATE_FAIL)
  2030. p->numa_faults_locality[2] += pages;
  2031. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  2032. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  2033. p->numa_faults_locality[local] += pages;
  2034. }
  2035. static void reset_ptenuma_scan(struct task_struct *p)
  2036. {
  2037. /*
  2038. * We only did a read acquisition of the mmap sem, so
  2039. * p->mm->numa_scan_seq is written to without exclusive access
  2040. * and the update is not guaranteed to be atomic. That's not
  2041. * much of an issue though, since this is just used for
  2042. * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
  2043. * expensive, to avoid any form of compiler optimizations:
  2044. */
  2045. WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
  2046. p->mm->numa_scan_offset = 0;
  2047. }
  2048. /*
  2049. * The expensive part of numa migration is done from task_work context.
  2050. * Triggered from task_tick_numa().
  2051. */
  2052. void task_numa_work(struct callback_head *work)
  2053. {
  2054. unsigned long migrate, next_scan, now = jiffies;
  2055. struct task_struct *p = current;
  2056. struct mm_struct *mm = p->mm;
  2057. u64 runtime = p->se.sum_exec_runtime;
  2058. struct vm_area_struct *vma;
  2059. unsigned long start, end;
  2060. unsigned long nr_pte_updates = 0;
  2061. long pages, virtpages;
  2062. SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
  2063. work->next = work; /* protect against double add */
  2064. /*
  2065. * Who cares about NUMA placement when they're dying.
  2066. *
  2067. * NOTE: make sure not to dereference p->mm before this check,
  2068. * exit_task_work() happens _after_ exit_mm() so we could be called
  2069. * without p->mm even though we still had it when we enqueued this
  2070. * work.
  2071. */
  2072. if (p->flags & PF_EXITING)
  2073. return;
  2074. if (!mm->numa_next_scan) {
  2075. mm->numa_next_scan = now +
  2076. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  2077. }
  2078. /*
  2079. * Enforce maximal scan/migration frequency..
  2080. */
  2081. migrate = mm->numa_next_scan;
  2082. if (time_before(now, migrate))
  2083. return;
  2084. if (p->numa_scan_period == 0) {
  2085. p->numa_scan_period_max = task_scan_max(p);
  2086. p->numa_scan_period = task_scan_start(p);
  2087. }
  2088. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  2089. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  2090. return;
  2091. /*
  2092. * Delay this task enough that another task of this mm will likely win
  2093. * the next time around.
  2094. */
  2095. p->node_stamp += 2 * TICK_NSEC;
  2096. start = mm->numa_scan_offset;
  2097. pages = sysctl_numa_balancing_scan_size;
  2098. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  2099. virtpages = pages * 8; /* Scan up to this much virtual space */
  2100. if (!pages)
  2101. return;
  2102. if (!down_read_trylock(&mm->mmap_sem))
  2103. return;
  2104. vma = find_vma(mm, start);
  2105. if (!vma) {
  2106. reset_ptenuma_scan(p);
  2107. start = 0;
  2108. vma = mm->mmap;
  2109. }
  2110. for (; vma; vma = vma->vm_next) {
  2111. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  2112. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  2113. continue;
  2114. }
  2115. /*
  2116. * Shared library pages mapped by multiple processes are not
  2117. * migrated as it is expected they are cache replicated. Avoid
  2118. * hinting faults in read-only file-backed mappings or the vdso
  2119. * as migrating the pages will be of marginal benefit.
  2120. */
  2121. if (!vma->vm_mm ||
  2122. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  2123. continue;
  2124. /*
  2125. * Skip inaccessible VMAs to avoid any confusion between
  2126. * PROT_NONE and NUMA hinting ptes
  2127. */
  2128. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  2129. continue;
  2130. do {
  2131. start = max(start, vma->vm_start);
  2132. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  2133. end = min(end, vma->vm_end);
  2134. nr_pte_updates = change_prot_numa(vma, start, end);
  2135. /*
  2136. * Try to scan sysctl_numa_balancing_size worth of
  2137. * hpages that have at least one present PTE that
  2138. * is not already pte-numa. If the VMA contains
  2139. * areas that are unused or already full of prot_numa
  2140. * PTEs, scan up to virtpages, to skip through those
  2141. * areas faster.
  2142. */
  2143. if (nr_pte_updates)
  2144. pages -= (end - start) >> PAGE_SHIFT;
  2145. virtpages -= (end - start) >> PAGE_SHIFT;
  2146. start = end;
  2147. if (pages <= 0 || virtpages <= 0)
  2148. goto out;
  2149. cond_resched();
  2150. } while (end != vma->vm_end);
  2151. }
  2152. out:
  2153. /*
  2154. * It is possible to reach the end of the VMA list but the last few
  2155. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  2156. * would find the !migratable VMA on the next scan but not reset the
  2157. * scanner to the start so check it now.
  2158. */
  2159. if (vma)
  2160. mm->numa_scan_offset = start;
  2161. else
  2162. reset_ptenuma_scan(p);
  2163. up_read(&mm->mmap_sem);
  2164. /*
  2165. * Make sure tasks use at least 32x as much time to run other code
  2166. * than they used here, to limit NUMA PTE scanning overhead to 3% max.
  2167. * Usually update_task_scan_period slows down scanning enough; on an
  2168. * overloaded system we need to limit overhead on a per task basis.
  2169. */
  2170. if (unlikely(p->se.sum_exec_runtime != runtime)) {
  2171. u64 diff = p->se.sum_exec_runtime - runtime;
  2172. p->node_stamp += 32 * diff;
  2173. }
  2174. }
  2175. /*
  2176. * Drive the periodic memory faults..
  2177. */
  2178. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2179. {
  2180. struct callback_head *work = &curr->numa_work;
  2181. u64 period, now;
  2182. /*
  2183. * We don't care about NUMA placement if we don't have memory.
  2184. */
  2185. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  2186. return;
  2187. /*
  2188. * Using runtime rather than walltime has the dual advantage that
  2189. * we (mostly) drive the selection from busy threads and that the
  2190. * task needs to have done some actual work before we bother with
  2191. * NUMA placement.
  2192. */
  2193. now = curr->se.sum_exec_runtime;
  2194. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  2195. if (now > curr->node_stamp + period) {
  2196. if (!curr->node_stamp)
  2197. curr->numa_scan_period = task_scan_start(curr);
  2198. curr->node_stamp += period;
  2199. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  2200. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  2201. task_work_add(curr, work, true);
  2202. }
  2203. }
  2204. }
  2205. #else
  2206. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2207. {
  2208. }
  2209. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  2210. {
  2211. }
  2212. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  2213. {
  2214. }
  2215. #endif /* CONFIG_NUMA_BALANCING */
  2216. static void
  2217. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2218. {
  2219. update_load_add(&cfs_rq->load, se->load.weight);
  2220. if (!parent_entity(se))
  2221. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  2222. #ifdef CONFIG_SMP
  2223. if (entity_is_task(se)) {
  2224. struct rq *rq = rq_of(cfs_rq);
  2225. account_numa_enqueue(rq, task_of(se));
  2226. list_add(&se->group_node, &rq->cfs_tasks);
  2227. }
  2228. #endif
  2229. cfs_rq->nr_running++;
  2230. }
  2231. static void
  2232. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2233. {
  2234. update_load_sub(&cfs_rq->load, se->load.weight);
  2235. if (!parent_entity(se))
  2236. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  2237. #ifdef CONFIG_SMP
  2238. if (entity_is_task(se)) {
  2239. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  2240. list_del_init(&se->group_node);
  2241. }
  2242. #endif
  2243. cfs_rq->nr_running--;
  2244. }
  2245. /*
  2246. * Signed add and clamp on underflow.
  2247. *
  2248. * Explicitly do a load-store to ensure the intermediate value never hits
  2249. * memory. This allows lockless observations without ever seeing the negative
  2250. * values.
  2251. */
  2252. #define add_positive(_ptr, _val) do { \
  2253. typeof(_ptr) ptr = (_ptr); \
  2254. typeof(_val) val = (_val); \
  2255. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2256. \
  2257. res = var + val; \
  2258. \
  2259. if (val < 0 && res > var) \
  2260. res = 0; \
  2261. \
  2262. WRITE_ONCE(*ptr, res); \
  2263. } while (0)
  2264. /*
  2265. * Unsigned subtract and clamp on underflow.
  2266. *
  2267. * Explicitly do a load-store to ensure the intermediate value never hits
  2268. * memory. This allows lockless observations without ever seeing the negative
  2269. * values.
  2270. */
  2271. #define sub_positive(_ptr, _val) do { \
  2272. typeof(_ptr) ptr = (_ptr); \
  2273. typeof(*ptr) val = (_val); \
  2274. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2275. res = var - val; \
  2276. if (res > var) \
  2277. res = 0; \
  2278. WRITE_ONCE(*ptr, res); \
  2279. } while (0)
  2280. #ifdef CONFIG_SMP
  2281. /*
  2282. * XXX we want to get rid of these helpers and use the full load resolution.
  2283. */
  2284. static inline long se_weight(struct sched_entity *se)
  2285. {
  2286. return scale_load_down(se->load.weight);
  2287. }
  2288. static inline long se_runnable(struct sched_entity *se)
  2289. {
  2290. return scale_load_down(se->runnable_weight);
  2291. }
  2292. static inline void
  2293. enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2294. {
  2295. cfs_rq->runnable_weight += se->runnable_weight;
  2296. cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
  2297. cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
  2298. }
  2299. static inline void
  2300. dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2301. {
  2302. cfs_rq->runnable_weight -= se->runnable_weight;
  2303. sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
  2304. sub_positive(&cfs_rq->avg.runnable_load_sum,
  2305. se_runnable(se) * se->avg.runnable_load_sum);
  2306. }
  2307. static inline void
  2308. enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2309. {
  2310. cfs_rq->avg.load_avg += se->avg.load_avg;
  2311. cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
  2312. }
  2313. static inline void
  2314. dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2315. {
  2316. sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
  2317. sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
  2318. }
  2319. #else
  2320. static inline void
  2321. enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2322. static inline void
  2323. dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2324. static inline void
  2325. enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2326. static inline void
  2327. dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
  2328. #endif
  2329. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  2330. unsigned long weight, unsigned long runnable)
  2331. {
  2332. if (se->on_rq) {
  2333. /* commit outstanding execution time */
  2334. if (cfs_rq->curr == se)
  2335. update_curr(cfs_rq);
  2336. account_entity_dequeue(cfs_rq, se);
  2337. dequeue_runnable_load_avg(cfs_rq, se);
  2338. }
  2339. dequeue_load_avg(cfs_rq, se);
  2340. se->runnable_weight = runnable;
  2341. update_load_set(&se->load, weight);
  2342. #ifdef CONFIG_SMP
  2343. do {
  2344. u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
  2345. se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
  2346. se->avg.runnable_load_avg =
  2347. div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
  2348. } while (0);
  2349. #endif
  2350. enqueue_load_avg(cfs_rq, se);
  2351. if (se->on_rq) {
  2352. account_entity_enqueue(cfs_rq, se);
  2353. enqueue_runnable_load_avg(cfs_rq, se);
  2354. }
  2355. }
  2356. void reweight_task(struct task_struct *p, int prio)
  2357. {
  2358. struct sched_entity *se = &p->se;
  2359. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2360. struct load_weight *load = &se->load;
  2361. unsigned long weight = scale_load(sched_prio_to_weight[prio]);
  2362. reweight_entity(cfs_rq, se, weight, weight);
  2363. load->inv_weight = sched_prio_to_wmult[prio];
  2364. }
  2365. #ifdef CONFIG_FAIR_GROUP_SCHED
  2366. #ifdef CONFIG_SMP
  2367. /*
  2368. * All this does is approximate the hierarchical proportion which includes that
  2369. * global sum we all love to hate.
  2370. *
  2371. * That is, the weight of a group entity, is the proportional share of the
  2372. * group weight based on the group runqueue weights. That is:
  2373. *
  2374. * tg->weight * grq->load.weight
  2375. * ge->load.weight = ----------------------------- (1)
  2376. * \Sum grq->load.weight
  2377. *
  2378. * Now, because computing that sum is prohibitively expensive to compute (been
  2379. * there, done that) we approximate it with this average stuff. The average
  2380. * moves slower and therefore the approximation is cheaper and more stable.
  2381. *
  2382. * So instead of the above, we substitute:
  2383. *
  2384. * grq->load.weight -> grq->avg.load_avg (2)
  2385. *
  2386. * which yields the following:
  2387. *
  2388. * tg->weight * grq->avg.load_avg
  2389. * ge->load.weight = ------------------------------ (3)
  2390. * tg->load_avg
  2391. *
  2392. * Where: tg->load_avg ~= \Sum grq->avg.load_avg
  2393. *
  2394. * That is shares_avg, and it is right (given the approximation (2)).
  2395. *
  2396. * The problem with it is that because the average is slow -- it was designed
  2397. * to be exactly that of course -- this leads to transients in boundary
  2398. * conditions. In specific, the case where the group was idle and we start the
  2399. * one task. It takes time for our CPU's grq->avg.load_avg to build up,
  2400. * yielding bad latency etc..
  2401. *
  2402. * Now, in that special case (1) reduces to:
  2403. *
  2404. * tg->weight * grq->load.weight
  2405. * ge->load.weight = ----------------------------- = tg->weight (4)
  2406. * grp->load.weight
  2407. *
  2408. * That is, the sum collapses because all other CPUs are idle; the UP scenario.
  2409. *
  2410. * So what we do is modify our approximation (3) to approach (4) in the (near)
  2411. * UP case, like:
  2412. *
  2413. * ge->load.weight =
  2414. *
  2415. * tg->weight * grq->load.weight
  2416. * --------------------------------------------------- (5)
  2417. * tg->load_avg - grq->avg.load_avg + grq->load.weight
  2418. *
  2419. * But because grq->load.weight can drop to 0, resulting in a divide by zero,
  2420. * we need to use grq->avg.load_avg as its lower bound, which then gives:
  2421. *
  2422. *
  2423. * tg->weight * grq->load.weight
  2424. * ge->load.weight = ----------------------------- (6)
  2425. * tg_load_avg'
  2426. *
  2427. * Where:
  2428. *
  2429. * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
  2430. * max(grq->load.weight, grq->avg.load_avg)
  2431. *
  2432. * And that is shares_weight and is icky. In the (near) UP case it approaches
  2433. * (4) while in the normal case it approaches (3). It consistently
  2434. * overestimates the ge->load.weight and therefore:
  2435. *
  2436. * \Sum ge->load.weight >= tg->weight
  2437. *
  2438. * hence icky!
  2439. */
  2440. static long calc_group_shares(struct cfs_rq *cfs_rq)
  2441. {
  2442. long tg_weight, tg_shares, load, shares;
  2443. struct task_group *tg = cfs_rq->tg;
  2444. tg_shares = READ_ONCE(tg->shares);
  2445. load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
  2446. tg_weight = atomic_long_read(&tg->load_avg);
  2447. /* Ensure tg_weight >= load */
  2448. tg_weight -= cfs_rq->tg_load_avg_contrib;
  2449. tg_weight += load;
  2450. shares = (tg_shares * load);
  2451. if (tg_weight)
  2452. shares /= tg_weight;
  2453. /*
  2454. * MIN_SHARES has to be unscaled here to support per-CPU partitioning
  2455. * of a group with small tg->shares value. It is a floor value which is
  2456. * assigned as a minimum load.weight to the sched_entity representing
  2457. * the group on a CPU.
  2458. *
  2459. * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
  2460. * on an 8-core system with 8 tasks each runnable on one CPU shares has
  2461. * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
  2462. * case no task is runnable on a CPU MIN_SHARES=2 should be returned
  2463. * instead of 0.
  2464. */
  2465. return clamp_t(long, shares, MIN_SHARES, tg_shares);
  2466. }
  2467. /*
  2468. * This calculates the effective runnable weight for a group entity based on
  2469. * the group entity weight calculated above.
  2470. *
  2471. * Because of the above approximation (2), our group entity weight is
  2472. * an load_avg based ratio (3). This means that it includes blocked load and
  2473. * does not represent the runnable weight.
  2474. *
  2475. * Approximate the group entity's runnable weight per ratio from the group
  2476. * runqueue:
  2477. *
  2478. * grq->avg.runnable_load_avg
  2479. * ge->runnable_weight = ge->load.weight * -------------------------- (7)
  2480. * grq->avg.load_avg
  2481. *
  2482. * However, analogous to above, since the avg numbers are slow, this leads to
  2483. * transients in the from-idle case. Instead we use:
  2484. *
  2485. * ge->runnable_weight = ge->load.weight *
  2486. *
  2487. * max(grq->avg.runnable_load_avg, grq->runnable_weight)
  2488. * ----------------------------------------------------- (8)
  2489. * max(grq->avg.load_avg, grq->load.weight)
  2490. *
  2491. * Where these max() serve both to use the 'instant' values to fix the slow
  2492. * from-idle and avoid the /0 on to-idle, similar to (6).
  2493. */
  2494. static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
  2495. {
  2496. long runnable, load_avg;
  2497. load_avg = max(cfs_rq->avg.load_avg,
  2498. scale_load_down(cfs_rq->load.weight));
  2499. runnable = max(cfs_rq->avg.runnable_load_avg,
  2500. scale_load_down(cfs_rq->runnable_weight));
  2501. runnable *= shares;
  2502. if (load_avg)
  2503. runnable /= load_avg;
  2504. return clamp_t(long, runnable, MIN_SHARES, shares);
  2505. }
  2506. #endif /* CONFIG_SMP */
  2507. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  2508. /*
  2509. * Recomputes the group entity based on the current state of its group
  2510. * runqueue.
  2511. */
  2512. static void update_cfs_group(struct sched_entity *se)
  2513. {
  2514. struct cfs_rq *gcfs_rq = group_cfs_rq(se);
  2515. long shares, runnable;
  2516. if (!gcfs_rq)
  2517. return;
  2518. if (throttled_hierarchy(gcfs_rq))
  2519. return;
  2520. #ifndef CONFIG_SMP
  2521. runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
  2522. if (likely(se->load.weight == shares))
  2523. return;
  2524. #else
  2525. shares = calc_group_shares(gcfs_rq);
  2526. runnable = calc_group_runnable(gcfs_rq, shares);
  2527. #endif
  2528. reweight_entity(cfs_rq_of(se), se, shares, runnable);
  2529. }
  2530. #else /* CONFIG_FAIR_GROUP_SCHED */
  2531. static inline void update_cfs_group(struct sched_entity *se)
  2532. {
  2533. }
  2534. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2535. static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
  2536. {
  2537. struct rq *rq = rq_of(cfs_rq);
  2538. if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
  2539. /*
  2540. * There are a few boundary cases this might miss but it should
  2541. * get called often enough that that should (hopefully) not be
  2542. * a real problem.
  2543. *
  2544. * It will not get called when we go idle, because the idle
  2545. * thread is a different class (!fair), nor will the utilization
  2546. * number include things like RT tasks.
  2547. *
  2548. * As is, the util number is not freq-invariant (we'd have to
  2549. * implement arch_scale_freq_capacity() for that).
  2550. *
  2551. * See cpu_util().
  2552. */
  2553. cpufreq_update_util(rq, flags);
  2554. }
  2555. }
  2556. #ifdef CONFIG_SMP
  2557. /*
  2558. * Approximate:
  2559. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2560. */
  2561. static u64 decay_load(u64 val, u64 n)
  2562. {
  2563. unsigned int local_n;
  2564. if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2565. return 0;
  2566. /* after bounds checking we can collapse to 32-bit */
  2567. local_n = n;
  2568. /*
  2569. * As y^PERIOD = 1/2, we can combine
  2570. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2571. * With a look-up table which covers y^n (n<PERIOD)
  2572. *
  2573. * To achieve constant time decay_load.
  2574. */
  2575. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2576. val >>= local_n / LOAD_AVG_PERIOD;
  2577. local_n %= LOAD_AVG_PERIOD;
  2578. }
  2579. val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  2580. return val;
  2581. }
  2582. static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
  2583. {
  2584. u32 c1, c2, c3 = d3; /* y^0 == 1 */
  2585. /*
  2586. * c1 = d1 y^p
  2587. */
  2588. c1 = decay_load((u64)d1, periods);
  2589. /*
  2590. * p-1
  2591. * c2 = 1024 \Sum y^n
  2592. * n=1
  2593. *
  2594. * inf inf
  2595. * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
  2596. * n=0 n=p
  2597. */
  2598. c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
  2599. return c1 + c2 + c3;
  2600. }
  2601. /*
  2602. * Accumulate the three separate parts of the sum; d1 the remainder
  2603. * of the last (incomplete) period, d2 the span of full periods and d3
  2604. * the remainder of the (incomplete) current period.
  2605. *
  2606. * d1 d2 d3
  2607. * ^ ^ ^
  2608. * | | |
  2609. * |<->|<----------------->|<--->|
  2610. * ... |---x---|------| ... |------|-----x (now)
  2611. *
  2612. * p-1
  2613. * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
  2614. * n=1
  2615. *
  2616. * = u y^p + (Step 1)
  2617. *
  2618. * p-1
  2619. * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
  2620. * n=1
  2621. */
  2622. static __always_inline u32
  2623. accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
  2624. unsigned long load, unsigned long runnable, int running)
  2625. {
  2626. unsigned long scale_freq, scale_cpu;
  2627. u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
  2628. u64 periods;
  2629. scale_freq = arch_scale_freq_capacity(cpu);
  2630. scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
  2631. delta += sa->period_contrib;
  2632. periods = delta / 1024; /* A period is 1024us (~1ms) */
  2633. /*
  2634. * Step 1: decay old *_sum if we crossed period boundaries.
  2635. */
  2636. if (periods) {
  2637. sa->load_sum = decay_load(sa->load_sum, periods);
  2638. sa->runnable_load_sum =
  2639. decay_load(sa->runnable_load_sum, periods);
  2640. sa->util_sum = decay_load((u64)(sa->util_sum), periods);
  2641. /*
  2642. * Step 2
  2643. */
  2644. delta %= 1024;
  2645. contrib = __accumulate_pelt_segments(periods,
  2646. 1024 - sa->period_contrib, delta);
  2647. }
  2648. sa->period_contrib = delta;
  2649. contrib = cap_scale(contrib, scale_freq);
  2650. if (load)
  2651. sa->load_sum += load * contrib;
  2652. if (runnable)
  2653. sa->runnable_load_sum += runnable * contrib;
  2654. if (running)
  2655. sa->util_sum += contrib * scale_cpu;
  2656. return periods;
  2657. }
  2658. /*
  2659. * We can represent the historical contribution to runnable average as the
  2660. * coefficients of a geometric series. To do this we sub-divide our runnable
  2661. * history into segments of approximately 1ms (1024us); label the segment that
  2662. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2663. *
  2664. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2665. * p0 p1 p2
  2666. * (now) (~1ms ago) (~2ms ago)
  2667. *
  2668. * Let u_i denote the fraction of p_i that the entity was runnable.
  2669. *
  2670. * We then designate the fractions u_i as our co-efficients, yielding the
  2671. * following representation of historical load:
  2672. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2673. *
  2674. * We choose y based on the with of a reasonably scheduling period, fixing:
  2675. * y^32 = 0.5
  2676. *
  2677. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2678. * approximately half as much as the contribution to load within the last ms
  2679. * (u_0).
  2680. *
  2681. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2682. * sum again by y is sufficient to update:
  2683. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2684. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2685. */
  2686. static __always_inline int
  2687. ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
  2688. unsigned long load, unsigned long runnable, int running)
  2689. {
  2690. u64 delta;
  2691. delta = now - sa->last_update_time;
  2692. /*
  2693. * This should only happen when time goes backwards, which it
  2694. * unfortunately does during sched clock init when we swap over to TSC.
  2695. */
  2696. if ((s64)delta < 0) {
  2697. sa->last_update_time = now;
  2698. return 0;
  2699. }
  2700. /*
  2701. * Use 1024ns as the unit of measurement since it's a reasonable
  2702. * approximation of 1us and fast to compute.
  2703. */
  2704. delta >>= 10;
  2705. if (!delta)
  2706. return 0;
  2707. sa->last_update_time += delta << 10;
  2708. /*
  2709. * running is a subset of runnable (weight) so running can't be set if
  2710. * runnable is clear. But there are some corner cases where the current
  2711. * se has been already dequeued but cfs_rq->curr still points to it.
  2712. * This means that weight will be 0 but not running for a sched_entity
  2713. * but also for a cfs_rq if the latter becomes idle. As an example,
  2714. * this happens during idle_balance() which calls
  2715. * update_blocked_averages()
  2716. */
  2717. if (!load)
  2718. runnable = running = 0;
  2719. /*
  2720. * Now we know we crossed measurement unit boundaries. The *_avg
  2721. * accrues by two steps:
  2722. *
  2723. * Step 1: accumulate *_sum since last_update_time. If we haven't
  2724. * crossed period boundaries, finish.
  2725. */
  2726. if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
  2727. return 0;
  2728. return 1;
  2729. }
  2730. static __always_inline void
  2731. ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
  2732. {
  2733. u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
  2734. /*
  2735. * Step 2: update *_avg.
  2736. */
  2737. sa->load_avg = div_u64(load * sa->load_sum, divider);
  2738. sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
  2739. sa->util_avg = sa->util_sum / divider;
  2740. }
  2741. /*
  2742. * sched_entity:
  2743. *
  2744. * task:
  2745. * se_runnable() == se_weight()
  2746. *
  2747. * group: [ see update_cfs_group() ]
  2748. * se_weight() = tg->weight * grq->load_avg / tg->load_avg
  2749. * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
  2750. *
  2751. * load_sum := runnable_sum
  2752. * load_avg = se_weight(se) * runnable_avg
  2753. *
  2754. * runnable_load_sum := runnable_sum
  2755. * runnable_load_avg = se_runnable(se) * runnable_avg
  2756. *
  2757. * XXX collapse load_sum and runnable_load_sum
  2758. *
  2759. * cfq_rs:
  2760. *
  2761. * load_sum = \Sum se_weight(se) * se->avg.load_sum
  2762. * load_avg = \Sum se->avg.load_avg
  2763. *
  2764. * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
  2765. * runnable_load_avg = \Sum se->avg.runable_load_avg
  2766. */
  2767. static int
  2768. __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
  2769. {
  2770. if (entity_is_task(se))
  2771. se->runnable_weight = se->load.weight;
  2772. if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
  2773. ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
  2774. return 1;
  2775. }
  2776. return 0;
  2777. }
  2778. static int
  2779. __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
  2780. {
  2781. if (entity_is_task(se))
  2782. se->runnable_weight = se->load.weight;
  2783. if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
  2784. cfs_rq->curr == se)) {
  2785. ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
  2786. return 1;
  2787. }
  2788. return 0;
  2789. }
  2790. static int
  2791. __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
  2792. {
  2793. if (___update_load_sum(now, cpu, &cfs_rq->avg,
  2794. scale_load_down(cfs_rq->load.weight),
  2795. scale_load_down(cfs_rq->runnable_weight),
  2796. cfs_rq->curr != NULL)) {
  2797. ___update_load_avg(&cfs_rq->avg, 1, 1);
  2798. return 1;
  2799. }
  2800. return 0;
  2801. }
  2802. #ifdef CONFIG_FAIR_GROUP_SCHED
  2803. /**
  2804. * update_tg_load_avg - update the tg's load avg
  2805. * @cfs_rq: the cfs_rq whose avg changed
  2806. * @force: update regardless of how small the difference
  2807. *
  2808. * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
  2809. * However, because tg->load_avg is a global value there are performance
  2810. * considerations.
  2811. *
  2812. * In order to avoid having to look at the other cfs_rq's, we use a
  2813. * differential update where we store the last value we propagated. This in
  2814. * turn allows skipping updates if the differential is 'small'.
  2815. *
  2816. * Updating tg's load_avg is necessary before update_cfs_share().
  2817. */
  2818. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  2819. {
  2820. long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
  2821. /*
  2822. * No need to update load_avg for root_task_group as it is not used.
  2823. */
  2824. if (cfs_rq->tg == &root_task_group)
  2825. return;
  2826. if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
  2827. atomic_long_add(delta, &cfs_rq->tg->load_avg);
  2828. cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
  2829. }
  2830. }
  2831. /*
  2832. * Called within set_task_rq() right before setting a task's CPU. The
  2833. * caller only guarantees p->pi_lock is held; no other assumptions,
  2834. * including the state of rq->lock, should be made.
  2835. */
  2836. void set_task_rq_fair(struct sched_entity *se,
  2837. struct cfs_rq *prev, struct cfs_rq *next)
  2838. {
  2839. u64 p_last_update_time;
  2840. u64 n_last_update_time;
  2841. if (!sched_feat(ATTACH_AGE_LOAD))
  2842. return;
  2843. /*
  2844. * We are supposed to update the task to "current" time, then its up to
  2845. * date and ready to go to new CPU/cfs_rq. But we have difficulty in
  2846. * getting what current time is, so simply throw away the out-of-date
  2847. * time. This will result in the wakee task is less decayed, but giving
  2848. * the wakee more load sounds not bad.
  2849. */
  2850. if (!(se->avg.last_update_time && prev))
  2851. return;
  2852. #ifndef CONFIG_64BIT
  2853. {
  2854. u64 p_last_update_time_copy;
  2855. u64 n_last_update_time_copy;
  2856. do {
  2857. p_last_update_time_copy = prev->load_last_update_time_copy;
  2858. n_last_update_time_copy = next->load_last_update_time_copy;
  2859. smp_rmb();
  2860. p_last_update_time = prev->avg.last_update_time;
  2861. n_last_update_time = next->avg.last_update_time;
  2862. } while (p_last_update_time != p_last_update_time_copy ||
  2863. n_last_update_time != n_last_update_time_copy);
  2864. }
  2865. #else
  2866. p_last_update_time = prev->avg.last_update_time;
  2867. n_last_update_time = next->avg.last_update_time;
  2868. #endif
  2869. __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
  2870. se->avg.last_update_time = n_last_update_time;
  2871. }
  2872. /*
  2873. * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
  2874. * propagate its contribution. The key to this propagation is the invariant
  2875. * that for each group:
  2876. *
  2877. * ge->avg == grq->avg (1)
  2878. *
  2879. * _IFF_ we look at the pure running and runnable sums. Because they
  2880. * represent the very same entity, just at different points in the hierarchy.
  2881. *
  2882. * Per the above update_tg_cfs_util() is trivial and simply copies the running
  2883. * sum over (but still wrong, because the group entity and group rq do not have
  2884. * their PELT windows aligned).
  2885. *
  2886. * However, update_tg_cfs_runnable() is more complex. So we have:
  2887. *
  2888. * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
  2889. *
  2890. * And since, like util, the runnable part should be directly transferable,
  2891. * the following would _appear_ to be the straight forward approach:
  2892. *
  2893. * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
  2894. *
  2895. * And per (1) we have:
  2896. *
  2897. * ge->avg.runnable_avg == grq->avg.runnable_avg
  2898. *
  2899. * Which gives:
  2900. *
  2901. * ge->load.weight * grq->avg.load_avg
  2902. * ge->avg.load_avg = ----------------------------------- (4)
  2903. * grq->load.weight
  2904. *
  2905. * Except that is wrong!
  2906. *
  2907. * Because while for entities historical weight is not important and we
  2908. * really only care about our future and therefore can consider a pure
  2909. * runnable sum, runqueues can NOT do this.
  2910. *
  2911. * We specifically want runqueues to have a load_avg that includes
  2912. * historical weights. Those represent the blocked load, the load we expect
  2913. * to (shortly) return to us. This only works by keeping the weights as
  2914. * integral part of the sum. We therefore cannot decompose as per (3).
  2915. *
  2916. * Another reason this doesn't work is that runnable isn't a 0-sum entity.
  2917. * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
  2918. * rq itself is runnable anywhere between 2/3 and 1 depending on how the
  2919. * runnable section of these tasks overlap (or not). If they were to perfectly
  2920. * align the rq as a whole would be runnable 2/3 of the time. If however we
  2921. * always have at least 1 runnable task, the rq as a whole is always runnable.
  2922. *
  2923. * So we'll have to approximate.. :/
  2924. *
  2925. * Given the constraint:
  2926. *
  2927. * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
  2928. *
  2929. * We can construct a rule that adds runnable to a rq by assuming minimal
  2930. * overlap.
  2931. *
  2932. * On removal, we'll assume each task is equally runnable; which yields:
  2933. *
  2934. * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
  2935. *
  2936. * XXX: only do this for the part of runnable > running ?
  2937. *
  2938. */
  2939. static inline void
  2940. update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
  2941. {
  2942. long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
  2943. /* Nothing to update */
  2944. if (!delta)
  2945. return;
  2946. /*
  2947. * The relation between sum and avg is:
  2948. *
  2949. * LOAD_AVG_MAX - 1024 + sa->period_contrib
  2950. *
  2951. * however, the PELT windows are not aligned between grq and gse.
  2952. */
  2953. /* Set new sched_entity's utilization */
  2954. se->avg.util_avg = gcfs_rq->avg.util_avg;
  2955. se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
  2956. /* Update parent cfs_rq utilization */
  2957. add_positive(&cfs_rq->avg.util_avg, delta);
  2958. cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
  2959. }
  2960. static inline void
  2961. update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
  2962. {
  2963. long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
  2964. unsigned long runnable_load_avg, load_avg;
  2965. u64 runnable_load_sum, load_sum = 0;
  2966. s64 delta_sum;
  2967. if (!runnable_sum)
  2968. return;
  2969. gcfs_rq->prop_runnable_sum = 0;
  2970. if (runnable_sum >= 0) {
  2971. /*
  2972. * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
  2973. * the CPU is saturated running == runnable.
  2974. */
  2975. runnable_sum += se->avg.load_sum;
  2976. runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
  2977. } else {
  2978. /*
  2979. * Estimate the new unweighted runnable_sum of the gcfs_rq by
  2980. * assuming all tasks are equally runnable.
  2981. */
  2982. if (scale_load_down(gcfs_rq->load.weight)) {
  2983. load_sum = div_s64(gcfs_rq->avg.load_sum,
  2984. scale_load_down(gcfs_rq->load.weight));
  2985. }
  2986. /* But make sure to not inflate se's runnable */
  2987. runnable_sum = min(se->avg.load_sum, load_sum);
  2988. }
  2989. /*
  2990. * runnable_sum can't be lower than running_sum
  2991. * As running sum is scale with CPU capacity wehreas the runnable sum
  2992. * is not we rescale running_sum 1st
  2993. */
  2994. running_sum = se->avg.util_sum /
  2995. arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
  2996. runnable_sum = max(runnable_sum, running_sum);
  2997. load_sum = (s64)se_weight(se) * runnable_sum;
  2998. load_avg = div_s64(load_sum, LOAD_AVG_MAX);
  2999. delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
  3000. delta_avg = load_avg - se->avg.load_avg;
  3001. se->avg.load_sum = runnable_sum;
  3002. se->avg.load_avg = load_avg;
  3003. add_positive(&cfs_rq->avg.load_avg, delta_avg);
  3004. add_positive(&cfs_rq->avg.load_sum, delta_sum);
  3005. runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
  3006. runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
  3007. delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
  3008. delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
  3009. se->avg.runnable_load_sum = runnable_sum;
  3010. se->avg.runnable_load_avg = runnable_load_avg;
  3011. if (se->on_rq) {
  3012. add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
  3013. add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
  3014. }
  3015. }
  3016. static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
  3017. {
  3018. cfs_rq->propagate = 1;
  3019. cfs_rq->prop_runnable_sum += runnable_sum;
  3020. }
  3021. /* Update task and its cfs_rq load average */
  3022. static inline int propagate_entity_load_avg(struct sched_entity *se)
  3023. {
  3024. struct cfs_rq *cfs_rq, *gcfs_rq;
  3025. if (entity_is_task(se))
  3026. return 0;
  3027. gcfs_rq = group_cfs_rq(se);
  3028. if (!gcfs_rq->propagate)
  3029. return 0;
  3030. gcfs_rq->propagate = 0;
  3031. cfs_rq = cfs_rq_of(se);
  3032. add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
  3033. update_tg_cfs_util(cfs_rq, se, gcfs_rq);
  3034. update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
  3035. return 1;
  3036. }
  3037. /*
  3038. * Check if we need to update the load and the utilization of a blocked
  3039. * group_entity:
  3040. */
  3041. static inline bool skip_blocked_update(struct sched_entity *se)
  3042. {
  3043. struct cfs_rq *gcfs_rq = group_cfs_rq(se);
  3044. /*
  3045. * If sched_entity still have not zero load or utilization, we have to
  3046. * decay it:
  3047. */
  3048. if (se->avg.load_avg || se->avg.util_avg)
  3049. return false;
  3050. /*
  3051. * If there is a pending propagation, we have to update the load and
  3052. * the utilization of the sched_entity:
  3053. */
  3054. if (gcfs_rq->propagate)
  3055. return false;
  3056. /*
  3057. * Otherwise, the load and the utilization of the sched_entity is
  3058. * already zero and there is no pending propagation, so it will be a
  3059. * waste of time to try to decay it:
  3060. */
  3061. return true;
  3062. }
  3063. #else /* CONFIG_FAIR_GROUP_SCHED */
  3064. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
  3065. static inline int propagate_entity_load_avg(struct sched_entity *se)
  3066. {
  3067. return 0;
  3068. }
  3069. static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
  3070. #endif /* CONFIG_FAIR_GROUP_SCHED */
  3071. /**
  3072. * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
  3073. * @now: current time, as per cfs_rq_clock_task()
  3074. * @cfs_rq: cfs_rq to update
  3075. *
  3076. * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
  3077. * avg. The immediate corollary is that all (fair) tasks must be attached, see
  3078. * post_init_entity_util_avg().
  3079. *
  3080. * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
  3081. *
  3082. * Returns true if the load decayed or we removed load.
  3083. *
  3084. * Since both these conditions indicate a changed cfs_rq->avg.load we should
  3085. * call update_tg_load_avg() when this function returns true.
  3086. */
  3087. static inline int
  3088. update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
  3089. {
  3090. unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
  3091. struct sched_avg *sa = &cfs_rq->avg;
  3092. int decayed = 0;
  3093. if (cfs_rq->removed.nr) {
  3094. unsigned long r;
  3095. u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
  3096. raw_spin_lock(&cfs_rq->removed.lock);
  3097. swap(cfs_rq->removed.util_avg, removed_util);
  3098. swap(cfs_rq->removed.load_avg, removed_load);
  3099. swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
  3100. cfs_rq->removed.nr = 0;
  3101. raw_spin_unlock(&cfs_rq->removed.lock);
  3102. r = removed_load;
  3103. sub_positive(&sa->load_avg, r);
  3104. sub_positive(&sa->load_sum, r * divider);
  3105. r = removed_util;
  3106. sub_positive(&sa->util_avg, r);
  3107. sub_positive(&sa->util_sum, r * divider);
  3108. add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
  3109. decayed = 1;
  3110. }
  3111. decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
  3112. #ifndef CONFIG_64BIT
  3113. smp_wmb();
  3114. cfs_rq->load_last_update_time_copy = sa->last_update_time;
  3115. #endif
  3116. if (decayed)
  3117. cfs_rq_util_change(cfs_rq, 0);
  3118. return decayed;
  3119. }
  3120. /**
  3121. * attach_entity_load_avg - attach this entity to its cfs_rq load avg
  3122. * @cfs_rq: cfs_rq to attach to
  3123. * @se: sched_entity to attach
  3124. *
  3125. * Must call update_cfs_rq_load_avg() before this, since we rely on
  3126. * cfs_rq->avg.last_update_time being current.
  3127. */
  3128. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  3129. {
  3130. u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
  3131. /*
  3132. * When we attach the @se to the @cfs_rq, we must align the decay
  3133. * window because without that, really weird and wonderful things can
  3134. * happen.
  3135. *
  3136. * XXX illustrate
  3137. */
  3138. se->avg.last_update_time = cfs_rq->avg.last_update_time;
  3139. se->avg.period_contrib = cfs_rq->avg.period_contrib;
  3140. /*
  3141. * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
  3142. * period_contrib. This isn't strictly correct, but since we're
  3143. * entirely outside of the PELT hierarchy, nobody cares if we truncate
  3144. * _sum a little.
  3145. */
  3146. se->avg.util_sum = se->avg.util_avg * divider;
  3147. se->avg.load_sum = divider;
  3148. if (se_weight(se)) {
  3149. se->avg.load_sum =
  3150. div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
  3151. }
  3152. se->avg.runnable_load_sum = se->avg.load_sum;
  3153. enqueue_load_avg(cfs_rq, se);
  3154. cfs_rq->avg.util_avg += se->avg.util_avg;
  3155. cfs_rq->avg.util_sum += se->avg.util_sum;
  3156. add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
  3157. cfs_rq_util_change(cfs_rq, flags);
  3158. }
  3159. /**
  3160. * detach_entity_load_avg - detach this entity from its cfs_rq load avg
  3161. * @cfs_rq: cfs_rq to detach from
  3162. * @se: sched_entity to detach
  3163. *
  3164. * Must call update_cfs_rq_load_avg() before this, since we rely on
  3165. * cfs_rq->avg.last_update_time being current.
  3166. */
  3167. static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3168. {
  3169. dequeue_load_avg(cfs_rq, se);
  3170. sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
  3171. sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
  3172. add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
  3173. cfs_rq_util_change(cfs_rq, 0);
  3174. }
  3175. /*
  3176. * Optional action to be done while updating the load average
  3177. */
  3178. #define UPDATE_TG 0x1
  3179. #define SKIP_AGE_LOAD 0x2
  3180. #define DO_ATTACH 0x4
  3181. /* Update task and its cfs_rq load average */
  3182. static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  3183. {
  3184. u64 now = cfs_rq_clock_task(cfs_rq);
  3185. struct rq *rq = rq_of(cfs_rq);
  3186. int cpu = cpu_of(rq);
  3187. int decayed;
  3188. /*
  3189. * Track task load average for carrying it to new CPU after migrated, and
  3190. * track group sched_entity load average for task_h_load calc in migration
  3191. */
  3192. if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
  3193. __update_load_avg_se(now, cpu, cfs_rq, se);
  3194. decayed = update_cfs_rq_load_avg(now, cfs_rq);
  3195. decayed |= propagate_entity_load_avg(se);
  3196. if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
  3197. /*
  3198. * DO_ATTACH means we're here from enqueue_entity().
  3199. * !last_update_time means we've passed through
  3200. * migrate_task_rq_fair() indicating we migrated.
  3201. *
  3202. * IOW we're enqueueing a task on a new CPU.
  3203. */
  3204. attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
  3205. update_tg_load_avg(cfs_rq, 0);
  3206. } else if (decayed && (flags & UPDATE_TG))
  3207. update_tg_load_avg(cfs_rq, 0);
  3208. }
  3209. #ifndef CONFIG_64BIT
  3210. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  3211. {
  3212. u64 last_update_time_copy;
  3213. u64 last_update_time;
  3214. do {
  3215. last_update_time_copy = cfs_rq->load_last_update_time_copy;
  3216. smp_rmb();
  3217. last_update_time = cfs_rq->avg.last_update_time;
  3218. } while (last_update_time != last_update_time_copy);
  3219. return last_update_time;
  3220. }
  3221. #else
  3222. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  3223. {
  3224. return cfs_rq->avg.last_update_time;
  3225. }
  3226. #endif
  3227. /*
  3228. * Synchronize entity load avg of dequeued entity without locking
  3229. * the previous rq.
  3230. */
  3231. void sync_entity_load_avg(struct sched_entity *se)
  3232. {
  3233. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3234. u64 last_update_time;
  3235. last_update_time = cfs_rq_last_update_time(cfs_rq);
  3236. __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
  3237. }
  3238. /*
  3239. * Task first catches up with cfs_rq, and then subtract
  3240. * itself from the cfs_rq (task must be off the queue now).
  3241. */
  3242. void remove_entity_load_avg(struct sched_entity *se)
  3243. {
  3244. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3245. unsigned long flags;
  3246. /*
  3247. * tasks cannot exit without having gone through wake_up_new_task() ->
  3248. * post_init_entity_util_avg() which will have added things to the
  3249. * cfs_rq, so we can remove unconditionally.
  3250. *
  3251. * Similarly for groups, they will have passed through
  3252. * post_init_entity_util_avg() before unregister_sched_fair_group()
  3253. * calls this.
  3254. */
  3255. sync_entity_load_avg(se);
  3256. raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
  3257. ++cfs_rq->removed.nr;
  3258. cfs_rq->removed.util_avg += se->avg.util_avg;
  3259. cfs_rq->removed.load_avg += se->avg.load_avg;
  3260. cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
  3261. raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
  3262. }
  3263. static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
  3264. {
  3265. return cfs_rq->avg.runnable_load_avg;
  3266. }
  3267. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
  3268. {
  3269. return cfs_rq->avg.load_avg;
  3270. }
  3271. static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
  3272. #else /* CONFIG_SMP */
  3273. static inline int
  3274. update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
  3275. {
  3276. return 0;
  3277. }
  3278. #define UPDATE_TG 0x0
  3279. #define SKIP_AGE_LOAD 0x0
  3280. #define DO_ATTACH 0x0
  3281. static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
  3282. {
  3283. cfs_rq_util_change(cfs_rq, 0);
  3284. }
  3285. static inline void remove_entity_load_avg(struct sched_entity *se) {}
  3286. static inline void
  3287. attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
  3288. static inline void
  3289. detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  3290. static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
  3291. {
  3292. return 0;
  3293. }
  3294. #endif /* CONFIG_SMP */
  3295. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3296. {
  3297. #ifdef CONFIG_SCHED_DEBUG
  3298. s64 d = se->vruntime - cfs_rq->min_vruntime;
  3299. if (d < 0)
  3300. d = -d;
  3301. if (d > 3*sysctl_sched_latency)
  3302. schedstat_inc(cfs_rq->nr_spread_over);
  3303. #endif
  3304. }
  3305. static void
  3306. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  3307. {
  3308. u64 vruntime = cfs_rq->min_vruntime;
  3309. /*
  3310. * The 'current' period is already promised to the current tasks,
  3311. * however the extra weight of the new task will slow them down a
  3312. * little, place the new task so that it fits in the slot that
  3313. * stays open at the end.
  3314. */
  3315. if (initial && sched_feat(START_DEBIT))
  3316. vruntime += sched_vslice(cfs_rq, se);
  3317. /* sleeps up to a single latency don't count. */
  3318. if (!initial) {
  3319. unsigned long thresh = sysctl_sched_latency;
  3320. /*
  3321. * Halve their sleep time's effect, to allow
  3322. * for a gentler effect of sleepers:
  3323. */
  3324. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  3325. thresh >>= 1;
  3326. vruntime -= thresh;
  3327. }
  3328. /* ensure we never gain time by being placed backwards. */
  3329. se->vruntime = max_vruntime(se->vruntime, vruntime);
  3330. }
  3331. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  3332. static inline void check_schedstat_required(void)
  3333. {
  3334. #ifdef CONFIG_SCHEDSTATS
  3335. if (schedstat_enabled())
  3336. return;
  3337. /* Force schedstat enabled if a dependent tracepoint is active */
  3338. if (trace_sched_stat_wait_enabled() ||
  3339. trace_sched_stat_sleep_enabled() ||
  3340. trace_sched_stat_iowait_enabled() ||
  3341. trace_sched_stat_blocked_enabled() ||
  3342. trace_sched_stat_runtime_enabled()) {
  3343. printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
  3344. "stat_blocked and stat_runtime require the "
  3345. "kernel parameter schedstats=enable or "
  3346. "kernel.sched_schedstats=1\n");
  3347. }
  3348. #endif
  3349. }
  3350. /*
  3351. * MIGRATION
  3352. *
  3353. * dequeue
  3354. * update_curr()
  3355. * update_min_vruntime()
  3356. * vruntime -= min_vruntime
  3357. *
  3358. * enqueue
  3359. * update_curr()
  3360. * update_min_vruntime()
  3361. * vruntime += min_vruntime
  3362. *
  3363. * this way the vruntime transition between RQs is done when both
  3364. * min_vruntime are up-to-date.
  3365. *
  3366. * WAKEUP (remote)
  3367. *
  3368. * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
  3369. * vruntime -= min_vruntime
  3370. *
  3371. * enqueue
  3372. * update_curr()
  3373. * update_min_vruntime()
  3374. * vruntime += min_vruntime
  3375. *
  3376. * this way we don't have the most up-to-date min_vruntime on the originating
  3377. * CPU and an up-to-date min_vruntime on the destination CPU.
  3378. */
  3379. static void
  3380. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  3381. {
  3382. bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
  3383. bool curr = cfs_rq->curr == se;
  3384. /*
  3385. * If we're the current task, we must renormalise before calling
  3386. * update_curr().
  3387. */
  3388. if (renorm && curr)
  3389. se->vruntime += cfs_rq->min_vruntime;
  3390. update_curr(cfs_rq);
  3391. /*
  3392. * Otherwise, renormalise after, such that we're placed at the current
  3393. * moment in time, instead of some random moment in the past. Being
  3394. * placed in the past could significantly boost this task to the
  3395. * fairness detriment of existing tasks.
  3396. */
  3397. if (renorm && !curr)
  3398. se->vruntime += cfs_rq->min_vruntime;
  3399. /*
  3400. * When enqueuing a sched_entity, we must:
  3401. * - Update loads to have both entity and cfs_rq synced with now.
  3402. * - Add its load to cfs_rq->runnable_avg
  3403. * - For group_entity, update its weight to reflect the new share of
  3404. * its group cfs_rq
  3405. * - Add its new weight to cfs_rq->load.weight
  3406. */
  3407. update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
  3408. update_cfs_group(se);
  3409. enqueue_runnable_load_avg(cfs_rq, se);
  3410. account_entity_enqueue(cfs_rq, se);
  3411. if (flags & ENQUEUE_WAKEUP)
  3412. place_entity(cfs_rq, se, 0);
  3413. check_schedstat_required();
  3414. update_stats_enqueue(cfs_rq, se, flags);
  3415. check_spread(cfs_rq, se);
  3416. if (!curr)
  3417. __enqueue_entity(cfs_rq, se);
  3418. se->on_rq = 1;
  3419. if (cfs_rq->nr_running == 1) {
  3420. list_add_leaf_cfs_rq(cfs_rq);
  3421. check_enqueue_throttle(cfs_rq);
  3422. }
  3423. }
  3424. static void __clear_buddies_last(struct sched_entity *se)
  3425. {
  3426. for_each_sched_entity(se) {
  3427. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3428. if (cfs_rq->last != se)
  3429. break;
  3430. cfs_rq->last = NULL;
  3431. }
  3432. }
  3433. static void __clear_buddies_next(struct sched_entity *se)
  3434. {
  3435. for_each_sched_entity(se) {
  3436. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3437. if (cfs_rq->next != se)
  3438. break;
  3439. cfs_rq->next = NULL;
  3440. }
  3441. }
  3442. static void __clear_buddies_skip(struct sched_entity *se)
  3443. {
  3444. for_each_sched_entity(se) {
  3445. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3446. if (cfs_rq->skip != se)
  3447. break;
  3448. cfs_rq->skip = NULL;
  3449. }
  3450. }
  3451. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3452. {
  3453. if (cfs_rq->last == se)
  3454. __clear_buddies_last(se);
  3455. if (cfs_rq->next == se)
  3456. __clear_buddies_next(se);
  3457. if (cfs_rq->skip == se)
  3458. __clear_buddies_skip(se);
  3459. }
  3460. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  3461. static void
  3462. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  3463. {
  3464. /*
  3465. * Update run-time statistics of the 'current'.
  3466. */
  3467. update_curr(cfs_rq);
  3468. /*
  3469. * When dequeuing a sched_entity, we must:
  3470. * - Update loads to have both entity and cfs_rq synced with now.
  3471. * - Substract its load from the cfs_rq->runnable_avg.
  3472. * - Substract its previous weight from cfs_rq->load.weight.
  3473. * - For group entity, update its weight to reflect the new share
  3474. * of its group cfs_rq.
  3475. */
  3476. update_load_avg(cfs_rq, se, UPDATE_TG);
  3477. dequeue_runnable_load_avg(cfs_rq, se);
  3478. update_stats_dequeue(cfs_rq, se, flags);
  3479. clear_buddies(cfs_rq, se);
  3480. if (se != cfs_rq->curr)
  3481. __dequeue_entity(cfs_rq, se);
  3482. se->on_rq = 0;
  3483. account_entity_dequeue(cfs_rq, se);
  3484. /*
  3485. * Normalize after update_curr(); which will also have moved
  3486. * min_vruntime if @se is the one holding it back. But before doing
  3487. * update_min_vruntime() again, which will discount @se's position and
  3488. * can move min_vruntime forward still more.
  3489. */
  3490. if (!(flags & DEQUEUE_SLEEP))
  3491. se->vruntime -= cfs_rq->min_vruntime;
  3492. /* return excess runtime on last dequeue */
  3493. return_cfs_rq_runtime(cfs_rq);
  3494. update_cfs_group(se);
  3495. /*
  3496. * Now advance min_vruntime if @se was the entity holding it back,
  3497. * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
  3498. * put back on, and if we advance min_vruntime, we'll be placed back
  3499. * further than we started -- ie. we'll be penalized.
  3500. */
  3501. if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
  3502. update_min_vruntime(cfs_rq);
  3503. }
  3504. /*
  3505. * Preempt the current task with a newly woken task if needed:
  3506. */
  3507. static void
  3508. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  3509. {
  3510. unsigned long ideal_runtime, delta_exec;
  3511. struct sched_entity *se;
  3512. s64 delta;
  3513. ideal_runtime = sched_slice(cfs_rq, curr);
  3514. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  3515. if (delta_exec > ideal_runtime) {
  3516. resched_curr(rq_of(cfs_rq));
  3517. /*
  3518. * The current task ran long enough, ensure it doesn't get
  3519. * re-elected due to buddy favours.
  3520. */
  3521. clear_buddies(cfs_rq, curr);
  3522. return;
  3523. }
  3524. /*
  3525. * Ensure that a task that missed wakeup preemption by a
  3526. * narrow margin doesn't have to wait for a full slice.
  3527. * This also mitigates buddy induced latencies under load.
  3528. */
  3529. if (delta_exec < sysctl_sched_min_granularity)
  3530. return;
  3531. se = __pick_first_entity(cfs_rq);
  3532. delta = curr->vruntime - se->vruntime;
  3533. if (delta < 0)
  3534. return;
  3535. if (delta > ideal_runtime)
  3536. resched_curr(rq_of(cfs_rq));
  3537. }
  3538. static void
  3539. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  3540. {
  3541. /* 'current' is not kept within the tree. */
  3542. if (se->on_rq) {
  3543. /*
  3544. * Any task has to be enqueued before it get to execute on
  3545. * a CPU. So account for the time it spent waiting on the
  3546. * runqueue.
  3547. */
  3548. update_stats_wait_end(cfs_rq, se);
  3549. __dequeue_entity(cfs_rq, se);
  3550. update_load_avg(cfs_rq, se, UPDATE_TG);
  3551. }
  3552. update_stats_curr_start(cfs_rq, se);
  3553. cfs_rq->curr = se;
  3554. /*
  3555. * Track our maximum slice length, if the CPU's load is at
  3556. * least twice that of our own weight (i.e. dont track it
  3557. * when there are only lesser-weight tasks around):
  3558. */
  3559. if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  3560. schedstat_set(se->statistics.slice_max,
  3561. max((u64)schedstat_val(se->statistics.slice_max),
  3562. se->sum_exec_runtime - se->prev_sum_exec_runtime));
  3563. }
  3564. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  3565. }
  3566. static int
  3567. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  3568. /*
  3569. * Pick the next process, keeping these things in mind, in this order:
  3570. * 1) keep things fair between processes/task groups
  3571. * 2) pick the "next" process, since someone really wants that to run
  3572. * 3) pick the "last" process, for cache locality
  3573. * 4) do not run the "skip" process, if something else is available
  3574. */
  3575. static struct sched_entity *
  3576. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  3577. {
  3578. struct sched_entity *left = __pick_first_entity(cfs_rq);
  3579. struct sched_entity *se;
  3580. /*
  3581. * If curr is set we have to see if its left of the leftmost entity
  3582. * still in the tree, provided there was anything in the tree at all.
  3583. */
  3584. if (!left || (curr && entity_before(curr, left)))
  3585. left = curr;
  3586. se = left; /* ideally we run the leftmost entity */
  3587. /*
  3588. * Avoid running the skip buddy, if running something else can
  3589. * be done without getting too unfair.
  3590. */
  3591. if (cfs_rq->skip == se) {
  3592. struct sched_entity *second;
  3593. if (se == curr) {
  3594. second = __pick_first_entity(cfs_rq);
  3595. } else {
  3596. second = __pick_next_entity(se);
  3597. if (!second || (curr && entity_before(curr, second)))
  3598. second = curr;
  3599. }
  3600. if (second && wakeup_preempt_entity(second, left) < 1)
  3601. se = second;
  3602. }
  3603. /*
  3604. * Prefer last buddy, try to return the CPU to a preempted task.
  3605. */
  3606. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  3607. se = cfs_rq->last;
  3608. /*
  3609. * Someone really wants this to run. If it's not unfair, run it.
  3610. */
  3611. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  3612. se = cfs_rq->next;
  3613. clear_buddies(cfs_rq, se);
  3614. return se;
  3615. }
  3616. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  3617. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  3618. {
  3619. /*
  3620. * If still on the runqueue then deactivate_task()
  3621. * was not called and update_curr() has to be done:
  3622. */
  3623. if (prev->on_rq)
  3624. update_curr(cfs_rq);
  3625. /* throttle cfs_rqs exceeding runtime */
  3626. check_cfs_rq_runtime(cfs_rq);
  3627. check_spread(cfs_rq, prev);
  3628. if (prev->on_rq) {
  3629. update_stats_wait_start(cfs_rq, prev);
  3630. /* Put 'current' back into the tree. */
  3631. __enqueue_entity(cfs_rq, prev);
  3632. /* in !on_rq case, update occurred at dequeue */
  3633. update_load_avg(cfs_rq, prev, 0);
  3634. }
  3635. cfs_rq->curr = NULL;
  3636. }
  3637. static void
  3638. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  3639. {
  3640. /*
  3641. * Update run-time statistics of the 'current'.
  3642. */
  3643. update_curr(cfs_rq);
  3644. /*
  3645. * Ensure that runnable average is periodically updated.
  3646. */
  3647. update_load_avg(cfs_rq, curr, UPDATE_TG);
  3648. update_cfs_group(curr);
  3649. #ifdef CONFIG_SCHED_HRTICK
  3650. /*
  3651. * queued ticks are scheduled to match the slice, so don't bother
  3652. * validating it and just reschedule.
  3653. */
  3654. if (queued) {
  3655. resched_curr(rq_of(cfs_rq));
  3656. return;
  3657. }
  3658. /*
  3659. * don't let the period tick interfere with the hrtick preemption
  3660. */
  3661. if (!sched_feat(DOUBLE_TICK) &&
  3662. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  3663. return;
  3664. #endif
  3665. if (cfs_rq->nr_running > 1)
  3666. check_preempt_tick(cfs_rq, curr);
  3667. }
  3668. /**************************************************
  3669. * CFS bandwidth control machinery
  3670. */
  3671. #ifdef CONFIG_CFS_BANDWIDTH
  3672. #ifdef HAVE_JUMP_LABEL
  3673. static struct static_key __cfs_bandwidth_used;
  3674. static inline bool cfs_bandwidth_used(void)
  3675. {
  3676. return static_key_false(&__cfs_bandwidth_used);
  3677. }
  3678. void cfs_bandwidth_usage_inc(void)
  3679. {
  3680. static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
  3681. }
  3682. void cfs_bandwidth_usage_dec(void)
  3683. {
  3684. static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
  3685. }
  3686. #else /* HAVE_JUMP_LABEL */
  3687. static bool cfs_bandwidth_used(void)
  3688. {
  3689. return true;
  3690. }
  3691. void cfs_bandwidth_usage_inc(void) {}
  3692. void cfs_bandwidth_usage_dec(void) {}
  3693. #endif /* HAVE_JUMP_LABEL */
  3694. /*
  3695. * default period for cfs group bandwidth.
  3696. * default: 0.1s, units: nanoseconds
  3697. */
  3698. static inline u64 default_cfs_period(void)
  3699. {
  3700. return 100000000ULL;
  3701. }
  3702. static inline u64 sched_cfs_bandwidth_slice(void)
  3703. {
  3704. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  3705. }
  3706. /*
  3707. * Replenish runtime according to assigned quota and update expiration time.
  3708. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  3709. * additional synchronization around rq->lock.
  3710. *
  3711. * requires cfs_b->lock
  3712. */
  3713. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  3714. {
  3715. u64 now;
  3716. if (cfs_b->quota == RUNTIME_INF)
  3717. return;
  3718. now = sched_clock_cpu(smp_processor_id());
  3719. cfs_b->runtime = cfs_b->quota;
  3720. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  3721. }
  3722. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3723. {
  3724. return &tg->cfs_bandwidth;
  3725. }
  3726. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  3727. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3728. {
  3729. if (unlikely(cfs_rq->throttle_count))
  3730. return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
  3731. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  3732. }
  3733. /* returns 0 on failure to allocate runtime */
  3734. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3735. {
  3736. struct task_group *tg = cfs_rq->tg;
  3737. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  3738. u64 amount = 0, min_amount, expires;
  3739. /* note: this is a positive sum as runtime_remaining <= 0 */
  3740. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  3741. raw_spin_lock(&cfs_b->lock);
  3742. if (cfs_b->quota == RUNTIME_INF)
  3743. amount = min_amount;
  3744. else {
  3745. start_cfs_bandwidth(cfs_b);
  3746. if (cfs_b->runtime > 0) {
  3747. amount = min(cfs_b->runtime, min_amount);
  3748. cfs_b->runtime -= amount;
  3749. cfs_b->idle = 0;
  3750. }
  3751. }
  3752. expires = cfs_b->runtime_expires;
  3753. raw_spin_unlock(&cfs_b->lock);
  3754. cfs_rq->runtime_remaining += amount;
  3755. /*
  3756. * we may have advanced our local expiration to account for allowed
  3757. * spread between our sched_clock and the one on which runtime was
  3758. * issued.
  3759. */
  3760. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  3761. cfs_rq->runtime_expires = expires;
  3762. return cfs_rq->runtime_remaining > 0;
  3763. }
  3764. /*
  3765. * Note: This depends on the synchronization provided by sched_clock and the
  3766. * fact that rq->clock snapshots this value.
  3767. */
  3768. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3769. {
  3770. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3771. /* if the deadline is ahead of our clock, nothing to do */
  3772. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  3773. return;
  3774. if (cfs_rq->runtime_remaining < 0)
  3775. return;
  3776. /*
  3777. * If the local deadline has passed we have to consider the
  3778. * possibility that our sched_clock is 'fast' and the global deadline
  3779. * has not truly expired.
  3780. *
  3781. * Fortunately we can check determine whether this the case by checking
  3782. * whether the global deadline has advanced. It is valid to compare
  3783. * cfs_b->runtime_expires without any locks since we only care about
  3784. * exact equality, so a partial write will still work.
  3785. */
  3786. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  3787. /* extend local deadline, drift is bounded above by 2 ticks */
  3788. cfs_rq->runtime_expires += TICK_NSEC;
  3789. } else {
  3790. /* global deadline is ahead, expiration has passed */
  3791. cfs_rq->runtime_remaining = 0;
  3792. }
  3793. }
  3794. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  3795. {
  3796. /* dock delta_exec before expiring quota (as it could span periods) */
  3797. cfs_rq->runtime_remaining -= delta_exec;
  3798. expire_cfs_rq_runtime(cfs_rq);
  3799. if (likely(cfs_rq->runtime_remaining > 0))
  3800. return;
  3801. /*
  3802. * if we're unable to extend our runtime we resched so that the active
  3803. * hierarchy can be throttled
  3804. */
  3805. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  3806. resched_curr(rq_of(cfs_rq));
  3807. }
  3808. static __always_inline
  3809. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  3810. {
  3811. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  3812. return;
  3813. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  3814. }
  3815. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3816. {
  3817. return cfs_bandwidth_used() && cfs_rq->throttled;
  3818. }
  3819. /* check whether cfs_rq, or any parent, is throttled */
  3820. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3821. {
  3822. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  3823. }
  3824. /*
  3825. * Ensure that neither of the group entities corresponding to src_cpu or
  3826. * dest_cpu are members of a throttled hierarchy when performing group
  3827. * load-balance operations.
  3828. */
  3829. static inline int throttled_lb_pair(struct task_group *tg,
  3830. int src_cpu, int dest_cpu)
  3831. {
  3832. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  3833. src_cfs_rq = tg->cfs_rq[src_cpu];
  3834. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  3835. return throttled_hierarchy(src_cfs_rq) ||
  3836. throttled_hierarchy(dest_cfs_rq);
  3837. }
  3838. /* updated child weight may affect parent so we have to do this bottom up */
  3839. static int tg_unthrottle_up(struct task_group *tg, void *data)
  3840. {
  3841. struct rq *rq = data;
  3842. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3843. cfs_rq->throttle_count--;
  3844. if (!cfs_rq->throttle_count) {
  3845. /* adjust cfs_rq_clock_task() */
  3846. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  3847. cfs_rq->throttled_clock_task;
  3848. }
  3849. return 0;
  3850. }
  3851. static int tg_throttle_down(struct task_group *tg, void *data)
  3852. {
  3853. struct rq *rq = data;
  3854. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3855. /* group is entering throttled state, stop time */
  3856. if (!cfs_rq->throttle_count)
  3857. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  3858. cfs_rq->throttle_count++;
  3859. return 0;
  3860. }
  3861. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  3862. {
  3863. struct rq *rq = rq_of(cfs_rq);
  3864. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3865. struct sched_entity *se;
  3866. long task_delta, dequeue = 1;
  3867. bool empty;
  3868. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  3869. /* freeze hierarchy runnable averages while throttled */
  3870. rcu_read_lock();
  3871. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  3872. rcu_read_unlock();
  3873. task_delta = cfs_rq->h_nr_running;
  3874. for_each_sched_entity(se) {
  3875. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  3876. /* throttled entity or throttle-on-deactivate */
  3877. if (!se->on_rq)
  3878. break;
  3879. if (dequeue)
  3880. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  3881. qcfs_rq->h_nr_running -= task_delta;
  3882. if (qcfs_rq->load.weight)
  3883. dequeue = 0;
  3884. }
  3885. if (!se)
  3886. sub_nr_running(rq, task_delta);
  3887. cfs_rq->throttled = 1;
  3888. cfs_rq->throttled_clock = rq_clock(rq);
  3889. raw_spin_lock(&cfs_b->lock);
  3890. empty = list_empty(&cfs_b->throttled_cfs_rq);
  3891. /*
  3892. * Add to the _head_ of the list, so that an already-started
  3893. * distribute_cfs_runtime will not see us
  3894. */
  3895. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3896. /*
  3897. * If we're the first throttled task, make sure the bandwidth
  3898. * timer is running.
  3899. */
  3900. if (empty)
  3901. start_cfs_bandwidth(cfs_b);
  3902. raw_spin_unlock(&cfs_b->lock);
  3903. }
  3904. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3905. {
  3906. struct rq *rq = rq_of(cfs_rq);
  3907. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3908. struct sched_entity *se;
  3909. int enqueue = 1;
  3910. long task_delta;
  3911. se = cfs_rq->tg->se[cpu_of(rq)];
  3912. cfs_rq->throttled = 0;
  3913. update_rq_clock(rq);
  3914. raw_spin_lock(&cfs_b->lock);
  3915. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3916. list_del_rcu(&cfs_rq->throttled_list);
  3917. raw_spin_unlock(&cfs_b->lock);
  3918. /* update hierarchical throttle state */
  3919. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3920. if (!cfs_rq->load.weight)
  3921. return;
  3922. task_delta = cfs_rq->h_nr_running;
  3923. for_each_sched_entity(se) {
  3924. if (se->on_rq)
  3925. enqueue = 0;
  3926. cfs_rq = cfs_rq_of(se);
  3927. if (enqueue)
  3928. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3929. cfs_rq->h_nr_running += task_delta;
  3930. if (cfs_rq_throttled(cfs_rq))
  3931. break;
  3932. }
  3933. if (!se)
  3934. add_nr_running(rq, task_delta);
  3935. /* Determine whether we need to wake up potentially idle CPU: */
  3936. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3937. resched_curr(rq);
  3938. }
  3939. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3940. u64 remaining, u64 expires)
  3941. {
  3942. struct cfs_rq *cfs_rq;
  3943. u64 runtime;
  3944. u64 starting_runtime = remaining;
  3945. rcu_read_lock();
  3946. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3947. throttled_list) {
  3948. struct rq *rq = rq_of(cfs_rq);
  3949. struct rq_flags rf;
  3950. rq_lock(rq, &rf);
  3951. if (!cfs_rq_throttled(cfs_rq))
  3952. goto next;
  3953. runtime = -cfs_rq->runtime_remaining + 1;
  3954. if (runtime > remaining)
  3955. runtime = remaining;
  3956. remaining -= runtime;
  3957. cfs_rq->runtime_remaining += runtime;
  3958. cfs_rq->runtime_expires = expires;
  3959. /* we check whether we're throttled above */
  3960. if (cfs_rq->runtime_remaining > 0)
  3961. unthrottle_cfs_rq(cfs_rq);
  3962. next:
  3963. rq_unlock(rq, &rf);
  3964. if (!remaining)
  3965. break;
  3966. }
  3967. rcu_read_unlock();
  3968. return starting_runtime - remaining;
  3969. }
  3970. /*
  3971. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3972. * cfs_rqs as appropriate. If there has been no activity within the last
  3973. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3974. * used to track this state.
  3975. */
  3976. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3977. {
  3978. u64 runtime, runtime_expires;
  3979. int throttled;
  3980. /* no need to continue the timer with no bandwidth constraint */
  3981. if (cfs_b->quota == RUNTIME_INF)
  3982. goto out_deactivate;
  3983. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3984. cfs_b->nr_periods += overrun;
  3985. /*
  3986. * idle depends on !throttled (for the case of a large deficit), and if
  3987. * we're going inactive then everything else can be deferred
  3988. */
  3989. if (cfs_b->idle && !throttled)
  3990. goto out_deactivate;
  3991. __refill_cfs_bandwidth_runtime(cfs_b);
  3992. if (!throttled) {
  3993. /* mark as potentially idle for the upcoming period */
  3994. cfs_b->idle = 1;
  3995. return 0;
  3996. }
  3997. /* account preceding periods in which throttling occurred */
  3998. cfs_b->nr_throttled += overrun;
  3999. runtime_expires = cfs_b->runtime_expires;
  4000. /*
  4001. * This check is repeated as we are holding onto the new bandwidth while
  4002. * we unthrottle. This can potentially race with an unthrottled group
  4003. * trying to acquire new bandwidth from the global pool. This can result
  4004. * in us over-using our runtime if it is all used during this loop, but
  4005. * only by limited amounts in that extreme case.
  4006. */
  4007. while (throttled && cfs_b->runtime > 0) {
  4008. runtime = cfs_b->runtime;
  4009. raw_spin_unlock(&cfs_b->lock);
  4010. /* we can't nest cfs_b->lock while distributing bandwidth */
  4011. runtime = distribute_cfs_runtime(cfs_b, runtime,
  4012. runtime_expires);
  4013. raw_spin_lock(&cfs_b->lock);
  4014. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  4015. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  4016. }
  4017. /*
  4018. * While we are ensured activity in the period following an
  4019. * unthrottle, this also covers the case in which the new bandwidth is
  4020. * insufficient to cover the existing bandwidth deficit. (Forcing the
  4021. * timer to remain active while there are any throttled entities.)
  4022. */
  4023. cfs_b->idle = 0;
  4024. return 0;
  4025. out_deactivate:
  4026. return 1;
  4027. }
  4028. /* a cfs_rq won't donate quota below this amount */
  4029. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  4030. /* minimum remaining period time to redistribute slack quota */
  4031. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  4032. /* how long we wait to gather additional slack before distributing */
  4033. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  4034. /*
  4035. * Are we near the end of the current quota period?
  4036. *
  4037. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  4038. * hrtimer base being cleared by hrtimer_start. In the case of
  4039. * migrate_hrtimers, base is never cleared, so we are fine.
  4040. */
  4041. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  4042. {
  4043. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  4044. u64 remaining;
  4045. /* if the call-back is running a quota refresh is already occurring */
  4046. if (hrtimer_callback_running(refresh_timer))
  4047. return 1;
  4048. /* is a quota refresh about to occur? */
  4049. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  4050. if (remaining < min_expire)
  4051. return 1;
  4052. return 0;
  4053. }
  4054. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  4055. {
  4056. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  4057. /* if there's a quota refresh soon don't bother with slack */
  4058. if (runtime_refresh_within(cfs_b, min_left))
  4059. return;
  4060. hrtimer_start(&cfs_b->slack_timer,
  4061. ns_to_ktime(cfs_bandwidth_slack_period),
  4062. HRTIMER_MODE_REL);
  4063. }
  4064. /* we know any runtime found here is valid as update_curr() precedes return */
  4065. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4066. {
  4067. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  4068. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  4069. if (slack_runtime <= 0)
  4070. return;
  4071. raw_spin_lock(&cfs_b->lock);
  4072. if (cfs_b->quota != RUNTIME_INF &&
  4073. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  4074. cfs_b->runtime += slack_runtime;
  4075. /* we are under rq->lock, defer unthrottling using a timer */
  4076. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  4077. !list_empty(&cfs_b->throttled_cfs_rq))
  4078. start_cfs_slack_bandwidth(cfs_b);
  4079. }
  4080. raw_spin_unlock(&cfs_b->lock);
  4081. /* even if it's not valid for return we don't want to try again */
  4082. cfs_rq->runtime_remaining -= slack_runtime;
  4083. }
  4084. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4085. {
  4086. if (!cfs_bandwidth_used())
  4087. return;
  4088. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  4089. return;
  4090. __return_cfs_rq_runtime(cfs_rq);
  4091. }
  4092. /*
  4093. * This is done with a timer (instead of inline with bandwidth return) since
  4094. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  4095. */
  4096. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  4097. {
  4098. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  4099. u64 expires;
  4100. /* confirm we're still not at a refresh boundary */
  4101. raw_spin_lock(&cfs_b->lock);
  4102. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  4103. raw_spin_unlock(&cfs_b->lock);
  4104. return;
  4105. }
  4106. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  4107. runtime = cfs_b->runtime;
  4108. expires = cfs_b->runtime_expires;
  4109. raw_spin_unlock(&cfs_b->lock);
  4110. if (!runtime)
  4111. return;
  4112. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  4113. raw_spin_lock(&cfs_b->lock);
  4114. if (expires == cfs_b->runtime_expires)
  4115. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  4116. raw_spin_unlock(&cfs_b->lock);
  4117. }
  4118. /*
  4119. * When a group wakes up we want to make sure that its quota is not already
  4120. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  4121. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  4122. */
  4123. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  4124. {
  4125. if (!cfs_bandwidth_used())
  4126. return;
  4127. /* an active group must be handled by the update_curr()->put() path */
  4128. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  4129. return;
  4130. /* ensure the group is not already throttled */
  4131. if (cfs_rq_throttled(cfs_rq))
  4132. return;
  4133. /* update runtime allocation */
  4134. account_cfs_rq_runtime(cfs_rq, 0);
  4135. if (cfs_rq->runtime_remaining <= 0)
  4136. throttle_cfs_rq(cfs_rq);
  4137. }
  4138. static void sync_throttle(struct task_group *tg, int cpu)
  4139. {
  4140. struct cfs_rq *pcfs_rq, *cfs_rq;
  4141. if (!cfs_bandwidth_used())
  4142. return;
  4143. if (!tg->parent)
  4144. return;
  4145. cfs_rq = tg->cfs_rq[cpu];
  4146. pcfs_rq = tg->parent->cfs_rq[cpu];
  4147. cfs_rq->throttle_count = pcfs_rq->throttle_count;
  4148. cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
  4149. }
  4150. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  4151. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4152. {
  4153. if (!cfs_bandwidth_used())
  4154. return false;
  4155. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  4156. return false;
  4157. /*
  4158. * it's possible for a throttled entity to be forced into a running
  4159. * state (e.g. set_curr_task), in this case we're finished.
  4160. */
  4161. if (cfs_rq_throttled(cfs_rq))
  4162. return true;
  4163. throttle_cfs_rq(cfs_rq);
  4164. return true;
  4165. }
  4166. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  4167. {
  4168. struct cfs_bandwidth *cfs_b =
  4169. container_of(timer, struct cfs_bandwidth, slack_timer);
  4170. do_sched_cfs_slack_timer(cfs_b);
  4171. return HRTIMER_NORESTART;
  4172. }
  4173. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  4174. {
  4175. struct cfs_bandwidth *cfs_b =
  4176. container_of(timer, struct cfs_bandwidth, period_timer);
  4177. int overrun;
  4178. int idle = 0;
  4179. raw_spin_lock(&cfs_b->lock);
  4180. for (;;) {
  4181. overrun = hrtimer_forward_now(timer, cfs_b->period);
  4182. if (!overrun)
  4183. break;
  4184. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  4185. }
  4186. if (idle)
  4187. cfs_b->period_active = 0;
  4188. raw_spin_unlock(&cfs_b->lock);
  4189. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  4190. }
  4191. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4192. {
  4193. raw_spin_lock_init(&cfs_b->lock);
  4194. cfs_b->runtime = 0;
  4195. cfs_b->quota = RUNTIME_INF;
  4196. cfs_b->period = ns_to_ktime(default_cfs_period());
  4197. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  4198. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
  4199. cfs_b->period_timer.function = sched_cfs_period_timer;
  4200. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4201. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  4202. }
  4203. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  4204. {
  4205. cfs_rq->runtime_enabled = 0;
  4206. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  4207. }
  4208. void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4209. {
  4210. lockdep_assert_held(&cfs_b->lock);
  4211. if (!cfs_b->period_active) {
  4212. cfs_b->period_active = 1;
  4213. hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
  4214. hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
  4215. }
  4216. }
  4217. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  4218. {
  4219. /* init_cfs_bandwidth() was not called */
  4220. if (!cfs_b->throttled_cfs_rq.next)
  4221. return;
  4222. hrtimer_cancel(&cfs_b->period_timer);
  4223. hrtimer_cancel(&cfs_b->slack_timer);
  4224. }
  4225. /*
  4226. * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
  4227. *
  4228. * The race is harmless, since modifying bandwidth settings of unhooked group
  4229. * bits doesn't do much.
  4230. */
  4231. /* cpu online calback */
  4232. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  4233. {
  4234. struct task_group *tg;
  4235. lockdep_assert_held(&rq->lock);
  4236. rcu_read_lock();
  4237. list_for_each_entry_rcu(tg, &task_groups, list) {
  4238. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  4239. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4240. raw_spin_lock(&cfs_b->lock);
  4241. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  4242. raw_spin_unlock(&cfs_b->lock);
  4243. }
  4244. rcu_read_unlock();
  4245. }
  4246. /* cpu offline callback */
  4247. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  4248. {
  4249. struct task_group *tg;
  4250. lockdep_assert_held(&rq->lock);
  4251. rcu_read_lock();
  4252. list_for_each_entry_rcu(tg, &task_groups, list) {
  4253. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  4254. if (!cfs_rq->runtime_enabled)
  4255. continue;
  4256. /*
  4257. * clock_task is not advancing so we just need to make sure
  4258. * there's some valid quota amount
  4259. */
  4260. cfs_rq->runtime_remaining = 1;
  4261. /*
  4262. * Offline rq is schedulable till CPU is completely disabled
  4263. * in take_cpu_down(), so we prevent new cfs throttling here.
  4264. */
  4265. cfs_rq->runtime_enabled = 0;
  4266. if (cfs_rq_throttled(cfs_rq))
  4267. unthrottle_cfs_rq(cfs_rq);
  4268. }
  4269. rcu_read_unlock();
  4270. }
  4271. #else /* CONFIG_CFS_BANDWIDTH */
  4272. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  4273. {
  4274. return rq_clock_task(rq_of(cfs_rq));
  4275. }
  4276. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  4277. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  4278. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  4279. static inline void sync_throttle(struct task_group *tg, int cpu) {}
  4280. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  4281. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  4282. {
  4283. return 0;
  4284. }
  4285. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  4286. {
  4287. return 0;
  4288. }
  4289. static inline int throttled_lb_pair(struct task_group *tg,
  4290. int src_cpu, int dest_cpu)
  4291. {
  4292. return 0;
  4293. }
  4294. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  4295. #ifdef CONFIG_FAIR_GROUP_SCHED
  4296. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  4297. #endif
  4298. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  4299. {
  4300. return NULL;
  4301. }
  4302. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  4303. static inline void update_runtime_enabled(struct rq *rq) {}
  4304. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  4305. #endif /* CONFIG_CFS_BANDWIDTH */
  4306. /**************************************************
  4307. * CFS operations on tasks:
  4308. */
  4309. #ifdef CONFIG_SCHED_HRTICK
  4310. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  4311. {
  4312. struct sched_entity *se = &p->se;
  4313. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4314. SCHED_WARN_ON(task_rq(p) != rq);
  4315. if (rq->cfs.h_nr_running > 1) {
  4316. u64 slice = sched_slice(cfs_rq, se);
  4317. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  4318. s64 delta = slice - ran;
  4319. if (delta < 0) {
  4320. if (rq->curr == p)
  4321. resched_curr(rq);
  4322. return;
  4323. }
  4324. hrtick_start(rq, delta);
  4325. }
  4326. }
  4327. /*
  4328. * called from enqueue/dequeue and updates the hrtick when the
  4329. * current task is from our class and nr_running is low enough
  4330. * to matter.
  4331. */
  4332. static void hrtick_update(struct rq *rq)
  4333. {
  4334. struct task_struct *curr = rq->curr;
  4335. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  4336. return;
  4337. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  4338. hrtick_start_fair(rq, curr);
  4339. }
  4340. #else /* !CONFIG_SCHED_HRTICK */
  4341. static inline void
  4342. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  4343. {
  4344. }
  4345. static inline void hrtick_update(struct rq *rq)
  4346. {
  4347. }
  4348. #endif
  4349. /*
  4350. * The enqueue_task method is called before nr_running is
  4351. * increased. Here we update the fair scheduling stats and
  4352. * then put the task into the rbtree:
  4353. */
  4354. static void
  4355. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  4356. {
  4357. struct cfs_rq *cfs_rq;
  4358. struct sched_entity *se = &p->se;
  4359. /*
  4360. * If in_iowait is set, the code below may not trigger any cpufreq
  4361. * utilization updates, so do it here explicitly with the IOWAIT flag
  4362. * passed.
  4363. */
  4364. if (p->in_iowait)
  4365. cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
  4366. for_each_sched_entity(se) {
  4367. if (se->on_rq)
  4368. break;
  4369. cfs_rq = cfs_rq_of(se);
  4370. enqueue_entity(cfs_rq, se, flags);
  4371. /*
  4372. * end evaluation on encountering a throttled cfs_rq
  4373. *
  4374. * note: in the case of encountering a throttled cfs_rq we will
  4375. * post the final h_nr_running increment below.
  4376. */
  4377. if (cfs_rq_throttled(cfs_rq))
  4378. break;
  4379. cfs_rq->h_nr_running++;
  4380. flags = ENQUEUE_WAKEUP;
  4381. }
  4382. for_each_sched_entity(se) {
  4383. cfs_rq = cfs_rq_of(se);
  4384. cfs_rq->h_nr_running++;
  4385. if (cfs_rq_throttled(cfs_rq))
  4386. break;
  4387. update_load_avg(cfs_rq, se, UPDATE_TG);
  4388. update_cfs_group(se);
  4389. }
  4390. if (!se)
  4391. add_nr_running(rq, 1);
  4392. hrtick_update(rq);
  4393. }
  4394. static void set_next_buddy(struct sched_entity *se);
  4395. /*
  4396. * The dequeue_task method is called before nr_running is
  4397. * decreased. We remove the task from the rbtree and
  4398. * update the fair scheduling stats:
  4399. */
  4400. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  4401. {
  4402. struct cfs_rq *cfs_rq;
  4403. struct sched_entity *se = &p->se;
  4404. int task_sleep = flags & DEQUEUE_SLEEP;
  4405. for_each_sched_entity(se) {
  4406. cfs_rq = cfs_rq_of(se);
  4407. dequeue_entity(cfs_rq, se, flags);
  4408. /*
  4409. * end evaluation on encountering a throttled cfs_rq
  4410. *
  4411. * note: in the case of encountering a throttled cfs_rq we will
  4412. * post the final h_nr_running decrement below.
  4413. */
  4414. if (cfs_rq_throttled(cfs_rq))
  4415. break;
  4416. cfs_rq->h_nr_running--;
  4417. /* Don't dequeue parent if it has other entities besides us */
  4418. if (cfs_rq->load.weight) {
  4419. /* Avoid re-evaluating load for this entity: */
  4420. se = parent_entity(se);
  4421. /*
  4422. * Bias pick_next to pick a task from this cfs_rq, as
  4423. * p is sleeping when it is within its sched_slice.
  4424. */
  4425. if (task_sleep && se && !throttled_hierarchy(cfs_rq))
  4426. set_next_buddy(se);
  4427. break;
  4428. }
  4429. flags |= DEQUEUE_SLEEP;
  4430. }
  4431. for_each_sched_entity(se) {
  4432. cfs_rq = cfs_rq_of(se);
  4433. cfs_rq->h_nr_running--;
  4434. if (cfs_rq_throttled(cfs_rq))
  4435. break;
  4436. update_load_avg(cfs_rq, se, UPDATE_TG);
  4437. update_cfs_group(se);
  4438. }
  4439. if (!se)
  4440. sub_nr_running(rq, 1);
  4441. hrtick_update(rq);
  4442. }
  4443. #ifdef CONFIG_SMP
  4444. /* Working cpumask for: load_balance, load_balance_newidle. */
  4445. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  4446. DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
  4447. #ifdef CONFIG_NO_HZ_COMMON
  4448. /*
  4449. * per rq 'load' arrray crap; XXX kill this.
  4450. */
  4451. /*
  4452. * The exact cpuload calculated at every tick would be:
  4453. *
  4454. * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
  4455. *
  4456. * If a CPU misses updates for n ticks (as it was idle) and update gets
  4457. * called on the n+1-th tick when CPU may be busy, then we have:
  4458. *
  4459. * load_n = (1 - 1/2^i)^n * load_0
  4460. * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
  4461. *
  4462. * decay_load_missed() below does efficient calculation of
  4463. *
  4464. * load' = (1 - 1/2^i)^n * load
  4465. *
  4466. * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
  4467. * This allows us to precompute the above in said factors, thereby allowing the
  4468. * reduction of an arbitrary n in O(log_2 n) steps. (See also
  4469. * fixed_power_int())
  4470. *
  4471. * The calculation is approximated on a 128 point scale.
  4472. */
  4473. #define DEGRADE_SHIFT 7
  4474. static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  4475. static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  4476. { 0, 0, 0, 0, 0, 0, 0, 0 },
  4477. { 64, 32, 8, 0, 0, 0, 0, 0 },
  4478. { 96, 72, 40, 12, 1, 0, 0, 0 },
  4479. { 112, 98, 75, 43, 15, 1, 0, 0 },
  4480. { 120, 112, 98, 76, 45, 16, 2, 0 }
  4481. };
  4482. /*
  4483. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  4484. * would be when CPU is idle and so we just decay the old load without
  4485. * adding any new load.
  4486. */
  4487. static unsigned long
  4488. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  4489. {
  4490. int j = 0;
  4491. if (!missed_updates)
  4492. return load;
  4493. if (missed_updates >= degrade_zero_ticks[idx])
  4494. return 0;
  4495. if (idx == 1)
  4496. return load >> missed_updates;
  4497. while (missed_updates) {
  4498. if (missed_updates % 2)
  4499. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  4500. missed_updates >>= 1;
  4501. j++;
  4502. }
  4503. return load;
  4504. }
  4505. static struct {
  4506. cpumask_var_t idle_cpus_mask;
  4507. atomic_t nr_cpus;
  4508. int has_blocked; /* Idle CPUS has blocked load */
  4509. unsigned long next_balance; /* in jiffy units */
  4510. unsigned long next_blocked; /* Next update of blocked load in jiffies */
  4511. } nohz ____cacheline_aligned;
  4512. #endif /* CONFIG_NO_HZ_COMMON */
  4513. /**
  4514. * __cpu_load_update - update the rq->cpu_load[] statistics
  4515. * @this_rq: The rq to update statistics for
  4516. * @this_load: The current load
  4517. * @pending_updates: The number of missed updates
  4518. *
  4519. * Update rq->cpu_load[] statistics. This function is usually called every
  4520. * scheduler tick (TICK_NSEC).
  4521. *
  4522. * This function computes a decaying average:
  4523. *
  4524. * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
  4525. *
  4526. * Because of NOHZ it might not get called on every tick which gives need for
  4527. * the @pending_updates argument.
  4528. *
  4529. * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
  4530. * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
  4531. * = A * (A * load[i]_n-2 + B) + B
  4532. * = A * (A * (A * load[i]_n-3 + B) + B) + B
  4533. * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
  4534. * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
  4535. * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
  4536. * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
  4537. *
  4538. * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
  4539. * any change in load would have resulted in the tick being turned back on.
  4540. *
  4541. * For regular NOHZ, this reduces to:
  4542. *
  4543. * load[i]_n = (1 - 1/2^i)^n * load[i]_0
  4544. *
  4545. * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
  4546. * term.
  4547. */
  4548. static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
  4549. unsigned long pending_updates)
  4550. {
  4551. unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
  4552. int i, scale;
  4553. this_rq->nr_load_updates++;
  4554. /* Update our load: */
  4555. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  4556. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  4557. unsigned long old_load, new_load;
  4558. /* scale is effectively 1 << i now, and >> i divides by scale */
  4559. old_load = this_rq->cpu_load[i];
  4560. #ifdef CONFIG_NO_HZ_COMMON
  4561. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  4562. if (tickless_load) {
  4563. old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
  4564. /*
  4565. * old_load can never be a negative value because a
  4566. * decayed tickless_load cannot be greater than the
  4567. * original tickless_load.
  4568. */
  4569. old_load += tickless_load;
  4570. }
  4571. #endif
  4572. new_load = this_load;
  4573. /*
  4574. * Round up the averaging division if load is increasing. This
  4575. * prevents us from getting stuck on 9 if the load is 10, for
  4576. * example.
  4577. */
  4578. if (new_load > old_load)
  4579. new_load += scale - 1;
  4580. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  4581. }
  4582. sched_avg_update(this_rq);
  4583. }
  4584. /* Used instead of source_load when we know the type == 0 */
  4585. static unsigned long weighted_cpuload(struct rq *rq)
  4586. {
  4587. return cfs_rq_runnable_load_avg(&rq->cfs);
  4588. }
  4589. #ifdef CONFIG_NO_HZ_COMMON
  4590. /*
  4591. * There is no sane way to deal with nohz on smp when using jiffies because the
  4592. * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
  4593. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  4594. *
  4595. * Therefore we need to avoid the delta approach from the regular tick when
  4596. * possible since that would seriously skew the load calculation. This is why we
  4597. * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
  4598. * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
  4599. * loop exit, nohz_idle_balance, nohz full exit...)
  4600. *
  4601. * This means we might still be one tick off for nohz periods.
  4602. */
  4603. static void cpu_load_update_nohz(struct rq *this_rq,
  4604. unsigned long curr_jiffies,
  4605. unsigned long load)
  4606. {
  4607. unsigned long pending_updates;
  4608. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  4609. if (pending_updates) {
  4610. this_rq->last_load_update_tick = curr_jiffies;
  4611. /*
  4612. * In the regular NOHZ case, we were idle, this means load 0.
  4613. * In the NOHZ_FULL case, we were non-idle, we should consider
  4614. * its weighted load.
  4615. */
  4616. cpu_load_update(this_rq, load, pending_updates);
  4617. }
  4618. }
  4619. /*
  4620. * Called from nohz_idle_balance() to update the load ratings before doing the
  4621. * idle balance.
  4622. */
  4623. static void cpu_load_update_idle(struct rq *this_rq)
  4624. {
  4625. /*
  4626. * bail if there's load or we're actually up-to-date.
  4627. */
  4628. if (weighted_cpuload(this_rq))
  4629. return;
  4630. cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
  4631. }
  4632. /*
  4633. * Record CPU load on nohz entry so we know the tickless load to account
  4634. * on nohz exit. cpu_load[0] happens then to be updated more frequently
  4635. * than other cpu_load[idx] but it should be fine as cpu_load readers
  4636. * shouldn't rely into synchronized cpu_load[*] updates.
  4637. */
  4638. void cpu_load_update_nohz_start(void)
  4639. {
  4640. struct rq *this_rq = this_rq();
  4641. /*
  4642. * This is all lockless but should be fine. If weighted_cpuload changes
  4643. * concurrently we'll exit nohz. And cpu_load write can race with
  4644. * cpu_load_update_idle() but both updater would be writing the same.
  4645. */
  4646. this_rq->cpu_load[0] = weighted_cpuload(this_rq);
  4647. }
  4648. /*
  4649. * Account the tickless load in the end of a nohz frame.
  4650. */
  4651. void cpu_load_update_nohz_stop(void)
  4652. {
  4653. unsigned long curr_jiffies = READ_ONCE(jiffies);
  4654. struct rq *this_rq = this_rq();
  4655. unsigned long load;
  4656. struct rq_flags rf;
  4657. if (curr_jiffies == this_rq->last_load_update_tick)
  4658. return;
  4659. load = weighted_cpuload(this_rq);
  4660. rq_lock(this_rq, &rf);
  4661. update_rq_clock(this_rq);
  4662. cpu_load_update_nohz(this_rq, curr_jiffies, load);
  4663. rq_unlock(this_rq, &rf);
  4664. }
  4665. #else /* !CONFIG_NO_HZ_COMMON */
  4666. static inline void cpu_load_update_nohz(struct rq *this_rq,
  4667. unsigned long curr_jiffies,
  4668. unsigned long load) { }
  4669. #endif /* CONFIG_NO_HZ_COMMON */
  4670. static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
  4671. {
  4672. #ifdef CONFIG_NO_HZ_COMMON
  4673. /* See the mess around cpu_load_update_nohz(). */
  4674. this_rq->last_load_update_tick = READ_ONCE(jiffies);
  4675. #endif
  4676. cpu_load_update(this_rq, load, 1);
  4677. }
  4678. /*
  4679. * Called from scheduler_tick()
  4680. */
  4681. void cpu_load_update_active(struct rq *this_rq)
  4682. {
  4683. unsigned long load = weighted_cpuload(this_rq);
  4684. if (tick_nohz_tick_stopped())
  4685. cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
  4686. else
  4687. cpu_load_update_periodic(this_rq, load);
  4688. }
  4689. /*
  4690. * Return a low guess at the load of a migration-source CPU weighted
  4691. * according to the scheduling class and "nice" value.
  4692. *
  4693. * We want to under-estimate the load of migration sources, to
  4694. * balance conservatively.
  4695. */
  4696. static unsigned long source_load(int cpu, int type)
  4697. {
  4698. struct rq *rq = cpu_rq(cpu);
  4699. unsigned long total = weighted_cpuload(rq);
  4700. if (type == 0 || !sched_feat(LB_BIAS))
  4701. return total;
  4702. return min(rq->cpu_load[type-1], total);
  4703. }
  4704. /*
  4705. * Return a high guess at the load of a migration-target CPU weighted
  4706. * according to the scheduling class and "nice" value.
  4707. */
  4708. static unsigned long target_load(int cpu, int type)
  4709. {
  4710. struct rq *rq = cpu_rq(cpu);
  4711. unsigned long total = weighted_cpuload(rq);
  4712. if (type == 0 || !sched_feat(LB_BIAS))
  4713. return total;
  4714. return max(rq->cpu_load[type-1], total);
  4715. }
  4716. static unsigned long capacity_of(int cpu)
  4717. {
  4718. return cpu_rq(cpu)->cpu_capacity;
  4719. }
  4720. static unsigned long capacity_orig_of(int cpu)
  4721. {
  4722. return cpu_rq(cpu)->cpu_capacity_orig;
  4723. }
  4724. static unsigned long cpu_avg_load_per_task(int cpu)
  4725. {
  4726. struct rq *rq = cpu_rq(cpu);
  4727. unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
  4728. unsigned long load_avg = weighted_cpuload(rq);
  4729. if (nr_running)
  4730. return load_avg / nr_running;
  4731. return 0;
  4732. }
  4733. static void record_wakee(struct task_struct *p)
  4734. {
  4735. /*
  4736. * Only decay a single time; tasks that have less then 1 wakeup per
  4737. * jiffy will not have built up many flips.
  4738. */
  4739. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  4740. current->wakee_flips >>= 1;
  4741. current->wakee_flip_decay_ts = jiffies;
  4742. }
  4743. if (current->last_wakee != p) {
  4744. current->last_wakee = p;
  4745. current->wakee_flips++;
  4746. }
  4747. }
  4748. /*
  4749. * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  4750. *
  4751. * A waker of many should wake a different task than the one last awakened
  4752. * at a frequency roughly N times higher than one of its wakees.
  4753. *
  4754. * In order to determine whether we should let the load spread vs consolidating
  4755. * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
  4756. * partner, and a factor of lls_size higher frequency in the other.
  4757. *
  4758. * With both conditions met, we can be relatively sure that the relationship is
  4759. * non-monogamous, with partner count exceeding socket size.
  4760. *
  4761. * Waker/wakee being client/server, worker/dispatcher, interrupt source or
  4762. * whatever is irrelevant, spread criteria is apparent partner count exceeds
  4763. * socket size.
  4764. */
  4765. static int wake_wide(struct task_struct *p)
  4766. {
  4767. unsigned int master = current->wakee_flips;
  4768. unsigned int slave = p->wakee_flips;
  4769. int factor = this_cpu_read(sd_llc_size);
  4770. if (master < slave)
  4771. swap(master, slave);
  4772. if (slave < factor || master < slave * factor)
  4773. return 0;
  4774. return 1;
  4775. }
  4776. /*
  4777. * The purpose of wake_affine() is to quickly determine on which CPU we can run
  4778. * soonest. For the purpose of speed we only consider the waking and previous
  4779. * CPU.
  4780. *
  4781. * wake_affine_idle() - only considers 'now', it check if the waking CPU is
  4782. * cache-affine and is (or will be) idle.
  4783. *
  4784. * wake_affine_weight() - considers the weight to reflect the average
  4785. * scheduling latency of the CPUs. This seems to work
  4786. * for the overloaded case.
  4787. */
  4788. static int
  4789. wake_affine_idle(int this_cpu, int prev_cpu, int sync)
  4790. {
  4791. /*
  4792. * If this_cpu is idle, it implies the wakeup is from interrupt
  4793. * context. Only allow the move if cache is shared. Otherwise an
  4794. * interrupt intensive workload could force all tasks onto one
  4795. * node depending on the IO topology or IRQ affinity settings.
  4796. *
  4797. * If the prev_cpu is idle and cache affine then avoid a migration.
  4798. * There is no guarantee that the cache hot data from an interrupt
  4799. * is more important than cache hot data on the prev_cpu and from
  4800. * a cpufreq perspective, it's better to have higher utilisation
  4801. * on one CPU.
  4802. */
  4803. if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
  4804. return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
  4805. if (sync && cpu_rq(this_cpu)->nr_running == 1)
  4806. return this_cpu;
  4807. return nr_cpumask_bits;
  4808. }
  4809. static int
  4810. wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
  4811. int this_cpu, int prev_cpu, int sync)
  4812. {
  4813. s64 this_eff_load, prev_eff_load;
  4814. unsigned long task_load;
  4815. this_eff_load = target_load(this_cpu, sd->wake_idx);
  4816. if (sync) {
  4817. unsigned long current_load = task_h_load(current);
  4818. if (current_load > this_eff_load)
  4819. return this_cpu;
  4820. this_eff_load -= current_load;
  4821. }
  4822. task_load = task_h_load(p);
  4823. this_eff_load += task_load;
  4824. if (sched_feat(WA_BIAS))
  4825. this_eff_load *= 100;
  4826. this_eff_load *= capacity_of(prev_cpu);
  4827. prev_eff_load = source_load(prev_cpu, sd->wake_idx);
  4828. prev_eff_load -= task_load;
  4829. if (sched_feat(WA_BIAS))
  4830. prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
  4831. prev_eff_load *= capacity_of(this_cpu);
  4832. /*
  4833. * If sync, adjust the weight of prev_eff_load such that if
  4834. * prev_eff == this_eff that select_idle_sibling() will consider
  4835. * stacking the wakee on top of the waker if no other CPU is
  4836. * idle.
  4837. */
  4838. if (sync)
  4839. prev_eff_load += 1;
  4840. return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
  4841. }
  4842. #ifdef CONFIG_NUMA_BALANCING
  4843. static void
  4844. update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
  4845. {
  4846. unsigned long interval;
  4847. if (!static_branch_likely(&sched_numa_balancing))
  4848. return;
  4849. /* If balancing has no preference then continue gathering data */
  4850. if (p->numa_preferred_nid == -1)
  4851. return;
  4852. /*
  4853. * If the wakeup is not affecting locality then it is neutral from
  4854. * the perspective of NUMA balacing so continue gathering data.
  4855. */
  4856. if (cpu_to_node(prev_cpu) == cpu_to_node(target))
  4857. return;
  4858. /*
  4859. * Temporarily prevent NUMA balancing trying to place waker/wakee after
  4860. * wakee has been moved by wake_affine. This will potentially allow
  4861. * related tasks to converge and update their data placement. The
  4862. * 4 * numa_scan_period is to allow the two-pass filter to migrate
  4863. * hot data to the wakers node.
  4864. */
  4865. interval = max(sysctl_numa_balancing_scan_delay,
  4866. p->numa_scan_period << 2);
  4867. p->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);
  4868. interval = max(sysctl_numa_balancing_scan_delay,
  4869. current->numa_scan_period << 2);
  4870. current->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);
  4871. }
  4872. #else
  4873. static void
  4874. update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
  4875. {
  4876. }
  4877. #endif
  4878. static int wake_affine(struct sched_domain *sd, struct task_struct *p,
  4879. int this_cpu, int prev_cpu, int sync)
  4880. {
  4881. int target = nr_cpumask_bits;
  4882. if (sched_feat(WA_IDLE))
  4883. target = wake_affine_idle(this_cpu, prev_cpu, sync);
  4884. if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
  4885. target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
  4886. schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
  4887. if (target == nr_cpumask_bits)
  4888. return prev_cpu;
  4889. update_wa_numa_placement(p, prev_cpu, target);
  4890. schedstat_inc(sd->ttwu_move_affine);
  4891. schedstat_inc(p->se.statistics.nr_wakeups_affine);
  4892. return target;
  4893. }
  4894. static inline unsigned long task_util(struct task_struct *p);
  4895. static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
  4896. static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
  4897. {
  4898. return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
  4899. }
  4900. /*
  4901. * find_idlest_group finds and returns the least busy CPU group within the
  4902. * domain.
  4903. *
  4904. * Assumes p is allowed on at least one CPU in sd.
  4905. */
  4906. static struct sched_group *
  4907. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  4908. int this_cpu, int sd_flag)
  4909. {
  4910. struct sched_group *idlest = NULL, *group = sd->groups;
  4911. struct sched_group *most_spare_sg = NULL;
  4912. unsigned long min_runnable_load = ULONG_MAX;
  4913. unsigned long this_runnable_load = ULONG_MAX;
  4914. unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
  4915. unsigned long most_spare = 0, this_spare = 0;
  4916. int load_idx = sd->forkexec_idx;
  4917. int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
  4918. unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
  4919. (sd->imbalance_pct-100) / 100;
  4920. if (sd_flag & SD_BALANCE_WAKE)
  4921. load_idx = sd->wake_idx;
  4922. do {
  4923. unsigned long load, avg_load, runnable_load;
  4924. unsigned long spare_cap, max_spare_cap;
  4925. int local_group;
  4926. int i;
  4927. /* Skip over this group if it has no CPUs allowed */
  4928. if (!cpumask_intersects(sched_group_span(group),
  4929. &p->cpus_allowed))
  4930. continue;
  4931. local_group = cpumask_test_cpu(this_cpu,
  4932. sched_group_span(group));
  4933. /*
  4934. * Tally up the load of all CPUs in the group and find
  4935. * the group containing the CPU with most spare capacity.
  4936. */
  4937. avg_load = 0;
  4938. runnable_load = 0;
  4939. max_spare_cap = 0;
  4940. for_each_cpu(i, sched_group_span(group)) {
  4941. /* Bias balancing toward CPUs of our domain */
  4942. if (local_group)
  4943. load = source_load(i, load_idx);
  4944. else
  4945. load = target_load(i, load_idx);
  4946. runnable_load += load;
  4947. avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
  4948. spare_cap = capacity_spare_wake(i, p);
  4949. if (spare_cap > max_spare_cap)
  4950. max_spare_cap = spare_cap;
  4951. }
  4952. /* Adjust by relative CPU capacity of the group */
  4953. avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
  4954. group->sgc->capacity;
  4955. runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
  4956. group->sgc->capacity;
  4957. if (local_group) {
  4958. this_runnable_load = runnable_load;
  4959. this_avg_load = avg_load;
  4960. this_spare = max_spare_cap;
  4961. } else {
  4962. if (min_runnable_load > (runnable_load + imbalance)) {
  4963. /*
  4964. * The runnable load is significantly smaller
  4965. * so we can pick this new CPU:
  4966. */
  4967. min_runnable_load = runnable_load;
  4968. min_avg_load = avg_load;
  4969. idlest = group;
  4970. } else if ((runnable_load < (min_runnable_load + imbalance)) &&
  4971. (100*min_avg_load > imbalance_scale*avg_load)) {
  4972. /*
  4973. * The runnable loads are close so take the
  4974. * blocked load into account through avg_load:
  4975. */
  4976. min_avg_load = avg_load;
  4977. idlest = group;
  4978. }
  4979. if (most_spare < max_spare_cap) {
  4980. most_spare = max_spare_cap;
  4981. most_spare_sg = group;
  4982. }
  4983. }
  4984. } while (group = group->next, group != sd->groups);
  4985. /*
  4986. * The cross-over point between using spare capacity or least load
  4987. * is too conservative for high utilization tasks on partially
  4988. * utilized systems if we require spare_capacity > task_util(p),
  4989. * so we allow for some task stuffing by using
  4990. * spare_capacity > task_util(p)/2.
  4991. *
  4992. * Spare capacity can't be used for fork because the utilization has
  4993. * not been set yet, we must first select a rq to compute the initial
  4994. * utilization.
  4995. */
  4996. if (sd_flag & SD_BALANCE_FORK)
  4997. goto skip_spare;
  4998. if (this_spare > task_util(p) / 2 &&
  4999. imbalance_scale*this_spare > 100*most_spare)
  5000. return NULL;
  5001. if (most_spare > task_util(p) / 2)
  5002. return most_spare_sg;
  5003. skip_spare:
  5004. if (!idlest)
  5005. return NULL;
  5006. /*
  5007. * When comparing groups across NUMA domains, it's possible for the
  5008. * local domain to be very lightly loaded relative to the remote
  5009. * domains but "imbalance" skews the comparison making remote CPUs
  5010. * look much more favourable. When considering cross-domain, add
  5011. * imbalance to the runnable load on the remote node and consider
  5012. * staying local.
  5013. */
  5014. if ((sd->flags & SD_NUMA) &&
  5015. min_runnable_load + imbalance >= this_runnable_load)
  5016. return NULL;
  5017. if (min_runnable_load > (this_runnable_load + imbalance))
  5018. return NULL;
  5019. if ((this_runnable_load < (min_runnable_load + imbalance)) &&
  5020. (100*this_avg_load < imbalance_scale*min_avg_load))
  5021. return NULL;
  5022. return idlest;
  5023. }
  5024. /*
  5025. * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
  5026. */
  5027. static int
  5028. find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  5029. {
  5030. unsigned long load, min_load = ULONG_MAX;
  5031. unsigned int min_exit_latency = UINT_MAX;
  5032. u64 latest_idle_timestamp = 0;
  5033. int least_loaded_cpu = this_cpu;
  5034. int shallowest_idle_cpu = -1;
  5035. int i;
  5036. /* Check if we have any choice: */
  5037. if (group->group_weight == 1)
  5038. return cpumask_first(sched_group_span(group));
  5039. /* Traverse only the allowed CPUs */
  5040. for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
  5041. if (idle_cpu(i)) {
  5042. struct rq *rq = cpu_rq(i);
  5043. struct cpuidle_state *idle = idle_get_state(rq);
  5044. if (idle && idle->exit_latency < min_exit_latency) {
  5045. /*
  5046. * We give priority to a CPU whose idle state
  5047. * has the smallest exit latency irrespective
  5048. * of any idle timestamp.
  5049. */
  5050. min_exit_latency = idle->exit_latency;
  5051. latest_idle_timestamp = rq->idle_stamp;
  5052. shallowest_idle_cpu = i;
  5053. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  5054. rq->idle_stamp > latest_idle_timestamp) {
  5055. /*
  5056. * If equal or no active idle state, then
  5057. * the most recently idled CPU might have
  5058. * a warmer cache.
  5059. */
  5060. latest_idle_timestamp = rq->idle_stamp;
  5061. shallowest_idle_cpu = i;
  5062. }
  5063. } else if (shallowest_idle_cpu == -1) {
  5064. load = weighted_cpuload(cpu_rq(i));
  5065. if (load < min_load) {
  5066. min_load = load;
  5067. least_loaded_cpu = i;
  5068. }
  5069. }
  5070. }
  5071. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  5072. }
  5073. static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
  5074. int cpu, int prev_cpu, int sd_flag)
  5075. {
  5076. int new_cpu = cpu;
  5077. if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
  5078. return prev_cpu;
  5079. while (sd) {
  5080. struct sched_group *group;
  5081. struct sched_domain *tmp;
  5082. int weight;
  5083. if (!(sd->flags & sd_flag)) {
  5084. sd = sd->child;
  5085. continue;
  5086. }
  5087. group = find_idlest_group(sd, p, cpu, sd_flag);
  5088. if (!group) {
  5089. sd = sd->child;
  5090. continue;
  5091. }
  5092. new_cpu = find_idlest_group_cpu(group, p, cpu);
  5093. if (new_cpu == cpu) {
  5094. /* Now try balancing at a lower domain level of 'cpu': */
  5095. sd = sd->child;
  5096. continue;
  5097. }
  5098. /* Now try balancing at a lower domain level of 'new_cpu': */
  5099. cpu = new_cpu;
  5100. weight = sd->span_weight;
  5101. sd = NULL;
  5102. for_each_domain(cpu, tmp) {
  5103. if (weight <= tmp->span_weight)
  5104. break;
  5105. if (tmp->flags & sd_flag)
  5106. sd = tmp;
  5107. }
  5108. }
  5109. return new_cpu;
  5110. }
  5111. #ifdef CONFIG_SCHED_SMT
  5112. static inline void set_idle_cores(int cpu, int val)
  5113. {
  5114. struct sched_domain_shared *sds;
  5115. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  5116. if (sds)
  5117. WRITE_ONCE(sds->has_idle_cores, val);
  5118. }
  5119. static inline bool test_idle_cores(int cpu, bool def)
  5120. {
  5121. struct sched_domain_shared *sds;
  5122. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  5123. if (sds)
  5124. return READ_ONCE(sds->has_idle_cores);
  5125. return def;
  5126. }
  5127. /*
  5128. * Scans the local SMT mask to see if the entire core is idle, and records this
  5129. * information in sd_llc_shared->has_idle_cores.
  5130. *
  5131. * Since SMT siblings share all cache levels, inspecting this limited remote
  5132. * state should be fairly cheap.
  5133. */
  5134. void __update_idle_core(struct rq *rq)
  5135. {
  5136. int core = cpu_of(rq);
  5137. int cpu;
  5138. rcu_read_lock();
  5139. if (test_idle_cores(core, true))
  5140. goto unlock;
  5141. for_each_cpu(cpu, cpu_smt_mask(core)) {
  5142. if (cpu == core)
  5143. continue;
  5144. if (!idle_cpu(cpu))
  5145. goto unlock;
  5146. }
  5147. set_idle_cores(core, 1);
  5148. unlock:
  5149. rcu_read_unlock();
  5150. }
  5151. /*
  5152. * Scan the entire LLC domain for idle cores; this dynamically switches off if
  5153. * there are no idle cores left in the system; tracked through
  5154. * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
  5155. */
  5156. static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
  5157. {
  5158. struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
  5159. int core, cpu;
  5160. if (!static_branch_likely(&sched_smt_present))
  5161. return -1;
  5162. if (!test_idle_cores(target, false))
  5163. return -1;
  5164. cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
  5165. for_each_cpu_wrap(core, cpus, target) {
  5166. bool idle = true;
  5167. for_each_cpu(cpu, cpu_smt_mask(core)) {
  5168. cpumask_clear_cpu(cpu, cpus);
  5169. if (!idle_cpu(cpu))
  5170. idle = false;
  5171. }
  5172. if (idle)
  5173. return core;
  5174. }
  5175. /*
  5176. * Failed to find an idle core; stop looking for one.
  5177. */
  5178. set_idle_cores(target, 0);
  5179. return -1;
  5180. }
  5181. /*
  5182. * Scan the local SMT mask for idle CPUs.
  5183. */
  5184. static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
  5185. {
  5186. int cpu;
  5187. if (!static_branch_likely(&sched_smt_present))
  5188. return -1;
  5189. for_each_cpu(cpu, cpu_smt_mask(target)) {
  5190. if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
  5191. continue;
  5192. if (idle_cpu(cpu))
  5193. return cpu;
  5194. }
  5195. return -1;
  5196. }
  5197. #else /* CONFIG_SCHED_SMT */
  5198. static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
  5199. {
  5200. return -1;
  5201. }
  5202. static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
  5203. {
  5204. return -1;
  5205. }
  5206. #endif /* CONFIG_SCHED_SMT */
  5207. /*
  5208. * Scan the LLC domain for idle CPUs; this is dynamically regulated by
  5209. * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
  5210. * average idle time for this rq (as found in rq->avg_idle).
  5211. */
  5212. static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
  5213. {
  5214. struct sched_domain *this_sd;
  5215. u64 avg_cost, avg_idle;
  5216. u64 time, cost;
  5217. s64 delta;
  5218. int cpu, nr = INT_MAX;
  5219. this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
  5220. if (!this_sd)
  5221. return -1;
  5222. /*
  5223. * Due to large variance we need a large fuzz factor; hackbench in
  5224. * particularly is sensitive here.
  5225. */
  5226. avg_idle = this_rq()->avg_idle / 512;
  5227. avg_cost = this_sd->avg_scan_cost + 1;
  5228. if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
  5229. return -1;
  5230. if (sched_feat(SIS_PROP)) {
  5231. u64 span_avg = sd->span_weight * avg_idle;
  5232. if (span_avg > 4*avg_cost)
  5233. nr = div_u64(span_avg, avg_cost);
  5234. else
  5235. nr = 4;
  5236. }
  5237. time = local_clock();
  5238. for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
  5239. if (!--nr)
  5240. return -1;
  5241. if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
  5242. continue;
  5243. if (idle_cpu(cpu))
  5244. break;
  5245. }
  5246. time = local_clock() - time;
  5247. cost = this_sd->avg_scan_cost;
  5248. delta = (s64)(time - cost) / 8;
  5249. this_sd->avg_scan_cost += delta;
  5250. return cpu;
  5251. }
  5252. /*
  5253. * Try and locate an idle core/thread in the LLC cache domain.
  5254. */
  5255. static int select_idle_sibling(struct task_struct *p, int prev, int target)
  5256. {
  5257. struct sched_domain *sd;
  5258. int i, recent_used_cpu;
  5259. if (idle_cpu(target))
  5260. return target;
  5261. /*
  5262. * If the previous CPU is cache affine and idle, don't be stupid:
  5263. */
  5264. if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
  5265. return prev;
  5266. /* Check a recently used CPU as a potential idle candidate: */
  5267. recent_used_cpu = p->recent_used_cpu;
  5268. if (recent_used_cpu != prev &&
  5269. recent_used_cpu != target &&
  5270. cpus_share_cache(recent_used_cpu, target) &&
  5271. idle_cpu(recent_used_cpu) &&
  5272. cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
  5273. /*
  5274. * Replace recent_used_cpu with prev as it is a potential
  5275. * candidate for the next wake:
  5276. */
  5277. p->recent_used_cpu = prev;
  5278. return recent_used_cpu;
  5279. }
  5280. sd = rcu_dereference(per_cpu(sd_llc, target));
  5281. if (!sd)
  5282. return target;
  5283. i = select_idle_core(p, sd, target);
  5284. if ((unsigned)i < nr_cpumask_bits)
  5285. return i;
  5286. i = select_idle_cpu(p, sd, target);
  5287. if ((unsigned)i < nr_cpumask_bits)
  5288. return i;
  5289. i = select_idle_smt(p, sd, target);
  5290. if ((unsigned)i < nr_cpumask_bits)
  5291. return i;
  5292. return target;
  5293. }
  5294. /*
  5295. * cpu_util returns the amount of capacity of a CPU that is used by CFS
  5296. * tasks. The unit of the return value must be the one of capacity so we can
  5297. * compare the utilization with the capacity of the CPU that is available for
  5298. * CFS task (ie cpu_capacity).
  5299. *
  5300. * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
  5301. * recent utilization of currently non-runnable tasks on a CPU. It represents
  5302. * the amount of utilization of a CPU in the range [0..capacity_orig] where
  5303. * capacity_orig is the cpu_capacity available at the highest frequency
  5304. * (arch_scale_freq_capacity()).
  5305. * The utilization of a CPU converges towards a sum equal to or less than the
  5306. * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
  5307. * the running time on this CPU scaled by capacity_curr.
  5308. *
  5309. * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
  5310. * higher than capacity_orig because of unfortunate rounding in
  5311. * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
  5312. * the average stabilizes with the new running time. We need to check that the
  5313. * utilization stays within the range of [0..capacity_orig] and cap it if
  5314. * necessary. Without utilization capping, a group could be seen as overloaded
  5315. * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
  5316. * available capacity. We allow utilization to overshoot capacity_curr (but not
  5317. * capacity_orig) as it useful for predicting the capacity required after task
  5318. * migrations (scheduler-driven DVFS).
  5319. */
  5320. static unsigned long cpu_util(int cpu)
  5321. {
  5322. unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
  5323. unsigned long capacity = capacity_orig_of(cpu);
  5324. return (util >= capacity) ? capacity : util;
  5325. }
  5326. static inline unsigned long task_util(struct task_struct *p)
  5327. {
  5328. return p->se.avg.util_avg;
  5329. }
  5330. /*
  5331. * cpu_util_wake: Compute CPU utilization with any contributions from
  5332. * the waking task p removed.
  5333. */
  5334. static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
  5335. {
  5336. unsigned long util, capacity;
  5337. /* Task has no contribution or is new */
  5338. if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
  5339. return cpu_util(cpu);
  5340. capacity = capacity_orig_of(cpu);
  5341. util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
  5342. return (util >= capacity) ? capacity : util;
  5343. }
  5344. /*
  5345. * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
  5346. * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
  5347. *
  5348. * In that case WAKE_AFFINE doesn't make sense and we'll let
  5349. * BALANCE_WAKE sort things out.
  5350. */
  5351. static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
  5352. {
  5353. long min_cap, max_cap;
  5354. min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
  5355. max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
  5356. /* Minimum capacity is close to max, no need to abort wake_affine */
  5357. if (max_cap - min_cap < max_cap >> 3)
  5358. return 0;
  5359. /* Bring task utilization in sync with prev_cpu */
  5360. sync_entity_load_avg(&p->se);
  5361. return min_cap * 1024 < task_util(p) * capacity_margin;
  5362. }
  5363. /*
  5364. * select_task_rq_fair: Select target runqueue for the waking task in domains
  5365. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  5366. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  5367. *
  5368. * Balances load by selecting the idlest CPU in the idlest group, or under
  5369. * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
  5370. *
  5371. * Returns the target CPU number.
  5372. *
  5373. * preempt must be disabled.
  5374. */
  5375. static int
  5376. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  5377. {
  5378. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  5379. int cpu = smp_processor_id();
  5380. int new_cpu = prev_cpu;
  5381. int want_affine = 0;
  5382. int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
  5383. if (sd_flag & SD_BALANCE_WAKE) {
  5384. record_wakee(p);
  5385. want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
  5386. && cpumask_test_cpu(cpu, &p->cpus_allowed);
  5387. }
  5388. rcu_read_lock();
  5389. for_each_domain(cpu, tmp) {
  5390. if (!(tmp->flags & SD_LOAD_BALANCE))
  5391. break;
  5392. /*
  5393. * If both 'cpu' and 'prev_cpu' are part of this domain,
  5394. * cpu is a valid SD_WAKE_AFFINE target.
  5395. */
  5396. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  5397. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  5398. affine_sd = tmp;
  5399. break;
  5400. }
  5401. if (tmp->flags & sd_flag)
  5402. sd = tmp;
  5403. else if (!want_affine)
  5404. break;
  5405. }
  5406. if (affine_sd) {
  5407. sd = NULL; /* Prefer wake_affine over balance flags */
  5408. if (cpu == prev_cpu)
  5409. goto pick_cpu;
  5410. new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync);
  5411. }
  5412. if (sd && !(sd_flag & SD_BALANCE_FORK)) {
  5413. /*
  5414. * We're going to need the task's util for capacity_spare_wake
  5415. * in find_idlest_group. Sync it up to prev_cpu's
  5416. * last_update_time.
  5417. */
  5418. sync_entity_load_avg(&p->se);
  5419. }
  5420. if (!sd) {
  5421. pick_cpu:
  5422. if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
  5423. new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
  5424. if (want_affine)
  5425. current->recent_used_cpu = cpu;
  5426. }
  5427. } else {
  5428. new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
  5429. }
  5430. rcu_read_unlock();
  5431. return new_cpu;
  5432. }
  5433. static void detach_entity_cfs_rq(struct sched_entity *se);
  5434. /*
  5435. * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
  5436. * cfs_rq_of(p) references at time of call are still valid and identify the
  5437. * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
  5438. */
  5439. static void migrate_task_rq_fair(struct task_struct *p)
  5440. {
  5441. /*
  5442. * As blocked tasks retain absolute vruntime the migration needs to
  5443. * deal with this by subtracting the old and adding the new
  5444. * min_vruntime -- the latter is done by enqueue_entity() when placing
  5445. * the task on the new runqueue.
  5446. */
  5447. if (p->state == TASK_WAKING) {
  5448. struct sched_entity *se = &p->se;
  5449. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5450. u64 min_vruntime;
  5451. #ifndef CONFIG_64BIT
  5452. u64 min_vruntime_copy;
  5453. do {
  5454. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  5455. smp_rmb();
  5456. min_vruntime = cfs_rq->min_vruntime;
  5457. } while (min_vruntime != min_vruntime_copy);
  5458. #else
  5459. min_vruntime = cfs_rq->min_vruntime;
  5460. #endif
  5461. se->vruntime -= min_vruntime;
  5462. }
  5463. if (p->on_rq == TASK_ON_RQ_MIGRATING) {
  5464. /*
  5465. * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
  5466. * rq->lock and can modify state directly.
  5467. */
  5468. lockdep_assert_held(&task_rq(p)->lock);
  5469. detach_entity_cfs_rq(&p->se);
  5470. } else {
  5471. /*
  5472. * We are supposed to update the task to "current" time, then
  5473. * its up to date and ready to go to new CPU/cfs_rq. But we
  5474. * have difficulty in getting what current time is, so simply
  5475. * throw away the out-of-date time. This will result in the
  5476. * wakee task is less decayed, but giving the wakee more load
  5477. * sounds not bad.
  5478. */
  5479. remove_entity_load_avg(&p->se);
  5480. }
  5481. /* Tell new CPU we are migrated */
  5482. p->se.avg.last_update_time = 0;
  5483. /* We have migrated, no longer consider this task hot */
  5484. p->se.exec_start = 0;
  5485. }
  5486. static void task_dead_fair(struct task_struct *p)
  5487. {
  5488. remove_entity_load_avg(&p->se);
  5489. }
  5490. #endif /* CONFIG_SMP */
  5491. static unsigned long wakeup_gran(struct sched_entity *se)
  5492. {
  5493. unsigned long gran = sysctl_sched_wakeup_granularity;
  5494. /*
  5495. * Since its curr running now, convert the gran from real-time
  5496. * to virtual-time in his units.
  5497. *
  5498. * By using 'se' instead of 'curr' we penalize light tasks, so
  5499. * they get preempted easier. That is, if 'se' < 'curr' then
  5500. * the resulting gran will be larger, therefore penalizing the
  5501. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  5502. * be smaller, again penalizing the lighter task.
  5503. *
  5504. * This is especially important for buddies when the leftmost
  5505. * task is higher priority than the buddy.
  5506. */
  5507. return calc_delta_fair(gran, se);
  5508. }
  5509. /*
  5510. * Should 'se' preempt 'curr'.
  5511. *
  5512. * |s1
  5513. * |s2
  5514. * |s3
  5515. * g
  5516. * |<--->|c
  5517. *
  5518. * w(c, s1) = -1
  5519. * w(c, s2) = 0
  5520. * w(c, s3) = 1
  5521. *
  5522. */
  5523. static int
  5524. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  5525. {
  5526. s64 gran, vdiff = curr->vruntime - se->vruntime;
  5527. if (vdiff <= 0)
  5528. return -1;
  5529. gran = wakeup_gran(se);
  5530. if (vdiff > gran)
  5531. return 1;
  5532. return 0;
  5533. }
  5534. static void set_last_buddy(struct sched_entity *se)
  5535. {
  5536. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  5537. return;
  5538. for_each_sched_entity(se) {
  5539. if (SCHED_WARN_ON(!se->on_rq))
  5540. return;
  5541. cfs_rq_of(se)->last = se;
  5542. }
  5543. }
  5544. static void set_next_buddy(struct sched_entity *se)
  5545. {
  5546. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  5547. return;
  5548. for_each_sched_entity(se) {
  5549. if (SCHED_WARN_ON(!se->on_rq))
  5550. return;
  5551. cfs_rq_of(se)->next = se;
  5552. }
  5553. }
  5554. static void set_skip_buddy(struct sched_entity *se)
  5555. {
  5556. for_each_sched_entity(se)
  5557. cfs_rq_of(se)->skip = se;
  5558. }
  5559. /*
  5560. * Preempt the current task with a newly woken task if needed:
  5561. */
  5562. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  5563. {
  5564. struct task_struct *curr = rq->curr;
  5565. struct sched_entity *se = &curr->se, *pse = &p->se;
  5566. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  5567. int scale = cfs_rq->nr_running >= sched_nr_latency;
  5568. int next_buddy_marked = 0;
  5569. if (unlikely(se == pse))
  5570. return;
  5571. /*
  5572. * This is possible from callers such as attach_tasks(), in which we
  5573. * unconditionally check_prempt_curr() after an enqueue (which may have
  5574. * lead to a throttle). This both saves work and prevents false
  5575. * next-buddy nomination below.
  5576. */
  5577. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  5578. return;
  5579. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  5580. set_next_buddy(pse);
  5581. next_buddy_marked = 1;
  5582. }
  5583. /*
  5584. * We can come here with TIF_NEED_RESCHED already set from new task
  5585. * wake up path.
  5586. *
  5587. * Note: this also catches the edge-case of curr being in a throttled
  5588. * group (e.g. via set_curr_task), since update_curr() (in the
  5589. * enqueue of curr) will have resulted in resched being set. This
  5590. * prevents us from potentially nominating it as a false LAST_BUDDY
  5591. * below.
  5592. */
  5593. if (test_tsk_need_resched(curr))
  5594. return;
  5595. /* Idle tasks are by definition preempted by non-idle tasks. */
  5596. if (unlikely(curr->policy == SCHED_IDLE) &&
  5597. likely(p->policy != SCHED_IDLE))
  5598. goto preempt;
  5599. /*
  5600. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  5601. * is driven by the tick):
  5602. */
  5603. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  5604. return;
  5605. find_matching_se(&se, &pse);
  5606. update_curr(cfs_rq_of(se));
  5607. BUG_ON(!pse);
  5608. if (wakeup_preempt_entity(se, pse) == 1) {
  5609. /*
  5610. * Bias pick_next to pick the sched entity that is
  5611. * triggering this preemption.
  5612. */
  5613. if (!next_buddy_marked)
  5614. set_next_buddy(pse);
  5615. goto preempt;
  5616. }
  5617. return;
  5618. preempt:
  5619. resched_curr(rq);
  5620. /*
  5621. * Only set the backward buddy when the current task is still
  5622. * on the rq. This can happen when a wakeup gets interleaved
  5623. * with schedule on the ->pre_schedule() or idle_balance()
  5624. * point, either of which can * drop the rq lock.
  5625. *
  5626. * Also, during early boot the idle thread is in the fair class,
  5627. * for obvious reasons its a bad idea to schedule back to it.
  5628. */
  5629. if (unlikely(!se->on_rq || curr == rq->idle))
  5630. return;
  5631. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  5632. set_last_buddy(se);
  5633. }
  5634. static struct task_struct *
  5635. pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
  5636. {
  5637. struct cfs_rq *cfs_rq = &rq->cfs;
  5638. struct sched_entity *se;
  5639. struct task_struct *p;
  5640. int new_tasks;
  5641. again:
  5642. if (!cfs_rq->nr_running)
  5643. goto idle;
  5644. #ifdef CONFIG_FAIR_GROUP_SCHED
  5645. if (prev->sched_class != &fair_sched_class)
  5646. goto simple;
  5647. /*
  5648. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  5649. * likely that a next task is from the same cgroup as the current.
  5650. *
  5651. * Therefore attempt to avoid putting and setting the entire cgroup
  5652. * hierarchy, only change the part that actually changes.
  5653. */
  5654. do {
  5655. struct sched_entity *curr = cfs_rq->curr;
  5656. /*
  5657. * Since we got here without doing put_prev_entity() we also
  5658. * have to consider cfs_rq->curr. If it is still a runnable
  5659. * entity, update_curr() will update its vruntime, otherwise
  5660. * forget we've ever seen it.
  5661. */
  5662. if (curr) {
  5663. if (curr->on_rq)
  5664. update_curr(cfs_rq);
  5665. else
  5666. curr = NULL;
  5667. /*
  5668. * This call to check_cfs_rq_runtime() will do the
  5669. * throttle and dequeue its entity in the parent(s).
  5670. * Therefore the nr_running test will indeed
  5671. * be correct.
  5672. */
  5673. if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
  5674. cfs_rq = &rq->cfs;
  5675. if (!cfs_rq->nr_running)
  5676. goto idle;
  5677. goto simple;
  5678. }
  5679. }
  5680. se = pick_next_entity(cfs_rq, curr);
  5681. cfs_rq = group_cfs_rq(se);
  5682. } while (cfs_rq);
  5683. p = task_of(se);
  5684. /*
  5685. * Since we haven't yet done put_prev_entity and if the selected task
  5686. * is a different task than we started out with, try and touch the
  5687. * least amount of cfs_rqs.
  5688. */
  5689. if (prev != p) {
  5690. struct sched_entity *pse = &prev->se;
  5691. while (!(cfs_rq = is_same_group(se, pse))) {
  5692. int se_depth = se->depth;
  5693. int pse_depth = pse->depth;
  5694. if (se_depth <= pse_depth) {
  5695. put_prev_entity(cfs_rq_of(pse), pse);
  5696. pse = parent_entity(pse);
  5697. }
  5698. if (se_depth >= pse_depth) {
  5699. set_next_entity(cfs_rq_of(se), se);
  5700. se = parent_entity(se);
  5701. }
  5702. }
  5703. put_prev_entity(cfs_rq, pse);
  5704. set_next_entity(cfs_rq, se);
  5705. }
  5706. goto done;
  5707. simple:
  5708. #endif
  5709. put_prev_task(rq, prev);
  5710. do {
  5711. se = pick_next_entity(cfs_rq, NULL);
  5712. set_next_entity(cfs_rq, se);
  5713. cfs_rq = group_cfs_rq(se);
  5714. } while (cfs_rq);
  5715. p = task_of(se);
  5716. done: __maybe_unused;
  5717. #ifdef CONFIG_SMP
  5718. /*
  5719. * Move the next running task to the front of
  5720. * the list, so our cfs_tasks list becomes MRU
  5721. * one.
  5722. */
  5723. list_move(&p->se.group_node, &rq->cfs_tasks);
  5724. #endif
  5725. if (hrtick_enabled(rq))
  5726. hrtick_start_fair(rq, p);
  5727. return p;
  5728. idle:
  5729. new_tasks = idle_balance(rq, rf);
  5730. /*
  5731. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  5732. * possible for any higher priority task to appear. In that case we
  5733. * must re-start the pick_next_entity() loop.
  5734. */
  5735. if (new_tasks < 0)
  5736. return RETRY_TASK;
  5737. if (new_tasks > 0)
  5738. goto again;
  5739. return NULL;
  5740. }
  5741. /*
  5742. * Account for a descheduled task:
  5743. */
  5744. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  5745. {
  5746. struct sched_entity *se = &prev->se;
  5747. struct cfs_rq *cfs_rq;
  5748. for_each_sched_entity(se) {
  5749. cfs_rq = cfs_rq_of(se);
  5750. put_prev_entity(cfs_rq, se);
  5751. }
  5752. }
  5753. /*
  5754. * sched_yield() is very simple
  5755. *
  5756. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  5757. */
  5758. static void yield_task_fair(struct rq *rq)
  5759. {
  5760. struct task_struct *curr = rq->curr;
  5761. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  5762. struct sched_entity *se = &curr->se;
  5763. /*
  5764. * Are we the only task in the tree?
  5765. */
  5766. if (unlikely(rq->nr_running == 1))
  5767. return;
  5768. clear_buddies(cfs_rq, se);
  5769. if (curr->policy != SCHED_BATCH) {
  5770. update_rq_clock(rq);
  5771. /*
  5772. * Update run-time statistics of the 'current'.
  5773. */
  5774. update_curr(cfs_rq);
  5775. /*
  5776. * Tell update_rq_clock() that we've just updated,
  5777. * so we don't do microscopic update in schedule()
  5778. * and double the fastpath cost.
  5779. */
  5780. rq_clock_skip_update(rq, true);
  5781. }
  5782. set_skip_buddy(se);
  5783. }
  5784. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  5785. {
  5786. struct sched_entity *se = &p->se;
  5787. /* throttled hierarchies are not runnable */
  5788. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  5789. return false;
  5790. /* Tell the scheduler that we'd really like pse to run next. */
  5791. set_next_buddy(se);
  5792. yield_task_fair(rq);
  5793. return true;
  5794. }
  5795. #ifdef CONFIG_SMP
  5796. /**************************************************
  5797. * Fair scheduling class load-balancing methods.
  5798. *
  5799. * BASICS
  5800. *
  5801. * The purpose of load-balancing is to achieve the same basic fairness the
  5802. * per-CPU scheduler provides, namely provide a proportional amount of compute
  5803. * time to each task. This is expressed in the following equation:
  5804. *
  5805. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  5806. *
  5807. * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
  5808. * W_i,0 is defined as:
  5809. *
  5810. * W_i,0 = \Sum_j w_i,j (2)
  5811. *
  5812. * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
  5813. * is derived from the nice value as per sched_prio_to_weight[].
  5814. *
  5815. * The weight average is an exponential decay average of the instantaneous
  5816. * weight:
  5817. *
  5818. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  5819. *
  5820. * C_i is the compute capacity of CPU i, typically it is the
  5821. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  5822. * can also include other factors [XXX].
  5823. *
  5824. * To achieve this balance we define a measure of imbalance which follows
  5825. * directly from (1):
  5826. *
  5827. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  5828. *
  5829. * We them move tasks around to minimize the imbalance. In the continuous
  5830. * function space it is obvious this converges, in the discrete case we get
  5831. * a few fun cases generally called infeasible weight scenarios.
  5832. *
  5833. * [XXX expand on:
  5834. * - infeasible weights;
  5835. * - local vs global optima in the discrete case. ]
  5836. *
  5837. *
  5838. * SCHED DOMAINS
  5839. *
  5840. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  5841. * for all i,j solution, we create a tree of CPUs that follows the hardware
  5842. * topology where each level pairs two lower groups (or better). This results
  5843. * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
  5844. * tree to only the first of the previous level and we decrease the frequency
  5845. * of load-balance at each level inv. proportional to the number of CPUs in
  5846. * the groups.
  5847. *
  5848. * This yields:
  5849. *
  5850. * log_2 n 1 n
  5851. * \Sum { --- * --- * 2^i } = O(n) (5)
  5852. * i = 0 2^i 2^i
  5853. * `- size of each group
  5854. * | | `- number of CPUs doing load-balance
  5855. * | `- freq
  5856. * `- sum over all levels
  5857. *
  5858. * Coupled with a limit on how many tasks we can migrate every balance pass,
  5859. * this makes (5) the runtime complexity of the balancer.
  5860. *
  5861. * An important property here is that each CPU is still (indirectly) connected
  5862. * to every other CPU in at most O(log n) steps:
  5863. *
  5864. * The adjacency matrix of the resulting graph is given by:
  5865. *
  5866. * log_2 n
  5867. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  5868. * k = 0
  5869. *
  5870. * And you'll find that:
  5871. *
  5872. * A^(log_2 n)_i,j != 0 for all i,j (7)
  5873. *
  5874. * Showing there's indeed a path between every CPU in at most O(log n) steps.
  5875. * The task movement gives a factor of O(m), giving a convergence complexity
  5876. * of:
  5877. *
  5878. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  5879. *
  5880. *
  5881. * WORK CONSERVING
  5882. *
  5883. * In order to avoid CPUs going idle while there's still work to do, new idle
  5884. * balancing is more aggressive and has the newly idle CPU iterate up the domain
  5885. * tree itself instead of relying on other CPUs to bring it work.
  5886. *
  5887. * This adds some complexity to both (5) and (8) but it reduces the total idle
  5888. * time.
  5889. *
  5890. * [XXX more?]
  5891. *
  5892. *
  5893. * CGROUPS
  5894. *
  5895. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  5896. *
  5897. * s_k,i
  5898. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  5899. * S_k
  5900. *
  5901. * Where
  5902. *
  5903. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  5904. *
  5905. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
  5906. *
  5907. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  5908. * property.
  5909. *
  5910. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  5911. * rewrite all of this once again.]
  5912. */
  5913. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  5914. enum fbq_type { regular, remote, all };
  5915. #define LBF_ALL_PINNED 0x01
  5916. #define LBF_NEED_BREAK 0x02
  5917. #define LBF_DST_PINNED 0x04
  5918. #define LBF_SOME_PINNED 0x08
  5919. #define LBF_NOHZ_STATS 0x10
  5920. #define LBF_NOHZ_AGAIN 0x20
  5921. struct lb_env {
  5922. struct sched_domain *sd;
  5923. struct rq *src_rq;
  5924. int src_cpu;
  5925. int dst_cpu;
  5926. struct rq *dst_rq;
  5927. struct cpumask *dst_grpmask;
  5928. int new_dst_cpu;
  5929. enum cpu_idle_type idle;
  5930. long imbalance;
  5931. /* The set of CPUs under consideration for load-balancing */
  5932. struct cpumask *cpus;
  5933. unsigned int flags;
  5934. unsigned int loop;
  5935. unsigned int loop_break;
  5936. unsigned int loop_max;
  5937. enum fbq_type fbq_type;
  5938. struct list_head tasks;
  5939. };
  5940. /*
  5941. * Is this task likely cache-hot:
  5942. */
  5943. static int task_hot(struct task_struct *p, struct lb_env *env)
  5944. {
  5945. s64 delta;
  5946. lockdep_assert_held(&env->src_rq->lock);
  5947. if (p->sched_class != &fair_sched_class)
  5948. return 0;
  5949. if (unlikely(p->policy == SCHED_IDLE))
  5950. return 0;
  5951. /*
  5952. * Buddy candidates are cache hot:
  5953. */
  5954. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  5955. (&p->se == cfs_rq_of(&p->se)->next ||
  5956. &p->se == cfs_rq_of(&p->se)->last))
  5957. return 1;
  5958. if (sysctl_sched_migration_cost == -1)
  5959. return 1;
  5960. if (sysctl_sched_migration_cost == 0)
  5961. return 0;
  5962. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  5963. return delta < (s64)sysctl_sched_migration_cost;
  5964. }
  5965. #ifdef CONFIG_NUMA_BALANCING
  5966. /*
  5967. * Returns 1, if task migration degrades locality
  5968. * Returns 0, if task migration improves locality i.e migration preferred.
  5969. * Returns -1, if task migration is not affected by locality.
  5970. */
  5971. static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  5972. {
  5973. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  5974. unsigned long src_faults, dst_faults;
  5975. int src_nid, dst_nid;
  5976. if (!static_branch_likely(&sched_numa_balancing))
  5977. return -1;
  5978. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  5979. return -1;
  5980. src_nid = cpu_to_node(env->src_cpu);
  5981. dst_nid = cpu_to_node(env->dst_cpu);
  5982. if (src_nid == dst_nid)
  5983. return -1;
  5984. /* Migrating away from the preferred node is always bad. */
  5985. if (src_nid == p->numa_preferred_nid) {
  5986. if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
  5987. return 1;
  5988. else
  5989. return -1;
  5990. }
  5991. /* Encourage migration to the preferred node. */
  5992. if (dst_nid == p->numa_preferred_nid)
  5993. return 0;
  5994. /* Leaving a core idle is often worse than degrading locality. */
  5995. if (env->idle != CPU_NOT_IDLE)
  5996. return -1;
  5997. if (numa_group) {
  5998. src_faults = group_faults(p, src_nid);
  5999. dst_faults = group_faults(p, dst_nid);
  6000. } else {
  6001. src_faults = task_faults(p, src_nid);
  6002. dst_faults = task_faults(p, dst_nid);
  6003. }
  6004. return dst_faults < src_faults;
  6005. }
  6006. #else
  6007. static inline int migrate_degrades_locality(struct task_struct *p,
  6008. struct lb_env *env)
  6009. {
  6010. return -1;
  6011. }
  6012. #endif
  6013. /*
  6014. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  6015. */
  6016. static
  6017. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  6018. {
  6019. int tsk_cache_hot;
  6020. lockdep_assert_held(&env->src_rq->lock);
  6021. /*
  6022. * We do not migrate tasks that are:
  6023. * 1) throttled_lb_pair, or
  6024. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  6025. * 3) running (obviously), or
  6026. * 4) are cache-hot on their current CPU.
  6027. */
  6028. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  6029. return 0;
  6030. if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
  6031. int cpu;
  6032. schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
  6033. env->flags |= LBF_SOME_PINNED;
  6034. /*
  6035. * Remember if this task can be migrated to any other CPU in
  6036. * our sched_group. We may want to revisit it if we couldn't
  6037. * meet load balance goals by pulling other tasks on src_cpu.
  6038. *
  6039. * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
  6040. * already computed one in current iteration.
  6041. */
  6042. if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
  6043. return 0;
  6044. /* Prevent to re-select dst_cpu via env's CPUs: */
  6045. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  6046. if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
  6047. env->flags |= LBF_DST_PINNED;
  6048. env->new_dst_cpu = cpu;
  6049. break;
  6050. }
  6051. }
  6052. return 0;
  6053. }
  6054. /* Record that we found atleast one task that could run on dst_cpu */
  6055. env->flags &= ~LBF_ALL_PINNED;
  6056. if (task_running(env->src_rq, p)) {
  6057. schedstat_inc(p->se.statistics.nr_failed_migrations_running);
  6058. return 0;
  6059. }
  6060. /*
  6061. * Aggressive migration if:
  6062. * 1) destination numa is preferred
  6063. * 2) task is cache cold, or
  6064. * 3) too many balance attempts have failed.
  6065. */
  6066. tsk_cache_hot = migrate_degrades_locality(p, env);
  6067. if (tsk_cache_hot == -1)
  6068. tsk_cache_hot = task_hot(p, env);
  6069. if (tsk_cache_hot <= 0 ||
  6070. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  6071. if (tsk_cache_hot == 1) {
  6072. schedstat_inc(env->sd->lb_hot_gained[env->idle]);
  6073. schedstat_inc(p->se.statistics.nr_forced_migrations);
  6074. }
  6075. return 1;
  6076. }
  6077. schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
  6078. return 0;
  6079. }
  6080. /*
  6081. * detach_task() -- detach the task for the migration specified in env
  6082. */
  6083. static void detach_task(struct task_struct *p, struct lb_env *env)
  6084. {
  6085. lockdep_assert_held(&env->src_rq->lock);
  6086. p->on_rq = TASK_ON_RQ_MIGRATING;
  6087. deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
  6088. set_task_cpu(p, env->dst_cpu);
  6089. }
  6090. /*
  6091. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  6092. * part of active balancing operations within "domain".
  6093. *
  6094. * Returns a task if successful and NULL otherwise.
  6095. */
  6096. static struct task_struct *detach_one_task(struct lb_env *env)
  6097. {
  6098. struct task_struct *p;
  6099. lockdep_assert_held(&env->src_rq->lock);
  6100. list_for_each_entry_reverse(p,
  6101. &env->src_rq->cfs_tasks, se.group_node) {
  6102. if (!can_migrate_task(p, env))
  6103. continue;
  6104. detach_task(p, env);
  6105. /*
  6106. * Right now, this is only the second place where
  6107. * lb_gained[env->idle] is updated (other is detach_tasks)
  6108. * so we can safely collect stats here rather than
  6109. * inside detach_tasks().
  6110. */
  6111. schedstat_inc(env->sd->lb_gained[env->idle]);
  6112. return p;
  6113. }
  6114. return NULL;
  6115. }
  6116. static const unsigned int sched_nr_migrate_break = 32;
  6117. /*
  6118. * detach_tasks() -- tries to detach up to imbalance weighted load from
  6119. * busiest_rq, as part of a balancing operation within domain "sd".
  6120. *
  6121. * Returns number of detached tasks if successful and 0 otherwise.
  6122. */
  6123. static int detach_tasks(struct lb_env *env)
  6124. {
  6125. struct list_head *tasks = &env->src_rq->cfs_tasks;
  6126. struct task_struct *p;
  6127. unsigned long load;
  6128. int detached = 0;
  6129. lockdep_assert_held(&env->src_rq->lock);
  6130. if (env->imbalance <= 0)
  6131. return 0;
  6132. while (!list_empty(tasks)) {
  6133. /*
  6134. * We don't want to steal all, otherwise we may be treated likewise,
  6135. * which could at worst lead to a livelock crash.
  6136. */
  6137. if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  6138. break;
  6139. p = list_last_entry(tasks, struct task_struct, se.group_node);
  6140. env->loop++;
  6141. /* We've more or less seen every task there is, call it quits */
  6142. if (env->loop > env->loop_max)
  6143. break;
  6144. /* take a breather every nr_migrate tasks */
  6145. if (env->loop > env->loop_break) {
  6146. env->loop_break += sched_nr_migrate_break;
  6147. env->flags |= LBF_NEED_BREAK;
  6148. break;
  6149. }
  6150. if (!can_migrate_task(p, env))
  6151. goto next;
  6152. load = task_h_load(p);
  6153. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  6154. goto next;
  6155. if ((load / 2) > env->imbalance)
  6156. goto next;
  6157. detach_task(p, env);
  6158. list_add(&p->se.group_node, &env->tasks);
  6159. detached++;
  6160. env->imbalance -= load;
  6161. #ifdef CONFIG_PREEMPT
  6162. /*
  6163. * NEWIDLE balancing is a source of latency, so preemptible
  6164. * kernels will stop after the first task is detached to minimize
  6165. * the critical section.
  6166. */
  6167. if (env->idle == CPU_NEWLY_IDLE)
  6168. break;
  6169. #endif
  6170. /*
  6171. * We only want to steal up to the prescribed amount of
  6172. * weighted load.
  6173. */
  6174. if (env->imbalance <= 0)
  6175. break;
  6176. continue;
  6177. next:
  6178. list_move(&p->se.group_node, tasks);
  6179. }
  6180. /*
  6181. * Right now, this is one of only two places we collect this stat
  6182. * so we can safely collect detach_one_task() stats here rather
  6183. * than inside detach_one_task().
  6184. */
  6185. schedstat_add(env->sd->lb_gained[env->idle], detached);
  6186. return detached;
  6187. }
  6188. /*
  6189. * attach_task() -- attach the task detached by detach_task() to its new rq.
  6190. */
  6191. static void attach_task(struct rq *rq, struct task_struct *p)
  6192. {
  6193. lockdep_assert_held(&rq->lock);
  6194. BUG_ON(task_rq(p) != rq);
  6195. activate_task(rq, p, ENQUEUE_NOCLOCK);
  6196. p->on_rq = TASK_ON_RQ_QUEUED;
  6197. check_preempt_curr(rq, p, 0);
  6198. }
  6199. /*
  6200. * attach_one_task() -- attaches the task returned from detach_one_task() to
  6201. * its new rq.
  6202. */
  6203. static void attach_one_task(struct rq *rq, struct task_struct *p)
  6204. {
  6205. struct rq_flags rf;
  6206. rq_lock(rq, &rf);
  6207. update_rq_clock(rq);
  6208. attach_task(rq, p);
  6209. rq_unlock(rq, &rf);
  6210. }
  6211. /*
  6212. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  6213. * new rq.
  6214. */
  6215. static void attach_tasks(struct lb_env *env)
  6216. {
  6217. struct list_head *tasks = &env->tasks;
  6218. struct task_struct *p;
  6219. struct rq_flags rf;
  6220. rq_lock(env->dst_rq, &rf);
  6221. update_rq_clock(env->dst_rq);
  6222. while (!list_empty(tasks)) {
  6223. p = list_first_entry(tasks, struct task_struct, se.group_node);
  6224. list_del_init(&p->se.group_node);
  6225. attach_task(env->dst_rq, p);
  6226. }
  6227. rq_unlock(env->dst_rq, &rf);
  6228. }
  6229. static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
  6230. {
  6231. if (cfs_rq->avg.load_avg)
  6232. return true;
  6233. if (cfs_rq->avg.util_avg)
  6234. return true;
  6235. return false;
  6236. }
  6237. #ifdef CONFIG_FAIR_GROUP_SCHED
  6238. static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
  6239. {
  6240. if (cfs_rq->load.weight)
  6241. return false;
  6242. if (cfs_rq->avg.load_sum)
  6243. return false;
  6244. if (cfs_rq->avg.util_sum)
  6245. return false;
  6246. if (cfs_rq->avg.runnable_load_sum)
  6247. return false;
  6248. return true;
  6249. }
  6250. static void update_blocked_averages(int cpu)
  6251. {
  6252. struct rq *rq = cpu_rq(cpu);
  6253. struct cfs_rq *cfs_rq, *pos;
  6254. struct rq_flags rf;
  6255. bool done = true;
  6256. rq_lock_irqsave(rq, &rf);
  6257. update_rq_clock(rq);
  6258. /*
  6259. * Iterates the task_group tree in a bottom up fashion, see
  6260. * list_add_leaf_cfs_rq() for details.
  6261. */
  6262. for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
  6263. struct sched_entity *se;
  6264. /* throttled entities do not contribute to load */
  6265. if (throttled_hierarchy(cfs_rq))
  6266. continue;
  6267. if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
  6268. update_tg_load_avg(cfs_rq, 0);
  6269. /* Propagate pending load changes to the parent, if any: */
  6270. se = cfs_rq->tg->se[cpu];
  6271. if (se && !skip_blocked_update(se))
  6272. update_load_avg(cfs_rq_of(se), se, 0);
  6273. /*
  6274. * There can be a lot of idle CPU cgroups. Don't let fully
  6275. * decayed cfs_rqs linger on the list.
  6276. */
  6277. if (cfs_rq_is_decayed(cfs_rq))
  6278. list_del_leaf_cfs_rq(cfs_rq);
  6279. /* Don't need periodic decay once load/util_avg are null */
  6280. if (cfs_rq_has_blocked(cfs_rq))
  6281. done = false;
  6282. }
  6283. #ifdef CONFIG_NO_HZ_COMMON
  6284. rq->last_blocked_load_update_tick = jiffies;
  6285. if (done)
  6286. rq->has_blocked_load = 0;
  6287. #endif
  6288. rq_unlock_irqrestore(rq, &rf);
  6289. }
  6290. /*
  6291. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  6292. * This needs to be done in a top-down fashion because the load of a child
  6293. * group is a fraction of its parents load.
  6294. */
  6295. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  6296. {
  6297. struct rq *rq = rq_of(cfs_rq);
  6298. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  6299. unsigned long now = jiffies;
  6300. unsigned long load;
  6301. if (cfs_rq->last_h_load_update == now)
  6302. return;
  6303. cfs_rq->h_load_next = NULL;
  6304. for_each_sched_entity(se) {
  6305. cfs_rq = cfs_rq_of(se);
  6306. cfs_rq->h_load_next = se;
  6307. if (cfs_rq->last_h_load_update == now)
  6308. break;
  6309. }
  6310. if (!se) {
  6311. cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
  6312. cfs_rq->last_h_load_update = now;
  6313. }
  6314. while ((se = cfs_rq->h_load_next) != NULL) {
  6315. load = cfs_rq->h_load;
  6316. load = div64_ul(load * se->avg.load_avg,
  6317. cfs_rq_load_avg(cfs_rq) + 1);
  6318. cfs_rq = group_cfs_rq(se);
  6319. cfs_rq->h_load = load;
  6320. cfs_rq->last_h_load_update = now;
  6321. }
  6322. }
  6323. static unsigned long task_h_load(struct task_struct *p)
  6324. {
  6325. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  6326. update_cfs_rq_h_load(cfs_rq);
  6327. return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
  6328. cfs_rq_load_avg(cfs_rq) + 1);
  6329. }
  6330. #else
  6331. static inline void update_blocked_averages(int cpu)
  6332. {
  6333. struct rq *rq = cpu_rq(cpu);
  6334. struct cfs_rq *cfs_rq = &rq->cfs;
  6335. struct rq_flags rf;
  6336. rq_lock_irqsave(rq, &rf);
  6337. update_rq_clock(rq);
  6338. update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
  6339. #ifdef CONFIG_NO_HZ_COMMON
  6340. rq->last_blocked_load_update_tick = jiffies;
  6341. if (!cfs_rq_has_blocked(cfs_rq))
  6342. rq->has_blocked_load = 0;
  6343. #endif
  6344. rq_unlock_irqrestore(rq, &rf);
  6345. }
  6346. static unsigned long task_h_load(struct task_struct *p)
  6347. {
  6348. return p->se.avg.load_avg;
  6349. }
  6350. #endif
  6351. /********** Helpers for find_busiest_group ************************/
  6352. enum group_type {
  6353. group_other = 0,
  6354. group_imbalanced,
  6355. group_overloaded,
  6356. };
  6357. /*
  6358. * sg_lb_stats - stats of a sched_group required for load_balancing
  6359. */
  6360. struct sg_lb_stats {
  6361. unsigned long avg_load; /*Avg load across the CPUs of the group */
  6362. unsigned long group_load; /* Total load over the CPUs of the group */
  6363. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  6364. unsigned long load_per_task;
  6365. unsigned long group_capacity;
  6366. unsigned long group_util; /* Total utilization of the group */
  6367. unsigned int sum_nr_running; /* Nr tasks running in the group */
  6368. unsigned int idle_cpus;
  6369. unsigned int group_weight;
  6370. enum group_type group_type;
  6371. int group_no_capacity;
  6372. #ifdef CONFIG_NUMA_BALANCING
  6373. unsigned int nr_numa_running;
  6374. unsigned int nr_preferred_running;
  6375. #endif
  6376. };
  6377. /*
  6378. * sd_lb_stats - Structure to store the statistics of a sched_domain
  6379. * during load balancing.
  6380. */
  6381. struct sd_lb_stats {
  6382. struct sched_group *busiest; /* Busiest group in this sd */
  6383. struct sched_group *local; /* Local group in this sd */
  6384. unsigned long total_running;
  6385. unsigned long total_load; /* Total load of all groups in sd */
  6386. unsigned long total_capacity; /* Total capacity of all groups in sd */
  6387. unsigned long avg_load; /* Average load across all groups in sd */
  6388. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  6389. struct sg_lb_stats local_stat; /* Statistics of the local group */
  6390. };
  6391. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  6392. {
  6393. /*
  6394. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  6395. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  6396. * We must however clear busiest_stat::avg_load because
  6397. * update_sd_pick_busiest() reads this before assignment.
  6398. */
  6399. *sds = (struct sd_lb_stats){
  6400. .busiest = NULL,
  6401. .local = NULL,
  6402. .total_running = 0UL,
  6403. .total_load = 0UL,
  6404. .total_capacity = 0UL,
  6405. .busiest_stat = {
  6406. .avg_load = 0UL,
  6407. .sum_nr_running = 0,
  6408. .group_type = group_other,
  6409. },
  6410. };
  6411. }
  6412. /**
  6413. * get_sd_load_idx - Obtain the load index for a given sched domain.
  6414. * @sd: The sched_domain whose load_idx is to be obtained.
  6415. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  6416. *
  6417. * Return: The load index.
  6418. */
  6419. static inline int get_sd_load_idx(struct sched_domain *sd,
  6420. enum cpu_idle_type idle)
  6421. {
  6422. int load_idx;
  6423. switch (idle) {
  6424. case CPU_NOT_IDLE:
  6425. load_idx = sd->busy_idx;
  6426. break;
  6427. case CPU_NEWLY_IDLE:
  6428. load_idx = sd->newidle_idx;
  6429. break;
  6430. default:
  6431. load_idx = sd->idle_idx;
  6432. break;
  6433. }
  6434. return load_idx;
  6435. }
  6436. static unsigned long scale_rt_capacity(int cpu)
  6437. {
  6438. struct rq *rq = cpu_rq(cpu);
  6439. u64 total, used, age_stamp, avg;
  6440. s64 delta;
  6441. /*
  6442. * Since we're reading these variables without serialization make sure
  6443. * we read them once before doing sanity checks on them.
  6444. */
  6445. age_stamp = READ_ONCE(rq->age_stamp);
  6446. avg = READ_ONCE(rq->rt_avg);
  6447. delta = __rq_clock_broken(rq) - age_stamp;
  6448. if (unlikely(delta < 0))
  6449. delta = 0;
  6450. total = sched_avg_period() + delta;
  6451. used = div_u64(avg, total);
  6452. if (likely(used < SCHED_CAPACITY_SCALE))
  6453. return SCHED_CAPACITY_SCALE - used;
  6454. return 1;
  6455. }
  6456. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  6457. {
  6458. unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
  6459. struct sched_group *sdg = sd->groups;
  6460. cpu_rq(cpu)->cpu_capacity_orig = capacity;
  6461. capacity *= scale_rt_capacity(cpu);
  6462. capacity >>= SCHED_CAPACITY_SHIFT;
  6463. if (!capacity)
  6464. capacity = 1;
  6465. cpu_rq(cpu)->cpu_capacity = capacity;
  6466. sdg->sgc->capacity = capacity;
  6467. sdg->sgc->min_capacity = capacity;
  6468. }
  6469. void update_group_capacity(struct sched_domain *sd, int cpu)
  6470. {
  6471. struct sched_domain *child = sd->child;
  6472. struct sched_group *group, *sdg = sd->groups;
  6473. unsigned long capacity, min_capacity;
  6474. unsigned long interval;
  6475. interval = msecs_to_jiffies(sd->balance_interval);
  6476. interval = clamp(interval, 1UL, max_load_balance_interval);
  6477. sdg->sgc->next_update = jiffies + interval;
  6478. if (!child) {
  6479. update_cpu_capacity(sd, cpu);
  6480. return;
  6481. }
  6482. capacity = 0;
  6483. min_capacity = ULONG_MAX;
  6484. if (child->flags & SD_OVERLAP) {
  6485. /*
  6486. * SD_OVERLAP domains cannot assume that child groups
  6487. * span the current group.
  6488. */
  6489. for_each_cpu(cpu, sched_group_span(sdg)) {
  6490. struct sched_group_capacity *sgc;
  6491. struct rq *rq = cpu_rq(cpu);
  6492. /*
  6493. * build_sched_domains() -> init_sched_groups_capacity()
  6494. * gets here before we've attached the domains to the
  6495. * runqueues.
  6496. *
  6497. * Use capacity_of(), which is set irrespective of domains
  6498. * in update_cpu_capacity().
  6499. *
  6500. * This avoids capacity from being 0 and
  6501. * causing divide-by-zero issues on boot.
  6502. */
  6503. if (unlikely(!rq->sd)) {
  6504. capacity += capacity_of(cpu);
  6505. } else {
  6506. sgc = rq->sd->groups->sgc;
  6507. capacity += sgc->capacity;
  6508. }
  6509. min_capacity = min(capacity, min_capacity);
  6510. }
  6511. } else {
  6512. /*
  6513. * !SD_OVERLAP domains can assume that child groups
  6514. * span the current group.
  6515. */
  6516. group = child->groups;
  6517. do {
  6518. struct sched_group_capacity *sgc = group->sgc;
  6519. capacity += sgc->capacity;
  6520. min_capacity = min(sgc->min_capacity, min_capacity);
  6521. group = group->next;
  6522. } while (group != child->groups);
  6523. }
  6524. sdg->sgc->capacity = capacity;
  6525. sdg->sgc->min_capacity = min_capacity;
  6526. }
  6527. /*
  6528. * Check whether the capacity of the rq has been noticeably reduced by side
  6529. * activity. The imbalance_pct is used for the threshold.
  6530. * Return true is the capacity is reduced
  6531. */
  6532. static inline int
  6533. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  6534. {
  6535. return ((rq->cpu_capacity * sd->imbalance_pct) <
  6536. (rq->cpu_capacity_orig * 100));
  6537. }
  6538. /*
  6539. * Group imbalance indicates (and tries to solve) the problem where balancing
  6540. * groups is inadequate due to ->cpus_allowed constraints.
  6541. *
  6542. * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
  6543. * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
  6544. * Something like:
  6545. *
  6546. * { 0 1 2 3 } { 4 5 6 7 }
  6547. * * * * *
  6548. *
  6549. * If we were to balance group-wise we'd place two tasks in the first group and
  6550. * two tasks in the second group. Clearly this is undesired as it will overload
  6551. * cpu 3 and leave one of the CPUs in the second group unused.
  6552. *
  6553. * The current solution to this issue is detecting the skew in the first group
  6554. * by noticing the lower domain failed to reach balance and had difficulty
  6555. * moving tasks due to affinity constraints.
  6556. *
  6557. * When this is so detected; this group becomes a candidate for busiest; see
  6558. * update_sd_pick_busiest(). And calculate_imbalance() and
  6559. * find_busiest_group() avoid some of the usual balance conditions to allow it
  6560. * to create an effective group imbalance.
  6561. *
  6562. * This is a somewhat tricky proposition since the next run might not find the
  6563. * group imbalance and decide the groups need to be balanced again. A most
  6564. * subtle and fragile situation.
  6565. */
  6566. static inline int sg_imbalanced(struct sched_group *group)
  6567. {
  6568. return group->sgc->imbalance;
  6569. }
  6570. /*
  6571. * group_has_capacity returns true if the group has spare capacity that could
  6572. * be used by some tasks.
  6573. * We consider that a group has spare capacity if the * number of task is
  6574. * smaller than the number of CPUs or if the utilization is lower than the
  6575. * available capacity for CFS tasks.
  6576. * For the latter, we use a threshold to stabilize the state, to take into
  6577. * account the variance of the tasks' load and to return true if the available
  6578. * capacity in meaningful for the load balancer.
  6579. * As an example, an available capacity of 1% can appear but it doesn't make
  6580. * any benefit for the load balance.
  6581. */
  6582. static inline bool
  6583. group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
  6584. {
  6585. if (sgs->sum_nr_running < sgs->group_weight)
  6586. return true;
  6587. if ((sgs->group_capacity * 100) >
  6588. (sgs->group_util * env->sd->imbalance_pct))
  6589. return true;
  6590. return false;
  6591. }
  6592. /*
  6593. * group_is_overloaded returns true if the group has more tasks than it can
  6594. * handle.
  6595. * group_is_overloaded is not equals to !group_has_capacity because a group
  6596. * with the exact right number of tasks, has no more spare capacity but is not
  6597. * overloaded so both group_has_capacity and group_is_overloaded return
  6598. * false.
  6599. */
  6600. static inline bool
  6601. group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
  6602. {
  6603. if (sgs->sum_nr_running <= sgs->group_weight)
  6604. return false;
  6605. if ((sgs->group_capacity * 100) <
  6606. (sgs->group_util * env->sd->imbalance_pct))
  6607. return true;
  6608. return false;
  6609. }
  6610. /*
  6611. * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
  6612. * per-CPU capacity than sched_group ref.
  6613. */
  6614. static inline bool
  6615. group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
  6616. {
  6617. return sg->sgc->min_capacity * capacity_margin <
  6618. ref->sgc->min_capacity * 1024;
  6619. }
  6620. static inline enum
  6621. group_type group_classify(struct sched_group *group,
  6622. struct sg_lb_stats *sgs)
  6623. {
  6624. if (sgs->group_no_capacity)
  6625. return group_overloaded;
  6626. if (sg_imbalanced(group))
  6627. return group_imbalanced;
  6628. return group_other;
  6629. }
  6630. static bool update_nohz_stats(struct rq *rq, bool force)
  6631. {
  6632. #ifdef CONFIG_NO_HZ_COMMON
  6633. unsigned int cpu = rq->cpu;
  6634. if (!rq->has_blocked_load)
  6635. return false;
  6636. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  6637. return false;
  6638. if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
  6639. return true;
  6640. update_blocked_averages(cpu);
  6641. return rq->has_blocked_load;
  6642. #else
  6643. return false;
  6644. #endif
  6645. }
  6646. /**
  6647. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  6648. * @env: The load balancing environment.
  6649. * @group: sched_group whose statistics are to be updated.
  6650. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  6651. * @local_group: Does group contain this_cpu.
  6652. * @sgs: variable to hold the statistics for this group.
  6653. * @overload: Indicate more than one runnable task for any CPU.
  6654. */
  6655. static inline void update_sg_lb_stats(struct lb_env *env,
  6656. struct sched_group *group, int load_idx,
  6657. int local_group, struct sg_lb_stats *sgs,
  6658. bool *overload)
  6659. {
  6660. unsigned long load;
  6661. int i, nr_running;
  6662. memset(sgs, 0, sizeof(*sgs));
  6663. for_each_cpu_and(i, sched_group_span(group), env->cpus) {
  6664. struct rq *rq = cpu_rq(i);
  6665. if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
  6666. env->flags |= LBF_NOHZ_AGAIN;
  6667. /* Bias balancing toward CPUs of our domain: */
  6668. if (local_group)
  6669. load = target_load(i, load_idx);
  6670. else
  6671. load = source_load(i, load_idx);
  6672. sgs->group_load += load;
  6673. sgs->group_util += cpu_util(i);
  6674. sgs->sum_nr_running += rq->cfs.h_nr_running;
  6675. nr_running = rq->nr_running;
  6676. if (nr_running > 1)
  6677. *overload = true;
  6678. #ifdef CONFIG_NUMA_BALANCING
  6679. sgs->nr_numa_running += rq->nr_numa_running;
  6680. sgs->nr_preferred_running += rq->nr_preferred_running;
  6681. #endif
  6682. sgs->sum_weighted_load += weighted_cpuload(rq);
  6683. /*
  6684. * No need to call idle_cpu() if nr_running is not 0
  6685. */
  6686. if (!nr_running && idle_cpu(i))
  6687. sgs->idle_cpus++;
  6688. }
  6689. /* Adjust by relative CPU capacity of the group */
  6690. sgs->group_capacity = group->sgc->capacity;
  6691. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  6692. if (sgs->sum_nr_running)
  6693. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  6694. sgs->group_weight = group->group_weight;
  6695. sgs->group_no_capacity = group_is_overloaded(env, sgs);
  6696. sgs->group_type = group_classify(group, sgs);
  6697. }
  6698. /**
  6699. * update_sd_pick_busiest - return 1 on busiest group
  6700. * @env: The load balancing environment.
  6701. * @sds: sched_domain statistics
  6702. * @sg: sched_group candidate to be checked for being the busiest
  6703. * @sgs: sched_group statistics
  6704. *
  6705. * Determine if @sg is a busier group than the previously selected
  6706. * busiest group.
  6707. *
  6708. * Return: %true if @sg is a busier group than the previously selected
  6709. * busiest group. %false otherwise.
  6710. */
  6711. static bool update_sd_pick_busiest(struct lb_env *env,
  6712. struct sd_lb_stats *sds,
  6713. struct sched_group *sg,
  6714. struct sg_lb_stats *sgs)
  6715. {
  6716. struct sg_lb_stats *busiest = &sds->busiest_stat;
  6717. if (sgs->group_type > busiest->group_type)
  6718. return true;
  6719. if (sgs->group_type < busiest->group_type)
  6720. return false;
  6721. if (sgs->avg_load <= busiest->avg_load)
  6722. return false;
  6723. if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
  6724. goto asym_packing;
  6725. /*
  6726. * Candidate sg has no more than one task per CPU and
  6727. * has higher per-CPU capacity. Migrating tasks to less
  6728. * capable CPUs may harm throughput. Maximize throughput,
  6729. * power/energy consequences are not considered.
  6730. */
  6731. if (sgs->sum_nr_running <= sgs->group_weight &&
  6732. group_smaller_cpu_capacity(sds->local, sg))
  6733. return false;
  6734. asym_packing:
  6735. /* This is the busiest node in its class. */
  6736. if (!(env->sd->flags & SD_ASYM_PACKING))
  6737. return true;
  6738. /* No ASYM_PACKING if target CPU is already busy */
  6739. if (env->idle == CPU_NOT_IDLE)
  6740. return true;
  6741. /*
  6742. * ASYM_PACKING needs to move all the work to the highest
  6743. * prority CPUs in the group, therefore mark all groups
  6744. * of lower priority than ourself as busy.
  6745. */
  6746. if (sgs->sum_nr_running &&
  6747. sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
  6748. if (!sds->busiest)
  6749. return true;
  6750. /* Prefer to move from lowest priority CPU's work */
  6751. if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
  6752. sg->asym_prefer_cpu))
  6753. return true;
  6754. }
  6755. return false;
  6756. }
  6757. #ifdef CONFIG_NUMA_BALANCING
  6758. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  6759. {
  6760. if (sgs->sum_nr_running > sgs->nr_numa_running)
  6761. return regular;
  6762. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  6763. return remote;
  6764. return all;
  6765. }
  6766. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  6767. {
  6768. if (rq->nr_running > rq->nr_numa_running)
  6769. return regular;
  6770. if (rq->nr_running > rq->nr_preferred_running)
  6771. return remote;
  6772. return all;
  6773. }
  6774. #else
  6775. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  6776. {
  6777. return all;
  6778. }
  6779. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  6780. {
  6781. return regular;
  6782. }
  6783. #endif /* CONFIG_NUMA_BALANCING */
  6784. /**
  6785. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  6786. * @env: The load balancing environment.
  6787. * @sds: variable to hold the statistics for this sched_domain.
  6788. */
  6789. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  6790. {
  6791. struct sched_domain *child = env->sd->child;
  6792. struct sched_group *sg = env->sd->groups;
  6793. struct sg_lb_stats *local = &sds->local_stat;
  6794. struct sg_lb_stats tmp_sgs;
  6795. int load_idx, prefer_sibling = 0;
  6796. bool overload = false;
  6797. if (child && child->flags & SD_PREFER_SIBLING)
  6798. prefer_sibling = 1;
  6799. #ifdef CONFIG_NO_HZ_COMMON
  6800. if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
  6801. env->flags |= LBF_NOHZ_STATS;
  6802. #endif
  6803. load_idx = get_sd_load_idx(env->sd, env->idle);
  6804. do {
  6805. struct sg_lb_stats *sgs = &tmp_sgs;
  6806. int local_group;
  6807. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
  6808. if (local_group) {
  6809. sds->local = sg;
  6810. sgs = local;
  6811. if (env->idle != CPU_NEWLY_IDLE ||
  6812. time_after_eq(jiffies, sg->sgc->next_update))
  6813. update_group_capacity(env->sd, env->dst_cpu);
  6814. }
  6815. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  6816. &overload);
  6817. if (local_group)
  6818. goto next_group;
  6819. /*
  6820. * In case the child domain prefers tasks go to siblings
  6821. * first, lower the sg capacity so that we'll try
  6822. * and move all the excess tasks away. We lower the capacity
  6823. * of a group only if the local group has the capacity to fit
  6824. * these excess tasks. The extra check prevents the case where
  6825. * you always pull from the heaviest group when it is already
  6826. * under-utilized (possible with a large weight task outweighs
  6827. * the tasks on the system).
  6828. */
  6829. if (prefer_sibling && sds->local &&
  6830. group_has_capacity(env, local) &&
  6831. (sgs->sum_nr_running > local->sum_nr_running + 1)) {
  6832. sgs->group_no_capacity = 1;
  6833. sgs->group_type = group_classify(sg, sgs);
  6834. }
  6835. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  6836. sds->busiest = sg;
  6837. sds->busiest_stat = *sgs;
  6838. }
  6839. next_group:
  6840. /* Now, start updating sd_lb_stats */
  6841. sds->total_running += sgs->sum_nr_running;
  6842. sds->total_load += sgs->group_load;
  6843. sds->total_capacity += sgs->group_capacity;
  6844. sg = sg->next;
  6845. } while (sg != env->sd->groups);
  6846. #ifdef CONFIG_NO_HZ_COMMON
  6847. if ((env->flags & LBF_NOHZ_AGAIN) &&
  6848. cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
  6849. WRITE_ONCE(nohz.next_blocked,
  6850. jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
  6851. }
  6852. #endif
  6853. if (env->sd->flags & SD_NUMA)
  6854. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  6855. if (!env->sd->parent) {
  6856. /* update overload indicator if we are at root domain */
  6857. if (env->dst_rq->rd->overload != overload)
  6858. env->dst_rq->rd->overload = overload;
  6859. }
  6860. }
  6861. /**
  6862. * check_asym_packing - Check to see if the group is packed into the
  6863. * sched domain.
  6864. *
  6865. * This is primarily intended to used at the sibling level. Some
  6866. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  6867. * case of POWER7, it can move to lower SMT modes only when higher
  6868. * threads are idle. When in lower SMT modes, the threads will
  6869. * perform better since they share less core resources. Hence when we
  6870. * have idle threads, we want them to be the higher ones.
  6871. *
  6872. * This packing function is run on idle threads. It checks to see if
  6873. * the busiest CPU in this domain (core in the P7 case) has a higher
  6874. * CPU number than the packing function is being run on. Here we are
  6875. * assuming lower CPU number will be equivalent to lower a SMT thread
  6876. * number.
  6877. *
  6878. * Return: 1 when packing is required and a task should be moved to
  6879. * this CPU. The amount of the imbalance is returned in env->imbalance.
  6880. *
  6881. * @env: The load balancing environment.
  6882. * @sds: Statistics of the sched_domain which is to be packed
  6883. */
  6884. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  6885. {
  6886. int busiest_cpu;
  6887. if (!(env->sd->flags & SD_ASYM_PACKING))
  6888. return 0;
  6889. if (env->idle == CPU_NOT_IDLE)
  6890. return 0;
  6891. if (!sds->busiest)
  6892. return 0;
  6893. busiest_cpu = sds->busiest->asym_prefer_cpu;
  6894. if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
  6895. return 0;
  6896. env->imbalance = DIV_ROUND_CLOSEST(
  6897. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  6898. SCHED_CAPACITY_SCALE);
  6899. return 1;
  6900. }
  6901. /**
  6902. * fix_small_imbalance - Calculate the minor imbalance that exists
  6903. * amongst the groups of a sched_domain, during
  6904. * load balancing.
  6905. * @env: The load balancing environment.
  6906. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  6907. */
  6908. static inline
  6909. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  6910. {
  6911. unsigned long tmp, capa_now = 0, capa_move = 0;
  6912. unsigned int imbn = 2;
  6913. unsigned long scaled_busy_load_per_task;
  6914. struct sg_lb_stats *local, *busiest;
  6915. local = &sds->local_stat;
  6916. busiest = &sds->busiest_stat;
  6917. if (!local->sum_nr_running)
  6918. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  6919. else if (busiest->load_per_task > local->load_per_task)
  6920. imbn = 1;
  6921. scaled_busy_load_per_task =
  6922. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  6923. busiest->group_capacity;
  6924. if (busiest->avg_load + scaled_busy_load_per_task >=
  6925. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  6926. env->imbalance = busiest->load_per_task;
  6927. return;
  6928. }
  6929. /*
  6930. * OK, we don't have enough imbalance to justify moving tasks,
  6931. * however we may be able to increase total CPU capacity used by
  6932. * moving them.
  6933. */
  6934. capa_now += busiest->group_capacity *
  6935. min(busiest->load_per_task, busiest->avg_load);
  6936. capa_now += local->group_capacity *
  6937. min(local->load_per_task, local->avg_load);
  6938. capa_now /= SCHED_CAPACITY_SCALE;
  6939. /* Amount of load we'd subtract */
  6940. if (busiest->avg_load > scaled_busy_load_per_task) {
  6941. capa_move += busiest->group_capacity *
  6942. min(busiest->load_per_task,
  6943. busiest->avg_load - scaled_busy_load_per_task);
  6944. }
  6945. /* Amount of load we'd add */
  6946. if (busiest->avg_load * busiest->group_capacity <
  6947. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  6948. tmp = (busiest->avg_load * busiest->group_capacity) /
  6949. local->group_capacity;
  6950. } else {
  6951. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  6952. local->group_capacity;
  6953. }
  6954. capa_move += local->group_capacity *
  6955. min(local->load_per_task, local->avg_load + tmp);
  6956. capa_move /= SCHED_CAPACITY_SCALE;
  6957. /* Move if we gain throughput */
  6958. if (capa_move > capa_now)
  6959. env->imbalance = busiest->load_per_task;
  6960. }
  6961. /**
  6962. * calculate_imbalance - Calculate the amount of imbalance present within the
  6963. * groups of a given sched_domain during load balance.
  6964. * @env: load balance environment
  6965. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  6966. */
  6967. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  6968. {
  6969. unsigned long max_pull, load_above_capacity = ~0UL;
  6970. struct sg_lb_stats *local, *busiest;
  6971. local = &sds->local_stat;
  6972. busiest = &sds->busiest_stat;
  6973. if (busiest->group_type == group_imbalanced) {
  6974. /*
  6975. * In the group_imb case we cannot rely on group-wide averages
  6976. * to ensure CPU-load equilibrium, look at wider averages. XXX
  6977. */
  6978. busiest->load_per_task =
  6979. min(busiest->load_per_task, sds->avg_load);
  6980. }
  6981. /*
  6982. * Avg load of busiest sg can be less and avg load of local sg can
  6983. * be greater than avg load across all sgs of sd because avg load
  6984. * factors in sg capacity and sgs with smaller group_type are
  6985. * skipped when updating the busiest sg:
  6986. */
  6987. if (busiest->avg_load <= sds->avg_load ||
  6988. local->avg_load >= sds->avg_load) {
  6989. env->imbalance = 0;
  6990. return fix_small_imbalance(env, sds);
  6991. }
  6992. /*
  6993. * If there aren't any idle CPUs, avoid creating some.
  6994. */
  6995. if (busiest->group_type == group_overloaded &&
  6996. local->group_type == group_overloaded) {
  6997. load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
  6998. if (load_above_capacity > busiest->group_capacity) {
  6999. load_above_capacity -= busiest->group_capacity;
  7000. load_above_capacity *= scale_load_down(NICE_0_LOAD);
  7001. load_above_capacity /= busiest->group_capacity;
  7002. } else
  7003. load_above_capacity = ~0UL;
  7004. }
  7005. /*
  7006. * We're trying to get all the CPUs to the average_load, so we don't
  7007. * want to push ourselves above the average load, nor do we wish to
  7008. * reduce the max loaded CPU below the average load. At the same time,
  7009. * we also don't want to reduce the group load below the group
  7010. * capacity. Thus we look for the minimum possible imbalance.
  7011. */
  7012. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  7013. /* How much load to actually move to equalise the imbalance */
  7014. env->imbalance = min(
  7015. max_pull * busiest->group_capacity,
  7016. (sds->avg_load - local->avg_load) * local->group_capacity
  7017. ) / SCHED_CAPACITY_SCALE;
  7018. /*
  7019. * if *imbalance is less than the average load per runnable task
  7020. * there is no guarantee that any tasks will be moved so we'll have
  7021. * a think about bumping its value to force at least one task to be
  7022. * moved
  7023. */
  7024. if (env->imbalance < busiest->load_per_task)
  7025. return fix_small_imbalance(env, sds);
  7026. }
  7027. /******* find_busiest_group() helpers end here *********************/
  7028. /**
  7029. * find_busiest_group - Returns the busiest group within the sched_domain
  7030. * if there is an imbalance.
  7031. *
  7032. * Also calculates the amount of weighted load which should be moved
  7033. * to restore balance.
  7034. *
  7035. * @env: The load balancing environment.
  7036. *
  7037. * Return: - The busiest group if imbalance exists.
  7038. */
  7039. static struct sched_group *find_busiest_group(struct lb_env *env)
  7040. {
  7041. struct sg_lb_stats *local, *busiest;
  7042. struct sd_lb_stats sds;
  7043. init_sd_lb_stats(&sds);
  7044. /*
  7045. * Compute the various statistics relavent for load balancing at
  7046. * this level.
  7047. */
  7048. update_sd_lb_stats(env, &sds);
  7049. local = &sds.local_stat;
  7050. busiest = &sds.busiest_stat;
  7051. /* ASYM feature bypasses nice load balance check */
  7052. if (check_asym_packing(env, &sds))
  7053. return sds.busiest;
  7054. /* There is no busy sibling group to pull tasks from */
  7055. if (!sds.busiest || busiest->sum_nr_running == 0)
  7056. goto out_balanced;
  7057. /* XXX broken for overlapping NUMA groups */
  7058. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  7059. / sds.total_capacity;
  7060. /*
  7061. * If the busiest group is imbalanced the below checks don't
  7062. * work because they assume all things are equal, which typically
  7063. * isn't true due to cpus_allowed constraints and the like.
  7064. */
  7065. if (busiest->group_type == group_imbalanced)
  7066. goto force_balance;
  7067. /*
  7068. * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
  7069. * capacities from resulting in underutilization due to avg_load.
  7070. */
  7071. if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
  7072. busiest->group_no_capacity)
  7073. goto force_balance;
  7074. /*
  7075. * If the local group is busier than the selected busiest group
  7076. * don't try and pull any tasks.
  7077. */
  7078. if (local->avg_load >= busiest->avg_load)
  7079. goto out_balanced;
  7080. /*
  7081. * Don't pull any tasks if this group is already above the domain
  7082. * average load.
  7083. */
  7084. if (local->avg_load >= sds.avg_load)
  7085. goto out_balanced;
  7086. if (env->idle == CPU_IDLE) {
  7087. /*
  7088. * This CPU is idle. If the busiest group is not overloaded
  7089. * and there is no imbalance between this and busiest group
  7090. * wrt idle CPUs, it is balanced. The imbalance becomes
  7091. * significant if the diff is greater than 1 otherwise we
  7092. * might end up to just move the imbalance on another group
  7093. */
  7094. if ((busiest->group_type != group_overloaded) &&
  7095. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  7096. goto out_balanced;
  7097. } else {
  7098. /*
  7099. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  7100. * imbalance_pct to be conservative.
  7101. */
  7102. if (100 * busiest->avg_load <=
  7103. env->sd->imbalance_pct * local->avg_load)
  7104. goto out_balanced;
  7105. }
  7106. force_balance:
  7107. /* Looks like there is an imbalance. Compute it */
  7108. calculate_imbalance(env, &sds);
  7109. return sds.busiest;
  7110. out_balanced:
  7111. env->imbalance = 0;
  7112. return NULL;
  7113. }
  7114. /*
  7115. * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
  7116. */
  7117. static struct rq *find_busiest_queue(struct lb_env *env,
  7118. struct sched_group *group)
  7119. {
  7120. struct rq *busiest = NULL, *rq;
  7121. unsigned long busiest_load = 0, busiest_capacity = 1;
  7122. int i;
  7123. for_each_cpu_and(i, sched_group_span(group), env->cpus) {
  7124. unsigned long capacity, wl;
  7125. enum fbq_type rt;
  7126. rq = cpu_rq(i);
  7127. rt = fbq_classify_rq(rq);
  7128. /*
  7129. * We classify groups/runqueues into three groups:
  7130. * - regular: there are !numa tasks
  7131. * - remote: there are numa tasks that run on the 'wrong' node
  7132. * - all: there is no distinction
  7133. *
  7134. * In order to avoid migrating ideally placed numa tasks,
  7135. * ignore those when there's better options.
  7136. *
  7137. * If we ignore the actual busiest queue to migrate another
  7138. * task, the next balance pass can still reduce the busiest
  7139. * queue by moving tasks around inside the node.
  7140. *
  7141. * If we cannot move enough load due to this classification
  7142. * the next pass will adjust the group classification and
  7143. * allow migration of more tasks.
  7144. *
  7145. * Both cases only affect the total convergence complexity.
  7146. */
  7147. if (rt > env->fbq_type)
  7148. continue;
  7149. capacity = capacity_of(i);
  7150. wl = weighted_cpuload(rq);
  7151. /*
  7152. * When comparing with imbalance, use weighted_cpuload()
  7153. * which is not scaled with the CPU capacity.
  7154. */
  7155. if (rq->nr_running == 1 && wl > env->imbalance &&
  7156. !check_cpu_capacity(rq, env->sd))
  7157. continue;
  7158. /*
  7159. * For the load comparisons with the other CPU's, consider
  7160. * the weighted_cpuload() scaled with the CPU capacity, so
  7161. * that the load can be moved away from the CPU that is
  7162. * potentially running at a lower capacity.
  7163. *
  7164. * Thus we're looking for max(wl_i / capacity_i), crosswise
  7165. * multiplication to rid ourselves of the division works out
  7166. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  7167. * our previous maximum.
  7168. */
  7169. if (wl * busiest_capacity > busiest_load * capacity) {
  7170. busiest_load = wl;
  7171. busiest_capacity = capacity;
  7172. busiest = rq;
  7173. }
  7174. }
  7175. return busiest;
  7176. }
  7177. /*
  7178. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  7179. * so long as it is large enough.
  7180. */
  7181. #define MAX_PINNED_INTERVAL 512
  7182. static int need_active_balance(struct lb_env *env)
  7183. {
  7184. struct sched_domain *sd = env->sd;
  7185. if (env->idle == CPU_NEWLY_IDLE) {
  7186. /*
  7187. * ASYM_PACKING needs to force migrate tasks from busy but
  7188. * lower priority CPUs in order to pack all tasks in the
  7189. * highest priority CPUs.
  7190. */
  7191. if ((sd->flags & SD_ASYM_PACKING) &&
  7192. sched_asym_prefer(env->dst_cpu, env->src_cpu))
  7193. return 1;
  7194. }
  7195. /*
  7196. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  7197. * It's worth migrating the task if the src_cpu's capacity is reduced
  7198. * because of other sched_class or IRQs if more capacity stays
  7199. * available on dst_cpu.
  7200. */
  7201. if ((env->idle != CPU_NOT_IDLE) &&
  7202. (env->src_rq->cfs.h_nr_running == 1)) {
  7203. if ((check_cpu_capacity(env->src_rq, sd)) &&
  7204. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  7205. return 1;
  7206. }
  7207. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  7208. }
  7209. static int active_load_balance_cpu_stop(void *data);
  7210. static int should_we_balance(struct lb_env *env)
  7211. {
  7212. struct sched_group *sg = env->sd->groups;
  7213. int cpu, balance_cpu = -1;
  7214. /*
  7215. * Ensure the balancing environment is consistent; can happen
  7216. * when the softirq triggers 'during' hotplug.
  7217. */
  7218. if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
  7219. return 0;
  7220. /*
  7221. * In the newly idle case, we will allow all the CPUs
  7222. * to do the newly idle load balance.
  7223. */
  7224. if (env->idle == CPU_NEWLY_IDLE)
  7225. return 1;
  7226. /* Try to find first idle CPU */
  7227. for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
  7228. if (!idle_cpu(cpu))
  7229. continue;
  7230. balance_cpu = cpu;
  7231. break;
  7232. }
  7233. if (balance_cpu == -1)
  7234. balance_cpu = group_balance_cpu(sg);
  7235. /*
  7236. * First idle CPU or the first CPU(busiest) in this sched group
  7237. * is eligible for doing load balancing at this and above domains.
  7238. */
  7239. return balance_cpu == env->dst_cpu;
  7240. }
  7241. /*
  7242. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  7243. * tasks if there is an imbalance.
  7244. */
  7245. static int load_balance(int this_cpu, struct rq *this_rq,
  7246. struct sched_domain *sd, enum cpu_idle_type idle,
  7247. int *continue_balancing)
  7248. {
  7249. int ld_moved, cur_ld_moved, active_balance = 0;
  7250. struct sched_domain *sd_parent = sd->parent;
  7251. struct sched_group *group;
  7252. struct rq *busiest;
  7253. struct rq_flags rf;
  7254. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  7255. struct lb_env env = {
  7256. .sd = sd,
  7257. .dst_cpu = this_cpu,
  7258. .dst_rq = this_rq,
  7259. .dst_grpmask = sched_group_span(sd->groups),
  7260. .idle = idle,
  7261. .loop_break = sched_nr_migrate_break,
  7262. .cpus = cpus,
  7263. .fbq_type = all,
  7264. .tasks = LIST_HEAD_INIT(env.tasks),
  7265. };
  7266. cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
  7267. schedstat_inc(sd->lb_count[idle]);
  7268. redo:
  7269. if (!should_we_balance(&env)) {
  7270. *continue_balancing = 0;
  7271. goto out_balanced;
  7272. }
  7273. group = find_busiest_group(&env);
  7274. if (!group) {
  7275. schedstat_inc(sd->lb_nobusyg[idle]);
  7276. goto out_balanced;
  7277. }
  7278. busiest = find_busiest_queue(&env, group);
  7279. if (!busiest) {
  7280. schedstat_inc(sd->lb_nobusyq[idle]);
  7281. goto out_balanced;
  7282. }
  7283. BUG_ON(busiest == env.dst_rq);
  7284. schedstat_add(sd->lb_imbalance[idle], env.imbalance);
  7285. env.src_cpu = busiest->cpu;
  7286. env.src_rq = busiest;
  7287. ld_moved = 0;
  7288. if (busiest->nr_running > 1) {
  7289. /*
  7290. * Attempt to move tasks. If find_busiest_group has found
  7291. * an imbalance but busiest->nr_running <= 1, the group is
  7292. * still unbalanced. ld_moved simply stays zero, so it is
  7293. * correctly treated as an imbalance.
  7294. */
  7295. env.flags |= LBF_ALL_PINNED;
  7296. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  7297. more_balance:
  7298. rq_lock_irqsave(busiest, &rf);
  7299. update_rq_clock(busiest);
  7300. /*
  7301. * cur_ld_moved - load moved in current iteration
  7302. * ld_moved - cumulative load moved across iterations
  7303. */
  7304. cur_ld_moved = detach_tasks(&env);
  7305. /*
  7306. * We've detached some tasks from busiest_rq. Every
  7307. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  7308. * unlock busiest->lock, and we are able to be sure
  7309. * that nobody can manipulate the tasks in parallel.
  7310. * See task_rq_lock() family for the details.
  7311. */
  7312. rq_unlock(busiest, &rf);
  7313. if (cur_ld_moved) {
  7314. attach_tasks(&env);
  7315. ld_moved += cur_ld_moved;
  7316. }
  7317. local_irq_restore(rf.flags);
  7318. if (env.flags & LBF_NEED_BREAK) {
  7319. env.flags &= ~LBF_NEED_BREAK;
  7320. goto more_balance;
  7321. }
  7322. /*
  7323. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  7324. * us and move them to an alternate dst_cpu in our sched_group
  7325. * where they can run. The upper limit on how many times we
  7326. * iterate on same src_cpu is dependent on number of CPUs in our
  7327. * sched_group.
  7328. *
  7329. * This changes load balance semantics a bit on who can move
  7330. * load to a given_cpu. In addition to the given_cpu itself
  7331. * (or a ilb_cpu acting on its behalf where given_cpu is
  7332. * nohz-idle), we now have balance_cpu in a position to move
  7333. * load to given_cpu. In rare situations, this may cause
  7334. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  7335. * _independently_ and at _same_ time to move some load to
  7336. * given_cpu) causing exceess load to be moved to given_cpu.
  7337. * This however should not happen so much in practice and
  7338. * moreover subsequent load balance cycles should correct the
  7339. * excess load moved.
  7340. */
  7341. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  7342. /* Prevent to re-select dst_cpu via env's CPUs */
  7343. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  7344. env.dst_rq = cpu_rq(env.new_dst_cpu);
  7345. env.dst_cpu = env.new_dst_cpu;
  7346. env.flags &= ~LBF_DST_PINNED;
  7347. env.loop = 0;
  7348. env.loop_break = sched_nr_migrate_break;
  7349. /*
  7350. * Go back to "more_balance" rather than "redo" since we
  7351. * need to continue with same src_cpu.
  7352. */
  7353. goto more_balance;
  7354. }
  7355. /*
  7356. * We failed to reach balance because of affinity.
  7357. */
  7358. if (sd_parent) {
  7359. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  7360. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  7361. *group_imbalance = 1;
  7362. }
  7363. /* All tasks on this runqueue were pinned by CPU affinity */
  7364. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  7365. cpumask_clear_cpu(cpu_of(busiest), cpus);
  7366. /*
  7367. * Attempting to continue load balancing at the current
  7368. * sched_domain level only makes sense if there are
  7369. * active CPUs remaining as possible busiest CPUs to
  7370. * pull load from which are not contained within the
  7371. * destination group that is receiving any migrated
  7372. * load.
  7373. */
  7374. if (!cpumask_subset(cpus, env.dst_grpmask)) {
  7375. env.loop = 0;
  7376. env.loop_break = sched_nr_migrate_break;
  7377. goto redo;
  7378. }
  7379. goto out_all_pinned;
  7380. }
  7381. }
  7382. if (!ld_moved) {
  7383. schedstat_inc(sd->lb_failed[idle]);
  7384. /*
  7385. * Increment the failure counter only on periodic balance.
  7386. * We do not want newidle balance, which can be very
  7387. * frequent, pollute the failure counter causing
  7388. * excessive cache_hot migrations and active balances.
  7389. */
  7390. if (idle != CPU_NEWLY_IDLE)
  7391. sd->nr_balance_failed++;
  7392. if (need_active_balance(&env)) {
  7393. unsigned long flags;
  7394. raw_spin_lock_irqsave(&busiest->lock, flags);
  7395. /*
  7396. * Don't kick the active_load_balance_cpu_stop,
  7397. * if the curr task on busiest CPU can't be
  7398. * moved to this_cpu:
  7399. */
  7400. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  7401. raw_spin_unlock_irqrestore(&busiest->lock,
  7402. flags);
  7403. env.flags |= LBF_ALL_PINNED;
  7404. goto out_one_pinned;
  7405. }
  7406. /*
  7407. * ->active_balance synchronizes accesses to
  7408. * ->active_balance_work. Once set, it's cleared
  7409. * only after active load balance is finished.
  7410. */
  7411. if (!busiest->active_balance) {
  7412. busiest->active_balance = 1;
  7413. busiest->push_cpu = this_cpu;
  7414. active_balance = 1;
  7415. }
  7416. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  7417. if (active_balance) {
  7418. stop_one_cpu_nowait(cpu_of(busiest),
  7419. active_load_balance_cpu_stop, busiest,
  7420. &busiest->active_balance_work);
  7421. }
  7422. /* We've kicked active balancing, force task migration. */
  7423. sd->nr_balance_failed = sd->cache_nice_tries+1;
  7424. }
  7425. } else
  7426. sd->nr_balance_failed = 0;
  7427. if (likely(!active_balance)) {
  7428. /* We were unbalanced, so reset the balancing interval */
  7429. sd->balance_interval = sd->min_interval;
  7430. } else {
  7431. /*
  7432. * If we've begun active balancing, start to back off. This
  7433. * case may not be covered by the all_pinned logic if there
  7434. * is only 1 task on the busy runqueue (because we don't call
  7435. * detach_tasks).
  7436. */
  7437. if (sd->balance_interval < sd->max_interval)
  7438. sd->balance_interval *= 2;
  7439. }
  7440. goto out;
  7441. out_balanced:
  7442. /*
  7443. * We reach balance although we may have faced some affinity
  7444. * constraints. Clear the imbalance flag if it was set.
  7445. */
  7446. if (sd_parent) {
  7447. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  7448. if (*group_imbalance)
  7449. *group_imbalance = 0;
  7450. }
  7451. out_all_pinned:
  7452. /*
  7453. * We reach balance because all tasks are pinned at this level so
  7454. * we can't migrate them. Let the imbalance flag set so parent level
  7455. * can try to migrate them.
  7456. */
  7457. schedstat_inc(sd->lb_balanced[idle]);
  7458. sd->nr_balance_failed = 0;
  7459. out_one_pinned:
  7460. /* tune up the balancing interval */
  7461. if (((env.flags & LBF_ALL_PINNED) &&
  7462. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  7463. (sd->balance_interval < sd->max_interval))
  7464. sd->balance_interval *= 2;
  7465. ld_moved = 0;
  7466. out:
  7467. return ld_moved;
  7468. }
  7469. static inline unsigned long
  7470. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  7471. {
  7472. unsigned long interval = sd->balance_interval;
  7473. if (cpu_busy)
  7474. interval *= sd->busy_factor;
  7475. /* scale ms to jiffies */
  7476. interval = msecs_to_jiffies(interval);
  7477. interval = clamp(interval, 1UL, max_load_balance_interval);
  7478. return interval;
  7479. }
  7480. static inline void
  7481. update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
  7482. {
  7483. unsigned long interval, next;
  7484. /* used by idle balance, so cpu_busy = 0 */
  7485. interval = get_sd_balance_interval(sd, 0);
  7486. next = sd->last_balance + interval;
  7487. if (time_after(*next_balance, next))
  7488. *next_balance = next;
  7489. }
  7490. /*
  7491. * idle_balance is called by schedule() if this_cpu is about to become
  7492. * idle. Attempts to pull tasks from other CPUs.
  7493. */
  7494. static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
  7495. {
  7496. unsigned long next_balance = jiffies + HZ;
  7497. int this_cpu = this_rq->cpu;
  7498. struct sched_domain *sd;
  7499. int pulled_task = 0;
  7500. u64 curr_cost = 0;
  7501. /*
  7502. * We must set idle_stamp _before_ calling idle_balance(), such that we
  7503. * measure the duration of idle_balance() as idle time.
  7504. */
  7505. this_rq->idle_stamp = rq_clock(this_rq);
  7506. /*
  7507. * Do not pull tasks towards !active CPUs...
  7508. */
  7509. if (!cpu_active(this_cpu))
  7510. return 0;
  7511. /*
  7512. * This is OK, because current is on_cpu, which avoids it being picked
  7513. * for load-balance and preemption/IRQs are still disabled avoiding
  7514. * further scheduler activity on it and we're being very careful to
  7515. * re-start the picking loop.
  7516. */
  7517. rq_unpin_lock(this_rq, rf);
  7518. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  7519. !this_rq->rd->overload) {
  7520. rcu_read_lock();
  7521. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  7522. if (sd)
  7523. update_next_balance(sd, &next_balance);
  7524. rcu_read_unlock();
  7525. goto out;
  7526. }
  7527. raw_spin_unlock(&this_rq->lock);
  7528. update_blocked_averages(this_cpu);
  7529. rcu_read_lock();
  7530. for_each_domain(this_cpu, sd) {
  7531. int continue_balancing = 1;
  7532. u64 t0, domain_cost;
  7533. if (!(sd->flags & SD_LOAD_BALANCE))
  7534. continue;
  7535. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  7536. update_next_balance(sd, &next_balance);
  7537. break;
  7538. }
  7539. if (sd->flags & SD_BALANCE_NEWIDLE) {
  7540. t0 = sched_clock_cpu(this_cpu);
  7541. pulled_task = load_balance(this_cpu, this_rq,
  7542. sd, CPU_NEWLY_IDLE,
  7543. &continue_balancing);
  7544. domain_cost = sched_clock_cpu(this_cpu) - t0;
  7545. if (domain_cost > sd->max_newidle_lb_cost)
  7546. sd->max_newidle_lb_cost = domain_cost;
  7547. curr_cost += domain_cost;
  7548. }
  7549. update_next_balance(sd, &next_balance);
  7550. /*
  7551. * Stop searching for tasks to pull if there are
  7552. * now runnable tasks on this rq.
  7553. */
  7554. if (pulled_task || this_rq->nr_running > 0)
  7555. break;
  7556. }
  7557. rcu_read_unlock();
  7558. raw_spin_lock(&this_rq->lock);
  7559. if (curr_cost > this_rq->max_idle_balance_cost)
  7560. this_rq->max_idle_balance_cost = curr_cost;
  7561. /*
  7562. * While browsing the domains, we released the rq lock, a task could
  7563. * have been enqueued in the meantime. Since we're not going idle,
  7564. * pretend we pulled a task.
  7565. */
  7566. if (this_rq->cfs.h_nr_running && !pulled_task)
  7567. pulled_task = 1;
  7568. out:
  7569. /* Move the next balance forward */
  7570. if (time_after(this_rq->next_balance, next_balance))
  7571. this_rq->next_balance = next_balance;
  7572. /* Is there a task of a high priority class? */
  7573. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  7574. pulled_task = -1;
  7575. if (pulled_task)
  7576. this_rq->idle_stamp = 0;
  7577. rq_repin_lock(this_rq, rf);
  7578. return pulled_task;
  7579. }
  7580. /*
  7581. * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
  7582. * running tasks off the busiest CPU onto idle CPUs. It requires at
  7583. * least 1 task to be running on each physical CPU where possible, and
  7584. * avoids physical / logical imbalances.
  7585. */
  7586. static int active_load_balance_cpu_stop(void *data)
  7587. {
  7588. struct rq *busiest_rq = data;
  7589. int busiest_cpu = cpu_of(busiest_rq);
  7590. int target_cpu = busiest_rq->push_cpu;
  7591. struct rq *target_rq = cpu_rq(target_cpu);
  7592. struct sched_domain *sd;
  7593. struct task_struct *p = NULL;
  7594. struct rq_flags rf;
  7595. rq_lock_irq(busiest_rq, &rf);
  7596. /*
  7597. * Between queueing the stop-work and running it is a hole in which
  7598. * CPUs can become inactive. We should not move tasks from or to
  7599. * inactive CPUs.
  7600. */
  7601. if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
  7602. goto out_unlock;
  7603. /* Make sure the requested CPU hasn't gone down in the meantime: */
  7604. if (unlikely(busiest_cpu != smp_processor_id() ||
  7605. !busiest_rq->active_balance))
  7606. goto out_unlock;
  7607. /* Is there any task to move? */
  7608. if (busiest_rq->nr_running <= 1)
  7609. goto out_unlock;
  7610. /*
  7611. * This condition is "impossible", if it occurs
  7612. * we need to fix it. Originally reported by
  7613. * Bjorn Helgaas on a 128-CPU setup.
  7614. */
  7615. BUG_ON(busiest_rq == target_rq);
  7616. /* Search for an sd spanning us and the target CPU. */
  7617. rcu_read_lock();
  7618. for_each_domain(target_cpu, sd) {
  7619. if ((sd->flags & SD_LOAD_BALANCE) &&
  7620. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  7621. break;
  7622. }
  7623. if (likely(sd)) {
  7624. struct lb_env env = {
  7625. .sd = sd,
  7626. .dst_cpu = target_cpu,
  7627. .dst_rq = target_rq,
  7628. .src_cpu = busiest_rq->cpu,
  7629. .src_rq = busiest_rq,
  7630. .idle = CPU_IDLE,
  7631. /*
  7632. * can_migrate_task() doesn't need to compute new_dst_cpu
  7633. * for active balancing. Since we have CPU_IDLE, but no
  7634. * @dst_grpmask we need to make that test go away with lying
  7635. * about DST_PINNED.
  7636. */
  7637. .flags = LBF_DST_PINNED,
  7638. };
  7639. schedstat_inc(sd->alb_count);
  7640. update_rq_clock(busiest_rq);
  7641. p = detach_one_task(&env);
  7642. if (p) {
  7643. schedstat_inc(sd->alb_pushed);
  7644. /* Active balancing done, reset the failure counter. */
  7645. sd->nr_balance_failed = 0;
  7646. } else {
  7647. schedstat_inc(sd->alb_failed);
  7648. }
  7649. }
  7650. rcu_read_unlock();
  7651. out_unlock:
  7652. busiest_rq->active_balance = 0;
  7653. rq_unlock(busiest_rq, &rf);
  7654. if (p)
  7655. attach_one_task(target_rq, p);
  7656. local_irq_enable();
  7657. return 0;
  7658. }
  7659. static DEFINE_SPINLOCK(balancing);
  7660. /*
  7661. * Scale the max load_balance interval with the number of CPUs in the system.
  7662. * This trades load-balance latency on larger machines for less cross talk.
  7663. */
  7664. void update_max_interval(void)
  7665. {
  7666. max_load_balance_interval = HZ*num_online_cpus()/10;
  7667. }
  7668. /*
  7669. * It checks each scheduling domain to see if it is due to be balanced,
  7670. * and initiates a balancing operation if so.
  7671. *
  7672. * Balancing parameters are set up in init_sched_domains.
  7673. */
  7674. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  7675. {
  7676. int continue_balancing = 1;
  7677. int cpu = rq->cpu;
  7678. unsigned long interval;
  7679. struct sched_domain *sd;
  7680. /* Earliest time when we have to do rebalance again */
  7681. unsigned long next_balance = jiffies + 60*HZ;
  7682. int update_next_balance = 0;
  7683. int need_serialize, need_decay = 0;
  7684. u64 max_cost = 0;
  7685. rcu_read_lock();
  7686. for_each_domain(cpu, sd) {
  7687. /*
  7688. * Decay the newidle max times here because this is a regular
  7689. * visit to all the domains. Decay ~1% per second.
  7690. */
  7691. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  7692. sd->max_newidle_lb_cost =
  7693. (sd->max_newidle_lb_cost * 253) / 256;
  7694. sd->next_decay_max_lb_cost = jiffies + HZ;
  7695. need_decay = 1;
  7696. }
  7697. max_cost += sd->max_newidle_lb_cost;
  7698. if (!(sd->flags & SD_LOAD_BALANCE))
  7699. continue;
  7700. /*
  7701. * Stop the load balance at this level. There is another
  7702. * CPU in our sched group which is doing load balancing more
  7703. * actively.
  7704. */
  7705. if (!continue_balancing) {
  7706. if (need_decay)
  7707. continue;
  7708. break;
  7709. }
  7710. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  7711. need_serialize = sd->flags & SD_SERIALIZE;
  7712. if (need_serialize) {
  7713. if (!spin_trylock(&balancing))
  7714. goto out;
  7715. }
  7716. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  7717. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  7718. /*
  7719. * The LBF_DST_PINNED logic could have changed
  7720. * env->dst_cpu, so we can't know our idle
  7721. * state even if we migrated tasks. Update it.
  7722. */
  7723. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  7724. }
  7725. sd->last_balance = jiffies;
  7726. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  7727. }
  7728. if (need_serialize)
  7729. spin_unlock(&balancing);
  7730. out:
  7731. if (time_after(next_balance, sd->last_balance + interval)) {
  7732. next_balance = sd->last_balance + interval;
  7733. update_next_balance = 1;
  7734. }
  7735. }
  7736. if (need_decay) {
  7737. /*
  7738. * Ensure the rq-wide value also decays but keep it at a
  7739. * reasonable floor to avoid funnies with rq->avg_idle.
  7740. */
  7741. rq->max_idle_balance_cost =
  7742. max((u64)sysctl_sched_migration_cost, max_cost);
  7743. }
  7744. rcu_read_unlock();
  7745. /*
  7746. * next_balance will be updated only when there is a need.
  7747. * When the cpu is attached to null domain for ex, it will not be
  7748. * updated.
  7749. */
  7750. if (likely(update_next_balance)) {
  7751. rq->next_balance = next_balance;
  7752. #ifdef CONFIG_NO_HZ_COMMON
  7753. /*
  7754. * If this CPU has been elected to perform the nohz idle
  7755. * balance. Other idle CPUs have already rebalanced with
  7756. * nohz_idle_balance() and nohz.next_balance has been
  7757. * updated accordingly. This CPU is now running the idle load
  7758. * balance for itself and we need to update the
  7759. * nohz.next_balance accordingly.
  7760. */
  7761. if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
  7762. nohz.next_balance = rq->next_balance;
  7763. #endif
  7764. }
  7765. }
  7766. static inline int on_null_domain(struct rq *rq)
  7767. {
  7768. return unlikely(!rcu_dereference_sched(rq->sd));
  7769. }
  7770. #ifdef CONFIG_NO_HZ_COMMON
  7771. /*
  7772. * idle load balancing details
  7773. * - When one of the busy CPUs notice that there may be an idle rebalancing
  7774. * needed, they will kick the idle load balancer, which then does idle
  7775. * load balancing for all the idle CPUs.
  7776. */
  7777. static inline int find_new_ilb(void)
  7778. {
  7779. int ilb = cpumask_first(nohz.idle_cpus_mask);
  7780. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  7781. return ilb;
  7782. return nr_cpu_ids;
  7783. }
  7784. /*
  7785. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  7786. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  7787. * CPU (if there is one).
  7788. */
  7789. static void kick_ilb(unsigned int flags)
  7790. {
  7791. int ilb_cpu;
  7792. nohz.next_balance++;
  7793. ilb_cpu = find_new_ilb();
  7794. if (ilb_cpu >= nr_cpu_ids)
  7795. return;
  7796. flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
  7797. if (flags & NOHZ_KICK_MASK)
  7798. return;
  7799. /*
  7800. * Use smp_send_reschedule() instead of resched_cpu().
  7801. * This way we generate a sched IPI on the target CPU which
  7802. * is idle. And the softirq performing nohz idle load balance
  7803. * will be run before returning from the IPI.
  7804. */
  7805. smp_send_reschedule(ilb_cpu);
  7806. }
  7807. /*
  7808. * Current heuristic for kicking the idle load balancer in the presence
  7809. * of an idle cpu in the system.
  7810. * - This rq has more than one task.
  7811. * - This rq has at least one CFS task and the capacity of the CPU is
  7812. * significantly reduced because of RT tasks or IRQs.
  7813. * - At parent of LLC scheduler domain level, this cpu's scheduler group has
  7814. * multiple busy cpu.
  7815. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  7816. * domain span are idle.
  7817. */
  7818. static void nohz_balancer_kick(struct rq *rq)
  7819. {
  7820. unsigned long now = jiffies;
  7821. struct sched_domain_shared *sds;
  7822. struct sched_domain *sd;
  7823. int nr_busy, i, cpu = rq->cpu;
  7824. unsigned int flags = 0;
  7825. if (unlikely(rq->idle_balance))
  7826. return;
  7827. /*
  7828. * We may be recently in ticked or tickless idle mode. At the first
  7829. * busy tick after returning from idle, we will update the busy stats.
  7830. */
  7831. nohz_balance_exit_idle(rq);
  7832. /*
  7833. * None are in tickless mode and hence no need for NOHZ idle load
  7834. * balancing.
  7835. */
  7836. if (likely(!atomic_read(&nohz.nr_cpus)))
  7837. return;
  7838. if (READ_ONCE(nohz.has_blocked) &&
  7839. time_after(now, READ_ONCE(nohz.next_blocked)))
  7840. flags = NOHZ_STATS_KICK;
  7841. if (time_before(now, nohz.next_balance))
  7842. goto out;
  7843. if (rq->nr_running >= 2) {
  7844. flags = NOHZ_KICK_MASK;
  7845. goto out;
  7846. }
  7847. rcu_read_lock();
  7848. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  7849. if (sds) {
  7850. /*
  7851. * XXX: write a coherent comment on why we do this.
  7852. * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
  7853. */
  7854. nr_busy = atomic_read(&sds->nr_busy_cpus);
  7855. if (nr_busy > 1) {
  7856. flags = NOHZ_KICK_MASK;
  7857. goto unlock;
  7858. }
  7859. }
  7860. sd = rcu_dereference(rq->sd);
  7861. if (sd) {
  7862. if ((rq->cfs.h_nr_running >= 1) &&
  7863. check_cpu_capacity(rq, sd)) {
  7864. flags = NOHZ_KICK_MASK;
  7865. goto unlock;
  7866. }
  7867. }
  7868. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  7869. if (sd) {
  7870. for_each_cpu(i, sched_domain_span(sd)) {
  7871. if (i == cpu ||
  7872. !cpumask_test_cpu(i, nohz.idle_cpus_mask))
  7873. continue;
  7874. if (sched_asym_prefer(i, cpu)) {
  7875. flags = NOHZ_KICK_MASK;
  7876. goto unlock;
  7877. }
  7878. }
  7879. }
  7880. unlock:
  7881. rcu_read_unlock();
  7882. out:
  7883. if (flags)
  7884. kick_ilb(flags);
  7885. }
  7886. static void set_cpu_sd_state_busy(int cpu)
  7887. {
  7888. struct sched_domain *sd;
  7889. rcu_read_lock();
  7890. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  7891. if (!sd || !sd->nohz_idle)
  7892. goto unlock;
  7893. sd->nohz_idle = 0;
  7894. atomic_inc(&sd->shared->nr_busy_cpus);
  7895. unlock:
  7896. rcu_read_unlock();
  7897. }
  7898. void nohz_balance_exit_idle(struct rq *rq)
  7899. {
  7900. SCHED_WARN_ON(rq != this_rq());
  7901. if (likely(!rq->nohz_tick_stopped))
  7902. return;
  7903. rq->nohz_tick_stopped = 0;
  7904. cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
  7905. atomic_dec(&nohz.nr_cpus);
  7906. set_cpu_sd_state_busy(rq->cpu);
  7907. }
  7908. static void set_cpu_sd_state_idle(int cpu)
  7909. {
  7910. struct sched_domain *sd;
  7911. rcu_read_lock();
  7912. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  7913. if (!sd || sd->nohz_idle)
  7914. goto unlock;
  7915. sd->nohz_idle = 1;
  7916. atomic_dec(&sd->shared->nr_busy_cpus);
  7917. unlock:
  7918. rcu_read_unlock();
  7919. }
  7920. /*
  7921. * This routine will record that the CPU is going idle with tick stopped.
  7922. * This info will be used in performing idle load balancing in the future.
  7923. */
  7924. void nohz_balance_enter_idle(int cpu)
  7925. {
  7926. struct rq *rq = cpu_rq(cpu);
  7927. SCHED_WARN_ON(cpu != smp_processor_id());
  7928. /* If this CPU is going down, then nothing needs to be done: */
  7929. if (!cpu_active(cpu))
  7930. return;
  7931. /* Spare idle load balancing on CPUs that don't want to be disturbed: */
  7932. if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
  7933. return;
  7934. /*
  7935. * Can be set safely without rq->lock held
  7936. * If a clear happens, it will have evaluated last additions because
  7937. * rq->lock is held during the check and the clear
  7938. */
  7939. rq->has_blocked_load = 1;
  7940. /*
  7941. * The tick is still stopped but load could have been added in the
  7942. * meantime. We set the nohz.has_blocked flag to trig a check of the
  7943. * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
  7944. * of nohz.has_blocked can only happen after checking the new load
  7945. */
  7946. if (rq->nohz_tick_stopped)
  7947. goto out;
  7948. /* If we're a completely isolated CPU, we don't play: */
  7949. if (on_null_domain(rq))
  7950. return;
  7951. rq->nohz_tick_stopped = 1;
  7952. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  7953. atomic_inc(&nohz.nr_cpus);
  7954. /*
  7955. * Ensures that if nohz_idle_balance() fails to observe our
  7956. * @idle_cpus_mask store, it must observe the @has_blocked
  7957. * store.
  7958. */
  7959. smp_mb__after_atomic();
  7960. set_cpu_sd_state_idle(cpu);
  7961. out:
  7962. /*
  7963. * Each time a cpu enter idle, we assume that it has blocked load and
  7964. * enable the periodic update of the load of idle cpus
  7965. */
  7966. WRITE_ONCE(nohz.has_blocked, 1);
  7967. }
  7968. /*
  7969. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  7970. * rebalancing for all the CPUs for whom scheduler ticks are stopped.
  7971. */
  7972. static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  7973. {
  7974. /* Earliest time when we have to do rebalance again */
  7975. unsigned long now = jiffies;
  7976. unsigned long next_balance = now + 60*HZ;
  7977. bool has_blocked_load = false;
  7978. int update_next_balance = 0;
  7979. int this_cpu = this_rq->cpu;
  7980. unsigned int flags;
  7981. int balance_cpu;
  7982. struct rq *rq;
  7983. if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
  7984. return false;
  7985. if (idle != CPU_IDLE) {
  7986. atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
  7987. return false;
  7988. }
  7989. flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
  7990. SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
  7991. /*
  7992. * We assume there will be no idle load after this update and clear
  7993. * the has_blocked flag. If a cpu enters idle in the mean time, it will
  7994. * set the has_blocked flag and trig another update of idle load.
  7995. * Because a cpu that becomes idle, is added to idle_cpus_mask before
  7996. * setting the flag, we are sure to not clear the state and not
  7997. * check the load of an idle cpu.
  7998. */
  7999. WRITE_ONCE(nohz.has_blocked, 0);
  8000. /*
  8001. * Ensures that if we miss the CPU, we must see the has_blocked
  8002. * store from nohz_balance_enter_idle().
  8003. */
  8004. smp_mb();
  8005. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  8006. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  8007. continue;
  8008. /*
  8009. * If this CPU gets work to do, stop the load balancing
  8010. * work being done for other CPUs. Next load
  8011. * balancing owner will pick it up.
  8012. */
  8013. if (need_resched()) {
  8014. has_blocked_load = true;
  8015. goto abort;
  8016. }
  8017. rq = cpu_rq(balance_cpu);
  8018. has_blocked_load |= update_nohz_stats(rq, true);
  8019. /*
  8020. * If time for next balance is due,
  8021. * do the balance.
  8022. */
  8023. if (time_after_eq(jiffies, rq->next_balance)) {
  8024. struct rq_flags rf;
  8025. rq_lock_irq(rq, &rf);
  8026. update_rq_clock(rq);
  8027. cpu_load_update_idle(rq);
  8028. rq_unlock_irq(rq, &rf);
  8029. if (flags & NOHZ_BALANCE_KICK)
  8030. rebalance_domains(rq, CPU_IDLE);
  8031. }
  8032. if (time_after(next_balance, rq->next_balance)) {
  8033. next_balance = rq->next_balance;
  8034. update_next_balance = 1;
  8035. }
  8036. }
  8037. update_blocked_averages(this_cpu);
  8038. if (flags & NOHZ_BALANCE_KICK)
  8039. rebalance_domains(this_rq, CPU_IDLE);
  8040. WRITE_ONCE(nohz.next_blocked,
  8041. now + msecs_to_jiffies(LOAD_AVG_PERIOD));
  8042. abort:
  8043. /* There is still blocked load, enable periodic update */
  8044. if (has_blocked_load)
  8045. WRITE_ONCE(nohz.has_blocked, 1);
  8046. /*
  8047. * next_balance will be updated only when there is a need.
  8048. * When the CPU is attached to null domain for ex, it will not be
  8049. * updated.
  8050. */
  8051. if (likely(update_next_balance))
  8052. nohz.next_balance = next_balance;
  8053. return true;
  8054. }
  8055. #else /* !CONFIG_NO_HZ_COMMON */
  8056. static inline void nohz_balancer_kick(struct rq *rq) { }
  8057. static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  8058. {
  8059. return false;
  8060. }
  8061. #endif /* CONFIG_NO_HZ_COMMON */
  8062. /*
  8063. * run_rebalance_domains is triggered when needed from the scheduler tick.
  8064. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  8065. */
  8066. static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
  8067. {
  8068. struct rq *this_rq = this_rq();
  8069. enum cpu_idle_type idle = this_rq->idle_balance ?
  8070. CPU_IDLE : CPU_NOT_IDLE;
  8071. /*
  8072. * If this CPU has a pending nohz_balance_kick, then do the
  8073. * balancing on behalf of the other idle CPUs whose ticks are
  8074. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  8075. * give the idle CPUs a chance to load balance. Else we may
  8076. * load balance only within the local sched_domain hierarchy
  8077. * and abort nohz_idle_balance altogether if we pull some load.
  8078. */
  8079. if (nohz_idle_balance(this_rq, idle))
  8080. return;
  8081. /* normal load balance */
  8082. update_blocked_averages(this_rq->cpu);
  8083. rebalance_domains(this_rq, idle);
  8084. }
  8085. /*
  8086. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  8087. */
  8088. void trigger_load_balance(struct rq *rq)
  8089. {
  8090. /* Don't need to rebalance while attached to NULL domain */
  8091. if (unlikely(on_null_domain(rq)))
  8092. return;
  8093. if (time_after_eq(jiffies, rq->next_balance))
  8094. raise_softirq(SCHED_SOFTIRQ);
  8095. nohz_balancer_kick(rq);
  8096. }
  8097. static void rq_online_fair(struct rq *rq)
  8098. {
  8099. update_sysctl();
  8100. update_runtime_enabled(rq);
  8101. }
  8102. static void rq_offline_fair(struct rq *rq)
  8103. {
  8104. update_sysctl();
  8105. /* Ensure any throttled groups are reachable by pick_next_task */
  8106. unthrottle_offline_cfs_rqs(rq);
  8107. }
  8108. #endif /* CONFIG_SMP */
  8109. /*
  8110. * scheduler tick hitting a task of our scheduling class.
  8111. *
  8112. * NOTE: This function can be called remotely by the tick offload that
  8113. * goes along full dynticks. Therefore no local assumption can be made
  8114. * and everything must be accessed through the @rq and @curr passed in
  8115. * parameters.
  8116. */
  8117. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  8118. {
  8119. struct cfs_rq *cfs_rq;
  8120. struct sched_entity *se = &curr->se;
  8121. for_each_sched_entity(se) {
  8122. cfs_rq = cfs_rq_of(se);
  8123. entity_tick(cfs_rq, se, queued);
  8124. }
  8125. if (static_branch_unlikely(&sched_numa_balancing))
  8126. task_tick_numa(rq, curr);
  8127. }
  8128. /*
  8129. * called on fork with the child task as argument from the parent's context
  8130. * - child not yet on the tasklist
  8131. * - preemption disabled
  8132. */
  8133. static void task_fork_fair(struct task_struct *p)
  8134. {
  8135. struct cfs_rq *cfs_rq;
  8136. struct sched_entity *se = &p->se, *curr;
  8137. struct rq *rq = this_rq();
  8138. struct rq_flags rf;
  8139. rq_lock(rq, &rf);
  8140. update_rq_clock(rq);
  8141. cfs_rq = task_cfs_rq(current);
  8142. curr = cfs_rq->curr;
  8143. if (curr) {
  8144. update_curr(cfs_rq);
  8145. se->vruntime = curr->vruntime;
  8146. }
  8147. place_entity(cfs_rq, se, 1);
  8148. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  8149. /*
  8150. * Upon rescheduling, sched_class::put_prev_task() will place
  8151. * 'current' within the tree based on its new key value.
  8152. */
  8153. swap(curr->vruntime, se->vruntime);
  8154. resched_curr(rq);
  8155. }
  8156. se->vruntime -= cfs_rq->min_vruntime;
  8157. rq_unlock(rq, &rf);
  8158. }
  8159. /*
  8160. * Priority of the task has changed. Check to see if we preempt
  8161. * the current task.
  8162. */
  8163. static void
  8164. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  8165. {
  8166. if (!task_on_rq_queued(p))
  8167. return;
  8168. /*
  8169. * Reschedule if we are currently running on this runqueue and
  8170. * our priority decreased, or if we are not currently running on
  8171. * this runqueue and our priority is higher than the current's
  8172. */
  8173. if (rq->curr == p) {
  8174. if (p->prio > oldprio)
  8175. resched_curr(rq);
  8176. } else
  8177. check_preempt_curr(rq, p, 0);
  8178. }
  8179. static inline bool vruntime_normalized(struct task_struct *p)
  8180. {
  8181. struct sched_entity *se = &p->se;
  8182. /*
  8183. * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
  8184. * the dequeue_entity(.flags=0) will already have normalized the
  8185. * vruntime.
  8186. */
  8187. if (p->on_rq)
  8188. return true;
  8189. /*
  8190. * When !on_rq, vruntime of the task has usually NOT been normalized.
  8191. * But there are some cases where it has already been normalized:
  8192. *
  8193. * - A forked child which is waiting for being woken up by
  8194. * wake_up_new_task().
  8195. * - A task which has been woken up by try_to_wake_up() and
  8196. * waiting for actually being woken up by sched_ttwu_pending().
  8197. */
  8198. if (!se->sum_exec_runtime || p->state == TASK_WAKING)
  8199. return true;
  8200. return false;
  8201. }
  8202. #ifdef CONFIG_FAIR_GROUP_SCHED
  8203. /*
  8204. * Propagate the changes of the sched_entity across the tg tree to make it
  8205. * visible to the root
  8206. */
  8207. static void propagate_entity_cfs_rq(struct sched_entity *se)
  8208. {
  8209. struct cfs_rq *cfs_rq;
  8210. /* Start to propagate at parent */
  8211. se = se->parent;
  8212. for_each_sched_entity(se) {
  8213. cfs_rq = cfs_rq_of(se);
  8214. if (cfs_rq_throttled(cfs_rq))
  8215. break;
  8216. update_load_avg(cfs_rq, se, UPDATE_TG);
  8217. }
  8218. }
  8219. #else
  8220. static void propagate_entity_cfs_rq(struct sched_entity *se) { }
  8221. #endif
  8222. static void detach_entity_cfs_rq(struct sched_entity *se)
  8223. {
  8224. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  8225. /* Catch up with the cfs_rq and remove our load when we leave */
  8226. update_load_avg(cfs_rq, se, 0);
  8227. detach_entity_load_avg(cfs_rq, se);
  8228. update_tg_load_avg(cfs_rq, false);
  8229. propagate_entity_cfs_rq(se);
  8230. }
  8231. static void attach_entity_cfs_rq(struct sched_entity *se)
  8232. {
  8233. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  8234. #ifdef CONFIG_FAIR_GROUP_SCHED
  8235. /*
  8236. * Since the real-depth could have been changed (only FAIR
  8237. * class maintain depth value), reset depth properly.
  8238. */
  8239. se->depth = se->parent ? se->parent->depth + 1 : 0;
  8240. #endif
  8241. /* Synchronize entity with its cfs_rq */
  8242. update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
  8243. attach_entity_load_avg(cfs_rq, se, 0);
  8244. update_tg_load_avg(cfs_rq, false);
  8245. propagate_entity_cfs_rq(se);
  8246. }
  8247. static void detach_task_cfs_rq(struct task_struct *p)
  8248. {
  8249. struct sched_entity *se = &p->se;
  8250. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  8251. if (!vruntime_normalized(p)) {
  8252. /*
  8253. * Fix up our vruntime so that the current sleep doesn't
  8254. * cause 'unlimited' sleep bonus.
  8255. */
  8256. place_entity(cfs_rq, se, 0);
  8257. se->vruntime -= cfs_rq->min_vruntime;
  8258. }
  8259. detach_entity_cfs_rq(se);
  8260. }
  8261. static void attach_task_cfs_rq(struct task_struct *p)
  8262. {
  8263. struct sched_entity *se = &p->se;
  8264. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  8265. attach_entity_cfs_rq(se);
  8266. if (!vruntime_normalized(p))
  8267. se->vruntime += cfs_rq->min_vruntime;
  8268. }
  8269. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  8270. {
  8271. detach_task_cfs_rq(p);
  8272. }
  8273. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  8274. {
  8275. attach_task_cfs_rq(p);
  8276. if (task_on_rq_queued(p)) {
  8277. /*
  8278. * We were most likely switched from sched_rt, so
  8279. * kick off the schedule if running, otherwise just see
  8280. * if we can still preempt the current task.
  8281. */
  8282. if (rq->curr == p)
  8283. resched_curr(rq);
  8284. else
  8285. check_preempt_curr(rq, p, 0);
  8286. }
  8287. }
  8288. /* Account for a task changing its policy or group.
  8289. *
  8290. * This routine is mostly called to set cfs_rq->curr field when a task
  8291. * migrates between groups/classes.
  8292. */
  8293. static void set_curr_task_fair(struct rq *rq)
  8294. {
  8295. struct sched_entity *se = &rq->curr->se;
  8296. for_each_sched_entity(se) {
  8297. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  8298. set_next_entity(cfs_rq, se);
  8299. /* ensure bandwidth has been allocated on our new cfs_rq */
  8300. account_cfs_rq_runtime(cfs_rq, 0);
  8301. }
  8302. }
  8303. void init_cfs_rq(struct cfs_rq *cfs_rq)
  8304. {
  8305. cfs_rq->tasks_timeline = RB_ROOT_CACHED;
  8306. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  8307. #ifndef CONFIG_64BIT
  8308. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  8309. #endif
  8310. #ifdef CONFIG_SMP
  8311. raw_spin_lock_init(&cfs_rq->removed.lock);
  8312. #endif
  8313. }
  8314. #ifdef CONFIG_FAIR_GROUP_SCHED
  8315. static void task_set_group_fair(struct task_struct *p)
  8316. {
  8317. struct sched_entity *se = &p->se;
  8318. set_task_rq(p, task_cpu(p));
  8319. se->depth = se->parent ? se->parent->depth + 1 : 0;
  8320. }
  8321. static void task_move_group_fair(struct task_struct *p)
  8322. {
  8323. detach_task_cfs_rq(p);
  8324. set_task_rq(p, task_cpu(p));
  8325. #ifdef CONFIG_SMP
  8326. /* Tell se's cfs_rq has been changed -- migrated */
  8327. p->se.avg.last_update_time = 0;
  8328. #endif
  8329. attach_task_cfs_rq(p);
  8330. }
  8331. static void task_change_group_fair(struct task_struct *p, int type)
  8332. {
  8333. switch (type) {
  8334. case TASK_SET_GROUP:
  8335. task_set_group_fair(p);
  8336. break;
  8337. case TASK_MOVE_GROUP:
  8338. task_move_group_fair(p);
  8339. break;
  8340. }
  8341. }
  8342. void free_fair_sched_group(struct task_group *tg)
  8343. {
  8344. int i;
  8345. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  8346. for_each_possible_cpu(i) {
  8347. if (tg->cfs_rq)
  8348. kfree(tg->cfs_rq[i]);
  8349. if (tg->se)
  8350. kfree(tg->se[i]);
  8351. }
  8352. kfree(tg->cfs_rq);
  8353. kfree(tg->se);
  8354. }
  8355. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8356. {
  8357. struct sched_entity *se;
  8358. struct cfs_rq *cfs_rq;
  8359. int i;
  8360. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8361. if (!tg->cfs_rq)
  8362. goto err;
  8363. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8364. if (!tg->se)
  8365. goto err;
  8366. tg->shares = NICE_0_LOAD;
  8367. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  8368. for_each_possible_cpu(i) {
  8369. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8370. GFP_KERNEL, cpu_to_node(i));
  8371. if (!cfs_rq)
  8372. goto err;
  8373. se = kzalloc_node(sizeof(struct sched_entity),
  8374. GFP_KERNEL, cpu_to_node(i));
  8375. if (!se)
  8376. goto err_free_rq;
  8377. init_cfs_rq(cfs_rq);
  8378. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  8379. init_entity_runnable_average(se);
  8380. }
  8381. return 1;
  8382. err_free_rq:
  8383. kfree(cfs_rq);
  8384. err:
  8385. return 0;
  8386. }
  8387. void online_fair_sched_group(struct task_group *tg)
  8388. {
  8389. struct sched_entity *se;
  8390. struct rq *rq;
  8391. int i;
  8392. for_each_possible_cpu(i) {
  8393. rq = cpu_rq(i);
  8394. se = tg->se[i];
  8395. raw_spin_lock_irq(&rq->lock);
  8396. update_rq_clock(rq);
  8397. attach_entity_cfs_rq(se);
  8398. sync_throttle(tg, i);
  8399. raw_spin_unlock_irq(&rq->lock);
  8400. }
  8401. }
  8402. void unregister_fair_sched_group(struct task_group *tg)
  8403. {
  8404. unsigned long flags;
  8405. struct rq *rq;
  8406. int cpu;
  8407. for_each_possible_cpu(cpu) {
  8408. if (tg->se[cpu])
  8409. remove_entity_load_avg(tg->se[cpu]);
  8410. /*
  8411. * Only empty task groups can be destroyed; so we can speculatively
  8412. * check on_list without danger of it being re-added.
  8413. */
  8414. if (!tg->cfs_rq[cpu]->on_list)
  8415. continue;
  8416. rq = cpu_rq(cpu);
  8417. raw_spin_lock_irqsave(&rq->lock, flags);
  8418. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  8419. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8420. }
  8421. }
  8422. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8423. struct sched_entity *se, int cpu,
  8424. struct sched_entity *parent)
  8425. {
  8426. struct rq *rq = cpu_rq(cpu);
  8427. cfs_rq->tg = tg;
  8428. cfs_rq->rq = rq;
  8429. init_cfs_rq_runtime(cfs_rq);
  8430. tg->cfs_rq[cpu] = cfs_rq;
  8431. tg->se[cpu] = se;
  8432. /* se could be NULL for root_task_group */
  8433. if (!se)
  8434. return;
  8435. if (!parent) {
  8436. se->cfs_rq = &rq->cfs;
  8437. se->depth = 0;
  8438. } else {
  8439. se->cfs_rq = parent->my_q;
  8440. se->depth = parent->depth + 1;
  8441. }
  8442. se->my_q = cfs_rq;
  8443. /* guarantee group entities always have weight */
  8444. update_load_set(&se->load, NICE_0_LOAD);
  8445. se->parent = parent;
  8446. }
  8447. static DEFINE_MUTEX(shares_mutex);
  8448. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8449. {
  8450. int i;
  8451. /*
  8452. * We can't change the weight of the root cgroup.
  8453. */
  8454. if (!tg->se[0])
  8455. return -EINVAL;
  8456. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  8457. mutex_lock(&shares_mutex);
  8458. if (tg->shares == shares)
  8459. goto done;
  8460. tg->shares = shares;
  8461. for_each_possible_cpu(i) {
  8462. struct rq *rq = cpu_rq(i);
  8463. struct sched_entity *se = tg->se[i];
  8464. struct rq_flags rf;
  8465. /* Propagate contribution to hierarchy */
  8466. rq_lock_irqsave(rq, &rf);
  8467. update_rq_clock(rq);
  8468. for_each_sched_entity(se) {
  8469. update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
  8470. update_cfs_group(se);
  8471. }
  8472. rq_unlock_irqrestore(rq, &rf);
  8473. }
  8474. done:
  8475. mutex_unlock(&shares_mutex);
  8476. return 0;
  8477. }
  8478. #else /* CONFIG_FAIR_GROUP_SCHED */
  8479. void free_fair_sched_group(struct task_group *tg) { }
  8480. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8481. {
  8482. return 1;
  8483. }
  8484. void online_fair_sched_group(struct task_group *tg) { }
  8485. void unregister_fair_sched_group(struct task_group *tg) { }
  8486. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8487. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  8488. {
  8489. struct sched_entity *se = &task->se;
  8490. unsigned int rr_interval = 0;
  8491. /*
  8492. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  8493. * idle runqueue:
  8494. */
  8495. if (rq->cfs.load.weight)
  8496. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  8497. return rr_interval;
  8498. }
  8499. /*
  8500. * All the scheduling class methods:
  8501. */
  8502. const struct sched_class fair_sched_class = {
  8503. .next = &idle_sched_class,
  8504. .enqueue_task = enqueue_task_fair,
  8505. .dequeue_task = dequeue_task_fair,
  8506. .yield_task = yield_task_fair,
  8507. .yield_to_task = yield_to_task_fair,
  8508. .check_preempt_curr = check_preempt_wakeup,
  8509. .pick_next_task = pick_next_task_fair,
  8510. .put_prev_task = put_prev_task_fair,
  8511. #ifdef CONFIG_SMP
  8512. .select_task_rq = select_task_rq_fair,
  8513. .migrate_task_rq = migrate_task_rq_fair,
  8514. .rq_online = rq_online_fair,
  8515. .rq_offline = rq_offline_fair,
  8516. .task_dead = task_dead_fair,
  8517. .set_cpus_allowed = set_cpus_allowed_common,
  8518. #endif
  8519. .set_curr_task = set_curr_task_fair,
  8520. .task_tick = task_tick_fair,
  8521. .task_fork = task_fork_fair,
  8522. .prio_changed = prio_changed_fair,
  8523. .switched_from = switched_from_fair,
  8524. .switched_to = switched_to_fair,
  8525. .get_rr_interval = get_rr_interval_fair,
  8526. .update_curr = update_curr_fair,
  8527. #ifdef CONFIG_FAIR_GROUP_SCHED
  8528. .task_change_group = task_change_group_fair,
  8529. #endif
  8530. };
  8531. #ifdef CONFIG_SCHED_DEBUG
  8532. void print_cfs_stats(struct seq_file *m, int cpu)
  8533. {
  8534. struct cfs_rq *cfs_rq, *pos;
  8535. rcu_read_lock();
  8536. for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
  8537. print_cfs_rq(m, cpu, cfs_rq);
  8538. rcu_read_unlock();
  8539. }
  8540. #ifdef CONFIG_NUMA_BALANCING
  8541. void show_numa_stats(struct task_struct *p, struct seq_file *m)
  8542. {
  8543. int node;
  8544. unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
  8545. for_each_online_node(node) {
  8546. if (p->numa_faults) {
  8547. tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
  8548. tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
  8549. }
  8550. if (p->numa_group) {
  8551. gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
  8552. gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
  8553. }
  8554. print_numa_stats(m, node, tsf, tpf, gsf, gpf);
  8555. }
  8556. }
  8557. #endif /* CONFIG_NUMA_BALANCING */
  8558. #endif /* CONFIG_SCHED_DEBUG */
  8559. __init void init_sched_fair_class(void)
  8560. {
  8561. #ifdef CONFIG_SMP
  8562. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8563. #ifdef CONFIG_NO_HZ_COMMON
  8564. nohz.next_balance = jiffies;
  8565. nohz.next_blocked = jiffies;
  8566. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  8567. #endif
  8568. #endif /* SMP */
  8569. }