iomap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. * Copyright (c) 2016 Christoph Hellwig.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/compiler.h>
  16. #include <linux/fs.h>
  17. #include <linux/iomap.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/gfp.h>
  20. #include <linux/mm.h>
  21. #include <linux/swap.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/buffer_head.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/dax.h>
  29. #include <linux/sched/signal.h>
  30. #include "internal.h"
  31. /*
  32. * Execute a iomap write on a segment of the mapping that spans a
  33. * contiguous range of pages that have identical block mapping state.
  34. *
  35. * This avoids the need to map pages individually, do individual allocations
  36. * for each page and most importantly avoid the need for filesystem specific
  37. * locking per page. Instead, all the operations are amortised over the entire
  38. * range of pages. It is assumed that the filesystems will lock whatever
  39. * resources they require in the iomap_begin call, and release them in the
  40. * iomap_end call.
  41. */
  42. loff_t
  43. iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
  44. const struct iomap_ops *ops, void *data, iomap_actor_t actor)
  45. {
  46. struct iomap iomap = { 0 };
  47. loff_t written = 0, ret;
  48. /*
  49. * Need to map a range from start position for length bytes. This can
  50. * span multiple pages - it is only guaranteed to return a range of a
  51. * single type of pages (e.g. all into a hole, all mapped or all
  52. * unwritten). Failure at this point has nothing to undo.
  53. *
  54. * If allocation is required for this range, reserve the space now so
  55. * that the allocation is guaranteed to succeed later on. Once we copy
  56. * the data into the page cache pages, then we cannot fail otherwise we
  57. * expose transient stale data. If the reserve fails, we can safely
  58. * back out at this point as there is nothing to undo.
  59. */
  60. ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
  61. if (ret)
  62. return ret;
  63. if (WARN_ON(iomap.offset > pos))
  64. return -EIO;
  65. /*
  66. * Cut down the length to the one actually provided by the filesystem,
  67. * as it might not be able to give us the whole size that we requested.
  68. */
  69. if (iomap.offset + iomap.length < pos + length)
  70. length = iomap.offset + iomap.length - pos;
  71. /*
  72. * Now that we have guaranteed that the space allocation will succeed.
  73. * we can do the copy-in page by page without having to worry about
  74. * failures exposing transient data.
  75. */
  76. written = actor(inode, pos, length, data, &iomap);
  77. /*
  78. * Now the data has been copied, commit the range we've copied. This
  79. * should not fail unless the filesystem has had a fatal error.
  80. */
  81. if (ops->iomap_end) {
  82. ret = ops->iomap_end(inode, pos, length,
  83. written > 0 ? written : 0,
  84. flags, &iomap);
  85. }
  86. return written ? written : ret;
  87. }
  88. static void
  89. iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
  90. {
  91. loff_t i_size = i_size_read(inode);
  92. /*
  93. * Only truncate newly allocated pages beyoned EOF, even if the
  94. * write started inside the existing inode size.
  95. */
  96. if (pos + len > i_size)
  97. truncate_pagecache_range(inode, max(pos, i_size), pos + len);
  98. }
  99. static int
  100. iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
  101. struct page **pagep, struct iomap *iomap)
  102. {
  103. pgoff_t index = pos >> PAGE_SHIFT;
  104. struct page *page;
  105. int status = 0;
  106. BUG_ON(pos + len > iomap->offset + iomap->length);
  107. if (fatal_signal_pending(current))
  108. return -EINTR;
  109. page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
  110. if (!page)
  111. return -ENOMEM;
  112. status = __block_write_begin_int(page, pos, len, NULL, iomap);
  113. if (unlikely(status)) {
  114. unlock_page(page);
  115. put_page(page);
  116. page = NULL;
  117. iomap_write_failed(inode, pos, len);
  118. }
  119. *pagep = page;
  120. return status;
  121. }
  122. static int
  123. iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
  124. unsigned copied, struct page *page)
  125. {
  126. int ret;
  127. ret = generic_write_end(NULL, inode->i_mapping, pos, len,
  128. copied, page, NULL);
  129. if (ret < len)
  130. iomap_write_failed(inode, pos, len);
  131. return ret;
  132. }
  133. static loff_t
  134. iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  135. struct iomap *iomap)
  136. {
  137. struct iov_iter *i = data;
  138. long status = 0;
  139. ssize_t written = 0;
  140. unsigned int flags = AOP_FLAG_NOFS;
  141. /*
  142. * Copies from kernel address space cannot fail (NFSD is a big user).
  143. */
  144. if (!iter_is_iovec(i))
  145. flags |= AOP_FLAG_UNINTERRUPTIBLE;
  146. do {
  147. struct page *page;
  148. unsigned long offset; /* Offset into pagecache page */
  149. unsigned long bytes; /* Bytes to write to page */
  150. size_t copied; /* Bytes copied from user */
  151. offset = (pos & (PAGE_SIZE - 1));
  152. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  153. iov_iter_count(i));
  154. again:
  155. if (bytes > length)
  156. bytes = length;
  157. /*
  158. * Bring in the user page that we will copy from _first_.
  159. * Otherwise there's a nasty deadlock on copying from the
  160. * same page as we're writing to, without it being marked
  161. * up-to-date.
  162. *
  163. * Not only is this an optimisation, but it is also required
  164. * to check that the address is actually valid, when atomic
  165. * usercopies are used, below.
  166. */
  167. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  168. status = -EFAULT;
  169. break;
  170. }
  171. status = iomap_write_begin(inode, pos, bytes, flags, &page,
  172. iomap);
  173. if (unlikely(status))
  174. break;
  175. if (mapping_writably_mapped(inode->i_mapping))
  176. flush_dcache_page(page);
  177. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  178. flush_dcache_page(page);
  179. status = iomap_write_end(inode, pos, bytes, copied, page);
  180. if (unlikely(status < 0))
  181. break;
  182. copied = status;
  183. cond_resched();
  184. iov_iter_advance(i, copied);
  185. if (unlikely(copied == 0)) {
  186. /*
  187. * If we were unable to copy any data at all, we must
  188. * fall back to a single segment length write.
  189. *
  190. * If we didn't fallback here, we could livelock
  191. * because not all segments in the iov can be copied at
  192. * once without a pagefault.
  193. */
  194. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  195. iov_iter_single_seg_count(i));
  196. goto again;
  197. }
  198. pos += copied;
  199. written += copied;
  200. length -= copied;
  201. balance_dirty_pages_ratelimited(inode->i_mapping);
  202. } while (iov_iter_count(i) && length);
  203. return written ? written : status;
  204. }
  205. ssize_t
  206. iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
  207. const struct iomap_ops *ops)
  208. {
  209. struct inode *inode = iocb->ki_filp->f_mapping->host;
  210. loff_t pos = iocb->ki_pos, ret = 0, written = 0;
  211. while (iov_iter_count(iter)) {
  212. ret = iomap_apply(inode, pos, iov_iter_count(iter),
  213. IOMAP_WRITE, ops, iter, iomap_write_actor);
  214. if (ret <= 0)
  215. break;
  216. pos += ret;
  217. written += ret;
  218. }
  219. return written ? written : ret;
  220. }
  221. EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
  222. static struct page *
  223. __iomap_read_page(struct inode *inode, loff_t offset)
  224. {
  225. struct address_space *mapping = inode->i_mapping;
  226. struct page *page;
  227. page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
  228. if (IS_ERR(page))
  229. return page;
  230. if (!PageUptodate(page)) {
  231. put_page(page);
  232. return ERR_PTR(-EIO);
  233. }
  234. return page;
  235. }
  236. static loff_t
  237. iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  238. struct iomap *iomap)
  239. {
  240. long status = 0;
  241. ssize_t written = 0;
  242. do {
  243. struct page *page, *rpage;
  244. unsigned long offset; /* Offset into pagecache page */
  245. unsigned long bytes; /* Bytes to write to page */
  246. offset = (pos & (PAGE_SIZE - 1));
  247. bytes = min_t(unsigned long, PAGE_SIZE - offset, length);
  248. rpage = __iomap_read_page(inode, pos);
  249. if (IS_ERR(rpage))
  250. return PTR_ERR(rpage);
  251. status = iomap_write_begin(inode, pos, bytes,
  252. AOP_FLAG_NOFS | AOP_FLAG_UNINTERRUPTIBLE,
  253. &page, iomap);
  254. put_page(rpage);
  255. if (unlikely(status))
  256. return status;
  257. WARN_ON_ONCE(!PageUptodate(page));
  258. status = iomap_write_end(inode, pos, bytes, bytes, page);
  259. if (unlikely(status <= 0)) {
  260. if (WARN_ON_ONCE(status == 0))
  261. return -EIO;
  262. return status;
  263. }
  264. cond_resched();
  265. pos += status;
  266. written += status;
  267. length -= status;
  268. balance_dirty_pages_ratelimited(inode->i_mapping);
  269. } while (length);
  270. return written;
  271. }
  272. int
  273. iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
  274. const struct iomap_ops *ops)
  275. {
  276. loff_t ret;
  277. while (len) {
  278. ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
  279. iomap_dirty_actor);
  280. if (ret <= 0)
  281. return ret;
  282. pos += ret;
  283. len -= ret;
  284. }
  285. return 0;
  286. }
  287. EXPORT_SYMBOL_GPL(iomap_file_dirty);
  288. static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
  289. unsigned bytes, struct iomap *iomap)
  290. {
  291. struct page *page;
  292. int status;
  293. status = iomap_write_begin(inode, pos, bytes,
  294. AOP_FLAG_UNINTERRUPTIBLE | AOP_FLAG_NOFS, &page, iomap);
  295. if (status)
  296. return status;
  297. zero_user(page, offset, bytes);
  298. mark_page_accessed(page);
  299. return iomap_write_end(inode, pos, bytes, bytes, page);
  300. }
  301. static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
  302. struct iomap *iomap)
  303. {
  304. sector_t sector = iomap->blkno +
  305. (((pos & ~(PAGE_SIZE - 1)) - iomap->offset) >> 9);
  306. return __dax_zero_page_range(iomap->bdev, sector, offset, bytes);
  307. }
  308. static loff_t
  309. iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
  310. void *data, struct iomap *iomap)
  311. {
  312. bool *did_zero = data;
  313. loff_t written = 0;
  314. int status;
  315. /* already zeroed? we're done. */
  316. if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
  317. return count;
  318. do {
  319. unsigned offset, bytes;
  320. offset = pos & (PAGE_SIZE - 1); /* Within page */
  321. bytes = min_t(unsigned, PAGE_SIZE - offset, count);
  322. if (IS_DAX(inode))
  323. status = iomap_dax_zero(pos, offset, bytes, iomap);
  324. else
  325. status = iomap_zero(inode, pos, offset, bytes, iomap);
  326. if (status < 0)
  327. return status;
  328. pos += bytes;
  329. count -= bytes;
  330. written += bytes;
  331. if (did_zero)
  332. *did_zero = true;
  333. } while (count > 0);
  334. return written;
  335. }
  336. int
  337. iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
  338. const struct iomap_ops *ops)
  339. {
  340. loff_t ret;
  341. while (len > 0) {
  342. ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
  343. ops, did_zero, iomap_zero_range_actor);
  344. if (ret <= 0)
  345. return ret;
  346. pos += ret;
  347. len -= ret;
  348. }
  349. return 0;
  350. }
  351. EXPORT_SYMBOL_GPL(iomap_zero_range);
  352. int
  353. iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
  354. const struct iomap_ops *ops)
  355. {
  356. unsigned int blocksize = i_blocksize(inode);
  357. unsigned int off = pos & (blocksize - 1);
  358. /* Block boundary? Nothing to do */
  359. if (!off)
  360. return 0;
  361. return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
  362. }
  363. EXPORT_SYMBOL_GPL(iomap_truncate_page);
  364. static loff_t
  365. iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
  366. void *data, struct iomap *iomap)
  367. {
  368. struct page *page = data;
  369. int ret;
  370. ret = __block_write_begin_int(page, pos, length, NULL, iomap);
  371. if (ret)
  372. return ret;
  373. block_commit_write(page, 0, length);
  374. return length;
  375. }
  376. int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
  377. {
  378. struct page *page = vmf->page;
  379. struct inode *inode = file_inode(vmf->vma->vm_file);
  380. unsigned long length;
  381. loff_t offset, size;
  382. ssize_t ret;
  383. lock_page(page);
  384. size = i_size_read(inode);
  385. if ((page->mapping != inode->i_mapping) ||
  386. (page_offset(page) > size)) {
  387. /* We overload EFAULT to mean page got truncated */
  388. ret = -EFAULT;
  389. goto out_unlock;
  390. }
  391. /* page is wholly or partially inside EOF */
  392. if (((page->index + 1) << PAGE_SHIFT) > size)
  393. length = size & ~PAGE_MASK;
  394. else
  395. length = PAGE_SIZE;
  396. offset = page_offset(page);
  397. while (length > 0) {
  398. ret = iomap_apply(inode, offset, length,
  399. IOMAP_WRITE | IOMAP_FAULT, ops, page,
  400. iomap_page_mkwrite_actor);
  401. if (unlikely(ret <= 0))
  402. goto out_unlock;
  403. offset += ret;
  404. length -= ret;
  405. }
  406. set_page_dirty(page);
  407. wait_for_stable_page(page);
  408. return 0;
  409. out_unlock:
  410. unlock_page(page);
  411. return ret;
  412. }
  413. EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
  414. struct fiemap_ctx {
  415. struct fiemap_extent_info *fi;
  416. struct iomap prev;
  417. };
  418. static int iomap_to_fiemap(struct fiemap_extent_info *fi,
  419. struct iomap *iomap, u32 flags)
  420. {
  421. switch (iomap->type) {
  422. case IOMAP_HOLE:
  423. /* skip holes */
  424. return 0;
  425. case IOMAP_DELALLOC:
  426. flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
  427. break;
  428. case IOMAP_UNWRITTEN:
  429. flags |= FIEMAP_EXTENT_UNWRITTEN;
  430. break;
  431. case IOMAP_MAPPED:
  432. break;
  433. }
  434. if (iomap->flags & IOMAP_F_MERGED)
  435. flags |= FIEMAP_EXTENT_MERGED;
  436. if (iomap->flags & IOMAP_F_SHARED)
  437. flags |= FIEMAP_EXTENT_SHARED;
  438. return fiemap_fill_next_extent(fi, iomap->offset,
  439. iomap->blkno != IOMAP_NULL_BLOCK ? iomap->blkno << 9: 0,
  440. iomap->length, flags);
  441. }
  442. static loff_t
  443. iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  444. struct iomap *iomap)
  445. {
  446. struct fiemap_ctx *ctx = data;
  447. loff_t ret = length;
  448. if (iomap->type == IOMAP_HOLE)
  449. return length;
  450. ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
  451. ctx->prev = *iomap;
  452. switch (ret) {
  453. case 0: /* success */
  454. return length;
  455. case 1: /* extent array full */
  456. return 0;
  457. default:
  458. return ret;
  459. }
  460. }
  461. int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
  462. loff_t start, loff_t len, const struct iomap_ops *ops)
  463. {
  464. struct fiemap_ctx ctx;
  465. loff_t ret;
  466. memset(&ctx, 0, sizeof(ctx));
  467. ctx.fi = fi;
  468. ctx.prev.type = IOMAP_HOLE;
  469. ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
  470. if (ret)
  471. return ret;
  472. if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
  473. ret = filemap_write_and_wait(inode->i_mapping);
  474. if (ret)
  475. return ret;
  476. }
  477. while (len > 0) {
  478. ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
  479. iomap_fiemap_actor);
  480. /* inode with no (attribute) mapping will give ENOENT */
  481. if (ret == -ENOENT)
  482. break;
  483. if (ret < 0)
  484. return ret;
  485. if (ret == 0)
  486. break;
  487. start += ret;
  488. len -= ret;
  489. }
  490. if (ctx.prev.type != IOMAP_HOLE) {
  491. ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
  492. if (ret < 0)
  493. return ret;
  494. }
  495. return 0;
  496. }
  497. EXPORT_SYMBOL_GPL(iomap_fiemap);
  498. /*
  499. * Private flags for iomap_dio, must not overlap with the public ones in
  500. * iomap.h:
  501. */
  502. #define IOMAP_DIO_WRITE (1 << 30)
  503. #define IOMAP_DIO_DIRTY (1 << 31)
  504. struct iomap_dio {
  505. struct kiocb *iocb;
  506. iomap_dio_end_io_t *end_io;
  507. loff_t i_size;
  508. loff_t size;
  509. atomic_t ref;
  510. unsigned flags;
  511. int error;
  512. union {
  513. /* used during submission and for synchronous completion: */
  514. struct {
  515. struct iov_iter *iter;
  516. struct task_struct *waiter;
  517. struct request_queue *last_queue;
  518. blk_qc_t cookie;
  519. } submit;
  520. /* used for aio completion: */
  521. struct {
  522. struct work_struct work;
  523. } aio;
  524. };
  525. };
  526. static ssize_t iomap_dio_complete(struct iomap_dio *dio)
  527. {
  528. struct kiocb *iocb = dio->iocb;
  529. ssize_t ret;
  530. if (dio->end_io) {
  531. ret = dio->end_io(iocb,
  532. dio->error ? dio->error : dio->size,
  533. dio->flags);
  534. } else {
  535. ret = dio->error;
  536. }
  537. if (likely(!ret)) {
  538. ret = dio->size;
  539. /* check for short read */
  540. if (iocb->ki_pos + ret > dio->i_size &&
  541. !(dio->flags & IOMAP_DIO_WRITE))
  542. ret = dio->i_size - iocb->ki_pos;
  543. iocb->ki_pos += ret;
  544. }
  545. inode_dio_end(file_inode(iocb->ki_filp));
  546. kfree(dio);
  547. return ret;
  548. }
  549. static void iomap_dio_complete_work(struct work_struct *work)
  550. {
  551. struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
  552. struct kiocb *iocb = dio->iocb;
  553. bool is_write = (dio->flags & IOMAP_DIO_WRITE);
  554. ssize_t ret;
  555. ret = iomap_dio_complete(dio);
  556. if (is_write && ret > 0)
  557. ret = generic_write_sync(iocb, ret);
  558. iocb->ki_complete(iocb, ret, 0);
  559. }
  560. /*
  561. * Set an error in the dio if none is set yet. We have to use cmpxchg
  562. * as the submission context and the completion context(s) can race to
  563. * update the error.
  564. */
  565. static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
  566. {
  567. cmpxchg(&dio->error, 0, ret);
  568. }
  569. static void iomap_dio_bio_end_io(struct bio *bio)
  570. {
  571. struct iomap_dio *dio = bio->bi_private;
  572. bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
  573. if (bio->bi_error)
  574. iomap_dio_set_error(dio, bio->bi_error);
  575. if (atomic_dec_and_test(&dio->ref)) {
  576. if (is_sync_kiocb(dio->iocb)) {
  577. struct task_struct *waiter = dio->submit.waiter;
  578. WRITE_ONCE(dio->submit.waiter, NULL);
  579. wake_up_process(waiter);
  580. } else if (dio->flags & IOMAP_DIO_WRITE) {
  581. struct inode *inode = file_inode(dio->iocb->ki_filp);
  582. INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
  583. queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
  584. } else {
  585. iomap_dio_complete_work(&dio->aio.work);
  586. }
  587. }
  588. if (should_dirty) {
  589. bio_check_pages_dirty(bio);
  590. } else {
  591. struct bio_vec *bvec;
  592. int i;
  593. bio_for_each_segment_all(bvec, bio, i)
  594. put_page(bvec->bv_page);
  595. bio_put(bio);
  596. }
  597. }
  598. static blk_qc_t
  599. iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
  600. unsigned len)
  601. {
  602. struct page *page = ZERO_PAGE(0);
  603. struct bio *bio;
  604. bio = bio_alloc(GFP_KERNEL, 1);
  605. bio->bi_bdev = iomap->bdev;
  606. bio->bi_iter.bi_sector =
  607. iomap->blkno + ((pos - iomap->offset) >> 9);
  608. bio->bi_private = dio;
  609. bio->bi_end_io = iomap_dio_bio_end_io;
  610. get_page(page);
  611. if (bio_add_page(bio, page, len, 0) != len)
  612. BUG();
  613. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  614. atomic_inc(&dio->ref);
  615. return submit_bio(bio);
  616. }
  617. static loff_t
  618. iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
  619. void *data, struct iomap *iomap)
  620. {
  621. struct iomap_dio *dio = data;
  622. unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
  623. unsigned int fs_block_size = i_blocksize(inode), pad;
  624. unsigned int align = iov_iter_alignment(dio->submit.iter);
  625. struct iov_iter iter;
  626. struct bio *bio;
  627. bool need_zeroout = false;
  628. int nr_pages, ret;
  629. if ((pos | length | align) & ((1 << blkbits) - 1))
  630. return -EINVAL;
  631. switch (iomap->type) {
  632. case IOMAP_HOLE:
  633. if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
  634. return -EIO;
  635. /*FALLTHRU*/
  636. case IOMAP_UNWRITTEN:
  637. if (!(dio->flags & IOMAP_DIO_WRITE)) {
  638. iov_iter_zero(length, dio->submit.iter);
  639. dio->size += length;
  640. return length;
  641. }
  642. dio->flags |= IOMAP_DIO_UNWRITTEN;
  643. need_zeroout = true;
  644. break;
  645. case IOMAP_MAPPED:
  646. if (iomap->flags & IOMAP_F_SHARED)
  647. dio->flags |= IOMAP_DIO_COW;
  648. if (iomap->flags & IOMAP_F_NEW)
  649. need_zeroout = true;
  650. break;
  651. default:
  652. WARN_ON_ONCE(1);
  653. return -EIO;
  654. }
  655. /*
  656. * Operate on a partial iter trimmed to the extent we were called for.
  657. * We'll update the iter in the dio once we're done with this extent.
  658. */
  659. iter = *dio->submit.iter;
  660. iov_iter_truncate(&iter, length);
  661. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  662. if (nr_pages <= 0)
  663. return nr_pages;
  664. if (need_zeroout) {
  665. /* zero out from the start of the block to the write offset */
  666. pad = pos & (fs_block_size - 1);
  667. if (pad)
  668. iomap_dio_zero(dio, iomap, pos - pad, pad);
  669. }
  670. do {
  671. if (dio->error)
  672. return 0;
  673. bio = bio_alloc(GFP_KERNEL, nr_pages);
  674. bio->bi_bdev = iomap->bdev;
  675. bio->bi_iter.bi_sector =
  676. iomap->blkno + ((pos - iomap->offset) >> 9);
  677. bio->bi_private = dio;
  678. bio->bi_end_io = iomap_dio_bio_end_io;
  679. ret = bio_iov_iter_get_pages(bio, &iter);
  680. if (unlikely(ret)) {
  681. bio_put(bio);
  682. return ret;
  683. }
  684. if (dio->flags & IOMAP_DIO_WRITE) {
  685. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  686. task_io_account_write(bio->bi_iter.bi_size);
  687. } else {
  688. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  689. if (dio->flags & IOMAP_DIO_DIRTY)
  690. bio_set_pages_dirty(bio);
  691. }
  692. dio->size += bio->bi_iter.bi_size;
  693. pos += bio->bi_iter.bi_size;
  694. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  695. atomic_inc(&dio->ref);
  696. dio->submit.last_queue = bdev_get_queue(iomap->bdev);
  697. dio->submit.cookie = submit_bio(bio);
  698. } while (nr_pages);
  699. if (need_zeroout) {
  700. /* zero out from the end of the write to the end of the block */
  701. pad = pos & (fs_block_size - 1);
  702. if (pad)
  703. iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
  704. }
  705. iov_iter_advance(dio->submit.iter, length);
  706. return length;
  707. }
  708. ssize_t
  709. iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
  710. const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
  711. {
  712. struct address_space *mapping = iocb->ki_filp->f_mapping;
  713. struct inode *inode = file_inode(iocb->ki_filp);
  714. size_t count = iov_iter_count(iter);
  715. loff_t pos = iocb->ki_pos, start = pos;
  716. loff_t end = iocb->ki_pos + count - 1, ret = 0;
  717. unsigned int flags = IOMAP_DIRECT;
  718. struct blk_plug plug;
  719. struct iomap_dio *dio;
  720. lockdep_assert_held(&inode->i_rwsem);
  721. if (!count)
  722. return 0;
  723. dio = kmalloc(sizeof(*dio), GFP_KERNEL);
  724. if (!dio)
  725. return -ENOMEM;
  726. dio->iocb = iocb;
  727. atomic_set(&dio->ref, 1);
  728. dio->size = 0;
  729. dio->i_size = i_size_read(inode);
  730. dio->end_io = end_io;
  731. dio->error = 0;
  732. dio->flags = 0;
  733. dio->submit.iter = iter;
  734. if (is_sync_kiocb(iocb)) {
  735. dio->submit.waiter = current;
  736. dio->submit.cookie = BLK_QC_T_NONE;
  737. dio->submit.last_queue = NULL;
  738. }
  739. if (iov_iter_rw(iter) == READ) {
  740. if (pos >= dio->i_size)
  741. goto out_free_dio;
  742. if (iter->type == ITER_IOVEC)
  743. dio->flags |= IOMAP_DIO_DIRTY;
  744. } else {
  745. dio->flags |= IOMAP_DIO_WRITE;
  746. flags |= IOMAP_WRITE;
  747. }
  748. ret = filemap_write_and_wait_range(mapping, start, end);
  749. if (ret)
  750. goto out_free_dio;
  751. ret = invalidate_inode_pages2_range(mapping,
  752. start >> PAGE_SHIFT, end >> PAGE_SHIFT);
  753. WARN_ON_ONCE(ret);
  754. ret = 0;
  755. inode_dio_begin(inode);
  756. blk_start_plug(&plug);
  757. do {
  758. ret = iomap_apply(inode, pos, count, flags, ops, dio,
  759. iomap_dio_actor);
  760. if (ret <= 0) {
  761. /* magic error code to fall back to buffered I/O */
  762. if (ret == -ENOTBLK)
  763. ret = 0;
  764. break;
  765. }
  766. pos += ret;
  767. } while ((count = iov_iter_count(iter)) > 0);
  768. blk_finish_plug(&plug);
  769. if (ret < 0)
  770. iomap_dio_set_error(dio, ret);
  771. if (ret >= 0 && iov_iter_rw(iter) == WRITE && !is_sync_kiocb(iocb) &&
  772. !inode->i_sb->s_dio_done_wq) {
  773. ret = sb_init_dio_done_wq(inode->i_sb);
  774. if (ret < 0)
  775. iomap_dio_set_error(dio, ret);
  776. }
  777. if (!atomic_dec_and_test(&dio->ref)) {
  778. if (!is_sync_kiocb(iocb))
  779. return -EIOCBQUEUED;
  780. for (;;) {
  781. set_current_state(TASK_UNINTERRUPTIBLE);
  782. if (!READ_ONCE(dio->submit.waiter))
  783. break;
  784. if (!(iocb->ki_flags & IOCB_HIPRI) ||
  785. !dio->submit.last_queue ||
  786. !blk_mq_poll(dio->submit.last_queue,
  787. dio->submit.cookie))
  788. io_schedule();
  789. }
  790. __set_current_state(TASK_RUNNING);
  791. }
  792. ret = iomap_dio_complete(dio);
  793. /*
  794. * Try again to invalidate clean pages which might have been cached by
  795. * non-direct readahead, or faulted in by get_user_pages() if the source
  796. * of the write was an mmap'ed region of the file we're writing. Either
  797. * one is a pretty crazy thing to do, so we don't support it 100%. If
  798. * this invalidation fails, tough, the write still worked...
  799. */
  800. if (iov_iter_rw(iter) == WRITE) {
  801. int err = invalidate_inode_pages2_range(mapping,
  802. start >> PAGE_SHIFT, end >> PAGE_SHIFT);
  803. WARN_ON_ONCE(err);
  804. }
  805. return ret;
  806. out_free_dio:
  807. kfree(dio);
  808. return ret;
  809. }
  810. EXPORT_SYMBOL_GPL(iomap_dio_rw);