smu10_hwmgr.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196
  1. /*
  2. * Copyright 2015 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "pp_debug.h"
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include "atom-types.h"
  28. #include "atombios.h"
  29. #include "processpptables.h"
  30. #include "cgs_common.h"
  31. #include "smumgr.h"
  32. #include "hwmgr.h"
  33. #include "hardwaremanager.h"
  34. #include "rv_ppsmc.h"
  35. #include "smu10_hwmgr.h"
  36. #include "power_state.h"
  37. #include "soc15_common.h"
  38. #define SMU10_MAX_DEEPSLEEP_DIVIDER_ID 5
  39. #define SMU10_MINIMUM_ENGINE_CLOCK 800 /* 8Mhz, the low boundary of engine clock allowed on this chip */
  40. #define SCLK_MIN_DIV_INTV_SHIFT 12
  41. #define SMU10_DISPCLK_BYPASS_THRESHOLD 10000 /* 100Mhz */
  42. #define SMC_RAM_END 0x40000
  43. #define mmPWR_MISC_CNTL_STATUS 0x0183
  44. #define mmPWR_MISC_CNTL_STATUS_BASE_IDX 0
  45. #define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN__SHIFT 0x0
  46. #define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT 0x1
  47. #define PWR_MISC_CNTL_STATUS__PWR_GFX_RLC_CGPG_EN_MASK 0x00000001L
  48. #define PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK 0x00000006L
  49. static const unsigned long SMU10_Magic = (unsigned long) PHM_Rv_Magic;
  50. static int smu10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
  51. struct pp_display_clock_request *clock_req)
  52. {
  53. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  54. enum amd_pp_clock_type clk_type = clock_req->clock_type;
  55. uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
  56. PPSMC_Msg msg;
  57. switch (clk_type) {
  58. case amd_pp_dcf_clock:
  59. if (clk_freq == smu10_data->dcf_actual_hard_min_freq)
  60. return 0;
  61. msg = PPSMC_MSG_SetHardMinDcefclkByFreq;
  62. smu10_data->dcf_actual_hard_min_freq = clk_freq;
  63. break;
  64. case amd_pp_soc_clock:
  65. msg = PPSMC_MSG_SetHardMinSocclkByFreq;
  66. break;
  67. case amd_pp_f_clock:
  68. if (clk_freq == smu10_data->f_actual_hard_min_freq)
  69. return 0;
  70. smu10_data->f_actual_hard_min_freq = clk_freq;
  71. msg = PPSMC_MSG_SetHardMinFclkByFreq;
  72. break;
  73. default:
  74. pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
  75. return -EINVAL;
  76. }
  77. smum_send_msg_to_smc_with_parameter(hwmgr, msg, clk_freq);
  78. return 0;
  79. }
  80. static struct smu10_power_state *cast_smu10_ps(struct pp_hw_power_state *hw_ps)
  81. {
  82. if (SMU10_Magic != hw_ps->magic)
  83. return NULL;
  84. return (struct smu10_power_state *)hw_ps;
  85. }
  86. static const struct smu10_power_state *cast_const_smu10_ps(
  87. const struct pp_hw_power_state *hw_ps)
  88. {
  89. if (SMU10_Magic != hw_ps->magic)
  90. return NULL;
  91. return (struct smu10_power_state *)hw_ps;
  92. }
  93. static int smu10_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
  94. {
  95. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  96. smu10_data->dce_slow_sclk_threshold = 30000;
  97. smu10_data->thermal_auto_throttling_treshold = 0;
  98. smu10_data->is_nb_dpm_enabled = 1;
  99. smu10_data->dpm_flags = 1;
  100. smu10_data->need_min_deep_sleep_dcefclk = true;
  101. smu10_data->num_active_display = 0;
  102. smu10_data->deep_sleep_dcefclk = 0;
  103. if (hwmgr->feature_mask & PP_GFXOFF_MASK)
  104. smu10_data->gfx_off_controled_by_driver = true;
  105. else
  106. smu10_data->gfx_off_controled_by_driver = false;
  107. phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
  108. PHM_PlatformCaps_SclkDeepSleep);
  109. phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
  110. PHM_PlatformCaps_SclkThrottleLowNotification);
  111. phm_cap_set(hwmgr->platform_descriptor.platformCaps,
  112. PHM_PlatformCaps_PowerPlaySupport);
  113. return 0;
  114. }
  115. static int smu10_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
  116. struct phm_clock_and_voltage_limits *table)
  117. {
  118. return 0;
  119. }
  120. static int smu10_init_dynamic_state_adjustment_rule_settings(
  121. struct pp_hwmgr *hwmgr)
  122. {
  123. uint32_t table_size =
  124. sizeof(struct phm_clock_voltage_dependency_table) +
  125. (7 * sizeof(struct phm_clock_voltage_dependency_record));
  126. struct phm_clock_voltage_dependency_table *table_clk_vlt =
  127. kzalloc(table_size, GFP_KERNEL);
  128. if (NULL == table_clk_vlt) {
  129. pr_err("Can not allocate memory!\n");
  130. return -ENOMEM;
  131. }
  132. table_clk_vlt->count = 8;
  133. table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
  134. table_clk_vlt->entries[0].v = 0;
  135. table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
  136. table_clk_vlt->entries[1].v = 1;
  137. table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
  138. table_clk_vlt->entries[2].v = 2;
  139. table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
  140. table_clk_vlt->entries[3].v = 3;
  141. table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
  142. table_clk_vlt->entries[4].v = 4;
  143. table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
  144. table_clk_vlt->entries[5].v = 5;
  145. table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
  146. table_clk_vlt->entries[6].v = 6;
  147. table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
  148. table_clk_vlt->entries[7].v = 7;
  149. hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
  150. return 0;
  151. }
  152. static int smu10_get_system_info_data(struct pp_hwmgr *hwmgr)
  153. {
  154. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)hwmgr->backend;
  155. smu10_data->sys_info.htc_hyst_lmt = 5;
  156. smu10_data->sys_info.htc_tmp_lmt = 203;
  157. if (smu10_data->thermal_auto_throttling_treshold == 0)
  158. smu10_data->thermal_auto_throttling_treshold = 203;
  159. smu10_construct_max_power_limits_table (hwmgr,
  160. &hwmgr->dyn_state.max_clock_voltage_on_ac);
  161. smu10_init_dynamic_state_adjustment_rule_settings(hwmgr);
  162. return 0;
  163. }
  164. static int smu10_construct_boot_state(struct pp_hwmgr *hwmgr)
  165. {
  166. return 0;
  167. }
  168. static int smu10_set_clock_limit(struct pp_hwmgr *hwmgr, const void *input)
  169. {
  170. struct PP_Clocks clocks = {0};
  171. struct pp_display_clock_request clock_req;
  172. clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
  173. clock_req.clock_type = amd_pp_dcf_clock;
  174. clock_req.clock_freq_in_khz = clocks.dcefClock * 10;
  175. PP_ASSERT_WITH_CODE(!smu10_display_clock_voltage_request(hwmgr, &clock_req),
  176. "Attempt to set DCF Clock Failed!", return -EINVAL);
  177. return 0;
  178. }
  179. static int smu10_set_deep_sleep_dcefclk(struct pp_hwmgr *hwmgr, uint32_t clock)
  180. {
  181. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  182. if (smu10_data->need_min_deep_sleep_dcefclk && smu10_data->deep_sleep_dcefclk != clock/100) {
  183. smu10_data->deep_sleep_dcefclk = clock/100;
  184. smum_send_msg_to_smc_with_parameter(hwmgr,
  185. PPSMC_MSG_SetMinDeepSleepDcefclk,
  186. smu10_data->deep_sleep_dcefclk);
  187. }
  188. return 0;
  189. }
  190. static int smu10_set_active_display_count(struct pp_hwmgr *hwmgr, uint32_t count)
  191. {
  192. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  193. if (smu10_data->num_active_display != count) {
  194. smu10_data->num_active_display = count;
  195. smum_send_msg_to_smc_with_parameter(hwmgr,
  196. PPSMC_MSG_SetDisplayCount,
  197. smu10_data->num_active_display);
  198. }
  199. return 0;
  200. }
  201. static int smu10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
  202. {
  203. return smu10_set_clock_limit(hwmgr, input);
  204. }
  205. static int smu10_init_power_gate_state(struct pp_hwmgr *hwmgr)
  206. {
  207. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  208. struct amdgpu_device *adev = hwmgr->adev;
  209. smu10_data->vcn_power_gated = true;
  210. smu10_data->isp_tileA_power_gated = true;
  211. smu10_data->isp_tileB_power_gated = true;
  212. if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)
  213. return smum_send_msg_to_smc_with_parameter(hwmgr,
  214. PPSMC_MSG_SetGfxCGPG,
  215. true);
  216. else
  217. return 0;
  218. }
  219. static int smu10_setup_asic_task(struct pp_hwmgr *hwmgr)
  220. {
  221. return smu10_init_power_gate_state(hwmgr);
  222. }
  223. static int smu10_reset_cc6_data(struct pp_hwmgr *hwmgr)
  224. {
  225. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  226. smu10_data->separation_time = 0;
  227. smu10_data->cc6_disable = false;
  228. smu10_data->pstate_disable = false;
  229. smu10_data->cc6_setting_changed = false;
  230. return 0;
  231. }
  232. static int smu10_power_off_asic(struct pp_hwmgr *hwmgr)
  233. {
  234. return smu10_reset_cc6_data(hwmgr);
  235. }
  236. static bool smu10_is_gfx_on(struct pp_hwmgr *hwmgr)
  237. {
  238. uint32_t reg;
  239. struct amdgpu_device *adev = hwmgr->adev;
  240. reg = RREG32_SOC15(PWR, 0, mmPWR_MISC_CNTL_STATUS);
  241. if ((reg & PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK) ==
  242. (0x2 << PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT))
  243. return true;
  244. return false;
  245. }
  246. static int smu10_disable_gfx_off(struct pp_hwmgr *hwmgr)
  247. {
  248. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  249. if (smu10_data->gfx_off_controled_by_driver) {
  250. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableGfxOff);
  251. /* confirm gfx is back to "on" state */
  252. while (!smu10_is_gfx_on(hwmgr))
  253. msleep(1);
  254. }
  255. return 0;
  256. }
  257. static int smu10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
  258. {
  259. return 0;
  260. }
  261. static int smu10_enable_gfx_off(struct pp_hwmgr *hwmgr)
  262. {
  263. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  264. if (smu10_data->gfx_off_controled_by_driver)
  265. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableGfxOff);
  266. return 0;
  267. }
  268. static int smu10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
  269. {
  270. return 0;
  271. }
  272. static int smu10_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable)
  273. {
  274. if (enable)
  275. return smu10_enable_gfx_off(hwmgr);
  276. else
  277. return smu10_disable_gfx_off(hwmgr);
  278. }
  279. static int smu10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
  280. struct pp_power_state *prequest_ps,
  281. const struct pp_power_state *pcurrent_ps)
  282. {
  283. return 0;
  284. }
  285. /* temporary hardcoded clock voltage breakdown tables */
  286. static const DpmClock_t VddDcfClk[]= {
  287. { 300, 2600},
  288. { 600, 3200},
  289. { 600, 3600},
  290. };
  291. static const DpmClock_t VddSocClk[]= {
  292. { 478, 2600},
  293. { 722, 3200},
  294. { 722, 3600},
  295. };
  296. static const DpmClock_t VddFClk[]= {
  297. { 400, 2600},
  298. {1200, 3200},
  299. {1200, 3600},
  300. };
  301. static const DpmClock_t VddDispClk[]= {
  302. { 435, 2600},
  303. { 661, 3200},
  304. {1086, 3600},
  305. };
  306. static const DpmClock_t VddDppClk[]= {
  307. { 435, 2600},
  308. { 661, 3200},
  309. { 661, 3600},
  310. };
  311. static const DpmClock_t VddPhyClk[]= {
  312. { 540, 2600},
  313. { 810, 3200},
  314. { 810, 3600},
  315. };
  316. static int smu10_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
  317. struct smu10_voltage_dependency_table **pptable,
  318. uint32_t num_entry, const DpmClock_t *pclk_dependency_table)
  319. {
  320. uint32_t table_size, i;
  321. struct smu10_voltage_dependency_table *ptable;
  322. table_size = sizeof(uint32_t) + sizeof(struct smu10_voltage_dependency_table) * num_entry;
  323. ptable = kzalloc(table_size, GFP_KERNEL);
  324. if (NULL == ptable)
  325. return -ENOMEM;
  326. ptable->count = num_entry;
  327. for (i = 0; i < ptable->count; i++) {
  328. ptable->entries[i].clk = pclk_dependency_table->Freq * 100;
  329. ptable->entries[i].vol = pclk_dependency_table->Vol;
  330. pclk_dependency_table++;
  331. }
  332. *pptable = ptable;
  333. return 0;
  334. }
  335. static int smu10_populate_clock_table(struct pp_hwmgr *hwmgr)
  336. {
  337. uint32_t result;
  338. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  339. DpmClocks_t *table = &(smu10_data->clock_table);
  340. struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
  341. result = smum_smc_table_manager(hwmgr, (uint8_t *)table, SMU10_CLOCKTABLE, true);
  342. PP_ASSERT_WITH_CODE((0 == result),
  343. "Attempt to copy clock table from smc failed",
  344. return result);
  345. if (0 == result && table->DcefClocks[0].Freq != 0) {
  346. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
  347. NUM_DCEFCLK_DPM_LEVELS,
  348. &smu10_data->clock_table.DcefClocks[0]);
  349. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
  350. NUM_SOCCLK_DPM_LEVELS,
  351. &smu10_data->clock_table.SocClocks[0]);
  352. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
  353. NUM_FCLK_DPM_LEVELS,
  354. &smu10_data->clock_table.FClocks[0]);
  355. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
  356. NUM_MEMCLK_DPM_LEVELS,
  357. &smu10_data->clock_table.MemClocks[0]);
  358. } else {
  359. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
  360. ARRAY_SIZE(VddDcfClk),
  361. &VddDcfClk[0]);
  362. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
  363. ARRAY_SIZE(VddSocClk),
  364. &VddSocClk[0]);
  365. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
  366. ARRAY_SIZE(VddFClk),
  367. &VddFClk[0]);
  368. }
  369. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
  370. ARRAY_SIZE(VddDispClk),
  371. &VddDispClk[0]);
  372. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
  373. ARRAY_SIZE(VddDppClk), &VddDppClk[0]);
  374. smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
  375. ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]);
  376. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency);
  377. result = smum_get_argument(hwmgr);
  378. smu10_data->gfx_min_freq_limit = result / 10 * 1000;
  379. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency);
  380. result = smum_get_argument(hwmgr);
  381. smu10_data->gfx_max_freq_limit = result / 10 * 1000;
  382. return 0;
  383. }
  384. static int smu10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
  385. {
  386. int result = 0;
  387. struct smu10_hwmgr *data;
  388. data = kzalloc(sizeof(struct smu10_hwmgr), GFP_KERNEL);
  389. if (data == NULL)
  390. return -ENOMEM;
  391. hwmgr->backend = data;
  392. result = smu10_initialize_dpm_defaults(hwmgr);
  393. if (result != 0) {
  394. pr_err("smu10_initialize_dpm_defaults failed\n");
  395. return result;
  396. }
  397. smu10_populate_clock_table(hwmgr);
  398. result = smu10_get_system_info_data(hwmgr);
  399. if (result != 0) {
  400. pr_err("smu10_get_system_info_data failed\n");
  401. return result;
  402. }
  403. smu10_construct_boot_state(hwmgr);
  404. hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
  405. SMU10_MAX_HARDWARE_POWERLEVELS;
  406. hwmgr->platform_descriptor.hardwarePerformanceLevels =
  407. SMU10_MAX_HARDWARE_POWERLEVELS;
  408. hwmgr->platform_descriptor.vbiosInterruptId = 0;
  409. hwmgr->platform_descriptor.clockStep.engineClock = 500;
  410. hwmgr->platform_descriptor.clockStep.memoryClock = 500;
  411. hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
  412. hwmgr->pstate_sclk = SMU10_UMD_PSTATE_GFXCLK * 100;
  413. hwmgr->pstate_mclk = SMU10_UMD_PSTATE_FCLK * 100;
  414. return result;
  415. }
  416. static int smu10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
  417. {
  418. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  419. struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
  420. kfree(pinfo->vdd_dep_on_dcefclk);
  421. pinfo->vdd_dep_on_dcefclk = NULL;
  422. kfree(pinfo->vdd_dep_on_socclk);
  423. pinfo->vdd_dep_on_socclk = NULL;
  424. kfree(pinfo->vdd_dep_on_fclk);
  425. pinfo->vdd_dep_on_fclk = NULL;
  426. kfree(pinfo->vdd_dep_on_dispclk);
  427. pinfo->vdd_dep_on_dispclk = NULL;
  428. kfree(pinfo->vdd_dep_on_dppclk);
  429. pinfo->vdd_dep_on_dppclk = NULL;
  430. kfree(pinfo->vdd_dep_on_phyclk);
  431. pinfo->vdd_dep_on_phyclk = NULL;
  432. kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
  433. hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
  434. kfree(hwmgr->backend);
  435. hwmgr->backend = NULL;
  436. return 0;
  437. }
  438. static int smu10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
  439. enum amd_dpm_forced_level level)
  440. {
  441. struct smu10_hwmgr *data = hwmgr->backend;
  442. if (hwmgr->smu_version < 0x1E3700) {
  443. pr_info("smu firmware version too old, can not set dpm level\n");
  444. return 0;
  445. }
  446. switch (level) {
  447. case AMD_DPM_FORCED_LEVEL_HIGH:
  448. case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
  449. smum_send_msg_to_smc_with_parameter(hwmgr,
  450. PPSMC_MSG_SetHardMinGfxClk,
  451. data->gfx_max_freq_limit/100);
  452. smum_send_msg_to_smc_with_parameter(hwmgr,
  453. PPSMC_MSG_SetHardMinFclkByFreq,
  454. SMU10_UMD_PSTATE_PEAK_FCLK);
  455. smum_send_msg_to_smc_with_parameter(hwmgr,
  456. PPSMC_MSG_SetHardMinSocclkByFreq,
  457. SMU10_UMD_PSTATE_PEAK_SOCCLK);
  458. smum_send_msg_to_smc_with_parameter(hwmgr,
  459. PPSMC_MSG_SetHardMinVcn,
  460. SMU10_UMD_PSTATE_VCE);
  461. smum_send_msg_to_smc_with_parameter(hwmgr,
  462. PPSMC_MSG_SetSoftMaxGfxClk,
  463. data->gfx_max_freq_limit/100);
  464. smum_send_msg_to_smc_with_parameter(hwmgr,
  465. PPSMC_MSG_SetSoftMaxFclkByFreq,
  466. SMU10_UMD_PSTATE_PEAK_FCLK);
  467. smum_send_msg_to_smc_with_parameter(hwmgr,
  468. PPSMC_MSG_SetSoftMaxSocclkByFreq,
  469. SMU10_UMD_PSTATE_PEAK_SOCCLK);
  470. smum_send_msg_to_smc_with_parameter(hwmgr,
  471. PPSMC_MSG_SetSoftMaxVcn,
  472. SMU10_UMD_PSTATE_VCE);
  473. break;
  474. case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
  475. smum_send_msg_to_smc_with_parameter(hwmgr,
  476. PPSMC_MSG_SetHardMinGfxClk,
  477. data->gfx_min_freq_limit/100);
  478. smum_send_msg_to_smc_with_parameter(hwmgr,
  479. PPSMC_MSG_SetSoftMaxGfxClk,
  480. data->gfx_min_freq_limit/100);
  481. break;
  482. case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
  483. smum_send_msg_to_smc_with_parameter(hwmgr,
  484. PPSMC_MSG_SetHardMinFclkByFreq,
  485. SMU10_UMD_PSTATE_MIN_FCLK);
  486. smum_send_msg_to_smc_with_parameter(hwmgr,
  487. PPSMC_MSG_SetSoftMaxFclkByFreq,
  488. SMU10_UMD_PSTATE_MIN_FCLK);
  489. break;
  490. case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
  491. smum_send_msg_to_smc_with_parameter(hwmgr,
  492. PPSMC_MSG_SetHardMinGfxClk,
  493. SMU10_UMD_PSTATE_GFXCLK);
  494. smum_send_msg_to_smc_with_parameter(hwmgr,
  495. PPSMC_MSG_SetHardMinFclkByFreq,
  496. SMU10_UMD_PSTATE_FCLK);
  497. smum_send_msg_to_smc_with_parameter(hwmgr,
  498. PPSMC_MSG_SetHardMinSocclkByFreq,
  499. SMU10_UMD_PSTATE_SOCCLK);
  500. smum_send_msg_to_smc_with_parameter(hwmgr,
  501. PPSMC_MSG_SetHardMinVcn,
  502. SMU10_UMD_PSTATE_VCE);
  503. smum_send_msg_to_smc_with_parameter(hwmgr,
  504. PPSMC_MSG_SetSoftMaxGfxClk,
  505. SMU10_UMD_PSTATE_GFXCLK);
  506. smum_send_msg_to_smc_with_parameter(hwmgr,
  507. PPSMC_MSG_SetSoftMaxFclkByFreq,
  508. SMU10_UMD_PSTATE_FCLK);
  509. smum_send_msg_to_smc_with_parameter(hwmgr,
  510. PPSMC_MSG_SetSoftMaxSocclkByFreq,
  511. SMU10_UMD_PSTATE_SOCCLK);
  512. smum_send_msg_to_smc_with_parameter(hwmgr,
  513. PPSMC_MSG_SetSoftMaxVcn,
  514. SMU10_UMD_PSTATE_VCE);
  515. break;
  516. case AMD_DPM_FORCED_LEVEL_AUTO:
  517. smum_send_msg_to_smc_with_parameter(hwmgr,
  518. PPSMC_MSG_SetHardMinGfxClk,
  519. data->gfx_min_freq_limit/100);
  520. smum_send_msg_to_smc_with_parameter(hwmgr,
  521. PPSMC_MSG_SetHardMinFclkByFreq,
  522. hwmgr->display_config->num_display > 3 ?
  523. SMU10_UMD_PSTATE_PEAK_FCLK :
  524. SMU10_UMD_PSTATE_MIN_FCLK);
  525. smum_send_msg_to_smc_with_parameter(hwmgr,
  526. PPSMC_MSG_SetHardMinSocclkByFreq,
  527. SMU10_UMD_PSTATE_MIN_SOCCLK);
  528. smum_send_msg_to_smc_with_parameter(hwmgr,
  529. PPSMC_MSG_SetHardMinVcn,
  530. SMU10_UMD_PSTATE_MIN_VCE);
  531. smum_send_msg_to_smc_with_parameter(hwmgr,
  532. PPSMC_MSG_SetSoftMaxGfxClk,
  533. data->gfx_max_freq_limit/100);
  534. smum_send_msg_to_smc_with_parameter(hwmgr,
  535. PPSMC_MSG_SetSoftMaxFclkByFreq,
  536. SMU10_UMD_PSTATE_PEAK_FCLK);
  537. smum_send_msg_to_smc_with_parameter(hwmgr,
  538. PPSMC_MSG_SetSoftMaxSocclkByFreq,
  539. SMU10_UMD_PSTATE_PEAK_SOCCLK);
  540. smum_send_msg_to_smc_with_parameter(hwmgr,
  541. PPSMC_MSG_SetSoftMaxVcn,
  542. SMU10_UMD_PSTATE_VCE);
  543. break;
  544. case AMD_DPM_FORCED_LEVEL_LOW:
  545. smum_send_msg_to_smc_with_parameter(hwmgr,
  546. PPSMC_MSG_SetHardMinGfxClk,
  547. data->gfx_min_freq_limit/100);
  548. smum_send_msg_to_smc_with_parameter(hwmgr,
  549. PPSMC_MSG_SetSoftMaxGfxClk,
  550. data->gfx_min_freq_limit/100);
  551. smum_send_msg_to_smc_with_parameter(hwmgr,
  552. PPSMC_MSG_SetHardMinFclkByFreq,
  553. SMU10_UMD_PSTATE_MIN_FCLK);
  554. smum_send_msg_to_smc_with_parameter(hwmgr,
  555. PPSMC_MSG_SetSoftMaxFclkByFreq,
  556. SMU10_UMD_PSTATE_MIN_FCLK);
  557. break;
  558. case AMD_DPM_FORCED_LEVEL_MANUAL:
  559. case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
  560. default:
  561. break;
  562. }
  563. return 0;
  564. }
  565. static uint32_t smu10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
  566. {
  567. struct smu10_hwmgr *data;
  568. if (hwmgr == NULL)
  569. return -EINVAL;
  570. data = (struct smu10_hwmgr *)(hwmgr->backend);
  571. if (low)
  572. return data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
  573. else
  574. return data->clock_vol_info.vdd_dep_on_fclk->entries[
  575. data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk;
  576. }
  577. static uint32_t smu10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
  578. {
  579. struct smu10_hwmgr *data;
  580. if (hwmgr == NULL)
  581. return -EINVAL;
  582. data = (struct smu10_hwmgr *)(hwmgr->backend);
  583. if (low)
  584. return data->gfx_min_freq_limit;
  585. else
  586. return data->gfx_max_freq_limit;
  587. }
  588. static int smu10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
  589. struct pp_hw_power_state *hw_ps)
  590. {
  591. return 0;
  592. }
  593. static int smu10_dpm_get_pp_table_entry_callback(
  594. struct pp_hwmgr *hwmgr,
  595. struct pp_hw_power_state *hw_ps,
  596. unsigned int index,
  597. const void *clock_info)
  598. {
  599. struct smu10_power_state *smu10_ps = cast_smu10_ps(hw_ps);
  600. smu10_ps->levels[index].engine_clock = 0;
  601. smu10_ps->levels[index].vddc_index = 0;
  602. smu10_ps->level = index + 1;
  603. if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
  604. smu10_ps->levels[index].ds_divider_index = 5;
  605. smu10_ps->levels[index].ss_divider_index = 5;
  606. }
  607. return 0;
  608. }
  609. static int smu10_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
  610. {
  611. int result;
  612. unsigned long ret = 0;
  613. result = pp_tables_get_num_of_entries(hwmgr, &ret);
  614. return result ? 0 : ret;
  615. }
  616. static int smu10_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
  617. unsigned long entry, struct pp_power_state *ps)
  618. {
  619. int result;
  620. struct smu10_power_state *smu10_ps;
  621. ps->hardware.magic = SMU10_Magic;
  622. smu10_ps = cast_smu10_ps(&(ps->hardware));
  623. result = pp_tables_get_entry(hwmgr, entry, ps,
  624. smu10_dpm_get_pp_table_entry_callback);
  625. smu10_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
  626. smu10_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;
  627. return result;
  628. }
  629. static int smu10_get_power_state_size(struct pp_hwmgr *hwmgr)
  630. {
  631. return sizeof(struct smu10_power_state);
  632. }
  633. static int smu10_set_cpu_power_state(struct pp_hwmgr *hwmgr)
  634. {
  635. return 0;
  636. }
  637. static int smu10_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
  638. bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
  639. {
  640. struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend);
  641. if (separation_time != data->separation_time ||
  642. cc6_disable != data->cc6_disable ||
  643. pstate_disable != data->pstate_disable) {
  644. data->separation_time = separation_time;
  645. data->cc6_disable = cc6_disable;
  646. data->pstate_disable = pstate_disable;
  647. data->cc6_setting_changed = true;
  648. }
  649. return 0;
  650. }
  651. static int smu10_get_dal_power_level(struct pp_hwmgr *hwmgr,
  652. struct amd_pp_simple_clock_info *info)
  653. {
  654. return -EINVAL;
  655. }
  656. static int smu10_force_clock_level(struct pp_hwmgr *hwmgr,
  657. enum pp_clock_type type, uint32_t mask)
  658. {
  659. struct smu10_hwmgr *data = hwmgr->backend;
  660. struct smu10_voltage_dependency_table *mclk_table =
  661. data->clock_vol_info.vdd_dep_on_fclk;
  662. uint32_t low, high;
  663. low = mask ? (ffs(mask) - 1) : 0;
  664. high = mask ? (fls(mask) - 1) : 0;
  665. switch (type) {
  666. case PP_SCLK:
  667. if (low > 2 || high > 2) {
  668. pr_info("Currently sclk only support 3 levels on RV\n");
  669. return -EINVAL;
  670. }
  671. smum_send_msg_to_smc_with_parameter(hwmgr,
  672. PPSMC_MSG_SetHardMinGfxClk,
  673. low == 2 ? data->gfx_max_freq_limit/100 :
  674. low == 1 ? SMU10_UMD_PSTATE_GFXCLK :
  675. data->gfx_min_freq_limit/100);
  676. smum_send_msg_to_smc_with_parameter(hwmgr,
  677. PPSMC_MSG_SetSoftMaxGfxClk,
  678. high == 0 ? data->gfx_min_freq_limit/100 :
  679. high == 1 ? SMU10_UMD_PSTATE_GFXCLK :
  680. data->gfx_max_freq_limit/100);
  681. break;
  682. case PP_MCLK:
  683. if (low > mclk_table->count - 1 || high > mclk_table->count - 1)
  684. return -EINVAL;
  685. smum_send_msg_to_smc_with_parameter(hwmgr,
  686. PPSMC_MSG_SetHardMinFclkByFreq,
  687. mclk_table->entries[low].clk/100);
  688. smum_send_msg_to_smc_with_parameter(hwmgr,
  689. PPSMC_MSG_SetSoftMaxFclkByFreq,
  690. mclk_table->entries[high].clk/100);
  691. break;
  692. case PP_PCIE:
  693. default:
  694. break;
  695. }
  696. return 0;
  697. }
  698. static int smu10_print_clock_levels(struct pp_hwmgr *hwmgr,
  699. enum pp_clock_type type, char *buf)
  700. {
  701. struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend);
  702. struct smu10_voltage_dependency_table *mclk_table =
  703. data->clock_vol_info.vdd_dep_on_fclk;
  704. uint32_t i, now, size = 0;
  705. switch (type) {
  706. case PP_SCLK:
  707. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency);
  708. now = smum_get_argument(hwmgr);
  709. /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
  710. if (now == data->gfx_max_freq_limit/100)
  711. i = 2;
  712. else if (now == data->gfx_min_freq_limit/100)
  713. i = 0;
  714. else
  715. i = 1;
  716. size += sprintf(buf + size, "0: %uMhz %s\n",
  717. data->gfx_min_freq_limit/100,
  718. i == 0 ? "*" : "");
  719. size += sprintf(buf + size, "1: %uMhz %s\n",
  720. i == 1 ? now : SMU10_UMD_PSTATE_GFXCLK,
  721. i == 1 ? "*" : "");
  722. size += sprintf(buf + size, "2: %uMhz %s\n",
  723. data->gfx_max_freq_limit/100,
  724. i == 2 ? "*" : "");
  725. break;
  726. case PP_MCLK:
  727. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency);
  728. now = smum_get_argument(hwmgr);
  729. for (i = 0; i < mclk_table->count; i++)
  730. size += sprintf(buf + size, "%d: %uMhz %s\n",
  731. i,
  732. mclk_table->entries[i].clk / 100,
  733. ((mclk_table->entries[i].clk / 100)
  734. == now) ? "*" : "");
  735. break;
  736. default:
  737. break;
  738. }
  739. return size;
  740. }
  741. static int smu10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
  742. PHM_PerformanceLevelDesignation designation, uint32_t index,
  743. PHM_PerformanceLevel *level)
  744. {
  745. struct smu10_hwmgr *data;
  746. if (level == NULL || hwmgr == NULL || state == NULL)
  747. return -EINVAL;
  748. data = (struct smu10_hwmgr *)(hwmgr->backend);
  749. if (index == 0) {
  750. level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;
  751. level->coreClock = data->gfx_min_freq_limit;
  752. } else {
  753. level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[
  754. data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk;
  755. level->coreClock = data->gfx_max_freq_limit;
  756. }
  757. level->nonLocalMemoryFreq = 0;
  758. level->nonLocalMemoryWidth = 0;
  759. return 0;
  760. }
  761. static int smu10_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
  762. const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
  763. {
  764. const struct smu10_power_state *ps = cast_const_smu10_ps(state);
  765. clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
  766. clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));
  767. return 0;
  768. }
  769. #define MEM_FREQ_LOW_LATENCY 25000
  770. #define MEM_FREQ_HIGH_LATENCY 80000
  771. #define MEM_LATENCY_HIGH 245
  772. #define MEM_LATENCY_LOW 35
  773. #define MEM_LATENCY_ERR 0xFFFF
  774. static uint32_t smu10_get_mem_latency(struct pp_hwmgr *hwmgr,
  775. uint32_t clock)
  776. {
  777. if (clock >= MEM_FREQ_LOW_LATENCY &&
  778. clock < MEM_FREQ_HIGH_LATENCY)
  779. return MEM_LATENCY_HIGH;
  780. else if (clock >= MEM_FREQ_HIGH_LATENCY)
  781. return MEM_LATENCY_LOW;
  782. else
  783. return MEM_LATENCY_ERR;
  784. }
  785. static int smu10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
  786. enum amd_pp_clock_type type,
  787. struct pp_clock_levels_with_latency *clocks)
  788. {
  789. uint32_t i;
  790. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  791. struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
  792. struct smu10_voltage_dependency_table *pclk_vol_table;
  793. bool latency_required = false;
  794. if (pinfo == NULL)
  795. return -EINVAL;
  796. switch (type) {
  797. case amd_pp_mem_clock:
  798. pclk_vol_table = pinfo->vdd_dep_on_mclk;
  799. latency_required = true;
  800. break;
  801. case amd_pp_f_clock:
  802. pclk_vol_table = pinfo->vdd_dep_on_fclk;
  803. latency_required = true;
  804. break;
  805. case amd_pp_dcf_clock:
  806. pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
  807. break;
  808. case amd_pp_disp_clock:
  809. pclk_vol_table = pinfo->vdd_dep_on_dispclk;
  810. break;
  811. case amd_pp_phy_clock:
  812. pclk_vol_table = pinfo->vdd_dep_on_phyclk;
  813. break;
  814. case amd_pp_dpp_clock:
  815. pclk_vol_table = pinfo->vdd_dep_on_dppclk;
  816. default:
  817. return -EINVAL;
  818. }
  819. if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
  820. return -EINVAL;
  821. clocks->num_levels = 0;
  822. for (i = 0; i < pclk_vol_table->count; i++) {
  823. clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
  824. clocks->data[i].latency_in_us = latency_required ?
  825. smu10_get_mem_latency(hwmgr,
  826. pclk_vol_table->entries[i].clk) :
  827. 0;
  828. clocks->num_levels++;
  829. }
  830. return 0;
  831. }
  832. static int smu10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
  833. enum amd_pp_clock_type type,
  834. struct pp_clock_levels_with_voltage *clocks)
  835. {
  836. uint32_t i;
  837. struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend);
  838. struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info);
  839. struct smu10_voltage_dependency_table *pclk_vol_table = NULL;
  840. if (pinfo == NULL)
  841. return -EINVAL;
  842. switch (type) {
  843. case amd_pp_mem_clock:
  844. pclk_vol_table = pinfo->vdd_dep_on_mclk;
  845. break;
  846. case amd_pp_f_clock:
  847. pclk_vol_table = pinfo->vdd_dep_on_fclk;
  848. break;
  849. case amd_pp_dcf_clock:
  850. pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
  851. break;
  852. case amd_pp_soc_clock:
  853. pclk_vol_table = pinfo->vdd_dep_on_socclk;
  854. break;
  855. case amd_pp_disp_clock:
  856. pclk_vol_table = pinfo->vdd_dep_on_dispclk;
  857. break;
  858. case amd_pp_phy_clock:
  859. pclk_vol_table = pinfo->vdd_dep_on_phyclk;
  860. break;
  861. default:
  862. return -EINVAL;
  863. }
  864. if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
  865. return -EINVAL;
  866. clocks->num_levels = 0;
  867. for (i = 0; i < pclk_vol_table->count; i++) {
  868. clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
  869. clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
  870. clocks->num_levels++;
  871. }
  872. return 0;
  873. }
  874. static int smu10_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
  875. {
  876. clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */
  877. return 0;
  878. }
  879. static int smu10_thermal_get_temperature(struct pp_hwmgr *hwmgr)
  880. {
  881. struct amdgpu_device *adev = hwmgr->adev;
  882. uint32_t reg_value = RREG32_SOC15(THM, 0, mmTHM_TCON_CUR_TMP);
  883. int cur_temp =
  884. (reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT;
  885. if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK)
  886. cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
  887. else
  888. cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
  889. return cur_temp;
  890. }
  891. static int smu10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
  892. void *value, int *size)
  893. {
  894. uint32_t sclk, mclk;
  895. int ret = 0;
  896. switch (idx) {
  897. case AMDGPU_PP_SENSOR_GFX_SCLK:
  898. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency);
  899. sclk = smum_get_argument(hwmgr);
  900. /* in units of 10KHZ */
  901. *((uint32_t *)value) = sclk * 100;
  902. *size = 4;
  903. break;
  904. case AMDGPU_PP_SENSOR_GFX_MCLK:
  905. smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency);
  906. mclk = smum_get_argument(hwmgr);
  907. /* in units of 10KHZ */
  908. *((uint32_t *)value) = mclk * 100;
  909. *size = 4;
  910. break;
  911. case AMDGPU_PP_SENSOR_GPU_TEMP:
  912. *((uint32_t *)value) = smu10_thermal_get_temperature(hwmgr);
  913. break;
  914. default:
  915. ret = -EINVAL;
  916. break;
  917. }
  918. return ret;
  919. }
  920. static int smu10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
  921. struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
  922. {
  923. struct smu10_hwmgr *data = hwmgr->backend;
  924. Watermarks_t *table = &(data->water_marks_table);
  925. int result = 0;
  926. smu_set_watermarks_for_clocks_ranges(table,wm_with_clock_ranges);
  927. smum_smc_table_manager(hwmgr, (uint8_t *)table, (uint16_t)SMU10_WMTABLE, false);
  928. data->water_marks_exist = true;
  929. return result;
  930. }
  931. static int smu10_smus_notify_pwe(struct pp_hwmgr *hwmgr)
  932. {
  933. return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SetRccPfcPmeRestoreRegister);
  934. }
  935. static int smu10_set_mmhub_powergating_by_smu(struct pp_hwmgr *hwmgr)
  936. {
  937. return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerGateMmHub);
  938. }
  939. static void smu10_powergate_vcn(struct pp_hwmgr *hwmgr, bool bgate)
  940. {
  941. if (bgate) {
  942. amdgpu_device_ip_set_powergating_state(hwmgr->adev,
  943. AMD_IP_BLOCK_TYPE_VCN,
  944. AMD_PG_STATE_GATE);
  945. smum_send_msg_to_smc_with_parameter(hwmgr,
  946. PPSMC_MSG_PowerDownVcn, 0);
  947. } else {
  948. smum_send_msg_to_smc_with_parameter(hwmgr,
  949. PPSMC_MSG_PowerUpVcn, 0);
  950. amdgpu_device_ip_set_powergating_state(hwmgr->adev,
  951. AMD_IP_BLOCK_TYPE_VCN,
  952. AMD_PG_STATE_UNGATE);
  953. }
  954. }
  955. static const struct pp_hwmgr_func smu10_hwmgr_funcs = {
  956. .backend_init = smu10_hwmgr_backend_init,
  957. .backend_fini = smu10_hwmgr_backend_fini,
  958. .asic_setup = NULL,
  959. .apply_state_adjust_rules = smu10_apply_state_adjust_rules,
  960. .force_dpm_level = smu10_dpm_force_dpm_level,
  961. .get_power_state_size = smu10_get_power_state_size,
  962. .powerdown_uvd = NULL,
  963. .powergate_uvd = smu10_powergate_vcn,
  964. .powergate_vce = NULL,
  965. .get_mclk = smu10_dpm_get_mclk,
  966. .get_sclk = smu10_dpm_get_sclk,
  967. .patch_boot_state = smu10_dpm_patch_boot_state,
  968. .get_pp_table_entry = smu10_dpm_get_pp_table_entry,
  969. .get_num_of_pp_table_entries = smu10_dpm_get_num_of_pp_table_entries,
  970. .set_cpu_power_state = smu10_set_cpu_power_state,
  971. .store_cc6_data = smu10_store_cc6_data,
  972. .force_clock_level = smu10_force_clock_level,
  973. .print_clock_levels = smu10_print_clock_levels,
  974. .get_dal_power_level = smu10_get_dal_power_level,
  975. .get_performance_level = smu10_get_performance_level,
  976. .get_current_shallow_sleep_clocks = smu10_get_current_shallow_sleep_clocks,
  977. .get_clock_by_type_with_latency = smu10_get_clock_by_type_with_latency,
  978. .get_clock_by_type_with_voltage = smu10_get_clock_by_type_with_voltage,
  979. .set_watermarks_for_clocks_ranges = smu10_set_watermarks_for_clocks_ranges,
  980. .get_max_high_clocks = smu10_get_max_high_clocks,
  981. .read_sensor = smu10_read_sensor,
  982. .set_active_display_count = smu10_set_active_display_count,
  983. .set_deep_sleep_dcefclk = smu10_set_deep_sleep_dcefclk,
  984. .dynamic_state_management_enable = smu10_enable_dpm_tasks,
  985. .power_off_asic = smu10_power_off_asic,
  986. .asic_setup = smu10_setup_asic_task,
  987. .power_state_set = smu10_set_power_state_tasks,
  988. .dynamic_state_management_disable = smu10_disable_dpm_tasks,
  989. .set_mmhub_powergating_by_smu = smu10_set_mmhub_powergating_by_smu,
  990. .smus_notify_pwe = smu10_smus_notify_pwe,
  991. .gfx_off_control = smu10_gfx_off_control,
  992. .display_clock_voltage_request = smu10_display_clock_voltage_request,
  993. };
  994. int smu10_init_function_pointers(struct pp_hwmgr *hwmgr)
  995. {
  996. hwmgr->hwmgr_func = &smu10_hwmgr_funcs;
  997. hwmgr->pptable_func = &pptable_funcs;
  998. return 0;
  999. }