sched.h 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/sched/deadline.h>
  5. #include <linux/mutex.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/stop_machine.h>
  8. #include <linux/tick.h>
  9. #include <linux/slab.h>
  10. #include "cpupri.h"
  11. #include "cpudeadline.h"
  12. #include "cpuacct.h"
  13. struct rq;
  14. /* task_struct::on_rq states: */
  15. #define TASK_ON_RQ_QUEUED 1
  16. extern __read_mostly int scheduler_running;
  17. extern unsigned long calc_load_update;
  18. extern atomic_long_t calc_load_tasks;
  19. extern long calc_load_fold_active(struct rq *this_rq);
  20. extern void update_cpu_load_active(struct rq *this_rq);
  21. /*
  22. * Helpers for converting nanosecond timing to jiffy resolution
  23. */
  24. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  25. /*
  26. * Increase resolution of nice-level calculations for 64-bit architectures.
  27. * The extra resolution improves shares distribution and load balancing of
  28. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  29. * hierarchies, especially on larger systems. This is not a user-visible change
  30. * and does not change the user-interface for setting shares/weights.
  31. *
  32. * We increase resolution only if we have enough bits to allow this increased
  33. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  34. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  35. * increased costs.
  36. */
  37. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  38. # define SCHED_LOAD_RESOLUTION 10
  39. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  40. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  41. #else
  42. # define SCHED_LOAD_RESOLUTION 0
  43. # define scale_load(w) (w)
  44. # define scale_load_down(w) (w)
  45. #endif
  46. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  47. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  48. #define NICE_0_LOAD SCHED_LOAD_SCALE
  49. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  50. /*
  51. * Single value that decides SCHED_DEADLINE internal math precision.
  52. * 10 -> just above 1us
  53. * 9 -> just above 0.5us
  54. */
  55. #define DL_SCALE (10)
  56. /*
  57. * These are the 'tuning knobs' of the scheduler:
  58. */
  59. /*
  60. * single value that denotes runtime == period, ie unlimited time.
  61. */
  62. #define RUNTIME_INF ((u64)~0ULL)
  63. static inline int fair_policy(int policy)
  64. {
  65. return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  66. }
  67. static inline int rt_policy(int policy)
  68. {
  69. return policy == SCHED_FIFO || policy == SCHED_RR;
  70. }
  71. static inline int dl_policy(int policy)
  72. {
  73. return policy == SCHED_DEADLINE;
  74. }
  75. static inline int task_has_rt_policy(struct task_struct *p)
  76. {
  77. return rt_policy(p->policy);
  78. }
  79. static inline int task_has_dl_policy(struct task_struct *p)
  80. {
  81. return dl_policy(p->policy);
  82. }
  83. static inline bool dl_time_before(u64 a, u64 b)
  84. {
  85. return (s64)(a - b) < 0;
  86. }
  87. /*
  88. * Tells if entity @a should preempt entity @b.
  89. */
  90. static inline bool
  91. dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
  92. {
  93. return dl_time_before(a->deadline, b->deadline);
  94. }
  95. /*
  96. * This is the priority-queue data structure of the RT scheduling class:
  97. */
  98. struct rt_prio_array {
  99. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  100. struct list_head queue[MAX_RT_PRIO];
  101. };
  102. struct rt_bandwidth {
  103. /* nests inside the rq lock: */
  104. raw_spinlock_t rt_runtime_lock;
  105. ktime_t rt_period;
  106. u64 rt_runtime;
  107. struct hrtimer rt_period_timer;
  108. };
  109. /*
  110. * To keep the bandwidth of -deadline tasks and groups under control
  111. * we need some place where:
  112. * - store the maximum -deadline bandwidth of the system (the group);
  113. * - cache the fraction of that bandwidth that is currently allocated.
  114. *
  115. * This is all done in the data structure below. It is similar to the
  116. * one used for RT-throttling (rt_bandwidth), with the main difference
  117. * that, since here we are only interested in admission control, we
  118. * do not decrease any runtime while the group "executes", neither we
  119. * need a timer to replenish it.
  120. *
  121. * With respect to SMP, the bandwidth is given on a per-CPU basis,
  122. * meaning that:
  123. * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
  124. * - dl_total_bw array contains, in the i-eth element, the currently
  125. * allocated bandwidth on the i-eth CPU.
  126. * Moreover, groups consume bandwidth on each CPU, while tasks only
  127. * consume bandwidth on the CPU they're running on.
  128. * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
  129. * that will be shown the next time the proc or cgroup controls will
  130. * be red. It on its turn can be changed by writing on its own
  131. * control.
  132. */
  133. struct dl_bandwidth {
  134. raw_spinlock_t dl_runtime_lock;
  135. u64 dl_runtime;
  136. u64 dl_period;
  137. };
  138. static inline int dl_bandwidth_enabled(void)
  139. {
  140. return sysctl_sched_rt_runtime >= 0;
  141. }
  142. extern struct dl_bw *dl_bw_of(int i);
  143. struct dl_bw {
  144. raw_spinlock_t lock;
  145. u64 bw, total_bw;
  146. };
  147. extern struct mutex sched_domains_mutex;
  148. #ifdef CONFIG_CGROUP_SCHED
  149. #include <linux/cgroup.h>
  150. struct cfs_rq;
  151. struct rt_rq;
  152. extern struct list_head task_groups;
  153. struct cfs_bandwidth {
  154. #ifdef CONFIG_CFS_BANDWIDTH
  155. raw_spinlock_t lock;
  156. ktime_t period;
  157. u64 quota, runtime;
  158. s64 hierarchal_quota;
  159. u64 runtime_expires;
  160. int idle, timer_active;
  161. struct hrtimer period_timer, slack_timer;
  162. struct list_head throttled_cfs_rq;
  163. /* statistics */
  164. int nr_periods, nr_throttled;
  165. u64 throttled_time;
  166. #endif
  167. };
  168. /* task group related information */
  169. struct task_group {
  170. struct cgroup_subsys_state css;
  171. #ifdef CONFIG_FAIR_GROUP_SCHED
  172. /* schedulable entities of this group on each cpu */
  173. struct sched_entity **se;
  174. /* runqueue "owned" by this group on each cpu */
  175. struct cfs_rq **cfs_rq;
  176. unsigned long shares;
  177. #ifdef CONFIG_SMP
  178. atomic_long_t load_avg;
  179. atomic_t runnable_avg;
  180. #endif
  181. #endif
  182. #ifdef CONFIG_RT_GROUP_SCHED
  183. struct sched_rt_entity **rt_se;
  184. struct rt_rq **rt_rq;
  185. struct rt_bandwidth rt_bandwidth;
  186. #endif
  187. struct rcu_head rcu;
  188. struct list_head list;
  189. struct task_group *parent;
  190. struct list_head siblings;
  191. struct list_head children;
  192. #ifdef CONFIG_SCHED_AUTOGROUP
  193. struct autogroup *autogroup;
  194. #endif
  195. struct cfs_bandwidth cfs_bandwidth;
  196. };
  197. #ifdef CONFIG_FAIR_GROUP_SCHED
  198. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  199. /*
  200. * A weight of 0 or 1 can cause arithmetics problems.
  201. * A weight of a cfs_rq is the sum of weights of which entities
  202. * are queued on this cfs_rq, so a weight of a entity should not be
  203. * too large, so as the shares value of a task group.
  204. * (The default weight is 1024 - so there's no practical
  205. * limitation from this.)
  206. */
  207. #define MIN_SHARES (1UL << 1)
  208. #define MAX_SHARES (1UL << 18)
  209. #endif
  210. typedef int (*tg_visitor)(struct task_group *, void *);
  211. extern int walk_tg_tree_from(struct task_group *from,
  212. tg_visitor down, tg_visitor up, void *data);
  213. /*
  214. * Iterate the full tree, calling @down when first entering a node and @up when
  215. * leaving it for the final time.
  216. *
  217. * Caller must hold rcu_lock or sufficient equivalent.
  218. */
  219. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  220. {
  221. return walk_tg_tree_from(&root_task_group, down, up, data);
  222. }
  223. extern int tg_nop(struct task_group *tg, void *data);
  224. extern void free_fair_sched_group(struct task_group *tg);
  225. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  226. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  227. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  228. struct sched_entity *se, int cpu,
  229. struct sched_entity *parent);
  230. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  231. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  232. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  233. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
  234. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  235. extern void free_rt_sched_group(struct task_group *tg);
  236. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  237. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  238. struct sched_rt_entity *rt_se, int cpu,
  239. struct sched_rt_entity *parent);
  240. extern struct task_group *sched_create_group(struct task_group *parent);
  241. extern void sched_online_group(struct task_group *tg,
  242. struct task_group *parent);
  243. extern void sched_destroy_group(struct task_group *tg);
  244. extern void sched_offline_group(struct task_group *tg);
  245. extern void sched_move_task(struct task_struct *tsk);
  246. #ifdef CONFIG_FAIR_GROUP_SCHED
  247. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  248. #endif
  249. #else /* CONFIG_CGROUP_SCHED */
  250. struct cfs_bandwidth { };
  251. #endif /* CONFIG_CGROUP_SCHED */
  252. /* CFS-related fields in a runqueue */
  253. struct cfs_rq {
  254. struct load_weight load;
  255. unsigned int nr_running, h_nr_running;
  256. u64 exec_clock;
  257. u64 min_vruntime;
  258. #ifndef CONFIG_64BIT
  259. u64 min_vruntime_copy;
  260. #endif
  261. struct rb_root tasks_timeline;
  262. struct rb_node *rb_leftmost;
  263. /*
  264. * 'curr' points to currently running entity on this cfs_rq.
  265. * It is set to NULL otherwise (i.e when none are currently running).
  266. */
  267. struct sched_entity *curr, *next, *last, *skip;
  268. #ifdef CONFIG_SCHED_DEBUG
  269. unsigned int nr_spread_over;
  270. #endif
  271. #ifdef CONFIG_SMP
  272. /*
  273. * CFS Load tracking
  274. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  275. * This allows for the description of both thread and group usage (in
  276. * the FAIR_GROUP_SCHED case).
  277. */
  278. unsigned long runnable_load_avg, blocked_load_avg;
  279. atomic64_t decay_counter;
  280. u64 last_decay;
  281. atomic_long_t removed_load;
  282. #ifdef CONFIG_FAIR_GROUP_SCHED
  283. /* Required to track per-cpu representation of a task_group */
  284. u32 tg_runnable_contrib;
  285. unsigned long tg_load_contrib;
  286. /*
  287. * h_load = weight * f(tg)
  288. *
  289. * Where f(tg) is the recursive weight fraction assigned to
  290. * this group.
  291. */
  292. unsigned long h_load;
  293. u64 last_h_load_update;
  294. struct sched_entity *h_load_next;
  295. #endif /* CONFIG_FAIR_GROUP_SCHED */
  296. #endif /* CONFIG_SMP */
  297. #ifdef CONFIG_FAIR_GROUP_SCHED
  298. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  299. /*
  300. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  301. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  302. * (like users, containers etc.)
  303. *
  304. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  305. * list is used during load balance.
  306. */
  307. int on_list;
  308. struct list_head leaf_cfs_rq_list;
  309. struct task_group *tg; /* group that "owns" this runqueue */
  310. #ifdef CONFIG_CFS_BANDWIDTH
  311. int runtime_enabled;
  312. u64 runtime_expires;
  313. s64 runtime_remaining;
  314. u64 throttled_clock, throttled_clock_task;
  315. u64 throttled_clock_task_time;
  316. int throttled, throttle_count;
  317. struct list_head throttled_list;
  318. #endif /* CONFIG_CFS_BANDWIDTH */
  319. #endif /* CONFIG_FAIR_GROUP_SCHED */
  320. };
  321. static inline int rt_bandwidth_enabled(void)
  322. {
  323. return sysctl_sched_rt_runtime >= 0;
  324. }
  325. /* Real-Time classes' related field in a runqueue: */
  326. struct rt_rq {
  327. struct rt_prio_array active;
  328. unsigned int rt_nr_running;
  329. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  330. struct {
  331. int curr; /* highest queued rt task prio */
  332. #ifdef CONFIG_SMP
  333. int next; /* next highest */
  334. #endif
  335. } highest_prio;
  336. #endif
  337. #ifdef CONFIG_SMP
  338. unsigned long rt_nr_migratory;
  339. unsigned long rt_nr_total;
  340. int overloaded;
  341. struct plist_head pushable_tasks;
  342. #endif
  343. int rt_queued;
  344. int rt_throttled;
  345. u64 rt_time;
  346. u64 rt_runtime;
  347. /* Nests inside the rq lock: */
  348. raw_spinlock_t rt_runtime_lock;
  349. #ifdef CONFIG_RT_GROUP_SCHED
  350. unsigned long rt_nr_boosted;
  351. struct rq *rq;
  352. struct task_group *tg;
  353. #endif
  354. };
  355. /* Deadline class' related fields in a runqueue */
  356. struct dl_rq {
  357. /* runqueue is an rbtree, ordered by deadline */
  358. struct rb_root rb_root;
  359. struct rb_node *rb_leftmost;
  360. unsigned long dl_nr_running;
  361. #ifdef CONFIG_SMP
  362. /*
  363. * Deadline values of the currently executing and the
  364. * earliest ready task on this rq. Caching these facilitates
  365. * the decision wether or not a ready but not running task
  366. * should migrate somewhere else.
  367. */
  368. struct {
  369. u64 curr;
  370. u64 next;
  371. } earliest_dl;
  372. unsigned long dl_nr_migratory;
  373. int overloaded;
  374. /*
  375. * Tasks on this rq that can be pushed away. They are kept in
  376. * an rb-tree, ordered by tasks' deadlines, with caching
  377. * of the leftmost (earliest deadline) element.
  378. */
  379. struct rb_root pushable_dl_tasks_root;
  380. struct rb_node *pushable_dl_tasks_leftmost;
  381. #else
  382. struct dl_bw dl_bw;
  383. #endif
  384. };
  385. #ifdef CONFIG_SMP
  386. /*
  387. * We add the notion of a root-domain which will be used to define per-domain
  388. * variables. Each exclusive cpuset essentially defines an island domain by
  389. * fully partitioning the member cpus from any other cpuset. Whenever a new
  390. * exclusive cpuset is created, we also create and attach a new root-domain
  391. * object.
  392. *
  393. */
  394. struct root_domain {
  395. atomic_t refcount;
  396. atomic_t rto_count;
  397. struct rcu_head rcu;
  398. cpumask_var_t span;
  399. cpumask_var_t online;
  400. /* Indicate more than one runnable task for any CPU */
  401. bool overload;
  402. /*
  403. * The bit corresponding to a CPU gets set here if such CPU has more
  404. * than one runnable -deadline task (as it is below for RT tasks).
  405. */
  406. cpumask_var_t dlo_mask;
  407. atomic_t dlo_count;
  408. struct dl_bw dl_bw;
  409. struct cpudl cpudl;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_var_t rto_mask;
  415. struct cpupri cpupri;
  416. };
  417. extern struct root_domain def_root_domain;
  418. #endif /* CONFIG_SMP */
  419. /*
  420. * This is the main, per-CPU runqueue data structure.
  421. *
  422. * Locking rule: those places that want to lock multiple runqueues
  423. * (such as the load balancing or the thread migration code), lock
  424. * acquire operations must be ordered by ascending &runqueue.
  425. */
  426. struct rq {
  427. /* runqueue lock: */
  428. raw_spinlock_t lock;
  429. /*
  430. * nr_running and cpu_load should be in the same cacheline because
  431. * remote CPUs use both these fields when doing load calculation.
  432. */
  433. unsigned int nr_running;
  434. #ifdef CONFIG_NUMA_BALANCING
  435. unsigned int nr_numa_running;
  436. unsigned int nr_preferred_running;
  437. #endif
  438. #define CPU_LOAD_IDX_MAX 5
  439. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  440. unsigned long last_load_update_tick;
  441. #ifdef CONFIG_NO_HZ_COMMON
  442. u64 nohz_stamp;
  443. unsigned long nohz_flags;
  444. #endif
  445. #ifdef CONFIG_NO_HZ_FULL
  446. unsigned long last_sched_tick;
  447. #endif
  448. int skip_clock_update;
  449. /* capture load from *all* tasks on this cpu: */
  450. struct load_weight load;
  451. unsigned long nr_load_updates;
  452. u64 nr_switches;
  453. struct cfs_rq cfs;
  454. struct rt_rq rt;
  455. struct dl_rq dl;
  456. #ifdef CONFIG_FAIR_GROUP_SCHED
  457. /* list of leaf cfs_rq on this cpu: */
  458. struct list_head leaf_cfs_rq_list;
  459. struct sched_avg avg;
  460. #endif /* CONFIG_FAIR_GROUP_SCHED */
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle, *stop;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. u64 clock_task;
  473. atomic_t nr_iowait;
  474. #ifdef CONFIG_SMP
  475. struct root_domain *rd;
  476. struct sched_domain *sd;
  477. unsigned long cpu_capacity;
  478. unsigned char idle_balance;
  479. /* For active balancing */
  480. int post_schedule;
  481. int active_balance;
  482. int push_cpu;
  483. struct cpu_stop_work active_balance_work;
  484. /* cpu of this runqueue: */
  485. int cpu;
  486. int online;
  487. struct list_head cfs_tasks;
  488. u64 rt_avg;
  489. u64 age_stamp;
  490. u64 idle_stamp;
  491. u64 avg_idle;
  492. /* This is used to determine avg_idle's max value */
  493. u64 max_idle_balance_cost;
  494. #endif
  495. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  496. u64 prev_irq_time;
  497. #endif
  498. #ifdef CONFIG_PARAVIRT
  499. u64 prev_steal_time;
  500. #endif
  501. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  502. u64 prev_steal_time_rq;
  503. #endif
  504. /* calc_load related fields */
  505. unsigned long calc_load_update;
  506. long calc_load_active;
  507. #ifdef CONFIG_SCHED_HRTICK
  508. #ifdef CONFIG_SMP
  509. int hrtick_csd_pending;
  510. struct call_single_data hrtick_csd;
  511. #endif
  512. struct hrtimer hrtick_timer;
  513. #endif
  514. #ifdef CONFIG_SCHEDSTATS
  515. /* latency stats */
  516. struct sched_info rq_sched_info;
  517. unsigned long long rq_cpu_time;
  518. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  519. /* sys_sched_yield() stats */
  520. unsigned int yld_count;
  521. /* schedule() stats */
  522. unsigned int sched_count;
  523. unsigned int sched_goidle;
  524. /* try_to_wake_up() stats */
  525. unsigned int ttwu_count;
  526. unsigned int ttwu_local;
  527. #endif
  528. #ifdef CONFIG_SMP
  529. struct llist_head wake_list;
  530. #endif
  531. };
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  541. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  542. #define this_rq() (&__get_cpu_var(runqueues))
  543. #define task_rq(p) cpu_rq(task_cpu(p))
  544. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  545. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  546. static inline u64 rq_clock(struct rq *rq)
  547. {
  548. return rq->clock;
  549. }
  550. static inline u64 rq_clock_task(struct rq *rq)
  551. {
  552. return rq->clock_task;
  553. }
  554. #ifdef CONFIG_NUMA_BALANCING
  555. extern void sched_setnuma(struct task_struct *p, int node);
  556. extern int migrate_task_to(struct task_struct *p, int cpu);
  557. extern int migrate_swap(struct task_struct *, struct task_struct *);
  558. #endif /* CONFIG_NUMA_BALANCING */
  559. #ifdef CONFIG_SMP
  560. extern void sched_ttwu_pending(void);
  561. #define rcu_dereference_check_sched_domain(p) \
  562. rcu_dereference_check((p), \
  563. lockdep_is_held(&sched_domains_mutex))
  564. /*
  565. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  566. * See detach_destroy_domains: synchronize_sched for details.
  567. *
  568. * The domain tree of any CPU may only be accessed from within
  569. * preempt-disabled sections.
  570. */
  571. #define for_each_domain(cpu, __sd) \
  572. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  573. __sd; __sd = __sd->parent)
  574. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  575. /**
  576. * highest_flag_domain - Return highest sched_domain containing flag.
  577. * @cpu: The cpu whose highest level of sched domain is to
  578. * be returned.
  579. * @flag: The flag to check for the highest sched_domain
  580. * for the given cpu.
  581. *
  582. * Returns the highest sched_domain of a cpu which contains the given flag.
  583. */
  584. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  585. {
  586. struct sched_domain *sd, *hsd = NULL;
  587. for_each_domain(cpu, sd) {
  588. if (!(sd->flags & flag))
  589. break;
  590. hsd = sd;
  591. }
  592. return hsd;
  593. }
  594. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  595. {
  596. struct sched_domain *sd;
  597. for_each_domain(cpu, sd) {
  598. if (sd->flags & flag)
  599. break;
  600. }
  601. return sd;
  602. }
  603. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  604. DECLARE_PER_CPU(int, sd_llc_size);
  605. DECLARE_PER_CPU(int, sd_llc_id);
  606. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  607. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  608. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  609. struct sched_group_capacity {
  610. atomic_t ref;
  611. /*
  612. * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
  613. * for a single CPU.
  614. */
  615. unsigned int capacity, capacity_orig;
  616. unsigned long next_update;
  617. int imbalance; /* XXX unrelated to capacity but shared group state */
  618. /*
  619. * Number of busy cpus in this group.
  620. */
  621. atomic_t nr_busy_cpus;
  622. unsigned long cpumask[0]; /* iteration mask */
  623. };
  624. struct sched_group {
  625. struct sched_group *next; /* Must be a circular list */
  626. atomic_t ref;
  627. unsigned int group_weight;
  628. struct sched_group_capacity *sgc;
  629. /*
  630. * The CPUs this group covers.
  631. *
  632. * NOTE: this field is variable length. (Allocated dynamically
  633. * by attaching extra space to the end of the structure,
  634. * depending on how many CPUs the kernel has booted up with)
  635. */
  636. unsigned long cpumask[0];
  637. };
  638. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  639. {
  640. return to_cpumask(sg->cpumask);
  641. }
  642. /*
  643. * cpumask masking which cpus in the group are allowed to iterate up the domain
  644. * tree.
  645. */
  646. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  647. {
  648. return to_cpumask(sg->sgc->cpumask);
  649. }
  650. /**
  651. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  652. * @group: The group whose first cpu is to be returned.
  653. */
  654. static inline unsigned int group_first_cpu(struct sched_group *group)
  655. {
  656. return cpumask_first(sched_group_cpus(group));
  657. }
  658. extern int group_balance_cpu(struct sched_group *sg);
  659. #else
  660. static inline void sched_ttwu_pending(void) { }
  661. #endif /* CONFIG_SMP */
  662. #include "stats.h"
  663. #include "auto_group.h"
  664. #ifdef CONFIG_CGROUP_SCHED
  665. /*
  666. * Return the group to which this tasks belongs.
  667. *
  668. * We cannot use task_css() and friends because the cgroup subsystem
  669. * changes that value before the cgroup_subsys::attach() method is called,
  670. * therefore we cannot pin it and might observe the wrong value.
  671. *
  672. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  673. * core changes this before calling sched_move_task().
  674. *
  675. * Instead we use a 'copy' which is updated from sched_move_task() while
  676. * holding both task_struct::pi_lock and rq::lock.
  677. */
  678. static inline struct task_group *task_group(struct task_struct *p)
  679. {
  680. return p->sched_task_group;
  681. }
  682. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  683. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  684. {
  685. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  686. struct task_group *tg = task_group(p);
  687. #endif
  688. #ifdef CONFIG_FAIR_GROUP_SCHED
  689. p->se.cfs_rq = tg->cfs_rq[cpu];
  690. p->se.parent = tg->se[cpu];
  691. #endif
  692. #ifdef CONFIG_RT_GROUP_SCHED
  693. p->rt.rt_rq = tg->rt_rq[cpu];
  694. p->rt.parent = tg->rt_se[cpu];
  695. #endif
  696. }
  697. #else /* CONFIG_CGROUP_SCHED */
  698. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  699. static inline struct task_group *task_group(struct task_struct *p)
  700. {
  701. return NULL;
  702. }
  703. #endif /* CONFIG_CGROUP_SCHED */
  704. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  705. {
  706. set_task_rq(p, cpu);
  707. #ifdef CONFIG_SMP
  708. /*
  709. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  710. * successfuly executed on another CPU. We must ensure that updates of
  711. * per-task data have been completed by this moment.
  712. */
  713. smp_wmb();
  714. task_thread_info(p)->cpu = cpu;
  715. p->wake_cpu = cpu;
  716. #endif
  717. }
  718. /*
  719. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  720. */
  721. #ifdef CONFIG_SCHED_DEBUG
  722. # include <linux/static_key.h>
  723. # define const_debug __read_mostly
  724. #else
  725. # define const_debug const
  726. #endif
  727. extern const_debug unsigned int sysctl_sched_features;
  728. #define SCHED_FEAT(name, enabled) \
  729. __SCHED_FEAT_##name ,
  730. enum {
  731. #include "features.h"
  732. __SCHED_FEAT_NR,
  733. };
  734. #undef SCHED_FEAT
  735. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  736. #define SCHED_FEAT(name, enabled) \
  737. static __always_inline bool static_branch_##name(struct static_key *key) \
  738. { \
  739. return static_key_##enabled(key); \
  740. }
  741. #include "features.h"
  742. #undef SCHED_FEAT
  743. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  744. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  745. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  746. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  747. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  748. #ifdef CONFIG_NUMA_BALANCING
  749. #define sched_feat_numa(x) sched_feat(x)
  750. #ifdef CONFIG_SCHED_DEBUG
  751. #define numabalancing_enabled sched_feat_numa(NUMA)
  752. #else
  753. extern bool numabalancing_enabled;
  754. #endif /* CONFIG_SCHED_DEBUG */
  755. #else
  756. #define sched_feat_numa(x) (0)
  757. #define numabalancing_enabled (0)
  758. #endif /* CONFIG_NUMA_BALANCING */
  759. static inline u64 global_rt_period(void)
  760. {
  761. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  762. }
  763. static inline u64 global_rt_runtime(void)
  764. {
  765. if (sysctl_sched_rt_runtime < 0)
  766. return RUNTIME_INF;
  767. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  768. }
  769. static inline int task_current(struct rq *rq, struct task_struct *p)
  770. {
  771. return rq->curr == p;
  772. }
  773. static inline int task_running(struct rq *rq, struct task_struct *p)
  774. {
  775. #ifdef CONFIG_SMP
  776. return p->on_cpu;
  777. #else
  778. return task_current(rq, p);
  779. #endif
  780. }
  781. static inline int task_on_rq_queued(struct task_struct *p)
  782. {
  783. return p->on_rq == TASK_ON_RQ_QUEUED;
  784. }
  785. #ifndef prepare_arch_switch
  786. # define prepare_arch_switch(next) do { } while (0)
  787. #endif
  788. #ifndef finish_arch_switch
  789. # define finish_arch_switch(prev) do { } while (0)
  790. #endif
  791. #ifndef finish_arch_post_lock_switch
  792. # define finish_arch_post_lock_switch() do { } while (0)
  793. #endif
  794. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  795. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  796. {
  797. #ifdef CONFIG_SMP
  798. /*
  799. * We can optimise this out completely for !SMP, because the
  800. * SMP rebalancing from interrupt is the only thing that cares
  801. * here.
  802. */
  803. next->on_cpu = 1;
  804. #endif
  805. }
  806. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  807. {
  808. #ifdef CONFIG_SMP
  809. /*
  810. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  811. * We must ensure this doesn't happen until the switch is completely
  812. * finished.
  813. */
  814. smp_wmb();
  815. prev->on_cpu = 0;
  816. #endif
  817. #ifdef CONFIG_DEBUG_SPINLOCK
  818. /* this is a valid case when another task releases the spinlock */
  819. rq->lock.owner = current;
  820. #endif
  821. /*
  822. * If we are tracking spinlock dependencies then we have to
  823. * fix up the runqueue lock - which gets 'carried over' from
  824. * prev into current:
  825. */
  826. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  827. raw_spin_unlock_irq(&rq->lock);
  828. }
  829. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  830. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  831. {
  832. #ifdef CONFIG_SMP
  833. /*
  834. * We can optimise this out completely for !SMP, because the
  835. * SMP rebalancing from interrupt is the only thing that cares
  836. * here.
  837. */
  838. next->on_cpu = 1;
  839. #endif
  840. raw_spin_unlock(&rq->lock);
  841. }
  842. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  843. {
  844. #ifdef CONFIG_SMP
  845. /*
  846. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  847. * We must ensure this doesn't happen until the switch is completely
  848. * finished.
  849. */
  850. smp_wmb();
  851. prev->on_cpu = 0;
  852. #endif
  853. local_irq_enable();
  854. }
  855. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  856. /*
  857. * wake flags
  858. */
  859. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  860. #define WF_FORK 0x02 /* child wakeup after fork */
  861. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  862. /*
  863. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  864. * of tasks with abnormal "nice" values across CPUs the contribution that
  865. * each task makes to its run queue's load is weighted according to its
  866. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  867. * scaled version of the new time slice allocation that they receive on time
  868. * slice expiry etc.
  869. */
  870. #define WEIGHT_IDLEPRIO 3
  871. #define WMULT_IDLEPRIO 1431655765
  872. /*
  873. * Nice levels are multiplicative, with a gentle 10% change for every
  874. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  875. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  876. * that remained on nice 0.
  877. *
  878. * The "10% effect" is relative and cumulative: from _any_ nice level,
  879. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  880. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  881. * If a task goes up by ~10% and another task goes down by ~10% then
  882. * the relative distance between them is ~25%.)
  883. */
  884. static const int prio_to_weight[40] = {
  885. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  886. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  887. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  888. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  889. /* 0 */ 1024, 820, 655, 526, 423,
  890. /* 5 */ 335, 272, 215, 172, 137,
  891. /* 10 */ 110, 87, 70, 56, 45,
  892. /* 15 */ 36, 29, 23, 18, 15,
  893. };
  894. /*
  895. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  896. *
  897. * In cases where the weight does not change often, we can use the
  898. * precalculated inverse to speed up arithmetics by turning divisions
  899. * into multiplications:
  900. */
  901. static const u32 prio_to_wmult[40] = {
  902. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  903. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  904. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  905. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  906. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  907. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  908. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  909. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  910. };
  911. #define ENQUEUE_WAKEUP 1
  912. #define ENQUEUE_HEAD 2
  913. #ifdef CONFIG_SMP
  914. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  915. #else
  916. #define ENQUEUE_WAKING 0
  917. #endif
  918. #define ENQUEUE_REPLENISH 8
  919. #define DEQUEUE_SLEEP 1
  920. #define RETRY_TASK ((void *)-1UL)
  921. struct sched_class {
  922. const struct sched_class *next;
  923. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  924. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  925. void (*yield_task) (struct rq *rq);
  926. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  927. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  928. /*
  929. * It is the responsibility of the pick_next_task() method that will
  930. * return the next task to call put_prev_task() on the @prev task or
  931. * something equivalent.
  932. *
  933. * May return RETRY_TASK when it finds a higher prio class has runnable
  934. * tasks.
  935. */
  936. struct task_struct * (*pick_next_task) (struct rq *rq,
  937. struct task_struct *prev);
  938. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  939. #ifdef CONFIG_SMP
  940. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  941. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  942. void (*post_schedule) (struct rq *this_rq);
  943. void (*task_waking) (struct task_struct *task);
  944. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  945. void (*set_cpus_allowed)(struct task_struct *p,
  946. const struct cpumask *newmask);
  947. void (*rq_online)(struct rq *rq);
  948. void (*rq_offline)(struct rq *rq);
  949. #endif
  950. void (*set_curr_task) (struct rq *rq);
  951. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  952. void (*task_fork) (struct task_struct *p);
  953. void (*task_dead) (struct task_struct *p);
  954. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  955. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  956. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  957. int oldprio);
  958. unsigned int (*get_rr_interval) (struct rq *rq,
  959. struct task_struct *task);
  960. #ifdef CONFIG_FAIR_GROUP_SCHED
  961. void (*task_move_group) (struct task_struct *p, int on_rq);
  962. #endif
  963. };
  964. static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
  965. {
  966. prev->sched_class->put_prev_task(rq, prev);
  967. }
  968. #define sched_class_highest (&stop_sched_class)
  969. #define for_each_class(class) \
  970. for (class = sched_class_highest; class; class = class->next)
  971. extern const struct sched_class stop_sched_class;
  972. extern const struct sched_class dl_sched_class;
  973. extern const struct sched_class rt_sched_class;
  974. extern const struct sched_class fair_sched_class;
  975. extern const struct sched_class idle_sched_class;
  976. #ifdef CONFIG_SMP
  977. extern void update_group_capacity(struct sched_domain *sd, int cpu);
  978. extern void trigger_load_balance(struct rq *rq);
  979. extern void idle_enter_fair(struct rq *this_rq);
  980. extern void idle_exit_fair(struct rq *this_rq);
  981. #else
  982. static inline void idle_enter_fair(struct rq *rq) { }
  983. static inline void idle_exit_fair(struct rq *rq) { }
  984. #endif
  985. extern void sysrq_sched_debug_show(void);
  986. extern void sched_init_granularity(void);
  987. extern void update_max_interval(void);
  988. extern void init_sched_dl_class(void);
  989. extern void init_sched_rt_class(void);
  990. extern void init_sched_fair_class(void);
  991. extern void init_sched_dl_class(void);
  992. extern void resched_curr(struct rq *rq);
  993. extern void resched_cpu(int cpu);
  994. extern struct rt_bandwidth def_rt_bandwidth;
  995. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  996. extern struct dl_bandwidth def_dl_bandwidth;
  997. extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
  998. extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
  999. unsigned long to_ratio(u64 period, u64 runtime);
  1000. extern void update_idle_cpu_load(struct rq *this_rq);
  1001. extern void init_task_runnable_average(struct task_struct *p);
  1002. static inline void add_nr_running(struct rq *rq, unsigned count)
  1003. {
  1004. unsigned prev_nr = rq->nr_running;
  1005. rq->nr_running = prev_nr + count;
  1006. if (prev_nr < 2 && rq->nr_running >= 2) {
  1007. #ifdef CONFIG_SMP
  1008. if (!rq->rd->overload)
  1009. rq->rd->overload = true;
  1010. #endif
  1011. #ifdef CONFIG_NO_HZ_FULL
  1012. if (tick_nohz_full_cpu(rq->cpu)) {
  1013. /*
  1014. * Tick is needed if more than one task runs on a CPU.
  1015. * Send the target an IPI to kick it out of nohz mode.
  1016. *
  1017. * We assume that IPI implies full memory barrier and the
  1018. * new value of rq->nr_running is visible on reception
  1019. * from the target.
  1020. */
  1021. tick_nohz_full_kick_cpu(rq->cpu);
  1022. }
  1023. #endif
  1024. }
  1025. }
  1026. static inline void sub_nr_running(struct rq *rq, unsigned count)
  1027. {
  1028. rq->nr_running -= count;
  1029. }
  1030. static inline void rq_last_tick_reset(struct rq *rq)
  1031. {
  1032. #ifdef CONFIG_NO_HZ_FULL
  1033. rq->last_sched_tick = jiffies;
  1034. #endif
  1035. }
  1036. extern void update_rq_clock(struct rq *rq);
  1037. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  1038. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  1039. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  1040. extern const_debug unsigned int sysctl_sched_time_avg;
  1041. extern const_debug unsigned int sysctl_sched_nr_migrate;
  1042. extern const_debug unsigned int sysctl_sched_migration_cost;
  1043. static inline u64 sched_avg_period(void)
  1044. {
  1045. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1046. }
  1047. #ifdef CONFIG_SCHED_HRTICK
  1048. /*
  1049. * Use hrtick when:
  1050. * - enabled by features
  1051. * - hrtimer is actually high res
  1052. */
  1053. static inline int hrtick_enabled(struct rq *rq)
  1054. {
  1055. if (!sched_feat(HRTICK))
  1056. return 0;
  1057. if (!cpu_active(cpu_of(rq)))
  1058. return 0;
  1059. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1060. }
  1061. void hrtick_start(struct rq *rq, u64 delay);
  1062. #else
  1063. static inline int hrtick_enabled(struct rq *rq)
  1064. {
  1065. return 0;
  1066. }
  1067. #endif /* CONFIG_SCHED_HRTICK */
  1068. #ifdef CONFIG_SMP
  1069. extern void sched_avg_update(struct rq *rq);
  1070. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1071. {
  1072. rq->rt_avg += rt_delta;
  1073. sched_avg_update(rq);
  1074. }
  1075. #else
  1076. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  1077. static inline void sched_avg_update(struct rq *rq) { }
  1078. #endif
  1079. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  1080. #ifdef CONFIG_SMP
  1081. #ifdef CONFIG_PREEMPT
  1082. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1083. /*
  1084. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1085. * way at the expense of forcing extra atomic operations in all
  1086. * invocations. This assures that the double_lock is acquired using the
  1087. * same underlying policy as the spinlock_t on this architecture, which
  1088. * reduces latency compared to the unfair variant below. However, it
  1089. * also adds more overhead and therefore may reduce throughput.
  1090. */
  1091. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1092. __releases(this_rq->lock)
  1093. __acquires(busiest->lock)
  1094. __acquires(this_rq->lock)
  1095. {
  1096. raw_spin_unlock(&this_rq->lock);
  1097. double_rq_lock(this_rq, busiest);
  1098. return 1;
  1099. }
  1100. #else
  1101. /*
  1102. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1103. * latency by eliminating extra atomic operations when the locks are
  1104. * already in proper order on entry. This favors lower cpu-ids and will
  1105. * grant the double lock to lower cpus over higher ids under contention,
  1106. * regardless of entry order into the function.
  1107. */
  1108. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1109. __releases(this_rq->lock)
  1110. __acquires(busiest->lock)
  1111. __acquires(this_rq->lock)
  1112. {
  1113. int ret = 0;
  1114. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1115. if (busiest < this_rq) {
  1116. raw_spin_unlock(&this_rq->lock);
  1117. raw_spin_lock(&busiest->lock);
  1118. raw_spin_lock_nested(&this_rq->lock,
  1119. SINGLE_DEPTH_NESTING);
  1120. ret = 1;
  1121. } else
  1122. raw_spin_lock_nested(&busiest->lock,
  1123. SINGLE_DEPTH_NESTING);
  1124. }
  1125. return ret;
  1126. }
  1127. #endif /* CONFIG_PREEMPT */
  1128. /*
  1129. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1130. */
  1131. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1132. {
  1133. if (unlikely(!irqs_disabled())) {
  1134. /* printk() doesn't work good under rq->lock */
  1135. raw_spin_unlock(&this_rq->lock);
  1136. BUG_ON(1);
  1137. }
  1138. return _double_lock_balance(this_rq, busiest);
  1139. }
  1140. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1141. __releases(busiest->lock)
  1142. {
  1143. raw_spin_unlock(&busiest->lock);
  1144. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1145. }
  1146. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1147. {
  1148. if (l1 > l2)
  1149. swap(l1, l2);
  1150. spin_lock(l1);
  1151. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1152. }
  1153. static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
  1154. {
  1155. if (l1 > l2)
  1156. swap(l1, l2);
  1157. spin_lock_irq(l1);
  1158. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1159. }
  1160. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1161. {
  1162. if (l1 > l2)
  1163. swap(l1, l2);
  1164. raw_spin_lock(l1);
  1165. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1166. }
  1167. /*
  1168. * double_rq_lock - safely lock two runqueues
  1169. *
  1170. * Note this does not disable interrupts like task_rq_lock,
  1171. * you need to do so manually before calling.
  1172. */
  1173. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1174. __acquires(rq1->lock)
  1175. __acquires(rq2->lock)
  1176. {
  1177. BUG_ON(!irqs_disabled());
  1178. if (rq1 == rq2) {
  1179. raw_spin_lock(&rq1->lock);
  1180. __acquire(rq2->lock); /* Fake it out ;) */
  1181. } else {
  1182. if (rq1 < rq2) {
  1183. raw_spin_lock(&rq1->lock);
  1184. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1185. } else {
  1186. raw_spin_lock(&rq2->lock);
  1187. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1188. }
  1189. }
  1190. }
  1191. /*
  1192. * double_rq_unlock - safely unlock two runqueues
  1193. *
  1194. * Note this does not restore interrupts like task_rq_unlock,
  1195. * you need to do so manually after calling.
  1196. */
  1197. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1198. __releases(rq1->lock)
  1199. __releases(rq2->lock)
  1200. {
  1201. raw_spin_unlock(&rq1->lock);
  1202. if (rq1 != rq2)
  1203. raw_spin_unlock(&rq2->lock);
  1204. else
  1205. __release(rq2->lock);
  1206. }
  1207. #else /* CONFIG_SMP */
  1208. /*
  1209. * double_rq_lock - safely lock two runqueues
  1210. *
  1211. * Note this does not disable interrupts like task_rq_lock,
  1212. * you need to do so manually before calling.
  1213. */
  1214. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1215. __acquires(rq1->lock)
  1216. __acquires(rq2->lock)
  1217. {
  1218. BUG_ON(!irqs_disabled());
  1219. BUG_ON(rq1 != rq2);
  1220. raw_spin_lock(&rq1->lock);
  1221. __acquire(rq2->lock); /* Fake it out ;) */
  1222. }
  1223. /*
  1224. * double_rq_unlock - safely unlock two runqueues
  1225. *
  1226. * Note this does not restore interrupts like task_rq_unlock,
  1227. * you need to do so manually after calling.
  1228. */
  1229. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1230. __releases(rq1->lock)
  1231. __releases(rq2->lock)
  1232. {
  1233. BUG_ON(rq1 != rq2);
  1234. raw_spin_unlock(&rq1->lock);
  1235. __release(rq2->lock);
  1236. }
  1237. #endif
  1238. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1239. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1240. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1241. extern void print_rt_stats(struct seq_file *m, int cpu);
  1242. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1243. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1244. extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
  1245. extern void cfs_bandwidth_usage_inc(void);
  1246. extern void cfs_bandwidth_usage_dec(void);
  1247. #ifdef CONFIG_NO_HZ_COMMON
  1248. enum rq_nohz_flag_bits {
  1249. NOHZ_TICK_STOPPED,
  1250. NOHZ_BALANCE_KICK,
  1251. };
  1252. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1253. #endif
  1254. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1255. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1256. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1257. #ifndef CONFIG_64BIT
  1258. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1259. static inline void irq_time_write_begin(void)
  1260. {
  1261. __this_cpu_inc(irq_time_seq.sequence);
  1262. smp_wmb();
  1263. }
  1264. static inline void irq_time_write_end(void)
  1265. {
  1266. smp_wmb();
  1267. __this_cpu_inc(irq_time_seq.sequence);
  1268. }
  1269. static inline u64 irq_time_read(int cpu)
  1270. {
  1271. u64 irq_time;
  1272. unsigned seq;
  1273. do {
  1274. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1275. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1276. per_cpu(cpu_hardirq_time, cpu);
  1277. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1278. return irq_time;
  1279. }
  1280. #else /* CONFIG_64BIT */
  1281. static inline void irq_time_write_begin(void)
  1282. {
  1283. }
  1284. static inline void irq_time_write_end(void)
  1285. {
  1286. }
  1287. static inline u64 irq_time_read(int cpu)
  1288. {
  1289. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1290. }
  1291. #endif /* CONFIG_64BIT */
  1292. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */