test_verifier.c 285 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399
  1. /*
  2. * Testsuite for eBPF verifier
  3. *
  4. * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
  5. * Copyright (c) 2017 Facebook
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of version 2 of the GNU General Public
  9. * License as published by the Free Software Foundation.
  10. */
  11. #include <endian.h>
  12. #include <asm/types.h>
  13. #include <linux/types.h>
  14. #include <stdint.h>
  15. #include <stdio.h>
  16. #include <stdlib.h>
  17. #include <unistd.h>
  18. #include <errno.h>
  19. #include <string.h>
  20. #include <stddef.h>
  21. #include <stdbool.h>
  22. #include <sched.h>
  23. #include <sys/capability.h>
  24. #include <sys/resource.h>
  25. #include <linux/unistd.h>
  26. #include <linux/filter.h>
  27. #include <linux/bpf_perf_event.h>
  28. #include <linux/bpf.h>
  29. #include <bpf/bpf.h>
  30. #ifdef HAVE_GENHDR
  31. # include "autoconf.h"
  32. #else
  33. # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
  34. # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
  35. # endif
  36. #endif
  37. #include "../../../include/linux/filter.h"
  38. #ifndef ARRAY_SIZE
  39. # define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  40. #endif
  41. #define MAX_INSNS 512
  42. #define MAX_FIXUPS 8
  43. #define MAX_NR_MAPS 4
  44. #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
  45. #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
  46. struct bpf_test {
  47. const char *descr;
  48. struct bpf_insn insns[MAX_INSNS];
  49. int fixup_map1[MAX_FIXUPS];
  50. int fixup_map2[MAX_FIXUPS];
  51. int fixup_prog[MAX_FIXUPS];
  52. int fixup_map_in_map[MAX_FIXUPS];
  53. const char *errstr;
  54. const char *errstr_unpriv;
  55. enum {
  56. UNDEF,
  57. ACCEPT,
  58. REJECT
  59. } result, result_unpriv;
  60. enum bpf_prog_type prog_type;
  61. uint8_t flags;
  62. };
  63. /* Note we want this to be 64 bit aligned so that the end of our array is
  64. * actually the end of the structure.
  65. */
  66. #define MAX_ENTRIES 11
  67. struct test_val {
  68. unsigned int index;
  69. int foo[MAX_ENTRIES];
  70. };
  71. static struct bpf_test tests[] = {
  72. {
  73. "add+sub+mul",
  74. .insns = {
  75. BPF_MOV64_IMM(BPF_REG_1, 1),
  76. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2),
  77. BPF_MOV64_IMM(BPF_REG_2, 3),
  78. BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2),
  79. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1),
  80. BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3),
  81. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  82. BPF_EXIT_INSN(),
  83. },
  84. .result = ACCEPT,
  85. },
  86. {
  87. "unreachable",
  88. .insns = {
  89. BPF_EXIT_INSN(),
  90. BPF_EXIT_INSN(),
  91. },
  92. .errstr = "unreachable",
  93. .result = REJECT,
  94. },
  95. {
  96. "unreachable2",
  97. .insns = {
  98. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  99. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  100. BPF_EXIT_INSN(),
  101. },
  102. .errstr = "unreachable",
  103. .result = REJECT,
  104. },
  105. {
  106. "out of range jump",
  107. .insns = {
  108. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  109. BPF_EXIT_INSN(),
  110. },
  111. .errstr = "jump out of range",
  112. .result = REJECT,
  113. },
  114. {
  115. "out of range jump2",
  116. .insns = {
  117. BPF_JMP_IMM(BPF_JA, 0, 0, -2),
  118. BPF_EXIT_INSN(),
  119. },
  120. .errstr = "jump out of range",
  121. .result = REJECT,
  122. },
  123. {
  124. "test1 ld_imm64",
  125. .insns = {
  126. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  127. BPF_LD_IMM64(BPF_REG_0, 0),
  128. BPF_LD_IMM64(BPF_REG_0, 0),
  129. BPF_LD_IMM64(BPF_REG_0, 1),
  130. BPF_LD_IMM64(BPF_REG_0, 1),
  131. BPF_MOV64_IMM(BPF_REG_0, 2),
  132. BPF_EXIT_INSN(),
  133. },
  134. .errstr = "invalid BPF_LD_IMM insn",
  135. .errstr_unpriv = "R1 pointer comparison",
  136. .result = REJECT,
  137. },
  138. {
  139. "test2 ld_imm64",
  140. .insns = {
  141. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  142. BPF_LD_IMM64(BPF_REG_0, 0),
  143. BPF_LD_IMM64(BPF_REG_0, 0),
  144. BPF_LD_IMM64(BPF_REG_0, 1),
  145. BPF_LD_IMM64(BPF_REG_0, 1),
  146. BPF_EXIT_INSN(),
  147. },
  148. .errstr = "invalid BPF_LD_IMM insn",
  149. .errstr_unpriv = "R1 pointer comparison",
  150. .result = REJECT,
  151. },
  152. {
  153. "test3 ld_imm64",
  154. .insns = {
  155. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  156. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  157. BPF_LD_IMM64(BPF_REG_0, 0),
  158. BPF_LD_IMM64(BPF_REG_0, 0),
  159. BPF_LD_IMM64(BPF_REG_0, 1),
  160. BPF_LD_IMM64(BPF_REG_0, 1),
  161. BPF_EXIT_INSN(),
  162. },
  163. .errstr = "invalid bpf_ld_imm64 insn",
  164. .result = REJECT,
  165. },
  166. {
  167. "test4 ld_imm64",
  168. .insns = {
  169. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  170. BPF_EXIT_INSN(),
  171. },
  172. .errstr = "invalid bpf_ld_imm64 insn",
  173. .result = REJECT,
  174. },
  175. {
  176. "test5 ld_imm64",
  177. .insns = {
  178. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  179. },
  180. .errstr = "invalid bpf_ld_imm64 insn",
  181. .result = REJECT,
  182. },
  183. {
  184. "test6 ld_imm64",
  185. .insns = {
  186. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  187. BPF_RAW_INSN(0, 0, 0, 0, 0),
  188. BPF_EXIT_INSN(),
  189. },
  190. .result = ACCEPT,
  191. },
  192. {
  193. "test7 ld_imm64",
  194. .insns = {
  195. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  196. BPF_RAW_INSN(0, 0, 0, 0, 1),
  197. BPF_EXIT_INSN(),
  198. },
  199. .result = ACCEPT,
  200. },
  201. {
  202. "test8 ld_imm64",
  203. .insns = {
  204. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 1, 1),
  205. BPF_RAW_INSN(0, 0, 0, 0, 1),
  206. BPF_EXIT_INSN(),
  207. },
  208. .errstr = "uses reserved fields",
  209. .result = REJECT,
  210. },
  211. {
  212. "test9 ld_imm64",
  213. .insns = {
  214. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  215. BPF_RAW_INSN(0, 0, 0, 1, 1),
  216. BPF_EXIT_INSN(),
  217. },
  218. .errstr = "invalid bpf_ld_imm64 insn",
  219. .result = REJECT,
  220. },
  221. {
  222. "test10 ld_imm64",
  223. .insns = {
  224. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  225. BPF_RAW_INSN(0, BPF_REG_1, 0, 0, 1),
  226. BPF_EXIT_INSN(),
  227. },
  228. .errstr = "invalid bpf_ld_imm64 insn",
  229. .result = REJECT,
  230. },
  231. {
  232. "test11 ld_imm64",
  233. .insns = {
  234. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  235. BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
  236. BPF_EXIT_INSN(),
  237. },
  238. .errstr = "invalid bpf_ld_imm64 insn",
  239. .result = REJECT,
  240. },
  241. {
  242. "test12 ld_imm64",
  243. .insns = {
  244. BPF_MOV64_IMM(BPF_REG_1, 0),
  245. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
  246. BPF_RAW_INSN(0, 0, 0, 0, 1),
  247. BPF_EXIT_INSN(),
  248. },
  249. .errstr = "not pointing to valid bpf_map",
  250. .result = REJECT,
  251. },
  252. {
  253. "test13 ld_imm64",
  254. .insns = {
  255. BPF_MOV64_IMM(BPF_REG_1, 0),
  256. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
  257. BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
  258. BPF_EXIT_INSN(),
  259. },
  260. .errstr = "invalid bpf_ld_imm64 insn",
  261. .result = REJECT,
  262. },
  263. {
  264. "no bpf_exit",
  265. .insns = {
  266. BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2),
  267. },
  268. .errstr = "not an exit",
  269. .result = REJECT,
  270. },
  271. {
  272. "loop (back-edge)",
  273. .insns = {
  274. BPF_JMP_IMM(BPF_JA, 0, 0, -1),
  275. BPF_EXIT_INSN(),
  276. },
  277. .errstr = "back-edge",
  278. .result = REJECT,
  279. },
  280. {
  281. "loop2 (back-edge)",
  282. .insns = {
  283. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  284. BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
  285. BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
  286. BPF_JMP_IMM(BPF_JA, 0, 0, -4),
  287. BPF_EXIT_INSN(),
  288. },
  289. .errstr = "back-edge",
  290. .result = REJECT,
  291. },
  292. {
  293. "conditional loop",
  294. .insns = {
  295. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  296. BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
  297. BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
  298. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
  299. BPF_EXIT_INSN(),
  300. },
  301. .errstr = "back-edge",
  302. .result = REJECT,
  303. },
  304. {
  305. "read uninitialized register",
  306. .insns = {
  307. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  308. BPF_EXIT_INSN(),
  309. },
  310. .errstr = "R2 !read_ok",
  311. .result = REJECT,
  312. },
  313. {
  314. "read invalid register",
  315. .insns = {
  316. BPF_MOV64_REG(BPF_REG_0, -1),
  317. BPF_EXIT_INSN(),
  318. },
  319. .errstr = "R15 is invalid",
  320. .result = REJECT,
  321. },
  322. {
  323. "program doesn't init R0 before exit",
  324. .insns = {
  325. BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1),
  326. BPF_EXIT_INSN(),
  327. },
  328. .errstr = "R0 !read_ok",
  329. .result = REJECT,
  330. },
  331. {
  332. "program doesn't init R0 before exit in all branches",
  333. .insns = {
  334. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  335. BPF_MOV64_IMM(BPF_REG_0, 1),
  336. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
  337. BPF_EXIT_INSN(),
  338. },
  339. .errstr = "R0 !read_ok",
  340. .errstr_unpriv = "R1 pointer comparison",
  341. .result = REJECT,
  342. },
  343. {
  344. "stack out of bounds",
  345. .insns = {
  346. BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
  347. BPF_EXIT_INSN(),
  348. },
  349. .errstr = "invalid stack",
  350. .result = REJECT,
  351. },
  352. {
  353. "invalid call insn1",
  354. .insns = {
  355. BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0),
  356. BPF_EXIT_INSN(),
  357. },
  358. .errstr = "BPF_CALL uses reserved",
  359. .result = REJECT,
  360. },
  361. {
  362. "invalid call insn2",
  363. .insns = {
  364. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0),
  365. BPF_EXIT_INSN(),
  366. },
  367. .errstr = "BPF_CALL uses reserved",
  368. .result = REJECT,
  369. },
  370. {
  371. "invalid function call",
  372. .insns = {
  373. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567),
  374. BPF_EXIT_INSN(),
  375. },
  376. .errstr = "invalid func unknown#1234567",
  377. .result = REJECT,
  378. },
  379. {
  380. "uninitialized stack1",
  381. .insns = {
  382. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  383. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  384. BPF_LD_MAP_FD(BPF_REG_1, 0),
  385. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  386. BPF_FUNC_map_lookup_elem),
  387. BPF_EXIT_INSN(),
  388. },
  389. .fixup_map1 = { 2 },
  390. .errstr = "invalid indirect read from stack",
  391. .result = REJECT,
  392. },
  393. {
  394. "uninitialized stack2",
  395. .insns = {
  396. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  397. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8),
  398. BPF_EXIT_INSN(),
  399. },
  400. .errstr = "invalid read from stack",
  401. .result = REJECT,
  402. },
  403. {
  404. "invalid fp arithmetic",
  405. /* If this gets ever changed, make sure JITs can deal with it. */
  406. .insns = {
  407. BPF_MOV64_IMM(BPF_REG_0, 0),
  408. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  409. BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 8),
  410. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  411. BPF_EXIT_INSN(),
  412. },
  413. .errstr_unpriv = "R1 subtraction from stack pointer",
  414. .result_unpriv = REJECT,
  415. .errstr = "R1 invalid mem access",
  416. .result = REJECT,
  417. },
  418. {
  419. "non-invalid fp arithmetic",
  420. .insns = {
  421. BPF_MOV64_IMM(BPF_REG_0, 0),
  422. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  423. BPF_EXIT_INSN(),
  424. },
  425. .result = ACCEPT,
  426. },
  427. {
  428. "invalid argument register",
  429. .insns = {
  430. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  431. BPF_FUNC_get_cgroup_classid),
  432. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  433. BPF_FUNC_get_cgroup_classid),
  434. BPF_EXIT_INSN(),
  435. },
  436. .errstr = "R1 !read_ok",
  437. .result = REJECT,
  438. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  439. },
  440. {
  441. "non-invalid argument register",
  442. .insns = {
  443. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
  444. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  445. BPF_FUNC_get_cgroup_classid),
  446. BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6),
  447. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  448. BPF_FUNC_get_cgroup_classid),
  449. BPF_EXIT_INSN(),
  450. },
  451. .result = ACCEPT,
  452. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  453. },
  454. {
  455. "check valid spill/fill",
  456. .insns = {
  457. /* spill R1(ctx) into stack */
  458. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  459. /* fill it back into R2 */
  460. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
  461. /* should be able to access R0 = *(R2 + 8) */
  462. /* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */
  463. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  464. BPF_EXIT_INSN(),
  465. },
  466. .errstr_unpriv = "R0 leaks addr",
  467. .result = ACCEPT,
  468. .result_unpriv = REJECT,
  469. },
  470. {
  471. "check valid spill/fill, skb mark",
  472. .insns = {
  473. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
  474. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
  475. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  476. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  477. offsetof(struct __sk_buff, mark)),
  478. BPF_EXIT_INSN(),
  479. },
  480. .result = ACCEPT,
  481. .result_unpriv = ACCEPT,
  482. },
  483. {
  484. "check corrupted spill/fill",
  485. .insns = {
  486. /* spill R1(ctx) into stack */
  487. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  488. /* mess up with R1 pointer on stack */
  489. BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23),
  490. /* fill back into R0 should fail */
  491. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  492. BPF_EXIT_INSN(),
  493. },
  494. .errstr_unpriv = "attempt to corrupt spilled",
  495. .errstr = "corrupted spill",
  496. .result = REJECT,
  497. },
  498. {
  499. "invalid src register in STX",
  500. .insns = {
  501. BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1),
  502. BPF_EXIT_INSN(),
  503. },
  504. .errstr = "R15 is invalid",
  505. .result = REJECT,
  506. },
  507. {
  508. "invalid dst register in STX",
  509. .insns = {
  510. BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1),
  511. BPF_EXIT_INSN(),
  512. },
  513. .errstr = "R14 is invalid",
  514. .result = REJECT,
  515. },
  516. {
  517. "invalid dst register in ST",
  518. .insns = {
  519. BPF_ST_MEM(BPF_B, 14, -1, -1),
  520. BPF_EXIT_INSN(),
  521. },
  522. .errstr = "R14 is invalid",
  523. .result = REJECT,
  524. },
  525. {
  526. "invalid src register in LDX",
  527. .insns = {
  528. BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0),
  529. BPF_EXIT_INSN(),
  530. },
  531. .errstr = "R12 is invalid",
  532. .result = REJECT,
  533. },
  534. {
  535. "invalid dst register in LDX",
  536. .insns = {
  537. BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0),
  538. BPF_EXIT_INSN(),
  539. },
  540. .errstr = "R11 is invalid",
  541. .result = REJECT,
  542. },
  543. {
  544. "junk insn",
  545. .insns = {
  546. BPF_RAW_INSN(0, 0, 0, 0, 0),
  547. BPF_EXIT_INSN(),
  548. },
  549. .errstr = "invalid BPF_LD_IMM",
  550. .result = REJECT,
  551. },
  552. {
  553. "junk insn2",
  554. .insns = {
  555. BPF_RAW_INSN(1, 0, 0, 0, 0),
  556. BPF_EXIT_INSN(),
  557. },
  558. .errstr = "BPF_LDX uses reserved fields",
  559. .result = REJECT,
  560. },
  561. {
  562. "junk insn3",
  563. .insns = {
  564. BPF_RAW_INSN(-1, 0, 0, 0, 0),
  565. BPF_EXIT_INSN(),
  566. },
  567. .errstr = "invalid BPF_ALU opcode f0",
  568. .result = REJECT,
  569. },
  570. {
  571. "junk insn4",
  572. .insns = {
  573. BPF_RAW_INSN(-1, -1, -1, -1, -1),
  574. BPF_EXIT_INSN(),
  575. },
  576. .errstr = "invalid BPF_ALU opcode f0",
  577. .result = REJECT,
  578. },
  579. {
  580. "junk insn5",
  581. .insns = {
  582. BPF_RAW_INSN(0x7f, -1, -1, -1, -1),
  583. BPF_EXIT_INSN(),
  584. },
  585. .errstr = "BPF_ALU uses reserved fields",
  586. .result = REJECT,
  587. },
  588. {
  589. "misaligned read from stack",
  590. .insns = {
  591. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  592. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4),
  593. BPF_EXIT_INSN(),
  594. },
  595. .errstr = "misaligned stack access",
  596. .result = REJECT,
  597. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  598. },
  599. {
  600. "invalid map_fd for function call",
  601. .insns = {
  602. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  603. BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10),
  604. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  605. BPF_LD_MAP_FD(BPF_REG_1, 0),
  606. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  607. BPF_FUNC_map_delete_elem),
  608. BPF_EXIT_INSN(),
  609. },
  610. .errstr = "fd 0 is not pointing to valid bpf_map",
  611. .result = REJECT,
  612. },
  613. {
  614. "don't check return value before access",
  615. .insns = {
  616. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  617. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  618. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  619. BPF_LD_MAP_FD(BPF_REG_1, 0),
  620. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  621. BPF_FUNC_map_lookup_elem),
  622. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  623. BPF_EXIT_INSN(),
  624. },
  625. .fixup_map1 = { 3 },
  626. .errstr = "R0 invalid mem access 'map_value_or_null'",
  627. .result = REJECT,
  628. },
  629. {
  630. "access memory with incorrect alignment",
  631. .insns = {
  632. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  633. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  634. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  635. BPF_LD_MAP_FD(BPF_REG_1, 0),
  636. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  637. BPF_FUNC_map_lookup_elem),
  638. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  639. BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
  640. BPF_EXIT_INSN(),
  641. },
  642. .fixup_map1 = { 3 },
  643. .errstr = "misaligned value access",
  644. .result = REJECT,
  645. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  646. },
  647. {
  648. "sometimes access memory with incorrect alignment",
  649. .insns = {
  650. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  651. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  652. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  653. BPF_LD_MAP_FD(BPF_REG_1, 0),
  654. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  655. BPF_FUNC_map_lookup_elem),
  656. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  657. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  658. BPF_EXIT_INSN(),
  659. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
  660. BPF_EXIT_INSN(),
  661. },
  662. .fixup_map1 = { 3 },
  663. .errstr = "R0 invalid mem access",
  664. .errstr_unpriv = "R0 leaks addr",
  665. .result = REJECT,
  666. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  667. },
  668. {
  669. "jump test 1",
  670. .insns = {
  671. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  672. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8),
  673. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  674. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  675. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1),
  676. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1),
  677. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1),
  678. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2),
  679. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1),
  680. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3),
  681. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1),
  682. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4),
  683. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
  684. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5),
  685. BPF_MOV64_IMM(BPF_REG_0, 0),
  686. BPF_EXIT_INSN(),
  687. },
  688. .errstr_unpriv = "R1 pointer comparison",
  689. .result_unpriv = REJECT,
  690. .result = ACCEPT,
  691. },
  692. {
  693. "jump test 2",
  694. .insns = {
  695. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  696. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
  697. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  698. BPF_JMP_IMM(BPF_JA, 0, 0, 14),
  699. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2),
  700. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
  701. BPF_JMP_IMM(BPF_JA, 0, 0, 11),
  702. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2),
  703. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
  704. BPF_JMP_IMM(BPF_JA, 0, 0, 8),
  705. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2),
  706. BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
  707. BPF_JMP_IMM(BPF_JA, 0, 0, 5),
  708. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2),
  709. BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
  710. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  711. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
  712. BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
  713. BPF_MOV64_IMM(BPF_REG_0, 0),
  714. BPF_EXIT_INSN(),
  715. },
  716. .errstr_unpriv = "R1 pointer comparison",
  717. .result_unpriv = REJECT,
  718. .result = ACCEPT,
  719. },
  720. {
  721. "jump test 3",
  722. .insns = {
  723. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  724. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  725. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  726. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  727. BPF_JMP_IMM(BPF_JA, 0, 0, 19),
  728. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3),
  729. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
  730. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  731. BPF_JMP_IMM(BPF_JA, 0, 0, 15),
  732. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3),
  733. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
  734. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32),
  735. BPF_JMP_IMM(BPF_JA, 0, 0, 11),
  736. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3),
  737. BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
  738. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40),
  739. BPF_JMP_IMM(BPF_JA, 0, 0, 7),
  740. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3),
  741. BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
  742. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),
  743. BPF_JMP_IMM(BPF_JA, 0, 0, 3),
  744. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0),
  745. BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
  746. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56),
  747. BPF_LD_MAP_FD(BPF_REG_1, 0),
  748. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  749. BPF_FUNC_map_delete_elem),
  750. BPF_EXIT_INSN(),
  751. },
  752. .fixup_map1 = { 24 },
  753. .errstr_unpriv = "R1 pointer comparison",
  754. .result_unpriv = REJECT,
  755. .result = ACCEPT,
  756. },
  757. {
  758. "jump test 4",
  759. .insns = {
  760. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  761. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  762. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  763. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  764. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  765. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  766. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  767. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  768. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  769. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  770. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  771. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  772. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  773. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  774. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  775. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  776. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  777. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  778. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  779. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  780. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  781. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  782. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  783. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  784. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  785. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  786. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  787. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  788. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  789. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  790. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  791. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  792. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  793. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  794. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  795. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  796. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  797. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  798. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  799. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  800. BPF_MOV64_IMM(BPF_REG_0, 0),
  801. BPF_EXIT_INSN(),
  802. },
  803. .errstr_unpriv = "R1 pointer comparison",
  804. .result_unpriv = REJECT,
  805. .result = ACCEPT,
  806. },
  807. {
  808. "jump test 5",
  809. .insns = {
  810. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  811. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  812. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  813. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  814. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  815. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  816. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  817. BPF_MOV64_IMM(BPF_REG_0, 0),
  818. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  819. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  820. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  821. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  822. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  823. BPF_MOV64_IMM(BPF_REG_0, 0),
  824. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  825. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  826. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  827. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  828. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  829. BPF_MOV64_IMM(BPF_REG_0, 0),
  830. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  831. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  832. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  833. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  834. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  835. BPF_MOV64_IMM(BPF_REG_0, 0),
  836. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  837. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  838. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  839. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  840. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  841. BPF_MOV64_IMM(BPF_REG_0, 0),
  842. BPF_EXIT_INSN(),
  843. },
  844. .errstr_unpriv = "R1 pointer comparison",
  845. .result_unpriv = REJECT,
  846. .result = ACCEPT,
  847. },
  848. {
  849. "access skb fields ok",
  850. .insns = {
  851. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  852. offsetof(struct __sk_buff, len)),
  853. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  854. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  855. offsetof(struct __sk_buff, mark)),
  856. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  857. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  858. offsetof(struct __sk_buff, pkt_type)),
  859. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  860. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  861. offsetof(struct __sk_buff, queue_mapping)),
  862. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  863. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  864. offsetof(struct __sk_buff, protocol)),
  865. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  866. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  867. offsetof(struct __sk_buff, vlan_present)),
  868. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  869. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  870. offsetof(struct __sk_buff, vlan_tci)),
  871. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  872. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  873. offsetof(struct __sk_buff, napi_id)),
  874. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  875. BPF_EXIT_INSN(),
  876. },
  877. .result = ACCEPT,
  878. },
  879. {
  880. "access skb fields bad1",
  881. .insns = {
  882. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4),
  883. BPF_EXIT_INSN(),
  884. },
  885. .errstr = "invalid bpf_context access",
  886. .result = REJECT,
  887. },
  888. {
  889. "access skb fields bad2",
  890. .insns = {
  891. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9),
  892. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  893. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  894. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  895. BPF_LD_MAP_FD(BPF_REG_1, 0),
  896. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  897. BPF_FUNC_map_lookup_elem),
  898. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  899. BPF_EXIT_INSN(),
  900. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  901. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  902. offsetof(struct __sk_buff, pkt_type)),
  903. BPF_EXIT_INSN(),
  904. },
  905. .fixup_map1 = { 4 },
  906. .errstr = "different pointers",
  907. .errstr_unpriv = "R1 pointer comparison",
  908. .result = REJECT,
  909. },
  910. {
  911. "access skb fields bad3",
  912. .insns = {
  913. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  914. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  915. offsetof(struct __sk_buff, pkt_type)),
  916. BPF_EXIT_INSN(),
  917. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  918. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  919. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  920. BPF_LD_MAP_FD(BPF_REG_1, 0),
  921. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  922. BPF_FUNC_map_lookup_elem),
  923. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  924. BPF_EXIT_INSN(),
  925. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  926. BPF_JMP_IMM(BPF_JA, 0, 0, -12),
  927. },
  928. .fixup_map1 = { 6 },
  929. .errstr = "different pointers",
  930. .errstr_unpriv = "R1 pointer comparison",
  931. .result = REJECT,
  932. },
  933. {
  934. "access skb fields bad4",
  935. .insns = {
  936. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3),
  937. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  938. offsetof(struct __sk_buff, len)),
  939. BPF_MOV64_IMM(BPF_REG_0, 0),
  940. BPF_EXIT_INSN(),
  941. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  942. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  943. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  944. BPF_LD_MAP_FD(BPF_REG_1, 0),
  945. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  946. BPF_FUNC_map_lookup_elem),
  947. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  948. BPF_EXIT_INSN(),
  949. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  950. BPF_JMP_IMM(BPF_JA, 0, 0, -13),
  951. },
  952. .fixup_map1 = { 7 },
  953. .errstr = "different pointers",
  954. .errstr_unpriv = "R1 pointer comparison",
  955. .result = REJECT,
  956. },
  957. {
  958. "invalid access __sk_buff family",
  959. .insns = {
  960. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  961. offsetof(struct __sk_buff, family)),
  962. BPF_EXIT_INSN(),
  963. },
  964. .errstr = "invalid bpf_context access",
  965. .result = REJECT,
  966. },
  967. {
  968. "invalid access __sk_buff remote_ip4",
  969. .insns = {
  970. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  971. offsetof(struct __sk_buff, remote_ip4)),
  972. BPF_EXIT_INSN(),
  973. },
  974. .errstr = "invalid bpf_context access",
  975. .result = REJECT,
  976. },
  977. {
  978. "invalid access __sk_buff local_ip4",
  979. .insns = {
  980. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  981. offsetof(struct __sk_buff, local_ip4)),
  982. BPF_EXIT_INSN(),
  983. },
  984. .errstr = "invalid bpf_context access",
  985. .result = REJECT,
  986. },
  987. {
  988. "invalid access __sk_buff remote_ip6",
  989. .insns = {
  990. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  991. offsetof(struct __sk_buff, remote_ip6)),
  992. BPF_EXIT_INSN(),
  993. },
  994. .errstr = "invalid bpf_context access",
  995. .result = REJECT,
  996. },
  997. {
  998. "invalid access __sk_buff local_ip6",
  999. .insns = {
  1000. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1001. offsetof(struct __sk_buff, local_ip6)),
  1002. BPF_EXIT_INSN(),
  1003. },
  1004. .errstr = "invalid bpf_context access",
  1005. .result = REJECT,
  1006. },
  1007. {
  1008. "invalid access __sk_buff remote_port",
  1009. .insns = {
  1010. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1011. offsetof(struct __sk_buff, remote_port)),
  1012. BPF_EXIT_INSN(),
  1013. },
  1014. .errstr = "invalid bpf_context access",
  1015. .result = REJECT,
  1016. },
  1017. {
  1018. "invalid access __sk_buff remote_port",
  1019. .insns = {
  1020. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1021. offsetof(struct __sk_buff, local_port)),
  1022. BPF_EXIT_INSN(),
  1023. },
  1024. .errstr = "invalid bpf_context access",
  1025. .result = REJECT,
  1026. },
  1027. {
  1028. "valid access __sk_buff family",
  1029. .insns = {
  1030. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1031. offsetof(struct __sk_buff, family)),
  1032. BPF_EXIT_INSN(),
  1033. },
  1034. .result = ACCEPT,
  1035. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1036. },
  1037. {
  1038. "valid access __sk_buff remote_ip4",
  1039. .insns = {
  1040. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1041. offsetof(struct __sk_buff, remote_ip4)),
  1042. BPF_EXIT_INSN(),
  1043. },
  1044. .result = ACCEPT,
  1045. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1046. },
  1047. {
  1048. "valid access __sk_buff local_ip4",
  1049. .insns = {
  1050. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1051. offsetof(struct __sk_buff, local_ip4)),
  1052. BPF_EXIT_INSN(),
  1053. },
  1054. .result = ACCEPT,
  1055. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1056. },
  1057. {
  1058. "valid access __sk_buff remote_ip6",
  1059. .insns = {
  1060. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1061. offsetof(struct __sk_buff, remote_ip6[0])),
  1062. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1063. offsetof(struct __sk_buff, remote_ip6[1])),
  1064. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1065. offsetof(struct __sk_buff, remote_ip6[2])),
  1066. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1067. offsetof(struct __sk_buff, remote_ip6[3])),
  1068. BPF_EXIT_INSN(),
  1069. },
  1070. .result = ACCEPT,
  1071. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1072. },
  1073. {
  1074. "valid access __sk_buff local_ip6",
  1075. .insns = {
  1076. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1077. offsetof(struct __sk_buff, local_ip6[0])),
  1078. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1079. offsetof(struct __sk_buff, local_ip6[1])),
  1080. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1081. offsetof(struct __sk_buff, local_ip6[2])),
  1082. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1083. offsetof(struct __sk_buff, local_ip6[3])),
  1084. BPF_EXIT_INSN(),
  1085. },
  1086. .result = ACCEPT,
  1087. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1088. },
  1089. {
  1090. "valid access __sk_buff remote_port",
  1091. .insns = {
  1092. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1093. offsetof(struct __sk_buff, remote_port)),
  1094. BPF_EXIT_INSN(),
  1095. },
  1096. .result = ACCEPT,
  1097. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1098. },
  1099. {
  1100. "valid access __sk_buff remote_port",
  1101. .insns = {
  1102. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1103. offsetof(struct __sk_buff, local_port)),
  1104. BPF_EXIT_INSN(),
  1105. },
  1106. .result = ACCEPT,
  1107. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1108. },
  1109. {
  1110. "invalid access of tc_classid for SK_SKB",
  1111. .insns = {
  1112. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1113. offsetof(struct __sk_buff, tc_classid)),
  1114. BPF_EXIT_INSN(),
  1115. },
  1116. .result = REJECT,
  1117. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1118. .errstr = "invalid bpf_context access",
  1119. },
  1120. {
  1121. "invalid access of skb->mark for SK_SKB",
  1122. .insns = {
  1123. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1124. offsetof(struct __sk_buff, mark)),
  1125. BPF_EXIT_INSN(),
  1126. },
  1127. .result = REJECT,
  1128. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1129. .errstr = "invalid bpf_context access",
  1130. },
  1131. {
  1132. "check skb->mark is not writeable by SK_SKB",
  1133. .insns = {
  1134. BPF_MOV64_IMM(BPF_REG_0, 0),
  1135. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1136. offsetof(struct __sk_buff, mark)),
  1137. BPF_EXIT_INSN(),
  1138. },
  1139. .result = REJECT,
  1140. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1141. .errstr = "invalid bpf_context access",
  1142. },
  1143. {
  1144. "check skb->tc_index is writeable by SK_SKB",
  1145. .insns = {
  1146. BPF_MOV64_IMM(BPF_REG_0, 0),
  1147. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1148. offsetof(struct __sk_buff, tc_index)),
  1149. BPF_EXIT_INSN(),
  1150. },
  1151. .result = ACCEPT,
  1152. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1153. },
  1154. {
  1155. "check skb->priority is writeable by SK_SKB",
  1156. .insns = {
  1157. BPF_MOV64_IMM(BPF_REG_0, 0),
  1158. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1159. offsetof(struct __sk_buff, priority)),
  1160. BPF_EXIT_INSN(),
  1161. },
  1162. .result = ACCEPT,
  1163. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1164. },
  1165. {
  1166. "direct packet read for SK_SKB",
  1167. .insns = {
  1168. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  1169. offsetof(struct __sk_buff, data)),
  1170. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  1171. offsetof(struct __sk_buff, data_end)),
  1172. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  1173. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  1174. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  1175. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  1176. BPF_MOV64_IMM(BPF_REG_0, 0),
  1177. BPF_EXIT_INSN(),
  1178. },
  1179. .result = ACCEPT,
  1180. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1181. },
  1182. {
  1183. "direct packet write for SK_SKB",
  1184. .insns = {
  1185. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  1186. offsetof(struct __sk_buff, data)),
  1187. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  1188. offsetof(struct __sk_buff, data_end)),
  1189. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  1190. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  1191. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  1192. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  1193. BPF_MOV64_IMM(BPF_REG_0, 0),
  1194. BPF_EXIT_INSN(),
  1195. },
  1196. .result = ACCEPT,
  1197. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1198. },
  1199. {
  1200. "overlapping checks for direct packet access SK_SKB",
  1201. .insns = {
  1202. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  1203. offsetof(struct __sk_buff, data)),
  1204. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  1205. offsetof(struct __sk_buff, data_end)),
  1206. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  1207. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  1208. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
  1209. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  1210. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
  1211. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  1212. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
  1213. BPF_MOV64_IMM(BPF_REG_0, 0),
  1214. BPF_EXIT_INSN(),
  1215. },
  1216. .result = ACCEPT,
  1217. .prog_type = BPF_PROG_TYPE_SK_SKB,
  1218. },
  1219. {
  1220. "check skb->mark is not writeable by sockets",
  1221. .insns = {
  1222. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1223. offsetof(struct __sk_buff, mark)),
  1224. BPF_EXIT_INSN(),
  1225. },
  1226. .errstr = "invalid bpf_context access",
  1227. .errstr_unpriv = "R1 leaks addr",
  1228. .result = REJECT,
  1229. },
  1230. {
  1231. "check skb->tc_index is not writeable by sockets",
  1232. .insns = {
  1233. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1234. offsetof(struct __sk_buff, tc_index)),
  1235. BPF_EXIT_INSN(),
  1236. },
  1237. .errstr = "invalid bpf_context access",
  1238. .errstr_unpriv = "R1 leaks addr",
  1239. .result = REJECT,
  1240. },
  1241. {
  1242. "check cb access: byte",
  1243. .insns = {
  1244. BPF_MOV64_IMM(BPF_REG_0, 0),
  1245. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1246. offsetof(struct __sk_buff, cb[0])),
  1247. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1248. offsetof(struct __sk_buff, cb[0]) + 1),
  1249. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1250. offsetof(struct __sk_buff, cb[0]) + 2),
  1251. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1252. offsetof(struct __sk_buff, cb[0]) + 3),
  1253. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1254. offsetof(struct __sk_buff, cb[1])),
  1255. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1256. offsetof(struct __sk_buff, cb[1]) + 1),
  1257. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1258. offsetof(struct __sk_buff, cb[1]) + 2),
  1259. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1260. offsetof(struct __sk_buff, cb[1]) + 3),
  1261. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1262. offsetof(struct __sk_buff, cb[2])),
  1263. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1264. offsetof(struct __sk_buff, cb[2]) + 1),
  1265. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1266. offsetof(struct __sk_buff, cb[2]) + 2),
  1267. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1268. offsetof(struct __sk_buff, cb[2]) + 3),
  1269. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1270. offsetof(struct __sk_buff, cb[3])),
  1271. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1272. offsetof(struct __sk_buff, cb[3]) + 1),
  1273. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1274. offsetof(struct __sk_buff, cb[3]) + 2),
  1275. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1276. offsetof(struct __sk_buff, cb[3]) + 3),
  1277. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1278. offsetof(struct __sk_buff, cb[4])),
  1279. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1280. offsetof(struct __sk_buff, cb[4]) + 1),
  1281. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1282. offsetof(struct __sk_buff, cb[4]) + 2),
  1283. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1284. offsetof(struct __sk_buff, cb[4]) + 3),
  1285. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1286. offsetof(struct __sk_buff, cb[0])),
  1287. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1288. offsetof(struct __sk_buff, cb[0]) + 1),
  1289. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1290. offsetof(struct __sk_buff, cb[0]) + 2),
  1291. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1292. offsetof(struct __sk_buff, cb[0]) + 3),
  1293. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1294. offsetof(struct __sk_buff, cb[1])),
  1295. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1296. offsetof(struct __sk_buff, cb[1]) + 1),
  1297. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1298. offsetof(struct __sk_buff, cb[1]) + 2),
  1299. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1300. offsetof(struct __sk_buff, cb[1]) + 3),
  1301. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1302. offsetof(struct __sk_buff, cb[2])),
  1303. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1304. offsetof(struct __sk_buff, cb[2]) + 1),
  1305. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1306. offsetof(struct __sk_buff, cb[2]) + 2),
  1307. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1308. offsetof(struct __sk_buff, cb[2]) + 3),
  1309. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1310. offsetof(struct __sk_buff, cb[3])),
  1311. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1312. offsetof(struct __sk_buff, cb[3]) + 1),
  1313. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1314. offsetof(struct __sk_buff, cb[3]) + 2),
  1315. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1316. offsetof(struct __sk_buff, cb[3]) + 3),
  1317. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1318. offsetof(struct __sk_buff, cb[4])),
  1319. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1320. offsetof(struct __sk_buff, cb[4]) + 1),
  1321. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1322. offsetof(struct __sk_buff, cb[4]) + 2),
  1323. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1324. offsetof(struct __sk_buff, cb[4]) + 3),
  1325. BPF_EXIT_INSN(),
  1326. },
  1327. .result = ACCEPT,
  1328. },
  1329. {
  1330. "__sk_buff->hash, offset 0, byte store not permitted",
  1331. .insns = {
  1332. BPF_MOV64_IMM(BPF_REG_0, 0),
  1333. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1334. offsetof(struct __sk_buff, hash)),
  1335. BPF_EXIT_INSN(),
  1336. },
  1337. .errstr = "invalid bpf_context access",
  1338. .result = REJECT,
  1339. },
  1340. {
  1341. "__sk_buff->tc_index, offset 3, byte store not permitted",
  1342. .insns = {
  1343. BPF_MOV64_IMM(BPF_REG_0, 0),
  1344. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1345. offsetof(struct __sk_buff, tc_index) + 3),
  1346. BPF_EXIT_INSN(),
  1347. },
  1348. .errstr = "invalid bpf_context access",
  1349. .result = REJECT,
  1350. },
  1351. {
  1352. "check skb->hash byte load permitted",
  1353. .insns = {
  1354. BPF_MOV64_IMM(BPF_REG_0, 0),
  1355. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1356. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1357. offsetof(struct __sk_buff, hash)),
  1358. #else
  1359. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1360. offsetof(struct __sk_buff, hash) + 3),
  1361. #endif
  1362. BPF_EXIT_INSN(),
  1363. },
  1364. .result = ACCEPT,
  1365. },
  1366. {
  1367. "check skb->hash byte load not permitted 1",
  1368. .insns = {
  1369. BPF_MOV64_IMM(BPF_REG_0, 0),
  1370. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1371. offsetof(struct __sk_buff, hash) + 1),
  1372. BPF_EXIT_INSN(),
  1373. },
  1374. .errstr = "invalid bpf_context access",
  1375. .result = REJECT,
  1376. },
  1377. {
  1378. "check skb->hash byte load not permitted 2",
  1379. .insns = {
  1380. BPF_MOV64_IMM(BPF_REG_0, 0),
  1381. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1382. offsetof(struct __sk_buff, hash) + 2),
  1383. BPF_EXIT_INSN(),
  1384. },
  1385. .errstr = "invalid bpf_context access",
  1386. .result = REJECT,
  1387. },
  1388. {
  1389. "check skb->hash byte load not permitted 3",
  1390. .insns = {
  1391. BPF_MOV64_IMM(BPF_REG_0, 0),
  1392. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1393. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1394. offsetof(struct __sk_buff, hash) + 3),
  1395. #else
  1396. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1397. offsetof(struct __sk_buff, hash)),
  1398. #endif
  1399. BPF_EXIT_INSN(),
  1400. },
  1401. .errstr = "invalid bpf_context access",
  1402. .result = REJECT,
  1403. },
  1404. {
  1405. "check cb access: byte, wrong type",
  1406. .insns = {
  1407. BPF_MOV64_IMM(BPF_REG_0, 0),
  1408. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1409. offsetof(struct __sk_buff, cb[0])),
  1410. BPF_EXIT_INSN(),
  1411. },
  1412. .errstr = "invalid bpf_context access",
  1413. .result = REJECT,
  1414. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1415. },
  1416. {
  1417. "check cb access: half",
  1418. .insns = {
  1419. BPF_MOV64_IMM(BPF_REG_0, 0),
  1420. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1421. offsetof(struct __sk_buff, cb[0])),
  1422. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1423. offsetof(struct __sk_buff, cb[0]) + 2),
  1424. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1425. offsetof(struct __sk_buff, cb[1])),
  1426. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1427. offsetof(struct __sk_buff, cb[1]) + 2),
  1428. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1429. offsetof(struct __sk_buff, cb[2])),
  1430. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1431. offsetof(struct __sk_buff, cb[2]) + 2),
  1432. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1433. offsetof(struct __sk_buff, cb[3])),
  1434. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1435. offsetof(struct __sk_buff, cb[3]) + 2),
  1436. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1437. offsetof(struct __sk_buff, cb[4])),
  1438. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1439. offsetof(struct __sk_buff, cb[4]) + 2),
  1440. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1441. offsetof(struct __sk_buff, cb[0])),
  1442. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1443. offsetof(struct __sk_buff, cb[0]) + 2),
  1444. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1445. offsetof(struct __sk_buff, cb[1])),
  1446. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1447. offsetof(struct __sk_buff, cb[1]) + 2),
  1448. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1449. offsetof(struct __sk_buff, cb[2])),
  1450. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1451. offsetof(struct __sk_buff, cb[2]) + 2),
  1452. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1453. offsetof(struct __sk_buff, cb[3])),
  1454. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1455. offsetof(struct __sk_buff, cb[3]) + 2),
  1456. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1457. offsetof(struct __sk_buff, cb[4])),
  1458. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1459. offsetof(struct __sk_buff, cb[4]) + 2),
  1460. BPF_EXIT_INSN(),
  1461. },
  1462. .result = ACCEPT,
  1463. },
  1464. {
  1465. "check cb access: half, unaligned",
  1466. .insns = {
  1467. BPF_MOV64_IMM(BPF_REG_0, 0),
  1468. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1469. offsetof(struct __sk_buff, cb[0]) + 1),
  1470. BPF_EXIT_INSN(),
  1471. },
  1472. .errstr = "misaligned context access",
  1473. .result = REJECT,
  1474. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1475. },
  1476. {
  1477. "check __sk_buff->hash, offset 0, half store not permitted",
  1478. .insns = {
  1479. BPF_MOV64_IMM(BPF_REG_0, 0),
  1480. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1481. offsetof(struct __sk_buff, hash)),
  1482. BPF_EXIT_INSN(),
  1483. },
  1484. .errstr = "invalid bpf_context access",
  1485. .result = REJECT,
  1486. },
  1487. {
  1488. "check __sk_buff->tc_index, offset 2, half store not permitted",
  1489. .insns = {
  1490. BPF_MOV64_IMM(BPF_REG_0, 0),
  1491. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1492. offsetof(struct __sk_buff, tc_index) + 2),
  1493. BPF_EXIT_INSN(),
  1494. },
  1495. .errstr = "invalid bpf_context access",
  1496. .result = REJECT,
  1497. },
  1498. {
  1499. "check skb->hash half load permitted",
  1500. .insns = {
  1501. BPF_MOV64_IMM(BPF_REG_0, 0),
  1502. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1503. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1504. offsetof(struct __sk_buff, hash)),
  1505. #else
  1506. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1507. offsetof(struct __sk_buff, hash) + 2),
  1508. #endif
  1509. BPF_EXIT_INSN(),
  1510. },
  1511. .result = ACCEPT,
  1512. },
  1513. {
  1514. "check skb->hash half load not permitted",
  1515. .insns = {
  1516. BPF_MOV64_IMM(BPF_REG_0, 0),
  1517. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1518. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1519. offsetof(struct __sk_buff, hash) + 2),
  1520. #else
  1521. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1522. offsetof(struct __sk_buff, hash)),
  1523. #endif
  1524. BPF_EXIT_INSN(),
  1525. },
  1526. .errstr = "invalid bpf_context access",
  1527. .result = REJECT,
  1528. },
  1529. {
  1530. "check cb access: half, wrong type",
  1531. .insns = {
  1532. BPF_MOV64_IMM(BPF_REG_0, 0),
  1533. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1534. offsetof(struct __sk_buff, cb[0])),
  1535. BPF_EXIT_INSN(),
  1536. },
  1537. .errstr = "invalid bpf_context access",
  1538. .result = REJECT,
  1539. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1540. },
  1541. {
  1542. "check cb access: word",
  1543. .insns = {
  1544. BPF_MOV64_IMM(BPF_REG_0, 0),
  1545. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1546. offsetof(struct __sk_buff, cb[0])),
  1547. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1548. offsetof(struct __sk_buff, cb[1])),
  1549. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1550. offsetof(struct __sk_buff, cb[2])),
  1551. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1552. offsetof(struct __sk_buff, cb[3])),
  1553. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1554. offsetof(struct __sk_buff, cb[4])),
  1555. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1556. offsetof(struct __sk_buff, cb[0])),
  1557. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1558. offsetof(struct __sk_buff, cb[1])),
  1559. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1560. offsetof(struct __sk_buff, cb[2])),
  1561. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1562. offsetof(struct __sk_buff, cb[3])),
  1563. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1564. offsetof(struct __sk_buff, cb[4])),
  1565. BPF_EXIT_INSN(),
  1566. },
  1567. .result = ACCEPT,
  1568. },
  1569. {
  1570. "check cb access: word, unaligned 1",
  1571. .insns = {
  1572. BPF_MOV64_IMM(BPF_REG_0, 0),
  1573. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1574. offsetof(struct __sk_buff, cb[0]) + 2),
  1575. BPF_EXIT_INSN(),
  1576. },
  1577. .errstr = "misaligned context access",
  1578. .result = REJECT,
  1579. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1580. },
  1581. {
  1582. "check cb access: word, unaligned 2",
  1583. .insns = {
  1584. BPF_MOV64_IMM(BPF_REG_0, 0),
  1585. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1586. offsetof(struct __sk_buff, cb[4]) + 1),
  1587. BPF_EXIT_INSN(),
  1588. },
  1589. .errstr = "misaligned context access",
  1590. .result = REJECT,
  1591. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1592. },
  1593. {
  1594. "check cb access: word, unaligned 3",
  1595. .insns = {
  1596. BPF_MOV64_IMM(BPF_REG_0, 0),
  1597. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1598. offsetof(struct __sk_buff, cb[4]) + 2),
  1599. BPF_EXIT_INSN(),
  1600. },
  1601. .errstr = "misaligned context access",
  1602. .result = REJECT,
  1603. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1604. },
  1605. {
  1606. "check cb access: word, unaligned 4",
  1607. .insns = {
  1608. BPF_MOV64_IMM(BPF_REG_0, 0),
  1609. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1610. offsetof(struct __sk_buff, cb[4]) + 3),
  1611. BPF_EXIT_INSN(),
  1612. },
  1613. .errstr = "misaligned context access",
  1614. .result = REJECT,
  1615. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1616. },
  1617. {
  1618. "check cb access: double",
  1619. .insns = {
  1620. BPF_MOV64_IMM(BPF_REG_0, 0),
  1621. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1622. offsetof(struct __sk_buff, cb[0])),
  1623. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1624. offsetof(struct __sk_buff, cb[2])),
  1625. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1626. offsetof(struct __sk_buff, cb[0])),
  1627. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1628. offsetof(struct __sk_buff, cb[2])),
  1629. BPF_EXIT_INSN(),
  1630. },
  1631. .result = ACCEPT,
  1632. },
  1633. {
  1634. "check cb access: double, unaligned 1",
  1635. .insns = {
  1636. BPF_MOV64_IMM(BPF_REG_0, 0),
  1637. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1638. offsetof(struct __sk_buff, cb[1])),
  1639. BPF_EXIT_INSN(),
  1640. },
  1641. .errstr = "misaligned context access",
  1642. .result = REJECT,
  1643. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1644. },
  1645. {
  1646. "check cb access: double, unaligned 2",
  1647. .insns = {
  1648. BPF_MOV64_IMM(BPF_REG_0, 0),
  1649. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1650. offsetof(struct __sk_buff, cb[3])),
  1651. BPF_EXIT_INSN(),
  1652. },
  1653. .errstr = "misaligned context access",
  1654. .result = REJECT,
  1655. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1656. },
  1657. {
  1658. "check cb access: double, oob 1",
  1659. .insns = {
  1660. BPF_MOV64_IMM(BPF_REG_0, 0),
  1661. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1662. offsetof(struct __sk_buff, cb[4])),
  1663. BPF_EXIT_INSN(),
  1664. },
  1665. .errstr = "invalid bpf_context access",
  1666. .result = REJECT,
  1667. },
  1668. {
  1669. "check cb access: double, oob 2",
  1670. .insns = {
  1671. BPF_MOV64_IMM(BPF_REG_0, 0),
  1672. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1673. offsetof(struct __sk_buff, cb[4])),
  1674. BPF_EXIT_INSN(),
  1675. },
  1676. .errstr = "invalid bpf_context access",
  1677. .result = REJECT,
  1678. },
  1679. {
  1680. "check __sk_buff->ifindex dw store not permitted",
  1681. .insns = {
  1682. BPF_MOV64_IMM(BPF_REG_0, 0),
  1683. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1684. offsetof(struct __sk_buff, ifindex)),
  1685. BPF_EXIT_INSN(),
  1686. },
  1687. .errstr = "invalid bpf_context access",
  1688. .result = REJECT,
  1689. },
  1690. {
  1691. "check __sk_buff->ifindex dw load not permitted",
  1692. .insns = {
  1693. BPF_MOV64_IMM(BPF_REG_0, 0),
  1694. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1695. offsetof(struct __sk_buff, ifindex)),
  1696. BPF_EXIT_INSN(),
  1697. },
  1698. .errstr = "invalid bpf_context access",
  1699. .result = REJECT,
  1700. },
  1701. {
  1702. "check cb access: double, wrong type",
  1703. .insns = {
  1704. BPF_MOV64_IMM(BPF_REG_0, 0),
  1705. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1706. offsetof(struct __sk_buff, cb[0])),
  1707. BPF_EXIT_INSN(),
  1708. },
  1709. .errstr = "invalid bpf_context access",
  1710. .result = REJECT,
  1711. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1712. },
  1713. {
  1714. "check out of range skb->cb access",
  1715. .insns = {
  1716. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1717. offsetof(struct __sk_buff, cb[0]) + 256),
  1718. BPF_EXIT_INSN(),
  1719. },
  1720. .errstr = "invalid bpf_context access",
  1721. .errstr_unpriv = "",
  1722. .result = REJECT,
  1723. .prog_type = BPF_PROG_TYPE_SCHED_ACT,
  1724. },
  1725. {
  1726. "write skb fields from socket prog",
  1727. .insns = {
  1728. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1729. offsetof(struct __sk_buff, cb[4])),
  1730. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  1731. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1732. offsetof(struct __sk_buff, mark)),
  1733. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1734. offsetof(struct __sk_buff, tc_index)),
  1735. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  1736. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1737. offsetof(struct __sk_buff, cb[0])),
  1738. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1739. offsetof(struct __sk_buff, cb[2])),
  1740. BPF_EXIT_INSN(),
  1741. },
  1742. .result = ACCEPT,
  1743. .errstr_unpriv = "R1 leaks addr",
  1744. .result_unpriv = REJECT,
  1745. },
  1746. {
  1747. "write skb fields from tc_cls_act prog",
  1748. .insns = {
  1749. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1750. offsetof(struct __sk_buff, cb[0])),
  1751. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1752. offsetof(struct __sk_buff, mark)),
  1753. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1754. offsetof(struct __sk_buff, tc_index)),
  1755. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1756. offsetof(struct __sk_buff, tc_index)),
  1757. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1758. offsetof(struct __sk_buff, cb[3])),
  1759. BPF_EXIT_INSN(),
  1760. },
  1761. .errstr_unpriv = "",
  1762. .result_unpriv = REJECT,
  1763. .result = ACCEPT,
  1764. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1765. },
  1766. {
  1767. "PTR_TO_STACK store/load",
  1768. .insns = {
  1769. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1770. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
  1771. BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
  1772. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
  1773. BPF_EXIT_INSN(),
  1774. },
  1775. .result = ACCEPT,
  1776. },
  1777. {
  1778. "PTR_TO_STACK store/load - bad alignment on off",
  1779. .insns = {
  1780. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1781. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1782. BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
  1783. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
  1784. BPF_EXIT_INSN(),
  1785. },
  1786. .result = REJECT,
  1787. .errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8",
  1788. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1789. },
  1790. {
  1791. "PTR_TO_STACK store/load - bad alignment on reg",
  1792. .insns = {
  1793. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1794. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
  1795. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1796. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1797. BPF_EXIT_INSN(),
  1798. },
  1799. .result = REJECT,
  1800. .errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8",
  1801. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  1802. },
  1803. {
  1804. "PTR_TO_STACK store/load - out of bounds low",
  1805. .insns = {
  1806. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1807. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000),
  1808. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1809. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1810. BPF_EXIT_INSN(),
  1811. },
  1812. .result = REJECT,
  1813. .errstr = "invalid stack off=-79992 size=8",
  1814. },
  1815. {
  1816. "PTR_TO_STACK store/load - out of bounds high",
  1817. .insns = {
  1818. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1819. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1820. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1821. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1822. BPF_EXIT_INSN(),
  1823. },
  1824. .result = REJECT,
  1825. .errstr = "invalid stack off=0 size=8",
  1826. },
  1827. {
  1828. "unpriv: return pointer",
  1829. .insns = {
  1830. BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
  1831. BPF_EXIT_INSN(),
  1832. },
  1833. .result = ACCEPT,
  1834. .result_unpriv = REJECT,
  1835. .errstr_unpriv = "R0 leaks addr",
  1836. },
  1837. {
  1838. "unpriv: add const to pointer",
  1839. .insns = {
  1840. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  1841. BPF_MOV64_IMM(BPF_REG_0, 0),
  1842. BPF_EXIT_INSN(),
  1843. },
  1844. .result = ACCEPT,
  1845. },
  1846. {
  1847. "unpriv: add pointer to pointer",
  1848. .insns = {
  1849. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
  1850. BPF_MOV64_IMM(BPF_REG_0, 0),
  1851. BPF_EXIT_INSN(),
  1852. },
  1853. .result = ACCEPT,
  1854. .result_unpriv = REJECT,
  1855. .errstr_unpriv = "R1 pointer += pointer",
  1856. },
  1857. {
  1858. "unpriv: neg pointer",
  1859. .insns = {
  1860. BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0),
  1861. BPF_MOV64_IMM(BPF_REG_0, 0),
  1862. BPF_EXIT_INSN(),
  1863. },
  1864. .result = ACCEPT,
  1865. .result_unpriv = REJECT,
  1866. .errstr_unpriv = "R1 pointer arithmetic",
  1867. },
  1868. {
  1869. "unpriv: cmp pointer with const",
  1870. .insns = {
  1871. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
  1872. BPF_MOV64_IMM(BPF_REG_0, 0),
  1873. BPF_EXIT_INSN(),
  1874. },
  1875. .result = ACCEPT,
  1876. .result_unpriv = REJECT,
  1877. .errstr_unpriv = "R1 pointer comparison",
  1878. },
  1879. {
  1880. "unpriv: cmp pointer with pointer",
  1881. .insns = {
  1882. BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  1883. BPF_MOV64_IMM(BPF_REG_0, 0),
  1884. BPF_EXIT_INSN(),
  1885. },
  1886. .result = ACCEPT,
  1887. .result_unpriv = REJECT,
  1888. .errstr_unpriv = "R10 pointer comparison",
  1889. },
  1890. {
  1891. "unpriv: check that printk is disallowed",
  1892. .insns = {
  1893. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  1894. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1895. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1896. BPF_MOV64_IMM(BPF_REG_2, 8),
  1897. BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
  1898. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1899. BPF_FUNC_trace_printk),
  1900. BPF_MOV64_IMM(BPF_REG_0, 0),
  1901. BPF_EXIT_INSN(),
  1902. },
  1903. .errstr_unpriv = "unknown func bpf_trace_printk#6",
  1904. .result_unpriv = REJECT,
  1905. .result = ACCEPT,
  1906. },
  1907. {
  1908. "unpriv: pass pointer to helper function",
  1909. .insns = {
  1910. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  1911. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1912. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1913. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1914. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  1915. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  1916. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1917. BPF_FUNC_map_update_elem),
  1918. BPF_MOV64_IMM(BPF_REG_0, 0),
  1919. BPF_EXIT_INSN(),
  1920. },
  1921. .fixup_map1 = { 3 },
  1922. .errstr_unpriv = "R4 leaks addr",
  1923. .result_unpriv = REJECT,
  1924. .result = ACCEPT,
  1925. },
  1926. {
  1927. "unpriv: indirectly pass pointer on stack to helper function",
  1928. .insns = {
  1929. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1930. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1931. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1932. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1933. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1934. BPF_FUNC_map_lookup_elem),
  1935. BPF_MOV64_IMM(BPF_REG_0, 0),
  1936. BPF_EXIT_INSN(),
  1937. },
  1938. .fixup_map1 = { 3 },
  1939. .errstr = "invalid indirect read from stack off -8+0 size 8",
  1940. .result = REJECT,
  1941. },
  1942. {
  1943. "unpriv: mangle pointer on stack 1",
  1944. .insns = {
  1945. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1946. BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0),
  1947. BPF_MOV64_IMM(BPF_REG_0, 0),
  1948. BPF_EXIT_INSN(),
  1949. },
  1950. .errstr_unpriv = "attempt to corrupt spilled",
  1951. .result_unpriv = REJECT,
  1952. .result = ACCEPT,
  1953. },
  1954. {
  1955. "unpriv: mangle pointer on stack 2",
  1956. .insns = {
  1957. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1958. BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0),
  1959. BPF_MOV64_IMM(BPF_REG_0, 0),
  1960. BPF_EXIT_INSN(),
  1961. },
  1962. .errstr_unpriv = "attempt to corrupt spilled",
  1963. .result_unpriv = REJECT,
  1964. .result = ACCEPT,
  1965. },
  1966. {
  1967. "unpriv: read pointer from stack in small chunks",
  1968. .insns = {
  1969. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1970. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
  1971. BPF_MOV64_IMM(BPF_REG_0, 0),
  1972. BPF_EXIT_INSN(),
  1973. },
  1974. .errstr = "invalid size",
  1975. .result = REJECT,
  1976. },
  1977. {
  1978. "unpriv: write pointer into ctx",
  1979. .insns = {
  1980. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
  1981. BPF_MOV64_IMM(BPF_REG_0, 0),
  1982. BPF_EXIT_INSN(),
  1983. },
  1984. .errstr_unpriv = "R1 leaks addr",
  1985. .result_unpriv = REJECT,
  1986. .errstr = "invalid bpf_context access",
  1987. .result = REJECT,
  1988. },
  1989. {
  1990. "unpriv: spill/fill of ctx",
  1991. .insns = {
  1992. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1993. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1994. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1995. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1996. BPF_MOV64_IMM(BPF_REG_0, 0),
  1997. BPF_EXIT_INSN(),
  1998. },
  1999. .result = ACCEPT,
  2000. },
  2001. {
  2002. "unpriv: spill/fill of ctx 2",
  2003. .insns = {
  2004. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2005. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2006. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2007. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  2008. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2009. BPF_FUNC_get_hash_recalc),
  2010. BPF_EXIT_INSN(),
  2011. },
  2012. .result = ACCEPT,
  2013. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2014. },
  2015. {
  2016. "unpriv: spill/fill of ctx 3",
  2017. .insns = {
  2018. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2019. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2020. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2021. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
  2022. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  2023. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2024. BPF_FUNC_get_hash_recalc),
  2025. BPF_EXIT_INSN(),
  2026. },
  2027. .result = REJECT,
  2028. .errstr = "R1 type=fp expected=ctx",
  2029. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2030. },
  2031. {
  2032. "unpriv: spill/fill of ctx 4",
  2033. .insns = {
  2034. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2035. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2036. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2037. BPF_MOV64_IMM(BPF_REG_0, 1),
  2038. BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10,
  2039. BPF_REG_0, -8, 0),
  2040. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  2041. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2042. BPF_FUNC_get_hash_recalc),
  2043. BPF_EXIT_INSN(),
  2044. },
  2045. .result = REJECT,
  2046. .errstr = "R1 type=inv expected=ctx",
  2047. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2048. },
  2049. {
  2050. "unpriv: spill/fill of different pointers stx",
  2051. .insns = {
  2052. BPF_MOV64_IMM(BPF_REG_3, 42),
  2053. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2054. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2055. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  2056. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  2057. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  2058. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
  2059. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
  2060. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2061. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  2062. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3,
  2063. offsetof(struct __sk_buff, mark)),
  2064. BPF_MOV64_IMM(BPF_REG_0, 0),
  2065. BPF_EXIT_INSN(),
  2066. },
  2067. .result = REJECT,
  2068. .errstr = "same insn cannot be used with different pointers",
  2069. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2070. },
  2071. {
  2072. "unpriv: spill/fill of different pointers ldx",
  2073. .insns = {
  2074. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2075. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2076. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  2077. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  2078. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
  2079. -(__s32)offsetof(struct bpf_perf_event_data,
  2080. sample_period) - 8),
  2081. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
  2082. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
  2083. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2084. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  2085. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1,
  2086. offsetof(struct bpf_perf_event_data,
  2087. sample_period)),
  2088. BPF_MOV64_IMM(BPF_REG_0, 0),
  2089. BPF_EXIT_INSN(),
  2090. },
  2091. .result = REJECT,
  2092. .errstr = "same insn cannot be used with different pointers",
  2093. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  2094. },
  2095. {
  2096. "unpriv: write pointer into map elem value",
  2097. .insns = {
  2098. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  2099. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  2100. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  2101. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2102. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2103. BPF_FUNC_map_lookup_elem),
  2104. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  2105. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
  2106. BPF_EXIT_INSN(),
  2107. },
  2108. .fixup_map1 = { 3 },
  2109. .errstr_unpriv = "R0 leaks addr",
  2110. .result_unpriv = REJECT,
  2111. .result = ACCEPT,
  2112. },
  2113. {
  2114. "unpriv: partial copy of pointer",
  2115. .insns = {
  2116. BPF_MOV32_REG(BPF_REG_1, BPF_REG_10),
  2117. BPF_MOV64_IMM(BPF_REG_0, 0),
  2118. BPF_EXIT_INSN(),
  2119. },
  2120. .errstr_unpriv = "R10 partial copy",
  2121. .result_unpriv = REJECT,
  2122. .result = ACCEPT,
  2123. },
  2124. {
  2125. "unpriv: pass pointer to tail_call",
  2126. .insns = {
  2127. BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
  2128. BPF_LD_MAP_FD(BPF_REG_2, 0),
  2129. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2130. BPF_FUNC_tail_call),
  2131. BPF_MOV64_IMM(BPF_REG_0, 0),
  2132. BPF_EXIT_INSN(),
  2133. },
  2134. .fixup_prog = { 1 },
  2135. .errstr_unpriv = "R3 leaks addr into helper",
  2136. .result_unpriv = REJECT,
  2137. .result = ACCEPT,
  2138. },
  2139. {
  2140. "unpriv: cmp map pointer with zero",
  2141. .insns = {
  2142. BPF_MOV64_IMM(BPF_REG_1, 0),
  2143. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2144. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
  2145. BPF_MOV64_IMM(BPF_REG_0, 0),
  2146. BPF_EXIT_INSN(),
  2147. },
  2148. .fixup_map1 = { 1 },
  2149. .errstr_unpriv = "R1 pointer comparison",
  2150. .result_unpriv = REJECT,
  2151. .result = ACCEPT,
  2152. },
  2153. {
  2154. "unpriv: write into frame pointer",
  2155. .insns = {
  2156. BPF_MOV64_REG(BPF_REG_10, BPF_REG_1),
  2157. BPF_MOV64_IMM(BPF_REG_0, 0),
  2158. BPF_EXIT_INSN(),
  2159. },
  2160. .errstr = "frame pointer is read only",
  2161. .result = REJECT,
  2162. },
  2163. {
  2164. "unpriv: spill/fill frame pointer",
  2165. .insns = {
  2166. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2167. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2168. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
  2169. BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0),
  2170. BPF_MOV64_IMM(BPF_REG_0, 0),
  2171. BPF_EXIT_INSN(),
  2172. },
  2173. .errstr = "frame pointer is read only",
  2174. .result = REJECT,
  2175. },
  2176. {
  2177. "unpriv: cmp of frame pointer",
  2178. .insns = {
  2179. BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0),
  2180. BPF_MOV64_IMM(BPF_REG_0, 0),
  2181. BPF_EXIT_INSN(),
  2182. },
  2183. .errstr_unpriv = "R10 pointer comparison",
  2184. .result_unpriv = REJECT,
  2185. .result = ACCEPT,
  2186. },
  2187. {
  2188. "unpriv: adding of fp",
  2189. .insns = {
  2190. BPF_MOV64_IMM(BPF_REG_0, 0),
  2191. BPF_MOV64_IMM(BPF_REG_1, 0),
  2192. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
  2193. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, -8),
  2194. BPF_EXIT_INSN(),
  2195. },
  2196. .result = ACCEPT,
  2197. },
  2198. {
  2199. "unpriv: cmp of stack pointer",
  2200. .insns = {
  2201. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  2202. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  2203. BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0),
  2204. BPF_MOV64_IMM(BPF_REG_0, 0),
  2205. BPF_EXIT_INSN(),
  2206. },
  2207. .errstr_unpriv = "R2 pointer comparison",
  2208. .result_unpriv = REJECT,
  2209. .result = ACCEPT,
  2210. },
  2211. {
  2212. "stack pointer arithmetic",
  2213. .insns = {
  2214. BPF_MOV64_IMM(BPF_REG_1, 4),
  2215. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  2216. BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
  2217. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
  2218. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
  2219. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  2220. BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
  2221. BPF_ST_MEM(0, BPF_REG_2, 4, 0),
  2222. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  2223. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
  2224. BPF_ST_MEM(0, BPF_REG_2, 4, 0),
  2225. BPF_MOV64_IMM(BPF_REG_0, 0),
  2226. BPF_EXIT_INSN(),
  2227. },
  2228. .result = ACCEPT,
  2229. },
  2230. {
  2231. "raw_stack: no skb_load_bytes",
  2232. .insns = {
  2233. BPF_MOV64_IMM(BPF_REG_2, 4),
  2234. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2235. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2236. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2237. BPF_MOV64_IMM(BPF_REG_4, 8),
  2238. /* Call to skb_load_bytes() omitted. */
  2239. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2240. BPF_EXIT_INSN(),
  2241. },
  2242. .result = REJECT,
  2243. .errstr = "invalid read from stack off -8+0 size 8",
  2244. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2245. },
  2246. {
  2247. "raw_stack: skb_load_bytes, negative len",
  2248. .insns = {
  2249. BPF_MOV64_IMM(BPF_REG_2, 4),
  2250. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2251. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2252. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2253. BPF_MOV64_IMM(BPF_REG_4, -8),
  2254. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2255. BPF_FUNC_skb_load_bytes),
  2256. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2257. BPF_EXIT_INSN(),
  2258. },
  2259. .result = REJECT,
  2260. .errstr = "R4 min value is negative",
  2261. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2262. },
  2263. {
  2264. "raw_stack: skb_load_bytes, negative len 2",
  2265. .insns = {
  2266. BPF_MOV64_IMM(BPF_REG_2, 4),
  2267. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2268. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2269. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2270. BPF_MOV64_IMM(BPF_REG_4, ~0),
  2271. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2272. BPF_FUNC_skb_load_bytes),
  2273. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2274. BPF_EXIT_INSN(),
  2275. },
  2276. .result = REJECT,
  2277. .errstr = "R4 min value is negative",
  2278. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2279. },
  2280. {
  2281. "raw_stack: skb_load_bytes, zero len",
  2282. .insns = {
  2283. BPF_MOV64_IMM(BPF_REG_2, 4),
  2284. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2285. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2286. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2287. BPF_MOV64_IMM(BPF_REG_4, 0),
  2288. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2289. BPF_FUNC_skb_load_bytes),
  2290. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2291. BPF_EXIT_INSN(),
  2292. },
  2293. .result = REJECT,
  2294. .errstr = "invalid stack type R3",
  2295. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2296. },
  2297. {
  2298. "raw_stack: skb_load_bytes, no init",
  2299. .insns = {
  2300. BPF_MOV64_IMM(BPF_REG_2, 4),
  2301. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2302. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2303. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2304. BPF_MOV64_IMM(BPF_REG_4, 8),
  2305. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2306. BPF_FUNC_skb_load_bytes),
  2307. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2308. BPF_EXIT_INSN(),
  2309. },
  2310. .result = ACCEPT,
  2311. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2312. },
  2313. {
  2314. "raw_stack: skb_load_bytes, init",
  2315. .insns = {
  2316. BPF_MOV64_IMM(BPF_REG_2, 4),
  2317. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2318. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2319. BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe),
  2320. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2321. BPF_MOV64_IMM(BPF_REG_4, 8),
  2322. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2323. BPF_FUNC_skb_load_bytes),
  2324. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2325. BPF_EXIT_INSN(),
  2326. },
  2327. .result = ACCEPT,
  2328. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2329. },
  2330. {
  2331. "raw_stack: skb_load_bytes, spilled regs around bounds",
  2332. .insns = {
  2333. BPF_MOV64_IMM(BPF_REG_2, 4),
  2334. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2335. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2336. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2337. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2338. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2339. BPF_MOV64_IMM(BPF_REG_4, 8),
  2340. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2341. BPF_FUNC_skb_load_bytes),
  2342. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2343. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2344. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2345. offsetof(struct __sk_buff, mark)),
  2346. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2347. offsetof(struct __sk_buff, priority)),
  2348. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2349. BPF_EXIT_INSN(),
  2350. },
  2351. .result = ACCEPT,
  2352. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2353. },
  2354. {
  2355. "raw_stack: skb_load_bytes, spilled regs corruption",
  2356. .insns = {
  2357. BPF_MOV64_IMM(BPF_REG_2, 4),
  2358. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2359. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2360. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2361. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2362. BPF_MOV64_IMM(BPF_REG_4, 8),
  2363. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2364. BPF_FUNC_skb_load_bytes),
  2365. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2366. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2367. offsetof(struct __sk_buff, mark)),
  2368. BPF_EXIT_INSN(),
  2369. },
  2370. .result = REJECT,
  2371. .errstr = "R0 invalid mem access 'inv'",
  2372. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2373. },
  2374. {
  2375. "raw_stack: skb_load_bytes, spilled regs corruption 2",
  2376. .insns = {
  2377. BPF_MOV64_IMM(BPF_REG_2, 4),
  2378. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2379. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2380. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2381. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2382. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2383. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2384. BPF_MOV64_IMM(BPF_REG_4, 8),
  2385. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2386. BPF_FUNC_skb_load_bytes),
  2387. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2388. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2389. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
  2390. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2391. offsetof(struct __sk_buff, mark)),
  2392. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2393. offsetof(struct __sk_buff, priority)),
  2394. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2395. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3,
  2396. offsetof(struct __sk_buff, pkt_type)),
  2397. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  2398. BPF_EXIT_INSN(),
  2399. },
  2400. .result = REJECT,
  2401. .errstr = "R3 invalid mem access 'inv'",
  2402. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2403. },
  2404. {
  2405. "raw_stack: skb_load_bytes, spilled regs + data",
  2406. .insns = {
  2407. BPF_MOV64_IMM(BPF_REG_2, 4),
  2408. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2409. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2410. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2411. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2412. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2413. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2414. BPF_MOV64_IMM(BPF_REG_4, 8),
  2415. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2416. BPF_FUNC_skb_load_bytes),
  2417. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2418. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2419. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
  2420. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2421. offsetof(struct __sk_buff, mark)),
  2422. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2423. offsetof(struct __sk_buff, priority)),
  2424. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2425. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  2426. BPF_EXIT_INSN(),
  2427. },
  2428. .result = ACCEPT,
  2429. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2430. },
  2431. {
  2432. "raw_stack: skb_load_bytes, invalid access 1",
  2433. .insns = {
  2434. BPF_MOV64_IMM(BPF_REG_2, 4),
  2435. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2436. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513),
  2437. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2438. BPF_MOV64_IMM(BPF_REG_4, 8),
  2439. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2440. BPF_FUNC_skb_load_bytes),
  2441. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2442. BPF_EXIT_INSN(),
  2443. },
  2444. .result = REJECT,
  2445. .errstr = "invalid stack type R3 off=-513 access_size=8",
  2446. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2447. },
  2448. {
  2449. "raw_stack: skb_load_bytes, invalid access 2",
  2450. .insns = {
  2451. BPF_MOV64_IMM(BPF_REG_2, 4),
  2452. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2453. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
  2454. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2455. BPF_MOV64_IMM(BPF_REG_4, 8),
  2456. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2457. BPF_FUNC_skb_load_bytes),
  2458. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2459. BPF_EXIT_INSN(),
  2460. },
  2461. .result = REJECT,
  2462. .errstr = "invalid stack type R3 off=-1 access_size=8",
  2463. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2464. },
  2465. {
  2466. "raw_stack: skb_load_bytes, invalid access 3",
  2467. .insns = {
  2468. BPF_MOV64_IMM(BPF_REG_2, 4),
  2469. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2470. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff),
  2471. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2472. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  2473. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2474. BPF_FUNC_skb_load_bytes),
  2475. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2476. BPF_EXIT_INSN(),
  2477. },
  2478. .result = REJECT,
  2479. .errstr = "R4 min value is negative",
  2480. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2481. },
  2482. {
  2483. "raw_stack: skb_load_bytes, invalid access 4",
  2484. .insns = {
  2485. BPF_MOV64_IMM(BPF_REG_2, 4),
  2486. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2487. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
  2488. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2489. BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
  2490. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2491. BPF_FUNC_skb_load_bytes),
  2492. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2493. BPF_EXIT_INSN(),
  2494. },
  2495. .result = REJECT,
  2496. .errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
  2497. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2498. },
  2499. {
  2500. "raw_stack: skb_load_bytes, invalid access 5",
  2501. .insns = {
  2502. BPF_MOV64_IMM(BPF_REG_2, 4),
  2503. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2504. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2505. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2506. BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
  2507. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2508. BPF_FUNC_skb_load_bytes),
  2509. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2510. BPF_EXIT_INSN(),
  2511. },
  2512. .result = REJECT,
  2513. .errstr = "R4 unbounded memory access, use 'var &= const' or 'if (var < const)'",
  2514. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2515. },
  2516. {
  2517. "raw_stack: skb_load_bytes, invalid access 6",
  2518. .insns = {
  2519. BPF_MOV64_IMM(BPF_REG_2, 4),
  2520. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2521. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2522. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2523. BPF_MOV64_IMM(BPF_REG_4, 0),
  2524. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2525. BPF_FUNC_skb_load_bytes),
  2526. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2527. BPF_EXIT_INSN(),
  2528. },
  2529. .result = REJECT,
  2530. .errstr = "invalid stack type R3 off=-512 access_size=0",
  2531. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2532. },
  2533. {
  2534. "raw_stack: skb_load_bytes, large access",
  2535. .insns = {
  2536. BPF_MOV64_IMM(BPF_REG_2, 4),
  2537. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2538. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2539. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2540. BPF_MOV64_IMM(BPF_REG_4, 512),
  2541. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2542. BPF_FUNC_skb_load_bytes),
  2543. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2544. BPF_EXIT_INSN(),
  2545. },
  2546. .result = ACCEPT,
  2547. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2548. },
  2549. {
  2550. "direct packet access: test1",
  2551. .insns = {
  2552. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2553. offsetof(struct __sk_buff, data)),
  2554. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2555. offsetof(struct __sk_buff, data_end)),
  2556. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2557. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2558. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2559. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2560. BPF_MOV64_IMM(BPF_REG_0, 0),
  2561. BPF_EXIT_INSN(),
  2562. },
  2563. .result = ACCEPT,
  2564. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2565. },
  2566. {
  2567. "direct packet access: test2",
  2568. .insns = {
  2569. BPF_MOV64_IMM(BPF_REG_0, 1),
  2570. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  2571. offsetof(struct __sk_buff, data_end)),
  2572. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2573. offsetof(struct __sk_buff, data)),
  2574. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2575. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
  2576. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15),
  2577. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7),
  2578. BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12),
  2579. BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14),
  2580. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2581. offsetof(struct __sk_buff, data)),
  2582. BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4),
  2583. BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),
  2584. BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 49),
  2585. BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 49),
  2586. BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2),
  2587. BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
  2588. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
  2589. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  2590. offsetof(struct __sk_buff, data_end)),
  2591. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
  2592. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4),
  2593. BPF_MOV64_IMM(BPF_REG_0, 0),
  2594. BPF_EXIT_INSN(),
  2595. },
  2596. .result = ACCEPT,
  2597. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2598. },
  2599. {
  2600. "direct packet access: test3",
  2601. .insns = {
  2602. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2603. offsetof(struct __sk_buff, data)),
  2604. BPF_MOV64_IMM(BPF_REG_0, 0),
  2605. BPF_EXIT_INSN(),
  2606. },
  2607. .errstr = "invalid bpf_context access off=76",
  2608. .result = REJECT,
  2609. .prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
  2610. },
  2611. {
  2612. "direct packet access: test4 (write)",
  2613. .insns = {
  2614. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2615. offsetof(struct __sk_buff, data)),
  2616. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2617. offsetof(struct __sk_buff, data_end)),
  2618. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2619. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2620. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2621. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2622. BPF_MOV64_IMM(BPF_REG_0, 0),
  2623. BPF_EXIT_INSN(),
  2624. },
  2625. .result = ACCEPT,
  2626. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2627. },
  2628. {
  2629. "direct packet access: test5 (pkt_end >= reg, good access)",
  2630. .insns = {
  2631. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2632. offsetof(struct __sk_buff, data)),
  2633. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2634. offsetof(struct __sk_buff, data_end)),
  2635. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2636. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2637. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
  2638. BPF_MOV64_IMM(BPF_REG_0, 1),
  2639. BPF_EXIT_INSN(),
  2640. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2641. BPF_MOV64_IMM(BPF_REG_0, 0),
  2642. BPF_EXIT_INSN(),
  2643. },
  2644. .result = ACCEPT,
  2645. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2646. },
  2647. {
  2648. "direct packet access: test6 (pkt_end >= reg, bad access)",
  2649. .insns = {
  2650. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2651. offsetof(struct __sk_buff, data)),
  2652. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2653. offsetof(struct __sk_buff, data_end)),
  2654. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2655. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2656. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
  2657. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2658. BPF_MOV64_IMM(BPF_REG_0, 1),
  2659. BPF_EXIT_INSN(),
  2660. BPF_MOV64_IMM(BPF_REG_0, 0),
  2661. BPF_EXIT_INSN(),
  2662. },
  2663. .errstr = "invalid access to packet",
  2664. .result = REJECT,
  2665. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2666. },
  2667. {
  2668. "direct packet access: test7 (pkt_end >= reg, both accesses)",
  2669. .insns = {
  2670. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2671. offsetof(struct __sk_buff, data)),
  2672. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2673. offsetof(struct __sk_buff, data_end)),
  2674. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2675. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2676. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
  2677. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2678. BPF_MOV64_IMM(BPF_REG_0, 1),
  2679. BPF_EXIT_INSN(),
  2680. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2681. BPF_MOV64_IMM(BPF_REG_0, 0),
  2682. BPF_EXIT_INSN(),
  2683. },
  2684. .errstr = "invalid access to packet",
  2685. .result = REJECT,
  2686. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2687. },
  2688. {
  2689. "direct packet access: test8 (double test, variant 1)",
  2690. .insns = {
  2691. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2692. offsetof(struct __sk_buff, data)),
  2693. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2694. offsetof(struct __sk_buff, data_end)),
  2695. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2696. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2697. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4),
  2698. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2699. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2700. BPF_MOV64_IMM(BPF_REG_0, 1),
  2701. BPF_EXIT_INSN(),
  2702. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2703. BPF_MOV64_IMM(BPF_REG_0, 0),
  2704. BPF_EXIT_INSN(),
  2705. },
  2706. .result = ACCEPT,
  2707. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2708. },
  2709. {
  2710. "direct packet access: test9 (double test, variant 2)",
  2711. .insns = {
  2712. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2713. offsetof(struct __sk_buff, data)),
  2714. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2715. offsetof(struct __sk_buff, data_end)),
  2716. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2717. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2718. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
  2719. BPF_MOV64_IMM(BPF_REG_0, 1),
  2720. BPF_EXIT_INSN(),
  2721. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2722. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2723. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2724. BPF_MOV64_IMM(BPF_REG_0, 0),
  2725. BPF_EXIT_INSN(),
  2726. },
  2727. .result = ACCEPT,
  2728. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2729. },
  2730. {
  2731. "direct packet access: test10 (write invalid)",
  2732. .insns = {
  2733. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2734. offsetof(struct __sk_buff, data)),
  2735. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2736. offsetof(struct __sk_buff, data_end)),
  2737. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2738. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2739. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
  2740. BPF_MOV64_IMM(BPF_REG_0, 0),
  2741. BPF_EXIT_INSN(),
  2742. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2743. BPF_MOV64_IMM(BPF_REG_0, 0),
  2744. BPF_EXIT_INSN(),
  2745. },
  2746. .errstr = "invalid access to packet",
  2747. .result = REJECT,
  2748. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2749. },
  2750. {
  2751. "direct packet access: test11 (shift, good access)",
  2752. .insns = {
  2753. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2754. offsetof(struct __sk_buff, data)),
  2755. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2756. offsetof(struct __sk_buff, data_end)),
  2757. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2758. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2759. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2760. BPF_MOV64_IMM(BPF_REG_3, 144),
  2761. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2762. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2763. BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3),
  2764. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2765. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2766. BPF_MOV64_IMM(BPF_REG_0, 1),
  2767. BPF_EXIT_INSN(),
  2768. BPF_MOV64_IMM(BPF_REG_0, 0),
  2769. BPF_EXIT_INSN(),
  2770. },
  2771. .result = ACCEPT,
  2772. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2773. },
  2774. {
  2775. "direct packet access: test12 (and, good access)",
  2776. .insns = {
  2777. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2778. offsetof(struct __sk_buff, data)),
  2779. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2780. offsetof(struct __sk_buff, data_end)),
  2781. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2782. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2783. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2784. BPF_MOV64_IMM(BPF_REG_3, 144),
  2785. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2786. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2787. BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
  2788. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2789. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2790. BPF_MOV64_IMM(BPF_REG_0, 1),
  2791. BPF_EXIT_INSN(),
  2792. BPF_MOV64_IMM(BPF_REG_0, 0),
  2793. BPF_EXIT_INSN(),
  2794. },
  2795. .result = ACCEPT,
  2796. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2797. },
  2798. {
  2799. "direct packet access: test13 (branches, good access)",
  2800. .insns = {
  2801. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2802. offsetof(struct __sk_buff, data)),
  2803. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2804. offsetof(struct __sk_buff, data_end)),
  2805. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2806. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2807. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13),
  2808. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2809. offsetof(struct __sk_buff, mark)),
  2810. BPF_MOV64_IMM(BPF_REG_4, 1),
  2811. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2),
  2812. BPF_MOV64_IMM(BPF_REG_3, 14),
  2813. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  2814. BPF_MOV64_IMM(BPF_REG_3, 24),
  2815. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2816. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2817. BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
  2818. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2819. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2820. BPF_MOV64_IMM(BPF_REG_0, 1),
  2821. BPF_EXIT_INSN(),
  2822. BPF_MOV64_IMM(BPF_REG_0, 0),
  2823. BPF_EXIT_INSN(),
  2824. },
  2825. .result = ACCEPT,
  2826. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2827. },
  2828. {
  2829. "direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)",
  2830. .insns = {
  2831. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2832. offsetof(struct __sk_buff, data)),
  2833. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2834. offsetof(struct __sk_buff, data_end)),
  2835. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2836. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2837. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
  2838. BPF_MOV64_IMM(BPF_REG_5, 12),
  2839. BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4),
  2840. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2841. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2842. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0),
  2843. BPF_MOV64_IMM(BPF_REG_0, 1),
  2844. BPF_EXIT_INSN(),
  2845. BPF_MOV64_IMM(BPF_REG_0, 0),
  2846. BPF_EXIT_INSN(),
  2847. },
  2848. .result = ACCEPT,
  2849. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2850. },
  2851. {
  2852. "direct packet access: test15 (spill with xadd)",
  2853. .insns = {
  2854. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2855. offsetof(struct __sk_buff, data)),
  2856. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2857. offsetof(struct __sk_buff, data_end)),
  2858. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2859. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2860. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2861. BPF_MOV64_IMM(BPF_REG_5, 4096),
  2862. BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
  2863. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
  2864. BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
  2865. BPF_STX_XADD(BPF_DW, BPF_REG_4, BPF_REG_5, 0),
  2866. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
  2867. BPF_STX_MEM(BPF_W, BPF_REG_2, BPF_REG_5, 0),
  2868. BPF_MOV64_IMM(BPF_REG_0, 0),
  2869. BPF_EXIT_INSN(),
  2870. },
  2871. .errstr = "R2 invalid mem access 'inv'",
  2872. .result = REJECT,
  2873. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2874. },
  2875. {
  2876. "direct packet access: test16 (arith on data_end)",
  2877. .insns = {
  2878. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2879. offsetof(struct __sk_buff, data)),
  2880. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2881. offsetof(struct __sk_buff, data_end)),
  2882. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2883. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2884. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 16),
  2885. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2886. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2887. BPF_MOV64_IMM(BPF_REG_0, 0),
  2888. BPF_EXIT_INSN(),
  2889. },
  2890. .errstr = "invalid access to packet",
  2891. .result = REJECT,
  2892. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2893. },
  2894. {
  2895. "direct packet access: test17 (pruning, alignment)",
  2896. .insns = {
  2897. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2898. offsetof(struct __sk_buff, data)),
  2899. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2900. offsetof(struct __sk_buff, data_end)),
  2901. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  2902. offsetof(struct __sk_buff, mark)),
  2903. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2904. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 14),
  2905. BPF_JMP_IMM(BPF_JGT, BPF_REG_7, 1, 4),
  2906. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2907. BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, -4),
  2908. BPF_MOV64_IMM(BPF_REG_0, 0),
  2909. BPF_EXIT_INSN(),
  2910. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 1),
  2911. BPF_JMP_A(-6),
  2912. },
  2913. .errstr = "misaligned packet access off 2+(0x0; 0x0)+15+-4 size 4",
  2914. .result = REJECT,
  2915. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2916. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  2917. },
  2918. {
  2919. "direct packet access: test18 (imm += pkt_ptr, 1)",
  2920. .insns = {
  2921. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2922. offsetof(struct __sk_buff, data)),
  2923. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2924. offsetof(struct __sk_buff, data_end)),
  2925. BPF_MOV64_IMM(BPF_REG_0, 8),
  2926. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2927. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2928. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2929. BPF_MOV64_IMM(BPF_REG_0, 0),
  2930. BPF_EXIT_INSN(),
  2931. },
  2932. .result = ACCEPT,
  2933. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2934. },
  2935. {
  2936. "direct packet access: test19 (imm += pkt_ptr, 2)",
  2937. .insns = {
  2938. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2939. offsetof(struct __sk_buff, data)),
  2940. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2941. offsetof(struct __sk_buff, data_end)),
  2942. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2943. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2944. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
  2945. BPF_MOV64_IMM(BPF_REG_4, 4),
  2946. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2947. BPF_STX_MEM(BPF_B, BPF_REG_4, BPF_REG_4, 0),
  2948. BPF_MOV64_IMM(BPF_REG_0, 0),
  2949. BPF_EXIT_INSN(),
  2950. },
  2951. .result = ACCEPT,
  2952. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2953. },
  2954. {
  2955. "direct packet access: test20 (x += pkt_ptr, 1)",
  2956. .insns = {
  2957. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2958. offsetof(struct __sk_buff, data)),
  2959. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2960. offsetof(struct __sk_buff, data_end)),
  2961. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  2962. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  2963. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  2964. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0x7fff),
  2965. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  2966. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2967. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2968. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
  2969. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  2970. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
  2971. BPF_MOV64_IMM(BPF_REG_0, 0),
  2972. BPF_EXIT_INSN(),
  2973. },
  2974. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2975. .result = ACCEPT,
  2976. },
  2977. {
  2978. "direct packet access: test21 (x += pkt_ptr, 2)",
  2979. .insns = {
  2980. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2981. offsetof(struct __sk_buff, data)),
  2982. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2983. offsetof(struct __sk_buff, data_end)),
  2984. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2985. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2986. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9),
  2987. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  2988. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
  2989. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
  2990. BPF_ALU64_IMM(BPF_AND, BPF_REG_4, 0x7fff),
  2991. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2992. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2993. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0x7fff - 1),
  2994. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  2995. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
  2996. BPF_MOV64_IMM(BPF_REG_0, 0),
  2997. BPF_EXIT_INSN(),
  2998. },
  2999. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3000. .result = ACCEPT,
  3001. },
  3002. {
  3003. "direct packet access: test22 (x += pkt_ptr, 3)",
  3004. .insns = {
  3005. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3006. offsetof(struct __sk_buff, data)),
  3007. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3008. offsetof(struct __sk_buff, data_end)),
  3009. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3010. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3011. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -8),
  3012. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_3, -16),
  3013. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_10, -16),
  3014. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 11),
  3015. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
  3016. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  3017. BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
  3018. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
  3019. BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 49),
  3020. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  3021. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  3022. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
  3023. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
  3024. BPF_MOV64_IMM(BPF_REG_2, 1),
  3025. BPF_STX_MEM(BPF_H, BPF_REG_4, BPF_REG_2, 0),
  3026. BPF_MOV64_IMM(BPF_REG_0, 0),
  3027. BPF_EXIT_INSN(),
  3028. },
  3029. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3030. .result = ACCEPT,
  3031. },
  3032. {
  3033. "direct packet access: test23 (x += pkt_ptr, 4)",
  3034. .insns = {
  3035. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3036. offsetof(struct __sk_buff, data)),
  3037. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3038. offsetof(struct __sk_buff, data_end)),
  3039. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  3040. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  3041. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  3042. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff),
  3043. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3044. BPF_MOV64_IMM(BPF_REG_0, 31),
  3045. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
  3046. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  3047. BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
  3048. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1),
  3049. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3050. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
  3051. BPF_MOV64_IMM(BPF_REG_0, 0),
  3052. BPF_EXIT_INSN(),
  3053. },
  3054. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3055. .result = REJECT,
  3056. .errstr = "invalid access to packet, off=0 size=8, R5(id=1,off=0,r=0)",
  3057. },
  3058. {
  3059. "direct packet access: test24 (x += pkt_ptr, 5)",
  3060. .insns = {
  3061. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3062. offsetof(struct __sk_buff, data)),
  3063. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3064. offsetof(struct __sk_buff, data_end)),
  3065. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  3066. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  3067. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  3068. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xff),
  3069. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3070. BPF_MOV64_IMM(BPF_REG_0, 64),
  3071. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
  3072. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  3073. BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
  3074. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7fff - 1),
  3075. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3076. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
  3077. BPF_MOV64_IMM(BPF_REG_0, 0),
  3078. BPF_EXIT_INSN(),
  3079. },
  3080. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3081. .result = ACCEPT,
  3082. },
  3083. {
  3084. "direct packet access: test25 (marking on <, good access)",
  3085. .insns = {
  3086. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3087. offsetof(struct __sk_buff, data)),
  3088. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3089. offsetof(struct __sk_buff, data_end)),
  3090. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3091. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3092. BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 2),
  3093. BPF_MOV64_IMM(BPF_REG_0, 0),
  3094. BPF_EXIT_INSN(),
  3095. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3096. BPF_JMP_IMM(BPF_JA, 0, 0, -4),
  3097. },
  3098. .result = ACCEPT,
  3099. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3100. },
  3101. {
  3102. "direct packet access: test26 (marking on <, bad access)",
  3103. .insns = {
  3104. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3105. offsetof(struct __sk_buff, data)),
  3106. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3107. offsetof(struct __sk_buff, data_end)),
  3108. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3109. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3110. BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_3, 3),
  3111. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3112. BPF_MOV64_IMM(BPF_REG_0, 0),
  3113. BPF_EXIT_INSN(),
  3114. BPF_JMP_IMM(BPF_JA, 0, 0, -3),
  3115. },
  3116. .result = REJECT,
  3117. .errstr = "invalid access to packet",
  3118. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3119. },
  3120. {
  3121. "direct packet access: test27 (marking on <=, good access)",
  3122. .insns = {
  3123. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3124. offsetof(struct __sk_buff, data)),
  3125. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3126. offsetof(struct __sk_buff, data_end)),
  3127. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3128. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3129. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 1),
  3130. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3131. BPF_MOV64_IMM(BPF_REG_0, 1),
  3132. BPF_EXIT_INSN(),
  3133. },
  3134. .result = ACCEPT,
  3135. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3136. },
  3137. {
  3138. "direct packet access: test28 (marking on <=, bad access)",
  3139. .insns = {
  3140. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3141. offsetof(struct __sk_buff, data)),
  3142. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3143. offsetof(struct __sk_buff, data_end)),
  3144. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3145. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3146. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_0, 2),
  3147. BPF_MOV64_IMM(BPF_REG_0, 1),
  3148. BPF_EXIT_INSN(),
  3149. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3150. BPF_JMP_IMM(BPF_JA, 0, 0, -4),
  3151. },
  3152. .result = REJECT,
  3153. .errstr = "invalid access to packet",
  3154. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3155. },
  3156. {
  3157. "helper access to packet: test1, valid packet_ptr range",
  3158. .insns = {
  3159. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3160. offsetof(struct xdp_md, data)),
  3161. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3162. offsetof(struct xdp_md, data_end)),
  3163. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  3164. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  3165. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
  3166. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3167. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  3168. BPF_MOV64_IMM(BPF_REG_4, 0),
  3169. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3170. BPF_FUNC_map_update_elem),
  3171. BPF_MOV64_IMM(BPF_REG_0, 0),
  3172. BPF_EXIT_INSN(),
  3173. },
  3174. .fixup_map1 = { 5 },
  3175. .result_unpriv = ACCEPT,
  3176. .result = ACCEPT,
  3177. .prog_type = BPF_PROG_TYPE_XDP,
  3178. },
  3179. {
  3180. "helper access to packet: test2, unchecked packet_ptr",
  3181. .insns = {
  3182. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3183. offsetof(struct xdp_md, data)),
  3184. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3185. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3186. BPF_FUNC_map_lookup_elem),
  3187. BPF_MOV64_IMM(BPF_REG_0, 0),
  3188. BPF_EXIT_INSN(),
  3189. },
  3190. .fixup_map1 = { 1 },
  3191. .result = REJECT,
  3192. .errstr = "invalid access to packet",
  3193. .prog_type = BPF_PROG_TYPE_XDP,
  3194. },
  3195. {
  3196. "helper access to packet: test3, variable add",
  3197. .insns = {
  3198. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3199. offsetof(struct xdp_md, data)),
  3200. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3201. offsetof(struct xdp_md, data_end)),
  3202. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3203. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  3204. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
  3205. BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
  3206. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3207. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
  3208. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  3209. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
  3210. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
  3211. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3212. BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
  3213. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3214. BPF_FUNC_map_lookup_elem),
  3215. BPF_MOV64_IMM(BPF_REG_0, 0),
  3216. BPF_EXIT_INSN(),
  3217. },
  3218. .fixup_map1 = { 11 },
  3219. .result = ACCEPT,
  3220. .prog_type = BPF_PROG_TYPE_XDP,
  3221. },
  3222. {
  3223. "helper access to packet: test4, packet_ptr with bad range",
  3224. .insns = {
  3225. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3226. offsetof(struct xdp_md, data)),
  3227. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3228. offsetof(struct xdp_md, data_end)),
  3229. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3230. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
  3231. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
  3232. BPF_MOV64_IMM(BPF_REG_0, 0),
  3233. BPF_EXIT_INSN(),
  3234. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3235. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3236. BPF_FUNC_map_lookup_elem),
  3237. BPF_MOV64_IMM(BPF_REG_0, 0),
  3238. BPF_EXIT_INSN(),
  3239. },
  3240. .fixup_map1 = { 7 },
  3241. .result = REJECT,
  3242. .errstr = "invalid access to packet",
  3243. .prog_type = BPF_PROG_TYPE_XDP,
  3244. },
  3245. {
  3246. "helper access to packet: test5, packet_ptr with too short range",
  3247. .insns = {
  3248. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3249. offsetof(struct xdp_md, data)),
  3250. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3251. offsetof(struct xdp_md, data_end)),
  3252. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  3253. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3254. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
  3255. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
  3256. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3257. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3258. BPF_FUNC_map_lookup_elem),
  3259. BPF_MOV64_IMM(BPF_REG_0, 0),
  3260. BPF_EXIT_INSN(),
  3261. },
  3262. .fixup_map1 = { 6 },
  3263. .result = REJECT,
  3264. .errstr = "invalid access to packet",
  3265. .prog_type = BPF_PROG_TYPE_XDP,
  3266. },
  3267. {
  3268. "helper access to packet: test6, cls valid packet_ptr range",
  3269. .insns = {
  3270. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3271. offsetof(struct __sk_buff, data)),
  3272. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3273. offsetof(struct __sk_buff, data_end)),
  3274. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  3275. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  3276. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
  3277. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3278. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  3279. BPF_MOV64_IMM(BPF_REG_4, 0),
  3280. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3281. BPF_FUNC_map_update_elem),
  3282. BPF_MOV64_IMM(BPF_REG_0, 0),
  3283. BPF_EXIT_INSN(),
  3284. },
  3285. .fixup_map1 = { 5 },
  3286. .result = ACCEPT,
  3287. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3288. },
  3289. {
  3290. "helper access to packet: test7, cls unchecked packet_ptr",
  3291. .insns = {
  3292. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3293. offsetof(struct __sk_buff, data)),
  3294. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3295. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3296. BPF_FUNC_map_lookup_elem),
  3297. BPF_MOV64_IMM(BPF_REG_0, 0),
  3298. BPF_EXIT_INSN(),
  3299. },
  3300. .fixup_map1 = { 1 },
  3301. .result = REJECT,
  3302. .errstr = "invalid access to packet",
  3303. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3304. },
  3305. {
  3306. "helper access to packet: test8, cls variable add",
  3307. .insns = {
  3308. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3309. offsetof(struct __sk_buff, data)),
  3310. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3311. offsetof(struct __sk_buff, data_end)),
  3312. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3313. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  3314. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
  3315. BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
  3316. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3317. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
  3318. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  3319. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
  3320. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
  3321. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3322. BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
  3323. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3324. BPF_FUNC_map_lookup_elem),
  3325. BPF_MOV64_IMM(BPF_REG_0, 0),
  3326. BPF_EXIT_INSN(),
  3327. },
  3328. .fixup_map1 = { 11 },
  3329. .result = ACCEPT,
  3330. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3331. },
  3332. {
  3333. "helper access to packet: test9, cls packet_ptr with bad range",
  3334. .insns = {
  3335. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3336. offsetof(struct __sk_buff, data)),
  3337. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3338. offsetof(struct __sk_buff, data_end)),
  3339. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3340. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
  3341. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
  3342. BPF_MOV64_IMM(BPF_REG_0, 0),
  3343. BPF_EXIT_INSN(),
  3344. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3345. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3346. BPF_FUNC_map_lookup_elem),
  3347. BPF_MOV64_IMM(BPF_REG_0, 0),
  3348. BPF_EXIT_INSN(),
  3349. },
  3350. .fixup_map1 = { 7 },
  3351. .result = REJECT,
  3352. .errstr = "invalid access to packet",
  3353. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3354. },
  3355. {
  3356. "helper access to packet: test10, cls packet_ptr with too short range",
  3357. .insns = {
  3358. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3359. offsetof(struct __sk_buff, data)),
  3360. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3361. offsetof(struct __sk_buff, data_end)),
  3362. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  3363. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3364. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
  3365. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
  3366. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3367. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3368. BPF_FUNC_map_lookup_elem),
  3369. BPF_MOV64_IMM(BPF_REG_0, 0),
  3370. BPF_EXIT_INSN(),
  3371. },
  3372. .fixup_map1 = { 6 },
  3373. .result = REJECT,
  3374. .errstr = "invalid access to packet",
  3375. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3376. },
  3377. {
  3378. "helper access to packet: test11, cls unsuitable helper 1",
  3379. .insns = {
  3380. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3381. offsetof(struct __sk_buff, data)),
  3382. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3383. offsetof(struct __sk_buff, data_end)),
  3384. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3385. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  3386. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7),
  3387. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4),
  3388. BPF_MOV64_IMM(BPF_REG_2, 0),
  3389. BPF_MOV64_IMM(BPF_REG_4, 42),
  3390. BPF_MOV64_IMM(BPF_REG_5, 0),
  3391. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3392. BPF_FUNC_skb_store_bytes),
  3393. BPF_MOV64_IMM(BPF_REG_0, 0),
  3394. BPF_EXIT_INSN(),
  3395. },
  3396. .result = REJECT,
  3397. .errstr = "helper access to the packet",
  3398. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3399. },
  3400. {
  3401. "helper access to packet: test12, cls unsuitable helper 2",
  3402. .insns = {
  3403. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3404. offsetof(struct __sk_buff, data)),
  3405. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3406. offsetof(struct __sk_buff, data_end)),
  3407. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  3408. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
  3409. BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3),
  3410. BPF_MOV64_IMM(BPF_REG_2, 0),
  3411. BPF_MOV64_IMM(BPF_REG_4, 4),
  3412. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3413. BPF_FUNC_skb_load_bytes),
  3414. BPF_MOV64_IMM(BPF_REG_0, 0),
  3415. BPF_EXIT_INSN(),
  3416. },
  3417. .result = REJECT,
  3418. .errstr = "helper access to the packet",
  3419. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3420. },
  3421. {
  3422. "helper access to packet: test13, cls helper ok",
  3423. .insns = {
  3424. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3425. offsetof(struct __sk_buff, data)),
  3426. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3427. offsetof(struct __sk_buff, data_end)),
  3428. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3429. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3430. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3431. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3432. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3433. BPF_MOV64_IMM(BPF_REG_2, 4),
  3434. BPF_MOV64_IMM(BPF_REG_3, 0),
  3435. BPF_MOV64_IMM(BPF_REG_4, 0),
  3436. BPF_MOV64_IMM(BPF_REG_5, 0),
  3437. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3438. BPF_FUNC_csum_diff),
  3439. BPF_MOV64_IMM(BPF_REG_0, 0),
  3440. BPF_EXIT_INSN(),
  3441. },
  3442. .result = ACCEPT,
  3443. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3444. },
  3445. {
  3446. "helper access to packet: test14, cls helper ok sub",
  3447. .insns = {
  3448. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3449. offsetof(struct __sk_buff, data)),
  3450. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3451. offsetof(struct __sk_buff, data_end)),
  3452. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3453. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3454. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3455. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3456. BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4),
  3457. BPF_MOV64_IMM(BPF_REG_2, 4),
  3458. BPF_MOV64_IMM(BPF_REG_3, 0),
  3459. BPF_MOV64_IMM(BPF_REG_4, 0),
  3460. BPF_MOV64_IMM(BPF_REG_5, 0),
  3461. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3462. BPF_FUNC_csum_diff),
  3463. BPF_MOV64_IMM(BPF_REG_0, 0),
  3464. BPF_EXIT_INSN(),
  3465. },
  3466. .result = ACCEPT,
  3467. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3468. },
  3469. {
  3470. "helper access to packet: test15, cls helper fail sub",
  3471. .insns = {
  3472. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3473. offsetof(struct __sk_buff, data)),
  3474. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3475. offsetof(struct __sk_buff, data_end)),
  3476. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3477. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3478. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3479. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3480. BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 12),
  3481. BPF_MOV64_IMM(BPF_REG_2, 4),
  3482. BPF_MOV64_IMM(BPF_REG_3, 0),
  3483. BPF_MOV64_IMM(BPF_REG_4, 0),
  3484. BPF_MOV64_IMM(BPF_REG_5, 0),
  3485. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3486. BPF_FUNC_csum_diff),
  3487. BPF_MOV64_IMM(BPF_REG_0, 0),
  3488. BPF_EXIT_INSN(),
  3489. },
  3490. .result = REJECT,
  3491. .errstr = "invalid access to packet",
  3492. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3493. },
  3494. {
  3495. "helper access to packet: test16, cls helper fail range 1",
  3496. .insns = {
  3497. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3498. offsetof(struct __sk_buff, data)),
  3499. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3500. offsetof(struct __sk_buff, data_end)),
  3501. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3502. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3503. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3504. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3505. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3506. BPF_MOV64_IMM(BPF_REG_2, 8),
  3507. BPF_MOV64_IMM(BPF_REG_3, 0),
  3508. BPF_MOV64_IMM(BPF_REG_4, 0),
  3509. BPF_MOV64_IMM(BPF_REG_5, 0),
  3510. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3511. BPF_FUNC_csum_diff),
  3512. BPF_MOV64_IMM(BPF_REG_0, 0),
  3513. BPF_EXIT_INSN(),
  3514. },
  3515. .result = REJECT,
  3516. .errstr = "invalid access to packet",
  3517. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3518. },
  3519. {
  3520. "helper access to packet: test17, cls helper fail range 2",
  3521. .insns = {
  3522. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3523. offsetof(struct __sk_buff, data)),
  3524. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3525. offsetof(struct __sk_buff, data_end)),
  3526. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3527. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3528. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3529. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3530. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3531. BPF_MOV64_IMM(BPF_REG_2, -9),
  3532. BPF_MOV64_IMM(BPF_REG_3, 0),
  3533. BPF_MOV64_IMM(BPF_REG_4, 0),
  3534. BPF_MOV64_IMM(BPF_REG_5, 0),
  3535. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3536. BPF_FUNC_csum_diff),
  3537. BPF_MOV64_IMM(BPF_REG_0, 0),
  3538. BPF_EXIT_INSN(),
  3539. },
  3540. .result = REJECT,
  3541. .errstr = "R2 min value is negative",
  3542. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3543. },
  3544. {
  3545. "helper access to packet: test18, cls helper fail range 3",
  3546. .insns = {
  3547. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3548. offsetof(struct __sk_buff, data)),
  3549. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3550. offsetof(struct __sk_buff, data_end)),
  3551. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3552. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3553. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3554. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3555. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3556. BPF_MOV64_IMM(BPF_REG_2, ~0),
  3557. BPF_MOV64_IMM(BPF_REG_3, 0),
  3558. BPF_MOV64_IMM(BPF_REG_4, 0),
  3559. BPF_MOV64_IMM(BPF_REG_5, 0),
  3560. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3561. BPF_FUNC_csum_diff),
  3562. BPF_MOV64_IMM(BPF_REG_0, 0),
  3563. BPF_EXIT_INSN(),
  3564. },
  3565. .result = REJECT,
  3566. .errstr = "R2 min value is negative",
  3567. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3568. },
  3569. {
  3570. "helper access to packet: test19, cls helper range zero",
  3571. .insns = {
  3572. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3573. offsetof(struct __sk_buff, data)),
  3574. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3575. offsetof(struct __sk_buff, data_end)),
  3576. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3577. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3578. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3579. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3580. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3581. BPF_MOV64_IMM(BPF_REG_2, 0),
  3582. BPF_MOV64_IMM(BPF_REG_3, 0),
  3583. BPF_MOV64_IMM(BPF_REG_4, 0),
  3584. BPF_MOV64_IMM(BPF_REG_5, 0),
  3585. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3586. BPF_FUNC_csum_diff),
  3587. BPF_MOV64_IMM(BPF_REG_0, 0),
  3588. BPF_EXIT_INSN(),
  3589. },
  3590. .result = ACCEPT,
  3591. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3592. },
  3593. {
  3594. "helper access to packet: test20, pkt end as input",
  3595. .insns = {
  3596. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3597. offsetof(struct __sk_buff, data)),
  3598. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3599. offsetof(struct __sk_buff, data_end)),
  3600. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3601. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3602. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3603. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3604. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  3605. BPF_MOV64_IMM(BPF_REG_2, 4),
  3606. BPF_MOV64_IMM(BPF_REG_3, 0),
  3607. BPF_MOV64_IMM(BPF_REG_4, 0),
  3608. BPF_MOV64_IMM(BPF_REG_5, 0),
  3609. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3610. BPF_FUNC_csum_diff),
  3611. BPF_MOV64_IMM(BPF_REG_0, 0),
  3612. BPF_EXIT_INSN(),
  3613. },
  3614. .result = REJECT,
  3615. .errstr = "R1 type=pkt_end expected=fp",
  3616. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3617. },
  3618. {
  3619. "helper access to packet: test21, wrong reg",
  3620. .insns = {
  3621. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3622. offsetof(struct __sk_buff, data)),
  3623. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3624. offsetof(struct __sk_buff, data_end)),
  3625. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3626. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3627. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3628. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3629. BPF_MOV64_IMM(BPF_REG_2, 4),
  3630. BPF_MOV64_IMM(BPF_REG_3, 0),
  3631. BPF_MOV64_IMM(BPF_REG_4, 0),
  3632. BPF_MOV64_IMM(BPF_REG_5, 0),
  3633. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3634. BPF_FUNC_csum_diff),
  3635. BPF_MOV64_IMM(BPF_REG_0, 0),
  3636. BPF_EXIT_INSN(),
  3637. },
  3638. .result = REJECT,
  3639. .errstr = "invalid access to packet",
  3640. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3641. },
  3642. {
  3643. "valid map access into an array with a constant",
  3644. .insns = {
  3645. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3646. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3647. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3648. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3649. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3650. BPF_FUNC_map_lookup_elem),
  3651. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3652. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3653. offsetof(struct test_val, foo)),
  3654. BPF_EXIT_INSN(),
  3655. },
  3656. .fixup_map2 = { 3 },
  3657. .errstr_unpriv = "R0 leaks addr",
  3658. .result_unpriv = REJECT,
  3659. .result = ACCEPT,
  3660. },
  3661. {
  3662. "valid map access into an array with a register",
  3663. .insns = {
  3664. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3665. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3666. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3667. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3668. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3669. BPF_FUNC_map_lookup_elem),
  3670. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3671. BPF_MOV64_IMM(BPF_REG_1, 4),
  3672. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3673. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3674. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3675. offsetof(struct test_val, foo)),
  3676. BPF_EXIT_INSN(),
  3677. },
  3678. .fixup_map2 = { 3 },
  3679. .errstr_unpriv = "R0 leaks addr",
  3680. .result_unpriv = REJECT,
  3681. .result = ACCEPT,
  3682. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3683. },
  3684. {
  3685. "valid map access into an array with a variable",
  3686. .insns = {
  3687. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3688. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3689. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3690. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3691. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3692. BPF_FUNC_map_lookup_elem),
  3693. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  3694. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3695. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
  3696. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3697. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3698. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3699. offsetof(struct test_val, foo)),
  3700. BPF_EXIT_INSN(),
  3701. },
  3702. .fixup_map2 = { 3 },
  3703. .errstr_unpriv = "R0 leaks addr",
  3704. .result_unpriv = REJECT,
  3705. .result = ACCEPT,
  3706. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3707. },
  3708. {
  3709. "valid map access into an array with a signed variable",
  3710. .insns = {
  3711. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3712. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3713. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3714. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3715. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3716. BPF_FUNC_map_lookup_elem),
  3717. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  3718. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3719. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
  3720. BPF_MOV32_IMM(BPF_REG_1, 0),
  3721. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
  3722. BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
  3723. BPF_MOV32_IMM(BPF_REG_1, 0),
  3724. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3725. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3726. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3727. offsetof(struct test_val, foo)),
  3728. BPF_EXIT_INSN(),
  3729. },
  3730. .fixup_map2 = { 3 },
  3731. .errstr_unpriv = "R0 leaks addr",
  3732. .result_unpriv = REJECT,
  3733. .result = ACCEPT,
  3734. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3735. },
  3736. {
  3737. "invalid map access into an array with a constant",
  3738. .insns = {
  3739. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3740. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3741. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3742. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3743. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3744. BPF_FUNC_map_lookup_elem),
  3745. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3746. BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
  3747. offsetof(struct test_val, foo)),
  3748. BPF_EXIT_INSN(),
  3749. },
  3750. .fixup_map2 = { 3 },
  3751. .errstr = "invalid access to map value, value_size=48 off=48 size=8",
  3752. .result = REJECT,
  3753. },
  3754. {
  3755. "invalid map access into an array with a register",
  3756. .insns = {
  3757. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3758. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3759. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3760. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3761. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3762. BPF_FUNC_map_lookup_elem),
  3763. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3764. BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
  3765. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3766. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3767. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3768. offsetof(struct test_val, foo)),
  3769. BPF_EXIT_INSN(),
  3770. },
  3771. .fixup_map2 = { 3 },
  3772. .errstr = "R0 min value is outside of the array range",
  3773. .result = REJECT,
  3774. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3775. },
  3776. {
  3777. "invalid map access into an array with a variable",
  3778. .insns = {
  3779. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3780. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3781. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3782. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3783. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3784. BPF_FUNC_map_lookup_elem),
  3785. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3786. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3787. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3788. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3789. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3790. offsetof(struct test_val, foo)),
  3791. BPF_EXIT_INSN(),
  3792. },
  3793. .fixup_map2 = { 3 },
  3794. .errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map",
  3795. .result = REJECT,
  3796. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3797. },
  3798. {
  3799. "invalid map access into an array with no floor check",
  3800. .insns = {
  3801. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3802. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3803. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3804. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3805. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3806. BPF_FUNC_map_lookup_elem),
  3807. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  3808. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  3809. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
  3810. BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
  3811. BPF_MOV32_IMM(BPF_REG_1, 0),
  3812. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3813. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3814. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3815. offsetof(struct test_val, foo)),
  3816. BPF_EXIT_INSN(),
  3817. },
  3818. .fixup_map2 = { 3 },
  3819. .errstr_unpriv = "R0 leaks addr",
  3820. .errstr = "R0 unbounded memory access",
  3821. .result_unpriv = REJECT,
  3822. .result = REJECT,
  3823. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3824. },
  3825. {
  3826. "invalid map access into an array with a invalid max check",
  3827. .insns = {
  3828. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3829. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3830. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3831. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3832. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3833. BPF_FUNC_map_lookup_elem),
  3834. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  3835. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3836. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
  3837. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
  3838. BPF_MOV32_IMM(BPF_REG_1, 0),
  3839. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3840. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3841. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3842. offsetof(struct test_val, foo)),
  3843. BPF_EXIT_INSN(),
  3844. },
  3845. .fixup_map2 = { 3 },
  3846. .errstr_unpriv = "R0 leaks addr",
  3847. .errstr = "invalid access to map value, value_size=48 off=44 size=8",
  3848. .result_unpriv = REJECT,
  3849. .result = REJECT,
  3850. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3851. },
  3852. {
  3853. "invalid map access into an array with a invalid max check",
  3854. .insns = {
  3855. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3856. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3857. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3858. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3859. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3860. BPF_FUNC_map_lookup_elem),
  3861. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  3862. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  3863. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3864. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3865. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3866. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3867. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3868. BPF_FUNC_map_lookup_elem),
  3869. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  3870. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  3871. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  3872. offsetof(struct test_val, foo)),
  3873. BPF_EXIT_INSN(),
  3874. },
  3875. .fixup_map2 = { 3, 11 },
  3876. .errstr_unpriv = "R0 pointer += pointer",
  3877. .errstr = "R0 invalid mem access 'inv'",
  3878. .result_unpriv = REJECT,
  3879. .result = REJECT,
  3880. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3881. },
  3882. {
  3883. "multiple registers share map_lookup_elem result",
  3884. .insns = {
  3885. BPF_MOV64_IMM(BPF_REG_1, 10),
  3886. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3887. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3888. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3889. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3890. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3891. BPF_FUNC_map_lookup_elem),
  3892. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3893. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3894. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3895. BPF_EXIT_INSN(),
  3896. },
  3897. .fixup_map1 = { 4 },
  3898. .result = ACCEPT,
  3899. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3900. },
  3901. {
  3902. "alu ops on ptr_to_map_value_or_null, 1",
  3903. .insns = {
  3904. BPF_MOV64_IMM(BPF_REG_1, 10),
  3905. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3906. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3907. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3908. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3909. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3910. BPF_FUNC_map_lookup_elem),
  3911. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3912. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -2),
  3913. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
  3914. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3915. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3916. BPF_EXIT_INSN(),
  3917. },
  3918. .fixup_map1 = { 4 },
  3919. .errstr = "R4 invalid mem access",
  3920. .result = REJECT,
  3921. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3922. },
  3923. {
  3924. "alu ops on ptr_to_map_value_or_null, 2",
  3925. .insns = {
  3926. BPF_MOV64_IMM(BPF_REG_1, 10),
  3927. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3928. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3929. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3930. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3931. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3932. BPF_FUNC_map_lookup_elem),
  3933. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3934. BPF_ALU64_IMM(BPF_AND, BPF_REG_4, -1),
  3935. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3936. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3937. BPF_EXIT_INSN(),
  3938. },
  3939. .fixup_map1 = { 4 },
  3940. .errstr = "R4 invalid mem access",
  3941. .result = REJECT,
  3942. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3943. },
  3944. {
  3945. "alu ops on ptr_to_map_value_or_null, 3",
  3946. .insns = {
  3947. BPF_MOV64_IMM(BPF_REG_1, 10),
  3948. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3949. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3950. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3951. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3952. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3953. BPF_FUNC_map_lookup_elem),
  3954. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3955. BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 1),
  3956. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3957. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3958. BPF_EXIT_INSN(),
  3959. },
  3960. .fixup_map1 = { 4 },
  3961. .errstr = "R4 invalid mem access",
  3962. .result = REJECT,
  3963. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3964. },
  3965. {
  3966. "invalid memory access with multiple map_lookup_elem calls",
  3967. .insns = {
  3968. BPF_MOV64_IMM(BPF_REG_1, 10),
  3969. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3970. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3971. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3972. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3973. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  3974. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  3975. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3976. BPF_FUNC_map_lookup_elem),
  3977. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3978. BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
  3979. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  3980. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3981. BPF_FUNC_map_lookup_elem),
  3982. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3983. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3984. BPF_EXIT_INSN(),
  3985. },
  3986. .fixup_map1 = { 4 },
  3987. .result = REJECT,
  3988. .errstr = "R4 !read_ok",
  3989. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3990. },
  3991. {
  3992. "valid indirect map_lookup_elem access with 2nd lookup in branch",
  3993. .insns = {
  3994. BPF_MOV64_IMM(BPF_REG_1, 10),
  3995. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3996. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3997. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3998. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3999. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  4000. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  4001. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  4002. BPF_FUNC_map_lookup_elem),
  4003. BPF_MOV64_IMM(BPF_REG_2, 10),
  4004. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3),
  4005. BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
  4006. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  4007. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  4008. BPF_FUNC_map_lookup_elem),
  4009. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  4010. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  4011. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  4012. BPF_EXIT_INSN(),
  4013. },
  4014. .fixup_map1 = { 4 },
  4015. .result = ACCEPT,
  4016. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  4017. },
  4018. {
  4019. "invalid map access from else condition",
  4020. .insns = {
  4021. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  4022. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4023. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4024. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4025. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  4026. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4027. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  4028. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1),
  4029. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
  4030. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  4031. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  4032. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
  4033. BPF_EXIT_INSN(),
  4034. },
  4035. .fixup_map2 = { 3 },
  4036. .errstr = "R0 unbounded memory access",
  4037. .result = REJECT,
  4038. .errstr_unpriv = "R0 leaks addr",
  4039. .result_unpriv = REJECT,
  4040. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  4041. },
  4042. {
  4043. "constant register |= constant should keep constant type",
  4044. .insns = {
  4045. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4046. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  4047. BPF_MOV64_IMM(BPF_REG_2, 34),
  4048. BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13),
  4049. BPF_MOV64_IMM(BPF_REG_3, 0),
  4050. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4051. BPF_EXIT_INSN(),
  4052. },
  4053. .result = ACCEPT,
  4054. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4055. },
  4056. {
  4057. "constant register |= constant should not bypass stack boundary checks",
  4058. .insns = {
  4059. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4060. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  4061. BPF_MOV64_IMM(BPF_REG_2, 34),
  4062. BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24),
  4063. BPF_MOV64_IMM(BPF_REG_3, 0),
  4064. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4065. BPF_EXIT_INSN(),
  4066. },
  4067. .errstr = "invalid stack type R1 off=-48 access_size=58",
  4068. .result = REJECT,
  4069. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4070. },
  4071. {
  4072. "constant register |= constant register should keep constant type",
  4073. .insns = {
  4074. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4075. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  4076. BPF_MOV64_IMM(BPF_REG_2, 34),
  4077. BPF_MOV64_IMM(BPF_REG_4, 13),
  4078. BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
  4079. BPF_MOV64_IMM(BPF_REG_3, 0),
  4080. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4081. BPF_EXIT_INSN(),
  4082. },
  4083. .result = ACCEPT,
  4084. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4085. },
  4086. {
  4087. "constant register |= constant register should not bypass stack boundary checks",
  4088. .insns = {
  4089. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4090. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  4091. BPF_MOV64_IMM(BPF_REG_2, 34),
  4092. BPF_MOV64_IMM(BPF_REG_4, 24),
  4093. BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
  4094. BPF_MOV64_IMM(BPF_REG_3, 0),
  4095. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4096. BPF_EXIT_INSN(),
  4097. },
  4098. .errstr = "invalid stack type R1 off=-48 access_size=58",
  4099. .result = REJECT,
  4100. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4101. },
  4102. {
  4103. "invalid direct packet write for LWT_IN",
  4104. .insns = {
  4105. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4106. offsetof(struct __sk_buff, data)),
  4107. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4108. offsetof(struct __sk_buff, data_end)),
  4109. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4110. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4111. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4112. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  4113. BPF_MOV64_IMM(BPF_REG_0, 0),
  4114. BPF_EXIT_INSN(),
  4115. },
  4116. .errstr = "cannot write into packet",
  4117. .result = REJECT,
  4118. .prog_type = BPF_PROG_TYPE_LWT_IN,
  4119. },
  4120. {
  4121. "invalid direct packet write for LWT_OUT",
  4122. .insns = {
  4123. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4124. offsetof(struct __sk_buff, data)),
  4125. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4126. offsetof(struct __sk_buff, data_end)),
  4127. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4128. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4129. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4130. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  4131. BPF_MOV64_IMM(BPF_REG_0, 0),
  4132. BPF_EXIT_INSN(),
  4133. },
  4134. .errstr = "cannot write into packet",
  4135. .result = REJECT,
  4136. .prog_type = BPF_PROG_TYPE_LWT_OUT,
  4137. },
  4138. {
  4139. "direct packet write for LWT_XMIT",
  4140. .insns = {
  4141. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4142. offsetof(struct __sk_buff, data)),
  4143. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4144. offsetof(struct __sk_buff, data_end)),
  4145. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4146. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4147. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4148. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  4149. BPF_MOV64_IMM(BPF_REG_0, 0),
  4150. BPF_EXIT_INSN(),
  4151. },
  4152. .result = ACCEPT,
  4153. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  4154. },
  4155. {
  4156. "direct packet read for LWT_IN",
  4157. .insns = {
  4158. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4159. offsetof(struct __sk_buff, data)),
  4160. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4161. offsetof(struct __sk_buff, data_end)),
  4162. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4163. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4164. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4165. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  4166. BPF_MOV64_IMM(BPF_REG_0, 0),
  4167. BPF_EXIT_INSN(),
  4168. },
  4169. .result = ACCEPT,
  4170. .prog_type = BPF_PROG_TYPE_LWT_IN,
  4171. },
  4172. {
  4173. "direct packet read for LWT_OUT",
  4174. .insns = {
  4175. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4176. offsetof(struct __sk_buff, data)),
  4177. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4178. offsetof(struct __sk_buff, data_end)),
  4179. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4180. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4181. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4182. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  4183. BPF_MOV64_IMM(BPF_REG_0, 0),
  4184. BPF_EXIT_INSN(),
  4185. },
  4186. .result = ACCEPT,
  4187. .prog_type = BPF_PROG_TYPE_LWT_OUT,
  4188. },
  4189. {
  4190. "direct packet read for LWT_XMIT",
  4191. .insns = {
  4192. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4193. offsetof(struct __sk_buff, data)),
  4194. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4195. offsetof(struct __sk_buff, data_end)),
  4196. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4197. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4198. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  4199. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  4200. BPF_MOV64_IMM(BPF_REG_0, 0),
  4201. BPF_EXIT_INSN(),
  4202. },
  4203. .result = ACCEPT,
  4204. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  4205. },
  4206. {
  4207. "overlapping checks for direct packet access",
  4208. .insns = {
  4209. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  4210. offsetof(struct __sk_buff, data)),
  4211. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  4212. offsetof(struct __sk_buff, data_end)),
  4213. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  4214. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  4215. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
  4216. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  4217. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
  4218. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  4219. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
  4220. BPF_MOV64_IMM(BPF_REG_0, 0),
  4221. BPF_EXIT_INSN(),
  4222. },
  4223. .result = ACCEPT,
  4224. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  4225. },
  4226. {
  4227. "invalid access of tc_classid for LWT_IN",
  4228. .insns = {
  4229. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  4230. offsetof(struct __sk_buff, tc_classid)),
  4231. BPF_EXIT_INSN(),
  4232. },
  4233. .result = REJECT,
  4234. .errstr = "invalid bpf_context access",
  4235. },
  4236. {
  4237. "invalid access of tc_classid for LWT_OUT",
  4238. .insns = {
  4239. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  4240. offsetof(struct __sk_buff, tc_classid)),
  4241. BPF_EXIT_INSN(),
  4242. },
  4243. .result = REJECT,
  4244. .errstr = "invalid bpf_context access",
  4245. },
  4246. {
  4247. "invalid access of tc_classid for LWT_XMIT",
  4248. .insns = {
  4249. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  4250. offsetof(struct __sk_buff, tc_classid)),
  4251. BPF_EXIT_INSN(),
  4252. },
  4253. .result = REJECT,
  4254. .errstr = "invalid bpf_context access",
  4255. },
  4256. {
  4257. "leak pointer into ctx 1",
  4258. .insns = {
  4259. BPF_MOV64_IMM(BPF_REG_0, 0),
  4260. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  4261. offsetof(struct __sk_buff, cb[0])),
  4262. BPF_LD_MAP_FD(BPF_REG_2, 0),
  4263. BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_2,
  4264. offsetof(struct __sk_buff, cb[0])),
  4265. BPF_EXIT_INSN(),
  4266. },
  4267. .fixup_map1 = { 2 },
  4268. .errstr_unpriv = "R2 leaks addr into mem",
  4269. .result_unpriv = REJECT,
  4270. .result = ACCEPT,
  4271. },
  4272. {
  4273. "leak pointer into ctx 2",
  4274. .insns = {
  4275. BPF_MOV64_IMM(BPF_REG_0, 0),
  4276. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  4277. offsetof(struct __sk_buff, cb[0])),
  4278. BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_10,
  4279. offsetof(struct __sk_buff, cb[0])),
  4280. BPF_EXIT_INSN(),
  4281. },
  4282. .errstr_unpriv = "R10 leaks addr into mem",
  4283. .result_unpriv = REJECT,
  4284. .result = ACCEPT,
  4285. },
  4286. {
  4287. "leak pointer into ctx 3",
  4288. .insns = {
  4289. BPF_MOV64_IMM(BPF_REG_0, 0),
  4290. BPF_LD_MAP_FD(BPF_REG_2, 0),
  4291. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2,
  4292. offsetof(struct __sk_buff, cb[0])),
  4293. BPF_EXIT_INSN(),
  4294. },
  4295. .fixup_map1 = { 1 },
  4296. .errstr_unpriv = "R2 leaks addr into ctx",
  4297. .result_unpriv = REJECT,
  4298. .result = ACCEPT,
  4299. },
  4300. {
  4301. "leak pointer into map val",
  4302. .insns = {
  4303. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  4304. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  4305. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4306. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4307. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4308. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  4309. BPF_FUNC_map_lookup_elem),
  4310. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
  4311. BPF_MOV64_IMM(BPF_REG_3, 0),
  4312. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  4313. BPF_STX_XADD(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  4314. BPF_MOV64_IMM(BPF_REG_0, 0),
  4315. BPF_EXIT_INSN(),
  4316. },
  4317. .fixup_map1 = { 4 },
  4318. .errstr_unpriv = "R6 leaks addr into mem",
  4319. .result_unpriv = REJECT,
  4320. .result = ACCEPT,
  4321. },
  4322. {
  4323. "helper access to map: full range",
  4324. .insns = {
  4325. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4326. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4327. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4328. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4329. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4330. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4331. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4332. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  4333. BPF_MOV64_IMM(BPF_REG_3, 0),
  4334. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4335. BPF_EXIT_INSN(),
  4336. },
  4337. .fixup_map2 = { 3 },
  4338. .result = ACCEPT,
  4339. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4340. },
  4341. {
  4342. "helper access to map: partial range",
  4343. .insns = {
  4344. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4345. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4346. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4347. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4348. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4349. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4350. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4351. BPF_MOV64_IMM(BPF_REG_2, 8),
  4352. BPF_MOV64_IMM(BPF_REG_3, 0),
  4353. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4354. BPF_EXIT_INSN(),
  4355. },
  4356. .fixup_map2 = { 3 },
  4357. .result = ACCEPT,
  4358. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4359. },
  4360. {
  4361. "helper access to map: empty range",
  4362. .insns = {
  4363. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4364. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4365. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4366. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4367. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4368. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
  4369. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4370. BPF_MOV64_IMM(BPF_REG_2, 0),
  4371. BPF_EMIT_CALL(BPF_FUNC_trace_printk),
  4372. BPF_EXIT_INSN(),
  4373. },
  4374. .fixup_map2 = { 3 },
  4375. .errstr = "invalid access to map value, value_size=48 off=0 size=0",
  4376. .result = REJECT,
  4377. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4378. },
  4379. {
  4380. "helper access to map: out-of-bound range",
  4381. .insns = {
  4382. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4383. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4384. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4385. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4386. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4387. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4388. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4389. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8),
  4390. BPF_MOV64_IMM(BPF_REG_3, 0),
  4391. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4392. BPF_EXIT_INSN(),
  4393. },
  4394. .fixup_map2 = { 3 },
  4395. .errstr = "invalid access to map value, value_size=48 off=0 size=56",
  4396. .result = REJECT,
  4397. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4398. },
  4399. {
  4400. "helper access to map: negative range",
  4401. .insns = {
  4402. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4403. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4404. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4405. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4406. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4407. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4408. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4409. BPF_MOV64_IMM(BPF_REG_2, -8),
  4410. BPF_MOV64_IMM(BPF_REG_3, 0),
  4411. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4412. BPF_EXIT_INSN(),
  4413. },
  4414. .fixup_map2 = { 3 },
  4415. .errstr = "R2 min value is negative",
  4416. .result = REJECT,
  4417. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4418. },
  4419. {
  4420. "helper access to adjusted map (via const imm): full range",
  4421. .insns = {
  4422. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4423. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4424. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4425. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4426. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4427. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4428. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4429. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4430. offsetof(struct test_val, foo)),
  4431. BPF_MOV64_IMM(BPF_REG_2,
  4432. sizeof(struct test_val) -
  4433. offsetof(struct test_val, foo)),
  4434. BPF_MOV64_IMM(BPF_REG_3, 0),
  4435. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4436. BPF_EXIT_INSN(),
  4437. },
  4438. .fixup_map2 = { 3 },
  4439. .result = ACCEPT,
  4440. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4441. },
  4442. {
  4443. "helper access to adjusted map (via const imm): partial range",
  4444. .insns = {
  4445. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4446. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4447. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4448. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4449. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4450. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4451. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4452. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4453. offsetof(struct test_val, foo)),
  4454. BPF_MOV64_IMM(BPF_REG_2, 8),
  4455. BPF_MOV64_IMM(BPF_REG_3, 0),
  4456. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4457. BPF_EXIT_INSN(),
  4458. },
  4459. .fixup_map2 = { 3 },
  4460. .result = ACCEPT,
  4461. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4462. },
  4463. {
  4464. "helper access to adjusted map (via const imm): empty range",
  4465. .insns = {
  4466. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4467. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4468. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4469. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4470. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4471. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4472. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4473. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4474. offsetof(struct test_val, foo)),
  4475. BPF_MOV64_IMM(BPF_REG_2, 0),
  4476. BPF_EMIT_CALL(BPF_FUNC_trace_printk),
  4477. BPF_EXIT_INSN(),
  4478. },
  4479. .fixup_map2 = { 3 },
  4480. .errstr = "invalid access to map value, value_size=48 off=4 size=0",
  4481. .result = REJECT,
  4482. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4483. },
  4484. {
  4485. "helper access to adjusted map (via const imm): out-of-bound range",
  4486. .insns = {
  4487. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4488. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4489. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4490. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4491. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4492. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4493. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4494. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4495. offsetof(struct test_val, foo)),
  4496. BPF_MOV64_IMM(BPF_REG_2,
  4497. sizeof(struct test_val) -
  4498. offsetof(struct test_val, foo) + 8),
  4499. BPF_MOV64_IMM(BPF_REG_3, 0),
  4500. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4501. BPF_EXIT_INSN(),
  4502. },
  4503. .fixup_map2 = { 3 },
  4504. .errstr = "invalid access to map value, value_size=48 off=4 size=52",
  4505. .result = REJECT,
  4506. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4507. },
  4508. {
  4509. "helper access to adjusted map (via const imm): negative range (> adjustment)",
  4510. .insns = {
  4511. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4512. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4513. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4514. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4515. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4516. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4517. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4518. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4519. offsetof(struct test_val, foo)),
  4520. BPF_MOV64_IMM(BPF_REG_2, -8),
  4521. BPF_MOV64_IMM(BPF_REG_3, 0),
  4522. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4523. BPF_EXIT_INSN(),
  4524. },
  4525. .fixup_map2 = { 3 },
  4526. .errstr = "R2 min value is negative",
  4527. .result = REJECT,
  4528. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4529. },
  4530. {
  4531. "helper access to adjusted map (via const imm): negative range (< adjustment)",
  4532. .insns = {
  4533. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4534. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4535. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4536. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4537. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4538. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4539. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4540. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4541. offsetof(struct test_val, foo)),
  4542. BPF_MOV64_IMM(BPF_REG_2, -1),
  4543. BPF_MOV64_IMM(BPF_REG_3, 0),
  4544. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4545. BPF_EXIT_INSN(),
  4546. },
  4547. .fixup_map2 = { 3 },
  4548. .errstr = "R2 min value is negative",
  4549. .result = REJECT,
  4550. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4551. },
  4552. {
  4553. "helper access to adjusted map (via const reg): full range",
  4554. .insns = {
  4555. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4556. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4557. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4558. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4559. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4560. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4561. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4562. BPF_MOV64_IMM(BPF_REG_3,
  4563. offsetof(struct test_val, foo)),
  4564. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4565. BPF_MOV64_IMM(BPF_REG_2,
  4566. sizeof(struct test_val) -
  4567. offsetof(struct test_val, foo)),
  4568. BPF_MOV64_IMM(BPF_REG_3, 0),
  4569. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4570. BPF_EXIT_INSN(),
  4571. },
  4572. .fixup_map2 = { 3 },
  4573. .result = ACCEPT,
  4574. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4575. },
  4576. {
  4577. "helper access to adjusted map (via const reg): partial range",
  4578. .insns = {
  4579. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4580. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4581. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4582. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4583. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4584. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4585. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4586. BPF_MOV64_IMM(BPF_REG_3,
  4587. offsetof(struct test_val, foo)),
  4588. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4589. BPF_MOV64_IMM(BPF_REG_2, 8),
  4590. BPF_MOV64_IMM(BPF_REG_3, 0),
  4591. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4592. BPF_EXIT_INSN(),
  4593. },
  4594. .fixup_map2 = { 3 },
  4595. .result = ACCEPT,
  4596. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4597. },
  4598. {
  4599. "helper access to adjusted map (via const reg): empty range",
  4600. .insns = {
  4601. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4602. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4603. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4604. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4605. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4606. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4607. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4608. BPF_MOV64_IMM(BPF_REG_3, 0),
  4609. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4610. BPF_MOV64_IMM(BPF_REG_2, 0),
  4611. BPF_EMIT_CALL(BPF_FUNC_trace_printk),
  4612. BPF_EXIT_INSN(),
  4613. },
  4614. .fixup_map2 = { 3 },
  4615. .errstr = "R1 min value is outside of the array range",
  4616. .result = REJECT,
  4617. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4618. },
  4619. {
  4620. "helper access to adjusted map (via const reg): out-of-bound range",
  4621. .insns = {
  4622. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4623. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4624. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4625. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4626. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4627. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4628. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4629. BPF_MOV64_IMM(BPF_REG_3,
  4630. offsetof(struct test_val, foo)),
  4631. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4632. BPF_MOV64_IMM(BPF_REG_2,
  4633. sizeof(struct test_val) -
  4634. offsetof(struct test_val, foo) + 8),
  4635. BPF_MOV64_IMM(BPF_REG_3, 0),
  4636. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4637. BPF_EXIT_INSN(),
  4638. },
  4639. .fixup_map2 = { 3 },
  4640. .errstr = "invalid access to map value, value_size=48 off=4 size=52",
  4641. .result = REJECT,
  4642. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4643. },
  4644. {
  4645. "helper access to adjusted map (via const reg): negative range (> adjustment)",
  4646. .insns = {
  4647. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4648. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4649. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4650. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4651. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4652. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4653. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4654. BPF_MOV64_IMM(BPF_REG_3,
  4655. offsetof(struct test_val, foo)),
  4656. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4657. BPF_MOV64_IMM(BPF_REG_2, -8),
  4658. BPF_MOV64_IMM(BPF_REG_3, 0),
  4659. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4660. BPF_EXIT_INSN(),
  4661. },
  4662. .fixup_map2 = { 3 },
  4663. .errstr = "R2 min value is negative",
  4664. .result = REJECT,
  4665. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4666. },
  4667. {
  4668. "helper access to adjusted map (via const reg): negative range (< adjustment)",
  4669. .insns = {
  4670. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4671. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4672. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4673. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4674. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4675. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4676. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4677. BPF_MOV64_IMM(BPF_REG_3,
  4678. offsetof(struct test_val, foo)),
  4679. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4680. BPF_MOV64_IMM(BPF_REG_2, -1),
  4681. BPF_MOV64_IMM(BPF_REG_3, 0),
  4682. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4683. BPF_EXIT_INSN(),
  4684. },
  4685. .fixup_map2 = { 3 },
  4686. .errstr = "R2 min value is negative",
  4687. .result = REJECT,
  4688. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4689. },
  4690. {
  4691. "helper access to adjusted map (via variable): full range",
  4692. .insns = {
  4693. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4694. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4695. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4696. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4697. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4698. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4699. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4700. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4701. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4702. offsetof(struct test_val, foo), 4),
  4703. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4704. BPF_MOV64_IMM(BPF_REG_2,
  4705. sizeof(struct test_val) -
  4706. offsetof(struct test_val, foo)),
  4707. BPF_MOV64_IMM(BPF_REG_3, 0),
  4708. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4709. BPF_EXIT_INSN(),
  4710. },
  4711. .fixup_map2 = { 3 },
  4712. .result = ACCEPT,
  4713. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4714. },
  4715. {
  4716. "helper access to adjusted map (via variable): partial range",
  4717. .insns = {
  4718. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4719. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4720. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4721. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4722. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4723. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4724. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4725. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4726. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4727. offsetof(struct test_val, foo), 4),
  4728. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4729. BPF_MOV64_IMM(BPF_REG_2, 8),
  4730. BPF_MOV64_IMM(BPF_REG_3, 0),
  4731. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4732. BPF_EXIT_INSN(),
  4733. },
  4734. .fixup_map2 = { 3 },
  4735. .result = ACCEPT,
  4736. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4737. },
  4738. {
  4739. "helper access to adjusted map (via variable): empty range",
  4740. .insns = {
  4741. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4742. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4743. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4744. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4745. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4746. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4747. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4748. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4749. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4750. offsetof(struct test_val, foo), 3),
  4751. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4752. BPF_MOV64_IMM(BPF_REG_2, 0),
  4753. BPF_EMIT_CALL(BPF_FUNC_trace_printk),
  4754. BPF_EXIT_INSN(),
  4755. },
  4756. .fixup_map2 = { 3 },
  4757. .errstr = "R1 min value is outside of the array range",
  4758. .result = REJECT,
  4759. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4760. },
  4761. {
  4762. "helper access to adjusted map (via variable): no max check",
  4763. .insns = {
  4764. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4765. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4766. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4767. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4768. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4769. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4770. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4771. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4772. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4773. BPF_MOV64_IMM(BPF_REG_2, 1),
  4774. BPF_MOV64_IMM(BPF_REG_3, 0),
  4775. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4776. BPF_EXIT_INSN(),
  4777. },
  4778. .fixup_map2 = { 3 },
  4779. .errstr = "R1 unbounded memory access",
  4780. .result = REJECT,
  4781. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4782. },
  4783. {
  4784. "helper access to adjusted map (via variable): wrong max check",
  4785. .insns = {
  4786. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4787. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4788. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4789. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4790. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4791. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4792. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4793. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4794. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4795. offsetof(struct test_val, foo), 4),
  4796. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4797. BPF_MOV64_IMM(BPF_REG_2,
  4798. sizeof(struct test_val) -
  4799. offsetof(struct test_val, foo) + 1),
  4800. BPF_MOV64_IMM(BPF_REG_3, 0),
  4801. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4802. BPF_EXIT_INSN(),
  4803. },
  4804. .fixup_map2 = { 3 },
  4805. .errstr = "invalid access to map value, value_size=48 off=4 size=45",
  4806. .result = REJECT,
  4807. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4808. },
  4809. {
  4810. "helper access to map: bounds check using <, good access",
  4811. .insns = {
  4812. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4813. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4814. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4815. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4816. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4817. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4818. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4819. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4820. BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 2),
  4821. BPF_MOV64_IMM(BPF_REG_0, 0),
  4822. BPF_EXIT_INSN(),
  4823. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4824. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4825. BPF_MOV64_IMM(BPF_REG_0, 0),
  4826. BPF_EXIT_INSN(),
  4827. },
  4828. .fixup_map2 = { 3 },
  4829. .result = ACCEPT,
  4830. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4831. },
  4832. {
  4833. "helper access to map: bounds check using <, bad access",
  4834. .insns = {
  4835. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4836. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4837. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4838. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4839. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4840. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4841. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4842. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4843. BPF_JMP_IMM(BPF_JLT, BPF_REG_3, 32, 4),
  4844. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4845. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4846. BPF_MOV64_IMM(BPF_REG_0, 0),
  4847. BPF_EXIT_INSN(),
  4848. BPF_MOV64_IMM(BPF_REG_0, 0),
  4849. BPF_EXIT_INSN(),
  4850. },
  4851. .fixup_map2 = { 3 },
  4852. .result = REJECT,
  4853. .errstr = "R1 unbounded memory access",
  4854. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4855. },
  4856. {
  4857. "helper access to map: bounds check using <=, good access",
  4858. .insns = {
  4859. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4860. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4861. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4862. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4863. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4864. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4865. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4866. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4867. BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 2),
  4868. BPF_MOV64_IMM(BPF_REG_0, 0),
  4869. BPF_EXIT_INSN(),
  4870. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4871. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4872. BPF_MOV64_IMM(BPF_REG_0, 0),
  4873. BPF_EXIT_INSN(),
  4874. },
  4875. .fixup_map2 = { 3 },
  4876. .result = ACCEPT,
  4877. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4878. },
  4879. {
  4880. "helper access to map: bounds check using <=, bad access",
  4881. .insns = {
  4882. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4883. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4884. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4885. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4886. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4887. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4888. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4889. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4890. BPF_JMP_IMM(BPF_JLE, BPF_REG_3, 32, 4),
  4891. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4892. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4893. BPF_MOV64_IMM(BPF_REG_0, 0),
  4894. BPF_EXIT_INSN(),
  4895. BPF_MOV64_IMM(BPF_REG_0, 0),
  4896. BPF_EXIT_INSN(),
  4897. },
  4898. .fixup_map2 = { 3 },
  4899. .result = REJECT,
  4900. .errstr = "R1 unbounded memory access",
  4901. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4902. },
  4903. {
  4904. "helper access to map: bounds check using s<, good access",
  4905. .insns = {
  4906. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4907. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4908. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4909. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4910. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4911. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4912. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4913. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4914. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
  4915. BPF_MOV64_IMM(BPF_REG_0, 0),
  4916. BPF_EXIT_INSN(),
  4917. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 0, -3),
  4918. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4919. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4920. BPF_MOV64_IMM(BPF_REG_0, 0),
  4921. BPF_EXIT_INSN(),
  4922. },
  4923. .fixup_map2 = { 3 },
  4924. .result = ACCEPT,
  4925. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4926. },
  4927. {
  4928. "helper access to map: bounds check using s<, good access 2",
  4929. .insns = {
  4930. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4931. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4932. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4933. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4934. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4935. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4936. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4937. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4938. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
  4939. BPF_MOV64_IMM(BPF_REG_0, 0),
  4940. BPF_EXIT_INSN(),
  4941. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
  4942. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4943. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4944. BPF_MOV64_IMM(BPF_REG_0, 0),
  4945. BPF_EXIT_INSN(),
  4946. },
  4947. .fixup_map2 = { 3 },
  4948. .result = ACCEPT,
  4949. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4950. },
  4951. {
  4952. "helper access to map: bounds check using s<, bad access",
  4953. .insns = {
  4954. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4955. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4956. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4957. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4958. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4959. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4960. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4961. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
  4962. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, 32, 2),
  4963. BPF_MOV64_IMM(BPF_REG_0, 0),
  4964. BPF_EXIT_INSN(),
  4965. BPF_JMP_IMM(BPF_JSLT, BPF_REG_3, -3, -3),
  4966. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4967. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4968. BPF_MOV64_IMM(BPF_REG_0, 0),
  4969. BPF_EXIT_INSN(),
  4970. },
  4971. .fixup_map2 = { 3 },
  4972. .result = REJECT,
  4973. .errstr = "R1 min value is negative",
  4974. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4975. },
  4976. {
  4977. "helper access to map: bounds check using s<=, good access",
  4978. .insns = {
  4979. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4980. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4981. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4982. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4983. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4984. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4985. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4986. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4987. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
  4988. BPF_MOV64_IMM(BPF_REG_0, 0),
  4989. BPF_EXIT_INSN(),
  4990. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 0, -3),
  4991. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4992. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  4993. BPF_MOV64_IMM(BPF_REG_0, 0),
  4994. BPF_EXIT_INSN(),
  4995. },
  4996. .fixup_map2 = { 3 },
  4997. .result = ACCEPT,
  4998. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4999. },
  5000. {
  5001. "helper access to map: bounds check using s<=, good access 2",
  5002. .insns = {
  5003. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5004. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5005. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5006. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5007. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5008. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5009. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5010. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  5011. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
  5012. BPF_MOV64_IMM(BPF_REG_0, 0),
  5013. BPF_EXIT_INSN(),
  5014. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
  5015. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  5016. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  5017. BPF_MOV64_IMM(BPF_REG_0, 0),
  5018. BPF_EXIT_INSN(),
  5019. },
  5020. .fixup_map2 = { 3 },
  5021. .result = ACCEPT,
  5022. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5023. },
  5024. {
  5025. "helper access to map: bounds check using s<=, bad access",
  5026. .insns = {
  5027. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5028. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5029. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5030. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5031. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5032. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5033. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5034. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0),
  5035. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, 32, 2),
  5036. BPF_MOV64_IMM(BPF_REG_0, 0),
  5037. BPF_EXIT_INSN(),
  5038. BPF_JMP_IMM(BPF_JSLE, BPF_REG_3, -3, -3),
  5039. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  5040. BPF_ST_MEM(BPF_B, BPF_REG_1, 0, 0),
  5041. BPF_MOV64_IMM(BPF_REG_0, 0),
  5042. BPF_EXIT_INSN(),
  5043. },
  5044. .fixup_map2 = { 3 },
  5045. .result = REJECT,
  5046. .errstr = "R1 min value is negative",
  5047. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5048. },
  5049. {
  5050. "map element value is preserved across register spilling",
  5051. .insns = {
  5052. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5053. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5054. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5055. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5056. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5057. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5058. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  5059. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5060. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
  5061. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  5062. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  5063. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  5064. BPF_EXIT_INSN(),
  5065. },
  5066. .fixup_map2 = { 3 },
  5067. .errstr_unpriv = "R0 leaks addr",
  5068. .result = ACCEPT,
  5069. .result_unpriv = REJECT,
  5070. },
  5071. {
  5072. "map element value or null is marked on register spilling",
  5073. .insns = {
  5074. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5075. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5076. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5077. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5078. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5079. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5080. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -152),
  5081. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  5082. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  5083. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  5084. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  5085. BPF_EXIT_INSN(),
  5086. },
  5087. .fixup_map2 = { 3 },
  5088. .errstr_unpriv = "R0 leaks addr",
  5089. .result = ACCEPT,
  5090. .result_unpriv = REJECT,
  5091. },
  5092. {
  5093. "map element value store of cleared call register",
  5094. .insns = {
  5095. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5096. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5097. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5098. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5099. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5100. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  5101. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  5102. BPF_EXIT_INSN(),
  5103. },
  5104. .fixup_map2 = { 3 },
  5105. .errstr_unpriv = "R1 !read_ok",
  5106. .errstr = "R1 !read_ok",
  5107. .result = REJECT,
  5108. .result_unpriv = REJECT,
  5109. },
  5110. {
  5111. "map element value with unaligned store",
  5112. .insns = {
  5113. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5114. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5115. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5116. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5117. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5118. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 17),
  5119. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
  5120. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  5121. BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 43),
  5122. BPF_ST_MEM(BPF_DW, BPF_REG_0, -2, 44),
  5123. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  5124. BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 32),
  5125. BPF_ST_MEM(BPF_DW, BPF_REG_8, 2, 33),
  5126. BPF_ST_MEM(BPF_DW, BPF_REG_8, -2, 34),
  5127. BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 5),
  5128. BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 22),
  5129. BPF_ST_MEM(BPF_DW, BPF_REG_8, 4, 23),
  5130. BPF_ST_MEM(BPF_DW, BPF_REG_8, -7, 24),
  5131. BPF_MOV64_REG(BPF_REG_7, BPF_REG_8),
  5132. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 3),
  5133. BPF_ST_MEM(BPF_DW, BPF_REG_7, 0, 22),
  5134. BPF_ST_MEM(BPF_DW, BPF_REG_7, 4, 23),
  5135. BPF_ST_MEM(BPF_DW, BPF_REG_7, -4, 24),
  5136. BPF_EXIT_INSN(),
  5137. },
  5138. .fixup_map2 = { 3 },
  5139. .errstr_unpriv = "R0 leaks addr",
  5140. .result = ACCEPT,
  5141. .result_unpriv = REJECT,
  5142. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5143. },
  5144. {
  5145. "map element value with unaligned load",
  5146. .insns = {
  5147. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5148. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5149. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5150. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5151. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5152. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  5153. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  5154. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 9),
  5155. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
  5156. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  5157. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 2),
  5158. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  5159. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 0),
  5160. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 2),
  5161. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 5),
  5162. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  5163. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 4),
  5164. BPF_EXIT_INSN(),
  5165. },
  5166. .fixup_map2 = { 3 },
  5167. .errstr_unpriv = "R0 leaks addr",
  5168. .result = ACCEPT,
  5169. .result_unpriv = REJECT,
  5170. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5171. },
  5172. {
  5173. "map element value illegal alu op, 1",
  5174. .insns = {
  5175. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5176. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5177. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5178. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5179. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5180. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  5181. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 8),
  5182. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  5183. BPF_EXIT_INSN(),
  5184. },
  5185. .fixup_map2 = { 3 },
  5186. .errstr_unpriv = "R0 bitwise operator &= on pointer",
  5187. .errstr = "invalid mem access 'inv'",
  5188. .result = REJECT,
  5189. .result_unpriv = REJECT,
  5190. },
  5191. {
  5192. "map element value illegal alu op, 2",
  5193. .insns = {
  5194. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5195. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5196. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5197. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5198. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5199. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  5200. BPF_ALU32_IMM(BPF_ADD, BPF_REG_0, 0),
  5201. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  5202. BPF_EXIT_INSN(),
  5203. },
  5204. .fixup_map2 = { 3 },
  5205. .errstr_unpriv = "R0 32-bit pointer arithmetic prohibited",
  5206. .errstr = "invalid mem access 'inv'",
  5207. .result = REJECT,
  5208. .result_unpriv = REJECT,
  5209. },
  5210. {
  5211. "map element value illegal alu op, 3",
  5212. .insns = {
  5213. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5214. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5215. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5216. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5217. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5218. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  5219. BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, 42),
  5220. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  5221. BPF_EXIT_INSN(),
  5222. },
  5223. .fixup_map2 = { 3 },
  5224. .errstr_unpriv = "R0 pointer arithmetic with /= operator",
  5225. .errstr = "invalid mem access 'inv'",
  5226. .result = REJECT,
  5227. .result_unpriv = REJECT,
  5228. },
  5229. {
  5230. "map element value illegal alu op, 4",
  5231. .insns = {
  5232. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5233. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5234. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5235. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5236. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5237. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  5238. BPF_ENDIAN(BPF_FROM_BE, BPF_REG_0, 64),
  5239. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  5240. BPF_EXIT_INSN(),
  5241. },
  5242. .fixup_map2 = { 3 },
  5243. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5244. .errstr = "invalid mem access 'inv'",
  5245. .result = REJECT,
  5246. .result_unpriv = REJECT,
  5247. },
  5248. {
  5249. "map element value illegal alu op, 5",
  5250. .insns = {
  5251. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5252. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5253. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5254. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5255. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5256. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5257. BPF_MOV64_IMM(BPF_REG_3, 4096),
  5258. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5259. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5260. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  5261. BPF_STX_XADD(BPF_DW, BPF_REG_2, BPF_REG_3, 0),
  5262. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0),
  5263. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  5264. BPF_EXIT_INSN(),
  5265. },
  5266. .fixup_map2 = { 3 },
  5267. .errstr = "R0 invalid mem access 'inv'",
  5268. .result = REJECT,
  5269. },
  5270. {
  5271. "map element value is preserved across register spilling",
  5272. .insns = {
  5273. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5274. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5275. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5276. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5277. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5278. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5279. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0,
  5280. offsetof(struct test_val, foo)),
  5281. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  5282. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5283. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
  5284. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  5285. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  5286. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  5287. BPF_EXIT_INSN(),
  5288. },
  5289. .fixup_map2 = { 3 },
  5290. .errstr_unpriv = "R0 leaks addr",
  5291. .result = ACCEPT,
  5292. .result_unpriv = REJECT,
  5293. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5294. },
  5295. {
  5296. "helper access to variable memory: stack, bitwise AND + JMP, correct bounds",
  5297. .insns = {
  5298. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5299. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5300. BPF_MOV64_IMM(BPF_REG_0, 0),
  5301. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5302. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5303. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5304. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5305. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  5306. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5307. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5308. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5309. BPF_MOV64_IMM(BPF_REG_2, 16),
  5310. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5311. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5312. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  5313. BPF_MOV64_IMM(BPF_REG_4, 0),
  5314. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  5315. BPF_MOV64_IMM(BPF_REG_3, 0),
  5316. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5317. BPF_MOV64_IMM(BPF_REG_0, 0),
  5318. BPF_EXIT_INSN(),
  5319. },
  5320. .result = ACCEPT,
  5321. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5322. },
  5323. {
  5324. "helper access to variable memory: stack, bitwise AND, zero included",
  5325. .insns = {
  5326. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5327. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5328. BPF_MOV64_IMM(BPF_REG_2, 16),
  5329. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5330. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5331. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  5332. BPF_MOV64_IMM(BPF_REG_3, 0),
  5333. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5334. BPF_EXIT_INSN(),
  5335. },
  5336. .errstr = "invalid indirect read from stack off -64+0 size 64",
  5337. .result = REJECT,
  5338. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5339. },
  5340. {
  5341. "helper access to variable memory: stack, bitwise AND + JMP, wrong max",
  5342. .insns = {
  5343. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5344. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5345. BPF_MOV64_IMM(BPF_REG_2, 16),
  5346. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5347. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5348. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65),
  5349. BPF_MOV64_IMM(BPF_REG_4, 0),
  5350. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  5351. BPF_MOV64_IMM(BPF_REG_3, 0),
  5352. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5353. BPF_MOV64_IMM(BPF_REG_0, 0),
  5354. BPF_EXIT_INSN(),
  5355. },
  5356. .errstr = "invalid stack type R1 off=-64 access_size=65",
  5357. .result = REJECT,
  5358. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5359. },
  5360. {
  5361. "helper access to variable memory: stack, JMP, correct bounds",
  5362. .insns = {
  5363. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5364. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5365. BPF_MOV64_IMM(BPF_REG_0, 0),
  5366. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5367. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5368. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5369. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5370. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  5371. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5372. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5373. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5374. BPF_MOV64_IMM(BPF_REG_2, 16),
  5375. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5376. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5377. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4),
  5378. BPF_MOV64_IMM(BPF_REG_4, 0),
  5379. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  5380. BPF_MOV64_IMM(BPF_REG_3, 0),
  5381. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5382. BPF_MOV64_IMM(BPF_REG_0, 0),
  5383. BPF_EXIT_INSN(),
  5384. },
  5385. .result = ACCEPT,
  5386. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5387. },
  5388. {
  5389. "helper access to variable memory: stack, JMP (signed), correct bounds",
  5390. .insns = {
  5391. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5392. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5393. BPF_MOV64_IMM(BPF_REG_0, 0),
  5394. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5395. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5396. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5397. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5398. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  5399. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5400. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5401. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5402. BPF_MOV64_IMM(BPF_REG_2, 16),
  5403. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5404. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5405. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4),
  5406. BPF_MOV64_IMM(BPF_REG_4, 0),
  5407. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5408. BPF_MOV64_IMM(BPF_REG_3, 0),
  5409. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5410. BPF_MOV64_IMM(BPF_REG_0, 0),
  5411. BPF_EXIT_INSN(),
  5412. },
  5413. .result = ACCEPT,
  5414. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5415. },
  5416. {
  5417. "helper access to variable memory: stack, JMP, bounds + offset",
  5418. .insns = {
  5419. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5420. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5421. BPF_MOV64_IMM(BPF_REG_2, 16),
  5422. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5423. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5424. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5),
  5425. BPF_MOV64_IMM(BPF_REG_4, 0),
  5426. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3),
  5427. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  5428. BPF_MOV64_IMM(BPF_REG_3, 0),
  5429. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5430. BPF_MOV64_IMM(BPF_REG_0, 0),
  5431. BPF_EXIT_INSN(),
  5432. },
  5433. .errstr = "invalid stack type R1 off=-64 access_size=65",
  5434. .result = REJECT,
  5435. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5436. },
  5437. {
  5438. "helper access to variable memory: stack, JMP, wrong max",
  5439. .insns = {
  5440. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5441. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5442. BPF_MOV64_IMM(BPF_REG_2, 16),
  5443. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5444. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5445. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4),
  5446. BPF_MOV64_IMM(BPF_REG_4, 0),
  5447. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  5448. BPF_MOV64_IMM(BPF_REG_3, 0),
  5449. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5450. BPF_MOV64_IMM(BPF_REG_0, 0),
  5451. BPF_EXIT_INSN(),
  5452. },
  5453. .errstr = "invalid stack type R1 off=-64 access_size=65",
  5454. .result = REJECT,
  5455. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5456. },
  5457. {
  5458. "helper access to variable memory: stack, JMP, no max check",
  5459. .insns = {
  5460. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5461. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5462. BPF_MOV64_IMM(BPF_REG_2, 16),
  5463. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5464. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5465. BPF_MOV64_IMM(BPF_REG_4, 0),
  5466. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  5467. BPF_MOV64_IMM(BPF_REG_3, 0),
  5468. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5469. BPF_MOV64_IMM(BPF_REG_0, 0),
  5470. BPF_EXIT_INSN(),
  5471. },
  5472. /* because max wasn't checked, signed min is negative */
  5473. .errstr = "R2 min value is negative, either use unsigned or 'var &= const'",
  5474. .result = REJECT,
  5475. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5476. },
  5477. {
  5478. "helper access to variable memory: stack, JMP, no min check",
  5479. .insns = {
  5480. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5481. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5482. BPF_MOV64_IMM(BPF_REG_2, 16),
  5483. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5484. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5485. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3),
  5486. BPF_MOV64_IMM(BPF_REG_3, 0),
  5487. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5488. BPF_MOV64_IMM(BPF_REG_0, 0),
  5489. BPF_EXIT_INSN(),
  5490. },
  5491. .errstr = "invalid indirect read from stack off -64+0 size 64",
  5492. .result = REJECT,
  5493. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5494. },
  5495. {
  5496. "helper access to variable memory: stack, JMP (signed), no min check",
  5497. .insns = {
  5498. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5499. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5500. BPF_MOV64_IMM(BPF_REG_2, 16),
  5501. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  5502. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  5503. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3),
  5504. BPF_MOV64_IMM(BPF_REG_3, 0),
  5505. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5506. BPF_MOV64_IMM(BPF_REG_0, 0),
  5507. BPF_EXIT_INSN(),
  5508. },
  5509. .errstr = "R2 min value is negative",
  5510. .result = REJECT,
  5511. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5512. },
  5513. {
  5514. "helper access to variable memory: map, JMP, correct bounds",
  5515. .insns = {
  5516. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5517. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5518. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5519. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5520. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5521. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  5522. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5523. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5524. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5525. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5526. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5527. sizeof(struct test_val), 4),
  5528. BPF_MOV64_IMM(BPF_REG_4, 0),
  5529. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5530. BPF_MOV64_IMM(BPF_REG_3, 0),
  5531. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5532. BPF_MOV64_IMM(BPF_REG_0, 0),
  5533. BPF_EXIT_INSN(),
  5534. },
  5535. .fixup_map2 = { 3 },
  5536. .result = ACCEPT,
  5537. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5538. },
  5539. {
  5540. "helper access to variable memory: map, JMP, wrong max",
  5541. .insns = {
  5542. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5543. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5544. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5545. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5546. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5547. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  5548. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5549. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5550. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5551. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5552. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5553. sizeof(struct test_val) + 1, 4),
  5554. BPF_MOV64_IMM(BPF_REG_4, 0),
  5555. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5556. BPF_MOV64_IMM(BPF_REG_3, 0),
  5557. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5558. BPF_MOV64_IMM(BPF_REG_0, 0),
  5559. BPF_EXIT_INSN(),
  5560. },
  5561. .fixup_map2 = { 3 },
  5562. .errstr = "invalid access to map value, value_size=48 off=0 size=49",
  5563. .result = REJECT,
  5564. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5565. },
  5566. {
  5567. "helper access to variable memory: map adjusted, JMP, correct bounds",
  5568. .insns = {
  5569. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5570. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5571. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5572. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5573. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5574. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  5575. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5576. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
  5577. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5578. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5579. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5580. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5581. sizeof(struct test_val) - 20, 4),
  5582. BPF_MOV64_IMM(BPF_REG_4, 0),
  5583. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5584. BPF_MOV64_IMM(BPF_REG_3, 0),
  5585. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5586. BPF_MOV64_IMM(BPF_REG_0, 0),
  5587. BPF_EXIT_INSN(),
  5588. },
  5589. .fixup_map2 = { 3 },
  5590. .result = ACCEPT,
  5591. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5592. },
  5593. {
  5594. "helper access to variable memory: map adjusted, JMP, wrong max",
  5595. .insns = {
  5596. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5597. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5598. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5599. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5600. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5601. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  5602. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5603. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
  5604. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5605. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5606. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5607. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5608. sizeof(struct test_val) - 19, 4),
  5609. BPF_MOV64_IMM(BPF_REG_4, 0),
  5610. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5611. BPF_MOV64_IMM(BPF_REG_3, 0),
  5612. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5613. BPF_MOV64_IMM(BPF_REG_0, 0),
  5614. BPF_EXIT_INSN(),
  5615. },
  5616. .fixup_map2 = { 3 },
  5617. .errstr = "R1 min value is outside of the array range",
  5618. .result = REJECT,
  5619. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5620. },
  5621. {
  5622. "helper access to variable memory: size = 0 allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
  5623. .insns = {
  5624. BPF_MOV64_IMM(BPF_REG_1, 0),
  5625. BPF_MOV64_IMM(BPF_REG_2, 0),
  5626. BPF_MOV64_IMM(BPF_REG_3, 0),
  5627. BPF_MOV64_IMM(BPF_REG_4, 0),
  5628. BPF_MOV64_IMM(BPF_REG_5, 0),
  5629. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5630. BPF_EXIT_INSN(),
  5631. },
  5632. .result = ACCEPT,
  5633. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5634. },
  5635. {
  5636. "helper access to variable memory: size > 0 not allowed on NULL (ARG_PTR_TO_MEM_OR_NULL)",
  5637. .insns = {
  5638. BPF_MOV64_IMM(BPF_REG_1, 0),
  5639. BPF_MOV64_IMM(BPF_REG_2, 1),
  5640. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5641. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5642. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  5643. BPF_MOV64_IMM(BPF_REG_3, 0),
  5644. BPF_MOV64_IMM(BPF_REG_4, 0),
  5645. BPF_MOV64_IMM(BPF_REG_5, 0),
  5646. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5647. BPF_EXIT_INSN(),
  5648. },
  5649. .errstr = "R1 type=inv expected=fp",
  5650. .result = REJECT,
  5651. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5652. },
  5653. {
  5654. "helper access to variable memory: size = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
  5655. .insns = {
  5656. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5657. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  5658. BPF_MOV64_IMM(BPF_REG_2, 0),
  5659. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
  5660. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8),
  5661. BPF_MOV64_IMM(BPF_REG_3, 0),
  5662. BPF_MOV64_IMM(BPF_REG_4, 0),
  5663. BPF_MOV64_IMM(BPF_REG_5, 0),
  5664. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5665. BPF_EXIT_INSN(),
  5666. },
  5667. .result = ACCEPT,
  5668. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5669. },
  5670. {
  5671. "helper access to variable memory: size = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
  5672. .insns = {
  5673. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5674. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5675. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5676. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5677. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5678. BPF_FUNC_map_lookup_elem),
  5679. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5680. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5681. BPF_MOV64_IMM(BPF_REG_2, 0),
  5682. BPF_MOV64_IMM(BPF_REG_3, 0),
  5683. BPF_MOV64_IMM(BPF_REG_4, 0),
  5684. BPF_MOV64_IMM(BPF_REG_5, 0),
  5685. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5686. BPF_EXIT_INSN(),
  5687. },
  5688. .fixup_map1 = { 3 },
  5689. .result = ACCEPT,
  5690. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5691. },
  5692. {
  5693. "helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (ARG_PTR_TO_MEM_OR_NULL)",
  5694. .insns = {
  5695. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5696. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5697. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5698. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5699. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5700. BPF_FUNC_map_lookup_elem),
  5701. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5702. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  5703. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 7),
  5704. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5705. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  5706. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
  5707. BPF_MOV64_IMM(BPF_REG_3, 0),
  5708. BPF_MOV64_IMM(BPF_REG_4, 0),
  5709. BPF_MOV64_IMM(BPF_REG_5, 0),
  5710. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5711. BPF_EXIT_INSN(),
  5712. },
  5713. .fixup_map1 = { 3 },
  5714. .result = ACCEPT,
  5715. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5716. },
  5717. {
  5718. "helper access to variable memory: size possible = 0 allowed on != NULL map pointer (ARG_PTR_TO_MEM_OR_NULL)",
  5719. .insns = {
  5720. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5721. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5722. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5723. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5724. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5725. BPF_FUNC_map_lookup_elem),
  5726. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5727. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5728. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  5729. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
  5730. BPF_MOV64_IMM(BPF_REG_3, 0),
  5731. BPF_MOV64_IMM(BPF_REG_4, 0),
  5732. BPF_MOV64_IMM(BPF_REG_5, 0),
  5733. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5734. BPF_EXIT_INSN(),
  5735. },
  5736. .fixup_map1 = { 3 },
  5737. .result = ACCEPT,
  5738. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5739. },
  5740. {
  5741. "helper access to variable memory: size possible = 0 allowed on != NULL packet pointer (ARG_PTR_TO_MEM_OR_NULL)",
  5742. .insns = {
  5743. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  5744. offsetof(struct __sk_buff, data)),
  5745. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  5746. offsetof(struct __sk_buff, data_end)),
  5747. BPF_MOV64_REG(BPF_REG_0, BPF_REG_6),
  5748. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  5749. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
  5750. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  5751. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 0),
  5752. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
  5753. BPF_MOV64_IMM(BPF_REG_3, 0),
  5754. BPF_MOV64_IMM(BPF_REG_4, 0),
  5755. BPF_MOV64_IMM(BPF_REG_5, 0),
  5756. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5757. BPF_EXIT_INSN(),
  5758. },
  5759. .result = ACCEPT,
  5760. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5761. },
  5762. {
  5763. "helper access to variable memory: size = 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
  5764. .insns = {
  5765. BPF_MOV64_IMM(BPF_REG_1, 0),
  5766. BPF_MOV64_IMM(BPF_REG_2, 0),
  5767. BPF_MOV64_IMM(BPF_REG_3, 0),
  5768. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5769. BPF_EXIT_INSN(),
  5770. },
  5771. .errstr = "R1 type=inv expected=fp",
  5772. .result = REJECT,
  5773. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5774. },
  5775. {
  5776. "helper access to variable memory: size > 0 not allowed on NULL (!ARG_PTR_TO_MEM_OR_NULL)",
  5777. .insns = {
  5778. BPF_MOV64_IMM(BPF_REG_1, 0),
  5779. BPF_MOV64_IMM(BPF_REG_2, 1),
  5780. BPF_MOV64_IMM(BPF_REG_3, 0),
  5781. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5782. BPF_EXIT_INSN(),
  5783. },
  5784. .errstr = "R1 type=inv expected=fp",
  5785. .result = REJECT,
  5786. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5787. },
  5788. {
  5789. "helper access to variable memory: size = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
  5790. .insns = {
  5791. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5792. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  5793. BPF_MOV64_IMM(BPF_REG_2, 0),
  5794. BPF_MOV64_IMM(BPF_REG_3, 0),
  5795. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5796. BPF_EXIT_INSN(),
  5797. },
  5798. .result = ACCEPT,
  5799. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5800. },
  5801. {
  5802. "helper access to variable memory: size = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
  5803. .insns = {
  5804. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5805. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5806. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5807. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5808. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5809. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5810. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5811. BPF_MOV64_IMM(BPF_REG_2, 0),
  5812. BPF_MOV64_IMM(BPF_REG_3, 0),
  5813. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5814. BPF_EXIT_INSN(),
  5815. },
  5816. .fixup_map1 = { 3 },
  5817. .result = ACCEPT,
  5818. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5819. },
  5820. {
  5821. "helper access to variable memory: size possible = 0 allowed on != NULL stack pointer (!ARG_PTR_TO_MEM_OR_NULL)",
  5822. .insns = {
  5823. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5824. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5825. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5826. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5827. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5828. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5829. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  5830. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 4),
  5831. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5832. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  5833. BPF_MOV64_IMM(BPF_REG_3, 0),
  5834. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5835. BPF_EXIT_INSN(),
  5836. },
  5837. .fixup_map1 = { 3 },
  5838. .result = ACCEPT,
  5839. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5840. },
  5841. {
  5842. "helper access to variable memory: size possible = 0 allowed on != NULL map pointer (!ARG_PTR_TO_MEM_OR_NULL)",
  5843. .insns = {
  5844. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5845. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5846. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5847. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5848. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5849. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  5850. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5851. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  5852. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 8, 2),
  5853. BPF_MOV64_IMM(BPF_REG_3, 0),
  5854. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5855. BPF_EXIT_INSN(),
  5856. },
  5857. .fixup_map1 = { 3 },
  5858. .result = ACCEPT,
  5859. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5860. },
  5861. {
  5862. "helper access to variable memory: 8 bytes leak",
  5863. .insns = {
  5864. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5865. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5866. BPF_MOV64_IMM(BPF_REG_0, 0),
  5867. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5868. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5869. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5870. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5871. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5872. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5873. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5874. BPF_MOV64_IMM(BPF_REG_2, 1),
  5875. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5876. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5877. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63),
  5878. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  5879. BPF_MOV64_IMM(BPF_REG_3, 0),
  5880. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5881. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5882. BPF_EXIT_INSN(),
  5883. },
  5884. .errstr = "invalid indirect read from stack off -64+32 size 64",
  5885. .result = REJECT,
  5886. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5887. },
  5888. {
  5889. "helper access to variable memory: 8 bytes no leak (init memory)",
  5890. .insns = {
  5891. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5892. BPF_MOV64_IMM(BPF_REG_0, 0),
  5893. BPF_MOV64_IMM(BPF_REG_0, 0),
  5894. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5895. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5896. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5897. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5898. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  5899. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5900. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5901. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5902. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5903. BPF_MOV64_IMM(BPF_REG_2, 0),
  5904. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32),
  5905. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32),
  5906. BPF_MOV64_IMM(BPF_REG_3, 0),
  5907. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5908. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5909. BPF_EXIT_INSN(),
  5910. },
  5911. .result = ACCEPT,
  5912. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5913. },
  5914. {
  5915. "invalid and of negative number",
  5916. .insns = {
  5917. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5918. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5919. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5920. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5921. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5922. BPF_FUNC_map_lookup_elem),
  5923. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5924. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
  5925. BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4),
  5926. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  5927. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5928. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  5929. offsetof(struct test_val, foo)),
  5930. BPF_EXIT_INSN(),
  5931. },
  5932. .fixup_map2 = { 3 },
  5933. .errstr = "R0 max value is outside of the array range",
  5934. .result = REJECT,
  5935. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5936. },
  5937. {
  5938. "invalid range check",
  5939. .insns = {
  5940. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5941. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5942. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5943. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5944. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5945. BPF_FUNC_map_lookup_elem),
  5946. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12),
  5947. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  5948. BPF_MOV64_IMM(BPF_REG_9, 1),
  5949. BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2),
  5950. BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1),
  5951. BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1),
  5952. BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1),
  5953. BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1),
  5954. BPF_MOV32_IMM(BPF_REG_3, 1),
  5955. BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9),
  5956. BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000),
  5957. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  5958. BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0),
  5959. BPF_MOV64_REG(BPF_REG_0, 0),
  5960. BPF_EXIT_INSN(),
  5961. },
  5962. .fixup_map2 = { 3 },
  5963. .errstr = "R0 max value is outside of the array range",
  5964. .result = REJECT,
  5965. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5966. },
  5967. {
  5968. "map in map access",
  5969. .insns = {
  5970. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5971. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5972. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5973. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5974. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5975. BPF_FUNC_map_lookup_elem),
  5976. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  5977. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5978. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5979. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5980. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5981. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5982. BPF_FUNC_map_lookup_elem),
  5983. BPF_MOV64_REG(BPF_REG_0, 0),
  5984. BPF_EXIT_INSN(),
  5985. },
  5986. .fixup_map_in_map = { 3 },
  5987. .result = ACCEPT,
  5988. },
  5989. {
  5990. "invalid inner map pointer",
  5991. .insns = {
  5992. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5993. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5994. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5995. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5996. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5997. BPF_FUNC_map_lookup_elem),
  5998. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5999. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  6000. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6001. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  6002. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  6003. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  6004. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6005. BPF_FUNC_map_lookup_elem),
  6006. BPF_MOV64_REG(BPF_REG_0, 0),
  6007. BPF_EXIT_INSN(),
  6008. },
  6009. .fixup_map_in_map = { 3 },
  6010. .errstr = "R1 type=inv expected=map_ptr",
  6011. .errstr_unpriv = "R1 pointer arithmetic on CONST_PTR_TO_MAP prohibited",
  6012. .result = REJECT,
  6013. },
  6014. {
  6015. "forgot null checking on the inner map pointer",
  6016. .insns = {
  6017. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  6018. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6019. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  6020. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6021. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6022. BPF_FUNC_map_lookup_elem),
  6023. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  6024. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6025. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  6026. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  6027. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6028. BPF_FUNC_map_lookup_elem),
  6029. BPF_MOV64_REG(BPF_REG_0, 0),
  6030. BPF_EXIT_INSN(),
  6031. },
  6032. .fixup_map_in_map = { 3 },
  6033. .errstr = "R1 type=map_value_or_null expected=map_ptr",
  6034. .result = REJECT,
  6035. },
  6036. {
  6037. "ld_abs: check calling conv, r1",
  6038. .insns = {
  6039. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6040. BPF_MOV64_IMM(BPF_REG_1, 0),
  6041. BPF_LD_ABS(BPF_W, -0x200000),
  6042. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  6043. BPF_EXIT_INSN(),
  6044. },
  6045. .errstr = "R1 !read_ok",
  6046. .result = REJECT,
  6047. },
  6048. {
  6049. "ld_abs: check calling conv, r2",
  6050. .insns = {
  6051. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6052. BPF_MOV64_IMM(BPF_REG_2, 0),
  6053. BPF_LD_ABS(BPF_W, -0x200000),
  6054. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  6055. BPF_EXIT_INSN(),
  6056. },
  6057. .errstr = "R2 !read_ok",
  6058. .result = REJECT,
  6059. },
  6060. {
  6061. "ld_abs: check calling conv, r3",
  6062. .insns = {
  6063. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6064. BPF_MOV64_IMM(BPF_REG_3, 0),
  6065. BPF_LD_ABS(BPF_W, -0x200000),
  6066. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  6067. BPF_EXIT_INSN(),
  6068. },
  6069. .errstr = "R3 !read_ok",
  6070. .result = REJECT,
  6071. },
  6072. {
  6073. "ld_abs: check calling conv, r4",
  6074. .insns = {
  6075. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6076. BPF_MOV64_IMM(BPF_REG_4, 0),
  6077. BPF_LD_ABS(BPF_W, -0x200000),
  6078. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  6079. BPF_EXIT_INSN(),
  6080. },
  6081. .errstr = "R4 !read_ok",
  6082. .result = REJECT,
  6083. },
  6084. {
  6085. "ld_abs: check calling conv, r5",
  6086. .insns = {
  6087. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6088. BPF_MOV64_IMM(BPF_REG_5, 0),
  6089. BPF_LD_ABS(BPF_W, -0x200000),
  6090. BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
  6091. BPF_EXIT_INSN(),
  6092. },
  6093. .errstr = "R5 !read_ok",
  6094. .result = REJECT,
  6095. },
  6096. {
  6097. "ld_abs: check calling conv, r7",
  6098. .insns = {
  6099. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6100. BPF_MOV64_IMM(BPF_REG_7, 0),
  6101. BPF_LD_ABS(BPF_W, -0x200000),
  6102. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  6103. BPF_EXIT_INSN(),
  6104. },
  6105. .result = ACCEPT,
  6106. },
  6107. {
  6108. "ld_ind: check calling conv, r1",
  6109. .insns = {
  6110. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6111. BPF_MOV64_IMM(BPF_REG_1, 1),
  6112. BPF_LD_IND(BPF_W, BPF_REG_1, -0x200000),
  6113. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  6114. BPF_EXIT_INSN(),
  6115. },
  6116. .errstr = "R1 !read_ok",
  6117. .result = REJECT,
  6118. },
  6119. {
  6120. "ld_ind: check calling conv, r2",
  6121. .insns = {
  6122. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6123. BPF_MOV64_IMM(BPF_REG_2, 1),
  6124. BPF_LD_IND(BPF_W, BPF_REG_2, -0x200000),
  6125. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  6126. BPF_EXIT_INSN(),
  6127. },
  6128. .errstr = "R2 !read_ok",
  6129. .result = REJECT,
  6130. },
  6131. {
  6132. "ld_ind: check calling conv, r3",
  6133. .insns = {
  6134. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6135. BPF_MOV64_IMM(BPF_REG_3, 1),
  6136. BPF_LD_IND(BPF_W, BPF_REG_3, -0x200000),
  6137. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  6138. BPF_EXIT_INSN(),
  6139. },
  6140. .errstr = "R3 !read_ok",
  6141. .result = REJECT,
  6142. },
  6143. {
  6144. "ld_ind: check calling conv, r4",
  6145. .insns = {
  6146. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6147. BPF_MOV64_IMM(BPF_REG_4, 1),
  6148. BPF_LD_IND(BPF_W, BPF_REG_4, -0x200000),
  6149. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  6150. BPF_EXIT_INSN(),
  6151. },
  6152. .errstr = "R4 !read_ok",
  6153. .result = REJECT,
  6154. },
  6155. {
  6156. "ld_ind: check calling conv, r5",
  6157. .insns = {
  6158. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6159. BPF_MOV64_IMM(BPF_REG_5, 1),
  6160. BPF_LD_IND(BPF_W, BPF_REG_5, -0x200000),
  6161. BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
  6162. BPF_EXIT_INSN(),
  6163. },
  6164. .errstr = "R5 !read_ok",
  6165. .result = REJECT,
  6166. },
  6167. {
  6168. "ld_ind: check calling conv, r7",
  6169. .insns = {
  6170. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  6171. BPF_MOV64_IMM(BPF_REG_7, 1),
  6172. BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000),
  6173. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  6174. BPF_EXIT_INSN(),
  6175. },
  6176. .result = ACCEPT,
  6177. },
  6178. {
  6179. "check bpf_perf_event_data->sample_period byte load permitted",
  6180. .insns = {
  6181. BPF_MOV64_IMM(BPF_REG_0, 0),
  6182. #if __BYTE_ORDER == __LITTLE_ENDIAN
  6183. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  6184. offsetof(struct bpf_perf_event_data, sample_period)),
  6185. #else
  6186. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  6187. offsetof(struct bpf_perf_event_data, sample_period) + 7),
  6188. #endif
  6189. BPF_EXIT_INSN(),
  6190. },
  6191. .result = ACCEPT,
  6192. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  6193. },
  6194. {
  6195. "check bpf_perf_event_data->sample_period half load permitted",
  6196. .insns = {
  6197. BPF_MOV64_IMM(BPF_REG_0, 0),
  6198. #if __BYTE_ORDER == __LITTLE_ENDIAN
  6199. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6200. offsetof(struct bpf_perf_event_data, sample_period)),
  6201. #else
  6202. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6203. offsetof(struct bpf_perf_event_data, sample_period) + 6),
  6204. #endif
  6205. BPF_EXIT_INSN(),
  6206. },
  6207. .result = ACCEPT,
  6208. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  6209. },
  6210. {
  6211. "check bpf_perf_event_data->sample_period word load permitted",
  6212. .insns = {
  6213. BPF_MOV64_IMM(BPF_REG_0, 0),
  6214. #if __BYTE_ORDER == __LITTLE_ENDIAN
  6215. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  6216. offsetof(struct bpf_perf_event_data, sample_period)),
  6217. #else
  6218. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  6219. offsetof(struct bpf_perf_event_data, sample_period) + 4),
  6220. #endif
  6221. BPF_EXIT_INSN(),
  6222. },
  6223. .result = ACCEPT,
  6224. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  6225. },
  6226. {
  6227. "check bpf_perf_event_data->sample_period dword load permitted",
  6228. .insns = {
  6229. BPF_MOV64_IMM(BPF_REG_0, 0),
  6230. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  6231. offsetof(struct bpf_perf_event_data, sample_period)),
  6232. BPF_EXIT_INSN(),
  6233. },
  6234. .result = ACCEPT,
  6235. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  6236. },
  6237. {
  6238. "check skb->data half load not permitted",
  6239. .insns = {
  6240. BPF_MOV64_IMM(BPF_REG_0, 0),
  6241. #if __BYTE_ORDER == __LITTLE_ENDIAN
  6242. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6243. offsetof(struct __sk_buff, data)),
  6244. #else
  6245. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6246. offsetof(struct __sk_buff, data) + 2),
  6247. #endif
  6248. BPF_EXIT_INSN(),
  6249. },
  6250. .result = REJECT,
  6251. .errstr = "invalid bpf_context access",
  6252. },
  6253. {
  6254. "check skb->tc_classid half load not permitted for lwt prog",
  6255. .insns = {
  6256. BPF_MOV64_IMM(BPF_REG_0, 0),
  6257. #if __BYTE_ORDER == __LITTLE_ENDIAN
  6258. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6259. offsetof(struct __sk_buff, tc_classid)),
  6260. #else
  6261. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  6262. offsetof(struct __sk_buff, tc_classid) + 2),
  6263. #endif
  6264. BPF_EXIT_INSN(),
  6265. },
  6266. .result = REJECT,
  6267. .errstr = "invalid bpf_context access",
  6268. .prog_type = BPF_PROG_TYPE_LWT_IN,
  6269. },
  6270. {
  6271. "bounds checks mixing signed and unsigned, positive bounds",
  6272. .insns = {
  6273. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6274. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6275. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6276. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6277. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6278. BPF_FUNC_map_lookup_elem),
  6279. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  6280. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6281. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6282. BPF_MOV64_IMM(BPF_REG_2, 2),
  6283. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3),
  6284. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 4, 2),
  6285. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6286. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6287. BPF_MOV64_IMM(BPF_REG_0, 0),
  6288. BPF_EXIT_INSN(),
  6289. },
  6290. .fixup_map1 = { 3 },
  6291. .errstr = "R0 min value is negative",
  6292. .result = REJECT,
  6293. },
  6294. {
  6295. "bounds checks mixing signed and unsigned",
  6296. .insns = {
  6297. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6298. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6299. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6300. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6301. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6302. BPF_FUNC_map_lookup_elem),
  6303. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  6304. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6305. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6306. BPF_MOV64_IMM(BPF_REG_2, -1),
  6307. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
  6308. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6309. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6310. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6311. BPF_MOV64_IMM(BPF_REG_0, 0),
  6312. BPF_EXIT_INSN(),
  6313. },
  6314. .fixup_map1 = { 3 },
  6315. .errstr = "R0 min value is negative",
  6316. .result = REJECT,
  6317. },
  6318. {
  6319. "bounds checks mixing signed and unsigned, variant 2",
  6320. .insns = {
  6321. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6322. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6323. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6324. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6325. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6326. BPF_FUNC_map_lookup_elem),
  6327. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6328. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6329. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6330. BPF_MOV64_IMM(BPF_REG_2, -1),
  6331. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
  6332. BPF_MOV64_IMM(BPF_REG_8, 0),
  6333. BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_1),
  6334. BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
  6335. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  6336. BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
  6337. BPF_MOV64_IMM(BPF_REG_0, 0),
  6338. BPF_EXIT_INSN(),
  6339. },
  6340. .fixup_map1 = { 3 },
  6341. .errstr = "R8 invalid mem access 'inv'",
  6342. .result = REJECT,
  6343. },
  6344. {
  6345. "bounds checks mixing signed and unsigned, variant 3",
  6346. .insns = {
  6347. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6348. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6349. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6350. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6351. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6352. BPF_FUNC_map_lookup_elem),
  6353. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  6354. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6355. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6356. BPF_MOV64_IMM(BPF_REG_2, -1),
  6357. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4),
  6358. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  6359. BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
  6360. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  6361. BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
  6362. BPF_MOV64_IMM(BPF_REG_0, 0),
  6363. BPF_EXIT_INSN(),
  6364. },
  6365. .fixup_map1 = { 3 },
  6366. .errstr = "R8 invalid mem access 'inv'",
  6367. .result = REJECT,
  6368. },
  6369. {
  6370. "bounds checks mixing signed and unsigned, variant 4",
  6371. .insns = {
  6372. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6373. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6374. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6375. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6376. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6377. BPF_FUNC_map_lookup_elem),
  6378. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  6379. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6380. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6381. BPF_MOV64_IMM(BPF_REG_2, 1),
  6382. BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2),
  6383. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6384. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6385. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6386. BPF_MOV64_IMM(BPF_REG_0, 0),
  6387. BPF_EXIT_INSN(),
  6388. },
  6389. .fixup_map1 = { 3 },
  6390. .result = ACCEPT,
  6391. },
  6392. {
  6393. "bounds checks mixing signed and unsigned, variant 5",
  6394. .insns = {
  6395. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6396. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6397. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6398. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6399. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6400. BPF_FUNC_map_lookup_elem),
  6401. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6402. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6403. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6404. BPF_MOV64_IMM(BPF_REG_2, -1),
  6405. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
  6406. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 4),
  6407. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 4),
  6408. BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
  6409. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6410. BPF_MOV64_IMM(BPF_REG_0, 0),
  6411. BPF_EXIT_INSN(),
  6412. },
  6413. .fixup_map1 = { 3 },
  6414. .errstr = "R0 min value is negative",
  6415. .result = REJECT,
  6416. },
  6417. {
  6418. "bounds checks mixing signed and unsigned, variant 6",
  6419. .insns = {
  6420. BPF_MOV64_IMM(BPF_REG_2, 0),
  6421. BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),
  6422. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512),
  6423. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6424. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16),
  6425. BPF_MOV64_IMM(BPF_REG_6, -1),
  6426. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5),
  6427. BPF_JMP_IMM(BPF_JSGT, BPF_REG_4, 1, 4),
  6428. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
  6429. BPF_MOV64_IMM(BPF_REG_5, 0),
  6430. BPF_ST_MEM(BPF_H, BPF_REG_10, -512, 0),
  6431. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6432. BPF_FUNC_skb_load_bytes),
  6433. BPF_MOV64_IMM(BPF_REG_0, 0),
  6434. BPF_EXIT_INSN(),
  6435. },
  6436. .errstr = "R4 min value is negative, either use unsigned",
  6437. .result = REJECT,
  6438. },
  6439. {
  6440. "bounds checks mixing signed and unsigned, variant 7",
  6441. .insns = {
  6442. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6443. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6444. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6445. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6446. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6447. BPF_FUNC_map_lookup_elem),
  6448. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  6449. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6450. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6451. BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024),
  6452. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
  6453. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6454. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6455. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6456. BPF_MOV64_IMM(BPF_REG_0, 0),
  6457. BPF_EXIT_INSN(),
  6458. },
  6459. .fixup_map1 = { 3 },
  6460. .result = ACCEPT,
  6461. },
  6462. {
  6463. "bounds checks mixing signed and unsigned, variant 8",
  6464. .insns = {
  6465. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6466. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6467. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6468. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6469. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6470. BPF_FUNC_map_lookup_elem),
  6471. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6472. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6473. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6474. BPF_MOV64_IMM(BPF_REG_2, -1),
  6475. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  6476. BPF_MOV64_IMM(BPF_REG_0, 0),
  6477. BPF_EXIT_INSN(),
  6478. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6479. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6480. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6481. BPF_MOV64_IMM(BPF_REG_0, 0),
  6482. BPF_EXIT_INSN(),
  6483. },
  6484. .fixup_map1 = { 3 },
  6485. .errstr = "R0 min value is negative",
  6486. .result = REJECT,
  6487. },
  6488. {
  6489. "bounds checks mixing signed and unsigned, variant 9",
  6490. .insns = {
  6491. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6492. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6493. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6494. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6495. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6496. BPF_FUNC_map_lookup_elem),
  6497. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  6498. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6499. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6500. BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL),
  6501. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  6502. BPF_MOV64_IMM(BPF_REG_0, 0),
  6503. BPF_EXIT_INSN(),
  6504. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6505. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6506. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6507. BPF_MOV64_IMM(BPF_REG_0, 0),
  6508. BPF_EXIT_INSN(),
  6509. },
  6510. .fixup_map1 = { 3 },
  6511. .result = ACCEPT,
  6512. },
  6513. {
  6514. "bounds checks mixing signed and unsigned, variant 10",
  6515. .insns = {
  6516. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6517. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6518. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6519. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6520. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6521. BPF_FUNC_map_lookup_elem),
  6522. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6523. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6524. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6525. BPF_MOV64_IMM(BPF_REG_2, 0),
  6526. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  6527. BPF_MOV64_IMM(BPF_REG_0, 0),
  6528. BPF_EXIT_INSN(),
  6529. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6530. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6531. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6532. BPF_MOV64_IMM(BPF_REG_0, 0),
  6533. BPF_EXIT_INSN(),
  6534. },
  6535. .fixup_map1 = { 3 },
  6536. .errstr = "R0 min value is negative",
  6537. .result = REJECT,
  6538. },
  6539. {
  6540. "bounds checks mixing signed and unsigned, variant 11",
  6541. .insns = {
  6542. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6543. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6544. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6545. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6546. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6547. BPF_FUNC_map_lookup_elem),
  6548. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6549. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6550. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6551. BPF_MOV64_IMM(BPF_REG_2, -1),
  6552. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  6553. /* Dead branch. */
  6554. BPF_MOV64_IMM(BPF_REG_0, 0),
  6555. BPF_EXIT_INSN(),
  6556. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6557. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6558. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6559. BPF_MOV64_IMM(BPF_REG_0, 0),
  6560. BPF_EXIT_INSN(),
  6561. },
  6562. .fixup_map1 = { 3 },
  6563. .errstr = "R0 min value is negative",
  6564. .result = REJECT,
  6565. },
  6566. {
  6567. "bounds checks mixing signed and unsigned, variant 12",
  6568. .insns = {
  6569. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6570. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6571. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6572. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6573. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6574. BPF_FUNC_map_lookup_elem),
  6575. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6576. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6577. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6578. BPF_MOV64_IMM(BPF_REG_2, -6),
  6579. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  6580. BPF_MOV64_IMM(BPF_REG_0, 0),
  6581. BPF_EXIT_INSN(),
  6582. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6583. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6584. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6585. BPF_MOV64_IMM(BPF_REG_0, 0),
  6586. BPF_EXIT_INSN(),
  6587. },
  6588. .fixup_map1 = { 3 },
  6589. .errstr = "R0 min value is negative",
  6590. .result = REJECT,
  6591. },
  6592. {
  6593. "bounds checks mixing signed and unsigned, variant 13",
  6594. .insns = {
  6595. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6596. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6597. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6598. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6599. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6600. BPF_FUNC_map_lookup_elem),
  6601. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  6602. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6603. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6604. BPF_MOV64_IMM(BPF_REG_2, 2),
  6605. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  6606. BPF_MOV64_IMM(BPF_REG_7, 1),
  6607. BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 0, 2),
  6608. BPF_MOV64_IMM(BPF_REG_0, 0),
  6609. BPF_EXIT_INSN(),
  6610. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_1),
  6611. BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 4, 2),
  6612. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_7),
  6613. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6614. BPF_MOV64_IMM(BPF_REG_0, 0),
  6615. BPF_EXIT_INSN(),
  6616. },
  6617. .fixup_map1 = { 3 },
  6618. .errstr = "R0 min value is negative",
  6619. .result = REJECT,
  6620. },
  6621. {
  6622. "bounds checks mixing signed and unsigned, variant 14",
  6623. .insns = {
  6624. BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1,
  6625. offsetof(struct __sk_buff, mark)),
  6626. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6627. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6628. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6629. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6630. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6631. BPF_FUNC_map_lookup_elem),
  6632. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  6633. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6634. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6635. BPF_MOV64_IMM(BPF_REG_2, -1),
  6636. BPF_MOV64_IMM(BPF_REG_8, 2),
  6637. BPF_JMP_IMM(BPF_JEQ, BPF_REG_9, 42, 6),
  6638. BPF_JMP_REG(BPF_JSGT, BPF_REG_8, BPF_REG_1, 3),
  6639. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  6640. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6641. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6642. BPF_MOV64_IMM(BPF_REG_0, 0),
  6643. BPF_EXIT_INSN(),
  6644. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3),
  6645. BPF_JMP_IMM(BPF_JA, 0, 0, -7),
  6646. },
  6647. .fixup_map1 = { 4 },
  6648. .errstr = "R0 min value is negative",
  6649. .result = REJECT,
  6650. },
  6651. {
  6652. "bounds checks mixing signed and unsigned, variant 15",
  6653. .insns = {
  6654. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6655. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6656. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6657. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6658. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6659. BPF_FUNC_map_lookup_elem),
  6660. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  6661. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  6662. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  6663. BPF_MOV64_IMM(BPF_REG_2, -6),
  6664. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  6665. BPF_MOV64_IMM(BPF_REG_0, 0),
  6666. BPF_EXIT_INSN(),
  6667. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6668. BPF_JMP_IMM(BPF_JGT, BPF_REG_0, 1, 2),
  6669. BPF_MOV64_IMM(BPF_REG_0, 0),
  6670. BPF_EXIT_INSN(),
  6671. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  6672. BPF_MOV64_IMM(BPF_REG_0, 0),
  6673. BPF_EXIT_INSN(),
  6674. },
  6675. .fixup_map1 = { 3 },
  6676. .errstr_unpriv = "R0 pointer comparison prohibited",
  6677. .errstr = "R0 min value is negative",
  6678. .result = REJECT,
  6679. .result_unpriv = REJECT,
  6680. },
  6681. {
  6682. "subtraction bounds (map value) variant 1",
  6683. .insns = {
  6684. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6685. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6686. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6687. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6688. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6689. BPF_FUNC_map_lookup_elem),
  6690. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  6691. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
  6692. BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 7),
  6693. BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
  6694. BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 5),
  6695. BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
  6696. BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 56),
  6697. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6698. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
  6699. BPF_EXIT_INSN(),
  6700. BPF_MOV64_IMM(BPF_REG_0, 0),
  6701. BPF_EXIT_INSN(),
  6702. },
  6703. .fixup_map1 = { 3 },
  6704. .errstr = "R0 max value is outside of the array range",
  6705. .result = REJECT,
  6706. },
  6707. {
  6708. "subtraction bounds (map value) variant 2",
  6709. .insns = {
  6710. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6711. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6712. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6713. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6714. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6715. BPF_FUNC_map_lookup_elem),
  6716. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  6717. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
  6718. BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 6),
  6719. BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
  6720. BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 4),
  6721. BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
  6722. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6723. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
  6724. BPF_EXIT_INSN(),
  6725. BPF_MOV64_IMM(BPF_REG_0, 0),
  6726. BPF_EXIT_INSN(),
  6727. },
  6728. .fixup_map1 = { 3 },
  6729. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  6730. .result = REJECT,
  6731. },
  6732. {
  6733. "variable-offset ctx access",
  6734. .insns = {
  6735. /* Get an unknown value */
  6736. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
  6737. /* Make it small and 4-byte aligned */
  6738. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
  6739. /* add it to skb. We now have either &skb->len or
  6740. * &skb->pkt_type, but we don't know which
  6741. */
  6742. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
  6743. /* dereference it */
  6744. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  6745. BPF_EXIT_INSN(),
  6746. },
  6747. .errstr = "variable ctx access var_off=(0x0; 0x4)",
  6748. .result = REJECT,
  6749. .prog_type = BPF_PROG_TYPE_LWT_IN,
  6750. },
  6751. {
  6752. "variable-offset stack access",
  6753. .insns = {
  6754. /* Fill the top 8 bytes of the stack */
  6755. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6756. /* Get an unknown value */
  6757. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
  6758. /* Make it small and 4-byte aligned */
  6759. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
  6760. BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
  6761. /* add it to fp. We now have either fp-4 or fp-8, but
  6762. * we don't know which
  6763. */
  6764. BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
  6765. /* dereference it */
  6766. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0),
  6767. BPF_EXIT_INSN(),
  6768. },
  6769. .errstr = "variable stack access var_off=(0xfffffffffffffff8; 0x4)",
  6770. .result = REJECT,
  6771. .prog_type = BPF_PROG_TYPE_LWT_IN,
  6772. },
  6773. {
  6774. "liveness pruning and write screening",
  6775. .insns = {
  6776. /* Get an unknown value */
  6777. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
  6778. /* branch conditions teach us nothing about R2 */
  6779. BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
  6780. BPF_MOV64_IMM(BPF_REG_0, 0),
  6781. BPF_JMP_IMM(BPF_JGE, BPF_REG_2, 0, 1),
  6782. BPF_MOV64_IMM(BPF_REG_0, 0),
  6783. BPF_EXIT_INSN(),
  6784. },
  6785. .errstr = "R0 !read_ok",
  6786. .result = REJECT,
  6787. .prog_type = BPF_PROG_TYPE_LWT_IN,
  6788. },
  6789. {
  6790. "varlen_map_value_access pruning",
  6791. .insns = {
  6792. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  6793. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  6794. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  6795. BPF_LD_MAP_FD(BPF_REG_1, 0),
  6796. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6797. BPF_FUNC_map_lookup_elem),
  6798. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  6799. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  6800. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
  6801. BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
  6802. BPF_MOV32_IMM(BPF_REG_1, 0),
  6803. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  6804. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  6805. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  6806. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  6807. offsetof(struct test_val, foo)),
  6808. BPF_EXIT_INSN(),
  6809. },
  6810. .fixup_map2 = { 3 },
  6811. .errstr_unpriv = "R0 leaks addr",
  6812. .errstr = "R0 unbounded memory access",
  6813. .result_unpriv = REJECT,
  6814. .result = REJECT,
  6815. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  6816. },
  6817. {
  6818. "invalid 64-bit BPF_END",
  6819. .insns = {
  6820. BPF_MOV32_IMM(BPF_REG_0, 0),
  6821. {
  6822. .code = BPF_ALU64 | BPF_END | BPF_TO_LE,
  6823. .dst_reg = BPF_REG_0,
  6824. .src_reg = 0,
  6825. .off = 0,
  6826. .imm = 32,
  6827. },
  6828. BPF_EXIT_INSN(),
  6829. },
  6830. .errstr = "BPF_END uses reserved fields",
  6831. .result = REJECT,
  6832. },
  6833. {
  6834. "meta access, test1",
  6835. .insns = {
  6836. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6837. offsetof(struct xdp_md, data_meta)),
  6838. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6839. offsetof(struct xdp_md, data)),
  6840. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  6841. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6842. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  6843. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6844. BPF_MOV64_IMM(BPF_REG_0, 0),
  6845. BPF_EXIT_INSN(),
  6846. },
  6847. .result = ACCEPT,
  6848. .prog_type = BPF_PROG_TYPE_XDP,
  6849. },
  6850. {
  6851. "meta access, test2",
  6852. .insns = {
  6853. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6854. offsetof(struct xdp_md, data_meta)),
  6855. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6856. offsetof(struct xdp_md, data)),
  6857. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  6858. BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 8),
  6859. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  6860. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  6861. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  6862. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
  6863. BPF_MOV64_IMM(BPF_REG_0, 0),
  6864. BPF_EXIT_INSN(),
  6865. },
  6866. .result = REJECT,
  6867. .errstr = "invalid access to packet, off=-8",
  6868. .prog_type = BPF_PROG_TYPE_XDP,
  6869. },
  6870. {
  6871. "meta access, test3",
  6872. .insns = {
  6873. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6874. offsetof(struct xdp_md, data_meta)),
  6875. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6876. offsetof(struct xdp_md, data_end)),
  6877. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  6878. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6879. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  6880. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6881. BPF_MOV64_IMM(BPF_REG_0, 0),
  6882. BPF_EXIT_INSN(),
  6883. },
  6884. .result = REJECT,
  6885. .errstr = "invalid access to packet",
  6886. .prog_type = BPF_PROG_TYPE_XDP,
  6887. },
  6888. {
  6889. "meta access, test4",
  6890. .insns = {
  6891. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6892. offsetof(struct xdp_md, data_meta)),
  6893. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6894. offsetof(struct xdp_md, data_end)),
  6895. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  6896. offsetof(struct xdp_md, data)),
  6897. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  6898. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6899. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  6900. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6901. BPF_MOV64_IMM(BPF_REG_0, 0),
  6902. BPF_EXIT_INSN(),
  6903. },
  6904. .result = REJECT,
  6905. .errstr = "invalid access to packet",
  6906. .prog_type = BPF_PROG_TYPE_XDP,
  6907. },
  6908. {
  6909. "meta access, test5",
  6910. .insns = {
  6911. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6912. offsetof(struct xdp_md, data_meta)),
  6913. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  6914. offsetof(struct xdp_md, data)),
  6915. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  6916. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6917. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_4, 3),
  6918. BPF_MOV64_IMM(BPF_REG_2, -8),
  6919. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  6920. BPF_FUNC_xdp_adjust_meta),
  6921. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
  6922. BPF_MOV64_IMM(BPF_REG_0, 0),
  6923. BPF_EXIT_INSN(),
  6924. },
  6925. .result = REJECT,
  6926. .errstr = "R3 !read_ok",
  6927. .prog_type = BPF_PROG_TYPE_XDP,
  6928. },
  6929. {
  6930. "meta access, test6",
  6931. .insns = {
  6932. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6933. offsetof(struct xdp_md, data_meta)),
  6934. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6935. offsetof(struct xdp_md, data)),
  6936. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  6937. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6938. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  6939. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  6940. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_0, 1),
  6941. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6942. BPF_MOV64_IMM(BPF_REG_0, 0),
  6943. BPF_EXIT_INSN(),
  6944. },
  6945. .result = REJECT,
  6946. .errstr = "invalid access to packet",
  6947. .prog_type = BPF_PROG_TYPE_XDP,
  6948. },
  6949. {
  6950. "meta access, test7",
  6951. .insns = {
  6952. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6953. offsetof(struct xdp_md, data_meta)),
  6954. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6955. offsetof(struct xdp_md, data)),
  6956. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  6957. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  6958. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  6959. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  6960. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  6961. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6962. BPF_MOV64_IMM(BPF_REG_0, 0),
  6963. BPF_EXIT_INSN(),
  6964. },
  6965. .result = ACCEPT,
  6966. .prog_type = BPF_PROG_TYPE_XDP,
  6967. },
  6968. {
  6969. "meta access, test8",
  6970. .insns = {
  6971. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6972. offsetof(struct xdp_md, data_meta)),
  6973. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6974. offsetof(struct xdp_md, data)),
  6975. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  6976. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
  6977. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  6978. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6979. BPF_MOV64_IMM(BPF_REG_0, 0),
  6980. BPF_EXIT_INSN(),
  6981. },
  6982. .result = ACCEPT,
  6983. .prog_type = BPF_PROG_TYPE_XDP,
  6984. },
  6985. {
  6986. "meta access, test9",
  6987. .insns = {
  6988. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  6989. offsetof(struct xdp_md, data_meta)),
  6990. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  6991. offsetof(struct xdp_md, data)),
  6992. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  6993. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xFFFF),
  6994. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
  6995. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  6996. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  6997. BPF_MOV64_IMM(BPF_REG_0, 0),
  6998. BPF_EXIT_INSN(),
  6999. },
  7000. .result = REJECT,
  7001. .errstr = "invalid access to packet",
  7002. .prog_type = BPF_PROG_TYPE_XDP,
  7003. },
  7004. {
  7005. "meta access, test10",
  7006. .insns = {
  7007. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7008. offsetof(struct xdp_md, data_meta)),
  7009. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7010. offsetof(struct xdp_md, data)),
  7011. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  7012. offsetof(struct xdp_md, data_end)),
  7013. BPF_MOV64_IMM(BPF_REG_5, 42),
  7014. BPF_MOV64_IMM(BPF_REG_6, 24),
  7015. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
  7016. BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
  7017. BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
  7018. BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
  7019. BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_5),
  7020. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  7021. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  7022. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
  7023. BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_5, 1),
  7024. BPF_LDX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  7025. BPF_MOV64_IMM(BPF_REG_0, 0),
  7026. BPF_EXIT_INSN(),
  7027. },
  7028. .result = REJECT,
  7029. .errstr = "invalid access to packet",
  7030. .prog_type = BPF_PROG_TYPE_XDP,
  7031. },
  7032. {
  7033. "meta access, test11",
  7034. .insns = {
  7035. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7036. offsetof(struct xdp_md, data_meta)),
  7037. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7038. offsetof(struct xdp_md, data)),
  7039. BPF_MOV64_IMM(BPF_REG_5, 42),
  7040. BPF_MOV64_IMM(BPF_REG_6, 24),
  7041. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_5, -8),
  7042. BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
  7043. BPF_LDX_MEM(BPF_DW, BPF_REG_5, BPF_REG_10, -8),
  7044. BPF_JMP_IMM(BPF_JGT, BPF_REG_5, 100, 6),
  7045. BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_5),
  7046. BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
  7047. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  7048. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
  7049. BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_3, 1),
  7050. BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_5, 0),
  7051. BPF_MOV64_IMM(BPF_REG_0, 0),
  7052. BPF_EXIT_INSN(),
  7053. },
  7054. .result = ACCEPT,
  7055. .prog_type = BPF_PROG_TYPE_XDP,
  7056. },
  7057. {
  7058. "meta access, test12",
  7059. .insns = {
  7060. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7061. offsetof(struct xdp_md, data_meta)),
  7062. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7063. offsetof(struct xdp_md, data)),
  7064. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  7065. offsetof(struct xdp_md, data_end)),
  7066. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  7067. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
  7068. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 5),
  7069. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 0),
  7070. BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
  7071. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 16),
  7072. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 1),
  7073. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  7074. BPF_MOV64_IMM(BPF_REG_0, 0),
  7075. BPF_EXIT_INSN(),
  7076. },
  7077. .result = ACCEPT,
  7078. .prog_type = BPF_PROG_TYPE_XDP,
  7079. },
  7080. {
  7081. "arithmetic ops make PTR_TO_CTX unusable",
  7082. .insns = {
  7083. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  7084. offsetof(struct __sk_buff, data) -
  7085. offsetof(struct __sk_buff, mark)),
  7086. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  7087. offsetof(struct __sk_buff, mark)),
  7088. BPF_EXIT_INSN(),
  7089. },
  7090. .errstr = "dereference of modified ctx ptr R1 off=68+8, ctx+const is allowed, ctx+const+const is not",
  7091. .result = REJECT,
  7092. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  7093. },
  7094. {
  7095. "XDP pkt read, pkt_end mangling, bad access 1",
  7096. .insns = {
  7097. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7098. offsetof(struct xdp_md, data)),
  7099. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7100. offsetof(struct xdp_md, data_end)),
  7101. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7102. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7103. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 8),
  7104. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7105. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7106. BPF_MOV64_IMM(BPF_REG_0, 0),
  7107. BPF_EXIT_INSN(),
  7108. },
  7109. .errstr = "R1 offset is outside of the packet",
  7110. .result = REJECT,
  7111. .prog_type = BPF_PROG_TYPE_XDP,
  7112. },
  7113. {
  7114. "XDP pkt read, pkt_end mangling, bad access 2",
  7115. .insns = {
  7116. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7117. offsetof(struct xdp_md, data)),
  7118. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7119. offsetof(struct xdp_md, data_end)),
  7120. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7121. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7122. BPF_ALU64_IMM(BPF_SUB, BPF_REG_3, 8),
  7123. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7124. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7125. BPF_MOV64_IMM(BPF_REG_0, 0),
  7126. BPF_EXIT_INSN(),
  7127. },
  7128. .errstr = "R1 offset is outside of the packet",
  7129. .result = REJECT,
  7130. .prog_type = BPF_PROG_TYPE_XDP,
  7131. },
  7132. {
  7133. "XDP pkt read, pkt_data' > pkt_end, good access",
  7134. .insns = {
  7135. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7136. offsetof(struct xdp_md, data)),
  7137. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7138. offsetof(struct xdp_md, data_end)),
  7139. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7140. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7141. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7142. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7143. BPF_MOV64_IMM(BPF_REG_0, 0),
  7144. BPF_EXIT_INSN(),
  7145. },
  7146. .result = ACCEPT,
  7147. .prog_type = BPF_PROG_TYPE_XDP,
  7148. },
  7149. {
  7150. "XDP pkt read, pkt_data' > pkt_end, bad access 1",
  7151. .insns = {
  7152. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7153. offsetof(struct xdp_md, data)),
  7154. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7155. offsetof(struct xdp_md, data_end)),
  7156. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7157. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7158. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7159. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7160. BPF_MOV64_IMM(BPF_REG_0, 0),
  7161. BPF_EXIT_INSN(),
  7162. },
  7163. .errstr = "R1 offset is outside of the packet",
  7164. .result = REJECT,
  7165. .prog_type = BPF_PROG_TYPE_XDP,
  7166. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7167. },
  7168. {
  7169. "XDP pkt read, pkt_data' > pkt_end, bad access 2",
  7170. .insns = {
  7171. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7172. offsetof(struct xdp_md, data)),
  7173. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7174. offsetof(struct xdp_md, data_end)),
  7175. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7176. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7177. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
  7178. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7179. BPF_MOV64_IMM(BPF_REG_0, 0),
  7180. BPF_EXIT_INSN(),
  7181. },
  7182. .errstr = "R1 offset is outside of the packet",
  7183. .result = REJECT,
  7184. .prog_type = BPF_PROG_TYPE_XDP,
  7185. },
  7186. {
  7187. "XDP pkt read, pkt_end > pkt_data', good access",
  7188. .insns = {
  7189. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7190. offsetof(struct xdp_md, data)),
  7191. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7192. offsetof(struct xdp_md, data_end)),
  7193. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7194. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7195. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7196. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7197. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7198. BPF_MOV64_IMM(BPF_REG_0, 0),
  7199. BPF_EXIT_INSN(),
  7200. },
  7201. .result = ACCEPT,
  7202. .prog_type = BPF_PROG_TYPE_XDP,
  7203. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7204. },
  7205. {
  7206. "XDP pkt read, pkt_end > pkt_data', bad access 1",
  7207. .insns = {
  7208. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7209. offsetof(struct xdp_md, data)),
  7210. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7211. offsetof(struct xdp_md, data_end)),
  7212. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7213. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7214. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7215. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7216. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7217. BPF_MOV64_IMM(BPF_REG_0, 0),
  7218. BPF_EXIT_INSN(),
  7219. },
  7220. .errstr = "R1 offset is outside of the packet",
  7221. .result = REJECT,
  7222. .prog_type = BPF_PROG_TYPE_XDP,
  7223. },
  7224. {
  7225. "XDP pkt read, pkt_end > pkt_data', bad access 2",
  7226. .insns = {
  7227. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7228. offsetof(struct xdp_md, data)),
  7229. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7230. offsetof(struct xdp_md, data_end)),
  7231. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7232. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7233. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7234. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7235. BPF_MOV64_IMM(BPF_REG_0, 0),
  7236. BPF_EXIT_INSN(),
  7237. },
  7238. .errstr = "R1 offset is outside of the packet",
  7239. .result = REJECT,
  7240. .prog_type = BPF_PROG_TYPE_XDP,
  7241. },
  7242. {
  7243. "XDP pkt read, pkt_data' < pkt_end, good access",
  7244. .insns = {
  7245. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7246. offsetof(struct xdp_md, data)),
  7247. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7248. offsetof(struct xdp_md, data_end)),
  7249. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7250. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7251. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7252. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7253. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7254. BPF_MOV64_IMM(BPF_REG_0, 0),
  7255. BPF_EXIT_INSN(),
  7256. },
  7257. .result = ACCEPT,
  7258. .prog_type = BPF_PROG_TYPE_XDP,
  7259. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7260. },
  7261. {
  7262. "XDP pkt read, pkt_data' < pkt_end, bad access 1",
  7263. .insns = {
  7264. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7265. offsetof(struct xdp_md, data)),
  7266. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7267. offsetof(struct xdp_md, data_end)),
  7268. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7269. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7270. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7271. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7272. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7273. BPF_MOV64_IMM(BPF_REG_0, 0),
  7274. BPF_EXIT_INSN(),
  7275. },
  7276. .errstr = "R1 offset is outside of the packet",
  7277. .result = REJECT,
  7278. .prog_type = BPF_PROG_TYPE_XDP,
  7279. },
  7280. {
  7281. "XDP pkt read, pkt_data' < pkt_end, bad access 2",
  7282. .insns = {
  7283. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7284. offsetof(struct xdp_md, data)),
  7285. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7286. offsetof(struct xdp_md, data_end)),
  7287. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7288. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7289. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7290. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7291. BPF_MOV64_IMM(BPF_REG_0, 0),
  7292. BPF_EXIT_INSN(),
  7293. },
  7294. .errstr = "R1 offset is outside of the packet",
  7295. .result = REJECT,
  7296. .prog_type = BPF_PROG_TYPE_XDP,
  7297. },
  7298. {
  7299. "XDP pkt read, pkt_end < pkt_data', good access",
  7300. .insns = {
  7301. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7302. offsetof(struct xdp_md, data)),
  7303. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7304. offsetof(struct xdp_md, data_end)),
  7305. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7306. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7307. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
  7308. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7309. BPF_MOV64_IMM(BPF_REG_0, 0),
  7310. BPF_EXIT_INSN(),
  7311. },
  7312. .result = ACCEPT,
  7313. .prog_type = BPF_PROG_TYPE_XDP,
  7314. },
  7315. {
  7316. "XDP pkt read, pkt_end < pkt_data', bad access 1",
  7317. .insns = {
  7318. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7319. offsetof(struct xdp_md, data)),
  7320. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7321. offsetof(struct xdp_md, data_end)),
  7322. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7323. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7324. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
  7325. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7326. BPF_MOV64_IMM(BPF_REG_0, 0),
  7327. BPF_EXIT_INSN(),
  7328. },
  7329. .errstr = "R1 offset is outside of the packet",
  7330. .result = REJECT,
  7331. .prog_type = BPF_PROG_TYPE_XDP,
  7332. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7333. },
  7334. {
  7335. "XDP pkt read, pkt_end < pkt_data', bad access 2",
  7336. .insns = {
  7337. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7338. offsetof(struct xdp_md, data)),
  7339. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7340. offsetof(struct xdp_md, data_end)),
  7341. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7342. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7343. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
  7344. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7345. BPF_MOV64_IMM(BPF_REG_0, 0),
  7346. BPF_EXIT_INSN(),
  7347. },
  7348. .errstr = "R1 offset is outside of the packet",
  7349. .result = REJECT,
  7350. .prog_type = BPF_PROG_TYPE_XDP,
  7351. },
  7352. {
  7353. "XDP pkt read, pkt_data' >= pkt_end, good access",
  7354. .insns = {
  7355. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7356. offsetof(struct xdp_md, data)),
  7357. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7358. offsetof(struct xdp_md, data_end)),
  7359. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7360. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7361. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
  7362. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7363. BPF_MOV64_IMM(BPF_REG_0, 0),
  7364. BPF_EXIT_INSN(),
  7365. },
  7366. .result = ACCEPT,
  7367. .prog_type = BPF_PROG_TYPE_XDP,
  7368. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7369. },
  7370. {
  7371. "XDP pkt read, pkt_data' >= pkt_end, bad access 1",
  7372. .insns = {
  7373. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7374. offsetof(struct xdp_md, data)),
  7375. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7376. offsetof(struct xdp_md, data_end)),
  7377. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7378. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7379. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
  7380. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7381. BPF_MOV64_IMM(BPF_REG_0, 0),
  7382. BPF_EXIT_INSN(),
  7383. },
  7384. .errstr = "R1 offset is outside of the packet",
  7385. .result = REJECT,
  7386. .prog_type = BPF_PROG_TYPE_XDP,
  7387. },
  7388. {
  7389. "XDP pkt read, pkt_data' >= pkt_end, bad access 2",
  7390. .insns = {
  7391. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7392. offsetof(struct xdp_md, data)),
  7393. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7394. offsetof(struct xdp_md, data_end)),
  7395. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7396. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7397. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
  7398. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7399. BPF_MOV64_IMM(BPF_REG_0, 0),
  7400. BPF_EXIT_INSN(),
  7401. },
  7402. .errstr = "R1 offset is outside of the packet",
  7403. .result = REJECT,
  7404. .prog_type = BPF_PROG_TYPE_XDP,
  7405. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7406. },
  7407. {
  7408. "XDP pkt read, pkt_end >= pkt_data', good access",
  7409. .insns = {
  7410. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7411. offsetof(struct xdp_md, data)),
  7412. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7413. offsetof(struct xdp_md, data_end)),
  7414. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7415. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7416. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7417. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7418. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7419. BPF_MOV64_IMM(BPF_REG_0, 0),
  7420. BPF_EXIT_INSN(),
  7421. },
  7422. .result = ACCEPT,
  7423. .prog_type = BPF_PROG_TYPE_XDP,
  7424. },
  7425. {
  7426. "XDP pkt read, pkt_end >= pkt_data', bad access 1",
  7427. .insns = {
  7428. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7429. offsetof(struct xdp_md, data)),
  7430. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7431. offsetof(struct xdp_md, data_end)),
  7432. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7433. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7434. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7435. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7436. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7437. BPF_MOV64_IMM(BPF_REG_0, 0),
  7438. BPF_EXIT_INSN(),
  7439. },
  7440. .errstr = "R1 offset is outside of the packet",
  7441. .result = REJECT,
  7442. .prog_type = BPF_PROG_TYPE_XDP,
  7443. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7444. },
  7445. {
  7446. "XDP pkt read, pkt_end >= pkt_data', bad access 2",
  7447. .insns = {
  7448. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7449. offsetof(struct xdp_md, data)),
  7450. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7451. offsetof(struct xdp_md, data_end)),
  7452. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7453. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7454. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7455. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7456. BPF_MOV64_IMM(BPF_REG_0, 0),
  7457. BPF_EXIT_INSN(),
  7458. },
  7459. .errstr = "R1 offset is outside of the packet",
  7460. .result = REJECT,
  7461. .prog_type = BPF_PROG_TYPE_XDP,
  7462. },
  7463. {
  7464. "XDP pkt read, pkt_data' <= pkt_end, good access",
  7465. .insns = {
  7466. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7467. offsetof(struct xdp_md, data)),
  7468. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7469. offsetof(struct xdp_md, data_end)),
  7470. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7471. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7472. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7473. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7474. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7475. BPF_MOV64_IMM(BPF_REG_0, 0),
  7476. BPF_EXIT_INSN(),
  7477. },
  7478. .result = ACCEPT,
  7479. .prog_type = BPF_PROG_TYPE_XDP,
  7480. },
  7481. {
  7482. "XDP pkt read, pkt_data' <= pkt_end, bad access 1",
  7483. .insns = {
  7484. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7485. offsetof(struct xdp_md, data)),
  7486. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7487. offsetof(struct xdp_md, data_end)),
  7488. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7489. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7490. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7491. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7492. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7493. BPF_MOV64_IMM(BPF_REG_0, 0),
  7494. BPF_EXIT_INSN(),
  7495. },
  7496. .errstr = "R1 offset is outside of the packet",
  7497. .result = REJECT,
  7498. .prog_type = BPF_PROG_TYPE_XDP,
  7499. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7500. },
  7501. {
  7502. "XDP pkt read, pkt_data' <= pkt_end, bad access 2",
  7503. .insns = {
  7504. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7505. offsetof(struct xdp_md, data)),
  7506. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7507. offsetof(struct xdp_md, data_end)),
  7508. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7509. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7510. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7511. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7512. BPF_MOV64_IMM(BPF_REG_0, 0),
  7513. BPF_EXIT_INSN(),
  7514. },
  7515. .errstr = "R1 offset is outside of the packet",
  7516. .result = REJECT,
  7517. .prog_type = BPF_PROG_TYPE_XDP,
  7518. },
  7519. {
  7520. "XDP pkt read, pkt_end <= pkt_data', good access",
  7521. .insns = {
  7522. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7523. offsetof(struct xdp_md, data)),
  7524. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7525. offsetof(struct xdp_md, data_end)),
  7526. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7527. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7528. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
  7529. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7530. BPF_MOV64_IMM(BPF_REG_0, 0),
  7531. BPF_EXIT_INSN(),
  7532. },
  7533. .result = ACCEPT,
  7534. .prog_type = BPF_PROG_TYPE_XDP,
  7535. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7536. },
  7537. {
  7538. "XDP pkt read, pkt_end <= pkt_data', bad access 1",
  7539. .insns = {
  7540. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7541. offsetof(struct xdp_md, data)),
  7542. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7543. offsetof(struct xdp_md, data_end)),
  7544. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7545. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7546. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
  7547. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7548. BPF_MOV64_IMM(BPF_REG_0, 0),
  7549. BPF_EXIT_INSN(),
  7550. },
  7551. .errstr = "R1 offset is outside of the packet",
  7552. .result = REJECT,
  7553. .prog_type = BPF_PROG_TYPE_XDP,
  7554. },
  7555. {
  7556. "XDP pkt read, pkt_end <= pkt_data', bad access 2",
  7557. .insns = {
  7558. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7559. offsetof(struct xdp_md, data)),
  7560. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7561. offsetof(struct xdp_md, data_end)),
  7562. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7563. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7564. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
  7565. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7566. BPF_MOV64_IMM(BPF_REG_0, 0),
  7567. BPF_EXIT_INSN(),
  7568. },
  7569. .errstr = "R1 offset is outside of the packet",
  7570. .result = REJECT,
  7571. .prog_type = BPF_PROG_TYPE_XDP,
  7572. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7573. },
  7574. {
  7575. "XDP pkt read, pkt_meta' > pkt_data, good access",
  7576. .insns = {
  7577. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7578. offsetof(struct xdp_md, data_meta)),
  7579. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7580. offsetof(struct xdp_md, data)),
  7581. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7582. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7583. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7584. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7585. BPF_MOV64_IMM(BPF_REG_0, 0),
  7586. BPF_EXIT_INSN(),
  7587. },
  7588. .result = ACCEPT,
  7589. .prog_type = BPF_PROG_TYPE_XDP,
  7590. },
  7591. {
  7592. "XDP pkt read, pkt_meta' > pkt_data, bad access 1",
  7593. .insns = {
  7594. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7595. offsetof(struct xdp_md, data_meta)),
  7596. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7597. offsetof(struct xdp_md, data)),
  7598. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7599. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7600. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  7601. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7602. BPF_MOV64_IMM(BPF_REG_0, 0),
  7603. BPF_EXIT_INSN(),
  7604. },
  7605. .errstr = "R1 offset is outside of the packet",
  7606. .result = REJECT,
  7607. .prog_type = BPF_PROG_TYPE_XDP,
  7608. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7609. },
  7610. {
  7611. "XDP pkt read, pkt_meta' > pkt_data, bad access 2",
  7612. .insns = {
  7613. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7614. offsetof(struct xdp_md, data_meta)),
  7615. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7616. offsetof(struct xdp_md, data)),
  7617. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7618. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7619. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 0),
  7620. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7621. BPF_MOV64_IMM(BPF_REG_0, 0),
  7622. BPF_EXIT_INSN(),
  7623. },
  7624. .errstr = "R1 offset is outside of the packet",
  7625. .result = REJECT,
  7626. .prog_type = BPF_PROG_TYPE_XDP,
  7627. },
  7628. {
  7629. "XDP pkt read, pkt_data > pkt_meta', good access",
  7630. .insns = {
  7631. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7632. offsetof(struct xdp_md, data_meta)),
  7633. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7634. offsetof(struct xdp_md, data)),
  7635. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7636. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7637. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7638. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7639. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7640. BPF_MOV64_IMM(BPF_REG_0, 0),
  7641. BPF_EXIT_INSN(),
  7642. },
  7643. .result = ACCEPT,
  7644. .prog_type = BPF_PROG_TYPE_XDP,
  7645. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7646. },
  7647. {
  7648. "XDP pkt read, pkt_data > pkt_meta', bad access 1",
  7649. .insns = {
  7650. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7651. offsetof(struct xdp_md, data_meta)),
  7652. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7653. offsetof(struct xdp_md, data)),
  7654. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7655. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7656. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7657. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7658. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7659. BPF_MOV64_IMM(BPF_REG_0, 0),
  7660. BPF_EXIT_INSN(),
  7661. },
  7662. .errstr = "R1 offset is outside of the packet",
  7663. .result = REJECT,
  7664. .prog_type = BPF_PROG_TYPE_XDP,
  7665. },
  7666. {
  7667. "XDP pkt read, pkt_data > pkt_meta', bad access 2",
  7668. .insns = {
  7669. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7670. offsetof(struct xdp_md, data_meta)),
  7671. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7672. offsetof(struct xdp_md, data)),
  7673. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7674. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7675. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_1, 1),
  7676. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7677. BPF_MOV64_IMM(BPF_REG_0, 0),
  7678. BPF_EXIT_INSN(),
  7679. },
  7680. .errstr = "R1 offset is outside of the packet",
  7681. .result = REJECT,
  7682. .prog_type = BPF_PROG_TYPE_XDP,
  7683. },
  7684. {
  7685. "XDP pkt read, pkt_meta' < pkt_data, good access",
  7686. .insns = {
  7687. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7688. offsetof(struct xdp_md, data_meta)),
  7689. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7690. offsetof(struct xdp_md, data)),
  7691. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7692. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7693. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7694. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7695. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7696. BPF_MOV64_IMM(BPF_REG_0, 0),
  7697. BPF_EXIT_INSN(),
  7698. },
  7699. .result = ACCEPT,
  7700. .prog_type = BPF_PROG_TYPE_XDP,
  7701. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7702. },
  7703. {
  7704. "XDP pkt read, pkt_meta' < pkt_data, bad access 1",
  7705. .insns = {
  7706. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7707. offsetof(struct xdp_md, data_meta)),
  7708. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7709. offsetof(struct xdp_md, data)),
  7710. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7711. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7712. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7713. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7714. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7715. BPF_MOV64_IMM(BPF_REG_0, 0),
  7716. BPF_EXIT_INSN(),
  7717. },
  7718. .errstr = "R1 offset is outside of the packet",
  7719. .result = REJECT,
  7720. .prog_type = BPF_PROG_TYPE_XDP,
  7721. },
  7722. {
  7723. "XDP pkt read, pkt_meta' < pkt_data, bad access 2",
  7724. .insns = {
  7725. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7726. offsetof(struct xdp_md, data_meta)),
  7727. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7728. offsetof(struct xdp_md, data)),
  7729. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7730. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7731. BPF_JMP_REG(BPF_JLT, BPF_REG_1, BPF_REG_3, 1),
  7732. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7733. BPF_MOV64_IMM(BPF_REG_0, 0),
  7734. BPF_EXIT_INSN(),
  7735. },
  7736. .errstr = "R1 offset is outside of the packet",
  7737. .result = REJECT,
  7738. .prog_type = BPF_PROG_TYPE_XDP,
  7739. },
  7740. {
  7741. "XDP pkt read, pkt_data < pkt_meta', good access",
  7742. .insns = {
  7743. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7744. offsetof(struct xdp_md, data_meta)),
  7745. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7746. offsetof(struct xdp_md, data)),
  7747. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7748. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7749. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
  7750. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7751. BPF_MOV64_IMM(BPF_REG_0, 0),
  7752. BPF_EXIT_INSN(),
  7753. },
  7754. .result = ACCEPT,
  7755. .prog_type = BPF_PROG_TYPE_XDP,
  7756. },
  7757. {
  7758. "XDP pkt read, pkt_data < pkt_meta', bad access 1",
  7759. .insns = {
  7760. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7761. offsetof(struct xdp_md, data_meta)),
  7762. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7763. offsetof(struct xdp_md, data)),
  7764. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7765. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7766. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 1),
  7767. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7768. BPF_MOV64_IMM(BPF_REG_0, 0),
  7769. BPF_EXIT_INSN(),
  7770. },
  7771. .errstr = "R1 offset is outside of the packet",
  7772. .result = REJECT,
  7773. .prog_type = BPF_PROG_TYPE_XDP,
  7774. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7775. },
  7776. {
  7777. "XDP pkt read, pkt_data < pkt_meta', bad access 2",
  7778. .insns = {
  7779. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7780. offsetof(struct xdp_md, data_meta)),
  7781. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7782. offsetof(struct xdp_md, data)),
  7783. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7784. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7785. BPF_JMP_REG(BPF_JLT, BPF_REG_3, BPF_REG_1, 0),
  7786. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7787. BPF_MOV64_IMM(BPF_REG_0, 0),
  7788. BPF_EXIT_INSN(),
  7789. },
  7790. .errstr = "R1 offset is outside of the packet",
  7791. .result = REJECT,
  7792. .prog_type = BPF_PROG_TYPE_XDP,
  7793. },
  7794. {
  7795. "XDP pkt read, pkt_meta' >= pkt_data, good access",
  7796. .insns = {
  7797. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7798. offsetof(struct xdp_md, data_meta)),
  7799. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7800. offsetof(struct xdp_md, data)),
  7801. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7802. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7803. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
  7804. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7805. BPF_MOV64_IMM(BPF_REG_0, 0),
  7806. BPF_EXIT_INSN(),
  7807. },
  7808. .result = ACCEPT,
  7809. .prog_type = BPF_PROG_TYPE_XDP,
  7810. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7811. },
  7812. {
  7813. "XDP pkt read, pkt_meta' >= pkt_data, bad access 1",
  7814. .insns = {
  7815. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7816. offsetof(struct xdp_md, data_meta)),
  7817. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7818. offsetof(struct xdp_md, data)),
  7819. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7820. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7821. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 1),
  7822. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7823. BPF_MOV64_IMM(BPF_REG_0, 0),
  7824. BPF_EXIT_INSN(),
  7825. },
  7826. .errstr = "R1 offset is outside of the packet",
  7827. .result = REJECT,
  7828. .prog_type = BPF_PROG_TYPE_XDP,
  7829. },
  7830. {
  7831. "XDP pkt read, pkt_meta' >= pkt_data, bad access 2",
  7832. .insns = {
  7833. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7834. offsetof(struct xdp_md, data_meta)),
  7835. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7836. offsetof(struct xdp_md, data)),
  7837. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7838. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7839. BPF_JMP_REG(BPF_JGE, BPF_REG_1, BPF_REG_3, 0),
  7840. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7841. BPF_MOV64_IMM(BPF_REG_0, 0),
  7842. BPF_EXIT_INSN(),
  7843. },
  7844. .errstr = "R1 offset is outside of the packet",
  7845. .result = REJECT,
  7846. .prog_type = BPF_PROG_TYPE_XDP,
  7847. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7848. },
  7849. {
  7850. "XDP pkt read, pkt_data >= pkt_meta', good access",
  7851. .insns = {
  7852. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7853. offsetof(struct xdp_md, data_meta)),
  7854. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7855. offsetof(struct xdp_md, data)),
  7856. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7857. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7858. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7859. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7860. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7861. BPF_MOV64_IMM(BPF_REG_0, 0),
  7862. BPF_EXIT_INSN(),
  7863. },
  7864. .result = ACCEPT,
  7865. .prog_type = BPF_PROG_TYPE_XDP,
  7866. },
  7867. {
  7868. "XDP pkt read, pkt_data >= pkt_meta', bad access 1",
  7869. .insns = {
  7870. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7871. offsetof(struct xdp_md, data_meta)),
  7872. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7873. offsetof(struct xdp_md, data)),
  7874. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7875. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7876. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7877. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7878. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7879. BPF_MOV64_IMM(BPF_REG_0, 0),
  7880. BPF_EXIT_INSN(),
  7881. },
  7882. .errstr = "R1 offset is outside of the packet",
  7883. .result = REJECT,
  7884. .prog_type = BPF_PROG_TYPE_XDP,
  7885. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7886. },
  7887. {
  7888. "XDP pkt read, pkt_data >= pkt_meta', bad access 2",
  7889. .insns = {
  7890. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7891. offsetof(struct xdp_md, data_meta)),
  7892. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7893. offsetof(struct xdp_md, data)),
  7894. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7895. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7896. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_1, 1),
  7897. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7898. BPF_MOV64_IMM(BPF_REG_0, 0),
  7899. BPF_EXIT_INSN(),
  7900. },
  7901. .errstr = "R1 offset is outside of the packet",
  7902. .result = REJECT,
  7903. .prog_type = BPF_PROG_TYPE_XDP,
  7904. },
  7905. {
  7906. "XDP pkt read, pkt_meta' <= pkt_data, good access",
  7907. .insns = {
  7908. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7909. offsetof(struct xdp_md, data_meta)),
  7910. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7911. offsetof(struct xdp_md, data)),
  7912. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7913. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7914. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7915. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7916. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7917. BPF_MOV64_IMM(BPF_REG_0, 0),
  7918. BPF_EXIT_INSN(),
  7919. },
  7920. .result = ACCEPT,
  7921. .prog_type = BPF_PROG_TYPE_XDP,
  7922. },
  7923. {
  7924. "XDP pkt read, pkt_meta' <= pkt_data, bad access 1",
  7925. .insns = {
  7926. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7927. offsetof(struct xdp_md, data_meta)),
  7928. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7929. offsetof(struct xdp_md, data)),
  7930. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7931. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7932. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7933. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  7934. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -4),
  7935. BPF_MOV64_IMM(BPF_REG_0, 0),
  7936. BPF_EXIT_INSN(),
  7937. },
  7938. .errstr = "R1 offset is outside of the packet",
  7939. .result = REJECT,
  7940. .prog_type = BPF_PROG_TYPE_XDP,
  7941. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7942. },
  7943. {
  7944. "XDP pkt read, pkt_meta' <= pkt_data, bad access 2",
  7945. .insns = {
  7946. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7947. offsetof(struct xdp_md, data_meta)),
  7948. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7949. offsetof(struct xdp_md, data)),
  7950. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7951. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7952. BPF_JMP_REG(BPF_JLE, BPF_REG_1, BPF_REG_3, 1),
  7953. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7954. BPF_MOV64_IMM(BPF_REG_0, 0),
  7955. BPF_EXIT_INSN(),
  7956. },
  7957. .errstr = "R1 offset is outside of the packet",
  7958. .result = REJECT,
  7959. .prog_type = BPF_PROG_TYPE_XDP,
  7960. },
  7961. {
  7962. "XDP pkt read, pkt_data <= pkt_meta', good access",
  7963. .insns = {
  7964. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7965. offsetof(struct xdp_md, data_meta)),
  7966. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7967. offsetof(struct xdp_md, data)),
  7968. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7969. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7970. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
  7971. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  7972. BPF_MOV64_IMM(BPF_REG_0, 0),
  7973. BPF_EXIT_INSN(),
  7974. },
  7975. .result = ACCEPT,
  7976. .prog_type = BPF_PROG_TYPE_XDP,
  7977. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  7978. },
  7979. {
  7980. "XDP pkt read, pkt_data <= pkt_meta', bad access 1",
  7981. .insns = {
  7982. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  7983. offsetof(struct xdp_md, data_meta)),
  7984. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  7985. offsetof(struct xdp_md, data)),
  7986. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  7987. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  7988. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 1),
  7989. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8),
  7990. BPF_MOV64_IMM(BPF_REG_0, 0),
  7991. BPF_EXIT_INSN(),
  7992. },
  7993. .errstr = "R1 offset is outside of the packet",
  7994. .result = REJECT,
  7995. .prog_type = BPF_PROG_TYPE_XDP,
  7996. },
  7997. {
  7998. "XDP pkt read, pkt_data <= pkt_meta', bad access 2",
  7999. .insns = {
  8000. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  8001. offsetof(struct xdp_md, data_meta)),
  8002. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  8003. offsetof(struct xdp_md, data)),
  8004. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  8005. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  8006. BPF_JMP_REG(BPF_JLE, BPF_REG_3, BPF_REG_1, 0),
  8007. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -5),
  8008. BPF_MOV64_IMM(BPF_REG_0, 0),
  8009. BPF_EXIT_INSN(),
  8010. },
  8011. .errstr = "R1 offset is outside of the packet",
  8012. .result = REJECT,
  8013. .prog_type = BPF_PROG_TYPE_XDP,
  8014. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  8015. },
  8016. {
  8017. "bpf_exit with invalid return code. test1",
  8018. .insns = {
  8019. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8020. BPF_EXIT_INSN(),
  8021. },
  8022. .errstr = "R0 has value (0x0; 0xffffffff)",
  8023. .result = REJECT,
  8024. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8025. },
  8026. {
  8027. "bpf_exit with invalid return code. test2",
  8028. .insns = {
  8029. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8030. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 1),
  8031. BPF_EXIT_INSN(),
  8032. },
  8033. .result = ACCEPT,
  8034. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8035. },
  8036. {
  8037. "bpf_exit with invalid return code. test3",
  8038. .insns = {
  8039. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8040. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 3),
  8041. BPF_EXIT_INSN(),
  8042. },
  8043. .errstr = "R0 has value (0x0; 0x3)",
  8044. .result = REJECT,
  8045. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8046. },
  8047. {
  8048. "bpf_exit with invalid return code. test4",
  8049. .insns = {
  8050. BPF_MOV64_IMM(BPF_REG_0, 1),
  8051. BPF_EXIT_INSN(),
  8052. },
  8053. .result = ACCEPT,
  8054. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8055. },
  8056. {
  8057. "bpf_exit with invalid return code. test5",
  8058. .insns = {
  8059. BPF_MOV64_IMM(BPF_REG_0, 2),
  8060. BPF_EXIT_INSN(),
  8061. },
  8062. .errstr = "R0 has value (0x2; 0x0)",
  8063. .result = REJECT,
  8064. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8065. },
  8066. {
  8067. "bpf_exit with invalid return code. test6",
  8068. .insns = {
  8069. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  8070. BPF_EXIT_INSN(),
  8071. },
  8072. .errstr = "R0 is not a known value (ctx)",
  8073. .result = REJECT,
  8074. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8075. },
  8076. {
  8077. "bpf_exit with invalid return code. test7",
  8078. .insns = {
  8079. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8080. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 4),
  8081. BPF_ALU64_REG(BPF_MUL, BPF_REG_0, BPF_REG_2),
  8082. BPF_EXIT_INSN(),
  8083. },
  8084. .errstr = "R0 has unknown scalar value",
  8085. .result = REJECT,
  8086. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  8087. },
  8088. {
  8089. "calls: basic sanity",
  8090. .insns = {
  8091. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8092. BPF_MOV64_IMM(BPF_REG_0, 1),
  8093. BPF_EXIT_INSN(),
  8094. BPF_MOV64_IMM(BPF_REG_0, 2),
  8095. BPF_EXIT_INSN(),
  8096. },
  8097. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8098. .result = ACCEPT,
  8099. },
  8100. {
  8101. "calls: using r0 returned by callee",
  8102. .insns = {
  8103. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8104. BPF_EXIT_INSN(),
  8105. BPF_MOV64_IMM(BPF_REG_0, 2),
  8106. BPF_EXIT_INSN(),
  8107. },
  8108. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8109. .result = ACCEPT,
  8110. },
  8111. {
  8112. "calls: callee is using r1",
  8113. .insns = {
  8114. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8115. BPF_EXIT_INSN(),
  8116. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  8117. offsetof(struct __sk_buff, len)),
  8118. BPF_EXIT_INSN(),
  8119. },
  8120. .prog_type = BPF_PROG_TYPE_SCHED_ACT,
  8121. .result = ACCEPT,
  8122. },
  8123. {
  8124. "calls: callee using args1",
  8125. .insns = {
  8126. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8127. BPF_EXIT_INSN(),
  8128. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  8129. BPF_EXIT_INSN(),
  8130. },
  8131. .errstr_unpriv = "allowed for root only",
  8132. .result_unpriv = REJECT,
  8133. .result = ACCEPT,
  8134. },
  8135. {
  8136. "calls: callee using wrong args2",
  8137. .insns = {
  8138. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8139. BPF_EXIT_INSN(),
  8140. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  8141. BPF_EXIT_INSN(),
  8142. },
  8143. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8144. .errstr = "R2 !read_ok",
  8145. .result = REJECT,
  8146. },
  8147. {
  8148. "calls: callee using two args",
  8149. .insns = {
  8150. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8151. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_6,
  8152. offsetof(struct __sk_buff, len)),
  8153. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_6,
  8154. offsetof(struct __sk_buff, len)),
  8155. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8156. BPF_EXIT_INSN(),
  8157. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  8158. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  8159. BPF_EXIT_INSN(),
  8160. },
  8161. .errstr_unpriv = "allowed for root only",
  8162. .result_unpriv = REJECT,
  8163. .result = ACCEPT,
  8164. },
  8165. {
  8166. "calls: callee changing pkt pointers",
  8167. .insns = {
  8168. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  8169. offsetof(struct xdp_md, data)),
  8170. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  8171. offsetof(struct xdp_md, data_end)),
  8172. BPF_MOV64_REG(BPF_REG_8, BPF_REG_6),
  8173. BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 8),
  8174. BPF_JMP_REG(BPF_JGT, BPF_REG_8, BPF_REG_7, 2),
  8175. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8176. /* clear_all_pkt_pointers() has to walk all frames
  8177. * to make sure that pkt pointers in the caller
  8178. * are cleared when callee is calling a helper that
  8179. * adjusts packet size
  8180. */
  8181. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  8182. BPF_MOV32_IMM(BPF_REG_0, 0),
  8183. BPF_EXIT_INSN(),
  8184. BPF_MOV64_IMM(BPF_REG_2, 0),
  8185. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8186. BPF_FUNC_xdp_adjust_head),
  8187. BPF_EXIT_INSN(),
  8188. },
  8189. .result = REJECT,
  8190. .errstr = "R6 invalid mem access 'inv'",
  8191. .prog_type = BPF_PROG_TYPE_XDP,
  8192. },
  8193. {
  8194. "calls: two calls with args",
  8195. .insns = {
  8196. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8197. BPF_EXIT_INSN(),
  8198. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8199. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
  8200. BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
  8201. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8202. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8203. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
  8204. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  8205. BPF_EXIT_INSN(),
  8206. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  8207. offsetof(struct __sk_buff, len)),
  8208. BPF_EXIT_INSN(),
  8209. },
  8210. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8211. .result = ACCEPT,
  8212. },
  8213. {
  8214. "calls: two calls with bad jump",
  8215. .insns = {
  8216. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8217. BPF_EXIT_INSN(),
  8218. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8219. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
  8220. BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
  8221. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8222. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8223. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
  8224. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  8225. BPF_EXIT_INSN(),
  8226. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  8227. offsetof(struct __sk_buff, len)),
  8228. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -3),
  8229. BPF_EXIT_INSN(),
  8230. },
  8231. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8232. .errstr = "jump out of range from insn 11 to 9",
  8233. .result = REJECT,
  8234. },
  8235. {
  8236. "calls: recursive call. test1",
  8237. .insns = {
  8238. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8239. BPF_EXIT_INSN(),
  8240. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -1),
  8241. BPF_EXIT_INSN(),
  8242. },
  8243. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8244. .errstr = "back-edge",
  8245. .result = REJECT,
  8246. },
  8247. {
  8248. "calls: recursive call. test2",
  8249. .insns = {
  8250. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8251. BPF_EXIT_INSN(),
  8252. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -3),
  8253. BPF_EXIT_INSN(),
  8254. },
  8255. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8256. .errstr = "back-edge",
  8257. .result = REJECT,
  8258. },
  8259. {
  8260. "calls: unreachable code",
  8261. .insns = {
  8262. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8263. BPF_EXIT_INSN(),
  8264. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8265. BPF_EXIT_INSN(),
  8266. BPF_MOV64_IMM(BPF_REG_0, 0),
  8267. BPF_EXIT_INSN(),
  8268. BPF_MOV64_IMM(BPF_REG_0, 0),
  8269. BPF_EXIT_INSN(),
  8270. },
  8271. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8272. .errstr = "unreachable insn 6",
  8273. .result = REJECT,
  8274. },
  8275. {
  8276. "calls: invalid call",
  8277. .insns = {
  8278. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8279. BPF_EXIT_INSN(),
  8280. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, -4),
  8281. BPF_EXIT_INSN(),
  8282. },
  8283. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8284. .errstr = "invalid destination",
  8285. .result = REJECT,
  8286. },
  8287. {
  8288. "calls: jumping across function bodies. test1",
  8289. .insns = {
  8290. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8291. BPF_MOV64_IMM(BPF_REG_0, 0),
  8292. BPF_EXIT_INSN(),
  8293. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
  8294. BPF_EXIT_INSN(),
  8295. },
  8296. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8297. .errstr = "jump out of range",
  8298. .result = REJECT,
  8299. },
  8300. {
  8301. "calls: jumping across function bodies. test2",
  8302. .insns = {
  8303. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  8304. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8305. BPF_MOV64_IMM(BPF_REG_0, 0),
  8306. BPF_EXIT_INSN(),
  8307. BPF_EXIT_INSN(),
  8308. },
  8309. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8310. .errstr = "jump out of range",
  8311. .result = REJECT,
  8312. },
  8313. {
  8314. "calls: call without exit",
  8315. .insns = {
  8316. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8317. BPF_EXIT_INSN(),
  8318. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8319. BPF_EXIT_INSN(),
  8320. BPF_MOV64_IMM(BPF_REG_0, 0),
  8321. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -2),
  8322. },
  8323. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8324. .errstr = "not an exit",
  8325. .result = REJECT,
  8326. },
  8327. {
  8328. "calls: call into middle of ld_imm64",
  8329. .insns = {
  8330. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8331. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8332. BPF_MOV64_IMM(BPF_REG_0, 0),
  8333. BPF_EXIT_INSN(),
  8334. BPF_LD_IMM64(BPF_REG_0, 0),
  8335. BPF_EXIT_INSN(),
  8336. },
  8337. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8338. .errstr = "last insn",
  8339. .result = REJECT,
  8340. },
  8341. {
  8342. "calls: call into middle of other call",
  8343. .insns = {
  8344. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8345. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8346. BPF_MOV64_IMM(BPF_REG_0, 0),
  8347. BPF_EXIT_INSN(),
  8348. BPF_MOV64_IMM(BPF_REG_0, 0),
  8349. BPF_MOV64_IMM(BPF_REG_0, 0),
  8350. BPF_EXIT_INSN(),
  8351. },
  8352. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8353. .errstr = "last insn",
  8354. .result = REJECT,
  8355. },
  8356. {
  8357. "calls: two calls with bad fallthrough",
  8358. .insns = {
  8359. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8360. BPF_EXIT_INSN(),
  8361. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8362. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
  8363. BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
  8364. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8365. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8366. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
  8367. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  8368. BPF_MOV64_REG(BPF_REG_0, BPF_REG_0),
  8369. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  8370. offsetof(struct __sk_buff, len)),
  8371. BPF_EXIT_INSN(),
  8372. },
  8373. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  8374. .errstr = "not an exit",
  8375. .result = REJECT,
  8376. },
  8377. {
  8378. "calls: two calls with stack read",
  8379. .insns = {
  8380. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8381. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8382. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8383. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8384. BPF_EXIT_INSN(),
  8385. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8386. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 6),
  8387. BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),
  8388. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8389. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8390. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_0),
  8391. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  8392. BPF_EXIT_INSN(),
  8393. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8394. BPF_EXIT_INSN(),
  8395. },
  8396. .prog_type = BPF_PROG_TYPE_XDP,
  8397. .result = ACCEPT,
  8398. },
  8399. {
  8400. "calls: two calls with stack write",
  8401. .insns = {
  8402. /* main prog */
  8403. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8404. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8405. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8406. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8407. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8408. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8409. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
  8410. BPF_EXIT_INSN(),
  8411. /* subprog 1 */
  8412. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8413. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8414. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 7),
  8415. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  8416. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8417. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
  8418. BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_0),
  8419. BPF_MOV64_REG(BPF_REG_0, BPF_REG_8),
  8420. /* write into stack frame of main prog */
  8421. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8422. BPF_EXIT_INSN(),
  8423. /* subprog 2 */
  8424. /* read from stack frame of main prog */
  8425. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, 0),
  8426. BPF_EXIT_INSN(),
  8427. },
  8428. .prog_type = BPF_PROG_TYPE_XDP,
  8429. .result = ACCEPT,
  8430. },
  8431. {
  8432. "calls: spill into caller stack frame",
  8433. .insns = {
  8434. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8435. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8436. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8437. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8438. BPF_EXIT_INSN(),
  8439. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
  8440. BPF_MOV64_IMM(BPF_REG_0, 0),
  8441. BPF_EXIT_INSN(),
  8442. },
  8443. .prog_type = BPF_PROG_TYPE_XDP,
  8444. .errstr = "cannot spill",
  8445. .result = REJECT,
  8446. },
  8447. {
  8448. "calls: two calls with stack write and void return",
  8449. .insns = {
  8450. /* main prog */
  8451. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8452. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8453. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8454. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8455. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8456. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8457. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
  8458. BPF_EXIT_INSN(),
  8459. /* subprog 1 */
  8460. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8461. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8462. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8463. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  8464. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8465. BPF_EXIT_INSN(),
  8466. /* subprog 2 */
  8467. /* write into stack frame of main prog */
  8468. BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 0),
  8469. BPF_EXIT_INSN(), /* void return */
  8470. },
  8471. .prog_type = BPF_PROG_TYPE_XDP,
  8472. .result = ACCEPT,
  8473. },
  8474. {
  8475. "calls: ambiguous return value",
  8476. .insns = {
  8477. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8478. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 5),
  8479. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  8480. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8481. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8482. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  8483. BPF_EXIT_INSN(),
  8484. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  8485. BPF_MOV64_IMM(BPF_REG_0, 0),
  8486. BPF_EXIT_INSN(),
  8487. },
  8488. .errstr_unpriv = "allowed for root only",
  8489. .result_unpriv = REJECT,
  8490. .errstr = "R0 !read_ok",
  8491. .result = REJECT,
  8492. },
  8493. {
  8494. "calls: two calls that return map_value",
  8495. .insns = {
  8496. /* main prog */
  8497. /* pass fp-16, fp-8 into a function */
  8498. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8499. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8500. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8501. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8502. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 8),
  8503. /* fetch map_value_ptr from the stack of this function */
  8504. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  8505. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  8506. /* write into map value */
  8507. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8508. /* fetch secound map_value_ptr from the stack */
  8509. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -16),
  8510. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  8511. /* write into map value */
  8512. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8513. BPF_MOV64_IMM(BPF_REG_0, 0),
  8514. BPF_EXIT_INSN(),
  8515. /* subprog 1 */
  8516. /* call 3rd function twice */
  8517. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8518. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8519. /* first time with fp-8 */
  8520. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 3),
  8521. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  8522. /* second time with fp-16 */
  8523. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8524. BPF_EXIT_INSN(),
  8525. /* subprog 2 */
  8526. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8527. /* lookup from map */
  8528. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8529. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8530. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8531. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8532. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8533. BPF_FUNC_map_lookup_elem),
  8534. /* write map_value_ptr into stack frame of main prog */
  8535. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8536. BPF_MOV64_IMM(BPF_REG_0, 0),
  8537. BPF_EXIT_INSN(), /* return 0 */
  8538. },
  8539. .prog_type = BPF_PROG_TYPE_XDP,
  8540. .fixup_map1 = { 23 },
  8541. .result = ACCEPT,
  8542. },
  8543. {
  8544. "calls: two calls that return map_value with bool condition",
  8545. .insns = {
  8546. /* main prog */
  8547. /* pass fp-16, fp-8 into a function */
  8548. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8549. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8550. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8551. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8552. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8553. BPF_MOV64_IMM(BPF_REG_0, 0),
  8554. BPF_EXIT_INSN(),
  8555. /* subprog 1 */
  8556. /* call 3rd function twice */
  8557. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8558. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8559. /* first time with fp-8 */
  8560. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
  8561. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
  8562. /* fetch map_value_ptr from the stack of this function */
  8563. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  8564. /* write into map value */
  8565. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8566. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  8567. /* second time with fp-16 */
  8568. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
  8569. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
  8570. /* fetch secound map_value_ptr from the stack */
  8571. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
  8572. /* write into map value */
  8573. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8574. BPF_EXIT_INSN(),
  8575. /* subprog 2 */
  8576. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8577. /* lookup from map */
  8578. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8579. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8580. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8581. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8582. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8583. BPF_FUNC_map_lookup_elem),
  8584. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8585. BPF_MOV64_IMM(BPF_REG_0, 0),
  8586. BPF_EXIT_INSN(), /* return 0 */
  8587. /* write map_value_ptr into stack frame of main prog */
  8588. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8589. BPF_MOV64_IMM(BPF_REG_0, 1),
  8590. BPF_EXIT_INSN(), /* return 1 */
  8591. },
  8592. .prog_type = BPF_PROG_TYPE_XDP,
  8593. .fixup_map1 = { 23 },
  8594. .result = ACCEPT,
  8595. },
  8596. {
  8597. "calls: two calls that return map_value with incorrect bool check",
  8598. .insns = {
  8599. /* main prog */
  8600. /* pass fp-16, fp-8 into a function */
  8601. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8602. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8603. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8604. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8605. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8606. BPF_MOV64_IMM(BPF_REG_0, 0),
  8607. BPF_EXIT_INSN(),
  8608. /* subprog 1 */
  8609. /* call 3rd function twice */
  8610. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8611. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8612. /* first time with fp-8 */
  8613. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 9),
  8614. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 1, 2),
  8615. /* fetch map_value_ptr from the stack of this function */
  8616. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  8617. /* write into map value */
  8618. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8619. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  8620. /* second time with fp-16 */
  8621. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
  8622. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8623. /* fetch secound map_value_ptr from the stack */
  8624. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_7, 0),
  8625. /* write into map value */
  8626. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8627. BPF_EXIT_INSN(),
  8628. /* subprog 2 */
  8629. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8630. /* lookup from map */
  8631. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8632. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8633. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8634. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8635. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8636. BPF_FUNC_map_lookup_elem),
  8637. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8638. BPF_MOV64_IMM(BPF_REG_0, 0),
  8639. BPF_EXIT_INSN(), /* return 0 */
  8640. /* write map_value_ptr into stack frame of main prog */
  8641. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8642. BPF_MOV64_IMM(BPF_REG_0, 1),
  8643. BPF_EXIT_INSN(), /* return 1 */
  8644. },
  8645. .prog_type = BPF_PROG_TYPE_XDP,
  8646. .fixup_map1 = { 23 },
  8647. .result = REJECT,
  8648. .errstr = "invalid read from stack off -16+0 size 8",
  8649. },
  8650. {
  8651. "calls: two calls that receive map_value via arg=ptr_stack_of_caller. test1",
  8652. .insns = {
  8653. /* main prog */
  8654. /* pass fp-16, fp-8 into a function */
  8655. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8656. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8657. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8658. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8659. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8660. BPF_MOV64_IMM(BPF_REG_0, 0),
  8661. BPF_EXIT_INSN(),
  8662. /* subprog 1 */
  8663. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8664. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8665. /* 1st lookup from map */
  8666. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8667. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8668. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8669. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8670. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8671. BPF_FUNC_map_lookup_elem),
  8672. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8673. BPF_MOV64_IMM(BPF_REG_8, 0),
  8674. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8675. /* write map_value_ptr into stack frame of main prog at fp-8 */
  8676. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8677. BPF_MOV64_IMM(BPF_REG_8, 1),
  8678. /* 2nd lookup from map */
  8679. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
  8680. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8681. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8682. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
  8683. BPF_FUNC_map_lookup_elem),
  8684. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8685. BPF_MOV64_IMM(BPF_REG_9, 0),
  8686. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8687. /* write map_value_ptr into stack frame of main prog at fp-16 */
  8688. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8689. BPF_MOV64_IMM(BPF_REG_9, 1),
  8690. /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
  8691. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
  8692. BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
  8693. BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
  8694. BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
  8695. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
  8696. BPF_EXIT_INSN(),
  8697. /* subprog 2 */
  8698. /* if arg2 == 1 do *arg1 = 0 */
  8699. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
  8700. /* fetch map_value_ptr from the stack of this function */
  8701. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  8702. /* write into map value */
  8703. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8704. /* if arg4 == 1 do *arg3 = 0 */
  8705. BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
  8706. /* fetch map_value_ptr from the stack of this function */
  8707. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  8708. /* write into map value */
  8709. BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
  8710. BPF_EXIT_INSN(),
  8711. },
  8712. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8713. .fixup_map1 = { 12, 22 },
  8714. .result = REJECT,
  8715. .errstr = "invalid access to map value, value_size=8 off=2 size=8",
  8716. },
  8717. {
  8718. "calls: two calls that receive map_value via arg=ptr_stack_of_caller. test2",
  8719. .insns = {
  8720. /* main prog */
  8721. /* pass fp-16, fp-8 into a function */
  8722. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8723. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8724. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8725. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8726. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8727. BPF_MOV64_IMM(BPF_REG_0, 0),
  8728. BPF_EXIT_INSN(),
  8729. /* subprog 1 */
  8730. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8731. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8732. /* 1st lookup from map */
  8733. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8734. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8735. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8736. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8737. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8738. BPF_FUNC_map_lookup_elem),
  8739. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8740. BPF_MOV64_IMM(BPF_REG_8, 0),
  8741. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8742. /* write map_value_ptr into stack frame of main prog at fp-8 */
  8743. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8744. BPF_MOV64_IMM(BPF_REG_8, 1),
  8745. /* 2nd lookup from map */
  8746. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* 20 */
  8747. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8748. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8749. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, /* 24 */
  8750. BPF_FUNC_map_lookup_elem),
  8751. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8752. BPF_MOV64_IMM(BPF_REG_9, 0),
  8753. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8754. /* write map_value_ptr into stack frame of main prog at fp-16 */
  8755. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8756. BPF_MOV64_IMM(BPF_REG_9, 1),
  8757. /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
  8758. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), /* 30 */
  8759. BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
  8760. BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
  8761. BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
  8762. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1), /* 34 */
  8763. BPF_EXIT_INSN(),
  8764. /* subprog 2 */
  8765. /* if arg2 == 1 do *arg1 = 0 */
  8766. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
  8767. /* fetch map_value_ptr from the stack of this function */
  8768. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  8769. /* write into map value */
  8770. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8771. /* if arg4 == 1 do *arg3 = 0 */
  8772. BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
  8773. /* fetch map_value_ptr from the stack of this function */
  8774. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  8775. /* write into map value */
  8776. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8777. BPF_EXIT_INSN(),
  8778. },
  8779. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8780. .fixup_map1 = { 12, 22 },
  8781. .result = ACCEPT,
  8782. },
  8783. {
  8784. "calls: two jumps that receive map_value via arg=ptr_stack_of_jumper. test3",
  8785. .insns = {
  8786. /* main prog */
  8787. /* pass fp-16, fp-8 into a function */
  8788. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8789. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8790. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8791. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8792. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 2),
  8793. BPF_MOV64_IMM(BPF_REG_0, 0),
  8794. BPF_EXIT_INSN(),
  8795. /* subprog 1 */
  8796. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8797. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8798. /* 1st lookup from map */
  8799. BPF_ST_MEM(BPF_DW, BPF_REG_10, -24, 0),
  8800. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8801. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
  8802. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8803. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8804. BPF_FUNC_map_lookup_elem),
  8805. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8806. BPF_MOV64_IMM(BPF_REG_8, 0),
  8807. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8808. /* write map_value_ptr into stack frame of main prog at fp-8 */
  8809. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8810. BPF_MOV64_IMM(BPF_REG_8, 1),
  8811. /* 2nd lookup from map */
  8812. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8813. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -24),
  8814. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8815. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8816. BPF_FUNC_map_lookup_elem),
  8817. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8818. BPF_MOV64_IMM(BPF_REG_9, 0), // 26
  8819. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  8820. /* write map_value_ptr into stack frame of main prog at fp-16 */
  8821. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8822. BPF_MOV64_IMM(BPF_REG_9, 1),
  8823. /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
  8824. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6), // 30
  8825. BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
  8826. BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
  8827. BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
  8828. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1), // 34
  8829. BPF_JMP_IMM(BPF_JA, 0, 0, -30),
  8830. /* subprog 2 */
  8831. /* if arg2 == 1 do *arg1 = 0 */
  8832. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
  8833. /* fetch map_value_ptr from the stack of this function */
  8834. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  8835. /* write into map value */
  8836. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8837. /* if arg4 == 1 do *arg3 = 0 */
  8838. BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
  8839. /* fetch map_value_ptr from the stack of this function */
  8840. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  8841. /* write into map value */
  8842. BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 0),
  8843. BPF_JMP_IMM(BPF_JA, 0, 0, -8),
  8844. },
  8845. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8846. .fixup_map1 = { 12, 22 },
  8847. .result = REJECT,
  8848. .errstr = "invalid access to map value, value_size=8 off=2 size=8",
  8849. },
  8850. {
  8851. "calls: two calls that receive map_value_ptr_or_null via arg. test1",
  8852. .insns = {
  8853. /* main prog */
  8854. /* pass fp-16, fp-8 into a function */
  8855. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8856. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8857. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8858. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8859. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8860. BPF_MOV64_IMM(BPF_REG_0, 0),
  8861. BPF_EXIT_INSN(),
  8862. /* subprog 1 */
  8863. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8864. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8865. /* 1st lookup from map */
  8866. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8867. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8868. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8869. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8870. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8871. BPF_FUNC_map_lookup_elem),
  8872. /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
  8873. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8874. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8875. BPF_MOV64_IMM(BPF_REG_8, 0),
  8876. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  8877. BPF_MOV64_IMM(BPF_REG_8, 1),
  8878. /* 2nd lookup from map */
  8879. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8880. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8881. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8882. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8883. BPF_FUNC_map_lookup_elem),
  8884. /* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
  8885. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8886. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8887. BPF_MOV64_IMM(BPF_REG_9, 0),
  8888. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  8889. BPF_MOV64_IMM(BPF_REG_9, 1),
  8890. /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
  8891. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8892. BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
  8893. BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
  8894. BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
  8895. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8896. BPF_EXIT_INSN(),
  8897. /* subprog 2 */
  8898. /* if arg2 == 1 do *arg1 = 0 */
  8899. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
  8900. /* fetch map_value_ptr from the stack of this function */
  8901. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  8902. /* write into map value */
  8903. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8904. /* if arg4 == 1 do *arg3 = 0 */
  8905. BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 1, 2),
  8906. /* fetch map_value_ptr from the stack of this function */
  8907. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  8908. /* write into map value */
  8909. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8910. BPF_EXIT_INSN(),
  8911. },
  8912. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8913. .fixup_map1 = { 12, 22 },
  8914. .result = ACCEPT,
  8915. },
  8916. {
  8917. "calls: two calls that receive map_value_ptr_or_null via arg. test2",
  8918. .insns = {
  8919. /* main prog */
  8920. /* pass fp-16, fp-8 into a function */
  8921. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  8922. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  8923. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8924. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  8925. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 2),
  8926. BPF_MOV64_IMM(BPF_REG_0, 0),
  8927. BPF_EXIT_INSN(),
  8928. /* subprog 1 */
  8929. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  8930. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  8931. /* 1st lookup from map */
  8932. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  8933. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8934. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8935. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8936. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8937. BPF_FUNC_map_lookup_elem),
  8938. /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
  8939. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  8940. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8941. BPF_MOV64_IMM(BPF_REG_8, 0),
  8942. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  8943. BPF_MOV64_IMM(BPF_REG_8, 1),
  8944. /* 2nd lookup from map */
  8945. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  8946. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  8947. BPF_LD_MAP_FD(BPF_REG_1, 0),
  8948. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  8949. BPF_FUNC_map_lookup_elem),
  8950. /* write map_value_ptr_or_null into stack frame of main prog at fp-16 */
  8951. BPF_STX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  8952. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
  8953. BPF_MOV64_IMM(BPF_REG_9, 0),
  8954. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  8955. BPF_MOV64_IMM(BPF_REG_9, 1),
  8956. /* call 3rd func with fp-8, 0|1, fp-16, 0|1 */
  8957. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  8958. BPF_MOV64_REG(BPF_REG_2, BPF_REG_8),
  8959. BPF_MOV64_REG(BPF_REG_3, BPF_REG_7),
  8960. BPF_MOV64_REG(BPF_REG_4, BPF_REG_9),
  8961. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8962. BPF_EXIT_INSN(),
  8963. /* subprog 2 */
  8964. /* if arg2 == 1 do *arg1 = 0 */
  8965. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 1, 2),
  8966. /* fetch map_value_ptr from the stack of this function */
  8967. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  8968. /* write into map value */
  8969. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8970. /* if arg4 == 0 do *arg3 = 0 */
  8971. BPF_JMP_IMM(BPF_JNE, BPF_REG_4, 0, 2),
  8972. /* fetch map_value_ptr from the stack of this function */
  8973. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  8974. /* write into map value */
  8975. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  8976. BPF_EXIT_INSN(),
  8977. },
  8978. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  8979. .fixup_map1 = { 12, 22 },
  8980. .result = REJECT,
  8981. .errstr = "R0 invalid mem access 'inv'",
  8982. },
  8983. {
  8984. "calls: pkt_ptr spill into caller stack",
  8985. .insns = {
  8986. BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
  8987. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
  8988. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 1),
  8989. BPF_EXIT_INSN(),
  8990. /* subprog 1 */
  8991. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  8992. offsetof(struct __sk_buff, data)),
  8993. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  8994. offsetof(struct __sk_buff, data_end)),
  8995. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  8996. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  8997. /* spill unchecked pkt_ptr into stack of caller */
  8998. BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
  8999. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
  9000. /* now the pkt range is verified, read pkt_ptr from stack */
  9001. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
  9002. /* write 4 bytes into packet */
  9003. BPF_ST_MEM(BPF_W, BPF_REG_2, 0, 0),
  9004. BPF_EXIT_INSN(),
  9005. },
  9006. .result = ACCEPT,
  9007. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  9008. },
  9009. {
  9010. "calls: caller stack init to zero or map_value_or_null",
  9011. .insns = {
  9012. BPF_MOV64_IMM(BPF_REG_0, 0),
  9013. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  9014. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  9015. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  9016. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 1, 0, 4),
  9017. /* fetch map_value_or_null or const_zero from stack */
  9018. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  9019. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  9020. /* store into map_value */
  9021. BPF_ST_MEM(BPF_W, BPF_REG_0, 0, 0),
  9022. BPF_EXIT_INSN(),
  9023. /* subprog 1 */
  9024. /* if (ctx == 0) return; */
  9025. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 8),
  9026. /* else bpf_map_lookup() and *(fp - 8) = r0 */
  9027. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  9028. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  9029. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  9030. BPF_LD_MAP_FD(BPF_REG_1, 0),
  9031. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  9032. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  9033. BPF_FUNC_map_lookup_elem),
  9034. /* write map_value_ptr_or_null into stack frame of main prog at fp-8 */
  9035. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_0, 0),
  9036. BPF_EXIT_INSN(),
  9037. },
  9038. .fixup_map1 = { 13 },
  9039. .result = ACCEPT,
  9040. .prog_type = BPF_PROG_TYPE_XDP,
  9041. },
  9042. {
  9043. "calls: stack init to zero and pruning",
  9044. .insns = {
  9045. /* first make allocated_stack 16 byte */
  9046. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, 0),
  9047. /* now fork the execution such that the false branch
  9048. * of JGT insn will be verified second and it skisp zero
  9049. * init of fp-8 stack slot. If stack liveness marking
  9050. * is missing live_read marks from call map_lookup
  9051. * processing then pruning will incorrectly assume
  9052. * that fp-8 stack slot was unused in the fall-through
  9053. * branch and will accept the program incorrectly
  9054. */
  9055. BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 2, 2),
  9056. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  9057. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  9058. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  9059. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  9060. BPF_LD_MAP_FD(BPF_REG_1, 0),
  9061. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  9062. BPF_FUNC_map_lookup_elem),
  9063. BPF_EXIT_INSN(),
  9064. },
  9065. .fixup_map2 = { 6 },
  9066. .errstr = "invalid indirect read from stack off -8+0 size 8",
  9067. .result = REJECT,
  9068. .prog_type = BPF_PROG_TYPE_XDP,
  9069. },
  9070. };
  9071. static int probe_filter_length(const struct bpf_insn *fp)
  9072. {
  9073. int len;
  9074. for (len = MAX_INSNS - 1; len > 0; --len)
  9075. if (fp[len].code != 0 || fp[len].imm != 0)
  9076. break;
  9077. return len + 1;
  9078. }
  9079. static int create_map(uint32_t size_value, uint32_t max_elem)
  9080. {
  9081. int fd;
  9082. fd = bpf_create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
  9083. size_value, max_elem, BPF_F_NO_PREALLOC);
  9084. if (fd < 0)
  9085. printf("Failed to create hash map '%s'!\n", strerror(errno));
  9086. return fd;
  9087. }
  9088. static int create_prog_array(void)
  9089. {
  9090. int fd;
  9091. fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
  9092. sizeof(int), 4, 0);
  9093. if (fd < 0)
  9094. printf("Failed to create prog array '%s'!\n", strerror(errno));
  9095. return fd;
  9096. }
  9097. static int create_map_in_map(void)
  9098. {
  9099. int inner_map_fd, outer_map_fd;
  9100. inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
  9101. sizeof(int), 1, 0);
  9102. if (inner_map_fd < 0) {
  9103. printf("Failed to create array '%s'!\n", strerror(errno));
  9104. return inner_map_fd;
  9105. }
  9106. outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
  9107. sizeof(int), inner_map_fd, 1, 0);
  9108. if (outer_map_fd < 0)
  9109. printf("Failed to create array of maps '%s'!\n",
  9110. strerror(errno));
  9111. close(inner_map_fd);
  9112. return outer_map_fd;
  9113. }
  9114. static char bpf_vlog[32768];
  9115. static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog,
  9116. int *map_fds)
  9117. {
  9118. int *fixup_map1 = test->fixup_map1;
  9119. int *fixup_map2 = test->fixup_map2;
  9120. int *fixup_prog = test->fixup_prog;
  9121. int *fixup_map_in_map = test->fixup_map_in_map;
  9122. /* Allocating HTs with 1 elem is fine here, since we only test
  9123. * for verifier and not do a runtime lookup, so the only thing
  9124. * that really matters is value size in this case.
  9125. */
  9126. if (*fixup_map1) {
  9127. map_fds[0] = create_map(sizeof(long long), 1);
  9128. do {
  9129. prog[*fixup_map1].imm = map_fds[0];
  9130. fixup_map1++;
  9131. } while (*fixup_map1);
  9132. }
  9133. if (*fixup_map2) {
  9134. map_fds[1] = create_map(sizeof(struct test_val), 1);
  9135. do {
  9136. prog[*fixup_map2].imm = map_fds[1];
  9137. fixup_map2++;
  9138. } while (*fixup_map2);
  9139. }
  9140. if (*fixup_prog) {
  9141. map_fds[2] = create_prog_array();
  9142. do {
  9143. prog[*fixup_prog].imm = map_fds[2];
  9144. fixup_prog++;
  9145. } while (*fixup_prog);
  9146. }
  9147. if (*fixup_map_in_map) {
  9148. map_fds[3] = create_map_in_map();
  9149. do {
  9150. prog[*fixup_map_in_map].imm = map_fds[3];
  9151. fixup_map_in_map++;
  9152. } while (*fixup_map_in_map);
  9153. }
  9154. }
  9155. static void do_test_single(struct bpf_test *test, bool unpriv,
  9156. int *passes, int *errors)
  9157. {
  9158. int fd_prog, expected_ret, reject_from_alignment;
  9159. struct bpf_insn *prog = test->insns;
  9160. int prog_len = probe_filter_length(prog);
  9161. int prog_type = test->prog_type;
  9162. int map_fds[MAX_NR_MAPS];
  9163. const char *expected_err;
  9164. int i;
  9165. for (i = 0; i < MAX_NR_MAPS; i++)
  9166. map_fds[i] = -1;
  9167. do_test_fixup(test, prog, map_fds);
  9168. fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
  9169. prog, prog_len, test->flags & F_LOAD_WITH_STRICT_ALIGNMENT,
  9170. "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 1);
  9171. expected_ret = unpriv && test->result_unpriv != UNDEF ?
  9172. test->result_unpriv : test->result;
  9173. expected_err = unpriv && test->errstr_unpriv ?
  9174. test->errstr_unpriv : test->errstr;
  9175. reject_from_alignment = fd_prog < 0 &&
  9176. (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) &&
  9177. strstr(bpf_vlog, "Unknown alignment.");
  9178. #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
  9179. if (reject_from_alignment) {
  9180. printf("FAIL\nFailed due to alignment despite having efficient unaligned access: '%s'!\n",
  9181. strerror(errno));
  9182. goto fail_log;
  9183. }
  9184. #endif
  9185. if (expected_ret == ACCEPT) {
  9186. if (fd_prog < 0 && !reject_from_alignment) {
  9187. printf("FAIL\nFailed to load prog '%s'!\n",
  9188. strerror(errno));
  9189. goto fail_log;
  9190. }
  9191. } else {
  9192. if (fd_prog >= 0) {
  9193. printf("FAIL\nUnexpected success to load!\n");
  9194. goto fail_log;
  9195. }
  9196. if (!strstr(bpf_vlog, expected_err) && !reject_from_alignment) {
  9197. printf("FAIL\nUnexpected error message!\n");
  9198. goto fail_log;
  9199. }
  9200. }
  9201. (*passes)++;
  9202. printf("OK%s\n", reject_from_alignment ?
  9203. " (NOTE: reject due to unknown alignment)" : "");
  9204. close_fds:
  9205. close(fd_prog);
  9206. for (i = 0; i < MAX_NR_MAPS; i++)
  9207. close(map_fds[i]);
  9208. sched_yield();
  9209. return;
  9210. fail_log:
  9211. (*errors)++;
  9212. printf("%s", bpf_vlog);
  9213. goto close_fds;
  9214. }
  9215. static bool is_admin(void)
  9216. {
  9217. cap_t caps;
  9218. cap_flag_value_t sysadmin = CAP_CLEAR;
  9219. const cap_value_t cap_val = CAP_SYS_ADMIN;
  9220. #ifdef CAP_IS_SUPPORTED
  9221. if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
  9222. perror("cap_get_flag");
  9223. return false;
  9224. }
  9225. #endif
  9226. caps = cap_get_proc();
  9227. if (!caps) {
  9228. perror("cap_get_proc");
  9229. return false;
  9230. }
  9231. if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
  9232. perror("cap_get_flag");
  9233. if (cap_free(caps))
  9234. perror("cap_free");
  9235. return (sysadmin == CAP_SET);
  9236. }
  9237. static int set_admin(bool admin)
  9238. {
  9239. cap_t caps;
  9240. const cap_value_t cap_val = CAP_SYS_ADMIN;
  9241. int ret = -1;
  9242. caps = cap_get_proc();
  9243. if (!caps) {
  9244. perror("cap_get_proc");
  9245. return -1;
  9246. }
  9247. if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
  9248. admin ? CAP_SET : CAP_CLEAR)) {
  9249. perror("cap_set_flag");
  9250. goto out;
  9251. }
  9252. if (cap_set_proc(caps)) {
  9253. perror("cap_set_proc");
  9254. goto out;
  9255. }
  9256. ret = 0;
  9257. out:
  9258. if (cap_free(caps))
  9259. perror("cap_free");
  9260. return ret;
  9261. }
  9262. static int do_test(bool unpriv, unsigned int from, unsigned int to)
  9263. {
  9264. int i, passes = 0, errors = 0;
  9265. for (i = from; i < to; i++) {
  9266. struct bpf_test *test = &tests[i];
  9267. /* Program types that are not supported by non-root we
  9268. * skip right away.
  9269. */
  9270. if (!test->prog_type) {
  9271. if (!unpriv)
  9272. set_admin(false);
  9273. printf("#%d/u %s ", i, test->descr);
  9274. do_test_single(test, true, &passes, &errors);
  9275. if (!unpriv)
  9276. set_admin(true);
  9277. }
  9278. if (!unpriv) {
  9279. printf("#%d/p %s ", i, test->descr);
  9280. do_test_single(test, false, &passes, &errors);
  9281. }
  9282. }
  9283. printf("Summary: %d PASSED, %d FAILED\n", passes, errors);
  9284. return errors ? EXIT_FAILURE : EXIT_SUCCESS;
  9285. }
  9286. int main(int argc, char **argv)
  9287. {
  9288. struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
  9289. struct rlimit rlim = { 1 << 20, 1 << 20 };
  9290. unsigned int from = 0, to = ARRAY_SIZE(tests);
  9291. bool unpriv = !is_admin();
  9292. if (argc == 3) {
  9293. unsigned int l = atoi(argv[argc - 2]);
  9294. unsigned int u = atoi(argv[argc - 1]);
  9295. if (l < to && u < to) {
  9296. from = l;
  9297. to = u + 1;
  9298. }
  9299. } else if (argc == 2) {
  9300. unsigned int t = atoi(argv[argc - 1]);
  9301. if (t < to) {
  9302. from = t;
  9303. to = t + 1;
  9304. }
  9305. }
  9306. setrlimit(RLIMIT_MEMLOCK, unpriv ? &rlim : &rinf);
  9307. return do_test(unpriv, from, to);
  9308. }