disk-io.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include "compat.h"
  31. #include "ctree.h"
  32. #include "disk-io.h"
  33. #include "transaction.h"
  34. #include "btrfs_inode.h"
  35. #include "volumes.h"
  36. #include "print-tree.h"
  37. #include "async-thread.h"
  38. #include "locking.h"
  39. #include "tree-log.h"
  40. #include "free-space-cache.h"
  41. static struct extent_io_ops btree_extent_io_ops;
  42. static void end_workqueue_fn(struct btrfs_work *work);
  43. static void free_fs_root(struct btrfs_root *root);
  44. /*
  45. * end_io_wq structs are used to do processing in task context when an IO is
  46. * complete. This is used during reads to verify checksums, and it is used
  47. * by writes to insert metadata for new file extents after IO is complete.
  48. */
  49. struct end_io_wq {
  50. struct bio *bio;
  51. bio_end_io_t *end_io;
  52. void *private;
  53. struct btrfs_fs_info *info;
  54. int error;
  55. int metadata;
  56. struct list_head list;
  57. struct btrfs_work work;
  58. };
  59. /*
  60. * async submit bios are used to offload expensive checksumming
  61. * onto the worker threads. They checksum file and metadata bios
  62. * just before they are sent down the IO stack.
  63. */
  64. struct async_submit_bio {
  65. struct inode *inode;
  66. struct bio *bio;
  67. struct list_head list;
  68. extent_submit_bio_hook_t *submit_bio_start;
  69. extent_submit_bio_hook_t *submit_bio_done;
  70. int rw;
  71. int mirror_num;
  72. unsigned long bio_flags;
  73. struct btrfs_work work;
  74. };
  75. /* These are used to set the lockdep class on the extent buffer locks.
  76. * The class is set by the readpage_end_io_hook after the buffer has
  77. * passed csum validation but before the pages are unlocked.
  78. *
  79. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  80. * allocated blocks.
  81. *
  82. * The class is based on the level in the tree block, which allows lockdep
  83. * to know that lower nodes nest inside the locks of higher nodes.
  84. *
  85. * We also add a check to make sure the highest level of the tree is
  86. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  87. * code needs update as well.
  88. */
  89. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  90. # if BTRFS_MAX_LEVEL != 8
  91. # error
  92. # endif
  93. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  94. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  95. /* leaf */
  96. "btrfs-extent-00",
  97. "btrfs-extent-01",
  98. "btrfs-extent-02",
  99. "btrfs-extent-03",
  100. "btrfs-extent-04",
  101. "btrfs-extent-05",
  102. "btrfs-extent-06",
  103. "btrfs-extent-07",
  104. /* highest possible level */
  105. "btrfs-extent-08",
  106. };
  107. #endif
  108. /*
  109. * extents on the btree inode are pretty simple, there's one extent
  110. * that covers the entire device
  111. */
  112. static struct extent_map *btree_get_extent(struct inode *inode,
  113. struct page *page, size_t page_offset, u64 start, u64 len,
  114. int create)
  115. {
  116. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  117. struct extent_map *em;
  118. int ret;
  119. read_lock(&em_tree->lock);
  120. em = lookup_extent_mapping(em_tree, start, len);
  121. if (em) {
  122. em->bdev =
  123. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  124. read_unlock(&em_tree->lock);
  125. goto out;
  126. }
  127. read_unlock(&em_tree->lock);
  128. em = alloc_extent_map(GFP_NOFS);
  129. if (!em) {
  130. em = ERR_PTR(-ENOMEM);
  131. goto out;
  132. }
  133. em->start = 0;
  134. em->len = (u64)-1;
  135. em->block_len = (u64)-1;
  136. em->block_start = 0;
  137. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  138. write_lock(&em_tree->lock);
  139. ret = add_extent_mapping(em_tree, em);
  140. if (ret == -EEXIST) {
  141. u64 failed_start = em->start;
  142. u64 failed_len = em->len;
  143. free_extent_map(em);
  144. em = lookup_extent_mapping(em_tree, start, len);
  145. if (em) {
  146. ret = 0;
  147. } else {
  148. em = lookup_extent_mapping(em_tree, failed_start,
  149. failed_len);
  150. ret = -EIO;
  151. }
  152. } else if (ret) {
  153. free_extent_map(em);
  154. em = NULL;
  155. }
  156. write_unlock(&em_tree->lock);
  157. if (ret)
  158. em = ERR_PTR(ret);
  159. out:
  160. return em;
  161. }
  162. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  163. {
  164. return crc32c(seed, data, len);
  165. }
  166. void btrfs_csum_final(u32 crc, char *result)
  167. {
  168. *(__le32 *)result = ~cpu_to_le32(crc);
  169. }
  170. /*
  171. * compute the csum for a btree block, and either verify it or write it
  172. * into the csum field of the block.
  173. */
  174. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  175. int verify)
  176. {
  177. u16 csum_size =
  178. btrfs_super_csum_size(&root->fs_info->super_copy);
  179. char *result = NULL;
  180. unsigned long len;
  181. unsigned long cur_len;
  182. unsigned long offset = BTRFS_CSUM_SIZE;
  183. char *map_token = NULL;
  184. char *kaddr;
  185. unsigned long map_start;
  186. unsigned long map_len;
  187. int err;
  188. u32 crc = ~(u32)0;
  189. unsigned long inline_result;
  190. len = buf->len - offset;
  191. while (len > 0) {
  192. err = map_private_extent_buffer(buf, offset, 32,
  193. &map_token, &kaddr,
  194. &map_start, &map_len, KM_USER0);
  195. if (err)
  196. return 1;
  197. cur_len = min(len, map_len - (offset - map_start));
  198. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  199. crc, cur_len);
  200. len -= cur_len;
  201. offset += cur_len;
  202. unmap_extent_buffer(buf, map_token, KM_USER0);
  203. }
  204. if (csum_size > sizeof(inline_result)) {
  205. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  206. if (!result)
  207. return 1;
  208. } else {
  209. result = (char *)&inline_result;
  210. }
  211. btrfs_csum_final(crc, result);
  212. if (verify) {
  213. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  214. u32 val;
  215. u32 found = 0;
  216. memcpy(&found, result, csum_size);
  217. read_extent_buffer(buf, &val, 0, csum_size);
  218. if (printk_ratelimit()) {
  219. printk(KERN_INFO "btrfs: %s checksum verify "
  220. "failed on %llu wanted %X found %X "
  221. "level %d\n",
  222. root->fs_info->sb->s_id,
  223. (unsigned long long)buf->start, val, found,
  224. btrfs_header_level(buf));
  225. }
  226. if (result != (char *)&inline_result)
  227. kfree(result);
  228. return 1;
  229. }
  230. } else {
  231. write_extent_buffer(buf, result, 0, csum_size);
  232. }
  233. if (result != (char *)&inline_result)
  234. kfree(result);
  235. return 0;
  236. }
  237. /*
  238. * we can't consider a given block up to date unless the transid of the
  239. * block matches the transid in the parent node's pointer. This is how we
  240. * detect blocks that either didn't get written at all or got written
  241. * in the wrong place.
  242. */
  243. static int verify_parent_transid(struct extent_io_tree *io_tree,
  244. struct extent_buffer *eb, u64 parent_transid)
  245. {
  246. struct extent_state *cached_state = NULL;
  247. int ret;
  248. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  249. return 0;
  250. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  251. 0, &cached_state, GFP_NOFS);
  252. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  253. btrfs_header_generation(eb) == parent_transid) {
  254. ret = 0;
  255. goto out;
  256. }
  257. if (printk_ratelimit()) {
  258. printk("parent transid verify failed on %llu wanted %llu "
  259. "found %llu\n",
  260. (unsigned long long)eb->start,
  261. (unsigned long long)parent_transid,
  262. (unsigned long long)btrfs_header_generation(eb));
  263. }
  264. ret = 1;
  265. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  266. out:
  267. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  268. &cached_state, GFP_NOFS);
  269. return ret;
  270. }
  271. /*
  272. * helper to read a given tree block, doing retries as required when
  273. * the checksums don't match and we have alternate mirrors to try.
  274. */
  275. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  276. struct extent_buffer *eb,
  277. u64 start, u64 parent_transid)
  278. {
  279. struct extent_io_tree *io_tree;
  280. int ret;
  281. int num_copies = 0;
  282. int mirror_num = 0;
  283. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  284. while (1) {
  285. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  286. btree_get_extent, mirror_num);
  287. if (!ret &&
  288. !verify_parent_transid(io_tree, eb, parent_transid))
  289. return ret;
  290. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  291. eb->start, eb->len);
  292. if (num_copies == 1)
  293. return ret;
  294. mirror_num++;
  295. if (mirror_num > num_copies)
  296. return ret;
  297. }
  298. return -EIO;
  299. }
  300. /*
  301. * checksum a dirty tree block before IO. This has extra checks to make sure
  302. * we only fill in the checksum field in the first page of a multi-page block
  303. */
  304. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  305. {
  306. struct extent_io_tree *tree;
  307. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  308. u64 found_start;
  309. int found_level;
  310. unsigned long len;
  311. struct extent_buffer *eb;
  312. int ret;
  313. tree = &BTRFS_I(page->mapping->host)->io_tree;
  314. if (page->private == EXTENT_PAGE_PRIVATE)
  315. goto out;
  316. if (!page->private)
  317. goto out;
  318. len = page->private >> 2;
  319. WARN_ON(len == 0);
  320. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  321. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  322. btrfs_header_generation(eb));
  323. BUG_ON(ret);
  324. found_start = btrfs_header_bytenr(eb);
  325. if (found_start != start) {
  326. WARN_ON(1);
  327. goto err;
  328. }
  329. if (eb->first_page != page) {
  330. WARN_ON(1);
  331. goto err;
  332. }
  333. if (!PageUptodate(page)) {
  334. WARN_ON(1);
  335. goto err;
  336. }
  337. found_level = btrfs_header_level(eb);
  338. csum_tree_block(root, eb, 0);
  339. err:
  340. free_extent_buffer(eb);
  341. out:
  342. return 0;
  343. }
  344. static int check_tree_block_fsid(struct btrfs_root *root,
  345. struct extent_buffer *eb)
  346. {
  347. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  348. u8 fsid[BTRFS_UUID_SIZE];
  349. int ret = 1;
  350. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  351. BTRFS_FSID_SIZE);
  352. while (fs_devices) {
  353. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  354. ret = 0;
  355. break;
  356. }
  357. fs_devices = fs_devices->seed;
  358. }
  359. return ret;
  360. }
  361. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  362. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  363. {
  364. lockdep_set_class_and_name(&eb->lock,
  365. &btrfs_eb_class[level],
  366. btrfs_eb_name[level]);
  367. }
  368. #endif
  369. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  370. struct extent_state *state)
  371. {
  372. struct extent_io_tree *tree;
  373. u64 found_start;
  374. int found_level;
  375. unsigned long len;
  376. struct extent_buffer *eb;
  377. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  378. int ret = 0;
  379. tree = &BTRFS_I(page->mapping->host)->io_tree;
  380. if (page->private == EXTENT_PAGE_PRIVATE)
  381. goto out;
  382. if (!page->private)
  383. goto out;
  384. len = page->private >> 2;
  385. WARN_ON(len == 0);
  386. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  387. found_start = btrfs_header_bytenr(eb);
  388. if (found_start != start) {
  389. if (printk_ratelimit()) {
  390. printk(KERN_INFO "btrfs bad tree block start "
  391. "%llu %llu\n",
  392. (unsigned long long)found_start,
  393. (unsigned long long)eb->start);
  394. }
  395. ret = -EIO;
  396. goto err;
  397. }
  398. if (eb->first_page != page) {
  399. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  400. eb->first_page->index, page->index);
  401. WARN_ON(1);
  402. ret = -EIO;
  403. goto err;
  404. }
  405. if (check_tree_block_fsid(root, eb)) {
  406. if (printk_ratelimit()) {
  407. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  408. (unsigned long long)eb->start);
  409. }
  410. ret = -EIO;
  411. goto err;
  412. }
  413. found_level = btrfs_header_level(eb);
  414. btrfs_set_buffer_lockdep_class(eb, found_level);
  415. ret = csum_tree_block(root, eb, 1);
  416. if (ret)
  417. ret = -EIO;
  418. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  419. end = eb->start + end - 1;
  420. err:
  421. free_extent_buffer(eb);
  422. out:
  423. return ret;
  424. }
  425. static void end_workqueue_bio(struct bio *bio, int err)
  426. {
  427. struct end_io_wq *end_io_wq = bio->bi_private;
  428. struct btrfs_fs_info *fs_info;
  429. fs_info = end_io_wq->info;
  430. end_io_wq->error = err;
  431. end_io_wq->work.func = end_workqueue_fn;
  432. end_io_wq->work.flags = 0;
  433. if (bio->bi_rw & (1 << BIO_RW)) {
  434. if (end_io_wq->metadata)
  435. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  436. &end_io_wq->work);
  437. else
  438. btrfs_queue_worker(&fs_info->endio_write_workers,
  439. &end_io_wq->work);
  440. } else {
  441. if (end_io_wq->metadata)
  442. btrfs_queue_worker(&fs_info->endio_meta_workers,
  443. &end_io_wq->work);
  444. else
  445. btrfs_queue_worker(&fs_info->endio_workers,
  446. &end_io_wq->work);
  447. }
  448. }
  449. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  450. int metadata)
  451. {
  452. struct end_io_wq *end_io_wq;
  453. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  454. if (!end_io_wq)
  455. return -ENOMEM;
  456. end_io_wq->private = bio->bi_private;
  457. end_io_wq->end_io = bio->bi_end_io;
  458. end_io_wq->info = info;
  459. end_io_wq->error = 0;
  460. end_io_wq->bio = bio;
  461. end_io_wq->metadata = metadata;
  462. bio->bi_private = end_io_wq;
  463. bio->bi_end_io = end_workqueue_bio;
  464. return 0;
  465. }
  466. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  467. {
  468. unsigned long limit = min_t(unsigned long,
  469. info->workers.max_workers,
  470. info->fs_devices->open_devices);
  471. return 256 * limit;
  472. }
  473. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  474. {
  475. return atomic_read(&info->nr_async_bios) >
  476. btrfs_async_submit_limit(info);
  477. }
  478. static void run_one_async_start(struct btrfs_work *work)
  479. {
  480. struct btrfs_fs_info *fs_info;
  481. struct async_submit_bio *async;
  482. async = container_of(work, struct async_submit_bio, work);
  483. fs_info = BTRFS_I(async->inode)->root->fs_info;
  484. async->submit_bio_start(async->inode, async->rw, async->bio,
  485. async->mirror_num, async->bio_flags);
  486. }
  487. static void run_one_async_done(struct btrfs_work *work)
  488. {
  489. struct btrfs_fs_info *fs_info;
  490. struct async_submit_bio *async;
  491. int limit;
  492. async = container_of(work, struct async_submit_bio, work);
  493. fs_info = BTRFS_I(async->inode)->root->fs_info;
  494. limit = btrfs_async_submit_limit(fs_info);
  495. limit = limit * 2 / 3;
  496. atomic_dec(&fs_info->nr_async_submits);
  497. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  498. waitqueue_active(&fs_info->async_submit_wait))
  499. wake_up(&fs_info->async_submit_wait);
  500. async->submit_bio_done(async->inode, async->rw, async->bio,
  501. async->mirror_num, async->bio_flags);
  502. }
  503. static void run_one_async_free(struct btrfs_work *work)
  504. {
  505. struct async_submit_bio *async;
  506. async = container_of(work, struct async_submit_bio, work);
  507. kfree(async);
  508. }
  509. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  510. int rw, struct bio *bio, int mirror_num,
  511. unsigned long bio_flags,
  512. extent_submit_bio_hook_t *submit_bio_start,
  513. extent_submit_bio_hook_t *submit_bio_done)
  514. {
  515. struct async_submit_bio *async;
  516. async = kmalloc(sizeof(*async), GFP_NOFS);
  517. if (!async)
  518. return -ENOMEM;
  519. async->inode = inode;
  520. async->rw = rw;
  521. async->bio = bio;
  522. async->mirror_num = mirror_num;
  523. async->submit_bio_start = submit_bio_start;
  524. async->submit_bio_done = submit_bio_done;
  525. async->work.func = run_one_async_start;
  526. async->work.ordered_func = run_one_async_done;
  527. async->work.ordered_free = run_one_async_free;
  528. async->work.flags = 0;
  529. async->bio_flags = bio_flags;
  530. atomic_inc(&fs_info->nr_async_submits);
  531. if (rw & (1 << BIO_RW_SYNCIO))
  532. btrfs_set_work_high_prio(&async->work);
  533. btrfs_queue_worker(&fs_info->workers, &async->work);
  534. while (atomic_read(&fs_info->async_submit_draining) &&
  535. atomic_read(&fs_info->nr_async_submits)) {
  536. wait_event(fs_info->async_submit_wait,
  537. (atomic_read(&fs_info->nr_async_submits) == 0));
  538. }
  539. return 0;
  540. }
  541. static int btree_csum_one_bio(struct bio *bio)
  542. {
  543. struct bio_vec *bvec = bio->bi_io_vec;
  544. int bio_index = 0;
  545. struct btrfs_root *root;
  546. WARN_ON(bio->bi_vcnt <= 0);
  547. while (bio_index < bio->bi_vcnt) {
  548. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  549. csum_dirty_buffer(root, bvec->bv_page);
  550. bio_index++;
  551. bvec++;
  552. }
  553. return 0;
  554. }
  555. static int __btree_submit_bio_start(struct inode *inode, int rw,
  556. struct bio *bio, int mirror_num,
  557. unsigned long bio_flags)
  558. {
  559. /*
  560. * when we're called for a write, we're already in the async
  561. * submission context. Just jump into btrfs_map_bio
  562. */
  563. btree_csum_one_bio(bio);
  564. return 0;
  565. }
  566. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  567. int mirror_num, unsigned long bio_flags)
  568. {
  569. /*
  570. * when we're called for a write, we're already in the async
  571. * submission context. Just jump into btrfs_map_bio
  572. */
  573. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  574. }
  575. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  576. int mirror_num, unsigned long bio_flags)
  577. {
  578. int ret;
  579. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  580. bio, 1);
  581. BUG_ON(ret);
  582. if (!(rw & (1 << BIO_RW))) {
  583. /*
  584. * called for a read, do the setup so that checksum validation
  585. * can happen in the async kernel threads
  586. */
  587. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  588. mirror_num, 0);
  589. }
  590. /*
  591. * kthread helpers are used to submit writes so that checksumming
  592. * can happen in parallel across all CPUs
  593. */
  594. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  595. inode, rw, bio, mirror_num, 0,
  596. __btree_submit_bio_start,
  597. __btree_submit_bio_done);
  598. }
  599. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  600. {
  601. struct extent_io_tree *tree;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. struct extent_buffer *eb;
  604. int was_dirty;
  605. tree = &BTRFS_I(page->mapping->host)->io_tree;
  606. if (!(current->flags & PF_MEMALLOC)) {
  607. return extent_write_full_page(tree, page,
  608. btree_get_extent, wbc);
  609. }
  610. redirty_page_for_writepage(wbc, page);
  611. eb = btrfs_find_tree_block(root, page_offset(page),
  612. PAGE_CACHE_SIZE);
  613. WARN_ON(!eb);
  614. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  615. if (!was_dirty) {
  616. spin_lock(&root->fs_info->delalloc_lock);
  617. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  618. spin_unlock(&root->fs_info->delalloc_lock);
  619. }
  620. free_extent_buffer(eb);
  621. unlock_page(page);
  622. return 0;
  623. }
  624. static int btree_writepages(struct address_space *mapping,
  625. struct writeback_control *wbc)
  626. {
  627. struct extent_io_tree *tree;
  628. tree = &BTRFS_I(mapping->host)->io_tree;
  629. if (wbc->sync_mode == WB_SYNC_NONE) {
  630. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  631. u64 num_dirty;
  632. unsigned long thresh = 32 * 1024 * 1024;
  633. if (wbc->for_kupdate)
  634. return 0;
  635. /* this is a bit racy, but that's ok */
  636. num_dirty = root->fs_info->dirty_metadata_bytes;
  637. if (num_dirty < thresh)
  638. return 0;
  639. }
  640. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  641. }
  642. static int btree_readpage(struct file *file, struct page *page)
  643. {
  644. struct extent_io_tree *tree;
  645. tree = &BTRFS_I(page->mapping->host)->io_tree;
  646. return extent_read_full_page(tree, page, btree_get_extent);
  647. }
  648. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  649. {
  650. struct extent_io_tree *tree;
  651. struct extent_map_tree *map;
  652. int ret;
  653. if (PageWriteback(page) || PageDirty(page))
  654. return 0;
  655. tree = &BTRFS_I(page->mapping->host)->io_tree;
  656. map = &BTRFS_I(page->mapping->host)->extent_tree;
  657. ret = try_release_extent_state(map, tree, page, gfp_flags);
  658. if (!ret)
  659. return 0;
  660. ret = try_release_extent_buffer(tree, page);
  661. if (ret == 1) {
  662. ClearPagePrivate(page);
  663. set_page_private(page, 0);
  664. page_cache_release(page);
  665. }
  666. return ret;
  667. }
  668. static void btree_invalidatepage(struct page *page, unsigned long offset)
  669. {
  670. struct extent_io_tree *tree;
  671. tree = &BTRFS_I(page->mapping->host)->io_tree;
  672. extent_invalidatepage(tree, page, offset);
  673. btree_releasepage(page, GFP_NOFS);
  674. if (PagePrivate(page)) {
  675. printk(KERN_WARNING "btrfs warning page private not zero "
  676. "on page %llu\n", (unsigned long long)page_offset(page));
  677. ClearPagePrivate(page);
  678. set_page_private(page, 0);
  679. page_cache_release(page);
  680. }
  681. }
  682. static const struct address_space_operations btree_aops = {
  683. .readpage = btree_readpage,
  684. .writepage = btree_writepage,
  685. .writepages = btree_writepages,
  686. .releasepage = btree_releasepage,
  687. .invalidatepage = btree_invalidatepage,
  688. .sync_page = block_sync_page,
  689. };
  690. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  691. u64 parent_transid)
  692. {
  693. struct extent_buffer *buf = NULL;
  694. struct inode *btree_inode = root->fs_info->btree_inode;
  695. int ret = 0;
  696. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  697. if (!buf)
  698. return 0;
  699. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  700. buf, 0, 0, btree_get_extent, 0);
  701. free_extent_buffer(buf);
  702. return ret;
  703. }
  704. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  705. u64 bytenr, u32 blocksize)
  706. {
  707. struct inode *btree_inode = root->fs_info->btree_inode;
  708. struct extent_buffer *eb;
  709. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  710. bytenr, blocksize, GFP_NOFS);
  711. return eb;
  712. }
  713. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  714. u64 bytenr, u32 blocksize)
  715. {
  716. struct inode *btree_inode = root->fs_info->btree_inode;
  717. struct extent_buffer *eb;
  718. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  719. bytenr, blocksize, NULL, GFP_NOFS);
  720. return eb;
  721. }
  722. int btrfs_write_tree_block(struct extent_buffer *buf)
  723. {
  724. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  725. buf->start + buf->len - 1);
  726. }
  727. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  728. {
  729. return filemap_fdatawait_range(buf->first_page->mapping,
  730. buf->start, buf->start + buf->len - 1);
  731. }
  732. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  733. u32 blocksize, u64 parent_transid)
  734. {
  735. struct extent_buffer *buf = NULL;
  736. struct inode *btree_inode = root->fs_info->btree_inode;
  737. struct extent_io_tree *io_tree;
  738. int ret;
  739. io_tree = &BTRFS_I(btree_inode)->io_tree;
  740. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  741. if (!buf)
  742. return NULL;
  743. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  744. if (ret == 0)
  745. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  746. return buf;
  747. }
  748. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  749. struct extent_buffer *buf)
  750. {
  751. struct inode *btree_inode = root->fs_info->btree_inode;
  752. if (btrfs_header_generation(buf) ==
  753. root->fs_info->running_transaction->transid) {
  754. btrfs_assert_tree_locked(buf);
  755. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  756. spin_lock(&root->fs_info->delalloc_lock);
  757. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  758. root->fs_info->dirty_metadata_bytes -= buf->len;
  759. else
  760. WARN_ON(1);
  761. spin_unlock(&root->fs_info->delalloc_lock);
  762. }
  763. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  764. btrfs_set_lock_blocking(buf);
  765. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  766. buf);
  767. }
  768. return 0;
  769. }
  770. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  771. u32 stripesize, struct btrfs_root *root,
  772. struct btrfs_fs_info *fs_info,
  773. u64 objectid)
  774. {
  775. root->node = NULL;
  776. root->commit_root = NULL;
  777. root->sectorsize = sectorsize;
  778. root->nodesize = nodesize;
  779. root->leafsize = leafsize;
  780. root->stripesize = stripesize;
  781. root->ref_cows = 0;
  782. root->track_dirty = 0;
  783. root->in_radix = 0;
  784. root->orphan_item_inserted = 0;
  785. root->orphan_cleanup_state = 0;
  786. root->fs_info = fs_info;
  787. root->objectid = objectid;
  788. root->last_trans = 0;
  789. root->highest_objectid = 0;
  790. root->name = NULL;
  791. root->in_sysfs = 0;
  792. root->inode_tree = RB_ROOT;
  793. root->block_rsv = NULL;
  794. root->orphan_block_rsv = NULL;
  795. INIT_LIST_HEAD(&root->dirty_list);
  796. INIT_LIST_HEAD(&root->orphan_list);
  797. INIT_LIST_HEAD(&root->root_list);
  798. spin_lock_init(&root->node_lock);
  799. spin_lock_init(&root->orphan_lock);
  800. spin_lock_init(&root->inode_lock);
  801. spin_lock_init(&root->accounting_lock);
  802. mutex_init(&root->objectid_mutex);
  803. mutex_init(&root->log_mutex);
  804. init_waitqueue_head(&root->log_writer_wait);
  805. init_waitqueue_head(&root->log_commit_wait[0]);
  806. init_waitqueue_head(&root->log_commit_wait[1]);
  807. atomic_set(&root->log_commit[0], 0);
  808. atomic_set(&root->log_commit[1], 0);
  809. atomic_set(&root->log_writers, 0);
  810. root->log_batch = 0;
  811. root->log_transid = 0;
  812. root->last_log_commit = 0;
  813. extent_io_tree_init(&root->dirty_log_pages,
  814. fs_info->btree_inode->i_mapping, GFP_NOFS);
  815. memset(&root->root_key, 0, sizeof(root->root_key));
  816. memset(&root->root_item, 0, sizeof(root->root_item));
  817. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  818. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  819. root->defrag_trans_start = fs_info->generation;
  820. init_completion(&root->kobj_unregister);
  821. root->defrag_running = 0;
  822. root->root_key.objectid = objectid;
  823. root->anon_super.s_root = NULL;
  824. root->anon_super.s_dev = 0;
  825. INIT_LIST_HEAD(&root->anon_super.s_list);
  826. INIT_LIST_HEAD(&root->anon_super.s_instances);
  827. init_rwsem(&root->anon_super.s_umount);
  828. return 0;
  829. }
  830. static int find_and_setup_root(struct btrfs_root *tree_root,
  831. struct btrfs_fs_info *fs_info,
  832. u64 objectid,
  833. struct btrfs_root *root)
  834. {
  835. int ret;
  836. u32 blocksize;
  837. u64 generation;
  838. __setup_root(tree_root->nodesize, tree_root->leafsize,
  839. tree_root->sectorsize, tree_root->stripesize,
  840. root, fs_info, objectid);
  841. ret = btrfs_find_last_root(tree_root, objectid,
  842. &root->root_item, &root->root_key);
  843. if (ret > 0)
  844. return -ENOENT;
  845. BUG_ON(ret);
  846. generation = btrfs_root_generation(&root->root_item);
  847. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  848. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  849. blocksize, generation);
  850. BUG_ON(!root->node);
  851. root->commit_root = btrfs_root_node(root);
  852. return 0;
  853. }
  854. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  855. struct btrfs_fs_info *fs_info)
  856. {
  857. struct extent_buffer *eb;
  858. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  859. u64 start = 0;
  860. u64 end = 0;
  861. int ret;
  862. if (!log_root_tree)
  863. return 0;
  864. while (1) {
  865. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  866. 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
  867. if (ret)
  868. break;
  869. clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
  870. EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
  871. }
  872. eb = fs_info->log_root_tree->node;
  873. WARN_ON(btrfs_header_level(eb) != 0);
  874. WARN_ON(btrfs_header_nritems(eb) != 0);
  875. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  876. eb->start, eb->len);
  877. BUG_ON(ret);
  878. free_extent_buffer(eb);
  879. kfree(fs_info->log_root_tree);
  880. fs_info->log_root_tree = NULL;
  881. return 0;
  882. }
  883. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  884. struct btrfs_fs_info *fs_info)
  885. {
  886. struct btrfs_root *root;
  887. struct btrfs_root *tree_root = fs_info->tree_root;
  888. struct extent_buffer *leaf;
  889. root = kzalloc(sizeof(*root), GFP_NOFS);
  890. if (!root)
  891. return ERR_PTR(-ENOMEM);
  892. __setup_root(tree_root->nodesize, tree_root->leafsize,
  893. tree_root->sectorsize, tree_root->stripesize,
  894. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  895. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  896. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  897. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  898. /*
  899. * log trees do not get reference counted because they go away
  900. * before a real commit is actually done. They do store pointers
  901. * to file data extents, and those reference counts still get
  902. * updated (along with back refs to the log tree).
  903. */
  904. root->ref_cows = 0;
  905. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  906. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  907. if (IS_ERR(leaf)) {
  908. kfree(root);
  909. return ERR_CAST(leaf);
  910. }
  911. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  912. btrfs_set_header_bytenr(leaf, leaf->start);
  913. btrfs_set_header_generation(leaf, trans->transid);
  914. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  915. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  916. root->node = leaf;
  917. write_extent_buffer(root->node, root->fs_info->fsid,
  918. (unsigned long)btrfs_header_fsid(root->node),
  919. BTRFS_FSID_SIZE);
  920. btrfs_mark_buffer_dirty(root->node);
  921. btrfs_tree_unlock(root->node);
  922. return root;
  923. }
  924. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  925. struct btrfs_fs_info *fs_info)
  926. {
  927. struct btrfs_root *log_root;
  928. log_root = alloc_log_tree(trans, fs_info);
  929. if (IS_ERR(log_root))
  930. return PTR_ERR(log_root);
  931. WARN_ON(fs_info->log_root_tree);
  932. fs_info->log_root_tree = log_root;
  933. return 0;
  934. }
  935. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  936. struct btrfs_root *root)
  937. {
  938. struct btrfs_root *log_root;
  939. struct btrfs_inode_item *inode_item;
  940. log_root = alloc_log_tree(trans, root->fs_info);
  941. if (IS_ERR(log_root))
  942. return PTR_ERR(log_root);
  943. log_root->last_trans = trans->transid;
  944. log_root->root_key.offset = root->root_key.objectid;
  945. inode_item = &log_root->root_item.inode;
  946. inode_item->generation = cpu_to_le64(1);
  947. inode_item->size = cpu_to_le64(3);
  948. inode_item->nlink = cpu_to_le32(1);
  949. inode_item->nbytes = cpu_to_le64(root->leafsize);
  950. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  951. btrfs_set_root_node(&log_root->root_item, log_root->node);
  952. WARN_ON(root->log_root);
  953. root->log_root = log_root;
  954. root->log_transid = 0;
  955. root->last_log_commit = 0;
  956. return 0;
  957. }
  958. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  959. struct btrfs_key *location)
  960. {
  961. struct btrfs_root *root;
  962. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  963. struct btrfs_path *path;
  964. struct extent_buffer *l;
  965. u64 generation;
  966. u32 blocksize;
  967. int ret = 0;
  968. root = kzalloc(sizeof(*root), GFP_NOFS);
  969. if (!root)
  970. return ERR_PTR(-ENOMEM);
  971. if (location->offset == (u64)-1) {
  972. ret = find_and_setup_root(tree_root, fs_info,
  973. location->objectid, root);
  974. if (ret) {
  975. kfree(root);
  976. return ERR_PTR(ret);
  977. }
  978. goto out;
  979. }
  980. __setup_root(tree_root->nodesize, tree_root->leafsize,
  981. tree_root->sectorsize, tree_root->stripesize,
  982. root, fs_info, location->objectid);
  983. path = btrfs_alloc_path();
  984. BUG_ON(!path);
  985. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  986. if (ret == 0) {
  987. l = path->nodes[0];
  988. read_extent_buffer(l, &root->root_item,
  989. btrfs_item_ptr_offset(l, path->slots[0]),
  990. sizeof(root->root_item));
  991. memcpy(&root->root_key, location, sizeof(*location));
  992. }
  993. btrfs_free_path(path);
  994. if (ret) {
  995. if (ret > 0)
  996. ret = -ENOENT;
  997. return ERR_PTR(ret);
  998. }
  999. generation = btrfs_root_generation(&root->root_item);
  1000. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1001. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1002. blocksize, generation);
  1003. root->commit_root = btrfs_root_node(root);
  1004. BUG_ON(!root->node);
  1005. out:
  1006. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  1007. root->ref_cows = 1;
  1008. return root;
  1009. }
  1010. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1011. u64 root_objectid)
  1012. {
  1013. struct btrfs_root *root;
  1014. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1015. return fs_info->tree_root;
  1016. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1017. return fs_info->extent_root;
  1018. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1019. (unsigned long)root_objectid);
  1020. return root;
  1021. }
  1022. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1023. struct btrfs_key *location)
  1024. {
  1025. struct btrfs_root *root;
  1026. int ret;
  1027. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1028. return fs_info->tree_root;
  1029. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1030. return fs_info->extent_root;
  1031. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1032. return fs_info->chunk_root;
  1033. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1034. return fs_info->dev_root;
  1035. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1036. return fs_info->csum_root;
  1037. again:
  1038. spin_lock(&fs_info->fs_roots_radix_lock);
  1039. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1040. (unsigned long)location->objectid);
  1041. spin_unlock(&fs_info->fs_roots_radix_lock);
  1042. if (root)
  1043. return root;
  1044. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1045. if (IS_ERR(root))
  1046. return root;
  1047. set_anon_super(&root->anon_super, NULL);
  1048. if (btrfs_root_refs(&root->root_item) == 0) {
  1049. ret = -ENOENT;
  1050. goto fail;
  1051. }
  1052. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1053. if (ret < 0)
  1054. goto fail;
  1055. if (ret == 0)
  1056. root->orphan_item_inserted = 1;
  1057. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1058. if (ret)
  1059. goto fail;
  1060. spin_lock(&fs_info->fs_roots_radix_lock);
  1061. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1062. (unsigned long)root->root_key.objectid,
  1063. root);
  1064. if (ret == 0)
  1065. root->in_radix = 1;
  1066. spin_unlock(&fs_info->fs_roots_radix_lock);
  1067. radix_tree_preload_end();
  1068. if (ret) {
  1069. if (ret == -EEXIST) {
  1070. free_fs_root(root);
  1071. goto again;
  1072. }
  1073. goto fail;
  1074. }
  1075. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1076. root->root_key.objectid);
  1077. WARN_ON(ret);
  1078. return root;
  1079. fail:
  1080. free_fs_root(root);
  1081. return ERR_PTR(ret);
  1082. }
  1083. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1084. struct btrfs_key *location,
  1085. const char *name, int namelen)
  1086. {
  1087. return btrfs_read_fs_root_no_name(fs_info, location);
  1088. #if 0
  1089. struct btrfs_root *root;
  1090. int ret;
  1091. root = btrfs_read_fs_root_no_name(fs_info, location);
  1092. if (!root)
  1093. return NULL;
  1094. if (root->in_sysfs)
  1095. return root;
  1096. ret = btrfs_set_root_name(root, name, namelen);
  1097. if (ret) {
  1098. free_extent_buffer(root->node);
  1099. kfree(root);
  1100. return ERR_PTR(ret);
  1101. }
  1102. ret = btrfs_sysfs_add_root(root);
  1103. if (ret) {
  1104. free_extent_buffer(root->node);
  1105. kfree(root->name);
  1106. kfree(root);
  1107. return ERR_PTR(ret);
  1108. }
  1109. root->in_sysfs = 1;
  1110. return root;
  1111. #endif
  1112. }
  1113. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1114. {
  1115. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1116. int ret = 0;
  1117. struct btrfs_device *device;
  1118. struct backing_dev_info *bdi;
  1119. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1120. if (!device->bdev)
  1121. continue;
  1122. bdi = blk_get_backing_dev_info(device->bdev);
  1123. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1124. ret = 1;
  1125. break;
  1126. }
  1127. }
  1128. return ret;
  1129. }
  1130. /*
  1131. * this unplugs every device on the box, and it is only used when page
  1132. * is null
  1133. */
  1134. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1135. {
  1136. struct btrfs_device *device;
  1137. struct btrfs_fs_info *info;
  1138. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1139. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1140. if (!device->bdev)
  1141. continue;
  1142. bdi = blk_get_backing_dev_info(device->bdev);
  1143. if (bdi->unplug_io_fn)
  1144. bdi->unplug_io_fn(bdi, page);
  1145. }
  1146. }
  1147. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1148. {
  1149. struct inode *inode;
  1150. struct extent_map_tree *em_tree;
  1151. struct extent_map *em;
  1152. struct address_space *mapping;
  1153. u64 offset;
  1154. /* the generic O_DIRECT read code does this */
  1155. if (1 || !page) {
  1156. __unplug_io_fn(bdi, page);
  1157. return;
  1158. }
  1159. /*
  1160. * page->mapping may change at any time. Get a consistent copy
  1161. * and use that for everything below
  1162. */
  1163. smp_mb();
  1164. mapping = page->mapping;
  1165. if (!mapping)
  1166. return;
  1167. inode = mapping->host;
  1168. /*
  1169. * don't do the expensive searching for a small number of
  1170. * devices
  1171. */
  1172. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1173. __unplug_io_fn(bdi, page);
  1174. return;
  1175. }
  1176. offset = page_offset(page);
  1177. em_tree = &BTRFS_I(inode)->extent_tree;
  1178. read_lock(&em_tree->lock);
  1179. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1180. read_unlock(&em_tree->lock);
  1181. if (!em) {
  1182. __unplug_io_fn(bdi, page);
  1183. return;
  1184. }
  1185. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1186. free_extent_map(em);
  1187. __unplug_io_fn(bdi, page);
  1188. return;
  1189. }
  1190. offset = offset - em->start;
  1191. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1192. em->block_start + offset, page);
  1193. free_extent_map(em);
  1194. }
  1195. /*
  1196. * If this fails, caller must call bdi_destroy() to get rid of the
  1197. * bdi again.
  1198. */
  1199. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1200. {
  1201. int err;
  1202. bdi->capabilities = BDI_CAP_MAP_COPY;
  1203. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1204. if (err)
  1205. return err;
  1206. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1207. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1208. bdi->unplug_io_data = info;
  1209. bdi->congested_fn = btrfs_congested_fn;
  1210. bdi->congested_data = info;
  1211. return 0;
  1212. }
  1213. static int bio_ready_for_csum(struct bio *bio)
  1214. {
  1215. u64 length = 0;
  1216. u64 buf_len = 0;
  1217. u64 start = 0;
  1218. struct page *page;
  1219. struct extent_io_tree *io_tree = NULL;
  1220. struct btrfs_fs_info *info = NULL;
  1221. struct bio_vec *bvec;
  1222. int i;
  1223. int ret;
  1224. bio_for_each_segment(bvec, bio, i) {
  1225. page = bvec->bv_page;
  1226. if (page->private == EXTENT_PAGE_PRIVATE) {
  1227. length += bvec->bv_len;
  1228. continue;
  1229. }
  1230. if (!page->private) {
  1231. length += bvec->bv_len;
  1232. continue;
  1233. }
  1234. length = bvec->bv_len;
  1235. buf_len = page->private >> 2;
  1236. start = page_offset(page) + bvec->bv_offset;
  1237. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1238. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1239. }
  1240. /* are we fully contained in this bio? */
  1241. if (buf_len <= length)
  1242. return 1;
  1243. ret = extent_range_uptodate(io_tree, start + length,
  1244. start + buf_len - 1);
  1245. return ret;
  1246. }
  1247. /*
  1248. * called by the kthread helper functions to finally call the bio end_io
  1249. * functions. This is where read checksum verification actually happens
  1250. */
  1251. static void end_workqueue_fn(struct btrfs_work *work)
  1252. {
  1253. struct bio *bio;
  1254. struct end_io_wq *end_io_wq;
  1255. struct btrfs_fs_info *fs_info;
  1256. int error;
  1257. end_io_wq = container_of(work, struct end_io_wq, work);
  1258. bio = end_io_wq->bio;
  1259. fs_info = end_io_wq->info;
  1260. /* metadata bio reads are special because the whole tree block must
  1261. * be checksummed at once. This makes sure the entire block is in
  1262. * ram and up to date before trying to verify things. For
  1263. * blocksize <= pagesize, it is basically a noop
  1264. */
  1265. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1266. !bio_ready_for_csum(bio)) {
  1267. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1268. &end_io_wq->work);
  1269. return;
  1270. }
  1271. error = end_io_wq->error;
  1272. bio->bi_private = end_io_wq->private;
  1273. bio->bi_end_io = end_io_wq->end_io;
  1274. kfree(end_io_wq);
  1275. bio_endio(bio, error);
  1276. }
  1277. static int cleaner_kthread(void *arg)
  1278. {
  1279. struct btrfs_root *root = arg;
  1280. do {
  1281. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1282. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1283. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1284. btrfs_run_delayed_iputs(root);
  1285. btrfs_clean_old_snapshots(root);
  1286. mutex_unlock(&root->fs_info->cleaner_mutex);
  1287. }
  1288. if (freezing(current)) {
  1289. refrigerator();
  1290. } else {
  1291. set_current_state(TASK_INTERRUPTIBLE);
  1292. if (!kthread_should_stop())
  1293. schedule();
  1294. __set_current_state(TASK_RUNNING);
  1295. }
  1296. } while (!kthread_should_stop());
  1297. return 0;
  1298. }
  1299. static int transaction_kthread(void *arg)
  1300. {
  1301. struct btrfs_root *root = arg;
  1302. struct btrfs_trans_handle *trans;
  1303. struct btrfs_transaction *cur;
  1304. u64 transid;
  1305. unsigned long now;
  1306. unsigned long delay;
  1307. int ret;
  1308. do {
  1309. delay = HZ * 30;
  1310. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1311. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1312. spin_lock(&root->fs_info->new_trans_lock);
  1313. cur = root->fs_info->running_transaction;
  1314. if (!cur) {
  1315. spin_unlock(&root->fs_info->new_trans_lock);
  1316. goto sleep;
  1317. }
  1318. now = get_seconds();
  1319. if (!cur->blocked &&
  1320. (now < cur->start_time || now - cur->start_time < 30)) {
  1321. spin_unlock(&root->fs_info->new_trans_lock);
  1322. delay = HZ * 5;
  1323. goto sleep;
  1324. }
  1325. transid = cur->transid;
  1326. spin_unlock(&root->fs_info->new_trans_lock);
  1327. trans = btrfs_join_transaction(root, 1);
  1328. if (transid == trans->transid) {
  1329. ret = btrfs_commit_transaction(trans, root);
  1330. BUG_ON(ret);
  1331. } else {
  1332. btrfs_end_transaction(trans, root);
  1333. }
  1334. sleep:
  1335. wake_up_process(root->fs_info->cleaner_kthread);
  1336. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1337. if (freezing(current)) {
  1338. refrigerator();
  1339. } else {
  1340. set_current_state(TASK_INTERRUPTIBLE);
  1341. if (!kthread_should_stop() &&
  1342. !btrfs_transaction_blocked(root->fs_info))
  1343. schedule_timeout(delay);
  1344. __set_current_state(TASK_RUNNING);
  1345. }
  1346. } while (!kthread_should_stop());
  1347. return 0;
  1348. }
  1349. struct btrfs_root *open_ctree(struct super_block *sb,
  1350. struct btrfs_fs_devices *fs_devices,
  1351. char *options)
  1352. {
  1353. u32 sectorsize;
  1354. u32 nodesize;
  1355. u32 leafsize;
  1356. u32 blocksize;
  1357. u32 stripesize;
  1358. u64 generation;
  1359. u64 features;
  1360. struct btrfs_key location;
  1361. struct buffer_head *bh;
  1362. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1363. GFP_NOFS);
  1364. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1365. GFP_NOFS);
  1366. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1367. GFP_NOFS);
  1368. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1369. GFP_NOFS);
  1370. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1371. GFP_NOFS);
  1372. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1373. GFP_NOFS);
  1374. struct btrfs_root *log_tree_root;
  1375. int ret;
  1376. int err = -EINVAL;
  1377. struct btrfs_super_block *disk_super;
  1378. if (!extent_root || !tree_root || !fs_info ||
  1379. !chunk_root || !dev_root || !csum_root) {
  1380. err = -ENOMEM;
  1381. goto fail;
  1382. }
  1383. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1384. if (ret) {
  1385. err = ret;
  1386. goto fail;
  1387. }
  1388. ret = setup_bdi(fs_info, &fs_info->bdi);
  1389. if (ret) {
  1390. err = ret;
  1391. goto fail_srcu;
  1392. }
  1393. fs_info->btree_inode = new_inode(sb);
  1394. if (!fs_info->btree_inode) {
  1395. err = -ENOMEM;
  1396. goto fail_bdi;
  1397. }
  1398. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1399. INIT_LIST_HEAD(&fs_info->trans_list);
  1400. INIT_LIST_HEAD(&fs_info->dead_roots);
  1401. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1402. INIT_LIST_HEAD(&fs_info->hashers);
  1403. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1404. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1405. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1406. spin_lock_init(&fs_info->delalloc_lock);
  1407. spin_lock_init(&fs_info->new_trans_lock);
  1408. spin_lock_init(&fs_info->ref_cache_lock);
  1409. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1410. spin_lock_init(&fs_info->delayed_iput_lock);
  1411. init_completion(&fs_info->kobj_unregister);
  1412. fs_info->tree_root = tree_root;
  1413. fs_info->extent_root = extent_root;
  1414. fs_info->csum_root = csum_root;
  1415. fs_info->chunk_root = chunk_root;
  1416. fs_info->dev_root = dev_root;
  1417. fs_info->fs_devices = fs_devices;
  1418. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1419. INIT_LIST_HEAD(&fs_info->space_info);
  1420. btrfs_mapping_init(&fs_info->mapping_tree);
  1421. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1422. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1423. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1424. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1425. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1426. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1427. mutex_init(&fs_info->durable_block_rsv_mutex);
  1428. atomic_set(&fs_info->nr_async_submits, 0);
  1429. atomic_set(&fs_info->async_delalloc_pages, 0);
  1430. atomic_set(&fs_info->async_submit_draining, 0);
  1431. atomic_set(&fs_info->nr_async_bios, 0);
  1432. fs_info->sb = sb;
  1433. fs_info->max_inline = 8192 * 1024;
  1434. fs_info->metadata_ratio = 0;
  1435. fs_info->thread_pool_size = min_t(unsigned long,
  1436. num_online_cpus() + 2, 8);
  1437. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1438. spin_lock_init(&fs_info->ordered_extent_lock);
  1439. sb->s_blocksize = 4096;
  1440. sb->s_blocksize_bits = blksize_bits(4096);
  1441. sb->s_bdi = &fs_info->bdi;
  1442. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1443. fs_info->btree_inode->i_nlink = 1;
  1444. /*
  1445. * we set the i_size on the btree inode to the max possible int.
  1446. * the real end of the address space is determined by all of
  1447. * the devices in the system
  1448. */
  1449. fs_info->btree_inode->i_size = OFFSET_MAX;
  1450. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1451. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1452. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1453. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1454. fs_info->btree_inode->i_mapping,
  1455. GFP_NOFS);
  1456. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1457. GFP_NOFS);
  1458. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1459. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1460. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1461. sizeof(struct btrfs_key));
  1462. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1463. insert_inode_hash(fs_info->btree_inode);
  1464. spin_lock_init(&fs_info->block_group_cache_lock);
  1465. fs_info->block_group_cache_tree = RB_ROOT;
  1466. extent_io_tree_init(&fs_info->freed_extents[0],
  1467. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1468. extent_io_tree_init(&fs_info->freed_extents[1],
  1469. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1470. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1471. fs_info->do_barriers = 1;
  1472. mutex_init(&fs_info->trans_mutex);
  1473. mutex_init(&fs_info->ordered_operations_mutex);
  1474. mutex_init(&fs_info->tree_log_mutex);
  1475. mutex_init(&fs_info->chunk_mutex);
  1476. mutex_init(&fs_info->transaction_kthread_mutex);
  1477. mutex_init(&fs_info->cleaner_mutex);
  1478. mutex_init(&fs_info->volume_mutex);
  1479. init_rwsem(&fs_info->extent_commit_sem);
  1480. init_rwsem(&fs_info->cleanup_work_sem);
  1481. init_rwsem(&fs_info->subvol_sem);
  1482. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1483. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1484. init_waitqueue_head(&fs_info->transaction_throttle);
  1485. init_waitqueue_head(&fs_info->transaction_wait);
  1486. init_waitqueue_head(&fs_info->async_submit_wait);
  1487. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1488. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1489. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1490. if (!bh)
  1491. goto fail_iput;
  1492. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1493. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1494. sizeof(fs_info->super_for_commit));
  1495. brelse(bh);
  1496. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1497. disk_super = &fs_info->super_copy;
  1498. if (!btrfs_super_root(disk_super))
  1499. goto fail_iput;
  1500. ret = btrfs_parse_options(tree_root, options);
  1501. if (ret) {
  1502. err = ret;
  1503. goto fail_iput;
  1504. }
  1505. features = btrfs_super_incompat_flags(disk_super) &
  1506. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1507. if (features) {
  1508. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1509. "unsupported optional features (%Lx).\n",
  1510. (unsigned long long)features);
  1511. err = -EINVAL;
  1512. goto fail_iput;
  1513. }
  1514. features = btrfs_super_incompat_flags(disk_super);
  1515. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1516. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1517. btrfs_set_super_incompat_flags(disk_super, features);
  1518. }
  1519. features = btrfs_super_compat_ro_flags(disk_super) &
  1520. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1521. if (!(sb->s_flags & MS_RDONLY) && features) {
  1522. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1523. "unsupported option features (%Lx).\n",
  1524. (unsigned long long)features);
  1525. err = -EINVAL;
  1526. goto fail_iput;
  1527. }
  1528. btrfs_init_workers(&fs_info->generic_worker,
  1529. "genwork", 1, NULL);
  1530. btrfs_init_workers(&fs_info->workers, "worker",
  1531. fs_info->thread_pool_size,
  1532. &fs_info->generic_worker);
  1533. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1534. fs_info->thread_pool_size,
  1535. &fs_info->generic_worker);
  1536. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1537. min_t(u64, fs_devices->num_devices,
  1538. fs_info->thread_pool_size),
  1539. &fs_info->generic_worker);
  1540. /* a higher idle thresh on the submit workers makes it much more
  1541. * likely that bios will be send down in a sane order to the
  1542. * devices
  1543. */
  1544. fs_info->submit_workers.idle_thresh = 64;
  1545. fs_info->workers.idle_thresh = 16;
  1546. fs_info->workers.ordered = 1;
  1547. fs_info->delalloc_workers.idle_thresh = 2;
  1548. fs_info->delalloc_workers.ordered = 1;
  1549. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1550. &fs_info->generic_worker);
  1551. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1552. fs_info->thread_pool_size,
  1553. &fs_info->generic_worker);
  1554. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1555. fs_info->thread_pool_size,
  1556. &fs_info->generic_worker);
  1557. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1558. "endio-meta-write", fs_info->thread_pool_size,
  1559. &fs_info->generic_worker);
  1560. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1561. fs_info->thread_pool_size,
  1562. &fs_info->generic_worker);
  1563. /*
  1564. * endios are largely parallel and should have a very
  1565. * low idle thresh
  1566. */
  1567. fs_info->endio_workers.idle_thresh = 4;
  1568. fs_info->endio_meta_workers.idle_thresh = 4;
  1569. fs_info->endio_write_workers.idle_thresh = 2;
  1570. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1571. btrfs_start_workers(&fs_info->workers, 1);
  1572. btrfs_start_workers(&fs_info->generic_worker, 1);
  1573. btrfs_start_workers(&fs_info->submit_workers, 1);
  1574. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1575. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1576. btrfs_start_workers(&fs_info->endio_workers, 1);
  1577. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1578. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1579. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1580. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1581. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1582. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1583. nodesize = btrfs_super_nodesize(disk_super);
  1584. leafsize = btrfs_super_leafsize(disk_super);
  1585. sectorsize = btrfs_super_sectorsize(disk_super);
  1586. stripesize = btrfs_super_stripesize(disk_super);
  1587. tree_root->nodesize = nodesize;
  1588. tree_root->leafsize = leafsize;
  1589. tree_root->sectorsize = sectorsize;
  1590. tree_root->stripesize = stripesize;
  1591. sb->s_blocksize = sectorsize;
  1592. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1593. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1594. sizeof(disk_super->magic))) {
  1595. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1596. goto fail_sb_buffer;
  1597. }
  1598. mutex_lock(&fs_info->chunk_mutex);
  1599. ret = btrfs_read_sys_array(tree_root);
  1600. mutex_unlock(&fs_info->chunk_mutex);
  1601. if (ret) {
  1602. printk(KERN_WARNING "btrfs: failed to read the system "
  1603. "array on %s\n", sb->s_id);
  1604. goto fail_sb_buffer;
  1605. }
  1606. blocksize = btrfs_level_size(tree_root,
  1607. btrfs_super_chunk_root_level(disk_super));
  1608. generation = btrfs_super_chunk_root_generation(disk_super);
  1609. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1610. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1611. chunk_root->node = read_tree_block(chunk_root,
  1612. btrfs_super_chunk_root(disk_super),
  1613. blocksize, generation);
  1614. BUG_ON(!chunk_root->node);
  1615. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1616. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1617. sb->s_id);
  1618. goto fail_chunk_root;
  1619. }
  1620. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1621. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1622. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1623. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1624. BTRFS_UUID_SIZE);
  1625. mutex_lock(&fs_info->chunk_mutex);
  1626. ret = btrfs_read_chunk_tree(chunk_root);
  1627. mutex_unlock(&fs_info->chunk_mutex);
  1628. if (ret) {
  1629. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1630. sb->s_id);
  1631. goto fail_chunk_root;
  1632. }
  1633. btrfs_close_extra_devices(fs_devices);
  1634. blocksize = btrfs_level_size(tree_root,
  1635. btrfs_super_root_level(disk_super));
  1636. generation = btrfs_super_generation(disk_super);
  1637. tree_root->node = read_tree_block(tree_root,
  1638. btrfs_super_root(disk_super),
  1639. blocksize, generation);
  1640. if (!tree_root->node)
  1641. goto fail_chunk_root;
  1642. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1643. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1644. sb->s_id);
  1645. goto fail_tree_root;
  1646. }
  1647. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1648. tree_root->commit_root = btrfs_root_node(tree_root);
  1649. ret = find_and_setup_root(tree_root, fs_info,
  1650. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1651. if (ret)
  1652. goto fail_tree_root;
  1653. extent_root->track_dirty = 1;
  1654. ret = find_and_setup_root(tree_root, fs_info,
  1655. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1656. if (ret)
  1657. goto fail_extent_root;
  1658. dev_root->track_dirty = 1;
  1659. ret = find_and_setup_root(tree_root, fs_info,
  1660. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1661. if (ret)
  1662. goto fail_dev_root;
  1663. csum_root->track_dirty = 1;
  1664. fs_info->generation = generation;
  1665. fs_info->last_trans_committed = generation;
  1666. fs_info->data_alloc_profile = (u64)-1;
  1667. fs_info->metadata_alloc_profile = (u64)-1;
  1668. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1669. ret = btrfs_read_block_groups(extent_root);
  1670. if (ret) {
  1671. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1672. goto fail_block_groups;
  1673. }
  1674. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1675. "btrfs-cleaner");
  1676. if (IS_ERR(fs_info->cleaner_kthread))
  1677. goto fail_block_groups;
  1678. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1679. tree_root,
  1680. "btrfs-transaction");
  1681. if (IS_ERR(fs_info->transaction_kthread))
  1682. goto fail_cleaner;
  1683. if (!btrfs_test_opt(tree_root, SSD) &&
  1684. !btrfs_test_opt(tree_root, NOSSD) &&
  1685. !fs_info->fs_devices->rotating) {
  1686. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1687. "mode\n");
  1688. btrfs_set_opt(fs_info->mount_opt, SSD);
  1689. }
  1690. if (btrfs_super_log_root(disk_super) != 0) {
  1691. u64 bytenr = btrfs_super_log_root(disk_super);
  1692. if (fs_devices->rw_devices == 0) {
  1693. printk(KERN_WARNING "Btrfs log replay required "
  1694. "on RO media\n");
  1695. err = -EIO;
  1696. goto fail_trans_kthread;
  1697. }
  1698. blocksize =
  1699. btrfs_level_size(tree_root,
  1700. btrfs_super_log_root_level(disk_super));
  1701. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1702. GFP_NOFS);
  1703. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1704. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1705. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1706. blocksize,
  1707. generation + 1);
  1708. ret = btrfs_recover_log_trees(log_tree_root);
  1709. BUG_ON(ret);
  1710. if (sb->s_flags & MS_RDONLY) {
  1711. ret = btrfs_commit_super(tree_root);
  1712. BUG_ON(ret);
  1713. }
  1714. }
  1715. ret = btrfs_find_orphan_roots(tree_root);
  1716. BUG_ON(ret);
  1717. if (!(sb->s_flags & MS_RDONLY)) {
  1718. ret = btrfs_cleanup_fs_roots(fs_info);
  1719. BUG_ON(ret);
  1720. ret = btrfs_recover_relocation(tree_root);
  1721. if (ret < 0) {
  1722. printk(KERN_WARNING
  1723. "btrfs: failed to recover relocation\n");
  1724. err = -EINVAL;
  1725. goto fail_trans_kthread;
  1726. }
  1727. }
  1728. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1729. location.type = BTRFS_ROOT_ITEM_KEY;
  1730. location.offset = (u64)-1;
  1731. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1732. if (!fs_info->fs_root)
  1733. goto fail_trans_kthread;
  1734. if (!(sb->s_flags & MS_RDONLY)) {
  1735. down_read(&fs_info->cleanup_work_sem);
  1736. btrfs_orphan_cleanup(fs_info->fs_root);
  1737. up_read(&fs_info->cleanup_work_sem);
  1738. }
  1739. return tree_root;
  1740. fail_trans_kthread:
  1741. kthread_stop(fs_info->transaction_kthread);
  1742. fail_cleaner:
  1743. kthread_stop(fs_info->cleaner_kthread);
  1744. /*
  1745. * make sure we're done with the btree inode before we stop our
  1746. * kthreads
  1747. */
  1748. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1749. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1750. fail_block_groups:
  1751. btrfs_free_block_groups(fs_info);
  1752. free_extent_buffer(csum_root->node);
  1753. free_extent_buffer(csum_root->commit_root);
  1754. fail_dev_root:
  1755. free_extent_buffer(dev_root->node);
  1756. free_extent_buffer(dev_root->commit_root);
  1757. fail_extent_root:
  1758. free_extent_buffer(extent_root->node);
  1759. free_extent_buffer(extent_root->commit_root);
  1760. fail_tree_root:
  1761. free_extent_buffer(tree_root->node);
  1762. free_extent_buffer(tree_root->commit_root);
  1763. fail_chunk_root:
  1764. free_extent_buffer(chunk_root->node);
  1765. free_extent_buffer(chunk_root->commit_root);
  1766. fail_sb_buffer:
  1767. btrfs_stop_workers(&fs_info->generic_worker);
  1768. btrfs_stop_workers(&fs_info->fixup_workers);
  1769. btrfs_stop_workers(&fs_info->delalloc_workers);
  1770. btrfs_stop_workers(&fs_info->workers);
  1771. btrfs_stop_workers(&fs_info->endio_workers);
  1772. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1773. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1774. btrfs_stop_workers(&fs_info->endio_write_workers);
  1775. btrfs_stop_workers(&fs_info->submit_workers);
  1776. fail_iput:
  1777. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1778. iput(fs_info->btree_inode);
  1779. btrfs_close_devices(fs_info->fs_devices);
  1780. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1781. fail_bdi:
  1782. bdi_destroy(&fs_info->bdi);
  1783. fail_srcu:
  1784. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1785. fail:
  1786. kfree(extent_root);
  1787. kfree(tree_root);
  1788. kfree(fs_info);
  1789. kfree(chunk_root);
  1790. kfree(dev_root);
  1791. kfree(csum_root);
  1792. return ERR_PTR(err);
  1793. }
  1794. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1795. {
  1796. char b[BDEVNAME_SIZE];
  1797. if (uptodate) {
  1798. set_buffer_uptodate(bh);
  1799. } else {
  1800. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1801. printk(KERN_WARNING "lost page write due to "
  1802. "I/O error on %s\n",
  1803. bdevname(bh->b_bdev, b));
  1804. }
  1805. /* note, we dont' set_buffer_write_io_error because we have
  1806. * our own ways of dealing with the IO errors
  1807. */
  1808. clear_buffer_uptodate(bh);
  1809. }
  1810. unlock_buffer(bh);
  1811. put_bh(bh);
  1812. }
  1813. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1814. {
  1815. struct buffer_head *bh;
  1816. struct buffer_head *latest = NULL;
  1817. struct btrfs_super_block *super;
  1818. int i;
  1819. u64 transid = 0;
  1820. u64 bytenr;
  1821. /* we would like to check all the supers, but that would make
  1822. * a btrfs mount succeed after a mkfs from a different FS.
  1823. * So, we need to add a special mount option to scan for
  1824. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1825. */
  1826. for (i = 0; i < 1; i++) {
  1827. bytenr = btrfs_sb_offset(i);
  1828. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1829. break;
  1830. bh = __bread(bdev, bytenr / 4096, 4096);
  1831. if (!bh)
  1832. continue;
  1833. super = (struct btrfs_super_block *)bh->b_data;
  1834. if (btrfs_super_bytenr(super) != bytenr ||
  1835. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1836. sizeof(super->magic))) {
  1837. brelse(bh);
  1838. continue;
  1839. }
  1840. if (!latest || btrfs_super_generation(super) > transid) {
  1841. brelse(latest);
  1842. latest = bh;
  1843. transid = btrfs_super_generation(super);
  1844. } else {
  1845. brelse(bh);
  1846. }
  1847. }
  1848. return latest;
  1849. }
  1850. /*
  1851. * this should be called twice, once with wait == 0 and
  1852. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1853. * we write are pinned.
  1854. *
  1855. * They are released when wait == 1 is done.
  1856. * max_mirrors must be the same for both runs, and it indicates how
  1857. * many supers on this one device should be written.
  1858. *
  1859. * max_mirrors == 0 means to write them all.
  1860. */
  1861. static int write_dev_supers(struct btrfs_device *device,
  1862. struct btrfs_super_block *sb,
  1863. int do_barriers, int wait, int max_mirrors)
  1864. {
  1865. struct buffer_head *bh;
  1866. int i;
  1867. int ret;
  1868. int errors = 0;
  1869. u32 crc;
  1870. u64 bytenr;
  1871. int last_barrier = 0;
  1872. if (max_mirrors == 0)
  1873. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1874. /* make sure only the last submit_bh does a barrier */
  1875. if (do_barriers) {
  1876. for (i = 0; i < max_mirrors; i++) {
  1877. bytenr = btrfs_sb_offset(i);
  1878. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1879. device->total_bytes)
  1880. break;
  1881. last_barrier = i;
  1882. }
  1883. }
  1884. for (i = 0; i < max_mirrors; i++) {
  1885. bytenr = btrfs_sb_offset(i);
  1886. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1887. break;
  1888. if (wait) {
  1889. bh = __find_get_block(device->bdev, bytenr / 4096,
  1890. BTRFS_SUPER_INFO_SIZE);
  1891. BUG_ON(!bh);
  1892. wait_on_buffer(bh);
  1893. if (!buffer_uptodate(bh))
  1894. errors++;
  1895. /* drop our reference */
  1896. brelse(bh);
  1897. /* drop the reference from the wait == 0 run */
  1898. brelse(bh);
  1899. continue;
  1900. } else {
  1901. btrfs_set_super_bytenr(sb, bytenr);
  1902. crc = ~(u32)0;
  1903. crc = btrfs_csum_data(NULL, (char *)sb +
  1904. BTRFS_CSUM_SIZE, crc,
  1905. BTRFS_SUPER_INFO_SIZE -
  1906. BTRFS_CSUM_SIZE);
  1907. btrfs_csum_final(crc, sb->csum);
  1908. /*
  1909. * one reference for us, and we leave it for the
  1910. * caller
  1911. */
  1912. bh = __getblk(device->bdev, bytenr / 4096,
  1913. BTRFS_SUPER_INFO_SIZE);
  1914. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1915. /* one reference for submit_bh */
  1916. get_bh(bh);
  1917. set_buffer_uptodate(bh);
  1918. lock_buffer(bh);
  1919. bh->b_end_io = btrfs_end_buffer_write_sync;
  1920. }
  1921. if (i == last_barrier && do_barriers && device->barriers) {
  1922. ret = submit_bh(WRITE_BARRIER, bh);
  1923. if (ret == -EOPNOTSUPP) {
  1924. printk("btrfs: disabling barriers on dev %s\n",
  1925. device->name);
  1926. set_buffer_uptodate(bh);
  1927. device->barriers = 0;
  1928. /* one reference for submit_bh */
  1929. get_bh(bh);
  1930. lock_buffer(bh);
  1931. ret = submit_bh(WRITE_SYNC, bh);
  1932. }
  1933. } else {
  1934. ret = submit_bh(WRITE_SYNC, bh);
  1935. }
  1936. if (ret)
  1937. errors++;
  1938. }
  1939. return errors < i ? 0 : -1;
  1940. }
  1941. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1942. {
  1943. struct list_head *head;
  1944. struct btrfs_device *dev;
  1945. struct btrfs_super_block *sb;
  1946. struct btrfs_dev_item *dev_item;
  1947. int ret;
  1948. int do_barriers;
  1949. int max_errors;
  1950. int total_errors = 0;
  1951. u64 flags;
  1952. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1953. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1954. sb = &root->fs_info->super_for_commit;
  1955. dev_item = &sb->dev_item;
  1956. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1957. head = &root->fs_info->fs_devices->devices;
  1958. list_for_each_entry(dev, head, dev_list) {
  1959. if (!dev->bdev) {
  1960. total_errors++;
  1961. continue;
  1962. }
  1963. if (!dev->in_fs_metadata || !dev->writeable)
  1964. continue;
  1965. btrfs_set_stack_device_generation(dev_item, 0);
  1966. btrfs_set_stack_device_type(dev_item, dev->type);
  1967. btrfs_set_stack_device_id(dev_item, dev->devid);
  1968. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1969. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1970. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1971. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1972. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1973. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1974. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1975. flags = btrfs_super_flags(sb);
  1976. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1977. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1978. if (ret)
  1979. total_errors++;
  1980. }
  1981. if (total_errors > max_errors) {
  1982. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1983. total_errors);
  1984. BUG();
  1985. }
  1986. total_errors = 0;
  1987. list_for_each_entry(dev, head, dev_list) {
  1988. if (!dev->bdev)
  1989. continue;
  1990. if (!dev->in_fs_metadata || !dev->writeable)
  1991. continue;
  1992. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1993. if (ret)
  1994. total_errors++;
  1995. }
  1996. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1997. if (total_errors > max_errors) {
  1998. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1999. total_errors);
  2000. BUG();
  2001. }
  2002. return 0;
  2003. }
  2004. int write_ctree_super(struct btrfs_trans_handle *trans,
  2005. struct btrfs_root *root, int max_mirrors)
  2006. {
  2007. int ret;
  2008. ret = write_all_supers(root, max_mirrors);
  2009. return ret;
  2010. }
  2011. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2012. {
  2013. spin_lock(&fs_info->fs_roots_radix_lock);
  2014. radix_tree_delete(&fs_info->fs_roots_radix,
  2015. (unsigned long)root->root_key.objectid);
  2016. spin_unlock(&fs_info->fs_roots_radix_lock);
  2017. if (btrfs_root_refs(&root->root_item) == 0)
  2018. synchronize_srcu(&fs_info->subvol_srcu);
  2019. free_fs_root(root);
  2020. return 0;
  2021. }
  2022. static void free_fs_root(struct btrfs_root *root)
  2023. {
  2024. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2025. if (root->anon_super.s_dev) {
  2026. down_write(&root->anon_super.s_umount);
  2027. kill_anon_super(&root->anon_super);
  2028. }
  2029. free_extent_buffer(root->node);
  2030. free_extent_buffer(root->commit_root);
  2031. kfree(root->name);
  2032. kfree(root);
  2033. }
  2034. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2035. {
  2036. int ret;
  2037. struct btrfs_root *gang[8];
  2038. int i;
  2039. while (!list_empty(&fs_info->dead_roots)) {
  2040. gang[0] = list_entry(fs_info->dead_roots.next,
  2041. struct btrfs_root, root_list);
  2042. list_del(&gang[0]->root_list);
  2043. if (gang[0]->in_radix) {
  2044. btrfs_free_fs_root(fs_info, gang[0]);
  2045. } else {
  2046. free_extent_buffer(gang[0]->node);
  2047. free_extent_buffer(gang[0]->commit_root);
  2048. kfree(gang[0]);
  2049. }
  2050. }
  2051. while (1) {
  2052. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2053. (void **)gang, 0,
  2054. ARRAY_SIZE(gang));
  2055. if (!ret)
  2056. break;
  2057. for (i = 0; i < ret; i++)
  2058. btrfs_free_fs_root(fs_info, gang[i]);
  2059. }
  2060. return 0;
  2061. }
  2062. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2063. {
  2064. u64 root_objectid = 0;
  2065. struct btrfs_root *gang[8];
  2066. int i;
  2067. int ret;
  2068. while (1) {
  2069. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2070. (void **)gang, root_objectid,
  2071. ARRAY_SIZE(gang));
  2072. if (!ret)
  2073. break;
  2074. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2075. for (i = 0; i < ret; i++) {
  2076. root_objectid = gang[i]->root_key.objectid;
  2077. btrfs_orphan_cleanup(gang[i]);
  2078. }
  2079. root_objectid++;
  2080. }
  2081. return 0;
  2082. }
  2083. int btrfs_commit_super(struct btrfs_root *root)
  2084. {
  2085. struct btrfs_trans_handle *trans;
  2086. int ret;
  2087. mutex_lock(&root->fs_info->cleaner_mutex);
  2088. btrfs_run_delayed_iputs(root);
  2089. btrfs_clean_old_snapshots(root);
  2090. mutex_unlock(&root->fs_info->cleaner_mutex);
  2091. /* wait until ongoing cleanup work done */
  2092. down_write(&root->fs_info->cleanup_work_sem);
  2093. up_write(&root->fs_info->cleanup_work_sem);
  2094. trans = btrfs_join_transaction(root, 1);
  2095. ret = btrfs_commit_transaction(trans, root);
  2096. BUG_ON(ret);
  2097. /* run commit again to drop the original snapshot */
  2098. trans = btrfs_join_transaction(root, 1);
  2099. btrfs_commit_transaction(trans, root);
  2100. ret = btrfs_write_and_wait_transaction(NULL, root);
  2101. BUG_ON(ret);
  2102. ret = write_ctree_super(NULL, root, 0);
  2103. return ret;
  2104. }
  2105. int close_ctree(struct btrfs_root *root)
  2106. {
  2107. struct btrfs_fs_info *fs_info = root->fs_info;
  2108. int ret;
  2109. fs_info->closing = 1;
  2110. smp_mb();
  2111. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2112. ret = btrfs_commit_super(root);
  2113. if (ret)
  2114. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2115. }
  2116. kthread_stop(root->fs_info->transaction_kthread);
  2117. kthread_stop(root->fs_info->cleaner_kthread);
  2118. fs_info->closing = 2;
  2119. smp_mb();
  2120. if (fs_info->delalloc_bytes) {
  2121. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2122. (unsigned long long)fs_info->delalloc_bytes);
  2123. }
  2124. if (fs_info->total_ref_cache_size) {
  2125. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2126. (unsigned long long)fs_info->total_ref_cache_size);
  2127. }
  2128. free_extent_buffer(fs_info->extent_root->node);
  2129. free_extent_buffer(fs_info->extent_root->commit_root);
  2130. free_extent_buffer(fs_info->tree_root->node);
  2131. free_extent_buffer(fs_info->tree_root->commit_root);
  2132. free_extent_buffer(root->fs_info->chunk_root->node);
  2133. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2134. free_extent_buffer(root->fs_info->dev_root->node);
  2135. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2136. free_extent_buffer(root->fs_info->csum_root->node);
  2137. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2138. btrfs_free_block_groups(root->fs_info);
  2139. del_fs_roots(fs_info);
  2140. iput(fs_info->btree_inode);
  2141. btrfs_stop_workers(&fs_info->generic_worker);
  2142. btrfs_stop_workers(&fs_info->fixup_workers);
  2143. btrfs_stop_workers(&fs_info->delalloc_workers);
  2144. btrfs_stop_workers(&fs_info->workers);
  2145. btrfs_stop_workers(&fs_info->endio_workers);
  2146. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2147. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2148. btrfs_stop_workers(&fs_info->endio_write_workers);
  2149. btrfs_stop_workers(&fs_info->submit_workers);
  2150. btrfs_close_devices(fs_info->fs_devices);
  2151. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2152. bdi_destroy(&fs_info->bdi);
  2153. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2154. kfree(fs_info->extent_root);
  2155. kfree(fs_info->tree_root);
  2156. kfree(fs_info->chunk_root);
  2157. kfree(fs_info->dev_root);
  2158. kfree(fs_info->csum_root);
  2159. return 0;
  2160. }
  2161. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2162. {
  2163. int ret;
  2164. struct inode *btree_inode = buf->first_page->mapping->host;
  2165. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2166. NULL);
  2167. if (!ret)
  2168. return ret;
  2169. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2170. parent_transid);
  2171. return !ret;
  2172. }
  2173. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2174. {
  2175. struct inode *btree_inode = buf->first_page->mapping->host;
  2176. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2177. buf);
  2178. }
  2179. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2180. {
  2181. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2182. u64 transid = btrfs_header_generation(buf);
  2183. struct inode *btree_inode = root->fs_info->btree_inode;
  2184. int was_dirty;
  2185. btrfs_assert_tree_locked(buf);
  2186. if (transid != root->fs_info->generation) {
  2187. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2188. "found %llu running %llu\n",
  2189. (unsigned long long)buf->start,
  2190. (unsigned long long)transid,
  2191. (unsigned long long)root->fs_info->generation);
  2192. WARN_ON(1);
  2193. }
  2194. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2195. buf);
  2196. if (!was_dirty) {
  2197. spin_lock(&root->fs_info->delalloc_lock);
  2198. root->fs_info->dirty_metadata_bytes += buf->len;
  2199. spin_unlock(&root->fs_info->delalloc_lock);
  2200. }
  2201. }
  2202. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2203. {
  2204. /*
  2205. * looks as though older kernels can get into trouble with
  2206. * this code, they end up stuck in balance_dirty_pages forever
  2207. */
  2208. u64 num_dirty;
  2209. unsigned long thresh = 32 * 1024 * 1024;
  2210. if (current->flags & PF_MEMALLOC)
  2211. return;
  2212. num_dirty = root->fs_info->dirty_metadata_bytes;
  2213. if (num_dirty > thresh) {
  2214. balance_dirty_pages_ratelimited_nr(
  2215. root->fs_info->btree_inode->i_mapping, 1);
  2216. }
  2217. return;
  2218. }
  2219. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2220. {
  2221. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2222. int ret;
  2223. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2224. if (ret == 0)
  2225. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2226. return ret;
  2227. }
  2228. int btree_lock_page_hook(struct page *page)
  2229. {
  2230. struct inode *inode = page->mapping->host;
  2231. struct btrfs_root *root = BTRFS_I(inode)->root;
  2232. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2233. struct extent_buffer *eb;
  2234. unsigned long len;
  2235. u64 bytenr = page_offset(page);
  2236. if (page->private == EXTENT_PAGE_PRIVATE)
  2237. goto out;
  2238. len = page->private >> 2;
  2239. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2240. if (!eb)
  2241. goto out;
  2242. btrfs_tree_lock(eb);
  2243. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2244. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2245. spin_lock(&root->fs_info->delalloc_lock);
  2246. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2247. root->fs_info->dirty_metadata_bytes -= eb->len;
  2248. else
  2249. WARN_ON(1);
  2250. spin_unlock(&root->fs_info->delalloc_lock);
  2251. }
  2252. btrfs_tree_unlock(eb);
  2253. free_extent_buffer(eb);
  2254. out:
  2255. lock_page(page);
  2256. return 0;
  2257. }
  2258. static struct extent_io_ops btree_extent_io_ops = {
  2259. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2260. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2261. .submit_bio_hook = btree_submit_bio_hook,
  2262. /* note we're sharing with inode.c for the merge bio hook */
  2263. .merge_bio_hook = btrfs_merge_bio_hook,
  2264. };