| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- #ifndef _ASM_X86_MMU_CONTEXT_H
- #define _ASM_X86_MMU_CONTEXT_H
- #include <asm/desc.h>
- #include <linux/atomic.h>
- #include <linux/mm_types.h>
- #include <trace/events/tlb.h>
- #include <asm/pgalloc.h>
- #include <asm/tlbflush.h>
- #include <asm/paravirt.h>
- #include <asm/mpx.h>
- #ifndef CONFIG_PARAVIRT
- static inline void paravirt_activate_mm(struct mm_struct *prev,
- struct mm_struct *next)
- {
- }
- #endif /* !CONFIG_PARAVIRT */
- #ifdef CONFIG_PERF_EVENTS
- extern struct static_key rdpmc_always_available;
- static inline void load_mm_cr4(struct mm_struct *mm)
- {
- if (static_key_false(&rdpmc_always_available) ||
- atomic_read(&mm->context.perf_rdpmc_allowed))
- cr4_set_bits(X86_CR4_PCE);
- else
- cr4_clear_bits(X86_CR4_PCE);
- }
- #else
- static inline void load_mm_cr4(struct mm_struct *mm) {}
- #endif
- #ifdef CONFIG_MODIFY_LDT_SYSCALL
- /*
- * ldt_structs can be allocated, used, and freed, but they are never
- * modified while live.
- */
- struct ldt_struct {
- /*
- * Xen requires page-aligned LDTs with special permissions. This is
- * needed to prevent us from installing evil descriptors such as
- * call gates. On native, we could merge the ldt_struct and LDT
- * allocations, but it's not worth trying to optimize.
- */
- struct desc_struct *entries;
- int size;
- };
- /*
- * Used for LDT copy/destruction.
- */
- int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
- void destroy_context(struct mm_struct *mm);
- #else /* CONFIG_MODIFY_LDT_SYSCALL */
- static inline int init_new_context(struct task_struct *tsk,
- struct mm_struct *mm)
- {
- return 0;
- }
- static inline void destroy_context(struct mm_struct *mm) {}
- #endif
- static inline void load_mm_ldt(struct mm_struct *mm)
- {
- #ifdef CONFIG_MODIFY_LDT_SYSCALL
- struct ldt_struct *ldt;
- /* lockless_dereference synchronizes with smp_store_release */
- ldt = lockless_dereference(mm->context.ldt);
- /*
- * Any change to mm->context.ldt is followed by an IPI to all
- * CPUs with the mm active. The LDT will not be freed until
- * after the IPI is handled by all such CPUs. This means that,
- * if the ldt_struct changes before we return, the values we see
- * will be safe, and the new values will be loaded before we run
- * any user code.
- *
- * NB: don't try to convert this to use RCU without extreme care.
- * We would still need IRQs off, because we don't want to change
- * the local LDT after an IPI loaded a newer value than the one
- * that we can see.
- */
- if (unlikely(ldt))
- set_ldt(ldt->entries, ldt->size);
- else
- clear_LDT();
- #else
- clear_LDT();
- #endif
- DEBUG_LOCKS_WARN_ON(preemptible());
- }
- static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
- {
- #ifdef CONFIG_SMP
- if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
- this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
- #endif
- }
- static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- unsigned cpu = smp_processor_id();
- if (likely(prev != next)) {
- #ifdef CONFIG_SMP
- this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
- this_cpu_write(cpu_tlbstate.active_mm, next);
- #endif
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * Re-load page tables.
- *
- * This logic has an ordering constraint:
- *
- * CPU 0: Write to a PTE for 'next'
- * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
- * CPU 1: set bit 1 in next's mm_cpumask
- * CPU 1: load from the PTE that CPU 0 writes (implicit)
- *
- * We need to prevent an outcome in which CPU 1 observes
- * the new PTE value and CPU 0 observes bit 1 clear in
- * mm_cpumask. (If that occurs, then the IPI will never
- * be sent, and CPU 0's TLB will contain a stale entry.)
- *
- * The bad outcome can occur if either CPU's load is
- * reordered before that CPU's store, so both CPUs must
- * execute full barriers to prevent this from happening.
- *
- * Thus, switch_mm needs a full barrier between the
- * store to mm_cpumask and any operation that could load
- * from next->pgd. TLB fills are special and can happen
- * due to instruction fetches or for no reason at all,
- * and neither LOCK nor MFENCE orders them.
- * Fortunately, load_cr3() is serializing and gives the
- * ordering guarantee we need.
- *
- */
- load_cr3(next->pgd);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- /* Stop flush ipis for the previous mm */
- cpumask_clear_cpu(cpu, mm_cpumask(prev));
- /* Load per-mm CR4 state */
- load_mm_cr4(next);
- #ifdef CONFIG_MODIFY_LDT_SYSCALL
- /*
- * Load the LDT, if the LDT is different.
- *
- * It's possible that prev->context.ldt doesn't match
- * the LDT register. This can happen if leave_mm(prev)
- * was called and then modify_ldt changed
- * prev->context.ldt but suppressed an IPI to this CPU.
- * In this case, prev->context.ldt != NULL, because we
- * never set context.ldt to NULL while the mm still
- * exists. That means that next->context.ldt !=
- * prev->context.ldt, because mms never share an LDT.
- */
- if (unlikely(prev->context.ldt != next->context.ldt))
- load_mm_ldt(next);
- #endif
- }
- #ifdef CONFIG_SMP
- else {
- this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
- BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
- if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
- /*
- * On established mms, the mm_cpumask is only changed
- * from irq context, from ptep_clear_flush() while in
- * lazy tlb mode, and here. Irqs are blocked during
- * schedule, protecting us from simultaneous changes.
- */
- cpumask_set_cpu(cpu, mm_cpumask(next));
- /*
- * We were in lazy tlb mode and leave_mm disabled
- * tlb flush IPI delivery. We must reload CR3
- * to make sure to use no freed page tables.
- *
- * As above, load_cr3() is serializing and orders TLB
- * fills with respect to the mm_cpumask write.
- */
- load_cr3(next->pgd);
- trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
- load_mm_cr4(next);
- load_mm_ldt(next);
- }
- }
- #endif
- }
- #define activate_mm(prev, next) \
- do { \
- paravirt_activate_mm((prev), (next)); \
- switch_mm((prev), (next), NULL); \
- } while (0);
- #ifdef CONFIG_X86_32
- #define deactivate_mm(tsk, mm) \
- do { \
- lazy_load_gs(0); \
- } while (0)
- #else
- #define deactivate_mm(tsk, mm) \
- do { \
- load_gs_index(0); \
- loadsegment(fs, 0); \
- } while (0)
- #endif
- static inline void arch_dup_mmap(struct mm_struct *oldmm,
- struct mm_struct *mm)
- {
- paravirt_arch_dup_mmap(oldmm, mm);
- }
- static inline void arch_exit_mmap(struct mm_struct *mm)
- {
- paravirt_arch_exit_mmap(mm);
- }
- #ifdef CONFIG_X86_64
- static inline bool is_64bit_mm(struct mm_struct *mm)
- {
- return !config_enabled(CONFIG_IA32_EMULATION) ||
- !(mm->context.ia32_compat == TIF_IA32);
- }
- #else
- static inline bool is_64bit_mm(struct mm_struct *mm)
- {
- return false;
- }
- #endif
- static inline void arch_bprm_mm_init(struct mm_struct *mm,
- struct vm_area_struct *vma)
- {
- mpx_mm_init(mm);
- }
- static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long start, unsigned long end)
- {
- /*
- * mpx_notify_unmap() goes and reads a rarely-hot
- * cacheline in the mm_struct. That can be expensive
- * enough to be seen in profiles.
- *
- * The mpx_notify_unmap() call and its contents have been
- * observed to affect munmap() performance on hardware
- * where MPX is not present.
- *
- * The unlikely() optimizes for the fast case: no MPX
- * in the CPU, or no MPX use in the process. Even if
- * we get this wrong (in the unlikely event that MPX
- * is widely enabled on some system) the overhead of
- * MPX itself (reading bounds tables) is expected to
- * overwhelm the overhead of getting this unlikely()
- * consistently wrong.
- */
- if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
- mpx_notify_unmap(mm, vma, start, end);
- }
- static inline int vma_pkey(struct vm_area_struct *vma)
- {
- u16 pkey = 0;
- #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
- unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
- VM_PKEY_BIT2 | VM_PKEY_BIT3;
- pkey = (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
- #endif
- return pkey;
- }
- static inline bool __pkru_allows_pkey(u16 pkey, bool write)
- {
- u32 pkru = read_pkru();
- if (!__pkru_allows_read(pkru, pkey))
- return false;
- if (write && !__pkru_allows_write(pkru, pkey))
- return false;
- return true;
- }
- /*
- * We only want to enforce protection keys on the current process
- * because we effectively have no access to PKRU for other
- * processes or any way to tell *which * PKRU in a threaded
- * process we could use.
- *
- * So do not enforce things if the VMA is not from the current
- * mm, or if we are in a kernel thread.
- */
- static inline bool vma_is_foreign(struct vm_area_struct *vma)
- {
- if (!current->mm)
- return true;
- /*
- * Should PKRU be enforced on the access to this VMA? If
- * the VMA is from another process, then PKRU has no
- * relevance and should not be enforced.
- */
- if (current->mm != vma->vm_mm)
- return true;
- return false;
- }
- static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
- bool write, bool execute, bool foreign)
- {
- /* pkeys never affect instruction fetches */
- if (execute)
- return true;
- /* allow access if the VMA is not one from this process */
- if (foreign || vma_is_foreign(vma))
- return true;
- return __pkru_allows_pkey(vma_pkey(vma), write);
- }
- static inline bool arch_pte_access_permitted(pte_t pte, bool write)
- {
- return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
- }
- #endif /* _ASM_X86_MMU_CONTEXT_H */
|