rtc-cmos.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/log2.h>
  37. #include <linux/pm.h>
  38. #include <linux/of.h>
  39. #include <linux/of_platform.h>
  40. #include <linux/dmi.h>
  41. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  42. #include <asm-generic/rtc.h>
  43. struct cmos_rtc {
  44. struct rtc_device *rtc;
  45. struct device *dev;
  46. int irq;
  47. struct resource *iomem;
  48. void (*wake_on)(struct device *);
  49. void (*wake_off)(struct device *);
  50. u8 enabled_wake;
  51. u8 suspend_ctrl;
  52. /* newer hardware extends the original register set */
  53. u8 day_alrm;
  54. u8 mon_alrm;
  55. u8 century;
  56. };
  57. /* both platform and pnp busses use negative numbers for invalid irqs */
  58. #define is_valid_irq(n) ((n) > 0)
  59. static const char driver_name[] = "rtc_cmos";
  60. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  61. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  62. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  63. */
  64. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  65. static inline int is_intr(u8 rtc_intr)
  66. {
  67. if (!(rtc_intr & RTC_IRQF))
  68. return 0;
  69. return rtc_intr & RTC_IRQMASK;
  70. }
  71. /*----------------------------------------------------------------*/
  72. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  73. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  74. * used in a broken "legacy replacement" mode. The breakage includes
  75. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  76. * other (better) use.
  77. *
  78. * When that broken mode is in use, platform glue provides a partial
  79. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  80. * want to use HPET for anything except those IRQs though...
  81. */
  82. #ifdef CONFIG_HPET_EMULATE_RTC
  83. #include <asm/hpet.h>
  84. #else
  85. static inline int is_hpet_enabled(void)
  86. {
  87. return 0;
  88. }
  89. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  90. {
  91. return 0;
  92. }
  93. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  94. {
  95. return 0;
  96. }
  97. static inline int
  98. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  99. {
  100. return 0;
  101. }
  102. static inline int hpet_set_periodic_freq(unsigned long freq)
  103. {
  104. return 0;
  105. }
  106. static inline int hpet_rtc_dropped_irq(void)
  107. {
  108. return 0;
  109. }
  110. static inline int hpet_rtc_timer_init(void)
  111. {
  112. return 0;
  113. }
  114. extern irq_handler_t hpet_rtc_interrupt;
  115. static inline int hpet_register_irq_handler(irq_handler_t handler)
  116. {
  117. return 0;
  118. }
  119. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  120. {
  121. return 0;
  122. }
  123. #endif
  124. /*----------------------------------------------------------------*/
  125. #ifdef RTC_PORT
  126. /* Most newer x86 systems have two register banks, the first used
  127. * for RTC and NVRAM and the second only for NVRAM. Caller must
  128. * own rtc_lock ... and we won't worry about access during NMI.
  129. */
  130. #define can_bank2 true
  131. static inline unsigned char cmos_read_bank2(unsigned char addr)
  132. {
  133. outb(addr, RTC_PORT(2));
  134. return inb(RTC_PORT(3));
  135. }
  136. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  137. {
  138. outb(addr, RTC_PORT(2));
  139. outb(val, RTC_PORT(3));
  140. }
  141. #else
  142. #define can_bank2 false
  143. static inline unsigned char cmos_read_bank2(unsigned char addr)
  144. {
  145. return 0;
  146. }
  147. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  148. {
  149. }
  150. #endif
  151. /*----------------------------------------------------------------*/
  152. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  153. {
  154. /* REVISIT: if the clock has a "century" register, use
  155. * that instead of the heuristic in get_rtc_time().
  156. * That'll make Y3K compatility (year > 2070) easy!
  157. */
  158. get_rtc_time(t);
  159. return 0;
  160. }
  161. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  162. {
  163. /* REVISIT: set the "century" register if available
  164. *
  165. * NOTE: this ignores the issue whereby updating the seconds
  166. * takes effect exactly 500ms after we write the register.
  167. * (Also queueing and other delays before we get this far.)
  168. */
  169. return set_rtc_time(t);
  170. }
  171. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  172. {
  173. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  174. unsigned char rtc_control;
  175. if (!is_valid_irq(cmos->irq))
  176. return -EIO;
  177. /* Basic alarms only support hour, minute, and seconds fields.
  178. * Some also support day and month, for alarms up to a year in
  179. * the future.
  180. */
  181. t->time.tm_mday = -1;
  182. t->time.tm_mon = -1;
  183. spin_lock_irq(&rtc_lock);
  184. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  185. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  186. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  187. if (cmos->day_alrm) {
  188. /* ignore upper bits on readback per ACPI spec */
  189. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  190. if (!t->time.tm_mday)
  191. t->time.tm_mday = -1;
  192. if (cmos->mon_alrm) {
  193. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  194. if (!t->time.tm_mon)
  195. t->time.tm_mon = -1;
  196. }
  197. }
  198. rtc_control = CMOS_READ(RTC_CONTROL);
  199. spin_unlock_irq(&rtc_lock);
  200. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  201. if (((unsigned)t->time.tm_sec) < 0x60)
  202. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  203. else
  204. t->time.tm_sec = -1;
  205. if (((unsigned)t->time.tm_min) < 0x60)
  206. t->time.tm_min = bcd2bin(t->time.tm_min);
  207. else
  208. t->time.tm_min = -1;
  209. if (((unsigned)t->time.tm_hour) < 0x24)
  210. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  211. else
  212. t->time.tm_hour = -1;
  213. if (cmos->day_alrm) {
  214. if (((unsigned)t->time.tm_mday) <= 0x31)
  215. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  216. else
  217. t->time.tm_mday = -1;
  218. if (cmos->mon_alrm) {
  219. if (((unsigned)t->time.tm_mon) <= 0x12)
  220. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  221. else
  222. t->time.tm_mon = -1;
  223. }
  224. }
  225. }
  226. t->time.tm_year = -1;
  227. t->enabled = !!(rtc_control & RTC_AIE);
  228. t->pending = 0;
  229. return 0;
  230. }
  231. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  232. {
  233. unsigned char rtc_intr;
  234. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  235. * allegedly some older rtcs need that to handle irqs properly
  236. */
  237. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  238. if (is_hpet_enabled())
  239. return;
  240. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  241. if (is_intr(rtc_intr))
  242. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  243. }
  244. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  245. {
  246. unsigned char rtc_control;
  247. /* flush any pending IRQ status, notably for update irqs,
  248. * before we enable new IRQs
  249. */
  250. rtc_control = CMOS_READ(RTC_CONTROL);
  251. cmos_checkintr(cmos, rtc_control);
  252. rtc_control |= mask;
  253. CMOS_WRITE(rtc_control, RTC_CONTROL);
  254. hpet_set_rtc_irq_bit(mask);
  255. cmos_checkintr(cmos, rtc_control);
  256. }
  257. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  258. {
  259. unsigned char rtc_control;
  260. rtc_control = CMOS_READ(RTC_CONTROL);
  261. rtc_control &= ~mask;
  262. CMOS_WRITE(rtc_control, RTC_CONTROL);
  263. hpet_mask_rtc_irq_bit(mask);
  264. cmos_checkintr(cmos, rtc_control);
  265. }
  266. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  267. {
  268. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  269. unsigned char mon, mday, hrs, min, sec, rtc_control;
  270. if (!is_valid_irq(cmos->irq))
  271. return -EIO;
  272. mon = t->time.tm_mon + 1;
  273. mday = t->time.tm_mday;
  274. hrs = t->time.tm_hour;
  275. min = t->time.tm_min;
  276. sec = t->time.tm_sec;
  277. rtc_control = CMOS_READ(RTC_CONTROL);
  278. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  279. /* Writing 0xff means "don't care" or "match all". */
  280. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  281. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  282. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  283. min = (min < 60) ? bin2bcd(min) : 0xff;
  284. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  285. }
  286. spin_lock_irq(&rtc_lock);
  287. /* next rtc irq must not be from previous alarm setting */
  288. cmos_irq_disable(cmos, RTC_AIE);
  289. /* update alarm */
  290. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  291. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  292. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  293. /* the system may support an "enhanced" alarm */
  294. if (cmos->day_alrm) {
  295. CMOS_WRITE(mday, cmos->day_alrm);
  296. if (cmos->mon_alrm)
  297. CMOS_WRITE(mon, cmos->mon_alrm);
  298. }
  299. /* FIXME the HPET alarm glue currently ignores day_alrm
  300. * and mon_alrm ...
  301. */
  302. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  303. if (t->enabled)
  304. cmos_irq_enable(cmos, RTC_AIE);
  305. spin_unlock_irq(&rtc_lock);
  306. return 0;
  307. }
  308. /*
  309. * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
  310. */
  311. static bool alarm_disable_quirk;
  312. static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
  313. {
  314. alarm_disable_quirk = true;
  315. pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
  316. pr_info("RTC alarms disabled\n");
  317. return 0;
  318. }
  319. static const struct dmi_system_id rtc_quirks[] __initconst = {
  320. /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
  321. {
  322. .callback = set_alarm_disable_quirk,
  323. .ident = "IBM Truman",
  324. .matches = {
  325. DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
  326. DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
  327. },
  328. },
  329. /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
  330. {
  331. .callback = set_alarm_disable_quirk,
  332. .ident = "Gigabyte GA-990XA-UD3",
  333. .matches = {
  334. DMI_MATCH(DMI_SYS_VENDOR,
  335. "Gigabyte Technology Co., Ltd."),
  336. DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
  337. },
  338. },
  339. /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
  340. {
  341. .callback = set_alarm_disable_quirk,
  342. .ident = "Toshiba Satellite L300",
  343. .matches = {
  344. DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
  345. DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
  346. },
  347. },
  348. {}
  349. };
  350. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  351. {
  352. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  353. unsigned long flags;
  354. if (!is_valid_irq(cmos->irq))
  355. return -EINVAL;
  356. if (alarm_disable_quirk)
  357. return 0;
  358. spin_lock_irqsave(&rtc_lock, flags);
  359. if (enabled)
  360. cmos_irq_enable(cmos, RTC_AIE);
  361. else
  362. cmos_irq_disable(cmos, RTC_AIE);
  363. spin_unlock_irqrestore(&rtc_lock, flags);
  364. return 0;
  365. }
  366. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  367. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  368. {
  369. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  370. unsigned char rtc_control, valid;
  371. spin_lock_irq(&rtc_lock);
  372. rtc_control = CMOS_READ(RTC_CONTROL);
  373. valid = CMOS_READ(RTC_VALID);
  374. spin_unlock_irq(&rtc_lock);
  375. /* NOTE: at least ICH6 reports battery status using a different
  376. * (non-RTC) bit; and SQWE is ignored on many current systems.
  377. */
  378. return seq_printf(seq,
  379. "periodic_IRQ\t: %s\n"
  380. "update_IRQ\t: %s\n"
  381. "HPET_emulated\t: %s\n"
  382. // "square_wave\t: %s\n"
  383. "BCD\t\t: %s\n"
  384. "DST_enable\t: %s\n"
  385. "periodic_freq\t: %d\n"
  386. "batt_status\t: %s\n",
  387. (rtc_control & RTC_PIE) ? "yes" : "no",
  388. (rtc_control & RTC_UIE) ? "yes" : "no",
  389. is_hpet_enabled() ? "yes" : "no",
  390. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  391. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  392. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  393. cmos->rtc->irq_freq,
  394. (valid & RTC_VRT) ? "okay" : "dead");
  395. }
  396. #else
  397. #define cmos_procfs NULL
  398. #endif
  399. static const struct rtc_class_ops cmos_rtc_ops = {
  400. .read_time = cmos_read_time,
  401. .set_time = cmos_set_time,
  402. .read_alarm = cmos_read_alarm,
  403. .set_alarm = cmos_set_alarm,
  404. .proc = cmos_procfs,
  405. .alarm_irq_enable = cmos_alarm_irq_enable,
  406. };
  407. /*----------------------------------------------------------------*/
  408. /*
  409. * All these chips have at least 64 bytes of address space, shared by
  410. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  411. * by boot firmware. Modern chips have 128 or 256 bytes.
  412. */
  413. #define NVRAM_OFFSET (RTC_REG_D + 1)
  414. static ssize_t
  415. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  416. struct bin_attribute *attr,
  417. char *buf, loff_t off, size_t count)
  418. {
  419. int retval;
  420. if (unlikely(off >= attr->size))
  421. return 0;
  422. if (unlikely(off < 0))
  423. return -EINVAL;
  424. if ((off + count) > attr->size)
  425. count = attr->size - off;
  426. off += NVRAM_OFFSET;
  427. spin_lock_irq(&rtc_lock);
  428. for (retval = 0; count; count--, off++, retval++) {
  429. if (off < 128)
  430. *buf++ = CMOS_READ(off);
  431. else if (can_bank2)
  432. *buf++ = cmos_read_bank2(off);
  433. else
  434. break;
  435. }
  436. spin_unlock_irq(&rtc_lock);
  437. return retval;
  438. }
  439. static ssize_t
  440. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  441. struct bin_attribute *attr,
  442. char *buf, loff_t off, size_t count)
  443. {
  444. struct cmos_rtc *cmos;
  445. int retval;
  446. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  447. if (unlikely(off >= attr->size))
  448. return -EFBIG;
  449. if (unlikely(off < 0))
  450. return -EINVAL;
  451. if ((off + count) > attr->size)
  452. count = attr->size - off;
  453. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  454. * checksum on part of the NVRAM data. That's currently ignored
  455. * here. If userspace is smart enough to know what fields of
  456. * NVRAM to update, updating checksums is also part of its job.
  457. */
  458. off += NVRAM_OFFSET;
  459. spin_lock_irq(&rtc_lock);
  460. for (retval = 0; count; count--, off++, retval++) {
  461. /* don't trash RTC registers */
  462. if (off == cmos->day_alrm
  463. || off == cmos->mon_alrm
  464. || off == cmos->century)
  465. buf++;
  466. else if (off < 128)
  467. CMOS_WRITE(*buf++, off);
  468. else if (can_bank2)
  469. cmos_write_bank2(*buf++, off);
  470. else
  471. break;
  472. }
  473. spin_unlock_irq(&rtc_lock);
  474. return retval;
  475. }
  476. static struct bin_attribute nvram = {
  477. .attr = {
  478. .name = "nvram",
  479. .mode = S_IRUGO | S_IWUSR,
  480. },
  481. .read = cmos_nvram_read,
  482. .write = cmos_nvram_write,
  483. /* size gets set up later */
  484. };
  485. /*----------------------------------------------------------------*/
  486. static struct cmos_rtc cmos_rtc;
  487. static irqreturn_t cmos_interrupt(int irq, void *p)
  488. {
  489. u8 irqstat;
  490. u8 rtc_control;
  491. spin_lock(&rtc_lock);
  492. /* When the HPET interrupt handler calls us, the interrupt
  493. * status is passed as arg1 instead of the irq number. But
  494. * always clear irq status, even when HPET is in the way.
  495. *
  496. * Note that HPET and RTC are almost certainly out of phase,
  497. * giving different IRQ status ...
  498. */
  499. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  500. rtc_control = CMOS_READ(RTC_CONTROL);
  501. if (is_hpet_enabled())
  502. irqstat = (unsigned long)irq & 0xF0;
  503. /* If we were suspended, RTC_CONTROL may not be accurate since the
  504. * bios may have cleared it.
  505. */
  506. if (!cmos_rtc.suspend_ctrl)
  507. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  508. else
  509. irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
  510. /* All Linux RTC alarms should be treated as if they were oneshot.
  511. * Similar code may be needed in system wakeup paths, in case the
  512. * alarm woke the system.
  513. */
  514. if (irqstat & RTC_AIE) {
  515. cmos_rtc.suspend_ctrl &= ~RTC_AIE;
  516. rtc_control &= ~RTC_AIE;
  517. CMOS_WRITE(rtc_control, RTC_CONTROL);
  518. hpet_mask_rtc_irq_bit(RTC_AIE);
  519. CMOS_READ(RTC_INTR_FLAGS);
  520. }
  521. spin_unlock(&rtc_lock);
  522. if (is_intr(irqstat)) {
  523. rtc_update_irq(p, 1, irqstat);
  524. return IRQ_HANDLED;
  525. } else
  526. return IRQ_NONE;
  527. }
  528. #ifdef CONFIG_PNP
  529. #define INITSECTION
  530. #else
  531. #define INITSECTION __init
  532. #endif
  533. static int INITSECTION
  534. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  535. {
  536. struct cmos_rtc_board_info *info = dev_get_platdata(dev);
  537. int retval = 0;
  538. unsigned char rtc_control;
  539. unsigned address_space;
  540. /* there can be only one ... */
  541. if (cmos_rtc.dev)
  542. return -EBUSY;
  543. if (!ports)
  544. return -ENODEV;
  545. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  546. *
  547. * REVISIT non-x86 systems may instead use memory space resources
  548. * (needing ioremap etc), not i/o space resources like this ...
  549. */
  550. ports = request_region(ports->start,
  551. resource_size(ports),
  552. driver_name);
  553. if (!ports) {
  554. dev_dbg(dev, "i/o registers already in use\n");
  555. return -EBUSY;
  556. }
  557. cmos_rtc.irq = rtc_irq;
  558. cmos_rtc.iomem = ports;
  559. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  560. * driver did, but don't reject unknown configs. Old hardware
  561. * won't address 128 bytes. Newer chips have multiple banks,
  562. * though they may not be listed in one I/O resource.
  563. */
  564. #if defined(CONFIG_ATARI)
  565. address_space = 64;
  566. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  567. || defined(__sparc__) || defined(__mips__) \
  568. || defined(__powerpc__)
  569. address_space = 128;
  570. #else
  571. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  572. address_space = 128;
  573. #endif
  574. if (can_bank2 && ports->end > (ports->start + 1))
  575. address_space = 256;
  576. /* For ACPI systems extension info comes from the FADT. On others,
  577. * board specific setup provides it as appropriate. Systems where
  578. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  579. * some almost-clones) can provide hooks to make that behave.
  580. *
  581. * Note that ACPI doesn't preclude putting these registers into
  582. * "extended" areas of the chip, including some that we won't yet
  583. * expect CMOS_READ and friends to handle.
  584. */
  585. if (info) {
  586. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  587. cmos_rtc.day_alrm = info->rtc_day_alarm;
  588. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  589. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  590. if (info->rtc_century && info->rtc_century < 128)
  591. cmos_rtc.century = info->rtc_century;
  592. if (info->wake_on && info->wake_off) {
  593. cmos_rtc.wake_on = info->wake_on;
  594. cmos_rtc.wake_off = info->wake_off;
  595. }
  596. }
  597. cmos_rtc.dev = dev;
  598. dev_set_drvdata(dev, &cmos_rtc);
  599. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  600. &cmos_rtc_ops, THIS_MODULE);
  601. if (IS_ERR(cmos_rtc.rtc)) {
  602. retval = PTR_ERR(cmos_rtc.rtc);
  603. goto cleanup0;
  604. }
  605. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  606. spin_lock_irq(&rtc_lock);
  607. /* force periodic irq to CMOS reset default of 1024Hz;
  608. *
  609. * REVISIT it's been reported that at least one x86_64 ALI mobo
  610. * doesn't use 32KHz here ... for portability we might need to
  611. * do something about other clock frequencies.
  612. */
  613. cmos_rtc.rtc->irq_freq = 1024;
  614. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  615. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  616. /* disable irqs */
  617. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  618. rtc_control = CMOS_READ(RTC_CONTROL);
  619. spin_unlock_irq(&rtc_lock);
  620. /* FIXME:
  621. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  622. */
  623. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  624. dev_warn(dev, "only 24-hr supported\n");
  625. retval = -ENXIO;
  626. goto cleanup1;
  627. }
  628. if (is_valid_irq(rtc_irq)) {
  629. irq_handler_t rtc_cmos_int_handler;
  630. if (is_hpet_enabled()) {
  631. int err;
  632. rtc_cmos_int_handler = hpet_rtc_interrupt;
  633. err = hpet_register_irq_handler(cmos_interrupt);
  634. if (err != 0) {
  635. dev_warn(dev, "hpet_register_irq_handler "
  636. " failed in rtc_init().");
  637. goto cleanup1;
  638. }
  639. } else
  640. rtc_cmos_int_handler = cmos_interrupt;
  641. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  642. 0, dev_name(&cmos_rtc.rtc->dev),
  643. cmos_rtc.rtc);
  644. if (retval < 0) {
  645. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  646. goto cleanup1;
  647. }
  648. }
  649. hpet_rtc_timer_init();
  650. /* export at least the first block of NVRAM */
  651. nvram.size = address_space - NVRAM_OFFSET;
  652. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  653. if (retval < 0) {
  654. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  655. goto cleanup2;
  656. }
  657. dev_info(dev, "%s%s, %zd bytes nvram%s\n",
  658. !is_valid_irq(rtc_irq) ? "no alarms" :
  659. cmos_rtc.mon_alrm ? "alarms up to one year" :
  660. cmos_rtc.day_alrm ? "alarms up to one month" :
  661. "alarms up to one day",
  662. cmos_rtc.century ? ", y3k" : "",
  663. nvram.size,
  664. is_hpet_enabled() ? ", hpet irqs" : "");
  665. return 0;
  666. cleanup2:
  667. if (is_valid_irq(rtc_irq))
  668. free_irq(rtc_irq, cmos_rtc.rtc);
  669. cleanup1:
  670. cmos_rtc.dev = NULL;
  671. rtc_device_unregister(cmos_rtc.rtc);
  672. cleanup0:
  673. release_region(ports->start, resource_size(ports));
  674. return retval;
  675. }
  676. static void cmos_do_shutdown(void)
  677. {
  678. spin_lock_irq(&rtc_lock);
  679. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  680. spin_unlock_irq(&rtc_lock);
  681. }
  682. static void __exit cmos_do_remove(struct device *dev)
  683. {
  684. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  685. struct resource *ports;
  686. cmos_do_shutdown();
  687. sysfs_remove_bin_file(&dev->kobj, &nvram);
  688. if (is_valid_irq(cmos->irq)) {
  689. free_irq(cmos->irq, cmos->rtc);
  690. hpet_unregister_irq_handler(cmos_interrupt);
  691. }
  692. rtc_device_unregister(cmos->rtc);
  693. cmos->rtc = NULL;
  694. ports = cmos->iomem;
  695. release_region(ports->start, resource_size(ports));
  696. cmos->iomem = NULL;
  697. cmos->dev = NULL;
  698. }
  699. #ifdef CONFIG_PM
  700. static int cmos_suspend(struct device *dev)
  701. {
  702. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  703. unsigned char tmp;
  704. /* only the alarm might be a wakeup event source */
  705. spin_lock_irq(&rtc_lock);
  706. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  707. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  708. unsigned char mask;
  709. if (device_may_wakeup(dev))
  710. mask = RTC_IRQMASK & ~RTC_AIE;
  711. else
  712. mask = RTC_IRQMASK;
  713. tmp &= ~mask;
  714. CMOS_WRITE(tmp, RTC_CONTROL);
  715. hpet_mask_rtc_irq_bit(mask);
  716. cmos_checkintr(cmos, tmp);
  717. }
  718. spin_unlock_irq(&rtc_lock);
  719. if (tmp & RTC_AIE) {
  720. cmos->enabled_wake = 1;
  721. if (cmos->wake_on)
  722. cmos->wake_on(dev);
  723. else
  724. enable_irq_wake(cmos->irq);
  725. }
  726. dev_dbg(dev, "suspend%s, ctrl %02x\n",
  727. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  728. tmp);
  729. return 0;
  730. }
  731. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  732. * after a detour through G3 "mechanical off", although the ACPI spec
  733. * says wakeup should only work from G1/S4 "hibernate". To most users,
  734. * distinctions between S4 and S5 are pointless. So when the hardware
  735. * allows, don't draw that distinction.
  736. */
  737. static inline int cmos_poweroff(struct device *dev)
  738. {
  739. return cmos_suspend(dev);
  740. }
  741. static int cmos_resume(struct device *dev)
  742. {
  743. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  744. unsigned char tmp;
  745. if (cmos->enabled_wake) {
  746. if (cmos->wake_off)
  747. cmos->wake_off(dev);
  748. else
  749. disable_irq_wake(cmos->irq);
  750. cmos->enabled_wake = 0;
  751. }
  752. spin_lock_irq(&rtc_lock);
  753. tmp = cmos->suspend_ctrl;
  754. cmos->suspend_ctrl = 0;
  755. /* re-enable any irqs previously active */
  756. if (tmp & RTC_IRQMASK) {
  757. unsigned char mask;
  758. if (device_may_wakeup(dev))
  759. hpet_rtc_timer_init();
  760. do {
  761. CMOS_WRITE(tmp, RTC_CONTROL);
  762. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  763. mask = CMOS_READ(RTC_INTR_FLAGS);
  764. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  765. if (!is_hpet_enabled() || !is_intr(mask))
  766. break;
  767. /* force one-shot behavior if HPET blocked
  768. * the wake alarm's irq
  769. */
  770. rtc_update_irq(cmos->rtc, 1, mask);
  771. tmp &= ~RTC_AIE;
  772. hpet_mask_rtc_irq_bit(RTC_AIE);
  773. } while (mask & RTC_AIE);
  774. }
  775. spin_unlock_irq(&rtc_lock);
  776. dev_dbg(dev, "resume, ctrl %02x\n", tmp);
  777. return 0;
  778. }
  779. static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
  780. #else
  781. static inline int cmos_poweroff(struct device *dev)
  782. {
  783. return -ENOSYS;
  784. }
  785. #endif
  786. /*----------------------------------------------------------------*/
  787. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  788. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  789. * probably list them in similar PNPBIOS tables; so PNP is more common.
  790. *
  791. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  792. * predate even PNPBIOS should set up platform_bus devices.
  793. */
  794. #ifdef CONFIG_ACPI
  795. #include <linux/acpi.h>
  796. static u32 rtc_handler(void *context)
  797. {
  798. struct device *dev = context;
  799. pm_wakeup_event(dev, 0);
  800. acpi_clear_event(ACPI_EVENT_RTC);
  801. acpi_disable_event(ACPI_EVENT_RTC, 0);
  802. return ACPI_INTERRUPT_HANDLED;
  803. }
  804. static inline void rtc_wake_setup(struct device *dev)
  805. {
  806. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
  807. /*
  808. * After the RTC handler is installed, the Fixed_RTC event should
  809. * be disabled. Only when the RTC alarm is set will it be enabled.
  810. */
  811. acpi_clear_event(ACPI_EVENT_RTC);
  812. acpi_disable_event(ACPI_EVENT_RTC, 0);
  813. }
  814. static void rtc_wake_on(struct device *dev)
  815. {
  816. acpi_clear_event(ACPI_EVENT_RTC);
  817. acpi_enable_event(ACPI_EVENT_RTC, 0);
  818. }
  819. static void rtc_wake_off(struct device *dev)
  820. {
  821. acpi_disable_event(ACPI_EVENT_RTC, 0);
  822. }
  823. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  824. * its device node and pass extra config data. This helps its driver use
  825. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  826. * that this board's RTC is wakeup-capable (per ACPI spec).
  827. */
  828. static struct cmos_rtc_board_info acpi_rtc_info;
  829. static void cmos_wake_setup(struct device *dev)
  830. {
  831. if (acpi_disabled)
  832. return;
  833. rtc_wake_setup(dev);
  834. acpi_rtc_info.wake_on = rtc_wake_on;
  835. acpi_rtc_info.wake_off = rtc_wake_off;
  836. /* workaround bug in some ACPI tables */
  837. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  838. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  839. acpi_gbl_FADT.month_alarm);
  840. acpi_gbl_FADT.month_alarm = 0;
  841. }
  842. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  843. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  844. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  845. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  846. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  847. dev_info(dev, "RTC can wake from S4\n");
  848. dev->platform_data = &acpi_rtc_info;
  849. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  850. device_init_wakeup(dev, 1);
  851. }
  852. #else
  853. static void cmos_wake_setup(struct device *dev)
  854. {
  855. }
  856. #endif
  857. #ifdef CONFIG_PNP
  858. #include <linux/pnp.h>
  859. static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  860. {
  861. cmos_wake_setup(&pnp->dev);
  862. if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
  863. /* Some machines contain a PNP entry for the RTC, but
  864. * don't define the IRQ. It should always be safe to
  865. * hardcode it in these cases
  866. */
  867. return cmos_do_probe(&pnp->dev,
  868. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  869. else
  870. return cmos_do_probe(&pnp->dev,
  871. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  872. pnp_irq(pnp, 0));
  873. }
  874. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  875. {
  876. cmos_do_remove(&pnp->dev);
  877. }
  878. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  879. {
  880. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  881. return;
  882. cmos_do_shutdown();
  883. }
  884. static const struct pnp_device_id rtc_ids[] = {
  885. { .id = "PNP0b00", },
  886. { .id = "PNP0b01", },
  887. { .id = "PNP0b02", },
  888. { },
  889. };
  890. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  891. static struct pnp_driver cmos_pnp_driver = {
  892. .name = (char *) driver_name,
  893. .id_table = rtc_ids,
  894. .probe = cmos_pnp_probe,
  895. .remove = __exit_p(cmos_pnp_remove),
  896. .shutdown = cmos_pnp_shutdown,
  897. /* flag ensures resume() gets called, and stops syslog spam */
  898. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  899. #ifdef CONFIG_PM_SLEEP
  900. .driver = {
  901. .pm = &cmos_pm_ops,
  902. },
  903. #endif
  904. };
  905. #endif /* CONFIG_PNP */
  906. #ifdef CONFIG_OF
  907. static const struct of_device_id of_cmos_match[] = {
  908. {
  909. .compatible = "motorola,mc146818",
  910. },
  911. { },
  912. };
  913. MODULE_DEVICE_TABLE(of, of_cmos_match);
  914. static __init void cmos_of_init(struct platform_device *pdev)
  915. {
  916. struct device_node *node = pdev->dev.of_node;
  917. struct rtc_time time;
  918. int ret;
  919. const __be32 *val;
  920. if (!node)
  921. return;
  922. val = of_get_property(node, "ctrl-reg", NULL);
  923. if (val)
  924. CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
  925. val = of_get_property(node, "freq-reg", NULL);
  926. if (val)
  927. CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
  928. get_rtc_time(&time);
  929. ret = rtc_valid_tm(&time);
  930. if (ret) {
  931. struct rtc_time def_time = {
  932. .tm_year = 1,
  933. .tm_mday = 1,
  934. };
  935. set_rtc_time(&def_time);
  936. }
  937. }
  938. #else
  939. static inline void cmos_of_init(struct platform_device *pdev) {}
  940. #endif
  941. /*----------------------------------------------------------------*/
  942. /* Platform setup should have set up an RTC device, when PNP is
  943. * unavailable ... this could happen even on (older) PCs.
  944. */
  945. static int __init cmos_platform_probe(struct platform_device *pdev)
  946. {
  947. cmos_of_init(pdev);
  948. cmos_wake_setup(&pdev->dev);
  949. return cmos_do_probe(&pdev->dev,
  950. platform_get_resource(pdev, IORESOURCE_IO, 0),
  951. platform_get_irq(pdev, 0));
  952. }
  953. static int __exit cmos_platform_remove(struct platform_device *pdev)
  954. {
  955. cmos_do_remove(&pdev->dev);
  956. return 0;
  957. }
  958. static void cmos_platform_shutdown(struct platform_device *pdev)
  959. {
  960. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  961. return;
  962. cmos_do_shutdown();
  963. }
  964. /* work with hotplug and coldplug */
  965. MODULE_ALIAS("platform:rtc_cmos");
  966. static struct platform_driver cmos_platform_driver = {
  967. .remove = __exit_p(cmos_platform_remove),
  968. .shutdown = cmos_platform_shutdown,
  969. .driver = {
  970. .name = (char *) driver_name,
  971. #ifdef CONFIG_PM
  972. .pm = &cmos_pm_ops,
  973. #endif
  974. .of_match_table = of_match_ptr(of_cmos_match),
  975. }
  976. };
  977. #ifdef CONFIG_PNP
  978. static bool pnp_driver_registered;
  979. #endif
  980. static bool platform_driver_registered;
  981. static int __init cmos_init(void)
  982. {
  983. int retval = 0;
  984. #ifdef CONFIG_PNP
  985. retval = pnp_register_driver(&cmos_pnp_driver);
  986. if (retval == 0)
  987. pnp_driver_registered = true;
  988. #endif
  989. if (!cmos_rtc.dev) {
  990. retval = platform_driver_probe(&cmos_platform_driver,
  991. cmos_platform_probe);
  992. if (retval == 0)
  993. platform_driver_registered = true;
  994. }
  995. dmi_check_system(rtc_quirks);
  996. if (retval == 0)
  997. return 0;
  998. #ifdef CONFIG_PNP
  999. if (pnp_driver_registered)
  1000. pnp_unregister_driver(&cmos_pnp_driver);
  1001. #endif
  1002. return retval;
  1003. }
  1004. module_init(cmos_init);
  1005. static void __exit cmos_exit(void)
  1006. {
  1007. #ifdef CONFIG_PNP
  1008. if (pnp_driver_registered)
  1009. pnp_unregister_driver(&cmos_pnp_driver);
  1010. #endif
  1011. if (platform_driver_registered)
  1012. platform_driver_unregister(&cmos_platform_driver);
  1013. }
  1014. module_exit(cmos_exit);
  1015. MODULE_AUTHOR("David Brownell");
  1016. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  1017. MODULE_LICENSE("GPL");