intel_ringbuffer.c 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. int __intel_ring_space(int head, int tail, int size)
  36. {
  37. int space = head - tail;
  38. if (space <= 0)
  39. space += size;
  40. return space - I915_RING_FREE_SPACE;
  41. }
  42. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  43. {
  44. if (ringbuf->last_retired_head != -1) {
  45. ringbuf->head = ringbuf->last_retired_head;
  46. ringbuf->last_retired_head = -1;
  47. }
  48. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  49. ringbuf->tail, ringbuf->size);
  50. }
  51. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  52. {
  53. intel_ring_update_space(ringbuf);
  54. return ringbuf->space;
  55. }
  56. bool intel_ring_stopped(struct intel_engine_cs *ring)
  57. {
  58. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  59. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  60. }
  61. static void __intel_ring_advance(struct intel_engine_cs *ring)
  62. {
  63. struct intel_ringbuffer *ringbuf = ring->buffer;
  64. ringbuf->tail &= ringbuf->size - 1;
  65. if (intel_ring_stopped(ring))
  66. return;
  67. ring->write_tail(ring, ringbuf->tail);
  68. }
  69. static int
  70. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct intel_engine_cs *ring = req->ring;
  75. u32 cmd;
  76. int ret;
  77. cmd = MI_FLUSH;
  78. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  79. cmd |= MI_NO_WRITE_FLUSH;
  80. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  81. cmd |= MI_READ_FLUSH;
  82. ret = intel_ring_begin(req, 2);
  83. if (ret)
  84. return ret;
  85. intel_ring_emit(ring, cmd);
  86. intel_ring_emit(ring, MI_NOOP);
  87. intel_ring_advance(ring);
  88. return 0;
  89. }
  90. static int
  91. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  92. u32 invalidate_domains,
  93. u32 flush_domains)
  94. {
  95. struct intel_engine_cs *ring = req->ring;
  96. struct drm_device *dev = ring->dev;
  97. u32 cmd;
  98. int ret;
  99. /*
  100. * read/write caches:
  101. *
  102. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  103. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  104. * also flushed at 2d versus 3d pipeline switches.
  105. *
  106. * read-only caches:
  107. *
  108. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  109. * MI_READ_FLUSH is set, and is always flushed on 965.
  110. *
  111. * I915_GEM_DOMAIN_COMMAND may not exist?
  112. *
  113. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  114. * invalidated when MI_EXE_FLUSH is set.
  115. *
  116. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  117. * invalidated with every MI_FLUSH.
  118. *
  119. * TLBs:
  120. *
  121. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  122. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  123. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  124. * are flushed at any MI_FLUSH.
  125. */
  126. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  127. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  128. cmd &= ~MI_NO_WRITE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  130. cmd |= MI_EXE_FLUSH;
  131. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  132. (IS_G4X(dev) || IS_GEN5(dev)))
  133. cmd |= MI_INVALIDATE_ISP;
  134. ret = intel_ring_begin(req, 2);
  135. if (ret)
  136. return ret;
  137. intel_ring_emit(ring, cmd);
  138. intel_ring_emit(ring, MI_NOOP);
  139. intel_ring_advance(ring);
  140. return 0;
  141. }
  142. /**
  143. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  144. * implementing two workarounds on gen6. From section 1.4.7.1
  145. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  146. *
  147. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  148. * produced by non-pipelined state commands), software needs to first
  149. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  150. * 0.
  151. *
  152. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  153. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  154. *
  155. * And the workaround for these two requires this workaround first:
  156. *
  157. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  158. * BEFORE the pipe-control with a post-sync op and no write-cache
  159. * flushes.
  160. *
  161. * And this last workaround is tricky because of the requirements on
  162. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  163. * volume 2 part 1:
  164. *
  165. * "1 of the following must also be set:
  166. * - Render Target Cache Flush Enable ([12] of DW1)
  167. * - Depth Cache Flush Enable ([0] of DW1)
  168. * - Stall at Pixel Scoreboard ([1] of DW1)
  169. * - Depth Stall ([13] of DW1)
  170. * - Post-Sync Operation ([13] of DW1)
  171. * - Notify Enable ([8] of DW1)"
  172. *
  173. * The cache flushes require the workaround flush that triggered this
  174. * one, so we can't use it. Depth stall would trigger the same.
  175. * Post-sync nonzero is what triggered this second workaround, so we
  176. * can't use that one either. Notify enable is IRQs, which aren't
  177. * really our business. That leaves only stall at scoreboard.
  178. */
  179. static int
  180. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  181. {
  182. struct intel_engine_cs *ring = req->ring;
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(req, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(req, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. struct intel_engine_cs *ring = req->ring;
  213. u32 flags = 0;
  214. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  215. int ret;
  216. /* Force SNB workarounds for PIPE_CONTROL flushes */
  217. ret = intel_emit_post_sync_nonzero_flush(req);
  218. if (ret)
  219. return ret;
  220. /* Just flush everything. Experiments have shown that reducing the
  221. * number of bits based on the write domains has little performance
  222. * impact.
  223. */
  224. if (flush_domains) {
  225. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  226. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  227. /*
  228. * Ensure that any following seqno writes only happen
  229. * when the render cache is indeed flushed.
  230. */
  231. flags |= PIPE_CONTROL_CS_STALL;
  232. }
  233. if (invalidate_domains) {
  234. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  235. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  239. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  240. /*
  241. * TLB invalidate requires a post-sync write.
  242. */
  243. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  244. }
  245. ret = intel_ring_begin(req, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, flags);
  250. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_advance(ring);
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  257. {
  258. struct intel_engine_cs *ring = req->ring;
  259. int ret;
  260. ret = intel_ring_begin(req, 4);
  261. if (ret)
  262. return ret;
  263. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  264. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  265. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  266. intel_ring_emit(ring, 0);
  267. intel_ring_emit(ring, 0);
  268. intel_ring_advance(ring);
  269. return 0;
  270. }
  271. static int
  272. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  273. u32 invalidate_domains, u32 flush_domains)
  274. {
  275. struct intel_engine_cs *ring = req->ring;
  276. u32 flags = 0;
  277. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  278. int ret;
  279. /*
  280. * Ensure that any following seqno writes only happen when the render
  281. * cache is indeed flushed.
  282. *
  283. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  284. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  285. * don't try to be clever and just set it unconditionally.
  286. */
  287. flags |= PIPE_CONTROL_CS_STALL;
  288. /* Just flush everything. Experiments have shown that reducing the
  289. * number of bits based on the write domains has little performance
  290. * impact.
  291. */
  292. if (flush_domains) {
  293. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  294. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  295. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  296. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  297. }
  298. if (invalidate_domains) {
  299. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  300. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  312. /* Workaround: we must issue a pipe_control with CS-stall bit
  313. * set before a pipe_control command that has the state cache
  314. * invalidate bit set. */
  315. gen7_render_ring_cs_stall_wa(req);
  316. }
  317. ret = intel_ring_begin(req, 4);
  318. if (ret)
  319. return ret;
  320. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  321. intel_ring_emit(ring, flags);
  322. intel_ring_emit(ring, scratch_addr);
  323. intel_ring_emit(ring, 0);
  324. intel_ring_advance(ring);
  325. return 0;
  326. }
  327. static int
  328. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  329. u32 flags, u32 scratch_addr)
  330. {
  331. struct intel_engine_cs *ring = req->ring;
  332. int ret;
  333. ret = intel_ring_begin(req, 6);
  334. if (ret)
  335. return ret;
  336. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  337. intel_ring_emit(ring, flags);
  338. intel_ring_emit(ring, scratch_addr);
  339. intel_ring_emit(ring, 0);
  340. intel_ring_emit(ring, 0);
  341. intel_ring_emit(ring, 0);
  342. intel_ring_advance(ring);
  343. return 0;
  344. }
  345. static int
  346. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  347. u32 invalidate_domains, u32 flush_domains)
  348. {
  349. u32 flags = 0;
  350. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  351. int ret;
  352. flags |= PIPE_CONTROL_CS_STALL;
  353. if (flush_domains) {
  354. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  355. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  356. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  357. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  358. }
  359. if (invalidate_domains) {
  360. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  361. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_QW_WRITE;
  367. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  368. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  369. ret = gen8_emit_pipe_control(req,
  370. PIPE_CONTROL_CS_STALL |
  371. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  372. 0);
  373. if (ret)
  374. return ret;
  375. }
  376. return gen8_emit_pipe_control(req, flags, scratch_addr);
  377. }
  378. static void ring_write_tail(struct intel_engine_cs *ring,
  379. u32 value)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. I915_WRITE_TAIL(ring, value);
  383. }
  384. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  385. {
  386. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  387. u64 acthd;
  388. if (INTEL_INFO(ring->dev)->gen >= 8)
  389. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  390. RING_ACTHD_UDW(ring->mmio_base));
  391. else if (INTEL_INFO(ring->dev)->gen >= 4)
  392. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  393. else
  394. acthd = I915_READ(ACTHD);
  395. return acthd;
  396. }
  397. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  398. {
  399. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  400. u32 addr;
  401. addr = dev_priv->status_page_dmah->busaddr;
  402. if (INTEL_INFO(ring->dev)->gen >= 4)
  403. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  404. I915_WRITE(HWS_PGA, addr);
  405. }
  406. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  407. {
  408. struct drm_device *dev = ring->dev;
  409. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  410. i915_reg_t mmio;
  411. /* The ring status page addresses are no longer next to the rest of
  412. * the ring registers as of gen7.
  413. */
  414. if (IS_GEN7(dev)) {
  415. switch (ring->id) {
  416. case RCS:
  417. mmio = RENDER_HWS_PGA_GEN7;
  418. break;
  419. case BCS:
  420. mmio = BLT_HWS_PGA_GEN7;
  421. break;
  422. /*
  423. * VCS2 actually doesn't exist on Gen7. Only shut up
  424. * gcc switch check warning
  425. */
  426. case VCS2:
  427. case VCS:
  428. mmio = BSD_HWS_PGA_GEN7;
  429. break;
  430. case VECS:
  431. mmio = VEBOX_HWS_PGA_GEN7;
  432. break;
  433. }
  434. } else if (IS_GEN6(ring->dev)) {
  435. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  436. } else {
  437. /* XXX: gen8 returns to sanity */
  438. mmio = RING_HWS_PGA(ring->mmio_base);
  439. }
  440. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  441. POSTING_READ(mmio);
  442. /*
  443. * Flush the TLB for this page
  444. *
  445. * FIXME: These two bits have disappeared on gen8, so a question
  446. * arises: do we still need this and if so how should we go about
  447. * invalidating the TLB?
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  450. i915_reg_t reg = RING_INSTPM(ring->mmio_base);
  451. /* ring should be idle before issuing a sync flush*/
  452. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  453. I915_WRITE(reg,
  454. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  455. INSTPM_SYNC_FLUSH));
  456. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  457. 1000))
  458. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  459. ring->name);
  460. }
  461. }
  462. static bool stop_ring(struct intel_engine_cs *ring)
  463. {
  464. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  465. if (!IS_GEN2(ring->dev)) {
  466. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  467. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  468. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  469. /* Sometimes we observe that the idle flag is not
  470. * set even though the ring is empty. So double
  471. * check before giving up.
  472. */
  473. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  474. return false;
  475. }
  476. }
  477. I915_WRITE_CTL(ring, 0);
  478. I915_WRITE_HEAD(ring, 0);
  479. ring->write_tail(ring, 0);
  480. if (!IS_GEN2(ring->dev)) {
  481. (void)I915_READ_CTL(ring);
  482. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  483. }
  484. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  485. }
  486. static int init_ring_common(struct intel_engine_cs *ring)
  487. {
  488. struct drm_device *dev = ring->dev;
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. struct intel_ringbuffer *ringbuf = ring->buffer;
  491. struct drm_i915_gem_object *obj = ringbuf->obj;
  492. int ret = 0;
  493. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  494. if (!stop_ring(ring)) {
  495. /* G45 ring initialization often fails to reset head to zero */
  496. DRM_DEBUG_KMS("%s head not reset to zero "
  497. "ctl %08x head %08x tail %08x start %08x\n",
  498. ring->name,
  499. I915_READ_CTL(ring),
  500. I915_READ_HEAD(ring),
  501. I915_READ_TAIL(ring),
  502. I915_READ_START(ring));
  503. if (!stop_ring(ring)) {
  504. DRM_ERROR("failed to set %s head to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. ret = -EIO;
  512. goto out;
  513. }
  514. }
  515. if (I915_NEED_GFX_HWS(dev))
  516. intel_ring_setup_status_page(ring);
  517. else
  518. ring_setup_phys_status_page(ring);
  519. /* Enforce ordering by reading HEAD register back */
  520. I915_READ_HEAD(ring);
  521. /* Initialize the ring. This must happen _after_ we've cleared the ring
  522. * registers with the above sequence (the readback of the HEAD registers
  523. * also enforces ordering), otherwise the hw might lose the new ring
  524. * register values. */
  525. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  526. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  527. if (I915_READ_HEAD(ring))
  528. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  529. ring->name, I915_READ_HEAD(ring));
  530. I915_WRITE_HEAD(ring, 0);
  531. (void)I915_READ_HEAD(ring);
  532. I915_WRITE_CTL(ring,
  533. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  534. | RING_VALID);
  535. /* If the head is still not zero, the ring is dead */
  536. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  537. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  538. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  539. DRM_ERROR("%s initialization failed "
  540. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  541. ring->name,
  542. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  543. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  544. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  545. ret = -EIO;
  546. goto out;
  547. }
  548. ringbuf->last_retired_head = -1;
  549. ringbuf->head = I915_READ_HEAD(ring);
  550. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  551. intel_ring_update_space(ringbuf);
  552. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  553. out:
  554. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  555. return ret;
  556. }
  557. void
  558. intel_fini_pipe_control(struct intel_engine_cs *ring)
  559. {
  560. struct drm_device *dev = ring->dev;
  561. if (ring->scratch.obj == NULL)
  562. return;
  563. if (INTEL_INFO(dev)->gen >= 5) {
  564. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  565. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  566. }
  567. drm_gem_object_unreference(&ring->scratch.obj->base);
  568. ring->scratch.obj = NULL;
  569. }
  570. int
  571. intel_init_pipe_control(struct intel_engine_cs *ring)
  572. {
  573. int ret;
  574. WARN_ON(ring->scratch.obj);
  575. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  576. if (ring->scratch.obj == NULL) {
  577. DRM_ERROR("Failed to allocate seqno page\n");
  578. ret = -ENOMEM;
  579. goto err;
  580. }
  581. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  582. if (ret)
  583. goto err_unref;
  584. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  585. if (ret)
  586. goto err_unref;
  587. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  588. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  589. if (ring->scratch.cpu_page == NULL) {
  590. ret = -ENOMEM;
  591. goto err_unpin;
  592. }
  593. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  594. ring->name, ring->scratch.gtt_offset);
  595. return 0;
  596. err_unpin:
  597. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  598. err_unref:
  599. drm_gem_object_unreference(&ring->scratch.obj->base);
  600. err:
  601. return ret;
  602. }
  603. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  604. {
  605. int ret, i;
  606. struct intel_engine_cs *ring = req->ring;
  607. struct drm_device *dev = ring->dev;
  608. struct drm_i915_private *dev_priv = dev->dev_private;
  609. struct i915_workarounds *w = &dev_priv->workarounds;
  610. if (w->count == 0)
  611. return 0;
  612. ring->gpu_caches_dirty = true;
  613. ret = intel_ring_flush_all_caches(req);
  614. if (ret)
  615. return ret;
  616. ret = intel_ring_begin(req, (w->count * 2 + 2));
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  620. for (i = 0; i < w->count; i++) {
  621. intel_ring_emit_reg(ring, w->reg[i].addr);
  622. intel_ring_emit(ring, w->reg[i].value);
  623. }
  624. intel_ring_emit(ring, MI_NOOP);
  625. intel_ring_advance(ring);
  626. ring->gpu_caches_dirty = true;
  627. ret = intel_ring_flush_all_caches(req);
  628. if (ret)
  629. return ret;
  630. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  631. return 0;
  632. }
  633. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  634. {
  635. int ret;
  636. ret = intel_ring_workarounds_emit(req);
  637. if (ret != 0)
  638. return ret;
  639. ret = i915_gem_render_state_init(req);
  640. if (ret)
  641. return ret;
  642. return 0;
  643. }
  644. static int wa_add(struct drm_i915_private *dev_priv,
  645. i915_reg_t addr,
  646. const u32 mask, const u32 val)
  647. {
  648. const u32 idx = dev_priv->workarounds.count;
  649. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  650. return -ENOSPC;
  651. dev_priv->workarounds.reg[idx].addr = addr;
  652. dev_priv->workarounds.reg[idx].value = val;
  653. dev_priv->workarounds.reg[idx].mask = mask;
  654. dev_priv->workarounds.count++;
  655. return 0;
  656. }
  657. #define WA_REG(addr, mask, val) do { \
  658. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  659. if (r) \
  660. return r; \
  661. } while (0)
  662. #define WA_SET_BIT_MASKED(addr, mask) \
  663. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  664. #define WA_CLR_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  666. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  667. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  668. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  669. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  670. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  671. static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
  672. {
  673. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  674. struct i915_workarounds *wa = &dev_priv->workarounds;
  675. const uint32_t index = wa->hw_whitelist_count[ring->id];
  676. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  677. return -EINVAL;
  678. WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
  679. i915_mmio_reg_offset(reg));
  680. wa->hw_whitelist_count[ring->id]++;
  681. return 0;
  682. }
  683. static int gen8_init_workarounds(struct intel_engine_cs *ring)
  684. {
  685. struct drm_device *dev = ring->dev;
  686. struct drm_i915_private *dev_priv = dev->dev_private;
  687. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  688. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  689. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  690. /* WaDisablePartialInstShootdown:bdw,chv */
  691. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  692. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  693. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  694. * workaround for for a possible hang in the unlikely event a TLB
  695. * invalidation occurs during a PSD flush.
  696. */
  697. /* WaForceEnableNonCoherent:bdw,chv */
  698. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  701. HDC_FORCE_NON_COHERENT);
  702. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  703. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  704. * polygons in the same 8x4 pixel/sample area to be processed without
  705. * stalling waiting for the earlier ones to write to Hierarchical Z
  706. * buffer."
  707. *
  708. * This optimization is off by default for BDW and CHV; turn it on.
  709. */
  710. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  711. /* Wa4x4STCOptimizationDisable:bdw,chv */
  712. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  713. /*
  714. * BSpec recommends 8x4 when MSAA is used,
  715. * however in practice 16x4 seems fastest.
  716. *
  717. * Note that PS/WM thread counts depend on the WIZ hashing
  718. * disable bit, which we don't touch here, but it's good
  719. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  720. */
  721. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  722. GEN6_WIZ_HASHING_MASK,
  723. GEN6_WIZ_HASHING_16x4);
  724. return 0;
  725. }
  726. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. int ret;
  729. struct drm_device *dev = ring->dev;
  730. struct drm_i915_private *dev_priv = dev->dev_private;
  731. ret = gen8_init_workarounds(ring);
  732. if (ret)
  733. return ret;
  734. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  735. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  736. /* WaDisableDopClockGating:bdw */
  737. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  738. DOP_CLOCK_GATING_DISABLE);
  739. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  740. GEN8_SAMPLER_POWER_BYPASS_DIS);
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. /* WaForceContextSaveRestoreNonCoherent:bdw */
  743. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  744. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  745. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  746. return 0;
  747. }
  748. static int chv_init_workarounds(struct intel_engine_cs *ring)
  749. {
  750. int ret;
  751. struct drm_device *dev = ring->dev;
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. ret = gen8_init_workarounds(ring);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  763. {
  764. struct drm_device *dev = ring->dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. uint32_t tmp;
  767. int ret;
  768. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  769. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  770. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  771. /* WaDisableKillLogic:bxt,skl */
  772. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  773. ECOCHK_DIS_TLB);
  774. /* WaDisablePartialInstShootdown:skl,bxt */
  775. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  776. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  777. /* Syncing dependencies between camera and graphics:skl,bxt */
  778. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  779. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  780. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  781. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  782. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  783. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  784. GEN9_DG_MIRROR_FIX_ENABLE);
  785. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  786. if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
  787. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  788. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  789. GEN9_RHWO_OPTIMIZATION_DISABLE);
  790. /*
  791. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  792. * but we do that in per ctx batchbuffer as there is an issue
  793. * with this register not getting restored on ctx restore
  794. */
  795. }
  796. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  797. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
  798. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  799. GEN9_ENABLE_YV12_BUGFIX);
  800. /* Wa4x4STCOptimizationDisable:skl,bxt */
  801. /* WaDisablePartialResolveInVc:skl,bxt */
  802. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  803. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  804. /* WaCcsTlbPrefetchDisable:skl,bxt */
  805. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  806. GEN9_CCS_TLB_PREFETCH_ENABLE);
  807. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  808. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
  809. IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  810. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  811. PIXEL_MASK_CAMMING_DISABLE);
  812. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  813. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  814. if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
  815. IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
  816. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  817. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  818. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  819. if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
  820. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  821. GEN8_SAMPLER_POWER_BYPASS_DIS);
  822. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  823. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  824. /* WaOCLCoherentLineFlush:skl,bxt */
  825. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  826. GEN8_LQSC_FLUSH_COHERENT_LINES));
  827. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  828. ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
  829. if (ret)
  830. return ret;
  831. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  832. ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
  833. if (ret)
  834. return ret;
  835. return 0;
  836. }
  837. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  838. {
  839. struct drm_device *dev = ring->dev;
  840. struct drm_i915_private *dev_priv = dev->dev_private;
  841. u8 vals[3] = { 0, 0, 0 };
  842. unsigned int i;
  843. for (i = 0; i < 3; i++) {
  844. u8 ss;
  845. /*
  846. * Only consider slices where one, and only one, subslice has 7
  847. * EUs
  848. */
  849. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  850. continue;
  851. /*
  852. * subslice_7eu[i] != 0 (because of the check above) and
  853. * ss_max == 4 (maximum number of subslices possible per slice)
  854. *
  855. * -> 0 <= ss <= 3;
  856. */
  857. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  858. vals[i] = 3 - ss;
  859. }
  860. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  861. return 0;
  862. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  863. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  864. GEN9_IZ_HASHING_MASK(2) |
  865. GEN9_IZ_HASHING_MASK(1) |
  866. GEN9_IZ_HASHING_MASK(0),
  867. GEN9_IZ_HASHING(2, vals[2]) |
  868. GEN9_IZ_HASHING(1, vals[1]) |
  869. GEN9_IZ_HASHING(0, vals[0]));
  870. return 0;
  871. }
  872. static int skl_init_workarounds(struct intel_engine_cs *ring)
  873. {
  874. int ret;
  875. struct drm_device *dev = ring->dev;
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. ret = gen9_init_workarounds(ring);
  878. if (ret)
  879. return ret;
  880. /*
  881. * Actual WA is to disable percontext preemption granularity control
  882. * until D0 which is the default case so this is equivalent to
  883. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  884. */
  885. if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
  886. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  887. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  888. }
  889. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
  890. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  891. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  892. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  893. }
  894. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  895. * involving this register should also be added to WA batch as required.
  896. */
  897. if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
  898. /* WaDisableLSQCROPERFforOCL:skl */
  899. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  900. GEN8_LQSC_RO_PERF_DIS);
  901. /* WaEnableGapsTsvCreditFix:skl */
  902. if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
  903. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  904. GEN9_GAPS_TSV_CREDIT_DISABLE));
  905. }
  906. /* WaDisablePowerCompilerClockGating:skl */
  907. if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
  908. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  909. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  910. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  911. if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
  912. /*
  913. *Use Force Non-Coherent whenever executing a 3D context. This
  914. * is a workaround for a possible hang in the unlikely event
  915. * a TLB invalidation occurs during a PSD flush.
  916. */
  917. /* WaForceEnableNonCoherent:skl */
  918. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  919. HDC_FORCE_NON_COHERENT);
  920. /* WaDisableHDCInvalidation:skl */
  921. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  922. BDW_DISABLE_HDC_INVALIDATION);
  923. }
  924. /* WaBarrierPerformanceFixDisable:skl */
  925. if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
  926. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  927. HDC_FENCE_DEST_SLM_DISABLE |
  928. HDC_BARRIER_PERFORMANCE_DISABLE);
  929. /* WaDisableSbeCacheDispatchPortSharing:skl */
  930. if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
  931. WA_SET_BIT_MASKED(
  932. GEN7_HALF_SLICE_CHICKEN1,
  933. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  934. /* WaDisableLSQCROPERFforOCL:skl */
  935. ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
  936. if (ret)
  937. return ret;
  938. return skl_tune_iz_hashing(ring);
  939. }
  940. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  941. {
  942. int ret;
  943. struct drm_device *dev = ring->dev;
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. ret = gen9_init_workarounds(ring);
  946. if (ret)
  947. return ret;
  948. /* WaStoreMultiplePTEenable:bxt */
  949. /* This is a requirement according to Hardware specification */
  950. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  951. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  952. /* WaSetClckGatingDisableMedia:bxt */
  953. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  954. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  955. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  956. }
  957. /* WaDisableThreadStallDopClockGating:bxt */
  958. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  959. STALL_DOP_GATING_DISABLE);
  960. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  961. if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
  962. WA_SET_BIT_MASKED(
  963. GEN7_HALF_SLICE_CHICKEN1,
  964. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  965. }
  966. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  967. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  968. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  969. /* WaDisableLSQCROPERFforOCL:bxt */
  970. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  971. ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
  972. if (ret)
  973. return ret;
  974. ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
  975. if (ret)
  976. return ret;
  977. }
  978. return 0;
  979. }
  980. int init_workarounds_ring(struct intel_engine_cs *ring)
  981. {
  982. struct drm_device *dev = ring->dev;
  983. struct drm_i915_private *dev_priv = dev->dev_private;
  984. WARN_ON(ring->id != RCS);
  985. dev_priv->workarounds.count = 0;
  986. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  987. if (IS_BROADWELL(dev))
  988. return bdw_init_workarounds(ring);
  989. if (IS_CHERRYVIEW(dev))
  990. return chv_init_workarounds(ring);
  991. if (IS_SKYLAKE(dev))
  992. return skl_init_workarounds(ring);
  993. if (IS_BROXTON(dev))
  994. return bxt_init_workarounds(ring);
  995. return 0;
  996. }
  997. static int init_render_ring(struct intel_engine_cs *ring)
  998. {
  999. struct drm_device *dev = ring->dev;
  1000. struct drm_i915_private *dev_priv = dev->dev_private;
  1001. int ret = init_ring_common(ring);
  1002. if (ret)
  1003. return ret;
  1004. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1005. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  1006. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1007. /* We need to disable the AsyncFlip performance optimisations in order
  1008. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1009. * programmed to '1' on all products.
  1010. *
  1011. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1012. */
  1013. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1014. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1015. /* Required for the hardware to program scanline values for waiting */
  1016. /* WaEnableFlushTlbInvalidationMode:snb */
  1017. if (INTEL_INFO(dev)->gen == 6)
  1018. I915_WRITE(GFX_MODE,
  1019. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1020. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1021. if (IS_GEN7(dev))
  1022. I915_WRITE(GFX_MODE_GEN7,
  1023. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1024. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1025. if (IS_GEN6(dev)) {
  1026. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1027. * "If this bit is set, STCunit will have LRA as replacement
  1028. * policy. [...] This bit must be reset. LRA replacement
  1029. * policy is not supported."
  1030. */
  1031. I915_WRITE(CACHE_MODE_0,
  1032. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1033. }
  1034. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  1035. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1036. if (HAS_L3_DPF(dev))
  1037. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1038. return init_workarounds_ring(ring);
  1039. }
  1040. static void render_ring_cleanup(struct intel_engine_cs *ring)
  1041. {
  1042. struct drm_device *dev = ring->dev;
  1043. struct drm_i915_private *dev_priv = dev->dev_private;
  1044. if (dev_priv->semaphore_obj) {
  1045. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1046. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1047. dev_priv->semaphore_obj = NULL;
  1048. }
  1049. intel_fini_pipe_control(ring);
  1050. }
  1051. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1052. unsigned int num_dwords)
  1053. {
  1054. #define MBOX_UPDATE_DWORDS 8
  1055. struct intel_engine_cs *signaller = signaller_req->ring;
  1056. struct drm_device *dev = signaller->dev;
  1057. struct drm_i915_private *dev_priv = dev->dev_private;
  1058. struct intel_engine_cs *waiter;
  1059. int i, ret, num_rings;
  1060. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1061. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1062. #undef MBOX_UPDATE_DWORDS
  1063. ret = intel_ring_begin(signaller_req, num_dwords);
  1064. if (ret)
  1065. return ret;
  1066. for_each_ring(waiter, dev_priv, i) {
  1067. u32 seqno;
  1068. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1069. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1070. continue;
  1071. seqno = i915_gem_request_get_seqno(signaller_req);
  1072. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1073. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1074. PIPE_CONTROL_QW_WRITE |
  1075. PIPE_CONTROL_FLUSH_ENABLE);
  1076. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1077. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1078. intel_ring_emit(signaller, seqno);
  1079. intel_ring_emit(signaller, 0);
  1080. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1081. MI_SEMAPHORE_TARGET(waiter->id));
  1082. intel_ring_emit(signaller, 0);
  1083. }
  1084. return 0;
  1085. }
  1086. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1087. unsigned int num_dwords)
  1088. {
  1089. #define MBOX_UPDATE_DWORDS 6
  1090. struct intel_engine_cs *signaller = signaller_req->ring;
  1091. struct drm_device *dev = signaller->dev;
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. struct intel_engine_cs *waiter;
  1094. int i, ret, num_rings;
  1095. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1096. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1097. #undef MBOX_UPDATE_DWORDS
  1098. ret = intel_ring_begin(signaller_req, num_dwords);
  1099. if (ret)
  1100. return ret;
  1101. for_each_ring(waiter, dev_priv, i) {
  1102. u32 seqno;
  1103. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1104. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1105. continue;
  1106. seqno = i915_gem_request_get_seqno(signaller_req);
  1107. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1108. MI_FLUSH_DW_OP_STOREDW);
  1109. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1110. MI_FLUSH_DW_USE_GTT);
  1111. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1112. intel_ring_emit(signaller, seqno);
  1113. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1114. MI_SEMAPHORE_TARGET(waiter->id));
  1115. intel_ring_emit(signaller, 0);
  1116. }
  1117. return 0;
  1118. }
  1119. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1120. unsigned int num_dwords)
  1121. {
  1122. struct intel_engine_cs *signaller = signaller_req->ring;
  1123. struct drm_device *dev = signaller->dev;
  1124. struct drm_i915_private *dev_priv = dev->dev_private;
  1125. struct intel_engine_cs *useless;
  1126. int i, ret, num_rings;
  1127. #define MBOX_UPDATE_DWORDS 3
  1128. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1129. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1130. #undef MBOX_UPDATE_DWORDS
  1131. ret = intel_ring_begin(signaller_req, num_dwords);
  1132. if (ret)
  1133. return ret;
  1134. for_each_ring(useless, dev_priv, i) {
  1135. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
  1136. if (i915_mmio_reg_valid(mbox_reg)) {
  1137. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1138. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1139. intel_ring_emit_reg(signaller, mbox_reg);
  1140. intel_ring_emit(signaller, seqno);
  1141. }
  1142. }
  1143. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1144. if (num_rings % 2 == 0)
  1145. intel_ring_emit(signaller, MI_NOOP);
  1146. return 0;
  1147. }
  1148. /**
  1149. * gen6_add_request - Update the semaphore mailbox registers
  1150. *
  1151. * @request - request to write to the ring
  1152. *
  1153. * Update the mailbox registers in the *other* rings with the current seqno.
  1154. * This acts like a signal in the canonical semaphore.
  1155. */
  1156. static int
  1157. gen6_add_request(struct drm_i915_gem_request *req)
  1158. {
  1159. struct intel_engine_cs *ring = req->ring;
  1160. int ret;
  1161. if (ring->semaphore.signal)
  1162. ret = ring->semaphore.signal(req, 4);
  1163. else
  1164. ret = intel_ring_begin(req, 4);
  1165. if (ret)
  1166. return ret;
  1167. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1168. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1169. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1170. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1171. __intel_ring_advance(ring);
  1172. return 0;
  1173. }
  1174. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1175. u32 seqno)
  1176. {
  1177. struct drm_i915_private *dev_priv = dev->dev_private;
  1178. return dev_priv->last_seqno < seqno;
  1179. }
  1180. /**
  1181. * intel_ring_sync - sync the waiter to the signaller on seqno
  1182. *
  1183. * @waiter - ring that is waiting
  1184. * @signaller - ring which has, or will signal
  1185. * @seqno - seqno which the waiter will block on
  1186. */
  1187. static int
  1188. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1189. struct intel_engine_cs *signaller,
  1190. u32 seqno)
  1191. {
  1192. struct intel_engine_cs *waiter = waiter_req->ring;
  1193. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1194. int ret;
  1195. ret = intel_ring_begin(waiter_req, 4);
  1196. if (ret)
  1197. return ret;
  1198. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1199. MI_SEMAPHORE_GLOBAL_GTT |
  1200. MI_SEMAPHORE_POLL |
  1201. MI_SEMAPHORE_SAD_GTE_SDD);
  1202. intel_ring_emit(waiter, seqno);
  1203. intel_ring_emit(waiter,
  1204. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1205. intel_ring_emit(waiter,
  1206. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1207. intel_ring_advance(waiter);
  1208. return 0;
  1209. }
  1210. static int
  1211. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1212. struct intel_engine_cs *signaller,
  1213. u32 seqno)
  1214. {
  1215. struct intel_engine_cs *waiter = waiter_req->ring;
  1216. u32 dw1 = MI_SEMAPHORE_MBOX |
  1217. MI_SEMAPHORE_COMPARE |
  1218. MI_SEMAPHORE_REGISTER;
  1219. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1220. int ret;
  1221. /* Throughout all of the GEM code, seqno passed implies our current
  1222. * seqno is >= the last seqno executed. However for hardware the
  1223. * comparison is strictly greater than.
  1224. */
  1225. seqno -= 1;
  1226. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1227. ret = intel_ring_begin(waiter_req, 4);
  1228. if (ret)
  1229. return ret;
  1230. /* If seqno wrap happened, omit the wait with no-ops */
  1231. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1232. intel_ring_emit(waiter, dw1 | wait_mbox);
  1233. intel_ring_emit(waiter, seqno);
  1234. intel_ring_emit(waiter, 0);
  1235. intel_ring_emit(waiter, MI_NOOP);
  1236. } else {
  1237. intel_ring_emit(waiter, MI_NOOP);
  1238. intel_ring_emit(waiter, MI_NOOP);
  1239. intel_ring_emit(waiter, MI_NOOP);
  1240. intel_ring_emit(waiter, MI_NOOP);
  1241. }
  1242. intel_ring_advance(waiter);
  1243. return 0;
  1244. }
  1245. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1246. do { \
  1247. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1248. PIPE_CONTROL_DEPTH_STALL); \
  1249. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1250. intel_ring_emit(ring__, 0); \
  1251. intel_ring_emit(ring__, 0); \
  1252. } while (0)
  1253. static int
  1254. pc_render_add_request(struct drm_i915_gem_request *req)
  1255. {
  1256. struct intel_engine_cs *ring = req->ring;
  1257. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1258. int ret;
  1259. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1260. * incoherent with writes to memory, i.e. completely fubar,
  1261. * so we need to use PIPE_NOTIFY instead.
  1262. *
  1263. * However, we also need to workaround the qword write
  1264. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1265. * memory before requesting an interrupt.
  1266. */
  1267. ret = intel_ring_begin(req, 32);
  1268. if (ret)
  1269. return ret;
  1270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1271. PIPE_CONTROL_WRITE_FLUSH |
  1272. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1273. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1274. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1275. intel_ring_emit(ring, 0);
  1276. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1277. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1278. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1279. scratch_addr += 2 * CACHELINE_BYTES;
  1280. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1281. scratch_addr += 2 * CACHELINE_BYTES;
  1282. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1283. scratch_addr += 2 * CACHELINE_BYTES;
  1284. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1285. scratch_addr += 2 * CACHELINE_BYTES;
  1286. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1287. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1288. PIPE_CONTROL_WRITE_FLUSH |
  1289. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1290. PIPE_CONTROL_NOTIFY);
  1291. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1292. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1293. intel_ring_emit(ring, 0);
  1294. __intel_ring_advance(ring);
  1295. return 0;
  1296. }
  1297. static u32
  1298. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1299. {
  1300. /* Workaround to force correct ordering between irq and seqno writes on
  1301. * ivb (and maybe also on snb) by reading from a CS register (like
  1302. * ACTHD) before reading the status page. */
  1303. if (!lazy_coherency) {
  1304. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1305. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1306. }
  1307. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1308. }
  1309. static u32
  1310. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1311. {
  1312. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1313. }
  1314. static void
  1315. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1316. {
  1317. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1318. }
  1319. static u32
  1320. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1321. {
  1322. return ring->scratch.cpu_page[0];
  1323. }
  1324. static void
  1325. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1326. {
  1327. ring->scratch.cpu_page[0] = seqno;
  1328. }
  1329. static bool
  1330. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1331. {
  1332. struct drm_device *dev = ring->dev;
  1333. struct drm_i915_private *dev_priv = dev->dev_private;
  1334. unsigned long flags;
  1335. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1336. return false;
  1337. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1338. if (ring->irq_refcount++ == 0)
  1339. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1340. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1341. return true;
  1342. }
  1343. static void
  1344. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1345. {
  1346. struct drm_device *dev = ring->dev;
  1347. struct drm_i915_private *dev_priv = dev->dev_private;
  1348. unsigned long flags;
  1349. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1350. if (--ring->irq_refcount == 0)
  1351. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1352. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1353. }
  1354. static bool
  1355. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1356. {
  1357. struct drm_device *dev = ring->dev;
  1358. struct drm_i915_private *dev_priv = dev->dev_private;
  1359. unsigned long flags;
  1360. if (!intel_irqs_enabled(dev_priv))
  1361. return false;
  1362. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1363. if (ring->irq_refcount++ == 0) {
  1364. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1365. I915_WRITE(IMR, dev_priv->irq_mask);
  1366. POSTING_READ(IMR);
  1367. }
  1368. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1369. return true;
  1370. }
  1371. static void
  1372. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1373. {
  1374. struct drm_device *dev = ring->dev;
  1375. struct drm_i915_private *dev_priv = dev->dev_private;
  1376. unsigned long flags;
  1377. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1378. if (--ring->irq_refcount == 0) {
  1379. dev_priv->irq_mask |= ring->irq_enable_mask;
  1380. I915_WRITE(IMR, dev_priv->irq_mask);
  1381. POSTING_READ(IMR);
  1382. }
  1383. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1384. }
  1385. static bool
  1386. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1387. {
  1388. struct drm_device *dev = ring->dev;
  1389. struct drm_i915_private *dev_priv = dev->dev_private;
  1390. unsigned long flags;
  1391. if (!intel_irqs_enabled(dev_priv))
  1392. return false;
  1393. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1394. if (ring->irq_refcount++ == 0) {
  1395. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1396. I915_WRITE16(IMR, dev_priv->irq_mask);
  1397. POSTING_READ16(IMR);
  1398. }
  1399. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1400. return true;
  1401. }
  1402. static void
  1403. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1404. {
  1405. struct drm_device *dev = ring->dev;
  1406. struct drm_i915_private *dev_priv = dev->dev_private;
  1407. unsigned long flags;
  1408. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1409. if (--ring->irq_refcount == 0) {
  1410. dev_priv->irq_mask |= ring->irq_enable_mask;
  1411. I915_WRITE16(IMR, dev_priv->irq_mask);
  1412. POSTING_READ16(IMR);
  1413. }
  1414. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1415. }
  1416. static int
  1417. bsd_ring_flush(struct drm_i915_gem_request *req,
  1418. u32 invalidate_domains,
  1419. u32 flush_domains)
  1420. {
  1421. struct intel_engine_cs *ring = req->ring;
  1422. int ret;
  1423. ret = intel_ring_begin(req, 2);
  1424. if (ret)
  1425. return ret;
  1426. intel_ring_emit(ring, MI_FLUSH);
  1427. intel_ring_emit(ring, MI_NOOP);
  1428. intel_ring_advance(ring);
  1429. return 0;
  1430. }
  1431. static int
  1432. i9xx_add_request(struct drm_i915_gem_request *req)
  1433. {
  1434. struct intel_engine_cs *ring = req->ring;
  1435. int ret;
  1436. ret = intel_ring_begin(req, 4);
  1437. if (ret)
  1438. return ret;
  1439. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1440. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1441. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1442. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1443. __intel_ring_advance(ring);
  1444. return 0;
  1445. }
  1446. static bool
  1447. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1448. {
  1449. struct drm_device *dev = ring->dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. unsigned long flags;
  1452. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1453. return false;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (ring->irq_refcount++ == 0) {
  1456. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1457. I915_WRITE_IMR(ring,
  1458. ~(ring->irq_enable_mask |
  1459. GT_PARITY_ERROR(dev)));
  1460. else
  1461. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1462. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1463. }
  1464. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1465. return true;
  1466. }
  1467. static void
  1468. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1469. {
  1470. struct drm_device *dev = ring->dev;
  1471. struct drm_i915_private *dev_priv = dev->dev_private;
  1472. unsigned long flags;
  1473. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1474. if (--ring->irq_refcount == 0) {
  1475. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1476. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1477. else
  1478. I915_WRITE_IMR(ring, ~0);
  1479. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1480. }
  1481. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1482. }
  1483. static bool
  1484. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1485. {
  1486. struct drm_device *dev = ring->dev;
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. unsigned long flags;
  1489. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1490. return false;
  1491. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1492. if (ring->irq_refcount++ == 0) {
  1493. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1494. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1495. }
  1496. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1497. return true;
  1498. }
  1499. static void
  1500. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1501. {
  1502. struct drm_device *dev = ring->dev;
  1503. struct drm_i915_private *dev_priv = dev->dev_private;
  1504. unsigned long flags;
  1505. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1506. if (--ring->irq_refcount == 0) {
  1507. I915_WRITE_IMR(ring, ~0);
  1508. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1509. }
  1510. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1511. }
  1512. static bool
  1513. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1514. {
  1515. struct drm_device *dev = ring->dev;
  1516. struct drm_i915_private *dev_priv = dev->dev_private;
  1517. unsigned long flags;
  1518. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1519. return false;
  1520. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1521. if (ring->irq_refcount++ == 0) {
  1522. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1523. I915_WRITE_IMR(ring,
  1524. ~(ring->irq_enable_mask |
  1525. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1526. } else {
  1527. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1528. }
  1529. POSTING_READ(RING_IMR(ring->mmio_base));
  1530. }
  1531. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1532. return true;
  1533. }
  1534. static void
  1535. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1536. {
  1537. struct drm_device *dev = ring->dev;
  1538. struct drm_i915_private *dev_priv = dev->dev_private;
  1539. unsigned long flags;
  1540. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1541. if (--ring->irq_refcount == 0) {
  1542. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1543. I915_WRITE_IMR(ring,
  1544. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1545. } else {
  1546. I915_WRITE_IMR(ring, ~0);
  1547. }
  1548. POSTING_READ(RING_IMR(ring->mmio_base));
  1549. }
  1550. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1551. }
  1552. static int
  1553. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1554. u64 offset, u32 length,
  1555. unsigned dispatch_flags)
  1556. {
  1557. struct intel_engine_cs *ring = req->ring;
  1558. int ret;
  1559. ret = intel_ring_begin(req, 2);
  1560. if (ret)
  1561. return ret;
  1562. intel_ring_emit(ring,
  1563. MI_BATCH_BUFFER_START |
  1564. MI_BATCH_GTT |
  1565. (dispatch_flags & I915_DISPATCH_SECURE ?
  1566. 0 : MI_BATCH_NON_SECURE_I965));
  1567. intel_ring_emit(ring, offset);
  1568. intel_ring_advance(ring);
  1569. return 0;
  1570. }
  1571. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1572. #define I830_BATCH_LIMIT (256*1024)
  1573. #define I830_TLB_ENTRIES (2)
  1574. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1575. static int
  1576. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1577. u64 offset, u32 len,
  1578. unsigned dispatch_flags)
  1579. {
  1580. struct intel_engine_cs *ring = req->ring;
  1581. u32 cs_offset = ring->scratch.gtt_offset;
  1582. int ret;
  1583. ret = intel_ring_begin(req, 6);
  1584. if (ret)
  1585. return ret;
  1586. /* Evict the invalid PTE TLBs */
  1587. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1588. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1589. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1590. intel_ring_emit(ring, cs_offset);
  1591. intel_ring_emit(ring, 0xdeadbeef);
  1592. intel_ring_emit(ring, MI_NOOP);
  1593. intel_ring_advance(ring);
  1594. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1595. if (len > I830_BATCH_LIMIT)
  1596. return -ENOSPC;
  1597. ret = intel_ring_begin(req, 6 + 2);
  1598. if (ret)
  1599. return ret;
  1600. /* Blit the batch (which has now all relocs applied) to the
  1601. * stable batch scratch bo area (so that the CS never
  1602. * stumbles over its tlb invalidation bug) ...
  1603. */
  1604. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1605. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1606. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1607. intel_ring_emit(ring, cs_offset);
  1608. intel_ring_emit(ring, 4096);
  1609. intel_ring_emit(ring, offset);
  1610. intel_ring_emit(ring, MI_FLUSH);
  1611. intel_ring_emit(ring, MI_NOOP);
  1612. intel_ring_advance(ring);
  1613. /* ... and execute it. */
  1614. offset = cs_offset;
  1615. }
  1616. ret = intel_ring_begin(req, 2);
  1617. if (ret)
  1618. return ret;
  1619. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1620. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1621. 0 : MI_BATCH_NON_SECURE));
  1622. intel_ring_advance(ring);
  1623. return 0;
  1624. }
  1625. static int
  1626. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1627. u64 offset, u32 len,
  1628. unsigned dispatch_flags)
  1629. {
  1630. struct intel_engine_cs *ring = req->ring;
  1631. int ret;
  1632. ret = intel_ring_begin(req, 2);
  1633. if (ret)
  1634. return ret;
  1635. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1636. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1637. 0 : MI_BATCH_NON_SECURE));
  1638. intel_ring_advance(ring);
  1639. return 0;
  1640. }
  1641. static void cleanup_phys_status_page(struct intel_engine_cs *ring)
  1642. {
  1643. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1644. if (!dev_priv->status_page_dmah)
  1645. return;
  1646. drm_pci_free(ring->dev, dev_priv->status_page_dmah);
  1647. ring->status_page.page_addr = NULL;
  1648. }
  1649. static void cleanup_status_page(struct intel_engine_cs *ring)
  1650. {
  1651. struct drm_i915_gem_object *obj;
  1652. obj = ring->status_page.obj;
  1653. if (obj == NULL)
  1654. return;
  1655. kunmap(sg_page(obj->pages->sgl));
  1656. i915_gem_object_ggtt_unpin(obj);
  1657. drm_gem_object_unreference(&obj->base);
  1658. ring->status_page.obj = NULL;
  1659. }
  1660. static int init_status_page(struct intel_engine_cs *ring)
  1661. {
  1662. struct drm_i915_gem_object *obj = ring->status_page.obj;
  1663. if (obj == NULL) {
  1664. unsigned flags;
  1665. int ret;
  1666. obj = i915_gem_alloc_object(ring->dev, 4096);
  1667. if (obj == NULL) {
  1668. DRM_ERROR("Failed to allocate status page\n");
  1669. return -ENOMEM;
  1670. }
  1671. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1672. if (ret)
  1673. goto err_unref;
  1674. flags = 0;
  1675. if (!HAS_LLC(ring->dev))
  1676. /* On g33, we cannot place HWS above 256MiB, so
  1677. * restrict its pinning to the low mappable arena.
  1678. * Though this restriction is not documented for
  1679. * gen4, gen5, or byt, they also behave similarly
  1680. * and hang if the HWS is placed at the top of the
  1681. * GTT. To generalise, it appears that all !llc
  1682. * platforms have issues with us placing the HWS
  1683. * above the mappable region (even though we never
  1684. * actualy map it).
  1685. */
  1686. flags |= PIN_MAPPABLE;
  1687. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1688. if (ret) {
  1689. err_unref:
  1690. drm_gem_object_unreference(&obj->base);
  1691. return ret;
  1692. }
  1693. ring->status_page.obj = obj;
  1694. }
  1695. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1696. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1697. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1698. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1699. ring->name, ring->status_page.gfx_addr);
  1700. return 0;
  1701. }
  1702. static int init_phys_status_page(struct intel_engine_cs *ring)
  1703. {
  1704. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1705. if (!dev_priv->status_page_dmah) {
  1706. dev_priv->status_page_dmah =
  1707. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1708. if (!dev_priv->status_page_dmah)
  1709. return -ENOMEM;
  1710. }
  1711. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1712. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1713. return 0;
  1714. }
  1715. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1716. {
  1717. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1718. vunmap(ringbuf->virtual_start);
  1719. else
  1720. iounmap(ringbuf->virtual_start);
  1721. ringbuf->virtual_start = NULL;
  1722. ringbuf->vma = NULL;
  1723. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1724. }
  1725. static u32 *vmap_obj(struct drm_i915_gem_object *obj)
  1726. {
  1727. struct sg_page_iter sg_iter;
  1728. struct page **pages;
  1729. void *addr;
  1730. int i;
  1731. pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
  1732. if (pages == NULL)
  1733. return NULL;
  1734. i = 0;
  1735. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
  1736. pages[i++] = sg_page_iter_page(&sg_iter);
  1737. addr = vmap(pages, i, 0, PAGE_KERNEL);
  1738. drm_free_large(pages);
  1739. return addr;
  1740. }
  1741. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1742. struct intel_ringbuffer *ringbuf)
  1743. {
  1744. struct drm_i915_private *dev_priv = to_i915(dev);
  1745. struct drm_i915_gem_object *obj = ringbuf->obj;
  1746. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1747. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1748. int ret;
  1749. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1750. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1751. if (ret)
  1752. return ret;
  1753. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1754. if (ret) {
  1755. i915_gem_object_ggtt_unpin(obj);
  1756. return ret;
  1757. }
  1758. ringbuf->virtual_start = vmap_obj(obj);
  1759. if (ringbuf->virtual_start == NULL) {
  1760. i915_gem_object_ggtt_unpin(obj);
  1761. return -ENOMEM;
  1762. }
  1763. } else {
  1764. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1765. flags | PIN_MAPPABLE);
  1766. if (ret)
  1767. return ret;
  1768. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1769. if (ret) {
  1770. i915_gem_object_ggtt_unpin(obj);
  1771. return ret;
  1772. }
  1773. /* Access through the GTT requires the device to be awake. */
  1774. assert_rpm_wakelock_held(dev_priv);
  1775. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1776. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1777. if (ringbuf->virtual_start == NULL) {
  1778. i915_gem_object_ggtt_unpin(obj);
  1779. return -EINVAL;
  1780. }
  1781. }
  1782. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1783. return 0;
  1784. }
  1785. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1786. {
  1787. drm_gem_object_unreference(&ringbuf->obj->base);
  1788. ringbuf->obj = NULL;
  1789. }
  1790. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1791. struct intel_ringbuffer *ringbuf)
  1792. {
  1793. struct drm_i915_gem_object *obj;
  1794. obj = NULL;
  1795. if (!HAS_LLC(dev))
  1796. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1797. if (obj == NULL)
  1798. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1799. if (obj == NULL)
  1800. return -ENOMEM;
  1801. /* mark ring buffers as read-only from GPU side by default */
  1802. obj->gt_ro = 1;
  1803. ringbuf->obj = obj;
  1804. return 0;
  1805. }
  1806. struct intel_ringbuffer *
  1807. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1808. {
  1809. struct intel_ringbuffer *ring;
  1810. int ret;
  1811. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1812. if (ring == NULL) {
  1813. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1814. engine->name);
  1815. return ERR_PTR(-ENOMEM);
  1816. }
  1817. ring->ring = engine;
  1818. list_add(&ring->link, &engine->buffers);
  1819. ring->size = size;
  1820. /* Workaround an erratum on the i830 which causes a hang if
  1821. * the TAIL pointer points to within the last 2 cachelines
  1822. * of the buffer.
  1823. */
  1824. ring->effective_size = size;
  1825. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1826. ring->effective_size -= 2 * CACHELINE_BYTES;
  1827. ring->last_retired_head = -1;
  1828. intel_ring_update_space(ring);
  1829. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1830. if (ret) {
  1831. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1832. engine->name, ret);
  1833. list_del(&ring->link);
  1834. kfree(ring);
  1835. return ERR_PTR(ret);
  1836. }
  1837. return ring;
  1838. }
  1839. void
  1840. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1841. {
  1842. intel_destroy_ringbuffer_obj(ring);
  1843. list_del(&ring->link);
  1844. kfree(ring);
  1845. }
  1846. static int intel_init_ring_buffer(struct drm_device *dev,
  1847. struct intel_engine_cs *ring)
  1848. {
  1849. struct intel_ringbuffer *ringbuf;
  1850. int ret;
  1851. WARN_ON(ring->buffer);
  1852. ring->dev = dev;
  1853. INIT_LIST_HEAD(&ring->active_list);
  1854. INIT_LIST_HEAD(&ring->request_list);
  1855. INIT_LIST_HEAD(&ring->execlist_queue);
  1856. INIT_LIST_HEAD(&ring->buffers);
  1857. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1858. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1859. init_waitqueue_head(&ring->irq_queue);
  1860. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1861. if (IS_ERR(ringbuf)) {
  1862. ret = PTR_ERR(ringbuf);
  1863. goto error;
  1864. }
  1865. ring->buffer = ringbuf;
  1866. if (I915_NEED_GFX_HWS(dev)) {
  1867. ret = init_status_page(ring);
  1868. if (ret)
  1869. goto error;
  1870. } else {
  1871. WARN_ON(ring->id != RCS);
  1872. ret = init_phys_status_page(ring);
  1873. if (ret)
  1874. goto error;
  1875. }
  1876. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1877. if (ret) {
  1878. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1879. ring->name, ret);
  1880. intel_destroy_ringbuffer_obj(ringbuf);
  1881. goto error;
  1882. }
  1883. ret = i915_cmd_parser_init_ring(ring);
  1884. if (ret)
  1885. goto error;
  1886. return 0;
  1887. error:
  1888. intel_cleanup_ring_buffer(ring);
  1889. return ret;
  1890. }
  1891. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1892. {
  1893. struct drm_i915_private *dev_priv;
  1894. if (!intel_ring_initialized(ring))
  1895. return;
  1896. dev_priv = to_i915(ring->dev);
  1897. if (ring->buffer) {
  1898. intel_stop_ring_buffer(ring);
  1899. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1900. intel_unpin_ringbuffer_obj(ring->buffer);
  1901. intel_ringbuffer_free(ring->buffer);
  1902. ring->buffer = NULL;
  1903. }
  1904. if (ring->cleanup)
  1905. ring->cleanup(ring);
  1906. if (I915_NEED_GFX_HWS(ring->dev)) {
  1907. cleanup_status_page(ring);
  1908. } else {
  1909. WARN_ON(ring->id != RCS);
  1910. cleanup_phys_status_page(ring);
  1911. }
  1912. i915_cmd_parser_fini_ring(ring);
  1913. i915_gem_batch_pool_fini(&ring->batch_pool);
  1914. ring->dev = NULL;
  1915. }
  1916. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1917. {
  1918. struct intel_ringbuffer *ringbuf = ring->buffer;
  1919. struct drm_i915_gem_request *request;
  1920. unsigned space;
  1921. int ret;
  1922. if (intel_ring_space(ringbuf) >= n)
  1923. return 0;
  1924. /* The whole point of reserving space is to not wait! */
  1925. WARN_ON(ringbuf->reserved_in_use);
  1926. list_for_each_entry(request, &ring->request_list, list) {
  1927. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1928. ringbuf->size);
  1929. if (space >= n)
  1930. break;
  1931. }
  1932. if (WARN_ON(&request->list == &ring->request_list))
  1933. return -ENOSPC;
  1934. ret = i915_wait_request(request);
  1935. if (ret)
  1936. return ret;
  1937. ringbuf->space = space;
  1938. return 0;
  1939. }
  1940. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1941. {
  1942. uint32_t __iomem *virt;
  1943. int rem = ringbuf->size - ringbuf->tail;
  1944. virt = ringbuf->virtual_start + ringbuf->tail;
  1945. rem /= 4;
  1946. while (rem--)
  1947. iowrite32(MI_NOOP, virt++);
  1948. ringbuf->tail = 0;
  1949. intel_ring_update_space(ringbuf);
  1950. }
  1951. int intel_ring_idle(struct intel_engine_cs *ring)
  1952. {
  1953. struct drm_i915_gem_request *req;
  1954. /* Wait upon the last request to be completed */
  1955. if (list_empty(&ring->request_list))
  1956. return 0;
  1957. req = list_entry(ring->request_list.prev,
  1958. struct drm_i915_gem_request,
  1959. list);
  1960. /* Make sure we do not trigger any retires */
  1961. return __i915_wait_request(req,
  1962. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1963. to_i915(ring->dev)->mm.interruptible,
  1964. NULL, NULL);
  1965. }
  1966. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1967. {
  1968. request->ringbuf = request->ring->buffer;
  1969. return 0;
  1970. }
  1971. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1972. {
  1973. /*
  1974. * The first call merely notes the reserve request and is common for
  1975. * all back ends. The subsequent localised _begin() call actually
  1976. * ensures that the reservation is available. Without the begin, if
  1977. * the request creator immediately submitted the request without
  1978. * adding any commands to it then there might not actually be
  1979. * sufficient room for the submission commands.
  1980. */
  1981. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1982. return intel_ring_begin(request, 0);
  1983. }
  1984. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1985. {
  1986. WARN_ON(ringbuf->reserved_size);
  1987. WARN_ON(ringbuf->reserved_in_use);
  1988. ringbuf->reserved_size = size;
  1989. }
  1990. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1991. {
  1992. WARN_ON(ringbuf->reserved_in_use);
  1993. ringbuf->reserved_size = 0;
  1994. ringbuf->reserved_in_use = false;
  1995. }
  1996. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1997. {
  1998. WARN_ON(ringbuf->reserved_in_use);
  1999. ringbuf->reserved_in_use = true;
  2000. ringbuf->reserved_tail = ringbuf->tail;
  2001. }
  2002. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  2003. {
  2004. WARN_ON(!ringbuf->reserved_in_use);
  2005. if (ringbuf->tail > ringbuf->reserved_tail) {
  2006. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  2007. "request reserved size too small: %d vs %d!\n",
  2008. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  2009. } else {
  2010. /*
  2011. * The ring was wrapped while the reserved space was in use.
  2012. * That means that some unknown amount of the ring tail was
  2013. * no-op filled and skipped. Thus simply adding the ring size
  2014. * to the tail and doing the above space check will not work.
  2015. * Rather than attempt to track how much tail was skipped,
  2016. * it is much simpler to say that also skipping the sanity
  2017. * check every once in a while is not a big issue.
  2018. */
  2019. }
  2020. ringbuf->reserved_size = 0;
  2021. ringbuf->reserved_in_use = false;
  2022. }
  2023. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  2024. {
  2025. struct intel_ringbuffer *ringbuf = ring->buffer;
  2026. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2027. int remain_actual = ringbuf->size - ringbuf->tail;
  2028. int ret, total_bytes, wait_bytes = 0;
  2029. bool need_wrap = false;
  2030. if (ringbuf->reserved_in_use)
  2031. total_bytes = bytes;
  2032. else
  2033. total_bytes = bytes + ringbuf->reserved_size;
  2034. if (unlikely(bytes > remain_usable)) {
  2035. /*
  2036. * Not enough space for the basic request. So need to flush
  2037. * out the remainder and then wait for base + reserved.
  2038. */
  2039. wait_bytes = remain_actual + total_bytes;
  2040. need_wrap = true;
  2041. } else {
  2042. if (unlikely(total_bytes > remain_usable)) {
  2043. /*
  2044. * The base request will fit but the reserved space
  2045. * falls off the end. So don't need an immediate wrap
  2046. * and only need to effectively wait for the reserved
  2047. * size space from the start of ringbuffer.
  2048. */
  2049. wait_bytes = remain_actual + ringbuf->reserved_size;
  2050. } else if (total_bytes > ringbuf->space) {
  2051. /* No wrapping required, just waiting. */
  2052. wait_bytes = total_bytes;
  2053. }
  2054. }
  2055. if (wait_bytes) {
  2056. ret = ring_wait_for_space(ring, wait_bytes);
  2057. if (unlikely(ret))
  2058. return ret;
  2059. if (need_wrap)
  2060. __wrap_ring_buffer(ringbuf);
  2061. }
  2062. return 0;
  2063. }
  2064. int intel_ring_begin(struct drm_i915_gem_request *req,
  2065. int num_dwords)
  2066. {
  2067. struct intel_engine_cs *ring;
  2068. struct drm_i915_private *dev_priv;
  2069. int ret;
  2070. WARN_ON(req == NULL);
  2071. ring = req->ring;
  2072. dev_priv = ring->dev->dev_private;
  2073. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  2074. dev_priv->mm.interruptible);
  2075. if (ret)
  2076. return ret;
  2077. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  2078. if (ret)
  2079. return ret;
  2080. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  2081. return 0;
  2082. }
  2083. /* Align the ring tail to a cacheline boundary */
  2084. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2085. {
  2086. struct intel_engine_cs *ring = req->ring;
  2087. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2088. int ret;
  2089. if (num_dwords == 0)
  2090. return 0;
  2091. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2092. ret = intel_ring_begin(req, num_dwords);
  2093. if (ret)
  2094. return ret;
  2095. while (num_dwords--)
  2096. intel_ring_emit(ring, MI_NOOP);
  2097. intel_ring_advance(ring);
  2098. return 0;
  2099. }
  2100. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  2101. {
  2102. struct drm_device *dev = ring->dev;
  2103. struct drm_i915_private *dev_priv = dev->dev_private;
  2104. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  2105. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  2106. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  2107. if (HAS_VEBOX(dev))
  2108. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  2109. }
  2110. ring->set_seqno(ring, seqno);
  2111. ring->hangcheck.seqno = seqno;
  2112. }
  2113. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  2114. u32 value)
  2115. {
  2116. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2117. /* Every tail move must follow the sequence below */
  2118. /* Disable notification that the ring is IDLE. The GT
  2119. * will then assume that it is busy and bring it out of rc6.
  2120. */
  2121. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2122. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2123. /* Clear the context id. Here be magic! */
  2124. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2125. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2126. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2127. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2128. 50))
  2129. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2130. /* Now that the ring is fully powered up, update the tail */
  2131. I915_WRITE_TAIL(ring, value);
  2132. POSTING_READ(RING_TAIL(ring->mmio_base));
  2133. /* Let the ring send IDLE messages to the GT again,
  2134. * and so let it sleep to conserve power when idle.
  2135. */
  2136. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2137. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2138. }
  2139. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2140. u32 invalidate, u32 flush)
  2141. {
  2142. struct intel_engine_cs *ring = req->ring;
  2143. uint32_t cmd;
  2144. int ret;
  2145. ret = intel_ring_begin(req, 4);
  2146. if (ret)
  2147. return ret;
  2148. cmd = MI_FLUSH_DW;
  2149. if (INTEL_INFO(ring->dev)->gen >= 8)
  2150. cmd += 1;
  2151. /* We always require a command barrier so that subsequent
  2152. * commands, such as breadcrumb interrupts, are strictly ordered
  2153. * wrt the contents of the write cache being flushed to memory
  2154. * (and thus being coherent from the CPU).
  2155. */
  2156. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2157. /*
  2158. * Bspec vol 1c.5 - video engine command streamer:
  2159. * "If ENABLED, all TLBs will be invalidated once the flush
  2160. * operation is complete. This bit is only valid when the
  2161. * Post-Sync Operation field is a value of 1h or 3h."
  2162. */
  2163. if (invalidate & I915_GEM_GPU_DOMAINS)
  2164. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2165. intel_ring_emit(ring, cmd);
  2166. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2167. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2168. intel_ring_emit(ring, 0); /* upper addr */
  2169. intel_ring_emit(ring, 0); /* value */
  2170. } else {
  2171. intel_ring_emit(ring, 0);
  2172. intel_ring_emit(ring, MI_NOOP);
  2173. }
  2174. intel_ring_advance(ring);
  2175. return 0;
  2176. }
  2177. static int
  2178. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2179. u64 offset, u32 len,
  2180. unsigned dispatch_flags)
  2181. {
  2182. struct intel_engine_cs *ring = req->ring;
  2183. bool ppgtt = USES_PPGTT(ring->dev) &&
  2184. !(dispatch_flags & I915_DISPATCH_SECURE);
  2185. int ret;
  2186. ret = intel_ring_begin(req, 4);
  2187. if (ret)
  2188. return ret;
  2189. /* FIXME(BDW): Address space and security selectors. */
  2190. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2191. (dispatch_flags & I915_DISPATCH_RS ?
  2192. MI_BATCH_RESOURCE_STREAMER : 0));
  2193. intel_ring_emit(ring, lower_32_bits(offset));
  2194. intel_ring_emit(ring, upper_32_bits(offset));
  2195. intel_ring_emit(ring, MI_NOOP);
  2196. intel_ring_advance(ring);
  2197. return 0;
  2198. }
  2199. static int
  2200. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2201. u64 offset, u32 len,
  2202. unsigned dispatch_flags)
  2203. {
  2204. struct intel_engine_cs *ring = req->ring;
  2205. int ret;
  2206. ret = intel_ring_begin(req, 2);
  2207. if (ret)
  2208. return ret;
  2209. intel_ring_emit(ring,
  2210. MI_BATCH_BUFFER_START |
  2211. (dispatch_flags & I915_DISPATCH_SECURE ?
  2212. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2213. (dispatch_flags & I915_DISPATCH_RS ?
  2214. MI_BATCH_RESOURCE_STREAMER : 0));
  2215. /* bit0-7 is the length on GEN6+ */
  2216. intel_ring_emit(ring, offset);
  2217. intel_ring_advance(ring);
  2218. return 0;
  2219. }
  2220. static int
  2221. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2222. u64 offset, u32 len,
  2223. unsigned dispatch_flags)
  2224. {
  2225. struct intel_engine_cs *ring = req->ring;
  2226. int ret;
  2227. ret = intel_ring_begin(req, 2);
  2228. if (ret)
  2229. return ret;
  2230. intel_ring_emit(ring,
  2231. MI_BATCH_BUFFER_START |
  2232. (dispatch_flags & I915_DISPATCH_SECURE ?
  2233. 0 : MI_BATCH_NON_SECURE_I965));
  2234. /* bit0-7 is the length on GEN6+ */
  2235. intel_ring_emit(ring, offset);
  2236. intel_ring_advance(ring);
  2237. return 0;
  2238. }
  2239. /* Blitter support (SandyBridge+) */
  2240. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2241. u32 invalidate, u32 flush)
  2242. {
  2243. struct intel_engine_cs *ring = req->ring;
  2244. struct drm_device *dev = ring->dev;
  2245. uint32_t cmd;
  2246. int ret;
  2247. ret = intel_ring_begin(req, 4);
  2248. if (ret)
  2249. return ret;
  2250. cmd = MI_FLUSH_DW;
  2251. if (INTEL_INFO(dev)->gen >= 8)
  2252. cmd += 1;
  2253. /* We always require a command barrier so that subsequent
  2254. * commands, such as breadcrumb interrupts, are strictly ordered
  2255. * wrt the contents of the write cache being flushed to memory
  2256. * (and thus being coherent from the CPU).
  2257. */
  2258. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2259. /*
  2260. * Bspec vol 1c.3 - blitter engine command streamer:
  2261. * "If ENABLED, all TLBs will be invalidated once the flush
  2262. * operation is complete. This bit is only valid when the
  2263. * Post-Sync Operation field is a value of 1h or 3h."
  2264. */
  2265. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2266. cmd |= MI_INVALIDATE_TLB;
  2267. intel_ring_emit(ring, cmd);
  2268. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2269. if (INTEL_INFO(dev)->gen >= 8) {
  2270. intel_ring_emit(ring, 0); /* upper addr */
  2271. intel_ring_emit(ring, 0); /* value */
  2272. } else {
  2273. intel_ring_emit(ring, 0);
  2274. intel_ring_emit(ring, MI_NOOP);
  2275. }
  2276. intel_ring_advance(ring);
  2277. return 0;
  2278. }
  2279. int intel_init_render_ring_buffer(struct drm_device *dev)
  2280. {
  2281. struct drm_i915_private *dev_priv = dev->dev_private;
  2282. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2283. struct drm_i915_gem_object *obj;
  2284. int ret;
  2285. ring->name = "render ring";
  2286. ring->id = RCS;
  2287. ring->exec_id = I915_EXEC_RENDER;
  2288. ring->mmio_base = RENDER_RING_BASE;
  2289. if (INTEL_INFO(dev)->gen >= 8) {
  2290. if (i915_semaphore_is_enabled(dev)) {
  2291. obj = i915_gem_alloc_object(dev, 4096);
  2292. if (obj == NULL) {
  2293. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2294. i915.semaphores = 0;
  2295. } else {
  2296. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2297. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2298. if (ret != 0) {
  2299. drm_gem_object_unreference(&obj->base);
  2300. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2301. i915.semaphores = 0;
  2302. } else
  2303. dev_priv->semaphore_obj = obj;
  2304. }
  2305. }
  2306. ring->init_context = intel_rcs_ctx_init;
  2307. ring->add_request = gen6_add_request;
  2308. ring->flush = gen8_render_ring_flush;
  2309. ring->irq_get = gen8_ring_get_irq;
  2310. ring->irq_put = gen8_ring_put_irq;
  2311. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2312. ring->get_seqno = gen6_ring_get_seqno;
  2313. ring->set_seqno = ring_set_seqno;
  2314. if (i915_semaphore_is_enabled(dev)) {
  2315. WARN_ON(!dev_priv->semaphore_obj);
  2316. ring->semaphore.sync_to = gen8_ring_sync;
  2317. ring->semaphore.signal = gen8_rcs_signal;
  2318. GEN8_RING_SEMAPHORE_INIT;
  2319. }
  2320. } else if (INTEL_INFO(dev)->gen >= 6) {
  2321. ring->init_context = intel_rcs_ctx_init;
  2322. ring->add_request = gen6_add_request;
  2323. ring->flush = gen7_render_ring_flush;
  2324. if (INTEL_INFO(dev)->gen == 6)
  2325. ring->flush = gen6_render_ring_flush;
  2326. ring->irq_get = gen6_ring_get_irq;
  2327. ring->irq_put = gen6_ring_put_irq;
  2328. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2329. ring->get_seqno = gen6_ring_get_seqno;
  2330. ring->set_seqno = ring_set_seqno;
  2331. if (i915_semaphore_is_enabled(dev)) {
  2332. ring->semaphore.sync_to = gen6_ring_sync;
  2333. ring->semaphore.signal = gen6_signal;
  2334. /*
  2335. * The current semaphore is only applied on pre-gen8
  2336. * platform. And there is no VCS2 ring on the pre-gen8
  2337. * platform. So the semaphore between RCS and VCS2 is
  2338. * initialized as INVALID. Gen8 will initialize the
  2339. * sema between VCS2 and RCS later.
  2340. */
  2341. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2342. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2343. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2344. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2345. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2346. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2347. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2348. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2349. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2350. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2351. }
  2352. } else if (IS_GEN5(dev)) {
  2353. ring->add_request = pc_render_add_request;
  2354. ring->flush = gen4_render_ring_flush;
  2355. ring->get_seqno = pc_render_get_seqno;
  2356. ring->set_seqno = pc_render_set_seqno;
  2357. ring->irq_get = gen5_ring_get_irq;
  2358. ring->irq_put = gen5_ring_put_irq;
  2359. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2360. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2361. } else {
  2362. ring->add_request = i9xx_add_request;
  2363. if (INTEL_INFO(dev)->gen < 4)
  2364. ring->flush = gen2_render_ring_flush;
  2365. else
  2366. ring->flush = gen4_render_ring_flush;
  2367. ring->get_seqno = ring_get_seqno;
  2368. ring->set_seqno = ring_set_seqno;
  2369. if (IS_GEN2(dev)) {
  2370. ring->irq_get = i8xx_ring_get_irq;
  2371. ring->irq_put = i8xx_ring_put_irq;
  2372. } else {
  2373. ring->irq_get = i9xx_ring_get_irq;
  2374. ring->irq_put = i9xx_ring_put_irq;
  2375. }
  2376. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2377. }
  2378. ring->write_tail = ring_write_tail;
  2379. if (IS_HASWELL(dev))
  2380. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2381. else if (IS_GEN8(dev))
  2382. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2383. else if (INTEL_INFO(dev)->gen >= 6)
  2384. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2385. else if (INTEL_INFO(dev)->gen >= 4)
  2386. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2387. else if (IS_I830(dev) || IS_845G(dev))
  2388. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2389. else
  2390. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2391. ring->init_hw = init_render_ring;
  2392. ring->cleanup = render_ring_cleanup;
  2393. /* Workaround batchbuffer to combat CS tlb bug. */
  2394. if (HAS_BROKEN_CS_TLB(dev)) {
  2395. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2396. if (obj == NULL) {
  2397. DRM_ERROR("Failed to allocate batch bo\n");
  2398. return -ENOMEM;
  2399. }
  2400. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2401. if (ret != 0) {
  2402. drm_gem_object_unreference(&obj->base);
  2403. DRM_ERROR("Failed to ping batch bo\n");
  2404. return ret;
  2405. }
  2406. ring->scratch.obj = obj;
  2407. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2408. }
  2409. ret = intel_init_ring_buffer(dev, ring);
  2410. if (ret)
  2411. return ret;
  2412. if (INTEL_INFO(dev)->gen >= 5) {
  2413. ret = intel_init_pipe_control(ring);
  2414. if (ret)
  2415. return ret;
  2416. }
  2417. return 0;
  2418. }
  2419. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2420. {
  2421. struct drm_i915_private *dev_priv = dev->dev_private;
  2422. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2423. ring->name = "bsd ring";
  2424. ring->id = VCS;
  2425. ring->exec_id = I915_EXEC_BSD;
  2426. ring->write_tail = ring_write_tail;
  2427. if (INTEL_INFO(dev)->gen >= 6) {
  2428. ring->mmio_base = GEN6_BSD_RING_BASE;
  2429. /* gen6 bsd needs a special wa for tail updates */
  2430. if (IS_GEN6(dev))
  2431. ring->write_tail = gen6_bsd_ring_write_tail;
  2432. ring->flush = gen6_bsd_ring_flush;
  2433. ring->add_request = gen6_add_request;
  2434. ring->get_seqno = gen6_ring_get_seqno;
  2435. ring->set_seqno = ring_set_seqno;
  2436. if (INTEL_INFO(dev)->gen >= 8) {
  2437. ring->irq_enable_mask =
  2438. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2439. ring->irq_get = gen8_ring_get_irq;
  2440. ring->irq_put = gen8_ring_put_irq;
  2441. ring->dispatch_execbuffer =
  2442. gen8_ring_dispatch_execbuffer;
  2443. if (i915_semaphore_is_enabled(dev)) {
  2444. ring->semaphore.sync_to = gen8_ring_sync;
  2445. ring->semaphore.signal = gen8_xcs_signal;
  2446. GEN8_RING_SEMAPHORE_INIT;
  2447. }
  2448. } else {
  2449. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2450. ring->irq_get = gen6_ring_get_irq;
  2451. ring->irq_put = gen6_ring_put_irq;
  2452. ring->dispatch_execbuffer =
  2453. gen6_ring_dispatch_execbuffer;
  2454. if (i915_semaphore_is_enabled(dev)) {
  2455. ring->semaphore.sync_to = gen6_ring_sync;
  2456. ring->semaphore.signal = gen6_signal;
  2457. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2458. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2459. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2460. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2461. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2462. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2463. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2464. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2465. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2466. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2467. }
  2468. }
  2469. } else {
  2470. ring->mmio_base = BSD_RING_BASE;
  2471. ring->flush = bsd_ring_flush;
  2472. ring->add_request = i9xx_add_request;
  2473. ring->get_seqno = ring_get_seqno;
  2474. ring->set_seqno = ring_set_seqno;
  2475. if (IS_GEN5(dev)) {
  2476. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2477. ring->irq_get = gen5_ring_get_irq;
  2478. ring->irq_put = gen5_ring_put_irq;
  2479. } else {
  2480. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2481. ring->irq_get = i9xx_ring_get_irq;
  2482. ring->irq_put = i9xx_ring_put_irq;
  2483. }
  2484. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2485. }
  2486. ring->init_hw = init_ring_common;
  2487. return intel_init_ring_buffer(dev, ring);
  2488. }
  2489. /**
  2490. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2491. */
  2492. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2493. {
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2496. ring->name = "bsd2 ring";
  2497. ring->id = VCS2;
  2498. ring->exec_id = I915_EXEC_BSD;
  2499. ring->write_tail = ring_write_tail;
  2500. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2501. ring->flush = gen6_bsd_ring_flush;
  2502. ring->add_request = gen6_add_request;
  2503. ring->get_seqno = gen6_ring_get_seqno;
  2504. ring->set_seqno = ring_set_seqno;
  2505. ring->irq_enable_mask =
  2506. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2507. ring->irq_get = gen8_ring_get_irq;
  2508. ring->irq_put = gen8_ring_put_irq;
  2509. ring->dispatch_execbuffer =
  2510. gen8_ring_dispatch_execbuffer;
  2511. if (i915_semaphore_is_enabled(dev)) {
  2512. ring->semaphore.sync_to = gen8_ring_sync;
  2513. ring->semaphore.signal = gen8_xcs_signal;
  2514. GEN8_RING_SEMAPHORE_INIT;
  2515. }
  2516. ring->init_hw = init_ring_common;
  2517. return intel_init_ring_buffer(dev, ring);
  2518. }
  2519. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2520. {
  2521. struct drm_i915_private *dev_priv = dev->dev_private;
  2522. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2523. ring->name = "blitter ring";
  2524. ring->id = BCS;
  2525. ring->exec_id = I915_EXEC_BLT;
  2526. ring->mmio_base = BLT_RING_BASE;
  2527. ring->write_tail = ring_write_tail;
  2528. ring->flush = gen6_ring_flush;
  2529. ring->add_request = gen6_add_request;
  2530. ring->get_seqno = gen6_ring_get_seqno;
  2531. ring->set_seqno = ring_set_seqno;
  2532. if (INTEL_INFO(dev)->gen >= 8) {
  2533. ring->irq_enable_mask =
  2534. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2535. ring->irq_get = gen8_ring_get_irq;
  2536. ring->irq_put = gen8_ring_put_irq;
  2537. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2538. if (i915_semaphore_is_enabled(dev)) {
  2539. ring->semaphore.sync_to = gen8_ring_sync;
  2540. ring->semaphore.signal = gen8_xcs_signal;
  2541. GEN8_RING_SEMAPHORE_INIT;
  2542. }
  2543. } else {
  2544. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2545. ring->irq_get = gen6_ring_get_irq;
  2546. ring->irq_put = gen6_ring_put_irq;
  2547. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2548. if (i915_semaphore_is_enabled(dev)) {
  2549. ring->semaphore.signal = gen6_signal;
  2550. ring->semaphore.sync_to = gen6_ring_sync;
  2551. /*
  2552. * The current semaphore is only applied on pre-gen8
  2553. * platform. And there is no VCS2 ring on the pre-gen8
  2554. * platform. So the semaphore between BCS and VCS2 is
  2555. * initialized as INVALID. Gen8 will initialize the
  2556. * sema between BCS and VCS2 later.
  2557. */
  2558. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2559. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2560. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2561. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2562. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2563. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2564. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2565. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2566. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2567. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2568. }
  2569. }
  2570. ring->init_hw = init_ring_common;
  2571. return intel_init_ring_buffer(dev, ring);
  2572. }
  2573. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2574. {
  2575. struct drm_i915_private *dev_priv = dev->dev_private;
  2576. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2577. ring->name = "video enhancement ring";
  2578. ring->id = VECS;
  2579. ring->exec_id = I915_EXEC_VEBOX;
  2580. ring->mmio_base = VEBOX_RING_BASE;
  2581. ring->write_tail = ring_write_tail;
  2582. ring->flush = gen6_ring_flush;
  2583. ring->add_request = gen6_add_request;
  2584. ring->get_seqno = gen6_ring_get_seqno;
  2585. ring->set_seqno = ring_set_seqno;
  2586. if (INTEL_INFO(dev)->gen >= 8) {
  2587. ring->irq_enable_mask =
  2588. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2589. ring->irq_get = gen8_ring_get_irq;
  2590. ring->irq_put = gen8_ring_put_irq;
  2591. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2592. if (i915_semaphore_is_enabled(dev)) {
  2593. ring->semaphore.sync_to = gen8_ring_sync;
  2594. ring->semaphore.signal = gen8_xcs_signal;
  2595. GEN8_RING_SEMAPHORE_INIT;
  2596. }
  2597. } else {
  2598. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2599. ring->irq_get = hsw_vebox_get_irq;
  2600. ring->irq_put = hsw_vebox_put_irq;
  2601. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2602. if (i915_semaphore_is_enabled(dev)) {
  2603. ring->semaphore.sync_to = gen6_ring_sync;
  2604. ring->semaphore.signal = gen6_signal;
  2605. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2606. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2607. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2608. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2609. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2610. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2611. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2612. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2613. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2614. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2615. }
  2616. }
  2617. ring->init_hw = init_ring_common;
  2618. return intel_init_ring_buffer(dev, ring);
  2619. }
  2620. int
  2621. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2622. {
  2623. struct intel_engine_cs *ring = req->ring;
  2624. int ret;
  2625. if (!ring->gpu_caches_dirty)
  2626. return 0;
  2627. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2628. if (ret)
  2629. return ret;
  2630. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2631. ring->gpu_caches_dirty = false;
  2632. return 0;
  2633. }
  2634. int
  2635. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2636. {
  2637. struct intel_engine_cs *ring = req->ring;
  2638. uint32_t flush_domains;
  2639. int ret;
  2640. flush_domains = 0;
  2641. if (ring->gpu_caches_dirty)
  2642. flush_domains = I915_GEM_GPU_DOMAINS;
  2643. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2644. if (ret)
  2645. return ret;
  2646. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2647. ring->gpu_caches_dirty = false;
  2648. return 0;
  2649. }
  2650. void
  2651. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2652. {
  2653. int ret;
  2654. if (!intel_ring_initialized(ring))
  2655. return;
  2656. ret = intel_ring_idle(ring);
  2657. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2658. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2659. ring->name, ret);
  2660. stop_ring(ring);
  2661. }