tcp_input.c 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. #include <trace/events/tcp.h>
  77. #include <linux/static_key.h>
  78. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  79. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  80. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  81. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  82. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  83. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  84. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  85. #define FLAG_ECE 0x40 /* ECE in this ACK */
  86. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  87. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  88. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  89. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  90. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  91. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  92. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  93. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  94. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  95. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  96. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  97. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  98. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  99. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  100. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  101. #define REXMIT_NONE 0 /* no loss recovery to do */
  102. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  103. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  104. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  105. unsigned int len)
  106. {
  107. static bool __once __read_mostly;
  108. if (!__once) {
  109. struct net_device *dev;
  110. __once = true;
  111. rcu_read_lock();
  112. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  113. if (!dev || len >= dev->mtu)
  114. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  115. dev ? dev->name : "Unknown driver");
  116. rcu_read_unlock();
  117. }
  118. }
  119. /* Adapt the MSS value used to make delayed ack decision to the
  120. * real world.
  121. */
  122. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  123. {
  124. struct inet_connection_sock *icsk = inet_csk(sk);
  125. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  126. unsigned int len;
  127. icsk->icsk_ack.last_seg_size = 0;
  128. /* skb->len may jitter because of SACKs, even if peer
  129. * sends good full-sized frames.
  130. */
  131. len = skb_shinfo(skb)->gso_size ? : skb->len;
  132. if (len >= icsk->icsk_ack.rcv_mss) {
  133. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  134. tcp_sk(sk)->advmss);
  135. /* Account for possibly-removed options */
  136. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  137. MAX_TCP_OPTION_SPACE))
  138. tcp_gro_dev_warn(sk, skb, len);
  139. } else {
  140. /* Otherwise, we make more careful check taking into account,
  141. * that SACKs block is variable.
  142. *
  143. * "len" is invariant segment length, including TCP header.
  144. */
  145. len += skb->data - skb_transport_header(skb);
  146. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  147. /* If PSH is not set, packet should be
  148. * full sized, provided peer TCP is not badly broken.
  149. * This observation (if it is correct 8)) allows
  150. * to handle super-low mtu links fairly.
  151. */
  152. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  153. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  154. /* Subtract also invariant (if peer is RFC compliant),
  155. * tcp header plus fixed timestamp option length.
  156. * Resulting "len" is MSS free of SACK jitter.
  157. */
  158. len -= tcp_sk(sk)->tcp_header_len;
  159. icsk->icsk_ack.last_seg_size = len;
  160. if (len == lss) {
  161. icsk->icsk_ack.rcv_mss = len;
  162. return;
  163. }
  164. }
  165. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  166. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  167. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  168. }
  169. }
  170. static void tcp_incr_quickack(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  174. if (quickacks == 0)
  175. quickacks = 2;
  176. if (quickacks > icsk->icsk_ack.quick)
  177. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  178. }
  179. static void tcp_enter_quickack_mode(struct sock *sk)
  180. {
  181. struct inet_connection_sock *icsk = inet_csk(sk);
  182. tcp_incr_quickack(sk);
  183. icsk->icsk_ack.pingpong = 0;
  184. icsk->icsk_ack.ato = TCP_ATO_MIN;
  185. }
  186. /* Send ACKs quickly, if "quick" count is not exhausted
  187. * and the session is not interactive.
  188. */
  189. static bool tcp_in_quickack_mode(struct sock *sk)
  190. {
  191. const struct inet_connection_sock *icsk = inet_csk(sk);
  192. const struct dst_entry *dst = __sk_dst_get(sk);
  193. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  194. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  195. }
  196. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  197. {
  198. if (tp->ecn_flags & TCP_ECN_OK)
  199. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  200. }
  201. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (tcp_hdr(skb)->cwr)
  204. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  205. }
  206. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  207. {
  208. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  209. }
  210. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  211. {
  212. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  213. case INET_ECN_NOT_ECT:
  214. /* Funny extension: if ECT is not set on a segment,
  215. * and we already seen ECT on a previous segment,
  216. * it is probably a retransmit.
  217. */
  218. if (tp->ecn_flags & TCP_ECN_SEEN)
  219. tcp_enter_quickack_mode((struct sock *)tp);
  220. break;
  221. case INET_ECN_CE:
  222. if (tcp_ca_needs_ecn((struct sock *)tp))
  223. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  224. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  225. /* Better not delay acks, sender can have a very low cwnd */
  226. tcp_enter_quickack_mode((struct sock *)tp);
  227. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  228. }
  229. tp->ecn_flags |= TCP_ECN_SEEN;
  230. break;
  231. default:
  232. if (tcp_ca_needs_ecn((struct sock *)tp))
  233. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  234. tp->ecn_flags |= TCP_ECN_SEEN;
  235. break;
  236. }
  237. }
  238. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  239. {
  240. if (tp->ecn_flags & TCP_ECN_OK)
  241. __tcp_ecn_check_ce(tp, skb);
  242. }
  243. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  244. {
  245. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  246. tp->ecn_flags &= ~TCP_ECN_OK;
  247. }
  248. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  249. {
  250. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  251. tp->ecn_flags &= ~TCP_ECN_OK;
  252. }
  253. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  254. {
  255. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  256. return true;
  257. return false;
  258. }
  259. /* Buffer size and advertised window tuning.
  260. *
  261. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  262. */
  263. static void tcp_sndbuf_expand(struct sock *sk)
  264. {
  265. const struct tcp_sock *tp = tcp_sk(sk);
  266. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  267. int sndmem, per_mss;
  268. u32 nr_segs;
  269. /* Worst case is non GSO/TSO : each frame consumes one skb
  270. * and skb->head is kmalloced using power of two area of memory
  271. */
  272. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  273. MAX_TCP_HEADER +
  274. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  275. per_mss = roundup_pow_of_two(per_mss) +
  276. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  277. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  278. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  279. /* Fast Recovery (RFC 5681 3.2) :
  280. * Cubic needs 1.7 factor, rounded to 2 to include
  281. * extra cushion (application might react slowly to POLLOUT)
  282. */
  283. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  284. sndmem *= nr_segs * per_mss;
  285. if (sk->sk_sndbuf < sndmem)
  286. sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
  287. }
  288. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  289. *
  290. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  291. * forward and advertised in receiver window (tp->rcv_wnd) and
  292. * "application buffer", required to isolate scheduling/application
  293. * latencies from network.
  294. * window_clamp is maximal advertised window. It can be less than
  295. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  296. * is reserved for "application" buffer. The less window_clamp is
  297. * the smoother our behaviour from viewpoint of network, but the lower
  298. * throughput and the higher sensitivity of the connection to losses. 8)
  299. *
  300. * rcv_ssthresh is more strict window_clamp used at "slow start"
  301. * phase to predict further behaviour of this connection.
  302. * It is used for two goals:
  303. * - to enforce header prediction at sender, even when application
  304. * requires some significant "application buffer". It is check #1.
  305. * - to prevent pruning of receive queue because of misprediction
  306. * of receiver window. Check #2.
  307. *
  308. * The scheme does not work when sender sends good segments opening
  309. * window and then starts to feed us spaghetti. But it should work
  310. * in common situations. Otherwise, we have to rely on queue collapsing.
  311. */
  312. /* Slow part of check#2. */
  313. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. /* Optimize this! */
  317. int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
  318. int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
  319. while (tp->rcv_ssthresh <= window) {
  320. if (truesize <= skb->len)
  321. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  322. truesize >>= 1;
  323. window >>= 1;
  324. }
  325. return 0;
  326. }
  327. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. /* Check #1 */
  331. if (tp->rcv_ssthresh < tp->window_clamp &&
  332. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  333. !tcp_under_memory_pressure(sk)) {
  334. int incr;
  335. /* Check #2. Increase window, if skb with such overhead
  336. * will fit to rcvbuf in future.
  337. */
  338. if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
  339. incr = 2 * tp->advmss;
  340. else
  341. incr = __tcp_grow_window(sk, skb);
  342. if (incr) {
  343. incr = max_t(int, incr, 2 * skb->len);
  344. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  345. tp->window_clamp);
  346. inet_csk(sk)->icsk_ack.quick |= 1;
  347. }
  348. }
  349. }
  350. /* 3. Tuning rcvbuf, when connection enters established state. */
  351. static void tcp_fixup_rcvbuf(struct sock *sk)
  352. {
  353. u32 mss = tcp_sk(sk)->advmss;
  354. int rcvmem;
  355. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  356. tcp_default_init_rwnd(mss);
  357. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  358. * Allow enough cushion so that sender is not limited by our window
  359. */
  360. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
  361. rcvmem <<= 2;
  362. if (sk->sk_rcvbuf < rcvmem)
  363. sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  364. }
  365. /* 4. Try to fixup all. It is made immediately after connection enters
  366. * established state.
  367. */
  368. void tcp_init_buffer_space(struct sock *sk)
  369. {
  370. int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
  371. struct tcp_sock *tp = tcp_sk(sk);
  372. int maxwin;
  373. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  374. tcp_fixup_rcvbuf(sk);
  375. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  376. tcp_sndbuf_expand(sk);
  377. tp->rcvq_space.space = tp->rcv_wnd;
  378. tcp_mstamp_refresh(tp);
  379. tp->rcvq_space.time = tp->tcp_mstamp;
  380. tp->rcvq_space.seq = tp->copied_seq;
  381. maxwin = tcp_full_space(sk);
  382. if (tp->window_clamp >= maxwin) {
  383. tp->window_clamp = maxwin;
  384. if (tcp_app_win && maxwin > 4 * tp->advmss)
  385. tp->window_clamp = max(maxwin -
  386. (maxwin >> tcp_app_win),
  387. 4 * tp->advmss);
  388. }
  389. /* Force reservation of one segment. */
  390. if (tcp_app_win &&
  391. tp->window_clamp > 2 * tp->advmss &&
  392. tp->window_clamp + tp->advmss > maxwin)
  393. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  394. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  395. tp->snd_cwnd_stamp = tcp_jiffies32;
  396. }
  397. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  398. static void tcp_clamp_window(struct sock *sk)
  399. {
  400. struct tcp_sock *tp = tcp_sk(sk);
  401. struct inet_connection_sock *icsk = inet_csk(sk);
  402. struct net *net = sock_net(sk);
  403. icsk->icsk_ack.quick = 0;
  404. if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
  405. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  406. !tcp_under_memory_pressure(sk) &&
  407. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  408. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  409. net->ipv4.sysctl_tcp_rmem[2]);
  410. }
  411. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  412. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  413. }
  414. /* Initialize RCV_MSS value.
  415. * RCV_MSS is an our guess about MSS used by the peer.
  416. * We haven't any direct information about the MSS.
  417. * It's better to underestimate the RCV_MSS rather than overestimate.
  418. * Overestimations make us ACKing less frequently than needed.
  419. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  420. */
  421. void tcp_initialize_rcv_mss(struct sock *sk)
  422. {
  423. const struct tcp_sock *tp = tcp_sk(sk);
  424. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  425. hint = min(hint, tp->rcv_wnd / 2);
  426. hint = min(hint, TCP_MSS_DEFAULT);
  427. hint = max(hint, TCP_MIN_MSS);
  428. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  429. }
  430. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  431. /* Receiver "autotuning" code.
  432. *
  433. * The algorithm for RTT estimation w/o timestamps is based on
  434. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  435. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  436. *
  437. * More detail on this code can be found at
  438. * <http://staff.psc.edu/jheffner/>,
  439. * though this reference is out of date. A new paper
  440. * is pending.
  441. */
  442. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  443. {
  444. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  445. long m = sample;
  446. if (m == 0)
  447. m = 1;
  448. if (new_sample != 0) {
  449. /* If we sample in larger samples in the non-timestamp
  450. * case, we could grossly overestimate the RTT especially
  451. * with chatty applications or bulk transfer apps which
  452. * are stalled on filesystem I/O.
  453. *
  454. * Also, since we are only going for a minimum in the
  455. * non-timestamp case, we do not smooth things out
  456. * else with timestamps disabled convergence takes too
  457. * long.
  458. */
  459. if (!win_dep) {
  460. m -= (new_sample >> 3);
  461. new_sample += m;
  462. } else {
  463. m <<= 3;
  464. if (m < new_sample)
  465. new_sample = m;
  466. }
  467. } else {
  468. /* No previous measure. */
  469. new_sample = m << 3;
  470. }
  471. tp->rcv_rtt_est.rtt_us = new_sample;
  472. }
  473. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  474. {
  475. u32 delta_us;
  476. if (tp->rcv_rtt_est.time == 0)
  477. goto new_measure;
  478. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  479. return;
  480. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  481. tcp_rcv_rtt_update(tp, delta_us, 1);
  482. new_measure:
  483. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  484. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  485. }
  486. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  487. const struct sk_buff *skb)
  488. {
  489. struct tcp_sock *tp = tcp_sk(sk);
  490. if (tp->rx_opt.rcv_tsecr &&
  491. (TCP_SKB_CB(skb)->end_seq -
  492. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  493. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  494. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  495. tcp_rcv_rtt_update(tp, delta_us, 0);
  496. }
  497. }
  498. /*
  499. * This function should be called every time data is copied to user space.
  500. * It calculates the appropriate TCP receive buffer space.
  501. */
  502. void tcp_rcv_space_adjust(struct sock *sk)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. int time;
  506. int copied;
  507. tcp_mstamp_refresh(tp);
  508. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  509. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  510. return;
  511. /* Number of bytes copied to user in last RTT */
  512. copied = tp->copied_seq - tp->rcvq_space.seq;
  513. if (copied <= tp->rcvq_space.space)
  514. goto new_measure;
  515. /* A bit of theory :
  516. * copied = bytes received in previous RTT, our base window
  517. * To cope with packet losses, we need a 2x factor
  518. * To cope with slow start, and sender growing its cwin by 100 %
  519. * every RTT, we need a 4x factor, because the ACK we are sending
  520. * now is for the next RTT, not the current one :
  521. * <prev RTT . ><current RTT .. ><next RTT .... >
  522. */
  523. if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
  524. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  525. int rcvwin, rcvmem, rcvbuf;
  526. /* minimal window to cope with packet losses, assuming
  527. * steady state. Add some cushion because of small variations.
  528. */
  529. rcvwin = (copied << 1) + 16 * tp->advmss;
  530. /* If rate increased by 25%,
  531. * assume slow start, rcvwin = 3 * copied
  532. * If rate increased by 50%,
  533. * assume sender can use 2x growth, rcvwin = 4 * copied
  534. */
  535. if (copied >=
  536. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  537. if (copied >=
  538. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  539. rcvwin <<= 1;
  540. else
  541. rcvwin += (rcvwin >> 1);
  542. }
  543. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  544. while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
  545. rcvmem += 128;
  546. rcvbuf = min(rcvwin / tp->advmss * rcvmem,
  547. sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  548. if (rcvbuf > sk->sk_rcvbuf) {
  549. sk->sk_rcvbuf = rcvbuf;
  550. /* Make the window clamp follow along. */
  551. tp->window_clamp = rcvwin;
  552. }
  553. }
  554. tp->rcvq_space.space = copied;
  555. new_measure:
  556. tp->rcvq_space.seq = tp->copied_seq;
  557. tp->rcvq_space.time = tp->tcp_mstamp;
  558. }
  559. /* There is something which you must keep in mind when you analyze the
  560. * behavior of the tp->ato delayed ack timeout interval. When a
  561. * connection starts up, we want to ack as quickly as possible. The
  562. * problem is that "good" TCP's do slow start at the beginning of data
  563. * transmission. The means that until we send the first few ACK's the
  564. * sender will sit on his end and only queue most of his data, because
  565. * he can only send snd_cwnd unacked packets at any given time. For
  566. * each ACK we send, he increments snd_cwnd and transmits more of his
  567. * queue. -DaveM
  568. */
  569. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  570. {
  571. struct tcp_sock *tp = tcp_sk(sk);
  572. struct inet_connection_sock *icsk = inet_csk(sk);
  573. u32 now;
  574. inet_csk_schedule_ack(sk);
  575. tcp_measure_rcv_mss(sk, skb);
  576. tcp_rcv_rtt_measure(tp);
  577. now = tcp_jiffies32;
  578. if (!icsk->icsk_ack.ato) {
  579. /* The _first_ data packet received, initialize
  580. * delayed ACK engine.
  581. */
  582. tcp_incr_quickack(sk);
  583. icsk->icsk_ack.ato = TCP_ATO_MIN;
  584. } else {
  585. int m = now - icsk->icsk_ack.lrcvtime;
  586. if (m <= TCP_ATO_MIN / 2) {
  587. /* The fastest case is the first. */
  588. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  589. } else if (m < icsk->icsk_ack.ato) {
  590. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  591. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  592. icsk->icsk_ack.ato = icsk->icsk_rto;
  593. } else if (m > icsk->icsk_rto) {
  594. /* Too long gap. Apparently sender failed to
  595. * restart window, so that we send ACKs quickly.
  596. */
  597. tcp_incr_quickack(sk);
  598. sk_mem_reclaim(sk);
  599. }
  600. }
  601. icsk->icsk_ack.lrcvtime = now;
  602. tcp_ecn_check_ce(tp, skb);
  603. if (skb->len >= 128)
  604. tcp_grow_window(sk, skb);
  605. }
  606. /* Called to compute a smoothed rtt estimate. The data fed to this
  607. * routine either comes from timestamps, or from segments that were
  608. * known _not_ to have been retransmitted [see Karn/Partridge
  609. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  610. * piece by Van Jacobson.
  611. * NOTE: the next three routines used to be one big routine.
  612. * To save cycles in the RFC 1323 implementation it was better to break
  613. * it up into three procedures. -- erics
  614. */
  615. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  616. {
  617. struct tcp_sock *tp = tcp_sk(sk);
  618. long m = mrtt_us; /* RTT */
  619. u32 srtt = tp->srtt_us;
  620. /* The following amusing code comes from Jacobson's
  621. * article in SIGCOMM '88. Note that rtt and mdev
  622. * are scaled versions of rtt and mean deviation.
  623. * This is designed to be as fast as possible
  624. * m stands for "measurement".
  625. *
  626. * On a 1990 paper the rto value is changed to:
  627. * RTO = rtt + 4 * mdev
  628. *
  629. * Funny. This algorithm seems to be very broken.
  630. * These formulae increase RTO, when it should be decreased, increase
  631. * too slowly, when it should be increased quickly, decrease too quickly
  632. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  633. * does not matter how to _calculate_ it. Seems, it was trap
  634. * that VJ failed to avoid. 8)
  635. */
  636. if (srtt != 0) {
  637. m -= (srtt >> 3); /* m is now error in rtt est */
  638. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  639. if (m < 0) {
  640. m = -m; /* m is now abs(error) */
  641. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  642. /* This is similar to one of Eifel findings.
  643. * Eifel blocks mdev updates when rtt decreases.
  644. * This solution is a bit different: we use finer gain
  645. * for mdev in this case (alpha*beta).
  646. * Like Eifel it also prevents growth of rto,
  647. * but also it limits too fast rto decreases,
  648. * happening in pure Eifel.
  649. */
  650. if (m > 0)
  651. m >>= 3;
  652. } else {
  653. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  654. }
  655. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  656. if (tp->mdev_us > tp->mdev_max_us) {
  657. tp->mdev_max_us = tp->mdev_us;
  658. if (tp->mdev_max_us > tp->rttvar_us)
  659. tp->rttvar_us = tp->mdev_max_us;
  660. }
  661. if (after(tp->snd_una, tp->rtt_seq)) {
  662. if (tp->mdev_max_us < tp->rttvar_us)
  663. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  664. tp->rtt_seq = tp->snd_nxt;
  665. tp->mdev_max_us = tcp_rto_min_us(sk);
  666. }
  667. } else {
  668. /* no previous measure. */
  669. srtt = m << 3; /* take the measured time to be rtt */
  670. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  671. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  672. tp->mdev_max_us = tp->rttvar_us;
  673. tp->rtt_seq = tp->snd_nxt;
  674. }
  675. tp->srtt_us = max(1U, srtt);
  676. }
  677. static void tcp_update_pacing_rate(struct sock *sk)
  678. {
  679. const struct tcp_sock *tp = tcp_sk(sk);
  680. u64 rate;
  681. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  682. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  683. /* current rate is (cwnd * mss) / srtt
  684. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  685. * In Congestion Avoidance phase, set it to 120 % the current rate.
  686. *
  687. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  688. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  689. * end of slow start and should slow down.
  690. */
  691. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  692. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
  693. else
  694. rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
  695. rate *= max(tp->snd_cwnd, tp->packets_out);
  696. if (likely(tp->srtt_us))
  697. do_div(rate, tp->srtt_us);
  698. /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
  699. * without any lock. We want to make sure compiler wont store
  700. * intermediate values in this location.
  701. */
  702. WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
  703. sk->sk_max_pacing_rate));
  704. }
  705. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  706. * routine referred to above.
  707. */
  708. static void tcp_set_rto(struct sock *sk)
  709. {
  710. const struct tcp_sock *tp = tcp_sk(sk);
  711. /* Old crap is replaced with new one. 8)
  712. *
  713. * More seriously:
  714. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  715. * It cannot be less due to utterly erratic ACK generation made
  716. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  717. * to do with delayed acks, because at cwnd>2 true delack timeout
  718. * is invisible. Actually, Linux-2.4 also generates erratic
  719. * ACKs in some circumstances.
  720. */
  721. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  722. /* 2. Fixups made earlier cannot be right.
  723. * If we do not estimate RTO correctly without them,
  724. * all the algo is pure shit and should be replaced
  725. * with correct one. It is exactly, which we pretend to do.
  726. */
  727. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  728. * guarantees that rto is higher.
  729. */
  730. tcp_bound_rto(sk);
  731. }
  732. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  733. {
  734. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  735. if (!cwnd)
  736. cwnd = TCP_INIT_CWND;
  737. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  738. }
  739. /* Take a notice that peer is sending D-SACKs */
  740. static void tcp_dsack_seen(struct tcp_sock *tp)
  741. {
  742. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  743. tp->rack.dsack_seen = 1;
  744. }
  745. /* It's reordering when higher sequence was delivered (i.e. sacked) before
  746. * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
  747. * distance is approximated in full-mss packet distance ("reordering").
  748. */
  749. static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
  750. const int ts)
  751. {
  752. struct tcp_sock *tp = tcp_sk(sk);
  753. const u32 mss = tp->mss_cache;
  754. u32 fack, metric;
  755. fack = tcp_highest_sack_seq(tp);
  756. if (!before(low_seq, fack))
  757. return;
  758. metric = fack - low_seq;
  759. if ((metric > tp->reordering * mss) && mss) {
  760. #if FASTRETRANS_DEBUG > 1
  761. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  762. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  763. tp->reordering,
  764. 0,
  765. tp->sacked_out,
  766. tp->undo_marker ? tp->undo_retrans : 0);
  767. #endif
  768. tp->reordering = min_t(u32, (metric + mss - 1) / mss,
  769. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  770. }
  771. tp->rack.reord = 1;
  772. /* This exciting event is worth to be remembered. 8) */
  773. NET_INC_STATS(sock_net(sk),
  774. ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
  775. }
  776. /* This must be called before lost_out is incremented */
  777. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  778. {
  779. if (!tp->retransmit_skb_hint ||
  780. before(TCP_SKB_CB(skb)->seq,
  781. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  782. tp->retransmit_skb_hint = skb;
  783. }
  784. /* Sum the number of packets on the wire we have marked as lost.
  785. * There are two cases we care about here:
  786. * a) Packet hasn't been marked lost (nor retransmitted),
  787. * and this is the first loss.
  788. * b) Packet has been marked both lost and retransmitted,
  789. * and this means we think it was lost again.
  790. */
  791. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  792. {
  793. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  794. if (!(sacked & TCPCB_LOST) ||
  795. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  796. tp->lost += tcp_skb_pcount(skb);
  797. }
  798. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  799. {
  800. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  801. tcp_verify_retransmit_hint(tp, skb);
  802. tp->lost_out += tcp_skb_pcount(skb);
  803. tcp_sum_lost(tp, skb);
  804. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  805. }
  806. }
  807. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  808. {
  809. tcp_verify_retransmit_hint(tp, skb);
  810. tcp_sum_lost(tp, skb);
  811. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  812. tp->lost_out += tcp_skb_pcount(skb);
  813. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  814. }
  815. }
  816. /* This procedure tags the retransmission queue when SACKs arrive.
  817. *
  818. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  819. * Packets in queue with these bits set are counted in variables
  820. * sacked_out, retrans_out and lost_out, correspondingly.
  821. *
  822. * Valid combinations are:
  823. * Tag InFlight Description
  824. * 0 1 - orig segment is in flight.
  825. * S 0 - nothing flies, orig reached receiver.
  826. * L 0 - nothing flies, orig lost by net.
  827. * R 2 - both orig and retransmit are in flight.
  828. * L|R 1 - orig is lost, retransmit is in flight.
  829. * S|R 1 - orig reached receiver, retrans is still in flight.
  830. * (L|S|R is logically valid, it could occur when L|R is sacked,
  831. * but it is equivalent to plain S and code short-curcuits it to S.
  832. * L|S is logically invalid, it would mean -1 packet in flight 8))
  833. *
  834. * These 6 states form finite state machine, controlled by the following events:
  835. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  836. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  837. * 3. Loss detection event of two flavors:
  838. * A. Scoreboard estimator decided the packet is lost.
  839. * A'. Reno "three dupacks" marks head of queue lost.
  840. * B. SACK arrives sacking SND.NXT at the moment, when the
  841. * segment was retransmitted.
  842. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  843. *
  844. * It is pleasant to note, that state diagram turns out to be commutative,
  845. * so that we are allowed not to be bothered by order of our actions,
  846. * when multiple events arrive simultaneously. (see the function below).
  847. *
  848. * Reordering detection.
  849. * --------------------
  850. * Reordering metric is maximal distance, which a packet can be displaced
  851. * in packet stream. With SACKs we can estimate it:
  852. *
  853. * 1. SACK fills old hole and the corresponding segment was not
  854. * ever retransmitted -> reordering. Alas, we cannot use it
  855. * when segment was retransmitted.
  856. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  857. * for retransmitted and already SACKed segment -> reordering..
  858. * Both of these heuristics are not used in Loss state, when we cannot
  859. * account for retransmits accurately.
  860. *
  861. * SACK block validation.
  862. * ----------------------
  863. *
  864. * SACK block range validation checks that the received SACK block fits to
  865. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  866. * Note that SND.UNA is not included to the range though being valid because
  867. * it means that the receiver is rather inconsistent with itself reporting
  868. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  869. * perfectly valid, however, in light of RFC2018 which explicitly states
  870. * that "SACK block MUST reflect the newest segment. Even if the newest
  871. * segment is going to be discarded ...", not that it looks very clever
  872. * in case of head skb. Due to potentional receiver driven attacks, we
  873. * choose to avoid immediate execution of a walk in write queue due to
  874. * reneging and defer head skb's loss recovery to standard loss recovery
  875. * procedure that will eventually trigger (nothing forbids us doing this).
  876. *
  877. * Implements also blockage to start_seq wrap-around. Problem lies in the
  878. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  879. * there's no guarantee that it will be before snd_nxt (n). The problem
  880. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  881. * wrap (s_w):
  882. *
  883. * <- outs wnd -> <- wrapzone ->
  884. * u e n u_w e_w s n_w
  885. * | | | | | | |
  886. * |<------------+------+----- TCP seqno space --------------+---------->|
  887. * ...-- <2^31 ->| |<--------...
  888. * ...---- >2^31 ------>| |<--------...
  889. *
  890. * Current code wouldn't be vulnerable but it's better still to discard such
  891. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  892. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  893. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  894. * equal to the ideal case (infinite seqno space without wrap caused issues).
  895. *
  896. * With D-SACK the lower bound is extended to cover sequence space below
  897. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  898. * again, D-SACK block must not to go across snd_una (for the same reason as
  899. * for the normal SACK blocks, explained above). But there all simplicity
  900. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  901. * fully below undo_marker they do not affect behavior in anyway and can
  902. * therefore be safely ignored. In rare cases (which are more or less
  903. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  904. * fragmentation and packet reordering past skb's retransmission. To consider
  905. * them correctly, the acceptable range must be extended even more though
  906. * the exact amount is rather hard to quantify. However, tp->max_window can
  907. * be used as an exaggerated estimate.
  908. */
  909. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  910. u32 start_seq, u32 end_seq)
  911. {
  912. /* Too far in future, or reversed (interpretation is ambiguous) */
  913. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  914. return false;
  915. /* Nasty start_seq wrap-around check (see comments above) */
  916. if (!before(start_seq, tp->snd_nxt))
  917. return false;
  918. /* In outstanding window? ...This is valid exit for D-SACKs too.
  919. * start_seq == snd_una is non-sensical (see comments above)
  920. */
  921. if (after(start_seq, tp->snd_una))
  922. return true;
  923. if (!is_dsack || !tp->undo_marker)
  924. return false;
  925. /* ...Then it's D-SACK, and must reside below snd_una completely */
  926. if (after(end_seq, tp->snd_una))
  927. return false;
  928. if (!before(start_seq, tp->undo_marker))
  929. return true;
  930. /* Too old */
  931. if (!after(end_seq, tp->undo_marker))
  932. return false;
  933. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  934. * start_seq < undo_marker and end_seq >= undo_marker.
  935. */
  936. return !before(start_seq, end_seq - tp->max_window);
  937. }
  938. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  939. struct tcp_sack_block_wire *sp, int num_sacks,
  940. u32 prior_snd_una)
  941. {
  942. struct tcp_sock *tp = tcp_sk(sk);
  943. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  944. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  945. bool dup_sack = false;
  946. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  947. dup_sack = true;
  948. tcp_dsack_seen(tp);
  949. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  950. } else if (num_sacks > 1) {
  951. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  952. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  953. if (!after(end_seq_0, end_seq_1) &&
  954. !before(start_seq_0, start_seq_1)) {
  955. dup_sack = true;
  956. tcp_dsack_seen(tp);
  957. NET_INC_STATS(sock_net(sk),
  958. LINUX_MIB_TCPDSACKOFORECV);
  959. }
  960. }
  961. /* D-SACK for already forgotten data... Do dumb counting. */
  962. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  963. !after(end_seq_0, prior_snd_una) &&
  964. after(end_seq_0, tp->undo_marker))
  965. tp->undo_retrans--;
  966. return dup_sack;
  967. }
  968. struct tcp_sacktag_state {
  969. u32 reord;
  970. /* Timestamps for earliest and latest never-retransmitted segment
  971. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  972. * but congestion control should still get an accurate delay signal.
  973. */
  974. u64 first_sackt;
  975. u64 last_sackt;
  976. struct rate_sample *rate;
  977. int flag;
  978. unsigned int mss_now;
  979. };
  980. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  981. * the incoming SACK may not exactly match but we can find smaller MSS
  982. * aligned portion of it that matches. Therefore we might need to fragment
  983. * which may fail and creates some hassle (caller must handle error case
  984. * returns).
  985. *
  986. * FIXME: this could be merged to shift decision code
  987. */
  988. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  989. u32 start_seq, u32 end_seq)
  990. {
  991. int err;
  992. bool in_sack;
  993. unsigned int pkt_len;
  994. unsigned int mss;
  995. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  996. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  997. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  998. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  999. mss = tcp_skb_mss(skb);
  1000. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1001. if (!in_sack) {
  1002. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1003. if (pkt_len < mss)
  1004. pkt_len = mss;
  1005. } else {
  1006. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1007. if (pkt_len < mss)
  1008. return -EINVAL;
  1009. }
  1010. /* Round if necessary so that SACKs cover only full MSSes
  1011. * and/or the remaining small portion (if present)
  1012. */
  1013. if (pkt_len > mss) {
  1014. unsigned int new_len = (pkt_len / mss) * mss;
  1015. if (!in_sack && new_len < pkt_len)
  1016. new_len += mss;
  1017. pkt_len = new_len;
  1018. }
  1019. if (pkt_len >= skb->len && !in_sack)
  1020. return 0;
  1021. err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1022. pkt_len, mss, GFP_ATOMIC);
  1023. if (err < 0)
  1024. return err;
  1025. }
  1026. return in_sack;
  1027. }
  1028. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1029. static u8 tcp_sacktag_one(struct sock *sk,
  1030. struct tcp_sacktag_state *state, u8 sacked,
  1031. u32 start_seq, u32 end_seq,
  1032. int dup_sack, int pcount,
  1033. u64 xmit_time)
  1034. {
  1035. struct tcp_sock *tp = tcp_sk(sk);
  1036. /* Account D-SACK for retransmitted packet. */
  1037. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1038. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1039. after(end_seq, tp->undo_marker))
  1040. tp->undo_retrans--;
  1041. if ((sacked & TCPCB_SACKED_ACKED) &&
  1042. before(start_seq, state->reord))
  1043. state->reord = start_seq;
  1044. }
  1045. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1046. if (!after(end_seq, tp->snd_una))
  1047. return sacked;
  1048. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1049. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1050. if (sacked & TCPCB_SACKED_RETRANS) {
  1051. /* If the segment is not tagged as lost,
  1052. * we do not clear RETRANS, believing
  1053. * that retransmission is still in flight.
  1054. */
  1055. if (sacked & TCPCB_LOST) {
  1056. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1057. tp->lost_out -= pcount;
  1058. tp->retrans_out -= pcount;
  1059. }
  1060. } else {
  1061. if (!(sacked & TCPCB_RETRANS)) {
  1062. /* New sack for not retransmitted frame,
  1063. * which was in hole. It is reordering.
  1064. */
  1065. if (before(start_seq,
  1066. tcp_highest_sack_seq(tp)) &&
  1067. before(start_seq, state->reord))
  1068. state->reord = start_seq;
  1069. if (!after(end_seq, tp->high_seq))
  1070. state->flag |= FLAG_ORIG_SACK_ACKED;
  1071. if (state->first_sackt == 0)
  1072. state->first_sackt = xmit_time;
  1073. state->last_sackt = xmit_time;
  1074. }
  1075. if (sacked & TCPCB_LOST) {
  1076. sacked &= ~TCPCB_LOST;
  1077. tp->lost_out -= pcount;
  1078. }
  1079. }
  1080. sacked |= TCPCB_SACKED_ACKED;
  1081. state->flag |= FLAG_DATA_SACKED;
  1082. tp->sacked_out += pcount;
  1083. tp->delivered += pcount; /* Out-of-order packets delivered */
  1084. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1085. if (tp->lost_skb_hint &&
  1086. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1087. tp->lost_cnt_hint += pcount;
  1088. }
  1089. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1090. * frames and clear it. undo_retrans is decreased above, L|R frames
  1091. * are accounted above as well.
  1092. */
  1093. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1094. sacked &= ~TCPCB_SACKED_RETRANS;
  1095. tp->retrans_out -= pcount;
  1096. }
  1097. return sacked;
  1098. }
  1099. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1100. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1101. */
  1102. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
  1103. struct sk_buff *skb,
  1104. struct tcp_sacktag_state *state,
  1105. unsigned int pcount, int shifted, int mss,
  1106. bool dup_sack)
  1107. {
  1108. struct tcp_sock *tp = tcp_sk(sk);
  1109. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1110. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1111. BUG_ON(!pcount);
  1112. /* Adjust counters and hints for the newly sacked sequence
  1113. * range but discard the return value since prev is already
  1114. * marked. We must tag the range first because the seq
  1115. * advancement below implicitly advances
  1116. * tcp_highest_sack_seq() when skb is highest_sack.
  1117. */
  1118. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1119. start_seq, end_seq, dup_sack, pcount,
  1120. skb->skb_mstamp);
  1121. tcp_rate_skb_delivered(sk, skb, state->rate);
  1122. if (skb == tp->lost_skb_hint)
  1123. tp->lost_cnt_hint += pcount;
  1124. TCP_SKB_CB(prev)->end_seq += shifted;
  1125. TCP_SKB_CB(skb)->seq += shifted;
  1126. tcp_skb_pcount_add(prev, pcount);
  1127. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1128. tcp_skb_pcount_add(skb, -pcount);
  1129. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1130. * in theory this shouldn't be necessary but as long as DSACK
  1131. * code can come after this skb later on it's better to keep
  1132. * setting gso_size to something.
  1133. */
  1134. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1135. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1136. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1137. if (tcp_skb_pcount(skb) <= 1)
  1138. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1139. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1140. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1141. if (skb->len > 0) {
  1142. BUG_ON(!tcp_skb_pcount(skb));
  1143. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1144. return false;
  1145. }
  1146. /* Whole SKB was eaten :-) */
  1147. if (skb == tp->retransmit_skb_hint)
  1148. tp->retransmit_skb_hint = prev;
  1149. if (skb == tp->lost_skb_hint) {
  1150. tp->lost_skb_hint = prev;
  1151. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1152. }
  1153. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1154. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1155. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1156. TCP_SKB_CB(prev)->end_seq++;
  1157. if (skb == tcp_highest_sack(sk))
  1158. tcp_advance_highest_sack(sk, skb);
  1159. tcp_skb_collapse_tstamp(prev, skb);
  1160. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1161. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1162. tcp_rtx_queue_unlink_and_free(skb, sk);
  1163. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1164. return true;
  1165. }
  1166. /* I wish gso_size would have a bit more sane initialization than
  1167. * something-or-zero which complicates things
  1168. */
  1169. static int tcp_skb_seglen(const struct sk_buff *skb)
  1170. {
  1171. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1172. }
  1173. /* Shifting pages past head area doesn't work */
  1174. static int skb_can_shift(const struct sk_buff *skb)
  1175. {
  1176. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1177. }
  1178. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1179. * skb.
  1180. */
  1181. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1182. struct tcp_sacktag_state *state,
  1183. u32 start_seq, u32 end_seq,
  1184. bool dup_sack)
  1185. {
  1186. struct tcp_sock *tp = tcp_sk(sk);
  1187. struct sk_buff *prev;
  1188. int mss;
  1189. int pcount = 0;
  1190. int len;
  1191. int in_sack;
  1192. if (!sk_can_gso(sk))
  1193. goto fallback;
  1194. /* Normally R but no L won't result in plain S */
  1195. if (!dup_sack &&
  1196. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1197. goto fallback;
  1198. if (!skb_can_shift(skb))
  1199. goto fallback;
  1200. /* This frame is about to be dropped (was ACKed). */
  1201. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1202. goto fallback;
  1203. /* Can only happen with delayed DSACK + discard craziness */
  1204. prev = skb_rb_prev(skb);
  1205. if (!prev)
  1206. goto fallback;
  1207. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1208. goto fallback;
  1209. if (!tcp_skb_can_collapse_to(prev))
  1210. goto fallback;
  1211. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1212. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1213. if (in_sack) {
  1214. len = skb->len;
  1215. pcount = tcp_skb_pcount(skb);
  1216. mss = tcp_skb_seglen(skb);
  1217. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1218. * drop this restriction as unnecessary
  1219. */
  1220. if (mss != tcp_skb_seglen(prev))
  1221. goto fallback;
  1222. } else {
  1223. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1224. goto noop;
  1225. /* CHECKME: This is non-MSS split case only?, this will
  1226. * cause skipped skbs due to advancing loop btw, original
  1227. * has that feature too
  1228. */
  1229. if (tcp_skb_pcount(skb) <= 1)
  1230. goto noop;
  1231. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1232. if (!in_sack) {
  1233. /* TODO: head merge to next could be attempted here
  1234. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1235. * though it might not be worth of the additional hassle
  1236. *
  1237. * ...we can probably just fallback to what was done
  1238. * previously. We could try merging non-SACKed ones
  1239. * as well but it probably isn't going to buy off
  1240. * because later SACKs might again split them, and
  1241. * it would make skb timestamp tracking considerably
  1242. * harder problem.
  1243. */
  1244. goto fallback;
  1245. }
  1246. len = end_seq - TCP_SKB_CB(skb)->seq;
  1247. BUG_ON(len < 0);
  1248. BUG_ON(len > skb->len);
  1249. /* MSS boundaries should be honoured or else pcount will
  1250. * severely break even though it makes things bit trickier.
  1251. * Optimize common case to avoid most of the divides
  1252. */
  1253. mss = tcp_skb_mss(skb);
  1254. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1255. * drop this restriction as unnecessary
  1256. */
  1257. if (mss != tcp_skb_seglen(prev))
  1258. goto fallback;
  1259. if (len == mss) {
  1260. pcount = 1;
  1261. } else if (len < mss) {
  1262. goto noop;
  1263. } else {
  1264. pcount = len / mss;
  1265. len = pcount * mss;
  1266. }
  1267. }
  1268. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1269. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1270. goto fallback;
  1271. if (!skb_shift(prev, skb, len))
  1272. goto fallback;
  1273. if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
  1274. goto out;
  1275. /* Hole filled allows collapsing with the next as well, this is very
  1276. * useful when hole on every nth skb pattern happens
  1277. */
  1278. skb = skb_rb_next(prev);
  1279. if (!skb)
  1280. goto out;
  1281. if (!skb_can_shift(skb) ||
  1282. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1283. (mss != tcp_skb_seglen(skb)))
  1284. goto out;
  1285. len = skb->len;
  1286. if (skb_shift(prev, skb, len)) {
  1287. pcount += tcp_skb_pcount(skb);
  1288. tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
  1289. len, mss, 0);
  1290. }
  1291. out:
  1292. return prev;
  1293. noop:
  1294. return skb;
  1295. fallback:
  1296. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1297. return NULL;
  1298. }
  1299. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1300. struct tcp_sack_block *next_dup,
  1301. struct tcp_sacktag_state *state,
  1302. u32 start_seq, u32 end_seq,
  1303. bool dup_sack_in)
  1304. {
  1305. struct tcp_sock *tp = tcp_sk(sk);
  1306. struct sk_buff *tmp;
  1307. skb_rbtree_walk_from(skb) {
  1308. int in_sack = 0;
  1309. bool dup_sack = dup_sack_in;
  1310. /* queue is in-order => we can short-circuit the walk early */
  1311. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1312. break;
  1313. if (next_dup &&
  1314. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1315. in_sack = tcp_match_skb_to_sack(sk, skb,
  1316. next_dup->start_seq,
  1317. next_dup->end_seq);
  1318. if (in_sack > 0)
  1319. dup_sack = true;
  1320. }
  1321. /* skb reference here is a bit tricky to get right, since
  1322. * shifting can eat and free both this skb and the next,
  1323. * so not even _safe variant of the loop is enough.
  1324. */
  1325. if (in_sack <= 0) {
  1326. tmp = tcp_shift_skb_data(sk, skb, state,
  1327. start_seq, end_seq, dup_sack);
  1328. if (tmp) {
  1329. if (tmp != skb) {
  1330. skb = tmp;
  1331. continue;
  1332. }
  1333. in_sack = 0;
  1334. } else {
  1335. in_sack = tcp_match_skb_to_sack(sk, skb,
  1336. start_seq,
  1337. end_seq);
  1338. }
  1339. }
  1340. if (unlikely(in_sack < 0))
  1341. break;
  1342. if (in_sack) {
  1343. TCP_SKB_CB(skb)->sacked =
  1344. tcp_sacktag_one(sk,
  1345. state,
  1346. TCP_SKB_CB(skb)->sacked,
  1347. TCP_SKB_CB(skb)->seq,
  1348. TCP_SKB_CB(skb)->end_seq,
  1349. dup_sack,
  1350. tcp_skb_pcount(skb),
  1351. skb->skb_mstamp);
  1352. tcp_rate_skb_delivered(sk, skb, state->rate);
  1353. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1354. list_del_init(&skb->tcp_tsorted_anchor);
  1355. if (!before(TCP_SKB_CB(skb)->seq,
  1356. tcp_highest_sack_seq(tp)))
  1357. tcp_advance_highest_sack(sk, skb);
  1358. }
  1359. }
  1360. return skb;
  1361. }
  1362. static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
  1363. struct tcp_sacktag_state *state,
  1364. u32 seq)
  1365. {
  1366. struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
  1367. struct sk_buff *skb;
  1368. while (*p) {
  1369. parent = *p;
  1370. skb = rb_to_skb(parent);
  1371. if (before(seq, TCP_SKB_CB(skb)->seq)) {
  1372. p = &parent->rb_left;
  1373. continue;
  1374. }
  1375. if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
  1376. p = &parent->rb_right;
  1377. continue;
  1378. }
  1379. return skb;
  1380. }
  1381. return NULL;
  1382. }
  1383. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1384. struct tcp_sacktag_state *state,
  1385. u32 skip_to_seq)
  1386. {
  1387. if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
  1388. return skb;
  1389. return tcp_sacktag_bsearch(sk, state, skip_to_seq);
  1390. }
  1391. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1392. struct sock *sk,
  1393. struct tcp_sack_block *next_dup,
  1394. struct tcp_sacktag_state *state,
  1395. u32 skip_to_seq)
  1396. {
  1397. if (!next_dup)
  1398. return skb;
  1399. if (before(next_dup->start_seq, skip_to_seq)) {
  1400. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1401. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1402. next_dup->start_seq, next_dup->end_seq,
  1403. 1);
  1404. }
  1405. return skb;
  1406. }
  1407. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1408. {
  1409. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1410. }
  1411. static int
  1412. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1413. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1414. {
  1415. struct tcp_sock *tp = tcp_sk(sk);
  1416. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1417. TCP_SKB_CB(ack_skb)->sacked);
  1418. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1419. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1420. struct tcp_sack_block *cache;
  1421. struct sk_buff *skb;
  1422. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1423. int used_sacks;
  1424. bool found_dup_sack = false;
  1425. int i, j;
  1426. int first_sack_index;
  1427. state->flag = 0;
  1428. state->reord = tp->snd_nxt;
  1429. if (!tp->sacked_out)
  1430. tcp_highest_sack_reset(sk);
  1431. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1432. num_sacks, prior_snd_una);
  1433. if (found_dup_sack) {
  1434. state->flag |= FLAG_DSACKING_ACK;
  1435. tp->delivered++; /* A spurious retransmission is delivered */
  1436. }
  1437. /* Eliminate too old ACKs, but take into
  1438. * account more or less fresh ones, they can
  1439. * contain valid SACK info.
  1440. */
  1441. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1442. return 0;
  1443. if (!tp->packets_out)
  1444. goto out;
  1445. used_sacks = 0;
  1446. first_sack_index = 0;
  1447. for (i = 0; i < num_sacks; i++) {
  1448. bool dup_sack = !i && found_dup_sack;
  1449. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1450. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1451. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1452. sp[used_sacks].start_seq,
  1453. sp[used_sacks].end_seq)) {
  1454. int mib_idx;
  1455. if (dup_sack) {
  1456. if (!tp->undo_marker)
  1457. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1458. else
  1459. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1460. } else {
  1461. /* Don't count olds caused by ACK reordering */
  1462. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1463. !after(sp[used_sacks].end_seq, tp->snd_una))
  1464. continue;
  1465. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1466. }
  1467. NET_INC_STATS(sock_net(sk), mib_idx);
  1468. if (i == 0)
  1469. first_sack_index = -1;
  1470. continue;
  1471. }
  1472. /* Ignore very old stuff early */
  1473. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1474. continue;
  1475. used_sacks++;
  1476. }
  1477. /* order SACK blocks to allow in order walk of the retrans queue */
  1478. for (i = used_sacks - 1; i > 0; i--) {
  1479. for (j = 0; j < i; j++) {
  1480. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1481. swap(sp[j], sp[j + 1]);
  1482. /* Track where the first SACK block goes to */
  1483. if (j == first_sack_index)
  1484. first_sack_index = j + 1;
  1485. }
  1486. }
  1487. }
  1488. state->mss_now = tcp_current_mss(sk);
  1489. skb = NULL;
  1490. i = 0;
  1491. if (!tp->sacked_out) {
  1492. /* It's already past, so skip checking against it */
  1493. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1494. } else {
  1495. cache = tp->recv_sack_cache;
  1496. /* Skip empty blocks in at head of the cache */
  1497. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1498. !cache->end_seq)
  1499. cache++;
  1500. }
  1501. while (i < used_sacks) {
  1502. u32 start_seq = sp[i].start_seq;
  1503. u32 end_seq = sp[i].end_seq;
  1504. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1505. struct tcp_sack_block *next_dup = NULL;
  1506. if (found_dup_sack && ((i + 1) == first_sack_index))
  1507. next_dup = &sp[i + 1];
  1508. /* Skip too early cached blocks */
  1509. while (tcp_sack_cache_ok(tp, cache) &&
  1510. !before(start_seq, cache->end_seq))
  1511. cache++;
  1512. /* Can skip some work by looking recv_sack_cache? */
  1513. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1514. after(end_seq, cache->start_seq)) {
  1515. /* Head todo? */
  1516. if (before(start_seq, cache->start_seq)) {
  1517. skb = tcp_sacktag_skip(skb, sk, state,
  1518. start_seq);
  1519. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1520. state,
  1521. start_seq,
  1522. cache->start_seq,
  1523. dup_sack);
  1524. }
  1525. /* Rest of the block already fully processed? */
  1526. if (!after(end_seq, cache->end_seq))
  1527. goto advance_sp;
  1528. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1529. state,
  1530. cache->end_seq);
  1531. /* ...tail remains todo... */
  1532. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1533. /* ...but better entrypoint exists! */
  1534. skb = tcp_highest_sack(sk);
  1535. if (!skb)
  1536. break;
  1537. cache++;
  1538. goto walk;
  1539. }
  1540. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1541. /* Check overlap against next cached too (past this one already) */
  1542. cache++;
  1543. continue;
  1544. }
  1545. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1546. skb = tcp_highest_sack(sk);
  1547. if (!skb)
  1548. break;
  1549. }
  1550. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1551. walk:
  1552. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1553. start_seq, end_seq, dup_sack);
  1554. advance_sp:
  1555. i++;
  1556. }
  1557. /* Clear the head of the cache sack blocks so we can skip it next time */
  1558. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1559. tp->recv_sack_cache[i].start_seq = 0;
  1560. tp->recv_sack_cache[i].end_seq = 0;
  1561. }
  1562. for (j = 0; j < used_sacks; j++)
  1563. tp->recv_sack_cache[i++] = sp[j];
  1564. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
  1565. tcp_check_sack_reordering(sk, state->reord, 0);
  1566. tcp_verify_left_out(tp);
  1567. out:
  1568. #if FASTRETRANS_DEBUG > 0
  1569. WARN_ON((int)tp->sacked_out < 0);
  1570. WARN_ON((int)tp->lost_out < 0);
  1571. WARN_ON((int)tp->retrans_out < 0);
  1572. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1573. #endif
  1574. return state->flag;
  1575. }
  1576. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1577. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1578. */
  1579. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1580. {
  1581. u32 holes;
  1582. holes = max(tp->lost_out, 1U);
  1583. holes = min(holes, tp->packets_out);
  1584. if ((tp->sacked_out + holes) > tp->packets_out) {
  1585. tp->sacked_out = tp->packets_out - holes;
  1586. return true;
  1587. }
  1588. return false;
  1589. }
  1590. /* If we receive more dupacks than we expected counting segments
  1591. * in assumption of absent reordering, interpret this as reordering.
  1592. * The only another reason could be bug in receiver TCP.
  1593. */
  1594. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1595. {
  1596. struct tcp_sock *tp = tcp_sk(sk);
  1597. if (!tcp_limit_reno_sacked(tp))
  1598. return;
  1599. tp->reordering = min_t(u32, tp->packets_out + addend,
  1600. sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
  1601. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
  1602. }
  1603. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1604. static void tcp_add_reno_sack(struct sock *sk)
  1605. {
  1606. struct tcp_sock *tp = tcp_sk(sk);
  1607. u32 prior_sacked = tp->sacked_out;
  1608. tp->sacked_out++;
  1609. tcp_check_reno_reordering(sk, 0);
  1610. if (tp->sacked_out > prior_sacked)
  1611. tp->delivered++; /* Some out-of-order packet is delivered */
  1612. tcp_verify_left_out(tp);
  1613. }
  1614. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1615. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1616. {
  1617. struct tcp_sock *tp = tcp_sk(sk);
  1618. if (acked > 0) {
  1619. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1620. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1621. if (acked - 1 >= tp->sacked_out)
  1622. tp->sacked_out = 0;
  1623. else
  1624. tp->sacked_out -= acked - 1;
  1625. }
  1626. tcp_check_reno_reordering(sk, acked);
  1627. tcp_verify_left_out(tp);
  1628. }
  1629. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1630. {
  1631. tp->sacked_out = 0;
  1632. }
  1633. void tcp_clear_retrans(struct tcp_sock *tp)
  1634. {
  1635. tp->retrans_out = 0;
  1636. tp->lost_out = 0;
  1637. tp->undo_marker = 0;
  1638. tp->undo_retrans = -1;
  1639. tp->sacked_out = 0;
  1640. }
  1641. static inline void tcp_init_undo(struct tcp_sock *tp)
  1642. {
  1643. tp->undo_marker = tp->snd_una;
  1644. /* Retransmission still in flight may cause DSACKs later. */
  1645. tp->undo_retrans = tp->retrans_out ? : -1;
  1646. }
  1647. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1648. * and reset tags completely, otherwise preserve SACKs. If receiver
  1649. * dropped its ofo queue, we will know this due to reneging detection.
  1650. */
  1651. void tcp_enter_loss(struct sock *sk)
  1652. {
  1653. const struct inet_connection_sock *icsk = inet_csk(sk);
  1654. struct tcp_sock *tp = tcp_sk(sk);
  1655. struct net *net = sock_net(sk);
  1656. struct sk_buff *skb;
  1657. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1658. bool is_reneg; /* is receiver reneging on SACKs? */
  1659. bool mark_lost;
  1660. /* Reduce ssthresh if it has not yet been made inside this window. */
  1661. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1662. !after(tp->high_seq, tp->snd_una) ||
  1663. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1664. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1665. tp->prior_cwnd = tp->snd_cwnd;
  1666. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1667. tcp_ca_event(sk, CA_EVENT_LOSS);
  1668. tcp_init_undo(tp);
  1669. }
  1670. tp->snd_cwnd = 1;
  1671. tp->snd_cwnd_cnt = 0;
  1672. tp->snd_cwnd_stamp = tcp_jiffies32;
  1673. tp->retrans_out = 0;
  1674. tp->lost_out = 0;
  1675. if (tcp_is_reno(tp))
  1676. tcp_reset_reno_sack(tp);
  1677. skb = tcp_rtx_queue_head(sk);
  1678. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1679. if (is_reneg) {
  1680. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1681. tp->sacked_out = 0;
  1682. /* Mark SACK reneging until we recover from this loss event. */
  1683. tp->is_sack_reneg = 1;
  1684. }
  1685. tcp_clear_all_retrans_hints(tp);
  1686. skb_rbtree_walk_from(skb) {
  1687. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1688. is_reneg);
  1689. if (mark_lost)
  1690. tcp_sum_lost(tp, skb);
  1691. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1692. if (mark_lost) {
  1693. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1694. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1695. tp->lost_out += tcp_skb_pcount(skb);
  1696. }
  1697. }
  1698. tcp_verify_left_out(tp);
  1699. /* Timeout in disordered state after receiving substantial DUPACKs
  1700. * suggests that the degree of reordering is over-estimated.
  1701. */
  1702. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1703. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1704. tp->reordering = min_t(unsigned int, tp->reordering,
  1705. net->ipv4.sysctl_tcp_reordering);
  1706. tcp_set_ca_state(sk, TCP_CA_Loss);
  1707. tp->high_seq = tp->snd_nxt;
  1708. tcp_ecn_queue_cwr(tp);
  1709. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1710. * loss recovery is underway except recurring timeout(s) on
  1711. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1712. *
  1713. * In theory F-RTO can be used repeatedly during loss recovery.
  1714. * In practice this interacts badly with broken middle-boxes that
  1715. * falsely raise the receive window, which results in repeated
  1716. * timeouts and stop-and-go behavior.
  1717. */
  1718. tp->frto = net->ipv4.sysctl_tcp_frto &&
  1719. (new_recovery || icsk->icsk_retransmits) &&
  1720. !inet_csk(sk)->icsk_mtup.probe_size;
  1721. }
  1722. /* If ACK arrived pointing to a remembered SACK, it means that our
  1723. * remembered SACKs do not reflect real state of receiver i.e.
  1724. * receiver _host_ is heavily congested (or buggy).
  1725. *
  1726. * To avoid big spurious retransmission bursts due to transient SACK
  1727. * scoreboard oddities that look like reneging, we give the receiver a
  1728. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1729. * restore sanity to the SACK scoreboard. If the apparent reneging
  1730. * persists until this RTO then we'll clear the SACK scoreboard.
  1731. */
  1732. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1733. {
  1734. if (flag & FLAG_SACK_RENEGING) {
  1735. struct tcp_sock *tp = tcp_sk(sk);
  1736. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1737. msecs_to_jiffies(10));
  1738. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1739. delay, TCP_RTO_MAX);
  1740. return true;
  1741. }
  1742. return false;
  1743. }
  1744. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1745. * counter when SACK is enabled (without SACK, sacked_out is used for
  1746. * that purpose).
  1747. *
  1748. * With reordering, holes may still be in flight, so RFC3517 recovery
  1749. * uses pure sacked_out (total number of SACKed segments) even though
  1750. * it violates the RFC that uses duplicate ACKs, often these are equal
  1751. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1752. * they differ. Since neither occurs due to loss, TCP should really
  1753. * ignore them.
  1754. */
  1755. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1756. {
  1757. return tp->sacked_out + 1;
  1758. }
  1759. /* Linux NewReno/SACK/ECN state machine.
  1760. * --------------------------------------
  1761. *
  1762. * "Open" Normal state, no dubious events, fast path.
  1763. * "Disorder" In all the respects it is "Open",
  1764. * but requires a bit more attention. It is entered when
  1765. * we see some SACKs or dupacks. It is split of "Open"
  1766. * mainly to move some processing from fast path to slow one.
  1767. * "CWR" CWND was reduced due to some Congestion Notification event.
  1768. * It can be ECN, ICMP source quench, local device congestion.
  1769. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1770. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1771. *
  1772. * tcp_fastretrans_alert() is entered:
  1773. * - each incoming ACK, if state is not "Open"
  1774. * - when arrived ACK is unusual, namely:
  1775. * * SACK
  1776. * * Duplicate ACK.
  1777. * * ECN ECE.
  1778. *
  1779. * Counting packets in flight is pretty simple.
  1780. *
  1781. * in_flight = packets_out - left_out + retrans_out
  1782. *
  1783. * packets_out is SND.NXT-SND.UNA counted in packets.
  1784. *
  1785. * retrans_out is number of retransmitted segments.
  1786. *
  1787. * left_out is number of segments left network, but not ACKed yet.
  1788. *
  1789. * left_out = sacked_out + lost_out
  1790. *
  1791. * sacked_out: Packets, which arrived to receiver out of order
  1792. * and hence not ACKed. With SACKs this number is simply
  1793. * amount of SACKed data. Even without SACKs
  1794. * it is easy to give pretty reliable estimate of this number,
  1795. * counting duplicate ACKs.
  1796. *
  1797. * lost_out: Packets lost by network. TCP has no explicit
  1798. * "loss notification" feedback from network (for now).
  1799. * It means that this number can be only _guessed_.
  1800. * Actually, it is the heuristics to predict lossage that
  1801. * distinguishes different algorithms.
  1802. *
  1803. * F.e. after RTO, when all the queue is considered as lost,
  1804. * lost_out = packets_out and in_flight = retrans_out.
  1805. *
  1806. * Essentially, we have now a few algorithms detecting
  1807. * lost packets.
  1808. *
  1809. * If the receiver supports SACK:
  1810. *
  1811. * RFC6675/3517: It is the conventional algorithm. A packet is
  1812. * considered lost if the number of higher sequence packets
  1813. * SACKed is greater than or equal the DUPACK thoreshold
  1814. * (reordering). This is implemented in tcp_mark_head_lost and
  1815. * tcp_update_scoreboard.
  1816. *
  1817. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1818. * (2017-) that checks timing instead of counting DUPACKs.
  1819. * Essentially a packet is considered lost if it's not S/ACKed
  1820. * after RTT + reordering_window, where both metrics are
  1821. * dynamically measured and adjusted. This is implemented in
  1822. * tcp_rack_mark_lost.
  1823. *
  1824. * If the receiver does not support SACK:
  1825. *
  1826. * NewReno (RFC6582): in Recovery we assume that one segment
  1827. * is lost (classic Reno). While we are in Recovery and
  1828. * a partial ACK arrives, we assume that one more packet
  1829. * is lost (NewReno). This heuristics are the same in NewReno
  1830. * and SACK.
  1831. *
  1832. * Really tricky (and requiring careful tuning) part of algorithm
  1833. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1834. * The first determines the moment _when_ we should reduce CWND and,
  1835. * hence, slow down forward transmission. In fact, it determines the moment
  1836. * when we decide that hole is caused by loss, rather than by a reorder.
  1837. *
  1838. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1839. * holes, caused by lost packets.
  1840. *
  1841. * And the most logically complicated part of algorithm is undo
  1842. * heuristics. We detect false retransmits due to both too early
  1843. * fast retransmit (reordering) and underestimated RTO, analyzing
  1844. * timestamps and D-SACKs. When we detect that some segments were
  1845. * retransmitted by mistake and CWND reduction was wrong, we undo
  1846. * window reduction and abort recovery phase. This logic is hidden
  1847. * inside several functions named tcp_try_undo_<something>.
  1848. */
  1849. /* This function decides, when we should leave Disordered state
  1850. * and enter Recovery phase, reducing congestion window.
  1851. *
  1852. * Main question: may we further continue forward transmission
  1853. * with the same cwnd?
  1854. */
  1855. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1856. {
  1857. struct tcp_sock *tp = tcp_sk(sk);
  1858. /* Trick#1: The loss is proven. */
  1859. if (tp->lost_out)
  1860. return true;
  1861. /* Not-A-Trick#2 : Classic rule... */
  1862. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1863. return true;
  1864. return false;
  1865. }
  1866. /* Detect loss in event "A" above by marking head of queue up as lost.
  1867. * For non-SACK(Reno) senders, the first "packets" number of segments
  1868. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1869. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1870. * the maximum SACKed segments to pass before reaching this limit.
  1871. */
  1872. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1873. {
  1874. struct tcp_sock *tp = tcp_sk(sk);
  1875. struct sk_buff *skb;
  1876. int cnt, oldcnt, lost;
  1877. unsigned int mss;
  1878. /* Use SACK to deduce losses of new sequences sent during recovery */
  1879. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1880. WARN_ON(packets > tp->packets_out);
  1881. skb = tp->lost_skb_hint;
  1882. if (skb) {
  1883. /* Head already handled? */
  1884. if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
  1885. return;
  1886. cnt = tp->lost_cnt_hint;
  1887. } else {
  1888. skb = tcp_rtx_queue_head(sk);
  1889. cnt = 0;
  1890. }
  1891. skb_rbtree_walk_from(skb) {
  1892. /* TODO: do this better */
  1893. /* this is not the most efficient way to do this... */
  1894. tp->lost_skb_hint = skb;
  1895. tp->lost_cnt_hint = cnt;
  1896. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1897. break;
  1898. oldcnt = cnt;
  1899. if (tcp_is_reno(tp) ||
  1900. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1901. cnt += tcp_skb_pcount(skb);
  1902. if (cnt > packets) {
  1903. if (tcp_is_sack(tp) ||
  1904. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1905. (oldcnt >= packets))
  1906. break;
  1907. mss = tcp_skb_mss(skb);
  1908. /* If needed, chop off the prefix to mark as lost. */
  1909. lost = (packets - oldcnt) * mss;
  1910. if (lost < skb->len &&
  1911. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1912. lost, mss, GFP_ATOMIC) < 0)
  1913. break;
  1914. cnt = packets;
  1915. }
  1916. tcp_skb_mark_lost(tp, skb);
  1917. if (mark_head)
  1918. break;
  1919. }
  1920. tcp_verify_left_out(tp);
  1921. }
  1922. /* Account newly detected lost packet(s) */
  1923. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1924. {
  1925. struct tcp_sock *tp = tcp_sk(sk);
  1926. if (tcp_is_reno(tp)) {
  1927. tcp_mark_head_lost(sk, 1, 1);
  1928. } else {
  1929. int sacked_upto = tp->sacked_out - tp->reordering;
  1930. if (sacked_upto >= 0)
  1931. tcp_mark_head_lost(sk, sacked_upto, 0);
  1932. else if (fast_rexmit)
  1933. tcp_mark_head_lost(sk, 1, 1);
  1934. }
  1935. }
  1936. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1937. {
  1938. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1939. before(tp->rx_opt.rcv_tsecr, when);
  1940. }
  1941. /* skb is spurious retransmitted if the returned timestamp echo
  1942. * reply is prior to the skb transmission time
  1943. */
  1944. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1945. const struct sk_buff *skb)
  1946. {
  1947. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1948. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1949. }
  1950. /* Nothing was retransmitted or returned timestamp is less
  1951. * than timestamp of the first retransmission.
  1952. */
  1953. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1954. {
  1955. return !tp->retrans_stamp ||
  1956. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1957. }
  1958. /* Undo procedures. */
  1959. /* We can clear retrans_stamp when there are no retransmissions in the
  1960. * window. It would seem that it is trivially available for us in
  1961. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1962. * what will happen if errors occur when sending retransmission for the
  1963. * second time. ...It could the that such segment has only
  1964. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1965. * the head skb is enough except for some reneging corner cases that
  1966. * are not worth the effort.
  1967. *
  1968. * Main reason for all this complexity is the fact that connection dying
  1969. * time now depends on the validity of the retrans_stamp, in particular,
  1970. * that successive retransmissions of a segment must not advance
  1971. * retrans_stamp under any conditions.
  1972. */
  1973. static bool tcp_any_retrans_done(const struct sock *sk)
  1974. {
  1975. const struct tcp_sock *tp = tcp_sk(sk);
  1976. struct sk_buff *skb;
  1977. if (tp->retrans_out)
  1978. return true;
  1979. skb = tcp_rtx_queue_head(sk);
  1980. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  1981. return true;
  1982. return false;
  1983. }
  1984. static void DBGUNDO(struct sock *sk, const char *msg)
  1985. {
  1986. #if FASTRETRANS_DEBUG > 1
  1987. struct tcp_sock *tp = tcp_sk(sk);
  1988. struct inet_sock *inet = inet_sk(sk);
  1989. if (sk->sk_family == AF_INET) {
  1990. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1991. msg,
  1992. &inet->inet_daddr, ntohs(inet->inet_dport),
  1993. tp->snd_cwnd, tcp_left_out(tp),
  1994. tp->snd_ssthresh, tp->prior_ssthresh,
  1995. tp->packets_out);
  1996. }
  1997. #if IS_ENABLED(CONFIG_IPV6)
  1998. else if (sk->sk_family == AF_INET6) {
  1999. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2000. msg,
  2001. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2002. tp->snd_cwnd, tcp_left_out(tp),
  2003. tp->snd_ssthresh, tp->prior_ssthresh,
  2004. tp->packets_out);
  2005. }
  2006. #endif
  2007. #endif
  2008. }
  2009. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2010. {
  2011. struct tcp_sock *tp = tcp_sk(sk);
  2012. if (unmark_loss) {
  2013. struct sk_buff *skb;
  2014. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2015. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2016. }
  2017. tp->lost_out = 0;
  2018. tcp_clear_all_retrans_hints(tp);
  2019. }
  2020. if (tp->prior_ssthresh) {
  2021. const struct inet_connection_sock *icsk = inet_csk(sk);
  2022. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2023. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2024. tp->snd_ssthresh = tp->prior_ssthresh;
  2025. tcp_ecn_withdraw_cwr(tp);
  2026. }
  2027. }
  2028. tp->snd_cwnd_stamp = tcp_jiffies32;
  2029. tp->undo_marker = 0;
  2030. }
  2031. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2032. {
  2033. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2034. }
  2035. /* People celebrate: "We love our President!" */
  2036. static bool tcp_try_undo_recovery(struct sock *sk)
  2037. {
  2038. struct tcp_sock *tp = tcp_sk(sk);
  2039. if (tcp_may_undo(tp)) {
  2040. int mib_idx;
  2041. /* Happy end! We did not retransmit anything
  2042. * or our original transmission succeeded.
  2043. */
  2044. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2045. tcp_undo_cwnd_reduction(sk, false);
  2046. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2047. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2048. else
  2049. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2050. NET_INC_STATS(sock_net(sk), mib_idx);
  2051. } else if (tp->rack.reo_wnd_persist) {
  2052. tp->rack.reo_wnd_persist--;
  2053. }
  2054. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2055. /* Hold old state until something *above* high_seq
  2056. * is ACKed. For Reno it is MUST to prevent false
  2057. * fast retransmits (RFC2582). SACK TCP is safe. */
  2058. if (!tcp_any_retrans_done(sk))
  2059. tp->retrans_stamp = 0;
  2060. return true;
  2061. }
  2062. tcp_set_ca_state(sk, TCP_CA_Open);
  2063. tp->is_sack_reneg = 0;
  2064. return false;
  2065. }
  2066. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2067. static bool tcp_try_undo_dsack(struct sock *sk)
  2068. {
  2069. struct tcp_sock *tp = tcp_sk(sk);
  2070. if (tp->undo_marker && !tp->undo_retrans) {
  2071. tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
  2072. tp->rack.reo_wnd_persist + 1);
  2073. DBGUNDO(sk, "D-SACK");
  2074. tcp_undo_cwnd_reduction(sk, false);
  2075. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2076. return true;
  2077. }
  2078. return false;
  2079. }
  2080. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2081. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2082. {
  2083. struct tcp_sock *tp = tcp_sk(sk);
  2084. if (frto_undo || tcp_may_undo(tp)) {
  2085. tcp_undo_cwnd_reduction(sk, true);
  2086. DBGUNDO(sk, "partial loss");
  2087. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2088. if (frto_undo)
  2089. NET_INC_STATS(sock_net(sk),
  2090. LINUX_MIB_TCPSPURIOUSRTOS);
  2091. inet_csk(sk)->icsk_retransmits = 0;
  2092. if (frto_undo || tcp_is_sack(tp)) {
  2093. tcp_set_ca_state(sk, TCP_CA_Open);
  2094. tp->is_sack_reneg = 0;
  2095. }
  2096. return true;
  2097. }
  2098. return false;
  2099. }
  2100. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2101. * It computes the number of packets to send (sndcnt) based on packets newly
  2102. * delivered:
  2103. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2104. * cwnd reductions across a full RTT.
  2105. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2106. * But when the retransmits are acked without further losses, PRR
  2107. * slow starts cwnd up to ssthresh to speed up the recovery.
  2108. */
  2109. static void tcp_init_cwnd_reduction(struct sock *sk)
  2110. {
  2111. struct tcp_sock *tp = tcp_sk(sk);
  2112. tp->high_seq = tp->snd_nxt;
  2113. tp->tlp_high_seq = 0;
  2114. tp->snd_cwnd_cnt = 0;
  2115. tp->prior_cwnd = tp->snd_cwnd;
  2116. tp->prr_delivered = 0;
  2117. tp->prr_out = 0;
  2118. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2119. tcp_ecn_queue_cwr(tp);
  2120. }
  2121. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2122. {
  2123. struct tcp_sock *tp = tcp_sk(sk);
  2124. int sndcnt = 0;
  2125. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2126. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2127. return;
  2128. tp->prr_delivered += newly_acked_sacked;
  2129. if (delta < 0) {
  2130. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2131. tp->prior_cwnd - 1;
  2132. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2133. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2134. !(flag & FLAG_LOST_RETRANS)) {
  2135. sndcnt = min_t(int, delta,
  2136. max_t(int, tp->prr_delivered - tp->prr_out,
  2137. newly_acked_sacked) + 1);
  2138. } else {
  2139. sndcnt = min(delta, newly_acked_sacked);
  2140. }
  2141. /* Force a fast retransmit upon entering fast recovery */
  2142. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2143. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2144. }
  2145. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2146. {
  2147. struct tcp_sock *tp = tcp_sk(sk);
  2148. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2149. return;
  2150. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2151. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2152. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2153. tp->snd_cwnd = tp->snd_ssthresh;
  2154. tp->snd_cwnd_stamp = tcp_jiffies32;
  2155. }
  2156. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2157. }
  2158. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2159. void tcp_enter_cwr(struct sock *sk)
  2160. {
  2161. struct tcp_sock *tp = tcp_sk(sk);
  2162. tp->prior_ssthresh = 0;
  2163. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2164. tp->undo_marker = 0;
  2165. tcp_init_cwnd_reduction(sk);
  2166. tcp_set_ca_state(sk, TCP_CA_CWR);
  2167. }
  2168. }
  2169. EXPORT_SYMBOL(tcp_enter_cwr);
  2170. static void tcp_try_keep_open(struct sock *sk)
  2171. {
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. int state = TCP_CA_Open;
  2174. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2175. state = TCP_CA_Disorder;
  2176. if (inet_csk(sk)->icsk_ca_state != state) {
  2177. tcp_set_ca_state(sk, state);
  2178. tp->high_seq = tp->snd_nxt;
  2179. }
  2180. }
  2181. static void tcp_try_to_open(struct sock *sk, int flag)
  2182. {
  2183. struct tcp_sock *tp = tcp_sk(sk);
  2184. tcp_verify_left_out(tp);
  2185. if (!tcp_any_retrans_done(sk))
  2186. tp->retrans_stamp = 0;
  2187. if (flag & FLAG_ECE)
  2188. tcp_enter_cwr(sk);
  2189. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2190. tcp_try_keep_open(sk);
  2191. }
  2192. }
  2193. static void tcp_mtup_probe_failed(struct sock *sk)
  2194. {
  2195. struct inet_connection_sock *icsk = inet_csk(sk);
  2196. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2197. icsk->icsk_mtup.probe_size = 0;
  2198. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2199. }
  2200. static void tcp_mtup_probe_success(struct sock *sk)
  2201. {
  2202. struct tcp_sock *tp = tcp_sk(sk);
  2203. struct inet_connection_sock *icsk = inet_csk(sk);
  2204. /* FIXME: breaks with very large cwnd */
  2205. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2206. tp->snd_cwnd = tp->snd_cwnd *
  2207. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2208. icsk->icsk_mtup.probe_size;
  2209. tp->snd_cwnd_cnt = 0;
  2210. tp->snd_cwnd_stamp = tcp_jiffies32;
  2211. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2212. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2213. icsk->icsk_mtup.probe_size = 0;
  2214. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2215. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2216. }
  2217. /* Do a simple retransmit without using the backoff mechanisms in
  2218. * tcp_timer. This is used for path mtu discovery.
  2219. * The socket is already locked here.
  2220. */
  2221. void tcp_simple_retransmit(struct sock *sk)
  2222. {
  2223. const struct inet_connection_sock *icsk = inet_csk(sk);
  2224. struct tcp_sock *tp = tcp_sk(sk);
  2225. struct sk_buff *skb;
  2226. unsigned int mss = tcp_current_mss(sk);
  2227. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2228. if (tcp_skb_seglen(skb) > mss &&
  2229. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2230. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2231. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2232. tp->retrans_out -= tcp_skb_pcount(skb);
  2233. }
  2234. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2235. }
  2236. }
  2237. tcp_clear_retrans_hints_partial(tp);
  2238. if (!tp->lost_out)
  2239. return;
  2240. if (tcp_is_reno(tp))
  2241. tcp_limit_reno_sacked(tp);
  2242. tcp_verify_left_out(tp);
  2243. /* Don't muck with the congestion window here.
  2244. * Reason is that we do not increase amount of _data_
  2245. * in network, but units changed and effective
  2246. * cwnd/ssthresh really reduced now.
  2247. */
  2248. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2249. tp->high_seq = tp->snd_nxt;
  2250. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2251. tp->prior_ssthresh = 0;
  2252. tp->undo_marker = 0;
  2253. tcp_set_ca_state(sk, TCP_CA_Loss);
  2254. }
  2255. tcp_xmit_retransmit_queue(sk);
  2256. }
  2257. EXPORT_SYMBOL(tcp_simple_retransmit);
  2258. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2259. {
  2260. struct tcp_sock *tp = tcp_sk(sk);
  2261. int mib_idx;
  2262. if (tcp_is_reno(tp))
  2263. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2264. else
  2265. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2266. NET_INC_STATS(sock_net(sk), mib_idx);
  2267. tp->prior_ssthresh = 0;
  2268. tcp_init_undo(tp);
  2269. if (!tcp_in_cwnd_reduction(sk)) {
  2270. if (!ece_ack)
  2271. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2272. tcp_init_cwnd_reduction(sk);
  2273. }
  2274. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2275. }
  2276. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2277. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2278. */
  2279. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2280. int *rexmit)
  2281. {
  2282. struct tcp_sock *tp = tcp_sk(sk);
  2283. bool recovered = !before(tp->snd_una, tp->high_seq);
  2284. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2285. tcp_try_undo_loss(sk, false))
  2286. return;
  2287. /* The ACK (s)acks some never-retransmitted data meaning not all
  2288. * the data packets before the timeout were lost. Therefore we
  2289. * undo the congestion window and state. This is essentially
  2290. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2291. * a retransmitted skb is permantly marked, we can apply such an
  2292. * operation even if F-RTO was not used.
  2293. */
  2294. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2295. tcp_try_undo_loss(sk, tp->undo_marker))
  2296. return;
  2297. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2298. if (after(tp->snd_nxt, tp->high_seq)) {
  2299. if (flag & FLAG_DATA_SACKED || is_dupack)
  2300. tp->frto = 0; /* Step 3.a. loss was real */
  2301. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2302. tp->high_seq = tp->snd_nxt;
  2303. /* Step 2.b. Try send new data (but deferred until cwnd
  2304. * is updated in tcp_ack()). Otherwise fall back to
  2305. * the conventional recovery.
  2306. */
  2307. if (!tcp_write_queue_empty(sk) &&
  2308. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2309. *rexmit = REXMIT_NEW;
  2310. return;
  2311. }
  2312. tp->frto = 0;
  2313. }
  2314. }
  2315. if (recovered) {
  2316. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2317. tcp_try_undo_recovery(sk);
  2318. return;
  2319. }
  2320. if (tcp_is_reno(tp)) {
  2321. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2322. * delivered. Lower inflight to clock out (re)tranmissions.
  2323. */
  2324. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2325. tcp_add_reno_sack(sk);
  2326. else if (flag & FLAG_SND_UNA_ADVANCED)
  2327. tcp_reset_reno_sack(tp);
  2328. }
  2329. *rexmit = REXMIT_LOST;
  2330. }
  2331. /* Undo during fast recovery after partial ACK. */
  2332. static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
  2333. {
  2334. struct tcp_sock *tp = tcp_sk(sk);
  2335. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2336. /* Plain luck! Hole if filled with delayed
  2337. * packet, rather than with a retransmit. Check reordering.
  2338. */
  2339. tcp_check_sack_reordering(sk, prior_snd_una, 1);
  2340. /* We are getting evidence that the reordering degree is higher
  2341. * than we realized. If there are no retransmits out then we
  2342. * can undo. Otherwise we clock out new packets but do not
  2343. * mark more packets lost or retransmit more.
  2344. */
  2345. if (tp->retrans_out)
  2346. return true;
  2347. if (!tcp_any_retrans_done(sk))
  2348. tp->retrans_stamp = 0;
  2349. DBGUNDO(sk, "partial recovery");
  2350. tcp_undo_cwnd_reduction(sk, true);
  2351. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2352. tcp_try_keep_open(sk);
  2353. return true;
  2354. }
  2355. return false;
  2356. }
  2357. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2358. {
  2359. struct tcp_sock *tp = tcp_sk(sk);
  2360. /* Use RACK to detect loss */
  2361. if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2362. u32 prior_retrans = tp->retrans_out;
  2363. tcp_rack_mark_lost(sk);
  2364. if (prior_retrans > tp->retrans_out)
  2365. *ack_flag |= FLAG_LOST_RETRANS;
  2366. }
  2367. }
  2368. static bool tcp_force_fast_retransmit(struct sock *sk)
  2369. {
  2370. struct tcp_sock *tp = tcp_sk(sk);
  2371. return after(tcp_highest_sack_seq(tp),
  2372. tp->snd_una + tp->reordering * tp->mss_cache);
  2373. }
  2374. /* Process an event, which can update packets-in-flight not trivially.
  2375. * Main goal of this function is to calculate new estimate for left_out,
  2376. * taking into account both packets sitting in receiver's buffer and
  2377. * packets lost by network.
  2378. *
  2379. * Besides that it updates the congestion state when packet loss or ECN
  2380. * is detected. But it does not reduce the cwnd, it is done by the
  2381. * congestion control later.
  2382. *
  2383. * It does _not_ decide what to send, it is made in function
  2384. * tcp_xmit_retransmit_queue().
  2385. */
  2386. static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
  2387. bool is_dupack, int *ack_flag, int *rexmit)
  2388. {
  2389. struct inet_connection_sock *icsk = inet_csk(sk);
  2390. struct tcp_sock *tp = tcp_sk(sk);
  2391. int fast_rexmit = 0, flag = *ack_flag;
  2392. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2393. tcp_force_fast_retransmit(sk));
  2394. if (!tp->packets_out && tp->sacked_out)
  2395. tp->sacked_out = 0;
  2396. /* Now state machine starts.
  2397. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2398. if (flag & FLAG_ECE)
  2399. tp->prior_ssthresh = 0;
  2400. /* B. In all the states check for reneging SACKs. */
  2401. if (tcp_check_sack_reneging(sk, flag))
  2402. return;
  2403. /* C. Check consistency of the current state. */
  2404. tcp_verify_left_out(tp);
  2405. /* D. Check state exit conditions. State can be terminated
  2406. * when high_seq is ACKed. */
  2407. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2408. WARN_ON(tp->retrans_out != 0);
  2409. tp->retrans_stamp = 0;
  2410. } else if (!before(tp->snd_una, tp->high_seq)) {
  2411. switch (icsk->icsk_ca_state) {
  2412. case TCP_CA_CWR:
  2413. /* CWR is to be held something *above* high_seq
  2414. * is ACKed for CWR bit to reach receiver. */
  2415. if (tp->snd_una != tp->high_seq) {
  2416. tcp_end_cwnd_reduction(sk);
  2417. tcp_set_ca_state(sk, TCP_CA_Open);
  2418. }
  2419. break;
  2420. case TCP_CA_Recovery:
  2421. if (tcp_is_reno(tp))
  2422. tcp_reset_reno_sack(tp);
  2423. if (tcp_try_undo_recovery(sk))
  2424. return;
  2425. tcp_end_cwnd_reduction(sk);
  2426. break;
  2427. }
  2428. }
  2429. /* E. Process state. */
  2430. switch (icsk->icsk_ca_state) {
  2431. case TCP_CA_Recovery:
  2432. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2433. if (tcp_is_reno(tp) && is_dupack)
  2434. tcp_add_reno_sack(sk);
  2435. } else {
  2436. if (tcp_try_undo_partial(sk, prior_snd_una))
  2437. return;
  2438. /* Partial ACK arrived. Force fast retransmit. */
  2439. do_lost = tcp_is_reno(tp) ||
  2440. tcp_force_fast_retransmit(sk);
  2441. }
  2442. if (tcp_try_undo_dsack(sk)) {
  2443. tcp_try_keep_open(sk);
  2444. return;
  2445. }
  2446. tcp_rack_identify_loss(sk, ack_flag);
  2447. break;
  2448. case TCP_CA_Loss:
  2449. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2450. tcp_rack_identify_loss(sk, ack_flag);
  2451. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2452. (*ack_flag & FLAG_LOST_RETRANS)))
  2453. return;
  2454. /* Change state if cwnd is undone or retransmits are lost */
  2455. /* fall through */
  2456. default:
  2457. if (tcp_is_reno(tp)) {
  2458. if (flag & FLAG_SND_UNA_ADVANCED)
  2459. tcp_reset_reno_sack(tp);
  2460. if (is_dupack)
  2461. tcp_add_reno_sack(sk);
  2462. }
  2463. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2464. tcp_try_undo_dsack(sk);
  2465. tcp_rack_identify_loss(sk, ack_flag);
  2466. if (!tcp_time_to_recover(sk, flag)) {
  2467. tcp_try_to_open(sk, flag);
  2468. return;
  2469. }
  2470. /* MTU probe failure: don't reduce cwnd */
  2471. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2472. icsk->icsk_mtup.probe_size &&
  2473. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2474. tcp_mtup_probe_failed(sk);
  2475. /* Restores the reduction we did in tcp_mtup_probe() */
  2476. tp->snd_cwnd++;
  2477. tcp_simple_retransmit(sk);
  2478. return;
  2479. }
  2480. /* Otherwise enter Recovery state */
  2481. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2482. fast_rexmit = 1;
  2483. }
  2484. if (do_lost)
  2485. tcp_update_scoreboard(sk, fast_rexmit);
  2486. *rexmit = REXMIT_LOST;
  2487. }
  2488. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2489. {
  2490. u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
  2491. struct tcp_sock *tp = tcp_sk(sk);
  2492. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2493. rtt_us ? : jiffies_to_usecs(1));
  2494. }
  2495. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2496. long seq_rtt_us, long sack_rtt_us,
  2497. long ca_rtt_us, struct rate_sample *rs)
  2498. {
  2499. const struct tcp_sock *tp = tcp_sk(sk);
  2500. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2501. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2502. * Karn's algorithm forbids taking RTT if some retransmitted data
  2503. * is acked (RFC6298).
  2504. */
  2505. if (seq_rtt_us < 0)
  2506. seq_rtt_us = sack_rtt_us;
  2507. /* RTTM Rule: A TSecr value received in a segment is used to
  2508. * update the averaged RTT measurement only if the segment
  2509. * acknowledges some new data, i.e., only if it advances the
  2510. * left edge of the send window.
  2511. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2512. */
  2513. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2514. flag & FLAG_ACKED) {
  2515. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2516. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2517. seq_rtt_us = ca_rtt_us = delta_us;
  2518. }
  2519. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2520. if (seq_rtt_us < 0)
  2521. return false;
  2522. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2523. * always taken together with ACK, SACK, or TS-opts. Any negative
  2524. * values will be skipped with the seq_rtt_us < 0 check above.
  2525. */
  2526. tcp_update_rtt_min(sk, ca_rtt_us);
  2527. tcp_rtt_estimator(sk, seq_rtt_us);
  2528. tcp_set_rto(sk);
  2529. /* RFC6298: only reset backoff on valid RTT measurement. */
  2530. inet_csk(sk)->icsk_backoff = 0;
  2531. return true;
  2532. }
  2533. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2534. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2535. {
  2536. struct rate_sample rs;
  2537. long rtt_us = -1L;
  2538. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2539. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2540. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2541. }
  2542. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2543. {
  2544. const struct inet_connection_sock *icsk = inet_csk(sk);
  2545. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2546. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2547. }
  2548. /* Restart timer after forward progress on connection.
  2549. * RFC2988 recommends to restart timer to now+rto.
  2550. */
  2551. void tcp_rearm_rto(struct sock *sk)
  2552. {
  2553. const struct inet_connection_sock *icsk = inet_csk(sk);
  2554. struct tcp_sock *tp = tcp_sk(sk);
  2555. /* If the retrans timer is currently being used by Fast Open
  2556. * for SYN-ACK retrans purpose, stay put.
  2557. */
  2558. if (tp->fastopen_rsk)
  2559. return;
  2560. if (!tp->packets_out) {
  2561. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2562. } else {
  2563. u32 rto = inet_csk(sk)->icsk_rto;
  2564. /* Offset the time elapsed after installing regular RTO */
  2565. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2566. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2567. s64 delta_us = tcp_rto_delta_us(sk);
  2568. /* delta_us may not be positive if the socket is locked
  2569. * when the retrans timer fires and is rescheduled.
  2570. */
  2571. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2572. }
  2573. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2574. TCP_RTO_MAX);
  2575. }
  2576. }
  2577. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2578. static void tcp_set_xmit_timer(struct sock *sk)
  2579. {
  2580. if (!tcp_schedule_loss_probe(sk, true))
  2581. tcp_rearm_rto(sk);
  2582. }
  2583. /* If we get here, the whole TSO packet has not been acked. */
  2584. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2585. {
  2586. struct tcp_sock *tp = tcp_sk(sk);
  2587. u32 packets_acked;
  2588. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2589. packets_acked = tcp_skb_pcount(skb);
  2590. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2591. return 0;
  2592. packets_acked -= tcp_skb_pcount(skb);
  2593. if (packets_acked) {
  2594. BUG_ON(tcp_skb_pcount(skb) == 0);
  2595. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2596. }
  2597. return packets_acked;
  2598. }
  2599. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2600. u32 prior_snd_una)
  2601. {
  2602. const struct skb_shared_info *shinfo;
  2603. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2604. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2605. return;
  2606. shinfo = skb_shinfo(skb);
  2607. if (!before(shinfo->tskey, prior_snd_una) &&
  2608. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2609. tcp_skb_tsorted_save(skb) {
  2610. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2611. } tcp_skb_tsorted_restore(skb);
  2612. }
  2613. }
  2614. /* Remove acknowledged frames from the retransmission queue. If our packet
  2615. * is before the ack sequence we can discard it as it's confirmed to have
  2616. * arrived at the other end.
  2617. */
  2618. static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
  2619. u32 prior_snd_una,
  2620. struct tcp_sacktag_state *sack)
  2621. {
  2622. const struct inet_connection_sock *icsk = inet_csk(sk);
  2623. u64 first_ackt, last_ackt;
  2624. struct tcp_sock *tp = tcp_sk(sk);
  2625. u32 prior_sacked = tp->sacked_out;
  2626. u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
  2627. struct sk_buff *skb, *next;
  2628. bool fully_acked = true;
  2629. long sack_rtt_us = -1L;
  2630. long seq_rtt_us = -1L;
  2631. long ca_rtt_us = -1L;
  2632. u32 pkts_acked = 0;
  2633. u32 last_in_flight = 0;
  2634. bool rtt_update;
  2635. int flag = 0;
  2636. first_ackt = 0;
  2637. for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
  2638. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2639. const u32 start_seq = scb->seq;
  2640. u8 sacked = scb->sacked;
  2641. u32 acked_pcount;
  2642. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2643. /* Determine how many packets and what bytes were acked, tso and else */
  2644. if (after(scb->end_seq, tp->snd_una)) {
  2645. if (tcp_skb_pcount(skb) == 1 ||
  2646. !after(tp->snd_una, scb->seq))
  2647. break;
  2648. acked_pcount = tcp_tso_acked(sk, skb);
  2649. if (!acked_pcount)
  2650. break;
  2651. fully_acked = false;
  2652. } else {
  2653. acked_pcount = tcp_skb_pcount(skb);
  2654. }
  2655. if (unlikely(sacked & TCPCB_RETRANS)) {
  2656. if (sacked & TCPCB_SACKED_RETRANS)
  2657. tp->retrans_out -= acked_pcount;
  2658. flag |= FLAG_RETRANS_DATA_ACKED;
  2659. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2660. last_ackt = skb->skb_mstamp;
  2661. WARN_ON_ONCE(last_ackt == 0);
  2662. if (!first_ackt)
  2663. first_ackt = last_ackt;
  2664. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2665. if (before(start_seq, reord))
  2666. reord = start_seq;
  2667. if (!after(scb->end_seq, tp->high_seq))
  2668. flag |= FLAG_ORIG_SACK_ACKED;
  2669. }
  2670. if (sacked & TCPCB_SACKED_ACKED) {
  2671. tp->sacked_out -= acked_pcount;
  2672. } else if (tcp_is_sack(tp)) {
  2673. tp->delivered += acked_pcount;
  2674. if (!tcp_skb_spurious_retrans(tp, skb))
  2675. tcp_rack_advance(tp, sacked, scb->end_seq,
  2676. skb->skb_mstamp);
  2677. }
  2678. if (sacked & TCPCB_LOST)
  2679. tp->lost_out -= acked_pcount;
  2680. tp->packets_out -= acked_pcount;
  2681. pkts_acked += acked_pcount;
  2682. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2683. /* Initial outgoing SYN's get put onto the write_queue
  2684. * just like anything else we transmit. It is not
  2685. * true data, and if we misinform our callers that
  2686. * this ACK acks real data, we will erroneously exit
  2687. * connection startup slow start one packet too
  2688. * quickly. This is severely frowned upon behavior.
  2689. */
  2690. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2691. flag |= FLAG_DATA_ACKED;
  2692. } else {
  2693. flag |= FLAG_SYN_ACKED;
  2694. tp->retrans_stamp = 0;
  2695. }
  2696. if (!fully_acked)
  2697. break;
  2698. next = skb_rb_next(skb);
  2699. if (unlikely(skb == tp->retransmit_skb_hint))
  2700. tp->retransmit_skb_hint = NULL;
  2701. if (unlikely(skb == tp->lost_skb_hint))
  2702. tp->lost_skb_hint = NULL;
  2703. tcp_rtx_queue_unlink_and_free(skb, sk);
  2704. }
  2705. if (!skb)
  2706. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2707. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2708. tp->snd_up = tp->snd_una;
  2709. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2710. flag |= FLAG_SACK_RENEGING;
  2711. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2712. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2713. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2714. }
  2715. if (sack->first_sackt) {
  2716. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2717. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2718. }
  2719. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2720. ca_rtt_us, sack->rate);
  2721. if (flag & FLAG_ACKED) {
  2722. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2723. if (unlikely(icsk->icsk_mtup.probe_size &&
  2724. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2725. tcp_mtup_probe_success(sk);
  2726. }
  2727. if (tcp_is_reno(tp)) {
  2728. tcp_remove_reno_sacks(sk, pkts_acked);
  2729. } else {
  2730. int delta;
  2731. /* Non-retransmitted hole got filled? That's reordering */
  2732. if (before(reord, prior_fack))
  2733. tcp_check_sack_reordering(sk, reord, 0);
  2734. delta = prior_sacked - tp->sacked_out;
  2735. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2736. }
  2737. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2738. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2739. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2740. * after when the head was last (re)transmitted. Otherwise the
  2741. * timeout may continue to extend in loss recovery.
  2742. */
  2743. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2744. }
  2745. if (icsk->icsk_ca_ops->pkts_acked) {
  2746. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2747. .rtt_us = sack->rate->rtt_us,
  2748. .in_flight = last_in_flight };
  2749. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2750. }
  2751. #if FASTRETRANS_DEBUG > 0
  2752. WARN_ON((int)tp->sacked_out < 0);
  2753. WARN_ON((int)tp->lost_out < 0);
  2754. WARN_ON((int)tp->retrans_out < 0);
  2755. if (!tp->packets_out && tcp_is_sack(tp)) {
  2756. icsk = inet_csk(sk);
  2757. if (tp->lost_out) {
  2758. pr_debug("Leak l=%u %d\n",
  2759. tp->lost_out, icsk->icsk_ca_state);
  2760. tp->lost_out = 0;
  2761. }
  2762. if (tp->sacked_out) {
  2763. pr_debug("Leak s=%u %d\n",
  2764. tp->sacked_out, icsk->icsk_ca_state);
  2765. tp->sacked_out = 0;
  2766. }
  2767. if (tp->retrans_out) {
  2768. pr_debug("Leak r=%u %d\n",
  2769. tp->retrans_out, icsk->icsk_ca_state);
  2770. tp->retrans_out = 0;
  2771. }
  2772. }
  2773. #endif
  2774. return flag;
  2775. }
  2776. static void tcp_ack_probe(struct sock *sk)
  2777. {
  2778. struct inet_connection_sock *icsk = inet_csk(sk);
  2779. struct sk_buff *head = tcp_send_head(sk);
  2780. const struct tcp_sock *tp = tcp_sk(sk);
  2781. /* Was it a usable window open? */
  2782. if (!head)
  2783. return;
  2784. if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
  2785. icsk->icsk_backoff = 0;
  2786. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2787. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2788. * This function is not for random using!
  2789. */
  2790. } else {
  2791. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2792. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2793. when, TCP_RTO_MAX);
  2794. }
  2795. }
  2796. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2797. {
  2798. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2799. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2800. }
  2801. /* Decide wheather to run the increase function of congestion control. */
  2802. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2803. {
  2804. /* If reordering is high then always grow cwnd whenever data is
  2805. * delivered regardless of its ordering. Otherwise stay conservative
  2806. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2807. * new SACK or ECE mark may first advance cwnd here and later reduce
  2808. * cwnd in tcp_fastretrans_alert() based on more states.
  2809. */
  2810. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2811. return flag & FLAG_FORWARD_PROGRESS;
  2812. return flag & FLAG_DATA_ACKED;
  2813. }
  2814. /* The "ultimate" congestion control function that aims to replace the rigid
  2815. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2816. * It's called toward the end of processing an ACK with precise rate
  2817. * information. All transmission or retransmission are delayed afterwards.
  2818. */
  2819. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2820. int flag, const struct rate_sample *rs)
  2821. {
  2822. const struct inet_connection_sock *icsk = inet_csk(sk);
  2823. if (icsk->icsk_ca_ops->cong_control) {
  2824. icsk->icsk_ca_ops->cong_control(sk, rs);
  2825. return;
  2826. }
  2827. if (tcp_in_cwnd_reduction(sk)) {
  2828. /* Reduce cwnd if state mandates */
  2829. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2830. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2831. /* Advance cwnd if state allows */
  2832. tcp_cong_avoid(sk, ack, acked_sacked);
  2833. }
  2834. tcp_update_pacing_rate(sk);
  2835. }
  2836. /* Check that window update is acceptable.
  2837. * The function assumes that snd_una<=ack<=snd_next.
  2838. */
  2839. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2840. const u32 ack, const u32 ack_seq,
  2841. const u32 nwin)
  2842. {
  2843. return after(ack, tp->snd_una) ||
  2844. after(ack_seq, tp->snd_wl1) ||
  2845. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2846. }
  2847. /* If we update tp->snd_una, also update tp->bytes_acked */
  2848. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2849. {
  2850. u32 delta = ack - tp->snd_una;
  2851. sock_owned_by_me((struct sock *)tp);
  2852. tp->bytes_acked += delta;
  2853. tp->snd_una = ack;
  2854. }
  2855. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2856. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2857. {
  2858. u32 delta = seq - tp->rcv_nxt;
  2859. sock_owned_by_me((struct sock *)tp);
  2860. tp->bytes_received += delta;
  2861. tp->rcv_nxt = seq;
  2862. }
  2863. /* Update our send window.
  2864. *
  2865. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2866. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2867. */
  2868. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2869. u32 ack_seq)
  2870. {
  2871. struct tcp_sock *tp = tcp_sk(sk);
  2872. int flag = 0;
  2873. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2874. if (likely(!tcp_hdr(skb)->syn))
  2875. nwin <<= tp->rx_opt.snd_wscale;
  2876. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2877. flag |= FLAG_WIN_UPDATE;
  2878. tcp_update_wl(tp, ack_seq);
  2879. if (tp->snd_wnd != nwin) {
  2880. tp->snd_wnd = nwin;
  2881. /* Note, it is the only place, where
  2882. * fast path is recovered for sending TCP.
  2883. */
  2884. tp->pred_flags = 0;
  2885. tcp_fast_path_check(sk);
  2886. if (!tcp_write_queue_empty(sk))
  2887. tcp_slow_start_after_idle_check(sk);
  2888. if (nwin > tp->max_window) {
  2889. tp->max_window = nwin;
  2890. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2891. }
  2892. }
  2893. }
  2894. tcp_snd_una_update(tp, ack);
  2895. return flag;
  2896. }
  2897. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2898. u32 *last_oow_ack_time)
  2899. {
  2900. if (*last_oow_ack_time) {
  2901. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2902. if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
  2903. NET_INC_STATS(net, mib_idx);
  2904. return true; /* rate-limited: don't send yet! */
  2905. }
  2906. }
  2907. *last_oow_ack_time = tcp_jiffies32;
  2908. return false; /* not rate-limited: go ahead, send dupack now! */
  2909. }
  2910. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2911. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2912. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2913. * attacks that send repeated SYNs or ACKs for the same connection. To
  2914. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2915. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2916. */
  2917. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2918. int mib_idx, u32 *last_oow_ack_time)
  2919. {
  2920. /* Data packets without SYNs are not likely part of an ACK loop. */
  2921. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2922. !tcp_hdr(skb)->syn)
  2923. return false;
  2924. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2925. }
  2926. /* RFC 5961 7 [ACK Throttling] */
  2927. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2928. {
  2929. /* unprotected vars, we dont care of overwrites */
  2930. static u32 challenge_timestamp;
  2931. static unsigned int challenge_count;
  2932. struct tcp_sock *tp = tcp_sk(sk);
  2933. struct net *net = sock_net(sk);
  2934. u32 count, now;
  2935. /* First check our per-socket dupack rate limit. */
  2936. if (__tcp_oow_rate_limited(net,
  2937. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2938. &tp->last_oow_ack_time))
  2939. return;
  2940. /* Then check host-wide RFC 5961 rate limit. */
  2941. now = jiffies / HZ;
  2942. if (now != challenge_timestamp) {
  2943. u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
  2944. u32 half = (ack_limit + 1) >> 1;
  2945. challenge_timestamp = now;
  2946. WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
  2947. }
  2948. count = READ_ONCE(challenge_count);
  2949. if (count > 0) {
  2950. WRITE_ONCE(challenge_count, count - 1);
  2951. NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
  2952. tcp_send_ack(sk);
  2953. }
  2954. }
  2955. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2956. {
  2957. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2958. tp->rx_opt.ts_recent_stamp = get_seconds();
  2959. }
  2960. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2961. {
  2962. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2963. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2964. * extra check below makes sure this can only happen
  2965. * for pure ACK frames. -DaveM
  2966. *
  2967. * Not only, also it occurs for expired timestamps.
  2968. */
  2969. if (tcp_paws_check(&tp->rx_opt, 0))
  2970. tcp_store_ts_recent(tp);
  2971. }
  2972. }
  2973. /* This routine deals with acks during a TLP episode.
  2974. * We mark the end of a TLP episode on receiving TLP dupack or when
  2975. * ack is after tlp_high_seq.
  2976. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2977. */
  2978. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2979. {
  2980. struct tcp_sock *tp = tcp_sk(sk);
  2981. if (before(ack, tp->tlp_high_seq))
  2982. return;
  2983. if (flag & FLAG_DSACKING_ACK) {
  2984. /* This DSACK means original and TLP probe arrived; no loss */
  2985. tp->tlp_high_seq = 0;
  2986. } else if (after(ack, tp->tlp_high_seq)) {
  2987. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2988. * tlp_high_seq in tcp_init_cwnd_reduction()
  2989. */
  2990. tcp_init_cwnd_reduction(sk);
  2991. tcp_set_ca_state(sk, TCP_CA_CWR);
  2992. tcp_end_cwnd_reduction(sk);
  2993. tcp_try_keep_open(sk);
  2994. NET_INC_STATS(sock_net(sk),
  2995. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2996. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2997. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2998. /* Pure dupack: original and TLP probe arrived; no loss */
  2999. tp->tlp_high_seq = 0;
  3000. }
  3001. }
  3002. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3003. {
  3004. const struct inet_connection_sock *icsk = inet_csk(sk);
  3005. if (icsk->icsk_ca_ops->in_ack_event)
  3006. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3007. }
  3008. /* Congestion control has updated the cwnd already. So if we're in
  3009. * loss recovery then now we do any new sends (for FRTO) or
  3010. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3011. */
  3012. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3013. {
  3014. struct tcp_sock *tp = tcp_sk(sk);
  3015. if (rexmit == REXMIT_NONE)
  3016. return;
  3017. if (unlikely(rexmit == 2)) {
  3018. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3019. TCP_NAGLE_OFF);
  3020. if (after(tp->snd_nxt, tp->high_seq))
  3021. return;
  3022. tp->frto = 0;
  3023. }
  3024. tcp_xmit_retransmit_queue(sk);
  3025. }
  3026. /* This routine deals with incoming acks, but not outgoing ones. */
  3027. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3028. {
  3029. struct inet_connection_sock *icsk = inet_csk(sk);
  3030. struct tcp_sock *tp = tcp_sk(sk);
  3031. struct tcp_sacktag_state sack_state;
  3032. struct rate_sample rs = { .prior_delivered = 0 };
  3033. u32 prior_snd_una = tp->snd_una;
  3034. bool is_sack_reneg = tp->is_sack_reneg;
  3035. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3036. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3037. bool is_dupack = false;
  3038. int prior_packets = tp->packets_out;
  3039. u32 delivered = tp->delivered;
  3040. u32 lost = tp->lost;
  3041. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3042. u32 prior_fack;
  3043. sack_state.first_sackt = 0;
  3044. sack_state.rate = &rs;
  3045. /* We very likely will need to access rtx queue. */
  3046. prefetch(sk->tcp_rtx_queue.rb_node);
  3047. /* If the ack is older than previous acks
  3048. * then we can probably ignore it.
  3049. */
  3050. if (before(ack, prior_snd_una)) {
  3051. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3052. if (before(ack, prior_snd_una - tp->max_window)) {
  3053. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3054. tcp_send_challenge_ack(sk, skb);
  3055. return -1;
  3056. }
  3057. goto old_ack;
  3058. }
  3059. /* If the ack includes data we haven't sent yet, discard
  3060. * this segment (RFC793 Section 3.9).
  3061. */
  3062. if (after(ack, tp->snd_nxt))
  3063. goto invalid_ack;
  3064. if (after(ack, prior_snd_una)) {
  3065. flag |= FLAG_SND_UNA_ADVANCED;
  3066. icsk->icsk_retransmits = 0;
  3067. }
  3068. prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
  3069. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3070. /* ts_recent update must be made after we are sure that the packet
  3071. * is in window.
  3072. */
  3073. if (flag & FLAG_UPDATE_TS_RECENT)
  3074. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3075. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3076. /* Window is constant, pure forward advance.
  3077. * No more checks are required.
  3078. * Note, we use the fact that SND.UNA>=SND.WL2.
  3079. */
  3080. tcp_update_wl(tp, ack_seq);
  3081. tcp_snd_una_update(tp, ack);
  3082. flag |= FLAG_WIN_UPDATE;
  3083. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3084. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3085. } else {
  3086. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3087. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3088. flag |= FLAG_DATA;
  3089. else
  3090. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3091. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3092. if (TCP_SKB_CB(skb)->sacked)
  3093. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3094. &sack_state);
  3095. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3096. flag |= FLAG_ECE;
  3097. ack_ev_flags |= CA_ACK_ECE;
  3098. }
  3099. if (flag & FLAG_WIN_UPDATE)
  3100. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3101. tcp_in_ack_event(sk, ack_ev_flags);
  3102. }
  3103. /* We passed data and got it acked, remove any soft error
  3104. * log. Something worked...
  3105. */
  3106. sk->sk_err_soft = 0;
  3107. icsk->icsk_probes_out = 0;
  3108. tp->rcv_tstamp = tcp_jiffies32;
  3109. if (!prior_packets)
  3110. goto no_queue;
  3111. /* See if we can take anything off of the retransmit queue. */
  3112. flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
  3113. tcp_rack_update_reo_wnd(sk, &rs);
  3114. if (tp->tlp_high_seq)
  3115. tcp_process_tlp_ack(sk, ack, flag);
  3116. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3117. if (flag & FLAG_SET_XMIT_TIMER)
  3118. tcp_set_xmit_timer(sk);
  3119. if (tcp_ack_is_dubious(sk, flag)) {
  3120. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3121. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3122. &rexmit);
  3123. }
  3124. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3125. sk_dst_confirm(sk);
  3126. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3127. lost = tp->lost - lost; /* freshly marked lost */
  3128. tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
  3129. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3130. tcp_xmit_recovery(sk, rexmit);
  3131. return 1;
  3132. no_queue:
  3133. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3134. if (flag & FLAG_DSACKING_ACK)
  3135. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3136. &rexmit);
  3137. /* If this ack opens up a zero window, clear backoff. It was
  3138. * being used to time the probes, and is probably far higher than
  3139. * it needs to be for normal retransmission.
  3140. */
  3141. tcp_ack_probe(sk);
  3142. if (tp->tlp_high_seq)
  3143. tcp_process_tlp_ack(sk, ack, flag);
  3144. return 1;
  3145. invalid_ack:
  3146. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3147. return -1;
  3148. old_ack:
  3149. /* If data was SACKed, tag it and see if we should send more data.
  3150. * If data was DSACKed, see if we can undo a cwnd reduction.
  3151. */
  3152. if (TCP_SKB_CB(skb)->sacked) {
  3153. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3154. &sack_state);
  3155. tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
  3156. &rexmit);
  3157. tcp_xmit_recovery(sk, rexmit);
  3158. }
  3159. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3160. return 0;
  3161. }
  3162. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3163. bool syn, struct tcp_fastopen_cookie *foc,
  3164. bool exp_opt)
  3165. {
  3166. /* Valid only in SYN or SYN-ACK with an even length. */
  3167. if (!foc || !syn || len < 0 || (len & 1))
  3168. return;
  3169. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3170. len <= TCP_FASTOPEN_COOKIE_MAX)
  3171. memcpy(foc->val, cookie, len);
  3172. else if (len != 0)
  3173. len = -1;
  3174. foc->len = len;
  3175. foc->exp = exp_opt;
  3176. }
  3177. static void smc_parse_options(const struct tcphdr *th,
  3178. struct tcp_options_received *opt_rx,
  3179. const unsigned char *ptr,
  3180. int opsize)
  3181. {
  3182. #if IS_ENABLED(CONFIG_SMC)
  3183. if (static_branch_unlikely(&tcp_have_smc)) {
  3184. if (th->syn && !(opsize & 1) &&
  3185. opsize >= TCPOLEN_EXP_SMC_BASE &&
  3186. get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
  3187. opt_rx->smc_ok = 1;
  3188. }
  3189. #endif
  3190. }
  3191. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3192. * But, this can also be called on packets in the established flow when
  3193. * the fast version below fails.
  3194. */
  3195. void tcp_parse_options(const struct net *net,
  3196. const struct sk_buff *skb,
  3197. struct tcp_options_received *opt_rx, int estab,
  3198. struct tcp_fastopen_cookie *foc)
  3199. {
  3200. const unsigned char *ptr;
  3201. const struct tcphdr *th = tcp_hdr(skb);
  3202. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3203. ptr = (const unsigned char *)(th + 1);
  3204. opt_rx->saw_tstamp = 0;
  3205. while (length > 0) {
  3206. int opcode = *ptr++;
  3207. int opsize;
  3208. switch (opcode) {
  3209. case TCPOPT_EOL:
  3210. return;
  3211. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3212. length--;
  3213. continue;
  3214. default:
  3215. opsize = *ptr++;
  3216. if (opsize < 2) /* "silly options" */
  3217. return;
  3218. if (opsize > length)
  3219. return; /* don't parse partial options */
  3220. switch (opcode) {
  3221. case TCPOPT_MSS:
  3222. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3223. u16 in_mss = get_unaligned_be16(ptr);
  3224. if (in_mss) {
  3225. if (opt_rx->user_mss &&
  3226. opt_rx->user_mss < in_mss)
  3227. in_mss = opt_rx->user_mss;
  3228. opt_rx->mss_clamp = in_mss;
  3229. }
  3230. }
  3231. break;
  3232. case TCPOPT_WINDOW:
  3233. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3234. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3235. __u8 snd_wscale = *(__u8 *)ptr;
  3236. opt_rx->wscale_ok = 1;
  3237. if (snd_wscale > TCP_MAX_WSCALE) {
  3238. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3239. __func__,
  3240. snd_wscale,
  3241. TCP_MAX_WSCALE);
  3242. snd_wscale = TCP_MAX_WSCALE;
  3243. }
  3244. opt_rx->snd_wscale = snd_wscale;
  3245. }
  3246. break;
  3247. case TCPOPT_TIMESTAMP:
  3248. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3249. ((estab && opt_rx->tstamp_ok) ||
  3250. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3251. opt_rx->saw_tstamp = 1;
  3252. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3253. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3254. }
  3255. break;
  3256. case TCPOPT_SACK_PERM:
  3257. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3258. !estab && net->ipv4.sysctl_tcp_sack) {
  3259. opt_rx->sack_ok = TCP_SACK_SEEN;
  3260. tcp_sack_reset(opt_rx);
  3261. }
  3262. break;
  3263. case TCPOPT_SACK:
  3264. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3265. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3266. opt_rx->sack_ok) {
  3267. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3268. }
  3269. break;
  3270. #ifdef CONFIG_TCP_MD5SIG
  3271. case TCPOPT_MD5SIG:
  3272. /*
  3273. * The MD5 Hash has already been
  3274. * checked (see tcp_v{4,6}_do_rcv()).
  3275. */
  3276. break;
  3277. #endif
  3278. case TCPOPT_FASTOPEN:
  3279. tcp_parse_fastopen_option(
  3280. opsize - TCPOLEN_FASTOPEN_BASE,
  3281. ptr, th->syn, foc, false);
  3282. break;
  3283. case TCPOPT_EXP:
  3284. /* Fast Open option shares code 254 using a
  3285. * 16 bits magic number.
  3286. */
  3287. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3288. get_unaligned_be16(ptr) ==
  3289. TCPOPT_FASTOPEN_MAGIC)
  3290. tcp_parse_fastopen_option(opsize -
  3291. TCPOLEN_EXP_FASTOPEN_BASE,
  3292. ptr + 2, th->syn, foc, true);
  3293. else
  3294. smc_parse_options(th, opt_rx, ptr,
  3295. opsize);
  3296. break;
  3297. }
  3298. ptr += opsize-2;
  3299. length -= opsize;
  3300. }
  3301. }
  3302. }
  3303. EXPORT_SYMBOL(tcp_parse_options);
  3304. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3305. {
  3306. const __be32 *ptr = (const __be32 *)(th + 1);
  3307. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3308. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3309. tp->rx_opt.saw_tstamp = 1;
  3310. ++ptr;
  3311. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3312. ++ptr;
  3313. if (*ptr)
  3314. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3315. else
  3316. tp->rx_opt.rcv_tsecr = 0;
  3317. return true;
  3318. }
  3319. return false;
  3320. }
  3321. /* Fast parse options. This hopes to only see timestamps.
  3322. * If it is wrong it falls back on tcp_parse_options().
  3323. */
  3324. static bool tcp_fast_parse_options(const struct net *net,
  3325. const struct sk_buff *skb,
  3326. const struct tcphdr *th, struct tcp_sock *tp)
  3327. {
  3328. /* In the spirit of fast parsing, compare doff directly to constant
  3329. * values. Because equality is used, short doff can be ignored here.
  3330. */
  3331. if (th->doff == (sizeof(*th) / 4)) {
  3332. tp->rx_opt.saw_tstamp = 0;
  3333. return false;
  3334. } else if (tp->rx_opt.tstamp_ok &&
  3335. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3336. if (tcp_parse_aligned_timestamp(tp, th))
  3337. return true;
  3338. }
  3339. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3340. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3341. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3342. return true;
  3343. }
  3344. #ifdef CONFIG_TCP_MD5SIG
  3345. /*
  3346. * Parse MD5 Signature option
  3347. */
  3348. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3349. {
  3350. int length = (th->doff << 2) - sizeof(*th);
  3351. const u8 *ptr = (const u8 *)(th + 1);
  3352. /* If the TCP option is too short, we can short cut */
  3353. if (length < TCPOLEN_MD5SIG)
  3354. return NULL;
  3355. while (length > 0) {
  3356. int opcode = *ptr++;
  3357. int opsize;
  3358. switch (opcode) {
  3359. case TCPOPT_EOL:
  3360. return NULL;
  3361. case TCPOPT_NOP:
  3362. length--;
  3363. continue;
  3364. default:
  3365. opsize = *ptr++;
  3366. if (opsize < 2 || opsize > length)
  3367. return NULL;
  3368. if (opcode == TCPOPT_MD5SIG)
  3369. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3370. }
  3371. ptr += opsize - 2;
  3372. length -= opsize;
  3373. }
  3374. return NULL;
  3375. }
  3376. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3377. #endif
  3378. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3379. *
  3380. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3381. * it can pass through stack. So, the following predicate verifies that
  3382. * this segment is not used for anything but congestion avoidance or
  3383. * fast retransmit. Moreover, we even are able to eliminate most of such
  3384. * second order effects, if we apply some small "replay" window (~RTO)
  3385. * to timestamp space.
  3386. *
  3387. * All these measures still do not guarantee that we reject wrapped ACKs
  3388. * on networks with high bandwidth, when sequence space is recycled fastly,
  3389. * but it guarantees that such events will be very rare and do not affect
  3390. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3391. * buggy extension.
  3392. *
  3393. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3394. * states that events when retransmit arrives after original data are rare.
  3395. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3396. * the biggest problem on large power networks even with minor reordering.
  3397. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3398. * up to bandwidth of 18Gigabit/sec. 8) ]
  3399. */
  3400. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3401. {
  3402. const struct tcp_sock *tp = tcp_sk(sk);
  3403. const struct tcphdr *th = tcp_hdr(skb);
  3404. u32 seq = TCP_SKB_CB(skb)->seq;
  3405. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3406. return (/* 1. Pure ACK with correct sequence number. */
  3407. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3408. /* 2. ... and duplicate ACK. */
  3409. ack == tp->snd_una &&
  3410. /* 3. ... and does not update window. */
  3411. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3412. /* 4. ... and sits in replay window. */
  3413. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3414. }
  3415. static inline bool tcp_paws_discard(const struct sock *sk,
  3416. const struct sk_buff *skb)
  3417. {
  3418. const struct tcp_sock *tp = tcp_sk(sk);
  3419. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3420. !tcp_disordered_ack(sk, skb);
  3421. }
  3422. /* Check segment sequence number for validity.
  3423. *
  3424. * Segment controls are considered valid, if the segment
  3425. * fits to the window after truncation to the window. Acceptability
  3426. * of data (and SYN, FIN, of course) is checked separately.
  3427. * See tcp_data_queue(), for example.
  3428. *
  3429. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3430. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3431. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3432. * (borrowed from freebsd)
  3433. */
  3434. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3435. {
  3436. return !before(end_seq, tp->rcv_wup) &&
  3437. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3438. }
  3439. /* When we get a reset we do this. */
  3440. void tcp_reset(struct sock *sk)
  3441. {
  3442. trace_tcp_receive_reset(sk);
  3443. /* We want the right error as BSD sees it (and indeed as we do). */
  3444. switch (sk->sk_state) {
  3445. case TCP_SYN_SENT:
  3446. sk->sk_err = ECONNREFUSED;
  3447. break;
  3448. case TCP_CLOSE_WAIT:
  3449. sk->sk_err = EPIPE;
  3450. break;
  3451. case TCP_CLOSE:
  3452. return;
  3453. default:
  3454. sk->sk_err = ECONNRESET;
  3455. }
  3456. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3457. smp_wmb();
  3458. tcp_done(sk);
  3459. if (!sock_flag(sk, SOCK_DEAD))
  3460. sk->sk_error_report(sk);
  3461. }
  3462. /*
  3463. * Process the FIN bit. This now behaves as it is supposed to work
  3464. * and the FIN takes effect when it is validly part of sequence
  3465. * space. Not before when we get holes.
  3466. *
  3467. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3468. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3469. * TIME-WAIT)
  3470. *
  3471. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3472. * close and we go into CLOSING (and later onto TIME-WAIT)
  3473. *
  3474. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3475. */
  3476. void tcp_fin(struct sock *sk)
  3477. {
  3478. struct tcp_sock *tp = tcp_sk(sk);
  3479. inet_csk_schedule_ack(sk);
  3480. sk->sk_shutdown |= RCV_SHUTDOWN;
  3481. sock_set_flag(sk, SOCK_DONE);
  3482. switch (sk->sk_state) {
  3483. case TCP_SYN_RECV:
  3484. case TCP_ESTABLISHED:
  3485. /* Move to CLOSE_WAIT */
  3486. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3487. inet_csk(sk)->icsk_ack.pingpong = 1;
  3488. break;
  3489. case TCP_CLOSE_WAIT:
  3490. case TCP_CLOSING:
  3491. /* Received a retransmission of the FIN, do
  3492. * nothing.
  3493. */
  3494. break;
  3495. case TCP_LAST_ACK:
  3496. /* RFC793: Remain in the LAST-ACK state. */
  3497. break;
  3498. case TCP_FIN_WAIT1:
  3499. /* This case occurs when a simultaneous close
  3500. * happens, we must ack the received FIN and
  3501. * enter the CLOSING state.
  3502. */
  3503. tcp_send_ack(sk);
  3504. tcp_set_state(sk, TCP_CLOSING);
  3505. break;
  3506. case TCP_FIN_WAIT2:
  3507. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3508. tcp_send_ack(sk);
  3509. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3510. break;
  3511. default:
  3512. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3513. * cases we should never reach this piece of code.
  3514. */
  3515. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3516. __func__, sk->sk_state);
  3517. break;
  3518. }
  3519. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3520. * Probably, we should reset in this case. For now drop them.
  3521. */
  3522. skb_rbtree_purge(&tp->out_of_order_queue);
  3523. if (tcp_is_sack(tp))
  3524. tcp_sack_reset(&tp->rx_opt);
  3525. sk_mem_reclaim(sk);
  3526. if (!sock_flag(sk, SOCK_DEAD)) {
  3527. sk->sk_state_change(sk);
  3528. /* Do not send POLL_HUP for half duplex close. */
  3529. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3530. sk->sk_state == TCP_CLOSE)
  3531. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3532. else
  3533. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3534. }
  3535. }
  3536. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3537. u32 end_seq)
  3538. {
  3539. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3540. if (before(seq, sp->start_seq))
  3541. sp->start_seq = seq;
  3542. if (after(end_seq, sp->end_seq))
  3543. sp->end_seq = end_seq;
  3544. return true;
  3545. }
  3546. return false;
  3547. }
  3548. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3549. {
  3550. struct tcp_sock *tp = tcp_sk(sk);
  3551. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3552. int mib_idx;
  3553. if (before(seq, tp->rcv_nxt))
  3554. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3555. else
  3556. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3557. NET_INC_STATS(sock_net(sk), mib_idx);
  3558. tp->rx_opt.dsack = 1;
  3559. tp->duplicate_sack[0].start_seq = seq;
  3560. tp->duplicate_sack[0].end_seq = end_seq;
  3561. }
  3562. }
  3563. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3564. {
  3565. struct tcp_sock *tp = tcp_sk(sk);
  3566. if (!tp->rx_opt.dsack)
  3567. tcp_dsack_set(sk, seq, end_seq);
  3568. else
  3569. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3570. }
  3571. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3572. {
  3573. struct tcp_sock *tp = tcp_sk(sk);
  3574. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3575. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3576. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3577. tcp_enter_quickack_mode(sk);
  3578. if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
  3579. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3580. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3581. end_seq = tp->rcv_nxt;
  3582. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3583. }
  3584. }
  3585. tcp_send_ack(sk);
  3586. }
  3587. /* These routines update the SACK block as out-of-order packets arrive or
  3588. * in-order packets close up the sequence space.
  3589. */
  3590. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3591. {
  3592. int this_sack;
  3593. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3594. struct tcp_sack_block *swalk = sp + 1;
  3595. /* See if the recent change to the first SACK eats into
  3596. * or hits the sequence space of other SACK blocks, if so coalesce.
  3597. */
  3598. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3599. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3600. int i;
  3601. /* Zap SWALK, by moving every further SACK up by one slot.
  3602. * Decrease num_sacks.
  3603. */
  3604. tp->rx_opt.num_sacks--;
  3605. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3606. sp[i] = sp[i + 1];
  3607. continue;
  3608. }
  3609. this_sack++, swalk++;
  3610. }
  3611. }
  3612. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3613. {
  3614. struct tcp_sock *tp = tcp_sk(sk);
  3615. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3616. int cur_sacks = tp->rx_opt.num_sacks;
  3617. int this_sack;
  3618. if (!cur_sacks)
  3619. goto new_sack;
  3620. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3621. if (tcp_sack_extend(sp, seq, end_seq)) {
  3622. /* Rotate this_sack to the first one. */
  3623. for (; this_sack > 0; this_sack--, sp--)
  3624. swap(*sp, *(sp - 1));
  3625. if (cur_sacks > 1)
  3626. tcp_sack_maybe_coalesce(tp);
  3627. return;
  3628. }
  3629. }
  3630. /* Could not find an adjacent existing SACK, build a new one,
  3631. * put it at the front, and shift everyone else down. We
  3632. * always know there is at least one SACK present already here.
  3633. *
  3634. * If the sack array is full, forget about the last one.
  3635. */
  3636. if (this_sack >= TCP_NUM_SACKS) {
  3637. this_sack--;
  3638. tp->rx_opt.num_sacks--;
  3639. sp--;
  3640. }
  3641. for (; this_sack > 0; this_sack--, sp--)
  3642. *sp = *(sp - 1);
  3643. new_sack:
  3644. /* Build the new head SACK, and we're done. */
  3645. sp->start_seq = seq;
  3646. sp->end_seq = end_seq;
  3647. tp->rx_opt.num_sacks++;
  3648. }
  3649. /* RCV.NXT advances, some SACKs should be eaten. */
  3650. static void tcp_sack_remove(struct tcp_sock *tp)
  3651. {
  3652. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3653. int num_sacks = tp->rx_opt.num_sacks;
  3654. int this_sack;
  3655. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3656. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3657. tp->rx_opt.num_sacks = 0;
  3658. return;
  3659. }
  3660. for (this_sack = 0; this_sack < num_sacks;) {
  3661. /* Check if the start of the sack is covered by RCV.NXT. */
  3662. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3663. int i;
  3664. /* RCV.NXT must cover all the block! */
  3665. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3666. /* Zap this SACK, by moving forward any other SACKS. */
  3667. for (i = this_sack+1; i < num_sacks; i++)
  3668. tp->selective_acks[i-1] = tp->selective_acks[i];
  3669. num_sacks--;
  3670. continue;
  3671. }
  3672. this_sack++;
  3673. sp++;
  3674. }
  3675. tp->rx_opt.num_sacks = num_sacks;
  3676. }
  3677. /**
  3678. * tcp_try_coalesce - try to merge skb to prior one
  3679. * @sk: socket
  3680. * @dest: destination queue
  3681. * @to: prior buffer
  3682. * @from: buffer to add in queue
  3683. * @fragstolen: pointer to boolean
  3684. *
  3685. * Before queueing skb @from after @to, try to merge them
  3686. * to reduce overall memory use and queue lengths, if cost is small.
  3687. * Packets in ofo or receive queues can stay a long time.
  3688. * Better try to coalesce them right now to avoid future collapses.
  3689. * Returns true if caller should free @from instead of queueing it
  3690. */
  3691. static bool tcp_try_coalesce(struct sock *sk,
  3692. struct sk_buff *to,
  3693. struct sk_buff *from,
  3694. bool *fragstolen)
  3695. {
  3696. int delta;
  3697. *fragstolen = false;
  3698. /* Its possible this segment overlaps with prior segment in queue */
  3699. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3700. return false;
  3701. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3702. return false;
  3703. atomic_add(delta, &sk->sk_rmem_alloc);
  3704. sk_mem_charge(sk, delta);
  3705. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3706. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3707. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3708. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3709. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3710. TCP_SKB_CB(to)->has_rxtstamp = true;
  3711. to->tstamp = from->tstamp;
  3712. }
  3713. return true;
  3714. }
  3715. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3716. {
  3717. sk_drops_add(sk, skb);
  3718. __kfree_skb(skb);
  3719. }
  3720. /* This one checks to see if we can put data from the
  3721. * out_of_order queue into the receive_queue.
  3722. */
  3723. static void tcp_ofo_queue(struct sock *sk)
  3724. {
  3725. struct tcp_sock *tp = tcp_sk(sk);
  3726. __u32 dsack_high = tp->rcv_nxt;
  3727. bool fin, fragstolen, eaten;
  3728. struct sk_buff *skb, *tail;
  3729. struct rb_node *p;
  3730. p = rb_first(&tp->out_of_order_queue);
  3731. while (p) {
  3732. skb = rb_to_skb(p);
  3733. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3734. break;
  3735. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3736. __u32 dsack = dsack_high;
  3737. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3738. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3739. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3740. }
  3741. p = rb_next(p);
  3742. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3743. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3744. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3745. tcp_drop(sk, skb);
  3746. continue;
  3747. }
  3748. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3749. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3750. TCP_SKB_CB(skb)->end_seq);
  3751. tail = skb_peek_tail(&sk->sk_receive_queue);
  3752. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3753. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3754. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3755. if (!eaten)
  3756. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3757. else
  3758. kfree_skb_partial(skb, fragstolen);
  3759. if (unlikely(fin)) {
  3760. tcp_fin(sk);
  3761. /* tcp_fin() purges tp->out_of_order_queue,
  3762. * so we must end this loop right now.
  3763. */
  3764. break;
  3765. }
  3766. }
  3767. }
  3768. static bool tcp_prune_ofo_queue(struct sock *sk);
  3769. static int tcp_prune_queue(struct sock *sk);
  3770. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3771. unsigned int size)
  3772. {
  3773. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3774. !sk_rmem_schedule(sk, skb, size)) {
  3775. if (tcp_prune_queue(sk) < 0)
  3776. return -1;
  3777. while (!sk_rmem_schedule(sk, skb, size)) {
  3778. if (!tcp_prune_ofo_queue(sk))
  3779. return -1;
  3780. }
  3781. }
  3782. return 0;
  3783. }
  3784. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3785. {
  3786. struct tcp_sock *tp = tcp_sk(sk);
  3787. struct rb_node **p, *parent;
  3788. struct sk_buff *skb1;
  3789. u32 seq, end_seq;
  3790. bool fragstolen;
  3791. tcp_ecn_check_ce(tp, skb);
  3792. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3793. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3794. tcp_drop(sk, skb);
  3795. return;
  3796. }
  3797. /* Disable header prediction. */
  3798. tp->pred_flags = 0;
  3799. inet_csk_schedule_ack(sk);
  3800. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3801. seq = TCP_SKB_CB(skb)->seq;
  3802. end_seq = TCP_SKB_CB(skb)->end_seq;
  3803. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3804. tp->rcv_nxt, seq, end_seq);
  3805. p = &tp->out_of_order_queue.rb_node;
  3806. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3807. /* Initial out of order segment, build 1 SACK. */
  3808. if (tcp_is_sack(tp)) {
  3809. tp->rx_opt.num_sacks = 1;
  3810. tp->selective_acks[0].start_seq = seq;
  3811. tp->selective_acks[0].end_seq = end_seq;
  3812. }
  3813. rb_link_node(&skb->rbnode, NULL, p);
  3814. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3815. tp->ooo_last_skb = skb;
  3816. goto end;
  3817. }
  3818. /* In the typical case, we are adding an skb to the end of the list.
  3819. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3820. */
  3821. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3822. skb, &fragstolen)) {
  3823. coalesce_done:
  3824. tcp_grow_window(sk, skb);
  3825. kfree_skb_partial(skb, fragstolen);
  3826. skb = NULL;
  3827. goto add_sack;
  3828. }
  3829. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3830. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3831. parent = &tp->ooo_last_skb->rbnode;
  3832. p = &parent->rb_right;
  3833. goto insert;
  3834. }
  3835. /* Find place to insert this segment. Handle overlaps on the way. */
  3836. parent = NULL;
  3837. while (*p) {
  3838. parent = *p;
  3839. skb1 = rb_to_skb(parent);
  3840. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3841. p = &parent->rb_left;
  3842. continue;
  3843. }
  3844. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3845. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3846. /* All the bits are present. Drop. */
  3847. NET_INC_STATS(sock_net(sk),
  3848. LINUX_MIB_TCPOFOMERGE);
  3849. __kfree_skb(skb);
  3850. skb = NULL;
  3851. tcp_dsack_set(sk, seq, end_seq);
  3852. goto add_sack;
  3853. }
  3854. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3855. /* Partial overlap. */
  3856. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3857. } else {
  3858. /* skb's seq == skb1's seq and skb covers skb1.
  3859. * Replace skb1 with skb.
  3860. */
  3861. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3862. &tp->out_of_order_queue);
  3863. tcp_dsack_extend(sk,
  3864. TCP_SKB_CB(skb1)->seq,
  3865. TCP_SKB_CB(skb1)->end_seq);
  3866. NET_INC_STATS(sock_net(sk),
  3867. LINUX_MIB_TCPOFOMERGE);
  3868. __kfree_skb(skb1);
  3869. goto merge_right;
  3870. }
  3871. } else if (tcp_try_coalesce(sk, skb1,
  3872. skb, &fragstolen)) {
  3873. goto coalesce_done;
  3874. }
  3875. p = &parent->rb_right;
  3876. }
  3877. insert:
  3878. /* Insert segment into RB tree. */
  3879. rb_link_node(&skb->rbnode, parent, p);
  3880. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3881. merge_right:
  3882. /* Remove other segments covered by skb. */
  3883. while ((skb1 = skb_rb_next(skb)) != NULL) {
  3884. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3885. break;
  3886. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3887. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3888. end_seq);
  3889. break;
  3890. }
  3891. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3892. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3893. TCP_SKB_CB(skb1)->end_seq);
  3894. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3895. tcp_drop(sk, skb1);
  3896. }
  3897. /* If there is no skb after us, we are the last_skb ! */
  3898. if (!skb1)
  3899. tp->ooo_last_skb = skb;
  3900. add_sack:
  3901. if (tcp_is_sack(tp))
  3902. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3903. end:
  3904. if (skb) {
  3905. tcp_grow_window(sk, skb);
  3906. skb_condense(skb);
  3907. skb_set_owner_r(skb, sk);
  3908. }
  3909. }
  3910. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3911. bool *fragstolen)
  3912. {
  3913. int eaten;
  3914. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3915. __skb_pull(skb, hdrlen);
  3916. eaten = (tail &&
  3917. tcp_try_coalesce(sk, tail,
  3918. skb, fragstolen)) ? 1 : 0;
  3919. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3920. if (!eaten) {
  3921. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3922. skb_set_owner_r(skb, sk);
  3923. }
  3924. return eaten;
  3925. }
  3926. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3927. {
  3928. struct sk_buff *skb;
  3929. int err = -ENOMEM;
  3930. int data_len = 0;
  3931. bool fragstolen;
  3932. if (size == 0)
  3933. return 0;
  3934. if (size > PAGE_SIZE) {
  3935. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3936. data_len = npages << PAGE_SHIFT;
  3937. size = data_len + (size & ~PAGE_MASK);
  3938. }
  3939. skb = alloc_skb_with_frags(size - data_len, data_len,
  3940. PAGE_ALLOC_COSTLY_ORDER,
  3941. &err, sk->sk_allocation);
  3942. if (!skb)
  3943. goto err;
  3944. skb_put(skb, size - data_len);
  3945. skb->data_len = data_len;
  3946. skb->len = size;
  3947. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3948. goto err_free;
  3949. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3950. if (err)
  3951. goto err_free;
  3952. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3953. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3954. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3955. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3956. WARN_ON_ONCE(fragstolen); /* should not happen */
  3957. __kfree_skb(skb);
  3958. }
  3959. return size;
  3960. err_free:
  3961. kfree_skb(skb);
  3962. err:
  3963. return err;
  3964. }
  3965. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3966. {
  3967. struct tcp_sock *tp = tcp_sk(sk);
  3968. bool fragstolen;
  3969. int eaten;
  3970. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3971. __kfree_skb(skb);
  3972. return;
  3973. }
  3974. skb_dst_drop(skb);
  3975. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3976. tcp_ecn_accept_cwr(tp, skb);
  3977. tp->rx_opt.dsack = 0;
  3978. /* Queue data for delivery to the user.
  3979. * Packets in sequence go to the receive queue.
  3980. * Out of sequence packets to the out_of_order_queue.
  3981. */
  3982. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3983. if (tcp_receive_window(tp) == 0)
  3984. goto out_of_window;
  3985. /* Ok. In sequence. In window. */
  3986. queue_and_out:
  3987. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3988. sk_forced_mem_schedule(sk, skb->truesize);
  3989. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3990. goto drop;
  3991. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3992. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3993. if (skb->len)
  3994. tcp_event_data_recv(sk, skb);
  3995. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3996. tcp_fin(sk);
  3997. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3998. tcp_ofo_queue(sk);
  3999. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4000. * gap in queue is filled.
  4001. */
  4002. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4003. inet_csk(sk)->icsk_ack.pingpong = 0;
  4004. }
  4005. if (tp->rx_opt.num_sacks)
  4006. tcp_sack_remove(tp);
  4007. tcp_fast_path_check(sk);
  4008. if (eaten > 0)
  4009. kfree_skb_partial(skb, fragstolen);
  4010. if (!sock_flag(sk, SOCK_DEAD))
  4011. sk->sk_data_ready(sk);
  4012. return;
  4013. }
  4014. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4015. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4016. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4017. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4018. out_of_window:
  4019. tcp_enter_quickack_mode(sk);
  4020. inet_csk_schedule_ack(sk);
  4021. drop:
  4022. tcp_drop(sk, skb);
  4023. return;
  4024. }
  4025. /* Out of window. F.e. zero window probe. */
  4026. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4027. goto out_of_window;
  4028. tcp_enter_quickack_mode(sk);
  4029. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4030. /* Partial packet, seq < rcv_next < end_seq */
  4031. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4032. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4033. TCP_SKB_CB(skb)->end_seq);
  4034. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4035. /* If window is closed, drop tail of packet. But after
  4036. * remembering D-SACK for its head made in previous line.
  4037. */
  4038. if (!tcp_receive_window(tp))
  4039. goto out_of_window;
  4040. goto queue_and_out;
  4041. }
  4042. tcp_data_queue_ofo(sk, skb);
  4043. }
  4044. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4045. {
  4046. if (list)
  4047. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4048. return skb_rb_next(skb);
  4049. }
  4050. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4051. struct sk_buff_head *list,
  4052. struct rb_root *root)
  4053. {
  4054. struct sk_buff *next = tcp_skb_next(skb, list);
  4055. if (list)
  4056. __skb_unlink(skb, list);
  4057. else
  4058. rb_erase(&skb->rbnode, root);
  4059. __kfree_skb(skb);
  4060. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4061. return next;
  4062. }
  4063. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4064. void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4065. {
  4066. struct rb_node **p = &root->rb_node;
  4067. struct rb_node *parent = NULL;
  4068. struct sk_buff *skb1;
  4069. while (*p) {
  4070. parent = *p;
  4071. skb1 = rb_to_skb(parent);
  4072. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4073. p = &parent->rb_left;
  4074. else
  4075. p = &parent->rb_right;
  4076. }
  4077. rb_link_node(&skb->rbnode, parent, p);
  4078. rb_insert_color(&skb->rbnode, root);
  4079. }
  4080. /* Collapse contiguous sequence of skbs head..tail with
  4081. * sequence numbers start..end.
  4082. *
  4083. * If tail is NULL, this means until the end of the queue.
  4084. *
  4085. * Segments with FIN/SYN are not collapsed (only because this
  4086. * simplifies code)
  4087. */
  4088. static void
  4089. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4090. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4091. {
  4092. struct sk_buff *skb = head, *n;
  4093. struct sk_buff_head tmp;
  4094. bool end_of_skbs;
  4095. /* First, check that queue is collapsible and find
  4096. * the point where collapsing can be useful.
  4097. */
  4098. restart:
  4099. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4100. n = tcp_skb_next(skb, list);
  4101. /* No new bits? It is possible on ofo queue. */
  4102. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4103. skb = tcp_collapse_one(sk, skb, list, root);
  4104. if (!skb)
  4105. break;
  4106. goto restart;
  4107. }
  4108. /* The first skb to collapse is:
  4109. * - not SYN/FIN and
  4110. * - bloated or contains data before "start" or
  4111. * overlaps to the next one.
  4112. */
  4113. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4114. (tcp_win_from_space(sk, skb->truesize) > skb->len ||
  4115. before(TCP_SKB_CB(skb)->seq, start))) {
  4116. end_of_skbs = false;
  4117. break;
  4118. }
  4119. if (n && n != tail &&
  4120. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4121. end_of_skbs = false;
  4122. break;
  4123. }
  4124. /* Decided to skip this, advance start seq. */
  4125. start = TCP_SKB_CB(skb)->end_seq;
  4126. }
  4127. if (end_of_skbs ||
  4128. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4129. return;
  4130. __skb_queue_head_init(&tmp);
  4131. while (before(start, end)) {
  4132. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4133. struct sk_buff *nskb;
  4134. nskb = alloc_skb(copy, GFP_ATOMIC);
  4135. if (!nskb)
  4136. break;
  4137. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4138. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4139. if (list)
  4140. __skb_queue_before(list, skb, nskb);
  4141. else
  4142. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4143. skb_set_owner_r(nskb, sk);
  4144. /* Copy data, releasing collapsed skbs. */
  4145. while (copy > 0) {
  4146. int offset = start - TCP_SKB_CB(skb)->seq;
  4147. int size = TCP_SKB_CB(skb)->end_seq - start;
  4148. BUG_ON(offset < 0);
  4149. if (size > 0) {
  4150. size = min(copy, size);
  4151. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4152. BUG();
  4153. TCP_SKB_CB(nskb)->end_seq += size;
  4154. copy -= size;
  4155. start += size;
  4156. }
  4157. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4158. skb = tcp_collapse_one(sk, skb, list, root);
  4159. if (!skb ||
  4160. skb == tail ||
  4161. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4162. goto end;
  4163. }
  4164. }
  4165. }
  4166. end:
  4167. skb_queue_walk_safe(&tmp, skb, n)
  4168. tcp_rbtree_insert(root, skb);
  4169. }
  4170. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4171. * and tcp_collapse() them until all the queue is collapsed.
  4172. */
  4173. static void tcp_collapse_ofo_queue(struct sock *sk)
  4174. {
  4175. struct tcp_sock *tp = tcp_sk(sk);
  4176. struct sk_buff *skb, *head;
  4177. u32 start, end;
  4178. skb = skb_rb_first(&tp->out_of_order_queue);
  4179. new_range:
  4180. if (!skb) {
  4181. tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
  4182. return;
  4183. }
  4184. start = TCP_SKB_CB(skb)->seq;
  4185. end = TCP_SKB_CB(skb)->end_seq;
  4186. for (head = skb;;) {
  4187. skb = skb_rb_next(skb);
  4188. /* Range is terminated when we see a gap or when
  4189. * we are at the queue end.
  4190. */
  4191. if (!skb ||
  4192. after(TCP_SKB_CB(skb)->seq, end) ||
  4193. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4194. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4195. head, skb, start, end);
  4196. goto new_range;
  4197. }
  4198. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4199. start = TCP_SKB_CB(skb)->seq;
  4200. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4201. end = TCP_SKB_CB(skb)->end_seq;
  4202. }
  4203. }
  4204. /*
  4205. * Clean the out-of-order queue to make room.
  4206. * We drop high sequences packets to :
  4207. * 1) Let a chance for holes to be filled.
  4208. * 2) not add too big latencies if thousands of packets sit there.
  4209. * (But if application shrinks SO_RCVBUF, we could still end up
  4210. * freeing whole queue here)
  4211. *
  4212. * Return true if queue has shrunk.
  4213. */
  4214. static bool tcp_prune_ofo_queue(struct sock *sk)
  4215. {
  4216. struct tcp_sock *tp = tcp_sk(sk);
  4217. struct rb_node *node, *prev;
  4218. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4219. return false;
  4220. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4221. node = &tp->ooo_last_skb->rbnode;
  4222. do {
  4223. prev = rb_prev(node);
  4224. rb_erase(node, &tp->out_of_order_queue);
  4225. tcp_drop(sk, rb_to_skb(node));
  4226. sk_mem_reclaim(sk);
  4227. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4228. !tcp_under_memory_pressure(sk))
  4229. break;
  4230. node = prev;
  4231. } while (node);
  4232. tp->ooo_last_skb = rb_to_skb(prev);
  4233. /* Reset SACK state. A conforming SACK implementation will
  4234. * do the same at a timeout based retransmit. When a connection
  4235. * is in a sad state like this, we care only about integrity
  4236. * of the connection not performance.
  4237. */
  4238. if (tp->rx_opt.sack_ok)
  4239. tcp_sack_reset(&tp->rx_opt);
  4240. return true;
  4241. }
  4242. /* Reduce allocated memory if we can, trying to get
  4243. * the socket within its memory limits again.
  4244. *
  4245. * Return less than zero if we should start dropping frames
  4246. * until the socket owning process reads some of the data
  4247. * to stabilize the situation.
  4248. */
  4249. static int tcp_prune_queue(struct sock *sk)
  4250. {
  4251. struct tcp_sock *tp = tcp_sk(sk);
  4252. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4253. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4254. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4255. tcp_clamp_window(sk);
  4256. else if (tcp_under_memory_pressure(sk))
  4257. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4258. tcp_collapse_ofo_queue(sk);
  4259. if (!skb_queue_empty(&sk->sk_receive_queue))
  4260. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4261. skb_peek(&sk->sk_receive_queue),
  4262. NULL,
  4263. tp->copied_seq, tp->rcv_nxt);
  4264. sk_mem_reclaim(sk);
  4265. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4266. return 0;
  4267. /* Collapsing did not help, destructive actions follow.
  4268. * This must not ever occur. */
  4269. tcp_prune_ofo_queue(sk);
  4270. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4271. return 0;
  4272. /* If we are really being abused, tell the caller to silently
  4273. * drop receive data on the floor. It will get retransmitted
  4274. * and hopefully then we'll have sufficient space.
  4275. */
  4276. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4277. /* Massive buffer overcommit. */
  4278. tp->pred_flags = 0;
  4279. return -1;
  4280. }
  4281. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4282. {
  4283. const struct tcp_sock *tp = tcp_sk(sk);
  4284. /* If the user specified a specific send buffer setting, do
  4285. * not modify it.
  4286. */
  4287. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4288. return false;
  4289. /* If we are under global TCP memory pressure, do not expand. */
  4290. if (tcp_under_memory_pressure(sk))
  4291. return false;
  4292. /* If we are under soft global TCP memory pressure, do not expand. */
  4293. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4294. return false;
  4295. /* If we filled the congestion window, do not expand. */
  4296. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4297. return false;
  4298. return true;
  4299. }
  4300. /* When incoming ACK allowed to free some skb from write_queue,
  4301. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4302. * on the exit from tcp input handler.
  4303. *
  4304. * PROBLEM: sndbuf expansion does not work well with largesend.
  4305. */
  4306. static void tcp_new_space(struct sock *sk)
  4307. {
  4308. struct tcp_sock *tp = tcp_sk(sk);
  4309. if (tcp_should_expand_sndbuf(sk)) {
  4310. tcp_sndbuf_expand(sk);
  4311. tp->snd_cwnd_stamp = tcp_jiffies32;
  4312. }
  4313. sk->sk_write_space(sk);
  4314. }
  4315. static void tcp_check_space(struct sock *sk)
  4316. {
  4317. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4318. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4319. /* pairs with tcp_poll() */
  4320. smp_mb();
  4321. if (sk->sk_socket &&
  4322. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4323. tcp_new_space(sk);
  4324. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4325. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4326. }
  4327. }
  4328. }
  4329. static inline void tcp_data_snd_check(struct sock *sk)
  4330. {
  4331. tcp_push_pending_frames(sk);
  4332. tcp_check_space(sk);
  4333. }
  4334. /*
  4335. * Check if sending an ack is needed.
  4336. */
  4337. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4338. {
  4339. struct tcp_sock *tp = tcp_sk(sk);
  4340. /* More than one full frame received... */
  4341. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4342. /* ... and right edge of window advances far enough.
  4343. * (tcp_recvmsg() will send ACK otherwise). Or...
  4344. */
  4345. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4346. /* We ACK each frame or... */
  4347. tcp_in_quickack_mode(sk) ||
  4348. /* We have out of order data. */
  4349. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4350. /* Then ack it now */
  4351. tcp_send_ack(sk);
  4352. } else {
  4353. /* Else, send delayed ack. */
  4354. tcp_send_delayed_ack(sk);
  4355. }
  4356. }
  4357. static inline void tcp_ack_snd_check(struct sock *sk)
  4358. {
  4359. if (!inet_csk_ack_scheduled(sk)) {
  4360. /* We sent a data segment already. */
  4361. return;
  4362. }
  4363. __tcp_ack_snd_check(sk, 1);
  4364. }
  4365. /*
  4366. * This routine is only called when we have urgent data
  4367. * signaled. Its the 'slow' part of tcp_urg. It could be
  4368. * moved inline now as tcp_urg is only called from one
  4369. * place. We handle URGent data wrong. We have to - as
  4370. * BSD still doesn't use the correction from RFC961.
  4371. * For 1003.1g we should support a new option TCP_STDURG to permit
  4372. * either form (or just set the sysctl tcp_stdurg).
  4373. */
  4374. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4375. {
  4376. struct tcp_sock *tp = tcp_sk(sk);
  4377. u32 ptr = ntohs(th->urg_ptr);
  4378. if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
  4379. ptr--;
  4380. ptr += ntohl(th->seq);
  4381. /* Ignore urgent data that we've already seen and read. */
  4382. if (after(tp->copied_seq, ptr))
  4383. return;
  4384. /* Do not replay urg ptr.
  4385. *
  4386. * NOTE: interesting situation not covered by specs.
  4387. * Misbehaving sender may send urg ptr, pointing to segment,
  4388. * which we already have in ofo queue. We are not able to fetch
  4389. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4390. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4391. * situations. But it is worth to think about possibility of some
  4392. * DoSes using some hypothetical application level deadlock.
  4393. */
  4394. if (before(ptr, tp->rcv_nxt))
  4395. return;
  4396. /* Do we already have a newer (or duplicate) urgent pointer? */
  4397. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4398. return;
  4399. /* Tell the world about our new urgent pointer. */
  4400. sk_send_sigurg(sk);
  4401. /* We may be adding urgent data when the last byte read was
  4402. * urgent. To do this requires some care. We cannot just ignore
  4403. * tp->copied_seq since we would read the last urgent byte again
  4404. * as data, nor can we alter copied_seq until this data arrives
  4405. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4406. *
  4407. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4408. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4409. * and expect that both A and B disappear from stream. This is _wrong_.
  4410. * Though this happens in BSD with high probability, this is occasional.
  4411. * Any application relying on this is buggy. Note also, that fix "works"
  4412. * only in this artificial test. Insert some normal data between A and B and we will
  4413. * decline of BSD again. Verdict: it is better to remove to trap
  4414. * buggy users.
  4415. */
  4416. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4417. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4418. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4419. tp->copied_seq++;
  4420. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4421. __skb_unlink(skb, &sk->sk_receive_queue);
  4422. __kfree_skb(skb);
  4423. }
  4424. }
  4425. tp->urg_data = TCP_URG_NOTYET;
  4426. tp->urg_seq = ptr;
  4427. /* Disable header prediction. */
  4428. tp->pred_flags = 0;
  4429. }
  4430. /* This is the 'fast' part of urgent handling. */
  4431. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4432. {
  4433. struct tcp_sock *tp = tcp_sk(sk);
  4434. /* Check if we get a new urgent pointer - normally not. */
  4435. if (th->urg)
  4436. tcp_check_urg(sk, th);
  4437. /* Do we wait for any urgent data? - normally not... */
  4438. if (tp->urg_data == TCP_URG_NOTYET) {
  4439. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4440. th->syn;
  4441. /* Is the urgent pointer pointing into this packet? */
  4442. if (ptr < skb->len) {
  4443. u8 tmp;
  4444. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4445. BUG();
  4446. tp->urg_data = TCP_URG_VALID | tmp;
  4447. if (!sock_flag(sk, SOCK_DEAD))
  4448. sk->sk_data_ready(sk);
  4449. }
  4450. }
  4451. }
  4452. /* Accept RST for rcv_nxt - 1 after a FIN.
  4453. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4454. * FIN is sent followed by a RST packet. The RST is sent with the same
  4455. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4456. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4457. * ACKs on the closed socket. In addition middleboxes can drop either the
  4458. * challenge ACK or a subsequent RST.
  4459. */
  4460. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4461. {
  4462. struct tcp_sock *tp = tcp_sk(sk);
  4463. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4464. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4465. TCPF_CLOSING));
  4466. }
  4467. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4468. * play significant role here.
  4469. */
  4470. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4471. const struct tcphdr *th, int syn_inerr)
  4472. {
  4473. struct tcp_sock *tp = tcp_sk(sk);
  4474. bool rst_seq_match = false;
  4475. /* RFC1323: H1. Apply PAWS check first. */
  4476. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4477. tp->rx_opt.saw_tstamp &&
  4478. tcp_paws_discard(sk, skb)) {
  4479. if (!th->rst) {
  4480. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4481. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4482. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4483. &tp->last_oow_ack_time))
  4484. tcp_send_dupack(sk, skb);
  4485. goto discard;
  4486. }
  4487. /* Reset is accepted even if it did not pass PAWS. */
  4488. }
  4489. /* Step 1: check sequence number */
  4490. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4491. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4492. * (RST) segments are validated by checking their SEQ-fields."
  4493. * And page 69: "If an incoming segment is not acceptable,
  4494. * an acknowledgment should be sent in reply (unless the RST
  4495. * bit is set, if so drop the segment and return)".
  4496. */
  4497. if (!th->rst) {
  4498. if (th->syn)
  4499. goto syn_challenge;
  4500. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4501. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4502. &tp->last_oow_ack_time))
  4503. tcp_send_dupack(sk, skb);
  4504. } else if (tcp_reset_check(sk, skb)) {
  4505. tcp_reset(sk);
  4506. }
  4507. goto discard;
  4508. }
  4509. /* Step 2: check RST bit */
  4510. if (th->rst) {
  4511. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4512. * FIN and SACK too if available):
  4513. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4514. * the right-most SACK block,
  4515. * then
  4516. * RESET the connection
  4517. * else
  4518. * Send a challenge ACK
  4519. */
  4520. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4521. tcp_reset_check(sk, skb)) {
  4522. rst_seq_match = true;
  4523. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4524. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4525. int max_sack = sp[0].end_seq;
  4526. int this_sack;
  4527. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4528. ++this_sack) {
  4529. max_sack = after(sp[this_sack].end_seq,
  4530. max_sack) ?
  4531. sp[this_sack].end_seq : max_sack;
  4532. }
  4533. if (TCP_SKB_CB(skb)->seq == max_sack)
  4534. rst_seq_match = true;
  4535. }
  4536. if (rst_seq_match)
  4537. tcp_reset(sk);
  4538. else {
  4539. /* Disable TFO if RST is out-of-order
  4540. * and no data has been received
  4541. * for current active TFO socket
  4542. */
  4543. if (tp->syn_fastopen && !tp->data_segs_in &&
  4544. sk->sk_state == TCP_ESTABLISHED)
  4545. tcp_fastopen_active_disable(sk);
  4546. tcp_send_challenge_ack(sk, skb);
  4547. }
  4548. goto discard;
  4549. }
  4550. /* step 3: check security and precedence [ignored] */
  4551. /* step 4: Check for a SYN
  4552. * RFC 5961 4.2 : Send a challenge ack
  4553. */
  4554. if (th->syn) {
  4555. syn_challenge:
  4556. if (syn_inerr)
  4557. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4558. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4559. tcp_send_challenge_ack(sk, skb);
  4560. goto discard;
  4561. }
  4562. return true;
  4563. discard:
  4564. tcp_drop(sk, skb);
  4565. return false;
  4566. }
  4567. /*
  4568. * TCP receive function for the ESTABLISHED state.
  4569. *
  4570. * It is split into a fast path and a slow path. The fast path is
  4571. * disabled when:
  4572. * - A zero window was announced from us - zero window probing
  4573. * is only handled properly in the slow path.
  4574. * - Out of order segments arrived.
  4575. * - Urgent data is expected.
  4576. * - There is no buffer space left
  4577. * - Unexpected TCP flags/window values/header lengths are received
  4578. * (detected by checking the TCP header against pred_flags)
  4579. * - Data is sent in both directions. Fast path only supports pure senders
  4580. * or pure receivers (this means either the sequence number or the ack
  4581. * value must stay constant)
  4582. * - Unexpected TCP option.
  4583. *
  4584. * When these conditions are not satisfied it drops into a standard
  4585. * receive procedure patterned after RFC793 to handle all cases.
  4586. * The first three cases are guaranteed by proper pred_flags setting,
  4587. * the rest is checked inline. Fast processing is turned on in
  4588. * tcp_data_queue when everything is OK.
  4589. */
  4590. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4591. const struct tcphdr *th)
  4592. {
  4593. unsigned int len = skb->len;
  4594. struct tcp_sock *tp = tcp_sk(sk);
  4595. tcp_mstamp_refresh(tp);
  4596. if (unlikely(!sk->sk_rx_dst))
  4597. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4598. /*
  4599. * Header prediction.
  4600. * The code loosely follows the one in the famous
  4601. * "30 instruction TCP receive" Van Jacobson mail.
  4602. *
  4603. * Van's trick is to deposit buffers into socket queue
  4604. * on a device interrupt, to call tcp_recv function
  4605. * on the receive process context and checksum and copy
  4606. * the buffer to user space. smart...
  4607. *
  4608. * Our current scheme is not silly either but we take the
  4609. * extra cost of the net_bh soft interrupt processing...
  4610. * We do checksum and copy also but from device to kernel.
  4611. */
  4612. tp->rx_opt.saw_tstamp = 0;
  4613. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4614. * if header_prediction is to be made
  4615. * 'S' will always be tp->tcp_header_len >> 2
  4616. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4617. * turn it off (when there are holes in the receive
  4618. * space for instance)
  4619. * PSH flag is ignored.
  4620. */
  4621. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4622. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4623. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4624. int tcp_header_len = tp->tcp_header_len;
  4625. /* Timestamp header prediction: tcp_header_len
  4626. * is automatically equal to th->doff*4 due to pred_flags
  4627. * match.
  4628. */
  4629. /* Check timestamp */
  4630. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4631. /* No? Slow path! */
  4632. if (!tcp_parse_aligned_timestamp(tp, th))
  4633. goto slow_path;
  4634. /* If PAWS failed, check it more carefully in slow path */
  4635. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4636. goto slow_path;
  4637. /* DO NOT update ts_recent here, if checksum fails
  4638. * and timestamp was corrupted part, it will result
  4639. * in a hung connection since we will drop all
  4640. * future packets due to the PAWS test.
  4641. */
  4642. }
  4643. if (len <= tcp_header_len) {
  4644. /* Bulk data transfer: sender */
  4645. if (len == tcp_header_len) {
  4646. /* Predicted packet is in window by definition.
  4647. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4648. * Hence, check seq<=rcv_wup reduces to:
  4649. */
  4650. if (tcp_header_len ==
  4651. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4652. tp->rcv_nxt == tp->rcv_wup)
  4653. tcp_store_ts_recent(tp);
  4654. /* We know that such packets are checksummed
  4655. * on entry.
  4656. */
  4657. tcp_ack(sk, skb, 0);
  4658. __kfree_skb(skb);
  4659. tcp_data_snd_check(sk);
  4660. return;
  4661. } else { /* Header too small */
  4662. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4663. goto discard;
  4664. }
  4665. } else {
  4666. int eaten = 0;
  4667. bool fragstolen = false;
  4668. if (tcp_checksum_complete(skb))
  4669. goto csum_error;
  4670. if ((int)skb->truesize > sk->sk_forward_alloc)
  4671. goto step5;
  4672. /* Predicted packet is in window by definition.
  4673. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4674. * Hence, check seq<=rcv_wup reduces to:
  4675. */
  4676. if (tcp_header_len ==
  4677. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4678. tp->rcv_nxt == tp->rcv_wup)
  4679. tcp_store_ts_recent(tp);
  4680. tcp_rcv_rtt_measure_ts(sk, skb);
  4681. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4682. /* Bulk data transfer: receiver */
  4683. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4684. &fragstolen);
  4685. tcp_event_data_recv(sk, skb);
  4686. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4687. /* Well, only one small jumplet in fast path... */
  4688. tcp_ack(sk, skb, FLAG_DATA);
  4689. tcp_data_snd_check(sk);
  4690. if (!inet_csk_ack_scheduled(sk))
  4691. goto no_ack;
  4692. }
  4693. __tcp_ack_snd_check(sk, 0);
  4694. no_ack:
  4695. if (eaten)
  4696. kfree_skb_partial(skb, fragstolen);
  4697. sk->sk_data_ready(sk);
  4698. return;
  4699. }
  4700. }
  4701. slow_path:
  4702. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4703. goto csum_error;
  4704. if (!th->ack && !th->rst && !th->syn)
  4705. goto discard;
  4706. /*
  4707. * Standard slow path.
  4708. */
  4709. if (!tcp_validate_incoming(sk, skb, th, 1))
  4710. return;
  4711. step5:
  4712. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4713. goto discard;
  4714. tcp_rcv_rtt_measure_ts(sk, skb);
  4715. /* Process urgent data. */
  4716. tcp_urg(sk, skb, th);
  4717. /* step 7: process the segment text */
  4718. tcp_data_queue(sk, skb);
  4719. tcp_data_snd_check(sk);
  4720. tcp_ack_snd_check(sk);
  4721. return;
  4722. csum_error:
  4723. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4724. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4725. discard:
  4726. tcp_drop(sk, skb);
  4727. }
  4728. EXPORT_SYMBOL(tcp_rcv_established);
  4729. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4730. {
  4731. struct tcp_sock *tp = tcp_sk(sk);
  4732. struct inet_connection_sock *icsk = inet_csk(sk);
  4733. tcp_set_state(sk, TCP_ESTABLISHED);
  4734. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4735. if (skb) {
  4736. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4737. security_inet_conn_established(sk, skb);
  4738. }
  4739. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4740. /* Prevent spurious tcp_cwnd_restart() on first data
  4741. * packet.
  4742. */
  4743. tp->lsndtime = tcp_jiffies32;
  4744. if (sock_flag(sk, SOCK_KEEPOPEN))
  4745. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4746. if (!tp->rx_opt.snd_wscale)
  4747. __tcp_fast_path_on(tp, tp->snd_wnd);
  4748. else
  4749. tp->pred_flags = 0;
  4750. }
  4751. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4752. struct tcp_fastopen_cookie *cookie)
  4753. {
  4754. struct tcp_sock *tp = tcp_sk(sk);
  4755. struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
  4756. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4757. bool syn_drop = false;
  4758. if (mss == tp->rx_opt.user_mss) {
  4759. struct tcp_options_received opt;
  4760. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4761. tcp_clear_options(&opt);
  4762. opt.user_mss = opt.mss_clamp = 0;
  4763. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4764. mss = opt.mss_clamp;
  4765. }
  4766. if (!tp->syn_fastopen) {
  4767. /* Ignore an unsolicited cookie */
  4768. cookie->len = -1;
  4769. } else if (tp->total_retrans) {
  4770. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4771. * acknowledges data. Presumably the remote received only
  4772. * the retransmitted (regular) SYNs: either the original
  4773. * SYN-data or the corresponding SYN-ACK was dropped.
  4774. */
  4775. syn_drop = (cookie->len < 0 && data);
  4776. } else if (cookie->len < 0 && !tp->syn_data) {
  4777. /* We requested a cookie but didn't get it. If we did not use
  4778. * the (old) exp opt format then try so next time (try_exp=1).
  4779. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4780. */
  4781. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4782. }
  4783. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4784. if (data) { /* Retransmit unacked data in SYN */
  4785. skb_rbtree_walk_from(data) {
  4786. if (__tcp_retransmit_skb(sk, data, 1))
  4787. break;
  4788. }
  4789. tcp_rearm_rto(sk);
  4790. NET_INC_STATS(sock_net(sk),
  4791. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4792. return true;
  4793. }
  4794. tp->syn_data_acked = tp->syn_data;
  4795. if (tp->syn_data_acked)
  4796. NET_INC_STATS(sock_net(sk),
  4797. LINUX_MIB_TCPFASTOPENACTIVE);
  4798. tcp_fastopen_add_skb(sk, synack);
  4799. return false;
  4800. }
  4801. static void smc_check_reset_syn(struct tcp_sock *tp)
  4802. {
  4803. #if IS_ENABLED(CONFIG_SMC)
  4804. if (static_branch_unlikely(&tcp_have_smc)) {
  4805. if (tp->syn_smc && !tp->rx_opt.smc_ok)
  4806. tp->syn_smc = 0;
  4807. }
  4808. #endif
  4809. }
  4810. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4811. const struct tcphdr *th)
  4812. {
  4813. struct inet_connection_sock *icsk = inet_csk(sk);
  4814. struct tcp_sock *tp = tcp_sk(sk);
  4815. struct tcp_fastopen_cookie foc = { .len = -1 };
  4816. int saved_clamp = tp->rx_opt.mss_clamp;
  4817. bool fastopen_fail;
  4818. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4819. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4820. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4821. if (th->ack) {
  4822. /* rfc793:
  4823. * "If the state is SYN-SENT then
  4824. * first check the ACK bit
  4825. * If the ACK bit is set
  4826. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4827. * a reset (unless the RST bit is set, if so drop
  4828. * the segment and return)"
  4829. */
  4830. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4831. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4832. goto reset_and_undo;
  4833. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4834. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4835. tcp_time_stamp(tp))) {
  4836. NET_INC_STATS(sock_net(sk),
  4837. LINUX_MIB_PAWSACTIVEREJECTED);
  4838. goto reset_and_undo;
  4839. }
  4840. /* Now ACK is acceptable.
  4841. *
  4842. * "If the RST bit is set
  4843. * If the ACK was acceptable then signal the user "error:
  4844. * connection reset", drop the segment, enter CLOSED state,
  4845. * delete TCB, and return."
  4846. */
  4847. if (th->rst) {
  4848. tcp_reset(sk);
  4849. goto discard;
  4850. }
  4851. /* rfc793:
  4852. * "fifth, if neither of the SYN or RST bits is set then
  4853. * drop the segment and return."
  4854. *
  4855. * See note below!
  4856. * --ANK(990513)
  4857. */
  4858. if (!th->syn)
  4859. goto discard_and_undo;
  4860. /* rfc793:
  4861. * "If the SYN bit is on ...
  4862. * are acceptable then ...
  4863. * (our SYN has been ACKed), change the connection
  4864. * state to ESTABLISHED..."
  4865. */
  4866. tcp_ecn_rcv_synack(tp, th);
  4867. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4868. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4869. /* Ok.. it's good. Set up sequence numbers and
  4870. * move to established.
  4871. */
  4872. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4873. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4874. /* RFC1323: The window in SYN & SYN/ACK segments is
  4875. * never scaled.
  4876. */
  4877. tp->snd_wnd = ntohs(th->window);
  4878. if (!tp->rx_opt.wscale_ok) {
  4879. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4880. tp->window_clamp = min(tp->window_clamp, 65535U);
  4881. }
  4882. if (tp->rx_opt.saw_tstamp) {
  4883. tp->rx_opt.tstamp_ok = 1;
  4884. tp->tcp_header_len =
  4885. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4886. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4887. tcp_store_ts_recent(tp);
  4888. } else {
  4889. tp->tcp_header_len = sizeof(struct tcphdr);
  4890. }
  4891. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4892. tcp_initialize_rcv_mss(sk);
  4893. /* Remember, tcp_poll() does not lock socket!
  4894. * Change state from SYN-SENT only after copied_seq
  4895. * is initialized. */
  4896. tp->copied_seq = tp->rcv_nxt;
  4897. smc_check_reset_syn(tp);
  4898. smp_mb();
  4899. tcp_finish_connect(sk, skb);
  4900. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4901. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4902. if (!sock_flag(sk, SOCK_DEAD)) {
  4903. sk->sk_state_change(sk);
  4904. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4905. }
  4906. if (fastopen_fail)
  4907. return -1;
  4908. if (sk->sk_write_pending ||
  4909. icsk->icsk_accept_queue.rskq_defer_accept ||
  4910. icsk->icsk_ack.pingpong) {
  4911. /* Save one ACK. Data will be ready after
  4912. * several ticks, if write_pending is set.
  4913. *
  4914. * It may be deleted, but with this feature tcpdumps
  4915. * look so _wonderfully_ clever, that I was not able
  4916. * to stand against the temptation 8) --ANK
  4917. */
  4918. inet_csk_schedule_ack(sk);
  4919. tcp_enter_quickack_mode(sk);
  4920. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4921. TCP_DELACK_MAX, TCP_RTO_MAX);
  4922. discard:
  4923. tcp_drop(sk, skb);
  4924. return 0;
  4925. } else {
  4926. tcp_send_ack(sk);
  4927. }
  4928. return -1;
  4929. }
  4930. /* No ACK in the segment */
  4931. if (th->rst) {
  4932. /* rfc793:
  4933. * "If the RST bit is set
  4934. *
  4935. * Otherwise (no ACK) drop the segment and return."
  4936. */
  4937. goto discard_and_undo;
  4938. }
  4939. /* PAWS check. */
  4940. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4941. tcp_paws_reject(&tp->rx_opt, 0))
  4942. goto discard_and_undo;
  4943. if (th->syn) {
  4944. /* We see SYN without ACK. It is attempt of
  4945. * simultaneous connect with crossed SYNs.
  4946. * Particularly, it can be connect to self.
  4947. */
  4948. tcp_set_state(sk, TCP_SYN_RECV);
  4949. if (tp->rx_opt.saw_tstamp) {
  4950. tp->rx_opt.tstamp_ok = 1;
  4951. tcp_store_ts_recent(tp);
  4952. tp->tcp_header_len =
  4953. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4954. } else {
  4955. tp->tcp_header_len = sizeof(struct tcphdr);
  4956. }
  4957. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4958. tp->copied_seq = tp->rcv_nxt;
  4959. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4960. /* RFC1323: The window in SYN & SYN/ACK segments is
  4961. * never scaled.
  4962. */
  4963. tp->snd_wnd = ntohs(th->window);
  4964. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4965. tp->max_window = tp->snd_wnd;
  4966. tcp_ecn_rcv_syn(tp, th);
  4967. tcp_mtup_init(sk);
  4968. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4969. tcp_initialize_rcv_mss(sk);
  4970. tcp_send_synack(sk);
  4971. #if 0
  4972. /* Note, we could accept data and URG from this segment.
  4973. * There are no obstacles to make this (except that we must
  4974. * either change tcp_recvmsg() to prevent it from returning data
  4975. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4976. *
  4977. * However, if we ignore data in ACKless segments sometimes,
  4978. * we have no reasons to accept it sometimes.
  4979. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4980. * is not flawless. So, discard packet for sanity.
  4981. * Uncomment this return to process the data.
  4982. */
  4983. return -1;
  4984. #else
  4985. goto discard;
  4986. #endif
  4987. }
  4988. /* "fifth, if neither of the SYN or RST bits is set then
  4989. * drop the segment and return."
  4990. */
  4991. discard_and_undo:
  4992. tcp_clear_options(&tp->rx_opt);
  4993. tp->rx_opt.mss_clamp = saved_clamp;
  4994. goto discard;
  4995. reset_and_undo:
  4996. tcp_clear_options(&tp->rx_opt);
  4997. tp->rx_opt.mss_clamp = saved_clamp;
  4998. return 1;
  4999. }
  5000. /*
  5001. * This function implements the receiving procedure of RFC 793 for
  5002. * all states except ESTABLISHED and TIME_WAIT.
  5003. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5004. * address independent.
  5005. */
  5006. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5007. {
  5008. struct tcp_sock *tp = tcp_sk(sk);
  5009. struct inet_connection_sock *icsk = inet_csk(sk);
  5010. const struct tcphdr *th = tcp_hdr(skb);
  5011. struct request_sock *req;
  5012. int queued = 0;
  5013. bool acceptable;
  5014. switch (sk->sk_state) {
  5015. case TCP_CLOSE:
  5016. goto discard;
  5017. case TCP_LISTEN:
  5018. if (th->ack)
  5019. return 1;
  5020. if (th->rst)
  5021. goto discard;
  5022. if (th->syn) {
  5023. if (th->fin)
  5024. goto discard;
  5025. /* It is possible that we process SYN packets from backlog,
  5026. * so we need to make sure to disable BH right there.
  5027. */
  5028. local_bh_disable();
  5029. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5030. local_bh_enable();
  5031. if (!acceptable)
  5032. return 1;
  5033. consume_skb(skb);
  5034. return 0;
  5035. }
  5036. goto discard;
  5037. case TCP_SYN_SENT:
  5038. tp->rx_opt.saw_tstamp = 0;
  5039. tcp_mstamp_refresh(tp);
  5040. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5041. if (queued >= 0)
  5042. return queued;
  5043. /* Do step6 onward by hand. */
  5044. tcp_urg(sk, skb, th);
  5045. __kfree_skb(skb);
  5046. tcp_data_snd_check(sk);
  5047. return 0;
  5048. }
  5049. tcp_mstamp_refresh(tp);
  5050. tp->rx_opt.saw_tstamp = 0;
  5051. req = tp->fastopen_rsk;
  5052. if (req) {
  5053. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5054. sk->sk_state != TCP_FIN_WAIT1);
  5055. if (!tcp_check_req(sk, skb, req, true))
  5056. goto discard;
  5057. }
  5058. if (!th->ack && !th->rst && !th->syn)
  5059. goto discard;
  5060. if (!tcp_validate_incoming(sk, skb, th, 0))
  5061. return 0;
  5062. /* step 5: check the ACK field */
  5063. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5064. FLAG_UPDATE_TS_RECENT |
  5065. FLAG_NO_CHALLENGE_ACK) > 0;
  5066. if (!acceptable) {
  5067. if (sk->sk_state == TCP_SYN_RECV)
  5068. return 1; /* send one RST */
  5069. tcp_send_challenge_ack(sk, skb);
  5070. goto discard;
  5071. }
  5072. switch (sk->sk_state) {
  5073. case TCP_SYN_RECV:
  5074. if (!tp->srtt_us)
  5075. tcp_synack_rtt_meas(sk, req);
  5076. /* Once we leave TCP_SYN_RECV, we no longer need req
  5077. * so release it.
  5078. */
  5079. if (req) {
  5080. inet_csk(sk)->icsk_retransmits = 0;
  5081. reqsk_fastopen_remove(sk, req, false);
  5082. /* Re-arm the timer because data may have been sent out.
  5083. * This is similar to the regular data transmission case
  5084. * when new data has just been ack'ed.
  5085. *
  5086. * (TFO) - we could try to be more aggressive and
  5087. * retransmitting any data sooner based on when they
  5088. * are sent out.
  5089. */
  5090. tcp_rearm_rto(sk);
  5091. } else {
  5092. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5093. tp->copied_seq = tp->rcv_nxt;
  5094. }
  5095. smp_mb();
  5096. tcp_set_state(sk, TCP_ESTABLISHED);
  5097. sk->sk_state_change(sk);
  5098. /* Note, that this wakeup is only for marginal crossed SYN case.
  5099. * Passively open sockets are not waked up, because
  5100. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5101. */
  5102. if (sk->sk_socket)
  5103. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5104. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5105. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5106. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5107. if (tp->rx_opt.tstamp_ok)
  5108. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5109. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5110. tcp_update_pacing_rate(sk);
  5111. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5112. tp->lsndtime = tcp_jiffies32;
  5113. tcp_initialize_rcv_mss(sk);
  5114. tcp_fast_path_on(tp);
  5115. break;
  5116. case TCP_FIN_WAIT1: {
  5117. int tmo;
  5118. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5119. * Fast Open socket and this is the first acceptable
  5120. * ACK we have received, this would have acknowledged
  5121. * our SYNACK so stop the SYNACK timer.
  5122. */
  5123. if (req) {
  5124. /* We no longer need the request sock. */
  5125. reqsk_fastopen_remove(sk, req, false);
  5126. tcp_rearm_rto(sk);
  5127. }
  5128. if (tp->snd_una != tp->write_seq)
  5129. break;
  5130. tcp_set_state(sk, TCP_FIN_WAIT2);
  5131. sk->sk_shutdown |= SEND_SHUTDOWN;
  5132. sk_dst_confirm(sk);
  5133. if (!sock_flag(sk, SOCK_DEAD)) {
  5134. /* Wake up lingering close() */
  5135. sk->sk_state_change(sk);
  5136. break;
  5137. }
  5138. if (tp->linger2 < 0) {
  5139. tcp_done(sk);
  5140. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5141. return 1;
  5142. }
  5143. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5144. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5145. /* Receive out of order FIN after close() */
  5146. if (tp->syn_fastopen && th->fin)
  5147. tcp_fastopen_active_disable(sk);
  5148. tcp_done(sk);
  5149. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5150. return 1;
  5151. }
  5152. tmo = tcp_fin_time(sk);
  5153. if (tmo > TCP_TIMEWAIT_LEN) {
  5154. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5155. } else if (th->fin || sock_owned_by_user(sk)) {
  5156. /* Bad case. We could lose such FIN otherwise.
  5157. * It is not a big problem, but it looks confusing
  5158. * and not so rare event. We still can lose it now,
  5159. * if it spins in bh_lock_sock(), but it is really
  5160. * marginal case.
  5161. */
  5162. inet_csk_reset_keepalive_timer(sk, tmo);
  5163. } else {
  5164. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5165. goto discard;
  5166. }
  5167. break;
  5168. }
  5169. case TCP_CLOSING:
  5170. if (tp->snd_una == tp->write_seq) {
  5171. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5172. goto discard;
  5173. }
  5174. break;
  5175. case TCP_LAST_ACK:
  5176. if (tp->snd_una == tp->write_seq) {
  5177. tcp_update_metrics(sk);
  5178. tcp_done(sk);
  5179. goto discard;
  5180. }
  5181. break;
  5182. }
  5183. /* step 6: check the URG bit */
  5184. tcp_urg(sk, skb, th);
  5185. /* step 7: process the segment text */
  5186. switch (sk->sk_state) {
  5187. case TCP_CLOSE_WAIT:
  5188. case TCP_CLOSING:
  5189. case TCP_LAST_ACK:
  5190. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5191. break;
  5192. /* fall through */
  5193. case TCP_FIN_WAIT1:
  5194. case TCP_FIN_WAIT2:
  5195. /* RFC 793 says to queue data in these states,
  5196. * RFC 1122 says we MUST send a reset.
  5197. * BSD 4.4 also does reset.
  5198. */
  5199. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5200. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5201. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5202. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5203. tcp_reset(sk);
  5204. return 1;
  5205. }
  5206. }
  5207. /* Fall through */
  5208. case TCP_ESTABLISHED:
  5209. tcp_data_queue(sk, skb);
  5210. queued = 1;
  5211. break;
  5212. }
  5213. /* tcp_data could move socket to TIME-WAIT */
  5214. if (sk->sk_state != TCP_CLOSE) {
  5215. tcp_data_snd_check(sk);
  5216. tcp_ack_snd_check(sk);
  5217. }
  5218. if (!queued) {
  5219. discard:
  5220. tcp_drop(sk, skb);
  5221. }
  5222. return 0;
  5223. }
  5224. EXPORT_SYMBOL(tcp_rcv_state_process);
  5225. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5226. {
  5227. struct inet_request_sock *ireq = inet_rsk(req);
  5228. if (family == AF_INET)
  5229. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5230. &ireq->ir_rmt_addr, port);
  5231. #if IS_ENABLED(CONFIG_IPV6)
  5232. else if (family == AF_INET6)
  5233. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5234. &ireq->ir_v6_rmt_addr, port);
  5235. #endif
  5236. }
  5237. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5238. *
  5239. * If we receive a SYN packet with these bits set, it means a
  5240. * network is playing bad games with TOS bits. In order to
  5241. * avoid possible false congestion notifications, we disable
  5242. * TCP ECN negotiation.
  5243. *
  5244. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5245. * congestion control: Linux DCTCP asserts ECT on all packets,
  5246. * including SYN, which is most optimal solution; however,
  5247. * others, such as FreeBSD do not.
  5248. */
  5249. static void tcp_ecn_create_request(struct request_sock *req,
  5250. const struct sk_buff *skb,
  5251. const struct sock *listen_sk,
  5252. const struct dst_entry *dst)
  5253. {
  5254. const struct tcphdr *th = tcp_hdr(skb);
  5255. const struct net *net = sock_net(listen_sk);
  5256. bool th_ecn = th->ece && th->cwr;
  5257. bool ect, ecn_ok;
  5258. u32 ecn_ok_dst;
  5259. if (!th_ecn)
  5260. return;
  5261. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5262. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5263. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5264. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5265. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5266. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5267. inet_rsk(req)->ecn_ok = 1;
  5268. }
  5269. static void tcp_openreq_init(struct request_sock *req,
  5270. const struct tcp_options_received *rx_opt,
  5271. struct sk_buff *skb, const struct sock *sk)
  5272. {
  5273. struct inet_request_sock *ireq = inet_rsk(req);
  5274. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5275. req->cookie_ts = 0;
  5276. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5277. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5278. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5279. tcp_rsk(req)->last_oow_ack_time = 0;
  5280. req->mss = rx_opt->mss_clamp;
  5281. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5282. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5283. ireq->sack_ok = rx_opt->sack_ok;
  5284. ireq->snd_wscale = rx_opt->snd_wscale;
  5285. ireq->wscale_ok = rx_opt->wscale_ok;
  5286. ireq->acked = 0;
  5287. ireq->ecn_ok = 0;
  5288. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5289. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5290. ireq->ir_mark = inet_request_mark(sk, skb);
  5291. #if IS_ENABLED(CONFIG_SMC)
  5292. ireq->smc_ok = rx_opt->smc_ok;
  5293. #endif
  5294. }
  5295. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5296. struct sock *sk_listener,
  5297. bool attach_listener)
  5298. {
  5299. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5300. attach_listener);
  5301. if (req) {
  5302. struct inet_request_sock *ireq = inet_rsk(req);
  5303. ireq->ireq_opt = NULL;
  5304. #if IS_ENABLED(CONFIG_IPV6)
  5305. ireq->pktopts = NULL;
  5306. #endif
  5307. atomic64_set(&ireq->ir_cookie, 0);
  5308. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5309. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5310. ireq->ireq_family = sk_listener->sk_family;
  5311. }
  5312. return req;
  5313. }
  5314. EXPORT_SYMBOL(inet_reqsk_alloc);
  5315. /*
  5316. * Return true if a syncookie should be sent
  5317. */
  5318. static bool tcp_syn_flood_action(const struct sock *sk,
  5319. const struct sk_buff *skb,
  5320. const char *proto)
  5321. {
  5322. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5323. const char *msg = "Dropping request";
  5324. bool want_cookie = false;
  5325. struct net *net = sock_net(sk);
  5326. #ifdef CONFIG_SYN_COOKIES
  5327. if (net->ipv4.sysctl_tcp_syncookies) {
  5328. msg = "Sending cookies";
  5329. want_cookie = true;
  5330. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5331. } else
  5332. #endif
  5333. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5334. if (!queue->synflood_warned &&
  5335. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5336. xchg(&queue->synflood_warned, 1) == 0)
  5337. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5338. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5339. return want_cookie;
  5340. }
  5341. static void tcp_reqsk_record_syn(const struct sock *sk,
  5342. struct request_sock *req,
  5343. const struct sk_buff *skb)
  5344. {
  5345. if (tcp_sk(sk)->save_syn) {
  5346. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5347. u32 *copy;
  5348. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5349. if (copy) {
  5350. copy[0] = len;
  5351. memcpy(&copy[1], skb_network_header(skb), len);
  5352. req->saved_syn = copy;
  5353. }
  5354. }
  5355. }
  5356. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5357. const struct tcp_request_sock_ops *af_ops,
  5358. struct sock *sk, struct sk_buff *skb)
  5359. {
  5360. struct tcp_fastopen_cookie foc = { .len = -1 };
  5361. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5362. struct tcp_options_received tmp_opt;
  5363. struct tcp_sock *tp = tcp_sk(sk);
  5364. struct net *net = sock_net(sk);
  5365. struct sock *fastopen_sk = NULL;
  5366. struct request_sock *req;
  5367. bool want_cookie = false;
  5368. struct dst_entry *dst;
  5369. struct flowi fl;
  5370. /* TW buckets are converted to open requests without
  5371. * limitations, they conserve resources and peer is
  5372. * evidently real one.
  5373. */
  5374. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5375. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5376. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5377. if (!want_cookie)
  5378. goto drop;
  5379. }
  5380. if (sk_acceptq_is_full(sk)) {
  5381. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5382. goto drop;
  5383. }
  5384. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5385. if (!req)
  5386. goto drop;
  5387. tcp_rsk(req)->af_specific = af_ops;
  5388. tcp_rsk(req)->ts_off = 0;
  5389. tcp_clear_options(&tmp_opt);
  5390. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5391. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5392. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5393. want_cookie ? NULL : &foc);
  5394. if (want_cookie && !tmp_opt.saw_tstamp)
  5395. tcp_clear_options(&tmp_opt);
  5396. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5397. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5398. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5399. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5400. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5401. af_ops->init_req(req, sk, skb);
  5402. if (security_inet_conn_request(sk, skb, req))
  5403. goto drop_and_free;
  5404. if (tmp_opt.tstamp_ok)
  5405. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5406. dst = af_ops->route_req(sk, &fl, req);
  5407. if (!dst)
  5408. goto drop_and_free;
  5409. if (!want_cookie && !isn) {
  5410. /* Kill the following clause, if you dislike this way. */
  5411. if (!net->ipv4.sysctl_tcp_syncookies &&
  5412. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5413. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5414. !tcp_peer_is_proven(req, dst)) {
  5415. /* Without syncookies last quarter of
  5416. * backlog is filled with destinations,
  5417. * proven to be alive.
  5418. * It means that we continue to communicate
  5419. * to destinations, already remembered
  5420. * to the moment of synflood.
  5421. */
  5422. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5423. rsk_ops->family);
  5424. goto drop_and_release;
  5425. }
  5426. isn = af_ops->init_seq(skb);
  5427. }
  5428. tcp_ecn_create_request(req, skb, sk, dst);
  5429. if (want_cookie) {
  5430. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5431. req->cookie_ts = tmp_opt.tstamp_ok;
  5432. if (!tmp_opt.tstamp_ok)
  5433. inet_rsk(req)->ecn_ok = 0;
  5434. }
  5435. tcp_rsk(req)->snt_isn = isn;
  5436. tcp_rsk(req)->txhash = net_tx_rndhash();
  5437. tcp_openreq_init_rwin(req, sk, dst);
  5438. if (!want_cookie) {
  5439. tcp_reqsk_record_syn(sk, req, skb);
  5440. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5441. }
  5442. if (fastopen_sk) {
  5443. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5444. &foc, TCP_SYNACK_FASTOPEN);
  5445. /* Add the child socket directly into the accept queue */
  5446. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5447. sk->sk_data_ready(sk);
  5448. bh_unlock_sock(fastopen_sk);
  5449. sock_put(fastopen_sk);
  5450. } else {
  5451. tcp_rsk(req)->tfo_listener = false;
  5452. if (!want_cookie)
  5453. inet_csk_reqsk_queue_hash_add(sk, req,
  5454. tcp_timeout_init((struct sock *)req));
  5455. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5456. !want_cookie ? TCP_SYNACK_NORMAL :
  5457. TCP_SYNACK_COOKIE);
  5458. if (want_cookie) {
  5459. reqsk_free(req);
  5460. return 0;
  5461. }
  5462. }
  5463. reqsk_put(req);
  5464. return 0;
  5465. drop_and_release:
  5466. dst_release(dst);
  5467. drop_and_free:
  5468. reqsk_free(req);
  5469. drop:
  5470. tcp_listendrop(sk);
  5471. return 0;
  5472. }
  5473. EXPORT_SYMBOL(tcp_conn_request);