emulate.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <linux/module.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <linux/stringify.h>
  27. #include "x86.h"
  28. #include "tss.h"
  29. /*
  30. * Operand types
  31. */
  32. #define OpNone 0ull
  33. #define OpImplicit 1ull /* No generic decode */
  34. #define OpReg 2ull /* Register */
  35. #define OpMem 3ull /* Memory */
  36. #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
  37. #define OpDI 5ull /* ES:DI/EDI/RDI */
  38. #define OpMem64 6ull /* Memory, 64-bit */
  39. #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
  40. #define OpDX 8ull /* DX register */
  41. #define OpCL 9ull /* CL register (for shifts) */
  42. #define OpImmByte 10ull /* 8-bit sign extended immediate */
  43. #define OpOne 11ull /* Implied 1 */
  44. #define OpImm 12ull /* Sign extended up to 32-bit immediate */
  45. #define OpMem16 13ull /* Memory operand (16-bit). */
  46. #define OpMem32 14ull /* Memory operand (32-bit). */
  47. #define OpImmU 15ull /* Immediate operand, zero extended */
  48. #define OpSI 16ull /* SI/ESI/RSI */
  49. #define OpImmFAddr 17ull /* Immediate far address */
  50. #define OpMemFAddr 18ull /* Far address in memory */
  51. #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
  52. #define OpES 20ull /* ES */
  53. #define OpCS 21ull /* CS */
  54. #define OpSS 22ull /* SS */
  55. #define OpDS 23ull /* DS */
  56. #define OpFS 24ull /* FS */
  57. #define OpGS 25ull /* GS */
  58. #define OpMem8 26ull /* 8-bit zero extended memory operand */
  59. #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
  60. #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
  61. #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
  62. #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
  63. #define OpBits 5 /* Width of operand field */
  64. #define OpMask ((1ull << OpBits) - 1)
  65. /*
  66. * Opcode effective-address decode tables.
  67. * Note that we only emulate instructions that have at least one memory
  68. * operand (excluding implicit stack references). We assume that stack
  69. * references and instruction fetches will never occur in special memory
  70. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  71. * not be handled.
  72. */
  73. /* Operand sizes: 8-bit operands or specified/overridden size. */
  74. #define ByteOp (1<<0) /* 8-bit operands. */
  75. /* Destination operand type. */
  76. #define DstShift 1
  77. #define ImplicitOps (OpImplicit << DstShift)
  78. #define DstReg (OpReg << DstShift)
  79. #define DstMem (OpMem << DstShift)
  80. #define DstAcc (OpAcc << DstShift)
  81. #define DstDI (OpDI << DstShift)
  82. #define DstMem64 (OpMem64 << DstShift)
  83. #define DstMem16 (OpMem16 << DstShift)
  84. #define DstImmUByte (OpImmUByte << DstShift)
  85. #define DstDX (OpDX << DstShift)
  86. #define DstAccLo (OpAccLo << DstShift)
  87. #define DstMask (OpMask << DstShift)
  88. /* Source operand type. */
  89. #define SrcShift 6
  90. #define SrcNone (OpNone << SrcShift)
  91. #define SrcReg (OpReg << SrcShift)
  92. #define SrcMem (OpMem << SrcShift)
  93. #define SrcMem16 (OpMem16 << SrcShift)
  94. #define SrcMem32 (OpMem32 << SrcShift)
  95. #define SrcImm (OpImm << SrcShift)
  96. #define SrcImmByte (OpImmByte << SrcShift)
  97. #define SrcOne (OpOne << SrcShift)
  98. #define SrcImmUByte (OpImmUByte << SrcShift)
  99. #define SrcImmU (OpImmU << SrcShift)
  100. #define SrcSI (OpSI << SrcShift)
  101. #define SrcXLat (OpXLat << SrcShift)
  102. #define SrcImmFAddr (OpImmFAddr << SrcShift)
  103. #define SrcMemFAddr (OpMemFAddr << SrcShift)
  104. #define SrcAcc (OpAcc << SrcShift)
  105. #define SrcImmU16 (OpImmU16 << SrcShift)
  106. #define SrcImm64 (OpImm64 << SrcShift)
  107. #define SrcDX (OpDX << SrcShift)
  108. #define SrcMem8 (OpMem8 << SrcShift)
  109. #define SrcAccHi (OpAccHi << SrcShift)
  110. #define SrcMask (OpMask << SrcShift)
  111. #define BitOp (1<<11)
  112. #define MemAbs (1<<12) /* Memory operand is absolute displacement */
  113. #define String (1<<13) /* String instruction (rep capable) */
  114. #define Stack (1<<14) /* Stack instruction (push/pop) */
  115. #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
  116. #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
  117. #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
  118. #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
  119. #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
  120. #define Escape (5<<15) /* Escape to coprocessor instruction */
  121. #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
  122. #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
  123. #define Sse (1<<18) /* SSE Vector instruction */
  124. /* Generic ModRM decode. */
  125. #define ModRM (1<<19)
  126. /* Destination is only written; never read. */
  127. #define Mov (1<<20)
  128. /* Misc flags */
  129. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  130. #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
  131. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  132. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  133. #define Undefined (1<<25) /* No Such Instruction */
  134. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  135. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  136. #define No64 (1<<28)
  137. #define PageTable (1 << 29) /* instruction used to write page table */
  138. #define NotImpl (1 << 30) /* instruction is not implemented */
  139. /* Source 2 operand type */
  140. #define Src2Shift (31)
  141. #define Src2None (OpNone << Src2Shift)
  142. #define Src2Mem (OpMem << Src2Shift)
  143. #define Src2CL (OpCL << Src2Shift)
  144. #define Src2ImmByte (OpImmByte << Src2Shift)
  145. #define Src2One (OpOne << Src2Shift)
  146. #define Src2Imm (OpImm << Src2Shift)
  147. #define Src2ES (OpES << Src2Shift)
  148. #define Src2CS (OpCS << Src2Shift)
  149. #define Src2SS (OpSS << Src2Shift)
  150. #define Src2DS (OpDS << Src2Shift)
  151. #define Src2FS (OpFS << Src2Shift)
  152. #define Src2GS (OpGS << Src2Shift)
  153. #define Src2Mask (OpMask << Src2Shift)
  154. #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
  155. #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
  156. #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
  157. #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
  158. #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
  159. #define NoWrite ((u64)1 << 45) /* No writeback */
  160. #define SrcWrite ((u64)1 << 46) /* Write back src operand */
  161. #define NoMod ((u64)1 << 47) /* Mod field is ignored */
  162. #define Intercept ((u64)1 << 48) /* Has valid intercept field */
  163. #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
  164. #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
  165. #define NearBranch ((u64)1 << 52) /* Near branches */
  166. #define No16 ((u64)1 << 53) /* No 16 bit operand */
  167. #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
  168. #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
  169. #define X2(x...) x, x
  170. #define X3(x...) X2(x), x
  171. #define X4(x...) X2(x), X2(x)
  172. #define X5(x...) X4(x), x
  173. #define X6(x...) X4(x), X2(x)
  174. #define X7(x...) X4(x), X3(x)
  175. #define X8(x...) X4(x), X4(x)
  176. #define X16(x...) X8(x), X8(x)
  177. #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
  178. #define FASTOP_SIZE 8
  179. /*
  180. * fastop functions have a special calling convention:
  181. *
  182. * dst: rax (in/out)
  183. * src: rdx (in/out)
  184. * src2: rcx (in)
  185. * flags: rflags (in/out)
  186. * ex: rsi (in:fastop pointer, out:zero if exception)
  187. *
  188. * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
  189. * different operand sizes can be reached by calculation, rather than a jump
  190. * table (which would be bigger than the code).
  191. *
  192. * fastop functions are declared as taking a never-defined fastop parameter,
  193. * so they can't be called from C directly.
  194. */
  195. struct fastop;
  196. struct opcode {
  197. u64 flags : 56;
  198. u64 intercept : 8;
  199. union {
  200. int (*execute)(struct x86_emulate_ctxt *ctxt);
  201. const struct opcode *group;
  202. const struct group_dual *gdual;
  203. const struct gprefix *gprefix;
  204. const struct escape *esc;
  205. const struct instr_dual *idual;
  206. const struct mode_dual *mdual;
  207. void (*fastop)(struct fastop *fake);
  208. } u;
  209. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  210. };
  211. struct group_dual {
  212. struct opcode mod012[8];
  213. struct opcode mod3[8];
  214. };
  215. struct gprefix {
  216. struct opcode pfx_no;
  217. struct opcode pfx_66;
  218. struct opcode pfx_f2;
  219. struct opcode pfx_f3;
  220. };
  221. struct escape {
  222. struct opcode op[8];
  223. struct opcode high[64];
  224. };
  225. struct instr_dual {
  226. struct opcode mod012;
  227. struct opcode mod3;
  228. };
  229. struct mode_dual {
  230. struct opcode mode32;
  231. struct opcode mode64;
  232. };
  233. /* EFLAGS bit definitions. */
  234. #define EFLG_ID (1<<21)
  235. #define EFLG_VIP (1<<20)
  236. #define EFLG_VIF (1<<19)
  237. #define EFLG_AC (1<<18)
  238. #define EFLG_VM (1<<17)
  239. #define EFLG_RF (1<<16)
  240. #define EFLG_IOPL (3<<12)
  241. #define EFLG_NT (1<<14)
  242. #define EFLG_OF (1<<11)
  243. #define EFLG_DF (1<<10)
  244. #define EFLG_IF (1<<9)
  245. #define EFLG_TF (1<<8)
  246. #define EFLG_SF (1<<7)
  247. #define EFLG_ZF (1<<6)
  248. #define EFLG_AF (1<<4)
  249. #define EFLG_PF (1<<2)
  250. #define EFLG_CF (1<<0)
  251. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  252. #define EFLG_RESERVED_ONE_MASK 2
  253. enum x86_transfer_type {
  254. X86_TRANSFER_NONE,
  255. X86_TRANSFER_CALL_JMP,
  256. X86_TRANSFER_RET,
  257. X86_TRANSFER_TASK_SWITCH,
  258. };
  259. static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
  260. {
  261. if (!(ctxt->regs_valid & (1 << nr))) {
  262. ctxt->regs_valid |= 1 << nr;
  263. ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
  264. }
  265. return ctxt->_regs[nr];
  266. }
  267. static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
  268. {
  269. ctxt->regs_valid |= 1 << nr;
  270. ctxt->regs_dirty |= 1 << nr;
  271. return &ctxt->_regs[nr];
  272. }
  273. static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
  274. {
  275. reg_read(ctxt, nr);
  276. return reg_write(ctxt, nr);
  277. }
  278. static void writeback_registers(struct x86_emulate_ctxt *ctxt)
  279. {
  280. unsigned reg;
  281. for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
  282. ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
  283. }
  284. static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
  285. {
  286. ctxt->regs_dirty = 0;
  287. ctxt->regs_valid = 0;
  288. }
  289. /*
  290. * These EFLAGS bits are restored from saved value during emulation, and
  291. * any changes are written back to the saved value after emulation.
  292. */
  293. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  294. #ifdef CONFIG_X86_64
  295. #define ON64(x) x
  296. #else
  297. #define ON64(x)
  298. #endif
  299. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
  300. #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
  301. #define FOP_RET "ret \n\t"
  302. #define FOP_START(op) \
  303. extern void em_##op(struct fastop *fake); \
  304. asm(".pushsection .text, \"ax\" \n\t" \
  305. ".global em_" #op " \n\t" \
  306. FOP_ALIGN \
  307. "em_" #op ": \n\t"
  308. #define FOP_END \
  309. ".popsection")
  310. #define FOPNOP() FOP_ALIGN FOP_RET
  311. #define FOP1E(op, dst) \
  312. FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
  313. #define FOP1EEX(op, dst) \
  314. FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
  315. #define FASTOP1(op) \
  316. FOP_START(op) \
  317. FOP1E(op##b, al) \
  318. FOP1E(op##w, ax) \
  319. FOP1E(op##l, eax) \
  320. ON64(FOP1E(op##q, rax)) \
  321. FOP_END
  322. /* 1-operand, using src2 (for MUL/DIV r/m) */
  323. #define FASTOP1SRC2(op, name) \
  324. FOP_START(name) \
  325. FOP1E(op, cl) \
  326. FOP1E(op, cx) \
  327. FOP1E(op, ecx) \
  328. ON64(FOP1E(op, rcx)) \
  329. FOP_END
  330. /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
  331. #define FASTOP1SRC2EX(op, name) \
  332. FOP_START(name) \
  333. FOP1EEX(op, cl) \
  334. FOP1EEX(op, cx) \
  335. FOP1EEX(op, ecx) \
  336. ON64(FOP1EEX(op, rcx)) \
  337. FOP_END
  338. #define FOP2E(op, dst, src) \
  339. FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
  340. #define FASTOP2(op) \
  341. FOP_START(op) \
  342. FOP2E(op##b, al, dl) \
  343. FOP2E(op##w, ax, dx) \
  344. FOP2E(op##l, eax, edx) \
  345. ON64(FOP2E(op##q, rax, rdx)) \
  346. FOP_END
  347. /* 2 operand, word only */
  348. #define FASTOP2W(op) \
  349. FOP_START(op) \
  350. FOPNOP() \
  351. FOP2E(op##w, ax, dx) \
  352. FOP2E(op##l, eax, edx) \
  353. ON64(FOP2E(op##q, rax, rdx)) \
  354. FOP_END
  355. /* 2 operand, src is CL */
  356. #define FASTOP2CL(op) \
  357. FOP_START(op) \
  358. FOP2E(op##b, al, cl) \
  359. FOP2E(op##w, ax, cl) \
  360. FOP2E(op##l, eax, cl) \
  361. ON64(FOP2E(op##q, rax, cl)) \
  362. FOP_END
  363. /* 2 operand, src and dest are reversed */
  364. #define FASTOP2R(op, name) \
  365. FOP_START(name) \
  366. FOP2E(op##b, dl, al) \
  367. FOP2E(op##w, dx, ax) \
  368. FOP2E(op##l, edx, eax) \
  369. ON64(FOP2E(op##q, rdx, rax)) \
  370. FOP_END
  371. #define FOP3E(op, dst, src, src2) \
  372. FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
  373. /* 3-operand, word-only, src2=cl */
  374. #define FASTOP3WCL(op) \
  375. FOP_START(op) \
  376. FOPNOP() \
  377. FOP3E(op##w, ax, dx, cl) \
  378. FOP3E(op##l, eax, edx, cl) \
  379. ON64(FOP3E(op##q, rax, rdx, cl)) \
  380. FOP_END
  381. /* Special case for SETcc - 1 instruction per cc */
  382. #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
  383. asm(".global kvm_fastop_exception \n"
  384. "kvm_fastop_exception: xor %esi, %esi; ret");
  385. FOP_START(setcc)
  386. FOP_SETCC(seto)
  387. FOP_SETCC(setno)
  388. FOP_SETCC(setc)
  389. FOP_SETCC(setnc)
  390. FOP_SETCC(setz)
  391. FOP_SETCC(setnz)
  392. FOP_SETCC(setbe)
  393. FOP_SETCC(setnbe)
  394. FOP_SETCC(sets)
  395. FOP_SETCC(setns)
  396. FOP_SETCC(setp)
  397. FOP_SETCC(setnp)
  398. FOP_SETCC(setl)
  399. FOP_SETCC(setnl)
  400. FOP_SETCC(setle)
  401. FOP_SETCC(setnle)
  402. FOP_END;
  403. FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
  404. FOP_END;
  405. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  406. enum x86_intercept intercept,
  407. enum x86_intercept_stage stage)
  408. {
  409. struct x86_instruction_info info = {
  410. .intercept = intercept,
  411. .rep_prefix = ctxt->rep_prefix,
  412. .modrm_mod = ctxt->modrm_mod,
  413. .modrm_reg = ctxt->modrm_reg,
  414. .modrm_rm = ctxt->modrm_rm,
  415. .src_val = ctxt->src.val64,
  416. .dst_val = ctxt->dst.val64,
  417. .src_bytes = ctxt->src.bytes,
  418. .dst_bytes = ctxt->dst.bytes,
  419. .ad_bytes = ctxt->ad_bytes,
  420. .next_rip = ctxt->eip,
  421. };
  422. return ctxt->ops->intercept(ctxt, &info, stage);
  423. }
  424. static void assign_masked(ulong *dest, ulong src, ulong mask)
  425. {
  426. *dest = (*dest & ~mask) | (src & mask);
  427. }
  428. static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
  429. {
  430. return (1UL << (ctxt->ad_bytes << 3)) - 1;
  431. }
  432. static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
  433. {
  434. u16 sel;
  435. struct desc_struct ss;
  436. if (ctxt->mode == X86EMUL_MODE_PROT64)
  437. return ~0UL;
  438. ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
  439. return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
  440. }
  441. static int stack_size(struct x86_emulate_ctxt *ctxt)
  442. {
  443. return (__fls(stack_mask(ctxt)) + 1) >> 3;
  444. }
  445. /* Access/update address held in a register, based on addressing mode. */
  446. static inline unsigned long
  447. address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  448. {
  449. if (ctxt->ad_bytes == sizeof(unsigned long))
  450. return reg;
  451. else
  452. return reg & ad_mask(ctxt);
  453. }
  454. static inline unsigned long
  455. register_address(struct x86_emulate_ctxt *ctxt, int reg)
  456. {
  457. return address_mask(ctxt, reg_read(ctxt, reg));
  458. }
  459. static void masked_increment(ulong *reg, ulong mask, int inc)
  460. {
  461. assign_masked(reg, *reg + inc, mask);
  462. }
  463. static inline void
  464. register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
  465. {
  466. ulong mask;
  467. if (ctxt->ad_bytes == sizeof(unsigned long))
  468. mask = ~0UL;
  469. else
  470. mask = ad_mask(ctxt);
  471. masked_increment(reg_rmw(ctxt, reg), mask, inc);
  472. }
  473. static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
  474. {
  475. masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
  476. }
  477. static u32 desc_limit_scaled(struct desc_struct *desc)
  478. {
  479. u32 limit = get_desc_limit(desc);
  480. return desc->g ? (limit << 12) | 0xfff : limit;
  481. }
  482. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  483. {
  484. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  485. return 0;
  486. return ctxt->ops->get_cached_segment_base(ctxt, seg);
  487. }
  488. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  489. u32 error, bool valid)
  490. {
  491. WARN_ON(vec > 0x1f);
  492. ctxt->exception.vector = vec;
  493. ctxt->exception.error_code = error;
  494. ctxt->exception.error_code_valid = valid;
  495. return X86EMUL_PROPAGATE_FAULT;
  496. }
  497. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  498. {
  499. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  500. }
  501. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  502. {
  503. return emulate_exception(ctxt, GP_VECTOR, err, true);
  504. }
  505. static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
  506. {
  507. return emulate_exception(ctxt, SS_VECTOR, err, true);
  508. }
  509. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  510. {
  511. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  512. }
  513. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  514. {
  515. return emulate_exception(ctxt, TS_VECTOR, err, true);
  516. }
  517. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  518. {
  519. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  520. }
  521. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  522. {
  523. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  524. }
  525. static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
  526. {
  527. u16 selector;
  528. struct desc_struct desc;
  529. ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
  530. return selector;
  531. }
  532. static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
  533. unsigned seg)
  534. {
  535. u16 dummy;
  536. u32 base3;
  537. struct desc_struct desc;
  538. ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
  539. ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
  540. }
  541. /*
  542. * x86 defines three classes of vector instructions: explicitly
  543. * aligned, explicitly unaligned, and the rest, which change behaviour
  544. * depending on whether they're AVX encoded or not.
  545. *
  546. * Also included is CMPXCHG16B which is not a vector instruction, yet it is
  547. * subject to the same check.
  548. */
  549. static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
  550. {
  551. if (likely(size < 16))
  552. return false;
  553. if (ctxt->d & Aligned)
  554. return true;
  555. else if (ctxt->d & Unaligned)
  556. return false;
  557. else if (ctxt->d & Avx)
  558. return false;
  559. else
  560. return true;
  561. }
  562. static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
  563. struct segmented_address addr,
  564. unsigned *max_size, unsigned size,
  565. bool write, bool fetch,
  566. enum x86emul_mode mode, ulong *linear)
  567. {
  568. struct desc_struct desc;
  569. bool usable;
  570. ulong la;
  571. u32 lim;
  572. u16 sel;
  573. la = seg_base(ctxt, addr.seg) + addr.ea;
  574. *max_size = 0;
  575. switch (mode) {
  576. case X86EMUL_MODE_PROT64:
  577. if (is_noncanonical_address(la))
  578. goto bad;
  579. *max_size = min_t(u64, ~0u, (1ull << 48) - la);
  580. if (size > *max_size)
  581. goto bad;
  582. break;
  583. default:
  584. usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
  585. addr.seg);
  586. if (!usable)
  587. goto bad;
  588. /* code segment in protected mode or read-only data segment */
  589. if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
  590. || !(desc.type & 2)) && write)
  591. goto bad;
  592. /* unreadable code segment */
  593. if (!fetch && (desc.type & 8) && !(desc.type & 2))
  594. goto bad;
  595. lim = desc_limit_scaled(&desc);
  596. if (!(desc.type & 8) && (desc.type & 4)) {
  597. /* expand-down segment */
  598. if (addr.ea <= lim)
  599. goto bad;
  600. lim = desc.d ? 0xffffffff : 0xffff;
  601. }
  602. if (addr.ea > lim)
  603. goto bad;
  604. if (lim == 0xffffffff)
  605. *max_size = ~0u;
  606. else {
  607. *max_size = (u64)lim + 1 - addr.ea;
  608. if (size > *max_size)
  609. goto bad;
  610. }
  611. la &= (u32)-1;
  612. break;
  613. }
  614. if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
  615. return emulate_gp(ctxt, 0);
  616. *linear = la;
  617. return X86EMUL_CONTINUE;
  618. bad:
  619. if (addr.seg == VCPU_SREG_SS)
  620. return emulate_ss(ctxt, 0);
  621. else
  622. return emulate_gp(ctxt, 0);
  623. }
  624. static int linearize(struct x86_emulate_ctxt *ctxt,
  625. struct segmented_address addr,
  626. unsigned size, bool write,
  627. ulong *linear)
  628. {
  629. unsigned max_size;
  630. return __linearize(ctxt, addr, &max_size, size, write, false,
  631. ctxt->mode, linear);
  632. }
  633. static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
  634. enum x86emul_mode mode)
  635. {
  636. ulong linear;
  637. int rc;
  638. unsigned max_size;
  639. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  640. .ea = dst };
  641. if (ctxt->op_bytes != sizeof(unsigned long))
  642. addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
  643. rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
  644. if (rc == X86EMUL_CONTINUE)
  645. ctxt->_eip = addr.ea;
  646. return rc;
  647. }
  648. static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
  649. {
  650. return assign_eip(ctxt, dst, ctxt->mode);
  651. }
  652. static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
  653. const struct desc_struct *cs_desc)
  654. {
  655. enum x86emul_mode mode = ctxt->mode;
  656. int rc;
  657. #ifdef CONFIG_X86_64
  658. if (ctxt->mode >= X86EMUL_MODE_PROT16) {
  659. if (cs_desc->l) {
  660. u64 efer = 0;
  661. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  662. if (efer & EFER_LMA)
  663. mode = X86EMUL_MODE_PROT64;
  664. } else
  665. mode = X86EMUL_MODE_PROT32; /* temporary value */
  666. }
  667. #endif
  668. if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
  669. mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  670. rc = assign_eip(ctxt, dst, mode);
  671. if (rc == X86EMUL_CONTINUE)
  672. ctxt->mode = mode;
  673. return rc;
  674. }
  675. static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
  676. {
  677. return assign_eip_near(ctxt, ctxt->_eip + rel);
  678. }
  679. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  680. struct segmented_address addr,
  681. void *data,
  682. unsigned size)
  683. {
  684. int rc;
  685. ulong linear;
  686. rc = linearize(ctxt, addr, size, false, &linear);
  687. if (rc != X86EMUL_CONTINUE)
  688. return rc;
  689. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
  690. }
  691. /*
  692. * Prefetch the remaining bytes of the instruction without crossing page
  693. * boundary if they are not in fetch_cache yet.
  694. */
  695. static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
  696. {
  697. int rc;
  698. unsigned size, max_size;
  699. unsigned long linear;
  700. int cur_size = ctxt->fetch.end - ctxt->fetch.data;
  701. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  702. .ea = ctxt->eip + cur_size };
  703. /*
  704. * We do not know exactly how many bytes will be needed, and
  705. * __linearize is expensive, so fetch as much as possible. We
  706. * just have to avoid going beyond the 15 byte limit, the end
  707. * of the segment, or the end of the page.
  708. *
  709. * __linearize is called with size 0 so that it does not do any
  710. * boundary check itself. Instead, we use max_size to check
  711. * against op_size.
  712. */
  713. rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
  714. &linear);
  715. if (unlikely(rc != X86EMUL_CONTINUE))
  716. return rc;
  717. size = min_t(unsigned, 15UL ^ cur_size, max_size);
  718. size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
  719. /*
  720. * One instruction can only straddle two pages,
  721. * and one has been loaded at the beginning of
  722. * x86_decode_insn. So, if not enough bytes
  723. * still, we must have hit the 15-byte boundary.
  724. */
  725. if (unlikely(size < op_size))
  726. return emulate_gp(ctxt, 0);
  727. rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
  728. size, &ctxt->exception);
  729. if (unlikely(rc != X86EMUL_CONTINUE))
  730. return rc;
  731. ctxt->fetch.end += size;
  732. return X86EMUL_CONTINUE;
  733. }
  734. static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
  735. unsigned size)
  736. {
  737. unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
  738. if (unlikely(done_size < size))
  739. return __do_insn_fetch_bytes(ctxt, size - done_size);
  740. else
  741. return X86EMUL_CONTINUE;
  742. }
  743. /* Fetch next part of the instruction being emulated. */
  744. #define insn_fetch(_type, _ctxt) \
  745. ({ _type _x; \
  746. \
  747. rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
  748. if (rc != X86EMUL_CONTINUE) \
  749. goto done; \
  750. ctxt->_eip += sizeof(_type); \
  751. _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \
  752. ctxt->fetch.ptr += sizeof(_type); \
  753. _x; \
  754. })
  755. #define insn_fetch_arr(_arr, _size, _ctxt) \
  756. ({ \
  757. rc = do_insn_fetch_bytes(_ctxt, _size); \
  758. if (rc != X86EMUL_CONTINUE) \
  759. goto done; \
  760. ctxt->_eip += (_size); \
  761. memcpy(_arr, ctxt->fetch.ptr, _size); \
  762. ctxt->fetch.ptr += (_size); \
  763. })
  764. /*
  765. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  766. * pointer into the block that addresses the relevant register.
  767. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  768. */
  769. static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
  770. int byteop)
  771. {
  772. void *p;
  773. int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
  774. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  775. p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
  776. else
  777. p = reg_rmw(ctxt, modrm_reg);
  778. return p;
  779. }
  780. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  781. struct segmented_address addr,
  782. u16 *size, unsigned long *address, int op_bytes)
  783. {
  784. int rc;
  785. if (op_bytes == 2)
  786. op_bytes = 3;
  787. *address = 0;
  788. rc = segmented_read_std(ctxt, addr, size, 2);
  789. if (rc != X86EMUL_CONTINUE)
  790. return rc;
  791. addr.ea += 2;
  792. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  793. return rc;
  794. }
  795. FASTOP2(add);
  796. FASTOP2(or);
  797. FASTOP2(adc);
  798. FASTOP2(sbb);
  799. FASTOP2(and);
  800. FASTOP2(sub);
  801. FASTOP2(xor);
  802. FASTOP2(cmp);
  803. FASTOP2(test);
  804. FASTOP1SRC2(mul, mul_ex);
  805. FASTOP1SRC2(imul, imul_ex);
  806. FASTOP1SRC2EX(div, div_ex);
  807. FASTOP1SRC2EX(idiv, idiv_ex);
  808. FASTOP3WCL(shld);
  809. FASTOP3WCL(shrd);
  810. FASTOP2W(imul);
  811. FASTOP1(not);
  812. FASTOP1(neg);
  813. FASTOP1(inc);
  814. FASTOP1(dec);
  815. FASTOP2CL(rol);
  816. FASTOP2CL(ror);
  817. FASTOP2CL(rcl);
  818. FASTOP2CL(rcr);
  819. FASTOP2CL(shl);
  820. FASTOP2CL(shr);
  821. FASTOP2CL(sar);
  822. FASTOP2W(bsf);
  823. FASTOP2W(bsr);
  824. FASTOP2W(bt);
  825. FASTOP2W(bts);
  826. FASTOP2W(btr);
  827. FASTOP2W(btc);
  828. FASTOP2(xadd);
  829. FASTOP2R(cmp, cmp_r);
  830. static u8 test_cc(unsigned int condition, unsigned long flags)
  831. {
  832. u8 rc;
  833. void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
  834. flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
  835. asm("push %[flags]; popf; call *%[fastop]"
  836. : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
  837. return rc;
  838. }
  839. static void fetch_register_operand(struct operand *op)
  840. {
  841. switch (op->bytes) {
  842. case 1:
  843. op->val = *(u8 *)op->addr.reg;
  844. break;
  845. case 2:
  846. op->val = *(u16 *)op->addr.reg;
  847. break;
  848. case 4:
  849. op->val = *(u32 *)op->addr.reg;
  850. break;
  851. case 8:
  852. op->val = *(u64 *)op->addr.reg;
  853. break;
  854. }
  855. }
  856. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  857. {
  858. ctxt->ops->get_fpu(ctxt);
  859. switch (reg) {
  860. case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
  861. case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
  862. case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
  863. case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
  864. case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
  865. case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
  866. case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
  867. case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
  868. #ifdef CONFIG_X86_64
  869. case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
  870. case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
  871. case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
  872. case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
  873. case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
  874. case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
  875. case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
  876. case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
  877. #endif
  878. default: BUG();
  879. }
  880. ctxt->ops->put_fpu(ctxt);
  881. }
  882. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  883. int reg)
  884. {
  885. ctxt->ops->get_fpu(ctxt);
  886. switch (reg) {
  887. case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
  888. case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
  889. case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
  890. case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
  891. case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
  892. case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
  893. case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
  894. case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
  895. #ifdef CONFIG_X86_64
  896. case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
  897. case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
  898. case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
  899. case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
  900. case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
  901. case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
  902. case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
  903. case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
  904. #endif
  905. default: BUG();
  906. }
  907. ctxt->ops->put_fpu(ctxt);
  908. }
  909. static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  910. {
  911. ctxt->ops->get_fpu(ctxt);
  912. switch (reg) {
  913. case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
  914. case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
  915. case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
  916. case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
  917. case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
  918. case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
  919. case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
  920. case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
  921. default: BUG();
  922. }
  923. ctxt->ops->put_fpu(ctxt);
  924. }
  925. static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  926. {
  927. ctxt->ops->get_fpu(ctxt);
  928. switch (reg) {
  929. case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
  930. case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
  931. case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
  932. case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
  933. case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
  934. case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
  935. case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
  936. case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
  937. default: BUG();
  938. }
  939. ctxt->ops->put_fpu(ctxt);
  940. }
  941. static int em_fninit(struct x86_emulate_ctxt *ctxt)
  942. {
  943. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  944. return emulate_nm(ctxt);
  945. ctxt->ops->get_fpu(ctxt);
  946. asm volatile("fninit");
  947. ctxt->ops->put_fpu(ctxt);
  948. return X86EMUL_CONTINUE;
  949. }
  950. static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
  951. {
  952. u16 fcw;
  953. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  954. return emulate_nm(ctxt);
  955. ctxt->ops->get_fpu(ctxt);
  956. asm volatile("fnstcw %0": "+m"(fcw));
  957. ctxt->ops->put_fpu(ctxt);
  958. ctxt->dst.val = fcw;
  959. return X86EMUL_CONTINUE;
  960. }
  961. static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
  962. {
  963. u16 fsw;
  964. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  965. return emulate_nm(ctxt);
  966. ctxt->ops->get_fpu(ctxt);
  967. asm volatile("fnstsw %0": "+m"(fsw));
  968. ctxt->ops->put_fpu(ctxt);
  969. ctxt->dst.val = fsw;
  970. return X86EMUL_CONTINUE;
  971. }
  972. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  973. struct operand *op)
  974. {
  975. unsigned reg = ctxt->modrm_reg;
  976. if (!(ctxt->d & ModRM))
  977. reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
  978. if (ctxt->d & Sse) {
  979. op->type = OP_XMM;
  980. op->bytes = 16;
  981. op->addr.xmm = reg;
  982. read_sse_reg(ctxt, &op->vec_val, reg);
  983. return;
  984. }
  985. if (ctxt->d & Mmx) {
  986. reg &= 7;
  987. op->type = OP_MM;
  988. op->bytes = 8;
  989. op->addr.mm = reg;
  990. return;
  991. }
  992. op->type = OP_REG;
  993. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  994. op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
  995. fetch_register_operand(op);
  996. op->orig_val = op->val;
  997. }
  998. static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
  999. {
  1000. if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
  1001. ctxt->modrm_seg = VCPU_SREG_SS;
  1002. }
  1003. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  1004. struct operand *op)
  1005. {
  1006. u8 sib;
  1007. int index_reg, base_reg, scale;
  1008. int rc = X86EMUL_CONTINUE;
  1009. ulong modrm_ea = 0;
  1010. ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
  1011. index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
  1012. base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
  1013. ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
  1014. ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
  1015. ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
  1016. ctxt->modrm_seg = VCPU_SREG_DS;
  1017. if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
  1018. op->type = OP_REG;
  1019. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1020. op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
  1021. ctxt->d & ByteOp);
  1022. if (ctxt->d & Sse) {
  1023. op->type = OP_XMM;
  1024. op->bytes = 16;
  1025. op->addr.xmm = ctxt->modrm_rm;
  1026. read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
  1027. return rc;
  1028. }
  1029. if (ctxt->d & Mmx) {
  1030. op->type = OP_MM;
  1031. op->bytes = 8;
  1032. op->addr.mm = ctxt->modrm_rm & 7;
  1033. return rc;
  1034. }
  1035. fetch_register_operand(op);
  1036. return rc;
  1037. }
  1038. op->type = OP_MEM;
  1039. if (ctxt->ad_bytes == 2) {
  1040. unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
  1041. unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
  1042. unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
  1043. unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
  1044. /* 16-bit ModR/M decode. */
  1045. switch (ctxt->modrm_mod) {
  1046. case 0:
  1047. if (ctxt->modrm_rm == 6)
  1048. modrm_ea += insn_fetch(u16, ctxt);
  1049. break;
  1050. case 1:
  1051. modrm_ea += insn_fetch(s8, ctxt);
  1052. break;
  1053. case 2:
  1054. modrm_ea += insn_fetch(u16, ctxt);
  1055. break;
  1056. }
  1057. switch (ctxt->modrm_rm) {
  1058. case 0:
  1059. modrm_ea += bx + si;
  1060. break;
  1061. case 1:
  1062. modrm_ea += bx + di;
  1063. break;
  1064. case 2:
  1065. modrm_ea += bp + si;
  1066. break;
  1067. case 3:
  1068. modrm_ea += bp + di;
  1069. break;
  1070. case 4:
  1071. modrm_ea += si;
  1072. break;
  1073. case 5:
  1074. modrm_ea += di;
  1075. break;
  1076. case 6:
  1077. if (ctxt->modrm_mod != 0)
  1078. modrm_ea += bp;
  1079. break;
  1080. case 7:
  1081. modrm_ea += bx;
  1082. break;
  1083. }
  1084. if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
  1085. (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
  1086. ctxt->modrm_seg = VCPU_SREG_SS;
  1087. modrm_ea = (u16)modrm_ea;
  1088. } else {
  1089. /* 32/64-bit ModR/M decode. */
  1090. if ((ctxt->modrm_rm & 7) == 4) {
  1091. sib = insn_fetch(u8, ctxt);
  1092. index_reg |= (sib >> 3) & 7;
  1093. base_reg |= sib & 7;
  1094. scale = sib >> 6;
  1095. if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
  1096. modrm_ea += insn_fetch(s32, ctxt);
  1097. else {
  1098. modrm_ea += reg_read(ctxt, base_reg);
  1099. adjust_modrm_seg(ctxt, base_reg);
  1100. /* Increment ESP on POP [ESP] */
  1101. if ((ctxt->d & IncSP) &&
  1102. base_reg == VCPU_REGS_RSP)
  1103. modrm_ea += ctxt->op_bytes;
  1104. }
  1105. if (index_reg != 4)
  1106. modrm_ea += reg_read(ctxt, index_reg) << scale;
  1107. } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
  1108. modrm_ea += insn_fetch(s32, ctxt);
  1109. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1110. ctxt->rip_relative = 1;
  1111. } else {
  1112. base_reg = ctxt->modrm_rm;
  1113. modrm_ea += reg_read(ctxt, base_reg);
  1114. adjust_modrm_seg(ctxt, base_reg);
  1115. }
  1116. switch (ctxt->modrm_mod) {
  1117. case 1:
  1118. modrm_ea += insn_fetch(s8, ctxt);
  1119. break;
  1120. case 2:
  1121. modrm_ea += insn_fetch(s32, ctxt);
  1122. break;
  1123. }
  1124. }
  1125. op->addr.mem.ea = modrm_ea;
  1126. if (ctxt->ad_bytes != 8)
  1127. ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
  1128. done:
  1129. return rc;
  1130. }
  1131. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  1132. struct operand *op)
  1133. {
  1134. int rc = X86EMUL_CONTINUE;
  1135. op->type = OP_MEM;
  1136. switch (ctxt->ad_bytes) {
  1137. case 2:
  1138. op->addr.mem.ea = insn_fetch(u16, ctxt);
  1139. break;
  1140. case 4:
  1141. op->addr.mem.ea = insn_fetch(u32, ctxt);
  1142. break;
  1143. case 8:
  1144. op->addr.mem.ea = insn_fetch(u64, ctxt);
  1145. break;
  1146. }
  1147. done:
  1148. return rc;
  1149. }
  1150. static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
  1151. {
  1152. long sv = 0, mask;
  1153. if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
  1154. mask = ~((long)ctxt->dst.bytes * 8 - 1);
  1155. if (ctxt->src.bytes == 2)
  1156. sv = (s16)ctxt->src.val & (s16)mask;
  1157. else if (ctxt->src.bytes == 4)
  1158. sv = (s32)ctxt->src.val & (s32)mask;
  1159. else
  1160. sv = (s64)ctxt->src.val & (s64)mask;
  1161. ctxt->dst.addr.mem.ea = address_mask(ctxt,
  1162. ctxt->dst.addr.mem.ea + (sv >> 3));
  1163. }
  1164. /* only subword offset */
  1165. ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
  1166. }
  1167. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  1168. unsigned long addr, void *dest, unsigned size)
  1169. {
  1170. int rc;
  1171. struct read_cache *mc = &ctxt->mem_read;
  1172. if (mc->pos < mc->end)
  1173. goto read_cached;
  1174. WARN_ON((mc->end + size) >= sizeof(mc->data));
  1175. rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
  1176. &ctxt->exception);
  1177. if (rc != X86EMUL_CONTINUE)
  1178. return rc;
  1179. mc->end += size;
  1180. read_cached:
  1181. memcpy(dest, mc->data + mc->pos, size);
  1182. mc->pos += size;
  1183. return X86EMUL_CONTINUE;
  1184. }
  1185. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  1186. struct segmented_address addr,
  1187. void *data,
  1188. unsigned size)
  1189. {
  1190. int rc;
  1191. ulong linear;
  1192. rc = linearize(ctxt, addr, size, false, &linear);
  1193. if (rc != X86EMUL_CONTINUE)
  1194. return rc;
  1195. return read_emulated(ctxt, linear, data, size);
  1196. }
  1197. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  1198. struct segmented_address addr,
  1199. const void *data,
  1200. unsigned size)
  1201. {
  1202. int rc;
  1203. ulong linear;
  1204. rc = linearize(ctxt, addr, size, true, &linear);
  1205. if (rc != X86EMUL_CONTINUE)
  1206. return rc;
  1207. return ctxt->ops->write_emulated(ctxt, linear, data, size,
  1208. &ctxt->exception);
  1209. }
  1210. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  1211. struct segmented_address addr,
  1212. const void *orig_data, const void *data,
  1213. unsigned size)
  1214. {
  1215. int rc;
  1216. ulong linear;
  1217. rc = linearize(ctxt, addr, size, true, &linear);
  1218. if (rc != X86EMUL_CONTINUE)
  1219. return rc;
  1220. return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
  1221. size, &ctxt->exception);
  1222. }
  1223. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1224. unsigned int size, unsigned short port,
  1225. void *dest)
  1226. {
  1227. struct read_cache *rc = &ctxt->io_read;
  1228. if (rc->pos == rc->end) { /* refill pio read ahead */
  1229. unsigned int in_page, n;
  1230. unsigned int count = ctxt->rep_prefix ?
  1231. address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
  1232. in_page = (ctxt->eflags & EFLG_DF) ?
  1233. offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
  1234. PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
  1235. n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
  1236. if (n == 0)
  1237. n = 1;
  1238. rc->pos = rc->end = 0;
  1239. if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
  1240. return 0;
  1241. rc->end = n * size;
  1242. }
  1243. if (ctxt->rep_prefix && (ctxt->d & String) &&
  1244. !(ctxt->eflags & EFLG_DF)) {
  1245. ctxt->dst.data = rc->data + rc->pos;
  1246. ctxt->dst.type = OP_MEM_STR;
  1247. ctxt->dst.count = (rc->end - rc->pos) / size;
  1248. rc->pos = rc->end;
  1249. } else {
  1250. memcpy(dest, rc->data + rc->pos, size);
  1251. rc->pos += size;
  1252. }
  1253. return 1;
  1254. }
  1255. static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
  1256. u16 index, struct desc_struct *desc)
  1257. {
  1258. struct desc_ptr dt;
  1259. ulong addr;
  1260. ctxt->ops->get_idt(ctxt, &dt);
  1261. if (dt.size < index * 8 + 7)
  1262. return emulate_gp(ctxt, index << 3 | 0x2);
  1263. addr = dt.address + index * 8;
  1264. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1265. &ctxt->exception);
  1266. }
  1267. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1268. u16 selector, struct desc_ptr *dt)
  1269. {
  1270. const struct x86_emulate_ops *ops = ctxt->ops;
  1271. u32 base3 = 0;
  1272. if (selector & 1 << 2) {
  1273. struct desc_struct desc;
  1274. u16 sel;
  1275. memset (dt, 0, sizeof *dt);
  1276. if (!ops->get_segment(ctxt, &sel, &desc, &base3,
  1277. VCPU_SREG_LDTR))
  1278. return;
  1279. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1280. dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
  1281. } else
  1282. ops->get_gdt(ctxt, dt);
  1283. }
  1284. static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
  1285. u16 selector, ulong *desc_addr_p)
  1286. {
  1287. struct desc_ptr dt;
  1288. u16 index = selector >> 3;
  1289. ulong addr;
  1290. get_descriptor_table_ptr(ctxt, selector, &dt);
  1291. if (dt.size < index * 8 + 7)
  1292. return emulate_gp(ctxt, selector & 0xfffc);
  1293. addr = dt.address + index * 8;
  1294. #ifdef CONFIG_X86_64
  1295. if (addr >> 32 != 0) {
  1296. u64 efer = 0;
  1297. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1298. if (!(efer & EFER_LMA))
  1299. addr &= (u32)-1;
  1300. }
  1301. #endif
  1302. *desc_addr_p = addr;
  1303. return X86EMUL_CONTINUE;
  1304. }
  1305. /* allowed just for 8 bytes segments */
  1306. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1307. u16 selector, struct desc_struct *desc,
  1308. ulong *desc_addr_p)
  1309. {
  1310. int rc;
  1311. rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
  1312. if (rc != X86EMUL_CONTINUE)
  1313. return rc;
  1314. return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc),
  1315. &ctxt->exception);
  1316. }
  1317. /* allowed just for 8 bytes segments */
  1318. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1319. u16 selector, struct desc_struct *desc)
  1320. {
  1321. int rc;
  1322. ulong addr;
  1323. rc = get_descriptor_ptr(ctxt, selector, &addr);
  1324. if (rc != X86EMUL_CONTINUE)
  1325. return rc;
  1326. return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
  1327. &ctxt->exception);
  1328. }
  1329. /* Does not support long mode */
  1330. static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1331. u16 selector, int seg, u8 cpl,
  1332. enum x86_transfer_type transfer,
  1333. struct desc_struct *desc)
  1334. {
  1335. struct desc_struct seg_desc, old_desc;
  1336. u8 dpl, rpl;
  1337. unsigned err_vec = GP_VECTOR;
  1338. u32 err_code = 0;
  1339. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1340. ulong desc_addr;
  1341. int ret;
  1342. u16 dummy;
  1343. u32 base3 = 0;
  1344. memset(&seg_desc, 0, sizeof seg_desc);
  1345. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1346. /* set real mode segment descriptor (keep limit etc. for
  1347. * unreal mode) */
  1348. ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
  1349. set_desc_base(&seg_desc, selector << 4);
  1350. goto load;
  1351. } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
  1352. /* VM86 needs a clean new segment descriptor */
  1353. set_desc_base(&seg_desc, selector << 4);
  1354. set_desc_limit(&seg_desc, 0xffff);
  1355. seg_desc.type = 3;
  1356. seg_desc.p = 1;
  1357. seg_desc.s = 1;
  1358. seg_desc.dpl = 3;
  1359. goto load;
  1360. }
  1361. rpl = selector & 3;
  1362. /* NULL selector is not valid for TR, CS and SS (except for long mode) */
  1363. if ((seg == VCPU_SREG_CS
  1364. || (seg == VCPU_SREG_SS
  1365. && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
  1366. || seg == VCPU_SREG_TR)
  1367. && null_selector)
  1368. goto exception;
  1369. /* TR should be in GDT only */
  1370. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1371. goto exception;
  1372. if (null_selector) /* for NULL selector skip all following checks */
  1373. goto load;
  1374. ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
  1375. if (ret != X86EMUL_CONTINUE)
  1376. return ret;
  1377. err_code = selector & 0xfffc;
  1378. err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
  1379. GP_VECTOR;
  1380. /* can't load system descriptor into segment selector */
  1381. if (seg <= VCPU_SREG_GS && !seg_desc.s) {
  1382. if (transfer == X86_TRANSFER_CALL_JMP)
  1383. return X86EMUL_UNHANDLEABLE;
  1384. goto exception;
  1385. }
  1386. if (!seg_desc.p) {
  1387. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1388. goto exception;
  1389. }
  1390. dpl = seg_desc.dpl;
  1391. switch (seg) {
  1392. case VCPU_SREG_SS:
  1393. /*
  1394. * segment is not a writable data segment or segment
  1395. * selector's RPL != CPL or segment selector's RPL != CPL
  1396. */
  1397. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1398. goto exception;
  1399. break;
  1400. case VCPU_SREG_CS:
  1401. if (!(seg_desc.type & 8))
  1402. goto exception;
  1403. if (seg_desc.type & 4) {
  1404. /* conforming */
  1405. if (dpl > cpl)
  1406. goto exception;
  1407. } else {
  1408. /* nonconforming */
  1409. if (rpl > cpl || dpl != cpl)
  1410. goto exception;
  1411. }
  1412. /* in long-mode d/b must be clear if l is set */
  1413. if (seg_desc.d && seg_desc.l) {
  1414. u64 efer = 0;
  1415. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1416. if (efer & EFER_LMA)
  1417. goto exception;
  1418. }
  1419. /* CS(RPL) <- CPL */
  1420. selector = (selector & 0xfffc) | cpl;
  1421. break;
  1422. case VCPU_SREG_TR:
  1423. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1424. goto exception;
  1425. old_desc = seg_desc;
  1426. seg_desc.type |= 2; /* busy */
  1427. ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
  1428. sizeof(seg_desc), &ctxt->exception);
  1429. if (ret != X86EMUL_CONTINUE)
  1430. return ret;
  1431. break;
  1432. case VCPU_SREG_LDTR:
  1433. if (seg_desc.s || seg_desc.type != 2)
  1434. goto exception;
  1435. break;
  1436. default: /* DS, ES, FS, or GS */
  1437. /*
  1438. * segment is not a data or readable code segment or
  1439. * ((segment is a data or nonconforming code segment)
  1440. * and (both RPL and CPL > DPL))
  1441. */
  1442. if ((seg_desc.type & 0xa) == 0x8 ||
  1443. (((seg_desc.type & 0xc) != 0xc) &&
  1444. (rpl > dpl && cpl > dpl)))
  1445. goto exception;
  1446. break;
  1447. }
  1448. if (seg_desc.s) {
  1449. /* mark segment as accessed */
  1450. if (!(seg_desc.type & 1)) {
  1451. seg_desc.type |= 1;
  1452. ret = write_segment_descriptor(ctxt, selector,
  1453. &seg_desc);
  1454. if (ret != X86EMUL_CONTINUE)
  1455. return ret;
  1456. }
  1457. } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1458. ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
  1459. sizeof(base3), &ctxt->exception);
  1460. if (ret != X86EMUL_CONTINUE)
  1461. return ret;
  1462. if (is_noncanonical_address(get_desc_base(&seg_desc) |
  1463. ((u64)base3 << 32)))
  1464. return emulate_gp(ctxt, 0);
  1465. }
  1466. load:
  1467. ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
  1468. if (desc)
  1469. *desc = seg_desc;
  1470. return X86EMUL_CONTINUE;
  1471. exception:
  1472. return emulate_exception(ctxt, err_vec, err_code, true);
  1473. }
  1474. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1475. u16 selector, int seg)
  1476. {
  1477. u8 cpl = ctxt->ops->cpl(ctxt);
  1478. return __load_segment_descriptor(ctxt, selector, seg, cpl,
  1479. X86_TRANSFER_NONE, NULL);
  1480. }
  1481. static void write_register_operand(struct operand *op)
  1482. {
  1483. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  1484. switch (op->bytes) {
  1485. case 1:
  1486. *(u8 *)op->addr.reg = (u8)op->val;
  1487. break;
  1488. case 2:
  1489. *(u16 *)op->addr.reg = (u16)op->val;
  1490. break;
  1491. case 4:
  1492. *op->addr.reg = (u32)op->val;
  1493. break; /* 64b: zero-extend */
  1494. case 8:
  1495. *op->addr.reg = op->val;
  1496. break;
  1497. }
  1498. }
  1499. static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
  1500. {
  1501. switch (op->type) {
  1502. case OP_REG:
  1503. write_register_operand(op);
  1504. break;
  1505. case OP_MEM:
  1506. if (ctxt->lock_prefix)
  1507. return segmented_cmpxchg(ctxt,
  1508. op->addr.mem,
  1509. &op->orig_val,
  1510. &op->val,
  1511. op->bytes);
  1512. else
  1513. return segmented_write(ctxt,
  1514. op->addr.mem,
  1515. &op->val,
  1516. op->bytes);
  1517. break;
  1518. case OP_MEM_STR:
  1519. return segmented_write(ctxt,
  1520. op->addr.mem,
  1521. op->data,
  1522. op->bytes * op->count);
  1523. break;
  1524. case OP_XMM:
  1525. write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
  1526. break;
  1527. case OP_MM:
  1528. write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  1529. break;
  1530. case OP_NONE:
  1531. /* no writeback */
  1532. break;
  1533. default:
  1534. break;
  1535. }
  1536. return X86EMUL_CONTINUE;
  1537. }
  1538. static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
  1539. {
  1540. struct segmented_address addr;
  1541. rsp_increment(ctxt, -bytes);
  1542. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1543. addr.seg = VCPU_SREG_SS;
  1544. return segmented_write(ctxt, addr, data, bytes);
  1545. }
  1546. static int em_push(struct x86_emulate_ctxt *ctxt)
  1547. {
  1548. /* Disable writeback. */
  1549. ctxt->dst.type = OP_NONE;
  1550. return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
  1551. }
  1552. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1553. void *dest, int len)
  1554. {
  1555. int rc;
  1556. struct segmented_address addr;
  1557. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1558. addr.seg = VCPU_SREG_SS;
  1559. rc = segmented_read(ctxt, addr, dest, len);
  1560. if (rc != X86EMUL_CONTINUE)
  1561. return rc;
  1562. rsp_increment(ctxt, len);
  1563. return rc;
  1564. }
  1565. static int em_pop(struct x86_emulate_ctxt *ctxt)
  1566. {
  1567. return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1568. }
  1569. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1570. void *dest, int len)
  1571. {
  1572. int rc;
  1573. unsigned long val, change_mask;
  1574. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1575. int cpl = ctxt->ops->cpl(ctxt);
  1576. rc = emulate_pop(ctxt, &val, len);
  1577. if (rc != X86EMUL_CONTINUE)
  1578. return rc;
  1579. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1580. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_AC | EFLG_ID;
  1581. switch(ctxt->mode) {
  1582. case X86EMUL_MODE_PROT64:
  1583. case X86EMUL_MODE_PROT32:
  1584. case X86EMUL_MODE_PROT16:
  1585. if (cpl == 0)
  1586. change_mask |= EFLG_IOPL;
  1587. if (cpl <= iopl)
  1588. change_mask |= EFLG_IF;
  1589. break;
  1590. case X86EMUL_MODE_VM86:
  1591. if (iopl < 3)
  1592. return emulate_gp(ctxt, 0);
  1593. change_mask |= EFLG_IF;
  1594. break;
  1595. default: /* real mode */
  1596. change_mask |= (EFLG_IOPL | EFLG_IF);
  1597. break;
  1598. }
  1599. *(unsigned long *)dest =
  1600. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1601. return rc;
  1602. }
  1603. static int em_popf(struct x86_emulate_ctxt *ctxt)
  1604. {
  1605. ctxt->dst.type = OP_REG;
  1606. ctxt->dst.addr.reg = &ctxt->eflags;
  1607. ctxt->dst.bytes = ctxt->op_bytes;
  1608. return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1609. }
  1610. static int em_enter(struct x86_emulate_ctxt *ctxt)
  1611. {
  1612. int rc;
  1613. unsigned frame_size = ctxt->src.val;
  1614. unsigned nesting_level = ctxt->src2.val & 31;
  1615. ulong rbp;
  1616. if (nesting_level)
  1617. return X86EMUL_UNHANDLEABLE;
  1618. rbp = reg_read(ctxt, VCPU_REGS_RBP);
  1619. rc = push(ctxt, &rbp, stack_size(ctxt));
  1620. if (rc != X86EMUL_CONTINUE)
  1621. return rc;
  1622. assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
  1623. stack_mask(ctxt));
  1624. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
  1625. reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
  1626. stack_mask(ctxt));
  1627. return X86EMUL_CONTINUE;
  1628. }
  1629. static int em_leave(struct x86_emulate_ctxt *ctxt)
  1630. {
  1631. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
  1632. stack_mask(ctxt));
  1633. return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
  1634. }
  1635. static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
  1636. {
  1637. int seg = ctxt->src2.val;
  1638. ctxt->src.val = get_segment_selector(ctxt, seg);
  1639. if (ctxt->op_bytes == 4) {
  1640. rsp_increment(ctxt, -2);
  1641. ctxt->op_bytes = 2;
  1642. }
  1643. return em_push(ctxt);
  1644. }
  1645. static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
  1646. {
  1647. int seg = ctxt->src2.val;
  1648. unsigned long selector;
  1649. int rc;
  1650. rc = emulate_pop(ctxt, &selector, 2);
  1651. if (rc != X86EMUL_CONTINUE)
  1652. return rc;
  1653. if (ctxt->modrm_reg == VCPU_SREG_SS)
  1654. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  1655. if (ctxt->op_bytes > 2)
  1656. rsp_increment(ctxt, ctxt->op_bytes - 2);
  1657. rc = load_segment_descriptor(ctxt, (u16)selector, seg);
  1658. return rc;
  1659. }
  1660. static int em_pusha(struct x86_emulate_ctxt *ctxt)
  1661. {
  1662. unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
  1663. int rc = X86EMUL_CONTINUE;
  1664. int reg = VCPU_REGS_RAX;
  1665. while (reg <= VCPU_REGS_RDI) {
  1666. (reg == VCPU_REGS_RSP) ?
  1667. (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
  1668. rc = em_push(ctxt);
  1669. if (rc != X86EMUL_CONTINUE)
  1670. return rc;
  1671. ++reg;
  1672. }
  1673. return rc;
  1674. }
  1675. static int em_pushf(struct x86_emulate_ctxt *ctxt)
  1676. {
  1677. ctxt->src.val = (unsigned long)ctxt->eflags & ~EFLG_VM;
  1678. return em_push(ctxt);
  1679. }
  1680. static int em_popa(struct x86_emulate_ctxt *ctxt)
  1681. {
  1682. int rc = X86EMUL_CONTINUE;
  1683. int reg = VCPU_REGS_RDI;
  1684. while (reg >= VCPU_REGS_RAX) {
  1685. if (reg == VCPU_REGS_RSP) {
  1686. rsp_increment(ctxt, ctxt->op_bytes);
  1687. --reg;
  1688. }
  1689. rc = emulate_pop(ctxt, reg_rmw(ctxt, reg), ctxt->op_bytes);
  1690. if (rc != X86EMUL_CONTINUE)
  1691. break;
  1692. --reg;
  1693. }
  1694. return rc;
  1695. }
  1696. static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1697. {
  1698. const struct x86_emulate_ops *ops = ctxt->ops;
  1699. int rc;
  1700. struct desc_ptr dt;
  1701. gva_t cs_addr;
  1702. gva_t eip_addr;
  1703. u16 cs, eip;
  1704. /* TODO: Add limit checks */
  1705. ctxt->src.val = ctxt->eflags;
  1706. rc = em_push(ctxt);
  1707. if (rc != X86EMUL_CONTINUE)
  1708. return rc;
  1709. ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
  1710. ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
  1711. rc = em_push(ctxt);
  1712. if (rc != X86EMUL_CONTINUE)
  1713. return rc;
  1714. ctxt->src.val = ctxt->_eip;
  1715. rc = em_push(ctxt);
  1716. if (rc != X86EMUL_CONTINUE)
  1717. return rc;
  1718. ops->get_idt(ctxt, &dt);
  1719. eip_addr = dt.address + (irq << 2);
  1720. cs_addr = dt.address + (irq << 2) + 2;
  1721. rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
  1722. if (rc != X86EMUL_CONTINUE)
  1723. return rc;
  1724. rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
  1725. if (rc != X86EMUL_CONTINUE)
  1726. return rc;
  1727. rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
  1728. if (rc != X86EMUL_CONTINUE)
  1729. return rc;
  1730. ctxt->_eip = eip;
  1731. return rc;
  1732. }
  1733. int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1734. {
  1735. int rc;
  1736. invalidate_registers(ctxt);
  1737. rc = __emulate_int_real(ctxt, irq);
  1738. if (rc == X86EMUL_CONTINUE)
  1739. writeback_registers(ctxt);
  1740. return rc;
  1741. }
  1742. static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
  1743. {
  1744. switch(ctxt->mode) {
  1745. case X86EMUL_MODE_REAL:
  1746. return __emulate_int_real(ctxt, irq);
  1747. case X86EMUL_MODE_VM86:
  1748. case X86EMUL_MODE_PROT16:
  1749. case X86EMUL_MODE_PROT32:
  1750. case X86EMUL_MODE_PROT64:
  1751. default:
  1752. /* Protected mode interrupts unimplemented yet */
  1753. return X86EMUL_UNHANDLEABLE;
  1754. }
  1755. }
  1756. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
  1757. {
  1758. int rc = X86EMUL_CONTINUE;
  1759. unsigned long temp_eip = 0;
  1760. unsigned long temp_eflags = 0;
  1761. unsigned long cs = 0;
  1762. unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
  1763. EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
  1764. EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
  1765. unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
  1766. /* TODO: Add stack limit check */
  1767. rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
  1768. if (rc != X86EMUL_CONTINUE)
  1769. return rc;
  1770. if (temp_eip & ~0xffff)
  1771. return emulate_gp(ctxt, 0);
  1772. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1773. if (rc != X86EMUL_CONTINUE)
  1774. return rc;
  1775. rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
  1776. if (rc != X86EMUL_CONTINUE)
  1777. return rc;
  1778. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1779. if (rc != X86EMUL_CONTINUE)
  1780. return rc;
  1781. ctxt->_eip = temp_eip;
  1782. if (ctxt->op_bytes == 4)
  1783. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1784. else if (ctxt->op_bytes == 2) {
  1785. ctxt->eflags &= ~0xffff;
  1786. ctxt->eflags |= temp_eflags;
  1787. }
  1788. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1789. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  1790. ctxt->ops->set_nmi_mask(ctxt, false);
  1791. return rc;
  1792. }
  1793. static int em_iret(struct x86_emulate_ctxt *ctxt)
  1794. {
  1795. switch(ctxt->mode) {
  1796. case X86EMUL_MODE_REAL:
  1797. return emulate_iret_real(ctxt);
  1798. case X86EMUL_MODE_VM86:
  1799. case X86EMUL_MODE_PROT16:
  1800. case X86EMUL_MODE_PROT32:
  1801. case X86EMUL_MODE_PROT64:
  1802. default:
  1803. /* iret from protected mode unimplemented yet */
  1804. return X86EMUL_UNHANDLEABLE;
  1805. }
  1806. }
  1807. static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
  1808. {
  1809. int rc;
  1810. unsigned short sel, old_sel;
  1811. struct desc_struct old_desc, new_desc;
  1812. const struct x86_emulate_ops *ops = ctxt->ops;
  1813. u8 cpl = ctxt->ops->cpl(ctxt);
  1814. /* Assignment of RIP may only fail in 64-bit mode */
  1815. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1816. ops->get_segment(ctxt, &old_sel, &old_desc, NULL,
  1817. VCPU_SREG_CS);
  1818. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1819. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  1820. X86_TRANSFER_CALL_JMP,
  1821. &new_desc);
  1822. if (rc != X86EMUL_CONTINUE)
  1823. return rc;
  1824. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  1825. if (rc != X86EMUL_CONTINUE) {
  1826. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1827. /* assigning eip failed; restore the old cs */
  1828. ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS);
  1829. return rc;
  1830. }
  1831. return rc;
  1832. }
  1833. static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
  1834. {
  1835. return assign_eip_near(ctxt, ctxt->src.val);
  1836. }
  1837. static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
  1838. {
  1839. int rc;
  1840. long int old_eip;
  1841. old_eip = ctxt->_eip;
  1842. rc = assign_eip_near(ctxt, ctxt->src.val);
  1843. if (rc != X86EMUL_CONTINUE)
  1844. return rc;
  1845. ctxt->src.val = old_eip;
  1846. rc = em_push(ctxt);
  1847. return rc;
  1848. }
  1849. static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
  1850. {
  1851. u64 old = ctxt->dst.orig_val64;
  1852. if (ctxt->dst.bytes == 16)
  1853. return X86EMUL_UNHANDLEABLE;
  1854. if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
  1855. ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
  1856. *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
  1857. *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
  1858. ctxt->eflags &= ~EFLG_ZF;
  1859. } else {
  1860. ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
  1861. (u32) reg_read(ctxt, VCPU_REGS_RBX);
  1862. ctxt->eflags |= EFLG_ZF;
  1863. }
  1864. return X86EMUL_CONTINUE;
  1865. }
  1866. static int em_ret(struct x86_emulate_ctxt *ctxt)
  1867. {
  1868. int rc;
  1869. unsigned long eip;
  1870. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1871. if (rc != X86EMUL_CONTINUE)
  1872. return rc;
  1873. return assign_eip_near(ctxt, eip);
  1874. }
  1875. static int em_ret_far(struct x86_emulate_ctxt *ctxt)
  1876. {
  1877. int rc;
  1878. unsigned long eip, cs;
  1879. u16 old_cs;
  1880. int cpl = ctxt->ops->cpl(ctxt);
  1881. struct desc_struct old_desc, new_desc;
  1882. const struct x86_emulate_ops *ops = ctxt->ops;
  1883. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1884. ops->get_segment(ctxt, &old_cs, &old_desc, NULL,
  1885. VCPU_SREG_CS);
  1886. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1887. if (rc != X86EMUL_CONTINUE)
  1888. return rc;
  1889. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1890. if (rc != X86EMUL_CONTINUE)
  1891. return rc;
  1892. /* Outer-privilege level return is not implemented */
  1893. if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
  1894. return X86EMUL_UNHANDLEABLE;
  1895. rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
  1896. X86_TRANSFER_RET,
  1897. &new_desc);
  1898. if (rc != X86EMUL_CONTINUE)
  1899. return rc;
  1900. rc = assign_eip_far(ctxt, eip, &new_desc);
  1901. if (rc != X86EMUL_CONTINUE) {
  1902. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1903. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  1904. }
  1905. return rc;
  1906. }
  1907. static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
  1908. {
  1909. int rc;
  1910. rc = em_ret_far(ctxt);
  1911. if (rc != X86EMUL_CONTINUE)
  1912. return rc;
  1913. rsp_increment(ctxt, ctxt->src.val);
  1914. return X86EMUL_CONTINUE;
  1915. }
  1916. static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
  1917. {
  1918. /* Save real source value, then compare EAX against destination. */
  1919. ctxt->dst.orig_val = ctxt->dst.val;
  1920. ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
  1921. ctxt->src.orig_val = ctxt->src.val;
  1922. ctxt->src.val = ctxt->dst.orig_val;
  1923. fastop(ctxt, em_cmp);
  1924. if (ctxt->eflags & EFLG_ZF) {
  1925. /* Success: write back to memory; no update of EAX */
  1926. ctxt->src.type = OP_NONE;
  1927. ctxt->dst.val = ctxt->src.orig_val;
  1928. } else {
  1929. /* Failure: write the value we saw to EAX. */
  1930. ctxt->src.type = OP_REG;
  1931. ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  1932. ctxt->src.val = ctxt->dst.orig_val;
  1933. /* Create write-cycle to dest by writing the same value */
  1934. ctxt->dst.val = ctxt->dst.orig_val;
  1935. }
  1936. return X86EMUL_CONTINUE;
  1937. }
  1938. static int em_lseg(struct x86_emulate_ctxt *ctxt)
  1939. {
  1940. int seg = ctxt->src2.val;
  1941. unsigned short sel;
  1942. int rc;
  1943. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1944. rc = load_segment_descriptor(ctxt, sel, seg);
  1945. if (rc != X86EMUL_CONTINUE)
  1946. return rc;
  1947. ctxt->dst.val = ctxt->src.val;
  1948. return rc;
  1949. }
  1950. static void
  1951. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1952. struct desc_struct *cs, struct desc_struct *ss)
  1953. {
  1954. cs->l = 0; /* will be adjusted later */
  1955. set_desc_base(cs, 0); /* flat segment */
  1956. cs->g = 1; /* 4kb granularity */
  1957. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  1958. cs->type = 0x0b; /* Read, Execute, Accessed */
  1959. cs->s = 1;
  1960. cs->dpl = 0; /* will be adjusted later */
  1961. cs->p = 1;
  1962. cs->d = 1;
  1963. cs->avl = 0;
  1964. set_desc_base(ss, 0); /* flat segment */
  1965. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  1966. ss->g = 1; /* 4kb granularity */
  1967. ss->s = 1;
  1968. ss->type = 0x03; /* Read/Write, Accessed */
  1969. ss->d = 1; /* 32bit stack segment */
  1970. ss->dpl = 0;
  1971. ss->p = 1;
  1972. ss->l = 0;
  1973. ss->avl = 0;
  1974. }
  1975. static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
  1976. {
  1977. u32 eax, ebx, ecx, edx;
  1978. eax = ecx = 0;
  1979. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1980. return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
  1981. && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
  1982. && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
  1983. }
  1984. static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
  1985. {
  1986. const struct x86_emulate_ops *ops = ctxt->ops;
  1987. u32 eax, ebx, ecx, edx;
  1988. /*
  1989. * syscall should always be enabled in longmode - so only become
  1990. * vendor specific (cpuid) if other modes are active...
  1991. */
  1992. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1993. return true;
  1994. eax = 0x00000000;
  1995. ecx = 0x00000000;
  1996. ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1997. /*
  1998. * Intel ("GenuineIntel")
  1999. * remark: Intel CPUs only support "syscall" in 64bit
  2000. * longmode. Also an 64bit guest with a
  2001. * 32bit compat-app running will #UD !! While this
  2002. * behaviour can be fixed (by emulating) into AMD
  2003. * response - CPUs of AMD can't behave like Intel.
  2004. */
  2005. if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
  2006. ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
  2007. edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
  2008. return false;
  2009. /* AMD ("AuthenticAMD") */
  2010. if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
  2011. ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
  2012. edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
  2013. return true;
  2014. /* AMD ("AMDisbetter!") */
  2015. if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
  2016. ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
  2017. edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
  2018. return true;
  2019. /* default: (not Intel, not AMD), apply Intel's stricter rules... */
  2020. return false;
  2021. }
  2022. static int em_syscall(struct x86_emulate_ctxt *ctxt)
  2023. {
  2024. const struct x86_emulate_ops *ops = ctxt->ops;
  2025. struct desc_struct cs, ss;
  2026. u64 msr_data;
  2027. u16 cs_sel, ss_sel;
  2028. u64 efer = 0;
  2029. /* syscall is not available in real mode */
  2030. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2031. ctxt->mode == X86EMUL_MODE_VM86)
  2032. return emulate_ud(ctxt);
  2033. if (!(em_syscall_is_enabled(ctxt)))
  2034. return emulate_ud(ctxt);
  2035. ops->get_msr(ctxt, MSR_EFER, &efer);
  2036. setup_syscalls_segments(ctxt, &cs, &ss);
  2037. if (!(efer & EFER_SCE))
  2038. return emulate_ud(ctxt);
  2039. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2040. msr_data >>= 32;
  2041. cs_sel = (u16)(msr_data & 0xfffc);
  2042. ss_sel = (u16)(msr_data + 8);
  2043. if (efer & EFER_LMA) {
  2044. cs.d = 0;
  2045. cs.l = 1;
  2046. }
  2047. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2048. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2049. *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
  2050. if (efer & EFER_LMA) {
  2051. #ifdef CONFIG_X86_64
  2052. *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
  2053. ops->get_msr(ctxt,
  2054. ctxt->mode == X86EMUL_MODE_PROT64 ?
  2055. MSR_LSTAR : MSR_CSTAR, &msr_data);
  2056. ctxt->_eip = msr_data;
  2057. ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
  2058. ctxt->eflags &= ~msr_data;
  2059. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  2060. #endif
  2061. } else {
  2062. /* legacy mode */
  2063. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2064. ctxt->_eip = (u32)msr_data;
  2065. ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
  2066. }
  2067. return X86EMUL_CONTINUE;
  2068. }
  2069. static int em_sysenter(struct x86_emulate_ctxt *ctxt)
  2070. {
  2071. const struct x86_emulate_ops *ops = ctxt->ops;
  2072. struct desc_struct cs, ss;
  2073. u64 msr_data;
  2074. u16 cs_sel, ss_sel;
  2075. u64 efer = 0;
  2076. ops->get_msr(ctxt, MSR_EFER, &efer);
  2077. /* inject #GP if in real mode */
  2078. if (ctxt->mode == X86EMUL_MODE_REAL)
  2079. return emulate_gp(ctxt, 0);
  2080. /*
  2081. * Not recognized on AMD in compat mode (but is recognized in legacy
  2082. * mode).
  2083. */
  2084. if ((ctxt->mode == X86EMUL_MODE_PROT32) && (efer & EFER_LMA)
  2085. && !vendor_intel(ctxt))
  2086. return emulate_ud(ctxt);
  2087. /* sysenter/sysexit have not been tested in 64bit mode. */
  2088. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2089. return X86EMUL_UNHANDLEABLE;
  2090. setup_syscalls_segments(ctxt, &cs, &ss);
  2091. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2092. switch (ctxt->mode) {
  2093. case X86EMUL_MODE_PROT32:
  2094. if ((msr_data & 0xfffc) == 0x0)
  2095. return emulate_gp(ctxt, 0);
  2096. break;
  2097. case X86EMUL_MODE_PROT64:
  2098. if (msr_data == 0x0)
  2099. return emulate_gp(ctxt, 0);
  2100. break;
  2101. default:
  2102. break;
  2103. }
  2104. ctxt->eflags &= ~(EFLG_VM | EFLG_IF);
  2105. cs_sel = (u16)msr_data;
  2106. cs_sel &= ~SELECTOR_RPL_MASK;
  2107. ss_sel = cs_sel + 8;
  2108. ss_sel &= ~SELECTOR_RPL_MASK;
  2109. if (ctxt->mode == X86EMUL_MODE_PROT64 || (efer & EFER_LMA)) {
  2110. cs.d = 0;
  2111. cs.l = 1;
  2112. }
  2113. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2114. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2115. ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
  2116. ctxt->_eip = msr_data;
  2117. ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
  2118. *reg_write(ctxt, VCPU_REGS_RSP) = msr_data;
  2119. return X86EMUL_CONTINUE;
  2120. }
  2121. static int em_sysexit(struct x86_emulate_ctxt *ctxt)
  2122. {
  2123. const struct x86_emulate_ops *ops = ctxt->ops;
  2124. struct desc_struct cs, ss;
  2125. u64 msr_data, rcx, rdx;
  2126. int usermode;
  2127. u16 cs_sel = 0, ss_sel = 0;
  2128. /* inject #GP if in real mode or Virtual 8086 mode */
  2129. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2130. ctxt->mode == X86EMUL_MODE_VM86)
  2131. return emulate_gp(ctxt, 0);
  2132. setup_syscalls_segments(ctxt, &cs, &ss);
  2133. if ((ctxt->rex_prefix & 0x8) != 0x0)
  2134. usermode = X86EMUL_MODE_PROT64;
  2135. else
  2136. usermode = X86EMUL_MODE_PROT32;
  2137. rcx = reg_read(ctxt, VCPU_REGS_RCX);
  2138. rdx = reg_read(ctxt, VCPU_REGS_RDX);
  2139. cs.dpl = 3;
  2140. ss.dpl = 3;
  2141. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2142. switch (usermode) {
  2143. case X86EMUL_MODE_PROT32:
  2144. cs_sel = (u16)(msr_data + 16);
  2145. if ((msr_data & 0xfffc) == 0x0)
  2146. return emulate_gp(ctxt, 0);
  2147. ss_sel = (u16)(msr_data + 24);
  2148. rcx = (u32)rcx;
  2149. rdx = (u32)rdx;
  2150. break;
  2151. case X86EMUL_MODE_PROT64:
  2152. cs_sel = (u16)(msr_data + 32);
  2153. if (msr_data == 0x0)
  2154. return emulate_gp(ctxt, 0);
  2155. ss_sel = cs_sel + 8;
  2156. cs.d = 0;
  2157. cs.l = 1;
  2158. if (is_noncanonical_address(rcx) ||
  2159. is_noncanonical_address(rdx))
  2160. return emulate_gp(ctxt, 0);
  2161. break;
  2162. }
  2163. cs_sel |= SELECTOR_RPL_MASK;
  2164. ss_sel |= SELECTOR_RPL_MASK;
  2165. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2166. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2167. ctxt->_eip = rdx;
  2168. *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
  2169. return X86EMUL_CONTINUE;
  2170. }
  2171. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
  2172. {
  2173. int iopl;
  2174. if (ctxt->mode == X86EMUL_MODE_REAL)
  2175. return false;
  2176. if (ctxt->mode == X86EMUL_MODE_VM86)
  2177. return true;
  2178. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  2179. return ctxt->ops->cpl(ctxt) > iopl;
  2180. }
  2181. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  2182. u16 port, u16 len)
  2183. {
  2184. const struct x86_emulate_ops *ops = ctxt->ops;
  2185. struct desc_struct tr_seg;
  2186. u32 base3;
  2187. int r;
  2188. u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
  2189. unsigned mask = (1 << len) - 1;
  2190. unsigned long base;
  2191. ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
  2192. if (!tr_seg.p)
  2193. return false;
  2194. if (desc_limit_scaled(&tr_seg) < 103)
  2195. return false;
  2196. base = get_desc_base(&tr_seg);
  2197. #ifdef CONFIG_X86_64
  2198. base |= ((u64)base3) << 32;
  2199. #endif
  2200. r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
  2201. if (r != X86EMUL_CONTINUE)
  2202. return false;
  2203. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  2204. return false;
  2205. r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
  2206. if (r != X86EMUL_CONTINUE)
  2207. return false;
  2208. if ((perm >> bit_idx) & mask)
  2209. return false;
  2210. return true;
  2211. }
  2212. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  2213. u16 port, u16 len)
  2214. {
  2215. if (ctxt->perm_ok)
  2216. return true;
  2217. if (emulator_bad_iopl(ctxt))
  2218. if (!emulator_io_port_access_allowed(ctxt, port, len))
  2219. return false;
  2220. ctxt->perm_ok = true;
  2221. return true;
  2222. }
  2223. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  2224. struct tss_segment_16 *tss)
  2225. {
  2226. tss->ip = ctxt->_eip;
  2227. tss->flag = ctxt->eflags;
  2228. tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
  2229. tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
  2230. tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
  2231. tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
  2232. tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
  2233. tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
  2234. tss->si = reg_read(ctxt, VCPU_REGS_RSI);
  2235. tss->di = reg_read(ctxt, VCPU_REGS_RDI);
  2236. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2237. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2238. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2239. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2240. tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2241. }
  2242. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  2243. struct tss_segment_16 *tss)
  2244. {
  2245. int ret;
  2246. u8 cpl;
  2247. ctxt->_eip = tss->ip;
  2248. ctxt->eflags = tss->flag | 2;
  2249. *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
  2250. *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
  2251. *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
  2252. *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
  2253. *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
  2254. *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
  2255. *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
  2256. *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
  2257. /*
  2258. * SDM says that segment selectors are loaded before segment
  2259. * descriptors
  2260. */
  2261. set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2262. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2263. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2264. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2265. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2266. cpl = tss->cs & 3;
  2267. /*
  2268. * Now load segment descriptors. If fault happens at this stage
  2269. * it is handled in a context of new task
  2270. */
  2271. ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
  2272. X86_TRANSFER_TASK_SWITCH, NULL);
  2273. if (ret != X86EMUL_CONTINUE)
  2274. return ret;
  2275. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2276. X86_TRANSFER_TASK_SWITCH, NULL);
  2277. if (ret != X86EMUL_CONTINUE)
  2278. return ret;
  2279. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2280. X86_TRANSFER_TASK_SWITCH, NULL);
  2281. if (ret != X86EMUL_CONTINUE)
  2282. return ret;
  2283. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2284. X86_TRANSFER_TASK_SWITCH, NULL);
  2285. if (ret != X86EMUL_CONTINUE)
  2286. return ret;
  2287. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2288. X86_TRANSFER_TASK_SWITCH, NULL);
  2289. if (ret != X86EMUL_CONTINUE)
  2290. return ret;
  2291. return X86EMUL_CONTINUE;
  2292. }
  2293. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  2294. u16 tss_selector, u16 old_tss_sel,
  2295. ulong old_tss_base, struct desc_struct *new_desc)
  2296. {
  2297. const struct x86_emulate_ops *ops = ctxt->ops;
  2298. struct tss_segment_16 tss_seg;
  2299. int ret;
  2300. u32 new_tss_base = get_desc_base(new_desc);
  2301. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2302. &ctxt->exception);
  2303. if (ret != X86EMUL_CONTINUE)
  2304. return ret;
  2305. save_state_to_tss16(ctxt, &tss_seg);
  2306. ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2307. &ctxt->exception);
  2308. if (ret != X86EMUL_CONTINUE)
  2309. return ret;
  2310. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2311. &ctxt->exception);
  2312. if (ret != X86EMUL_CONTINUE)
  2313. return ret;
  2314. if (old_tss_sel != 0xffff) {
  2315. tss_seg.prev_task_link = old_tss_sel;
  2316. ret = ops->write_std(ctxt, new_tss_base,
  2317. &tss_seg.prev_task_link,
  2318. sizeof tss_seg.prev_task_link,
  2319. &ctxt->exception);
  2320. if (ret != X86EMUL_CONTINUE)
  2321. return ret;
  2322. }
  2323. return load_state_from_tss16(ctxt, &tss_seg);
  2324. }
  2325. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  2326. struct tss_segment_32 *tss)
  2327. {
  2328. /* CR3 and ldt selector are not saved intentionally */
  2329. tss->eip = ctxt->_eip;
  2330. tss->eflags = ctxt->eflags;
  2331. tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
  2332. tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2333. tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
  2334. tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
  2335. tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
  2336. tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
  2337. tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
  2338. tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
  2339. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2340. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2341. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2342. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2343. tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
  2344. tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
  2345. }
  2346. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2347. struct tss_segment_32 *tss)
  2348. {
  2349. int ret;
  2350. u8 cpl;
  2351. if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
  2352. return emulate_gp(ctxt, 0);
  2353. ctxt->_eip = tss->eip;
  2354. ctxt->eflags = tss->eflags | 2;
  2355. /* General purpose registers */
  2356. *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
  2357. *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
  2358. *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
  2359. *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
  2360. *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
  2361. *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
  2362. *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
  2363. *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
  2364. /*
  2365. * SDM says that segment selectors are loaded before segment
  2366. * descriptors. This is important because CPL checks will
  2367. * use CS.RPL.
  2368. */
  2369. set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2370. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2371. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2372. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2373. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2374. set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
  2375. set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
  2376. /*
  2377. * If we're switching between Protected Mode and VM86, we need to make
  2378. * sure to update the mode before loading the segment descriptors so
  2379. * that the selectors are interpreted correctly.
  2380. */
  2381. if (ctxt->eflags & X86_EFLAGS_VM) {
  2382. ctxt->mode = X86EMUL_MODE_VM86;
  2383. cpl = 3;
  2384. } else {
  2385. ctxt->mode = X86EMUL_MODE_PROT32;
  2386. cpl = tss->cs & 3;
  2387. }
  2388. /*
  2389. * Now load segment descriptors. If fault happenes at this stage
  2390. * it is handled in a context of new task
  2391. */
  2392. ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
  2393. cpl, X86_TRANSFER_TASK_SWITCH, NULL);
  2394. if (ret != X86EMUL_CONTINUE)
  2395. return ret;
  2396. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2397. X86_TRANSFER_TASK_SWITCH, NULL);
  2398. if (ret != X86EMUL_CONTINUE)
  2399. return ret;
  2400. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2401. X86_TRANSFER_TASK_SWITCH, NULL);
  2402. if (ret != X86EMUL_CONTINUE)
  2403. return ret;
  2404. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2405. X86_TRANSFER_TASK_SWITCH, NULL);
  2406. if (ret != X86EMUL_CONTINUE)
  2407. return ret;
  2408. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2409. X86_TRANSFER_TASK_SWITCH, NULL);
  2410. if (ret != X86EMUL_CONTINUE)
  2411. return ret;
  2412. ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
  2413. X86_TRANSFER_TASK_SWITCH, NULL);
  2414. if (ret != X86EMUL_CONTINUE)
  2415. return ret;
  2416. ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
  2417. X86_TRANSFER_TASK_SWITCH, NULL);
  2418. if (ret != X86EMUL_CONTINUE)
  2419. return ret;
  2420. return X86EMUL_CONTINUE;
  2421. }
  2422. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2423. u16 tss_selector, u16 old_tss_sel,
  2424. ulong old_tss_base, struct desc_struct *new_desc)
  2425. {
  2426. const struct x86_emulate_ops *ops = ctxt->ops;
  2427. struct tss_segment_32 tss_seg;
  2428. int ret;
  2429. u32 new_tss_base = get_desc_base(new_desc);
  2430. u32 eip_offset = offsetof(struct tss_segment_32, eip);
  2431. u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
  2432. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2433. &ctxt->exception);
  2434. if (ret != X86EMUL_CONTINUE)
  2435. return ret;
  2436. save_state_to_tss32(ctxt, &tss_seg);
  2437. /* Only GP registers and segment selectors are saved */
  2438. ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
  2439. ldt_sel_offset - eip_offset, &ctxt->exception);
  2440. if (ret != X86EMUL_CONTINUE)
  2441. return ret;
  2442. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2443. &ctxt->exception);
  2444. if (ret != X86EMUL_CONTINUE)
  2445. return ret;
  2446. if (old_tss_sel != 0xffff) {
  2447. tss_seg.prev_task_link = old_tss_sel;
  2448. ret = ops->write_std(ctxt, new_tss_base,
  2449. &tss_seg.prev_task_link,
  2450. sizeof tss_seg.prev_task_link,
  2451. &ctxt->exception);
  2452. if (ret != X86EMUL_CONTINUE)
  2453. return ret;
  2454. }
  2455. return load_state_from_tss32(ctxt, &tss_seg);
  2456. }
  2457. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2458. u16 tss_selector, int idt_index, int reason,
  2459. bool has_error_code, u32 error_code)
  2460. {
  2461. const struct x86_emulate_ops *ops = ctxt->ops;
  2462. struct desc_struct curr_tss_desc, next_tss_desc;
  2463. int ret;
  2464. u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
  2465. ulong old_tss_base =
  2466. ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
  2467. u32 desc_limit;
  2468. ulong desc_addr;
  2469. /* FIXME: old_tss_base == ~0 ? */
  2470. ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
  2471. if (ret != X86EMUL_CONTINUE)
  2472. return ret;
  2473. ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
  2474. if (ret != X86EMUL_CONTINUE)
  2475. return ret;
  2476. /* FIXME: check that next_tss_desc is tss */
  2477. /*
  2478. * Check privileges. The three cases are task switch caused by...
  2479. *
  2480. * 1. jmp/call/int to task gate: Check against DPL of the task gate
  2481. * 2. Exception/IRQ/iret: No check is performed
  2482. * 3. jmp/call to TSS/task-gate: No check is performed since the
  2483. * hardware checks it before exiting.
  2484. */
  2485. if (reason == TASK_SWITCH_GATE) {
  2486. if (idt_index != -1) {
  2487. /* Software interrupts */
  2488. struct desc_struct task_gate_desc;
  2489. int dpl;
  2490. ret = read_interrupt_descriptor(ctxt, idt_index,
  2491. &task_gate_desc);
  2492. if (ret != X86EMUL_CONTINUE)
  2493. return ret;
  2494. dpl = task_gate_desc.dpl;
  2495. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2496. return emulate_gp(ctxt, (idt_index << 3) | 0x2);
  2497. }
  2498. }
  2499. desc_limit = desc_limit_scaled(&next_tss_desc);
  2500. if (!next_tss_desc.p ||
  2501. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2502. desc_limit < 0x2b)) {
  2503. return emulate_ts(ctxt, tss_selector & 0xfffc);
  2504. }
  2505. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2506. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2507. write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
  2508. }
  2509. if (reason == TASK_SWITCH_IRET)
  2510. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2511. /* set back link to prev task only if NT bit is set in eflags
  2512. note that old_tss_sel is not used after this point */
  2513. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2514. old_tss_sel = 0xffff;
  2515. if (next_tss_desc.type & 8)
  2516. ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
  2517. old_tss_base, &next_tss_desc);
  2518. else
  2519. ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
  2520. old_tss_base, &next_tss_desc);
  2521. if (ret != X86EMUL_CONTINUE)
  2522. return ret;
  2523. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2524. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2525. if (reason != TASK_SWITCH_IRET) {
  2526. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2527. write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
  2528. }
  2529. ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
  2530. ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
  2531. if (has_error_code) {
  2532. ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2533. ctxt->lock_prefix = 0;
  2534. ctxt->src.val = (unsigned long) error_code;
  2535. ret = em_push(ctxt);
  2536. }
  2537. return ret;
  2538. }
  2539. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2540. u16 tss_selector, int idt_index, int reason,
  2541. bool has_error_code, u32 error_code)
  2542. {
  2543. int rc;
  2544. invalidate_registers(ctxt);
  2545. ctxt->_eip = ctxt->eip;
  2546. ctxt->dst.type = OP_NONE;
  2547. rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
  2548. has_error_code, error_code);
  2549. if (rc == X86EMUL_CONTINUE) {
  2550. ctxt->eip = ctxt->_eip;
  2551. writeback_registers(ctxt);
  2552. }
  2553. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2554. }
  2555. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
  2556. struct operand *op)
  2557. {
  2558. int df = (ctxt->eflags & EFLG_DF) ? -op->count : op->count;
  2559. register_address_increment(ctxt, reg, df * op->bytes);
  2560. op->addr.mem.ea = register_address(ctxt, reg);
  2561. }
  2562. static int em_das(struct x86_emulate_ctxt *ctxt)
  2563. {
  2564. u8 al, old_al;
  2565. bool af, cf, old_cf;
  2566. cf = ctxt->eflags & X86_EFLAGS_CF;
  2567. al = ctxt->dst.val;
  2568. old_al = al;
  2569. old_cf = cf;
  2570. cf = false;
  2571. af = ctxt->eflags & X86_EFLAGS_AF;
  2572. if ((al & 0x0f) > 9 || af) {
  2573. al -= 6;
  2574. cf = old_cf | (al >= 250);
  2575. af = true;
  2576. } else {
  2577. af = false;
  2578. }
  2579. if (old_al > 0x99 || old_cf) {
  2580. al -= 0x60;
  2581. cf = true;
  2582. }
  2583. ctxt->dst.val = al;
  2584. /* Set PF, ZF, SF */
  2585. ctxt->src.type = OP_IMM;
  2586. ctxt->src.val = 0;
  2587. ctxt->src.bytes = 1;
  2588. fastop(ctxt, em_or);
  2589. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2590. if (cf)
  2591. ctxt->eflags |= X86_EFLAGS_CF;
  2592. if (af)
  2593. ctxt->eflags |= X86_EFLAGS_AF;
  2594. return X86EMUL_CONTINUE;
  2595. }
  2596. static int em_aam(struct x86_emulate_ctxt *ctxt)
  2597. {
  2598. u8 al, ah;
  2599. if (ctxt->src.val == 0)
  2600. return emulate_de(ctxt);
  2601. al = ctxt->dst.val & 0xff;
  2602. ah = al / ctxt->src.val;
  2603. al %= ctxt->src.val;
  2604. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
  2605. /* Set PF, ZF, SF */
  2606. ctxt->src.type = OP_IMM;
  2607. ctxt->src.val = 0;
  2608. ctxt->src.bytes = 1;
  2609. fastop(ctxt, em_or);
  2610. return X86EMUL_CONTINUE;
  2611. }
  2612. static int em_aad(struct x86_emulate_ctxt *ctxt)
  2613. {
  2614. u8 al = ctxt->dst.val & 0xff;
  2615. u8 ah = (ctxt->dst.val >> 8) & 0xff;
  2616. al = (al + (ah * ctxt->src.val)) & 0xff;
  2617. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
  2618. /* Set PF, ZF, SF */
  2619. ctxt->src.type = OP_IMM;
  2620. ctxt->src.val = 0;
  2621. ctxt->src.bytes = 1;
  2622. fastop(ctxt, em_or);
  2623. return X86EMUL_CONTINUE;
  2624. }
  2625. static int em_call(struct x86_emulate_ctxt *ctxt)
  2626. {
  2627. int rc;
  2628. long rel = ctxt->src.val;
  2629. ctxt->src.val = (unsigned long)ctxt->_eip;
  2630. rc = jmp_rel(ctxt, rel);
  2631. if (rc != X86EMUL_CONTINUE)
  2632. return rc;
  2633. return em_push(ctxt);
  2634. }
  2635. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2636. {
  2637. u16 sel, old_cs;
  2638. ulong old_eip;
  2639. int rc;
  2640. struct desc_struct old_desc, new_desc;
  2641. const struct x86_emulate_ops *ops = ctxt->ops;
  2642. int cpl = ctxt->ops->cpl(ctxt);
  2643. enum x86emul_mode prev_mode = ctxt->mode;
  2644. old_eip = ctxt->_eip;
  2645. ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
  2646. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2647. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  2648. X86_TRANSFER_CALL_JMP, &new_desc);
  2649. if (rc != X86EMUL_CONTINUE)
  2650. return rc;
  2651. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  2652. if (rc != X86EMUL_CONTINUE)
  2653. goto fail;
  2654. ctxt->src.val = old_cs;
  2655. rc = em_push(ctxt);
  2656. if (rc != X86EMUL_CONTINUE)
  2657. goto fail;
  2658. ctxt->src.val = old_eip;
  2659. rc = em_push(ctxt);
  2660. /* If we failed, we tainted the memory, but the very least we should
  2661. restore cs */
  2662. if (rc != X86EMUL_CONTINUE) {
  2663. pr_warn_once("faulting far call emulation tainted memory\n");
  2664. goto fail;
  2665. }
  2666. return rc;
  2667. fail:
  2668. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  2669. ctxt->mode = prev_mode;
  2670. return rc;
  2671. }
  2672. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  2673. {
  2674. int rc;
  2675. unsigned long eip;
  2676. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  2677. if (rc != X86EMUL_CONTINUE)
  2678. return rc;
  2679. rc = assign_eip_near(ctxt, eip);
  2680. if (rc != X86EMUL_CONTINUE)
  2681. return rc;
  2682. rsp_increment(ctxt, ctxt->src.val);
  2683. return X86EMUL_CONTINUE;
  2684. }
  2685. static int em_xchg(struct x86_emulate_ctxt *ctxt)
  2686. {
  2687. /* Write back the register source. */
  2688. ctxt->src.val = ctxt->dst.val;
  2689. write_register_operand(&ctxt->src);
  2690. /* Write back the memory destination with implicit LOCK prefix. */
  2691. ctxt->dst.val = ctxt->src.orig_val;
  2692. ctxt->lock_prefix = 1;
  2693. return X86EMUL_CONTINUE;
  2694. }
  2695. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  2696. {
  2697. ctxt->dst.val = ctxt->src2.val;
  2698. return fastop(ctxt, em_imul);
  2699. }
  2700. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  2701. {
  2702. ctxt->dst.type = OP_REG;
  2703. ctxt->dst.bytes = ctxt->src.bytes;
  2704. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  2705. ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
  2706. return X86EMUL_CONTINUE;
  2707. }
  2708. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  2709. {
  2710. u64 tsc = 0;
  2711. ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
  2712. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
  2713. *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
  2714. return X86EMUL_CONTINUE;
  2715. }
  2716. static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
  2717. {
  2718. u64 pmc;
  2719. if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
  2720. return emulate_gp(ctxt, 0);
  2721. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
  2722. *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
  2723. return X86EMUL_CONTINUE;
  2724. }
  2725. static int em_mov(struct x86_emulate_ctxt *ctxt)
  2726. {
  2727. memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
  2728. return X86EMUL_CONTINUE;
  2729. }
  2730. #define FFL(x) bit(X86_FEATURE_##x)
  2731. static int em_movbe(struct x86_emulate_ctxt *ctxt)
  2732. {
  2733. u32 ebx, ecx, edx, eax = 1;
  2734. u16 tmp;
  2735. /*
  2736. * Check MOVBE is set in the guest-visible CPUID leaf.
  2737. */
  2738. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2739. if (!(ecx & FFL(MOVBE)))
  2740. return emulate_ud(ctxt);
  2741. switch (ctxt->op_bytes) {
  2742. case 2:
  2743. /*
  2744. * From MOVBE definition: "...When the operand size is 16 bits,
  2745. * the upper word of the destination register remains unchanged
  2746. * ..."
  2747. *
  2748. * Both casting ->valptr and ->val to u16 breaks strict aliasing
  2749. * rules so we have to do the operation almost per hand.
  2750. */
  2751. tmp = (u16)ctxt->src.val;
  2752. ctxt->dst.val &= ~0xffffUL;
  2753. ctxt->dst.val |= (unsigned long)swab16(tmp);
  2754. break;
  2755. case 4:
  2756. ctxt->dst.val = swab32((u32)ctxt->src.val);
  2757. break;
  2758. case 8:
  2759. ctxt->dst.val = swab64(ctxt->src.val);
  2760. break;
  2761. default:
  2762. BUG();
  2763. }
  2764. return X86EMUL_CONTINUE;
  2765. }
  2766. static int em_cr_write(struct x86_emulate_ctxt *ctxt)
  2767. {
  2768. if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
  2769. return emulate_gp(ctxt, 0);
  2770. /* Disable writeback. */
  2771. ctxt->dst.type = OP_NONE;
  2772. return X86EMUL_CONTINUE;
  2773. }
  2774. static int em_dr_write(struct x86_emulate_ctxt *ctxt)
  2775. {
  2776. unsigned long val;
  2777. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2778. val = ctxt->src.val & ~0ULL;
  2779. else
  2780. val = ctxt->src.val & ~0U;
  2781. /* #UD condition is already handled. */
  2782. if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
  2783. return emulate_gp(ctxt, 0);
  2784. /* Disable writeback. */
  2785. ctxt->dst.type = OP_NONE;
  2786. return X86EMUL_CONTINUE;
  2787. }
  2788. static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
  2789. {
  2790. u64 msr_data;
  2791. msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
  2792. | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
  2793. if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
  2794. return emulate_gp(ctxt, 0);
  2795. return X86EMUL_CONTINUE;
  2796. }
  2797. static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
  2798. {
  2799. u64 msr_data;
  2800. if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
  2801. return emulate_gp(ctxt, 0);
  2802. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
  2803. *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
  2804. return X86EMUL_CONTINUE;
  2805. }
  2806. static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
  2807. {
  2808. if (ctxt->modrm_reg > VCPU_SREG_GS)
  2809. return emulate_ud(ctxt);
  2810. ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
  2811. if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
  2812. ctxt->dst.bytes = 2;
  2813. return X86EMUL_CONTINUE;
  2814. }
  2815. static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
  2816. {
  2817. u16 sel = ctxt->src.val;
  2818. if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
  2819. return emulate_ud(ctxt);
  2820. if (ctxt->modrm_reg == VCPU_SREG_SS)
  2821. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  2822. /* Disable writeback. */
  2823. ctxt->dst.type = OP_NONE;
  2824. return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
  2825. }
  2826. static int em_lldt(struct x86_emulate_ctxt *ctxt)
  2827. {
  2828. u16 sel = ctxt->src.val;
  2829. /* Disable writeback. */
  2830. ctxt->dst.type = OP_NONE;
  2831. return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
  2832. }
  2833. static int em_ltr(struct x86_emulate_ctxt *ctxt)
  2834. {
  2835. u16 sel = ctxt->src.val;
  2836. /* Disable writeback. */
  2837. ctxt->dst.type = OP_NONE;
  2838. return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
  2839. }
  2840. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  2841. {
  2842. int rc;
  2843. ulong linear;
  2844. rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
  2845. if (rc == X86EMUL_CONTINUE)
  2846. ctxt->ops->invlpg(ctxt, linear);
  2847. /* Disable writeback. */
  2848. ctxt->dst.type = OP_NONE;
  2849. return X86EMUL_CONTINUE;
  2850. }
  2851. static int em_clts(struct x86_emulate_ctxt *ctxt)
  2852. {
  2853. ulong cr0;
  2854. cr0 = ctxt->ops->get_cr(ctxt, 0);
  2855. cr0 &= ~X86_CR0_TS;
  2856. ctxt->ops->set_cr(ctxt, 0, cr0);
  2857. return X86EMUL_CONTINUE;
  2858. }
  2859. static int em_vmcall(struct x86_emulate_ctxt *ctxt)
  2860. {
  2861. int rc = ctxt->ops->fix_hypercall(ctxt);
  2862. if (rc != X86EMUL_CONTINUE)
  2863. return rc;
  2864. /* Let the processor re-execute the fixed hypercall */
  2865. ctxt->_eip = ctxt->eip;
  2866. /* Disable writeback. */
  2867. ctxt->dst.type = OP_NONE;
  2868. return X86EMUL_CONTINUE;
  2869. }
  2870. static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
  2871. void (*get)(struct x86_emulate_ctxt *ctxt,
  2872. struct desc_ptr *ptr))
  2873. {
  2874. struct desc_ptr desc_ptr;
  2875. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2876. ctxt->op_bytes = 8;
  2877. get(ctxt, &desc_ptr);
  2878. if (ctxt->op_bytes == 2) {
  2879. ctxt->op_bytes = 4;
  2880. desc_ptr.address &= 0x00ffffff;
  2881. }
  2882. /* Disable writeback. */
  2883. ctxt->dst.type = OP_NONE;
  2884. return segmented_write(ctxt, ctxt->dst.addr.mem,
  2885. &desc_ptr, 2 + ctxt->op_bytes);
  2886. }
  2887. static int em_sgdt(struct x86_emulate_ctxt *ctxt)
  2888. {
  2889. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
  2890. }
  2891. static int em_sidt(struct x86_emulate_ctxt *ctxt)
  2892. {
  2893. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
  2894. }
  2895. static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
  2896. {
  2897. struct desc_ptr desc_ptr;
  2898. int rc;
  2899. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2900. ctxt->op_bytes = 8;
  2901. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  2902. &desc_ptr.size, &desc_ptr.address,
  2903. ctxt->op_bytes);
  2904. if (rc != X86EMUL_CONTINUE)
  2905. return rc;
  2906. if (ctxt->mode == X86EMUL_MODE_PROT64 &&
  2907. is_noncanonical_address(desc_ptr.address))
  2908. return emulate_gp(ctxt, 0);
  2909. if (lgdt)
  2910. ctxt->ops->set_gdt(ctxt, &desc_ptr);
  2911. else
  2912. ctxt->ops->set_idt(ctxt, &desc_ptr);
  2913. /* Disable writeback. */
  2914. ctxt->dst.type = OP_NONE;
  2915. return X86EMUL_CONTINUE;
  2916. }
  2917. static int em_lgdt(struct x86_emulate_ctxt *ctxt)
  2918. {
  2919. return em_lgdt_lidt(ctxt, true);
  2920. }
  2921. static int em_vmmcall(struct x86_emulate_ctxt *ctxt)
  2922. {
  2923. int rc;
  2924. rc = ctxt->ops->fix_hypercall(ctxt);
  2925. /* Disable writeback. */
  2926. ctxt->dst.type = OP_NONE;
  2927. return rc;
  2928. }
  2929. static int em_lidt(struct x86_emulate_ctxt *ctxt)
  2930. {
  2931. return em_lgdt_lidt(ctxt, false);
  2932. }
  2933. static int em_smsw(struct x86_emulate_ctxt *ctxt)
  2934. {
  2935. if (ctxt->dst.type == OP_MEM)
  2936. ctxt->dst.bytes = 2;
  2937. ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
  2938. return X86EMUL_CONTINUE;
  2939. }
  2940. static int em_lmsw(struct x86_emulate_ctxt *ctxt)
  2941. {
  2942. ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
  2943. | (ctxt->src.val & 0x0f));
  2944. ctxt->dst.type = OP_NONE;
  2945. return X86EMUL_CONTINUE;
  2946. }
  2947. static int em_loop(struct x86_emulate_ctxt *ctxt)
  2948. {
  2949. int rc = X86EMUL_CONTINUE;
  2950. register_address_increment(ctxt, VCPU_REGS_RCX, -1);
  2951. if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
  2952. (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
  2953. rc = jmp_rel(ctxt, ctxt->src.val);
  2954. return rc;
  2955. }
  2956. static int em_jcxz(struct x86_emulate_ctxt *ctxt)
  2957. {
  2958. int rc = X86EMUL_CONTINUE;
  2959. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
  2960. rc = jmp_rel(ctxt, ctxt->src.val);
  2961. return rc;
  2962. }
  2963. static int em_in(struct x86_emulate_ctxt *ctxt)
  2964. {
  2965. if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
  2966. &ctxt->dst.val))
  2967. return X86EMUL_IO_NEEDED;
  2968. return X86EMUL_CONTINUE;
  2969. }
  2970. static int em_out(struct x86_emulate_ctxt *ctxt)
  2971. {
  2972. ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
  2973. &ctxt->src.val, 1);
  2974. /* Disable writeback. */
  2975. ctxt->dst.type = OP_NONE;
  2976. return X86EMUL_CONTINUE;
  2977. }
  2978. static int em_cli(struct x86_emulate_ctxt *ctxt)
  2979. {
  2980. if (emulator_bad_iopl(ctxt))
  2981. return emulate_gp(ctxt, 0);
  2982. ctxt->eflags &= ~X86_EFLAGS_IF;
  2983. return X86EMUL_CONTINUE;
  2984. }
  2985. static int em_sti(struct x86_emulate_ctxt *ctxt)
  2986. {
  2987. if (emulator_bad_iopl(ctxt))
  2988. return emulate_gp(ctxt, 0);
  2989. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  2990. ctxt->eflags |= X86_EFLAGS_IF;
  2991. return X86EMUL_CONTINUE;
  2992. }
  2993. static int em_cpuid(struct x86_emulate_ctxt *ctxt)
  2994. {
  2995. u32 eax, ebx, ecx, edx;
  2996. eax = reg_read(ctxt, VCPU_REGS_RAX);
  2997. ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2998. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2999. *reg_write(ctxt, VCPU_REGS_RAX) = eax;
  3000. *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
  3001. *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
  3002. *reg_write(ctxt, VCPU_REGS_RDX) = edx;
  3003. return X86EMUL_CONTINUE;
  3004. }
  3005. static int em_sahf(struct x86_emulate_ctxt *ctxt)
  3006. {
  3007. u32 flags;
  3008. flags = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF;
  3009. flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
  3010. ctxt->eflags &= ~0xffUL;
  3011. ctxt->eflags |= flags | X86_EFLAGS_FIXED;
  3012. return X86EMUL_CONTINUE;
  3013. }
  3014. static int em_lahf(struct x86_emulate_ctxt *ctxt)
  3015. {
  3016. *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
  3017. *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
  3018. return X86EMUL_CONTINUE;
  3019. }
  3020. static int em_bswap(struct x86_emulate_ctxt *ctxt)
  3021. {
  3022. switch (ctxt->op_bytes) {
  3023. #ifdef CONFIG_X86_64
  3024. case 8:
  3025. asm("bswap %0" : "+r"(ctxt->dst.val));
  3026. break;
  3027. #endif
  3028. default:
  3029. asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
  3030. break;
  3031. }
  3032. return X86EMUL_CONTINUE;
  3033. }
  3034. static int em_clflush(struct x86_emulate_ctxt *ctxt)
  3035. {
  3036. /* emulating clflush regardless of cpuid */
  3037. return X86EMUL_CONTINUE;
  3038. }
  3039. static int em_movsxd(struct x86_emulate_ctxt *ctxt)
  3040. {
  3041. ctxt->dst.val = (s32) ctxt->src.val;
  3042. return X86EMUL_CONTINUE;
  3043. }
  3044. static bool valid_cr(int nr)
  3045. {
  3046. switch (nr) {
  3047. case 0:
  3048. case 2 ... 4:
  3049. case 8:
  3050. return true;
  3051. default:
  3052. return false;
  3053. }
  3054. }
  3055. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  3056. {
  3057. if (!valid_cr(ctxt->modrm_reg))
  3058. return emulate_ud(ctxt);
  3059. return X86EMUL_CONTINUE;
  3060. }
  3061. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  3062. {
  3063. u64 new_val = ctxt->src.val64;
  3064. int cr = ctxt->modrm_reg;
  3065. u64 efer = 0;
  3066. static u64 cr_reserved_bits[] = {
  3067. 0xffffffff00000000ULL,
  3068. 0, 0, 0, /* CR3 checked later */
  3069. CR4_RESERVED_BITS,
  3070. 0, 0, 0,
  3071. CR8_RESERVED_BITS,
  3072. };
  3073. if (!valid_cr(cr))
  3074. return emulate_ud(ctxt);
  3075. if (new_val & cr_reserved_bits[cr])
  3076. return emulate_gp(ctxt, 0);
  3077. switch (cr) {
  3078. case 0: {
  3079. u64 cr4;
  3080. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  3081. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  3082. return emulate_gp(ctxt, 0);
  3083. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3084. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3085. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  3086. !(cr4 & X86_CR4_PAE))
  3087. return emulate_gp(ctxt, 0);
  3088. break;
  3089. }
  3090. case 3: {
  3091. u64 rsvd = 0;
  3092. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3093. if (efer & EFER_LMA)
  3094. rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD;
  3095. if (new_val & rsvd)
  3096. return emulate_gp(ctxt, 0);
  3097. break;
  3098. }
  3099. case 4: {
  3100. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3101. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  3102. return emulate_gp(ctxt, 0);
  3103. break;
  3104. }
  3105. }
  3106. return X86EMUL_CONTINUE;
  3107. }
  3108. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  3109. {
  3110. unsigned long dr7;
  3111. ctxt->ops->get_dr(ctxt, 7, &dr7);
  3112. /* Check if DR7.Global_Enable is set */
  3113. return dr7 & (1 << 13);
  3114. }
  3115. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  3116. {
  3117. int dr = ctxt->modrm_reg;
  3118. u64 cr4;
  3119. if (dr > 7)
  3120. return emulate_ud(ctxt);
  3121. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3122. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  3123. return emulate_ud(ctxt);
  3124. if (check_dr7_gd(ctxt)) {
  3125. ulong dr6;
  3126. ctxt->ops->get_dr(ctxt, 6, &dr6);
  3127. dr6 &= ~15;
  3128. dr6 |= DR6_BD | DR6_RTM;
  3129. ctxt->ops->set_dr(ctxt, 6, dr6);
  3130. return emulate_db(ctxt);
  3131. }
  3132. return X86EMUL_CONTINUE;
  3133. }
  3134. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  3135. {
  3136. u64 new_val = ctxt->src.val64;
  3137. int dr = ctxt->modrm_reg;
  3138. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  3139. return emulate_gp(ctxt, 0);
  3140. return check_dr_read(ctxt);
  3141. }
  3142. static int check_svme(struct x86_emulate_ctxt *ctxt)
  3143. {
  3144. u64 efer;
  3145. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3146. if (!(efer & EFER_SVME))
  3147. return emulate_ud(ctxt);
  3148. return X86EMUL_CONTINUE;
  3149. }
  3150. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  3151. {
  3152. u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
  3153. /* Valid physical address? */
  3154. if (rax & 0xffff000000000000ULL)
  3155. return emulate_gp(ctxt, 0);
  3156. return check_svme(ctxt);
  3157. }
  3158. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  3159. {
  3160. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3161. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
  3162. return emulate_ud(ctxt);
  3163. return X86EMUL_CONTINUE;
  3164. }
  3165. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  3166. {
  3167. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3168. u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
  3169. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
  3170. ctxt->ops->check_pmc(ctxt, rcx))
  3171. return emulate_gp(ctxt, 0);
  3172. return X86EMUL_CONTINUE;
  3173. }
  3174. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  3175. {
  3176. ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
  3177. if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
  3178. return emulate_gp(ctxt, 0);
  3179. return X86EMUL_CONTINUE;
  3180. }
  3181. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  3182. {
  3183. ctxt->src.bytes = min(ctxt->src.bytes, 4u);
  3184. if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
  3185. return emulate_gp(ctxt, 0);
  3186. return X86EMUL_CONTINUE;
  3187. }
  3188. #define D(_y) { .flags = (_y) }
  3189. #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
  3190. #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
  3191. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3192. #define N D(NotImpl)
  3193. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  3194. #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
  3195. #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
  3196. #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
  3197. #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
  3198. #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
  3199. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  3200. #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
  3201. #define II(_f, _e, _i) \
  3202. { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
  3203. #define IIP(_f, _e, _i, _p) \
  3204. { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
  3205. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3206. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  3207. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  3208. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  3209. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  3210. #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
  3211. #define I2bvIP(_f, _e, _i, _p) \
  3212. IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
  3213. #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
  3214. F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
  3215. F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
  3216. static const struct opcode group7_rm0[] = {
  3217. N,
  3218. I(SrcNone | Priv | EmulateOnUD, em_vmcall),
  3219. N, N, N, N, N, N,
  3220. };
  3221. static const struct opcode group7_rm1[] = {
  3222. DI(SrcNone | Priv, monitor),
  3223. DI(SrcNone | Priv, mwait),
  3224. N, N, N, N, N, N,
  3225. };
  3226. static const struct opcode group7_rm3[] = {
  3227. DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
  3228. II(SrcNone | Prot | EmulateOnUD, em_vmmcall, vmmcall),
  3229. DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
  3230. DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
  3231. DIP(SrcNone | Prot | Priv, stgi, check_svme),
  3232. DIP(SrcNone | Prot | Priv, clgi, check_svme),
  3233. DIP(SrcNone | Prot | Priv, skinit, check_svme),
  3234. DIP(SrcNone | Prot | Priv, invlpga, check_svme),
  3235. };
  3236. static const struct opcode group7_rm7[] = {
  3237. N,
  3238. DIP(SrcNone, rdtscp, check_rdtsc),
  3239. N, N, N, N, N, N,
  3240. };
  3241. static const struct opcode group1[] = {
  3242. F(Lock, em_add),
  3243. F(Lock | PageTable, em_or),
  3244. F(Lock, em_adc),
  3245. F(Lock, em_sbb),
  3246. F(Lock | PageTable, em_and),
  3247. F(Lock, em_sub),
  3248. F(Lock, em_xor),
  3249. F(NoWrite, em_cmp),
  3250. };
  3251. static const struct opcode group1A[] = {
  3252. I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N,
  3253. };
  3254. static const struct opcode group2[] = {
  3255. F(DstMem | ModRM, em_rol),
  3256. F(DstMem | ModRM, em_ror),
  3257. F(DstMem | ModRM, em_rcl),
  3258. F(DstMem | ModRM, em_rcr),
  3259. F(DstMem | ModRM, em_shl),
  3260. F(DstMem | ModRM, em_shr),
  3261. F(DstMem | ModRM, em_shl),
  3262. F(DstMem | ModRM, em_sar),
  3263. };
  3264. static const struct opcode group3[] = {
  3265. F(DstMem | SrcImm | NoWrite, em_test),
  3266. F(DstMem | SrcImm | NoWrite, em_test),
  3267. F(DstMem | SrcNone | Lock, em_not),
  3268. F(DstMem | SrcNone | Lock, em_neg),
  3269. F(DstXacc | Src2Mem, em_mul_ex),
  3270. F(DstXacc | Src2Mem, em_imul_ex),
  3271. F(DstXacc | Src2Mem, em_div_ex),
  3272. F(DstXacc | Src2Mem, em_idiv_ex),
  3273. };
  3274. static const struct opcode group4[] = {
  3275. F(ByteOp | DstMem | SrcNone | Lock, em_inc),
  3276. F(ByteOp | DstMem | SrcNone | Lock, em_dec),
  3277. N, N, N, N, N, N,
  3278. };
  3279. static const struct opcode group5[] = {
  3280. F(DstMem | SrcNone | Lock, em_inc),
  3281. F(DstMem | SrcNone | Lock, em_dec),
  3282. I(SrcMem | NearBranch, em_call_near_abs),
  3283. I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
  3284. I(SrcMem | NearBranch, em_jmp_abs),
  3285. I(SrcMemFAddr | ImplicitOps, em_jmp_far),
  3286. I(SrcMem | Stack, em_push), D(Undefined),
  3287. };
  3288. static const struct opcode group6[] = {
  3289. DI(Prot, sldt),
  3290. DI(Prot, str),
  3291. II(Prot | Priv | SrcMem16, em_lldt, lldt),
  3292. II(Prot | Priv | SrcMem16, em_ltr, ltr),
  3293. N, N, N, N,
  3294. };
  3295. static const struct group_dual group7 = { {
  3296. II(Mov | DstMem, em_sgdt, sgdt),
  3297. II(Mov | DstMem, em_sidt, sidt),
  3298. II(SrcMem | Priv, em_lgdt, lgdt),
  3299. II(SrcMem | Priv, em_lidt, lidt),
  3300. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3301. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3302. II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
  3303. }, {
  3304. EXT(0, group7_rm0),
  3305. EXT(0, group7_rm1),
  3306. N, EXT(0, group7_rm3),
  3307. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3308. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3309. EXT(0, group7_rm7),
  3310. } };
  3311. static const struct opcode group8[] = {
  3312. N, N, N, N,
  3313. F(DstMem | SrcImmByte | NoWrite, em_bt),
  3314. F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
  3315. F(DstMem | SrcImmByte | Lock, em_btr),
  3316. F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
  3317. };
  3318. static const struct group_dual group9 = { {
  3319. N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
  3320. }, {
  3321. N, N, N, N, N, N, N, N,
  3322. } };
  3323. static const struct opcode group11[] = {
  3324. I(DstMem | SrcImm | Mov | PageTable, em_mov),
  3325. X7(D(Undefined)),
  3326. };
  3327. static const struct gprefix pfx_0f_ae_7 = {
  3328. I(SrcMem | ByteOp, em_clflush), N, N, N,
  3329. };
  3330. static const struct group_dual group15 = { {
  3331. N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
  3332. }, {
  3333. N, N, N, N, N, N, N, N,
  3334. } };
  3335. static const struct gprefix pfx_0f_6f_0f_7f = {
  3336. I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
  3337. };
  3338. static const struct instr_dual instr_dual_0f_2b = {
  3339. I(0, em_mov), N
  3340. };
  3341. static const struct gprefix pfx_0f_2b = {
  3342. ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
  3343. };
  3344. static const struct gprefix pfx_0f_28_0f_29 = {
  3345. I(Aligned, em_mov), I(Aligned, em_mov), N, N,
  3346. };
  3347. static const struct gprefix pfx_0f_e7 = {
  3348. N, I(Sse, em_mov), N, N,
  3349. };
  3350. static const struct escape escape_d9 = { {
  3351. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
  3352. }, {
  3353. /* 0xC0 - 0xC7 */
  3354. N, N, N, N, N, N, N, N,
  3355. /* 0xC8 - 0xCF */
  3356. N, N, N, N, N, N, N, N,
  3357. /* 0xD0 - 0xC7 */
  3358. N, N, N, N, N, N, N, N,
  3359. /* 0xD8 - 0xDF */
  3360. N, N, N, N, N, N, N, N,
  3361. /* 0xE0 - 0xE7 */
  3362. N, N, N, N, N, N, N, N,
  3363. /* 0xE8 - 0xEF */
  3364. N, N, N, N, N, N, N, N,
  3365. /* 0xF0 - 0xF7 */
  3366. N, N, N, N, N, N, N, N,
  3367. /* 0xF8 - 0xFF */
  3368. N, N, N, N, N, N, N, N,
  3369. } };
  3370. static const struct escape escape_db = { {
  3371. N, N, N, N, N, N, N, N,
  3372. }, {
  3373. /* 0xC0 - 0xC7 */
  3374. N, N, N, N, N, N, N, N,
  3375. /* 0xC8 - 0xCF */
  3376. N, N, N, N, N, N, N, N,
  3377. /* 0xD0 - 0xC7 */
  3378. N, N, N, N, N, N, N, N,
  3379. /* 0xD8 - 0xDF */
  3380. N, N, N, N, N, N, N, N,
  3381. /* 0xE0 - 0xE7 */
  3382. N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
  3383. /* 0xE8 - 0xEF */
  3384. N, N, N, N, N, N, N, N,
  3385. /* 0xF0 - 0xF7 */
  3386. N, N, N, N, N, N, N, N,
  3387. /* 0xF8 - 0xFF */
  3388. N, N, N, N, N, N, N, N,
  3389. } };
  3390. static const struct escape escape_dd = { {
  3391. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
  3392. }, {
  3393. /* 0xC0 - 0xC7 */
  3394. N, N, N, N, N, N, N, N,
  3395. /* 0xC8 - 0xCF */
  3396. N, N, N, N, N, N, N, N,
  3397. /* 0xD0 - 0xC7 */
  3398. N, N, N, N, N, N, N, N,
  3399. /* 0xD8 - 0xDF */
  3400. N, N, N, N, N, N, N, N,
  3401. /* 0xE0 - 0xE7 */
  3402. N, N, N, N, N, N, N, N,
  3403. /* 0xE8 - 0xEF */
  3404. N, N, N, N, N, N, N, N,
  3405. /* 0xF0 - 0xF7 */
  3406. N, N, N, N, N, N, N, N,
  3407. /* 0xF8 - 0xFF */
  3408. N, N, N, N, N, N, N, N,
  3409. } };
  3410. static const struct instr_dual instr_dual_0f_c3 = {
  3411. I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
  3412. };
  3413. static const struct mode_dual mode_dual_63 = {
  3414. N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
  3415. };
  3416. static const struct opcode opcode_table[256] = {
  3417. /* 0x00 - 0x07 */
  3418. F6ALU(Lock, em_add),
  3419. I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
  3420. I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
  3421. /* 0x08 - 0x0F */
  3422. F6ALU(Lock | PageTable, em_or),
  3423. I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
  3424. N,
  3425. /* 0x10 - 0x17 */
  3426. F6ALU(Lock, em_adc),
  3427. I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
  3428. I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
  3429. /* 0x18 - 0x1F */
  3430. F6ALU(Lock, em_sbb),
  3431. I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
  3432. I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
  3433. /* 0x20 - 0x27 */
  3434. F6ALU(Lock | PageTable, em_and), N, N,
  3435. /* 0x28 - 0x2F */
  3436. F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
  3437. /* 0x30 - 0x37 */
  3438. F6ALU(Lock, em_xor), N, N,
  3439. /* 0x38 - 0x3F */
  3440. F6ALU(NoWrite, em_cmp), N, N,
  3441. /* 0x40 - 0x4F */
  3442. X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
  3443. /* 0x50 - 0x57 */
  3444. X8(I(SrcReg | Stack, em_push)),
  3445. /* 0x58 - 0x5F */
  3446. X8(I(DstReg | Stack, em_pop)),
  3447. /* 0x60 - 0x67 */
  3448. I(ImplicitOps | Stack | No64, em_pusha),
  3449. I(ImplicitOps | Stack | No64, em_popa),
  3450. N, MD(ModRM, &mode_dual_63),
  3451. N, N, N, N,
  3452. /* 0x68 - 0x6F */
  3453. I(SrcImm | Mov | Stack, em_push),
  3454. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  3455. I(SrcImmByte | Mov | Stack, em_push),
  3456. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  3457. I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
  3458. I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
  3459. /* 0x70 - 0x7F */
  3460. X16(D(SrcImmByte | NearBranch)),
  3461. /* 0x80 - 0x87 */
  3462. G(ByteOp | DstMem | SrcImm, group1),
  3463. G(DstMem | SrcImm, group1),
  3464. G(ByteOp | DstMem | SrcImm | No64, group1),
  3465. G(DstMem | SrcImmByte, group1),
  3466. F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
  3467. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
  3468. /* 0x88 - 0x8F */
  3469. I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
  3470. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  3471. I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
  3472. D(ModRM | SrcMem | NoAccess | DstReg),
  3473. I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
  3474. G(0, group1A),
  3475. /* 0x90 - 0x97 */
  3476. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  3477. /* 0x98 - 0x9F */
  3478. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  3479. I(SrcImmFAddr | No64, em_call_far), N,
  3480. II(ImplicitOps | Stack, em_pushf, pushf),
  3481. II(ImplicitOps | Stack, em_popf, popf),
  3482. I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
  3483. /* 0xA0 - 0xA7 */
  3484. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  3485. I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
  3486. I2bv(SrcSI | DstDI | Mov | String, em_mov),
  3487. F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
  3488. /* 0xA8 - 0xAF */
  3489. F2bv(DstAcc | SrcImm | NoWrite, em_test),
  3490. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  3491. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  3492. F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
  3493. /* 0xB0 - 0xB7 */
  3494. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  3495. /* 0xB8 - 0xBF */
  3496. X8(I(DstReg | SrcImm64 | Mov, em_mov)),
  3497. /* 0xC0 - 0xC7 */
  3498. G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
  3499. I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
  3500. I(ImplicitOps | NearBranch, em_ret),
  3501. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
  3502. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
  3503. G(ByteOp, group11), G(0, group11),
  3504. /* 0xC8 - 0xCF */
  3505. I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
  3506. I(ImplicitOps | SrcImmU16, em_ret_far_imm),
  3507. I(ImplicitOps, em_ret_far),
  3508. D(ImplicitOps), DI(SrcImmByte, intn),
  3509. D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
  3510. /* 0xD0 - 0xD7 */
  3511. G(Src2One | ByteOp, group2), G(Src2One, group2),
  3512. G(Src2CL | ByteOp, group2), G(Src2CL, group2),
  3513. I(DstAcc | SrcImmUByte | No64, em_aam),
  3514. I(DstAcc | SrcImmUByte | No64, em_aad),
  3515. F(DstAcc | ByteOp | No64, em_salc),
  3516. I(DstAcc | SrcXLat | ByteOp, em_mov),
  3517. /* 0xD8 - 0xDF */
  3518. N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
  3519. /* 0xE0 - 0xE7 */
  3520. X3(I(SrcImmByte | NearBranch, em_loop)),
  3521. I(SrcImmByte | NearBranch, em_jcxz),
  3522. I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
  3523. I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
  3524. /* 0xE8 - 0xEF */
  3525. I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
  3526. I(SrcImmFAddr | No64, em_jmp_far),
  3527. D(SrcImmByte | ImplicitOps | NearBranch),
  3528. I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
  3529. I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
  3530. /* 0xF0 - 0xF7 */
  3531. N, DI(ImplicitOps, icebp), N, N,
  3532. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  3533. G(ByteOp, group3), G(0, group3),
  3534. /* 0xF8 - 0xFF */
  3535. D(ImplicitOps), D(ImplicitOps),
  3536. I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
  3537. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  3538. };
  3539. static const struct opcode twobyte_table[256] = {
  3540. /* 0x00 - 0x0F */
  3541. G(0, group6), GD(0, &group7), N, N,
  3542. N, I(ImplicitOps | EmulateOnUD, em_syscall),
  3543. II(ImplicitOps | Priv, em_clts, clts), N,
  3544. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  3545. N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
  3546. /* 0x10 - 0x1F */
  3547. N, N, N, N, N, N, N, N,
  3548. D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3549. N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3550. /* 0x20 - 0x2F */
  3551. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
  3552. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
  3553. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
  3554. check_cr_write),
  3555. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
  3556. check_dr_write),
  3557. N, N, N, N,
  3558. GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
  3559. GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
  3560. N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
  3561. N, N, N, N,
  3562. /* 0x30 - 0x3F */
  3563. II(ImplicitOps | Priv, em_wrmsr, wrmsr),
  3564. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  3565. II(ImplicitOps | Priv, em_rdmsr, rdmsr),
  3566. IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
  3567. I(ImplicitOps | EmulateOnUD, em_sysenter),
  3568. I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
  3569. N, N,
  3570. N, N, N, N, N, N, N, N,
  3571. /* 0x40 - 0x4F */
  3572. X16(D(DstReg | SrcMem | ModRM)),
  3573. /* 0x50 - 0x5F */
  3574. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3575. /* 0x60 - 0x6F */
  3576. N, N, N, N,
  3577. N, N, N, N,
  3578. N, N, N, N,
  3579. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3580. /* 0x70 - 0x7F */
  3581. N, N, N, N,
  3582. N, N, N, N,
  3583. N, N, N, N,
  3584. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3585. /* 0x80 - 0x8F */
  3586. X16(D(SrcImm | NearBranch)),
  3587. /* 0x90 - 0x9F */
  3588. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  3589. /* 0xA0 - 0xA7 */
  3590. I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
  3591. II(ImplicitOps, em_cpuid, cpuid),
  3592. F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
  3593. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
  3594. F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
  3595. /* 0xA8 - 0xAF */
  3596. I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
  3597. DI(ImplicitOps, rsm),
  3598. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
  3599. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
  3600. F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
  3601. GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
  3602. /* 0xB0 - 0xB7 */
  3603. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
  3604. I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
  3605. F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
  3606. I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
  3607. I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
  3608. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3609. /* 0xB8 - 0xBF */
  3610. N, N,
  3611. G(BitOp, group8),
  3612. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
  3613. F(DstReg | SrcMem | ModRM, em_bsf), F(DstReg | SrcMem | ModRM, em_bsr),
  3614. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3615. /* 0xC0 - 0xC7 */
  3616. F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
  3617. N, ID(0, &instr_dual_0f_c3),
  3618. N, N, N, GD(0, &group9),
  3619. /* 0xC8 - 0xCF */
  3620. X8(I(DstReg, em_bswap)),
  3621. /* 0xD0 - 0xDF */
  3622. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3623. /* 0xE0 - 0xEF */
  3624. N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
  3625. N, N, N, N, N, N, N, N,
  3626. /* 0xF0 - 0xFF */
  3627. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  3628. };
  3629. static const struct instr_dual instr_dual_0f_38_f0 = {
  3630. I(DstReg | SrcMem | Mov, em_movbe), N
  3631. };
  3632. static const struct instr_dual instr_dual_0f_38_f1 = {
  3633. I(DstMem | SrcReg | Mov, em_movbe), N
  3634. };
  3635. static const struct gprefix three_byte_0f_38_f0 = {
  3636. ID(0, &instr_dual_0f_38_f0), N, N, N
  3637. };
  3638. static const struct gprefix three_byte_0f_38_f1 = {
  3639. ID(0, &instr_dual_0f_38_f1), N, N, N
  3640. };
  3641. /*
  3642. * Insns below are selected by the prefix which indexed by the third opcode
  3643. * byte.
  3644. */
  3645. static const struct opcode opcode_map_0f_38[256] = {
  3646. /* 0x00 - 0x7f */
  3647. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3648. /* 0x80 - 0xef */
  3649. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3650. /* 0xf0 - 0xf1 */
  3651. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
  3652. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
  3653. /* 0xf2 - 0xff */
  3654. N, N, X4(N), X8(N)
  3655. };
  3656. #undef D
  3657. #undef N
  3658. #undef G
  3659. #undef GD
  3660. #undef I
  3661. #undef GP
  3662. #undef EXT
  3663. #undef MD
  3664. #undef ID
  3665. #undef D2bv
  3666. #undef D2bvIP
  3667. #undef I2bv
  3668. #undef I2bvIP
  3669. #undef I6ALU
  3670. static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
  3671. {
  3672. unsigned size;
  3673. size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3674. if (size == 8)
  3675. size = 4;
  3676. return size;
  3677. }
  3678. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3679. unsigned size, bool sign_extension)
  3680. {
  3681. int rc = X86EMUL_CONTINUE;
  3682. op->type = OP_IMM;
  3683. op->bytes = size;
  3684. op->addr.mem.ea = ctxt->_eip;
  3685. /* NB. Immediates are sign-extended as necessary. */
  3686. switch (op->bytes) {
  3687. case 1:
  3688. op->val = insn_fetch(s8, ctxt);
  3689. break;
  3690. case 2:
  3691. op->val = insn_fetch(s16, ctxt);
  3692. break;
  3693. case 4:
  3694. op->val = insn_fetch(s32, ctxt);
  3695. break;
  3696. case 8:
  3697. op->val = insn_fetch(s64, ctxt);
  3698. break;
  3699. }
  3700. if (!sign_extension) {
  3701. switch (op->bytes) {
  3702. case 1:
  3703. op->val &= 0xff;
  3704. break;
  3705. case 2:
  3706. op->val &= 0xffff;
  3707. break;
  3708. case 4:
  3709. op->val &= 0xffffffff;
  3710. break;
  3711. }
  3712. }
  3713. done:
  3714. return rc;
  3715. }
  3716. static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3717. unsigned d)
  3718. {
  3719. int rc = X86EMUL_CONTINUE;
  3720. switch (d) {
  3721. case OpReg:
  3722. decode_register_operand(ctxt, op);
  3723. break;
  3724. case OpImmUByte:
  3725. rc = decode_imm(ctxt, op, 1, false);
  3726. break;
  3727. case OpMem:
  3728. ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3729. mem_common:
  3730. *op = ctxt->memop;
  3731. ctxt->memopp = op;
  3732. if (ctxt->d & BitOp)
  3733. fetch_bit_operand(ctxt);
  3734. op->orig_val = op->val;
  3735. break;
  3736. case OpMem64:
  3737. ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
  3738. goto mem_common;
  3739. case OpAcc:
  3740. op->type = OP_REG;
  3741. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3742. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3743. fetch_register_operand(op);
  3744. op->orig_val = op->val;
  3745. break;
  3746. case OpAccLo:
  3747. op->type = OP_REG;
  3748. op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
  3749. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3750. fetch_register_operand(op);
  3751. op->orig_val = op->val;
  3752. break;
  3753. case OpAccHi:
  3754. if (ctxt->d & ByteOp) {
  3755. op->type = OP_NONE;
  3756. break;
  3757. }
  3758. op->type = OP_REG;
  3759. op->bytes = ctxt->op_bytes;
  3760. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3761. fetch_register_operand(op);
  3762. op->orig_val = op->val;
  3763. break;
  3764. case OpDI:
  3765. op->type = OP_MEM;
  3766. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3767. op->addr.mem.ea =
  3768. register_address(ctxt, VCPU_REGS_RDI);
  3769. op->addr.mem.seg = VCPU_SREG_ES;
  3770. op->val = 0;
  3771. op->count = 1;
  3772. break;
  3773. case OpDX:
  3774. op->type = OP_REG;
  3775. op->bytes = 2;
  3776. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3777. fetch_register_operand(op);
  3778. break;
  3779. case OpCL:
  3780. op->type = OP_IMM;
  3781. op->bytes = 1;
  3782. op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
  3783. break;
  3784. case OpImmByte:
  3785. rc = decode_imm(ctxt, op, 1, true);
  3786. break;
  3787. case OpOne:
  3788. op->type = OP_IMM;
  3789. op->bytes = 1;
  3790. op->val = 1;
  3791. break;
  3792. case OpImm:
  3793. rc = decode_imm(ctxt, op, imm_size(ctxt), true);
  3794. break;
  3795. case OpImm64:
  3796. rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
  3797. break;
  3798. case OpMem8:
  3799. ctxt->memop.bytes = 1;
  3800. if (ctxt->memop.type == OP_REG) {
  3801. ctxt->memop.addr.reg = decode_register(ctxt,
  3802. ctxt->modrm_rm, true);
  3803. fetch_register_operand(&ctxt->memop);
  3804. }
  3805. goto mem_common;
  3806. case OpMem16:
  3807. ctxt->memop.bytes = 2;
  3808. goto mem_common;
  3809. case OpMem32:
  3810. ctxt->memop.bytes = 4;
  3811. goto mem_common;
  3812. case OpImmU16:
  3813. rc = decode_imm(ctxt, op, 2, false);
  3814. break;
  3815. case OpImmU:
  3816. rc = decode_imm(ctxt, op, imm_size(ctxt), false);
  3817. break;
  3818. case OpSI:
  3819. op->type = OP_MEM;
  3820. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3821. op->addr.mem.ea =
  3822. register_address(ctxt, VCPU_REGS_RSI);
  3823. op->addr.mem.seg = ctxt->seg_override;
  3824. op->val = 0;
  3825. op->count = 1;
  3826. break;
  3827. case OpXLat:
  3828. op->type = OP_MEM;
  3829. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3830. op->addr.mem.ea =
  3831. address_mask(ctxt,
  3832. reg_read(ctxt, VCPU_REGS_RBX) +
  3833. (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
  3834. op->addr.mem.seg = ctxt->seg_override;
  3835. op->val = 0;
  3836. break;
  3837. case OpImmFAddr:
  3838. op->type = OP_IMM;
  3839. op->addr.mem.ea = ctxt->_eip;
  3840. op->bytes = ctxt->op_bytes + 2;
  3841. insn_fetch_arr(op->valptr, op->bytes, ctxt);
  3842. break;
  3843. case OpMemFAddr:
  3844. ctxt->memop.bytes = ctxt->op_bytes + 2;
  3845. goto mem_common;
  3846. case OpES:
  3847. op->type = OP_IMM;
  3848. op->val = VCPU_SREG_ES;
  3849. break;
  3850. case OpCS:
  3851. op->type = OP_IMM;
  3852. op->val = VCPU_SREG_CS;
  3853. break;
  3854. case OpSS:
  3855. op->type = OP_IMM;
  3856. op->val = VCPU_SREG_SS;
  3857. break;
  3858. case OpDS:
  3859. op->type = OP_IMM;
  3860. op->val = VCPU_SREG_DS;
  3861. break;
  3862. case OpFS:
  3863. op->type = OP_IMM;
  3864. op->val = VCPU_SREG_FS;
  3865. break;
  3866. case OpGS:
  3867. op->type = OP_IMM;
  3868. op->val = VCPU_SREG_GS;
  3869. break;
  3870. case OpImplicit:
  3871. /* Special instructions do their own operand decoding. */
  3872. default:
  3873. op->type = OP_NONE; /* Disable writeback. */
  3874. break;
  3875. }
  3876. done:
  3877. return rc;
  3878. }
  3879. int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  3880. {
  3881. int rc = X86EMUL_CONTINUE;
  3882. int mode = ctxt->mode;
  3883. int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
  3884. bool op_prefix = false;
  3885. bool has_seg_override = false;
  3886. struct opcode opcode;
  3887. ctxt->memop.type = OP_NONE;
  3888. ctxt->memopp = NULL;
  3889. ctxt->_eip = ctxt->eip;
  3890. ctxt->fetch.ptr = ctxt->fetch.data;
  3891. ctxt->fetch.end = ctxt->fetch.data + insn_len;
  3892. ctxt->opcode_len = 1;
  3893. if (insn_len > 0)
  3894. memcpy(ctxt->fetch.data, insn, insn_len);
  3895. else {
  3896. rc = __do_insn_fetch_bytes(ctxt, 1);
  3897. if (rc != X86EMUL_CONTINUE)
  3898. return rc;
  3899. }
  3900. switch (mode) {
  3901. case X86EMUL_MODE_REAL:
  3902. case X86EMUL_MODE_VM86:
  3903. case X86EMUL_MODE_PROT16:
  3904. def_op_bytes = def_ad_bytes = 2;
  3905. break;
  3906. case X86EMUL_MODE_PROT32:
  3907. def_op_bytes = def_ad_bytes = 4;
  3908. break;
  3909. #ifdef CONFIG_X86_64
  3910. case X86EMUL_MODE_PROT64:
  3911. def_op_bytes = 4;
  3912. def_ad_bytes = 8;
  3913. break;
  3914. #endif
  3915. default:
  3916. return EMULATION_FAILED;
  3917. }
  3918. ctxt->op_bytes = def_op_bytes;
  3919. ctxt->ad_bytes = def_ad_bytes;
  3920. /* Legacy prefixes. */
  3921. for (;;) {
  3922. switch (ctxt->b = insn_fetch(u8, ctxt)) {
  3923. case 0x66: /* operand-size override */
  3924. op_prefix = true;
  3925. /* switch between 2/4 bytes */
  3926. ctxt->op_bytes = def_op_bytes ^ 6;
  3927. break;
  3928. case 0x67: /* address-size override */
  3929. if (mode == X86EMUL_MODE_PROT64)
  3930. /* switch between 4/8 bytes */
  3931. ctxt->ad_bytes = def_ad_bytes ^ 12;
  3932. else
  3933. /* switch between 2/4 bytes */
  3934. ctxt->ad_bytes = def_ad_bytes ^ 6;
  3935. break;
  3936. case 0x26: /* ES override */
  3937. case 0x2e: /* CS override */
  3938. case 0x36: /* SS override */
  3939. case 0x3e: /* DS override */
  3940. has_seg_override = true;
  3941. ctxt->seg_override = (ctxt->b >> 3) & 3;
  3942. break;
  3943. case 0x64: /* FS override */
  3944. case 0x65: /* GS override */
  3945. has_seg_override = true;
  3946. ctxt->seg_override = ctxt->b & 7;
  3947. break;
  3948. case 0x40 ... 0x4f: /* REX */
  3949. if (mode != X86EMUL_MODE_PROT64)
  3950. goto done_prefixes;
  3951. ctxt->rex_prefix = ctxt->b;
  3952. continue;
  3953. case 0xf0: /* LOCK */
  3954. ctxt->lock_prefix = 1;
  3955. break;
  3956. case 0xf2: /* REPNE/REPNZ */
  3957. case 0xf3: /* REP/REPE/REPZ */
  3958. ctxt->rep_prefix = ctxt->b;
  3959. break;
  3960. default:
  3961. goto done_prefixes;
  3962. }
  3963. /* Any legacy prefix after a REX prefix nullifies its effect. */
  3964. ctxt->rex_prefix = 0;
  3965. }
  3966. done_prefixes:
  3967. /* REX prefix. */
  3968. if (ctxt->rex_prefix & 8)
  3969. ctxt->op_bytes = 8; /* REX.W */
  3970. /* Opcode byte(s). */
  3971. opcode = opcode_table[ctxt->b];
  3972. /* Two-byte opcode? */
  3973. if (ctxt->b == 0x0f) {
  3974. ctxt->opcode_len = 2;
  3975. ctxt->b = insn_fetch(u8, ctxt);
  3976. opcode = twobyte_table[ctxt->b];
  3977. /* 0F_38 opcode map */
  3978. if (ctxt->b == 0x38) {
  3979. ctxt->opcode_len = 3;
  3980. ctxt->b = insn_fetch(u8, ctxt);
  3981. opcode = opcode_map_0f_38[ctxt->b];
  3982. }
  3983. }
  3984. ctxt->d = opcode.flags;
  3985. if (ctxt->d & ModRM)
  3986. ctxt->modrm = insn_fetch(u8, ctxt);
  3987. /* vex-prefix instructions are not implemented */
  3988. if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
  3989. (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
  3990. ctxt->d = NotImpl;
  3991. }
  3992. while (ctxt->d & GroupMask) {
  3993. switch (ctxt->d & GroupMask) {
  3994. case Group:
  3995. goffset = (ctxt->modrm >> 3) & 7;
  3996. opcode = opcode.u.group[goffset];
  3997. break;
  3998. case GroupDual:
  3999. goffset = (ctxt->modrm >> 3) & 7;
  4000. if ((ctxt->modrm >> 6) == 3)
  4001. opcode = opcode.u.gdual->mod3[goffset];
  4002. else
  4003. opcode = opcode.u.gdual->mod012[goffset];
  4004. break;
  4005. case RMExt:
  4006. goffset = ctxt->modrm & 7;
  4007. opcode = opcode.u.group[goffset];
  4008. break;
  4009. case Prefix:
  4010. if (ctxt->rep_prefix && op_prefix)
  4011. return EMULATION_FAILED;
  4012. simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
  4013. switch (simd_prefix) {
  4014. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  4015. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  4016. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  4017. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  4018. }
  4019. break;
  4020. case Escape:
  4021. if (ctxt->modrm > 0xbf)
  4022. opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
  4023. else
  4024. opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
  4025. break;
  4026. case InstrDual:
  4027. if ((ctxt->modrm >> 6) == 3)
  4028. opcode = opcode.u.idual->mod3;
  4029. else
  4030. opcode = opcode.u.idual->mod012;
  4031. break;
  4032. case ModeDual:
  4033. if (ctxt->mode == X86EMUL_MODE_PROT64)
  4034. opcode = opcode.u.mdual->mode64;
  4035. else
  4036. opcode = opcode.u.mdual->mode32;
  4037. break;
  4038. default:
  4039. return EMULATION_FAILED;
  4040. }
  4041. ctxt->d &= ~(u64)GroupMask;
  4042. ctxt->d |= opcode.flags;
  4043. }
  4044. /* Unrecognised? */
  4045. if (ctxt->d == 0)
  4046. return EMULATION_FAILED;
  4047. ctxt->execute = opcode.u.execute;
  4048. if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
  4049. return EMULATION_FAILED;
  4050. if (unlikely(ctxt->d &
  4051. (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
  4052. No16))) {
  4053. /*
  4054. * These are copied unconditionally here, and checked unconditionally
  4055. * in x86_emulate_insn.
  4056. */
  4057. ctxt->check_perm = opcode.check_perm;
  4058. ctxt->intercept = opcode.intercept;
  4059. if (ctxt->d & NotImpl)
  4060. return EMULATION_FAILED;
  4061. if (mode == X86EMUL_MODE_PROT64) {
  4062. if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
  4063. ctxt->op_bytes = 8;
  4064. else if (ctxt->d & NearBranch)
  4065. ctxt->op_bytes = 8;
  4066. }
  4067. if (ctxt->d & Op3264) {
  4068. if (mode == X86EMUL_MODE_PROT64)
  4069. ctxt->op_bytes = 8;
  4070. else
  4071. ctxt->op_bytes = 4;
  4072. }
  4073. if ((ctxt->d & No16) && ctxt->op_bytes == 2)
  4074. ctxt->op_bytes = 4;
  4075. if (ctxt->d & Sse)
  4076. ctxt->op_bytes = 16;
  4077. else if (ctxt->d & Mmx)
  4078. ctxt->op_bytes = 8;
  4079. }
  4080. /* ModRM and SIB bytes. */
  4081. if (ctxt->d & ModRM) {
  4082. rc = decode_modrm(ctxt, &ctxt->memop);
  4083. if (!has_seg_override) {
  4084. has_seg_override = true;
  4085. ctxt->seg_override = ctxt->modrm_seg;
  4086. }
  4087. } else if (ctxt->d & MemAbs)
  4088. rc = decode_abs(ctxt, &ctxt->memop);
  4089. if (rc != X86EMUL_CONTINUE)
  4090. goto done;
  4091. if (!has_seg_override)
  4092. ctxt->seg_override = VCPU_SREG_DS;
  4093. ctxt->memop.addr.mem.seg = ctxt->seg_override;
  4094. /*
  4095. * Decode and fetch the source operand: register, memory
  4096. * or immediate.
  4097. */
  4098. rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
  4099. if (rc != X86EMUL_CONTINUE)
  4100. goto done;
  4101. /*
  4102. * Decode and fetch the second source operand: register, memory
  4103. * or immediate.
  4104. */
  4105. rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
  4106. if (rc != X86EMUL_CONTINUE)
  4107. goto done;
  4108. /* Decode and fetch the destination operand: register or memory. */
  4109. rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
  4110. if (ctxt->rip_relative)
  4111. ctxt->memopp->addr.mem.ea = address_mask(ctxt,
  4112. ctxt->memopp->addr.mem.ea + ctxt->_eip);
  4113. done:
  4114. return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
  4115. }
  4116. bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
  4117. {
  4118. return ctxt->d & PageTable;
  4119. }
  4120. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  4121. {
  4122. /* The second termination condition only applies for REPE
  4123. * and REPNE. Test if the repeat string operation prefix is
  4124. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  4125. * corresponding termination condition according to:
  4126. * - if REPE/REPZ and ZF = 0 then done
  4127. * - if REPNE/REPNZ and ZF = 1 then done
  4128. */
  4129. if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
  4130. (ctxt->b == 0xae) || (ctxt->b == 0xaf))
  4131. && (((ctxt->rep_prefix == REPE_PREFIX) &&
  4132. ((ctxt->eflags & EFLG_ZF) == 0))
  4133. || ((ctxt->rep_prefix == REPNE_PREFIX) &&
  4134. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
  4135. return true;
  4136. return false;
  4137. }
  4138. static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
  4139. {
  4140. bool fault = false;
  4141. ctxt->ops->get_fpu(ctxt);
  4142. asm volatile("1: fwait \n\t"
  4143. "2: \n\t"
  4144. ".pushsection .fixup,\"ax\" \n\t"
  4145. "3: \n\t"
  4146. "movb $1, %[fault] \n\t"
  4147. "jmp 2b \n\t"
  4148. ".popsection \n\t"
  4149. _ASM_EXTABLE(1b, 3b)
  4150. : [fault]"+qm"(fault));
  4151. ctxt->ops->put_fpu(ctxt);
  4152. if (unlikely(fault))
  4153. return emulate_exception(ctxt, MF_VECTOR, 0, false);
  4154. return X86EMUL_CONTINUE;
  4155. }
  4156. static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
  4157. struct operand *op)
  4158. {
  4159. if (op->type == OP_MM)
  4160. read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  4161. }
  4162. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
  4163. {
  4164. ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
  4165. if (!(ctxt->d & ByteOp))
  4166. fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
  4167. asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
  4168. : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
  4169. [fastop]"+S"(fop)
  4170. : "c"(ctxt->src2.val));
  4171. ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
  4172. if (!fop) /* exception is returned in fop variable */
  4173. return emulate_de(ctxt);
  4174. return X86EMUL_CONTINUE;
  4175. }
  4176. void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4177. {
  4178. memset(&ctxt->rip_relative, 0,
  4179. (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
  4180. ctxt->io_read.pos = 0;
  4181. ctxt->io_read.end = 0;
  4182. ctxt->mem_read.end = 0;
  4183. }
  4184. int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  4185. {
  4186. const struct x86_emulate_ops *ops = ctxt->ops;
  4187. int rc = X86EMUL_CONTINUE;
  4188. int saved_dst_type = ctxt->dst.type;
  4189. ctxt->mem_read.pos = 0;
  4190. /* LOCK prefix is allowed only with some instructions */
  4191. if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
  4192. rc = emulate_ud(ctxt);
  4193. goto done;
  4194. }
  4195. if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
  4196. rc = emulate_ud(ctxt);
  4197. goto done;
  4198. }
  4199. if (unlikely(ctxt->d &
  4200. (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
  4201. if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
  4202. (ctxt->d & Undefined)) {
  4203. rc = emulate_ud(ctxt);
  4204. goto done;
  4205. }
  4206. if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
  4207. || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
  4208. rc = emulate_ud(ctxt);
  4209. goto done;
  4210. }
  4211. if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
  4212. rc = emulate_nm(ctxt);
  4213. goto done;
  4214. }
  4215. if (ctxt->d & Mmx) {
  4216. rc = flush_pending_x87_faults(ctxt);
  4217. if (rc != X86EMUL_CONTINUE)
  4218. goto done;
  4219. /*
  4220. * Now that we know the fpu is exception safe, we can fetch
  4221. * operands from it.
  4222. */
  4223. fetch_possible_mmx_operand(ctxt, &ctxt->src);
  4224. fetch_possible_mmx_operand(ctxt, &ctxt->src2);
  4225. if (!(ctxt->d & Mov))
  4226. fetch_possible_mmx_operand(ctxt, &ctxt->dst);
  4227. }
  4228. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4229. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4230. X86_ICPT_PRE_EXCEPT);
  4231. if (rc != X86EMUL_CONTINUE)
  4232. goto done;
  4233. }
  4234. /* Instruction can only be executed in protected mode */
  4235. if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
  4236. rc = emulate_ud(ctxt);
  4237. goto done;
  4238. }
  4239. /* Privileged instruction can be executed only in CPL=0 */
  4240. if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
  4241. if (ctxt->d & PrivUD)
  4242. rc = emulate_ud(ctxt);
  4243. else
  4244. rc = emulate_gp(ctxt, 0);
  4245. goto done;
  4246. }
  4247. /* Do instruction specific permission checks */
  4248. if (ctxt->d & CheckPerm) {
  4249. rc = ctxt->check_perm(ctxt);
  4250. if (rc != X86EMUL_CONTINUE)
  4251. goto done;
  4252. }
  4253. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4254. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4255. X86_ICPT_POST_EXCEPT);
  4256. if (rc != X86EMUL_CONTINUE)
  4257. goto done;
  4258. }
  4259. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4260. /* All REP prefixes have the same first termination condition */
  4261. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
  4262. ctxt->eip = ctxt->_eip;
  4263. ctxt->eflags &= ~EFLG_RF;
  4264. goto done;
  4265. }
  4266. }
  4267. }
  4268. if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
  4269. rc = segmented_read(ctxt, ctxt->src.addr.mem,
  4270. ctxt->src.valptr, ctxt->src.bytes);
  4271. if (rc != X86EMUL_CONTINUE)
  4272. goto done;
  4273. ctxt->src.orig_val64 = ctxt->src.val64;
  4274. }
  4275. if (ctxt->src2.type == OP_MEM) {
  4276. rc = segmented_read(ctxt, ctxt->src2.addr.mem,
  4277. &ctxt->src2.val, ctxt->src2.bytes);
  4278. if (rc != X86EMUL_CONTINUE)
  4279. goto done;
  4280. }
  4281. if ((ctxt->d & DstMask) == ImplicitOps)
  4282. goto special_insn;
  4283. if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
  4284. /* optimisation - avoid slow emulated read if Mov */
  4285. rc = segmented_read(ctxt, ctxt->dst.addr.mem,
  4286. &ctxt->dst.val, ctxt->dst.bytes);
  4287. if (rc != X86EMUL_CONTINUE) {
  4288. if (!(ctxt->d & NoWrite) &&
  4289. rc == X86EMUL_PROPAGATE_FAULT &&
  4290. ctxt->exception.vector == PF_VECTOR)
  4291. ctxt->exception.error_code |= PFERR_WRITE_MASK;
  4292. goto done;
  4293. }
  4294. }
  4295. ctxt->dst.orig_val = ctxt->dst.val;
  4296. special_insn:
  4297. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4298. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4299. X86_ICPT_POST_MEMACCESS);
  4300. if (rc != X86EMUL_CONTINUE)
  4301. goto done;
  4302. }
  4303. if (ctxt->rep_prefix && (ctxt->d & String))
  4304. ctxt->eflags |= EFLG_RF;
  4305. else
  4306. ctxt->eflags &= ~EFLG_RF;
  4307. if (ctxt->execute) {
  4308. if (ctxt->d & Fastop) {
  4309. void (*fop)(struct fastop *) = (void *)ctxt->execute;
  4310. rc = fastop(ctxt, fop);
  4311. if (rc != X86EMUL_CONTINUE)
  4312. goto done;
  4313. goto writeback;
  4314. }
  4315. rc = ctxt->execute(ctxt);
  4316. if (rc != X86EMUL_CONTINUE)
  4317. goto done;
  4318. goto writeback;
  4319. }
  4320. if (ctxt->opcode_len == 2)
  4321. goto twobyte_insn;
  4322. else if (ctxt->opcode_len == 3)
  4323. goto threebyte_insn;
  4324. switch (ctxt->b) {
  4325. case 0x70 ... 0x7f: /* jcc (short) */
  4326. if (test_cc(ctxt->b, ctxt->eflags))
  4327. rc = jmp_rel(ctxt, ctxt->src.val);
  4328. break;
  4329. case 0x8d: /* lea r16/r32, m */
  4330. ctxt->dst.val = ctxt->src.addr.mem.ea;
  4331. break;
  4332. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  4333. if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
  4334. ctxt->dst.type = OP_NONE;
  4335. else
  4336. rc = em_xchg(ctxt);
  4337. break;
  4338. case 0x98: /* cbw/cwde/cdqe */
  4339. switch (ctxt->op_bytes) {
  4340. case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
  4341. case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
  4342. case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
  4343. }
  4344. break;
  4345. case 0xcc: /* int3 */
  4346. rc = emulate_int(ctxt, 3);
  4347. break;
  4348. case 0xcd: /* int n */
  4349. rc = emulate_int(ctxt, ctxt->src.val);
  4350. break;
  4351. case 0xce: /* into */
  4352. if (ctxt->eflags & EFLG_OF)
  4353. rc = emulate_int(ctxt, 4);
  4354. break;
  4355. case 0xe9: /* jmp rel */
  4356. case 0xeb: /* jmp rel short */
  4357. rc = jmp_rel(ctxt, ctxt->src.val);
  4358. ctxt->dst.type = OP_NONE; /* Disable writeback. */
  4359. break;
  4360. case 0xf4: /* hlt */
  4361. ctxt->ops->halt(ctxt);
  4362. break;
  4363. case 0xf5: /* cmc */
  4364. /* complement carry flag from eflags reg */
  4365. ctxt->eflags ^= EFLG_CF;
  4366. break;
  4367. case 0xf8: /* clc */
  4368. ctxt->eflags &= ~EFLG_CF;
  4369. break;
  4370. case 0xf9: /* stc */
  4371. ctxt->eflags |= EFLG_CF;
  4372. break;
  4373. case 0xfc: /* cld */
  4374. ctxt->eflags &= ~EFLG_DF;
  4375. break;
  4376. case 0xfd: /* std */
  4377. ctxt->eflags |= EFLG_DF;
  4378. break;
  4379. default:
  4380. goto cannot_emulate;
  4381. }
  4382. if (rc != X86EMUL_CONTINUE)
  4383. goto done;
  4384. writeback:
  4385. if (ctxt->d & SrcWrite) {
  4386. BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
  4387. rc = writeback(ctxt, &ctxt->src);
  4388. if (rc != X86EMUL_CONTINUE)
  4389. goto done;
  4390. }
  4391. if (!(ctxt->d & NoWrite)) {
  4392. rc = writeback(ctxt, &ctxt->dst);
  4393. if (rc != X86EMUL_CONTINUE)
  4394. goto done;
  4395. }
  4396. /*
  4397. * restore dst type in case the decoding will be reused
  4398. * (happens for string instruction )
  4399. */
  4400. ctxt->dst.type = saved_dst_type;
  4401. if ((ctxt->d & SrcMask) == SrcSI)
  4402. string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
  4403. if ((ctxt->d & DstMask) == DstDI)
  4404. string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
  4405. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4406. unsigned int count;
  4407. struct read_cache *r = &ctxt->io_read;
  4408. if ((ctxt->d & SrcMask) == SrcSI)
  4409. count = ctxt->src.count;
  4410. else
  4411. count = ctxt->dst.count;
  4412. register_address_increment(ctxt, VCPU_REGS_RCX, -count);
  4413. if (!string_insn_completed(ctxt)) {
  4414. /*
  4415. * Re-enter guest when pio read ahead buffer is empty
  4416. * or, if it is not used, after each 1024 iteration.
  4417. */
  4418. if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
  4419. (r->end == 0 || r->end != r->pos)) {
  4420. /*
  4421. * Reset read cache. Usually happens before
  4422. * decode, but since instruction is restarted
  4423. * we have to do it here.
  4424. */
  4425. ctxt->mem_read.end = 0;
  4426. writeback_registers(ctxt);
  4427. return EMULATION_RESTART;
  4428. }
  4429. goto done; /* skip rip writeback */
  4430. }
  4431. ctxt->eflags &= ~EFLG_RF;
  4432. }
  4433. ctxt->eip = ctxt->_eip;
  4434. done:
  4435. if (rc == X86EMUL_PROPAGATE_FAULT) {
  4436. WARN_ON(ctxt->exception.vector > 0x1f);
  4437. ctxt->have_exception = true;
  4438. }
  4439. if (rc == X86EMUL_INTERCEPTED)
  4440. return EMULATION_INTERCEPTED;
  4441. if (rc == X86EMUL_CONTINUE)
  4442. writeback_registers(ctxt);
  4443. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  4444. twobyte_insn:
  4445. switch (ctxt->b) {
  4446. case 0x09: /* wbinvd */
  4447. (ctxt->ops->wbinvd)(ctxt);
  4448. break;
  4449. case 0x08: /* invd */
  4450. case 0x0d: /* GrpP (prefetch) */
  4451. case 0x18: /* Grp16 (prefetch/nop) */
  4452. case 0x1f: /* nop */
  4453. break;
  4454. case 0x20: /* mov cr, reg */
  4455. ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
  4456. break;
  4457. case 0x21: /* mov from dr to reg */
  4458. ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
  4459. break;
  4460. case 0x40 ... 0x4f: /* cmov */
  4461. if (test_cc(ctxt->b, ctxt->eflags))
  4462. ctxt->dst.val = ctxt->src.val;
  4463. else if (ctxt->mode != X86EMUL_MODE_PROT64 ||
  4464. ctxt->op_bytes != 4)
  4465. ctxt->dst.type = OP_NONE; /* no writeback */
  4466. break;
  4467. case 0x80 ... 0x8f: /* jnz rel, etc*/
  4468. if (test_cc(ctxt->b, ctxt->eflags))
  4469. rc = jmp_rel(ctxt, ctxt->src.val);
  4470. break;
  4471. case 0x90 ... 0x9f: /* setcc r/m8 */
  4472. ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
  4473. break;
  4474. case 0xb6 ... 0xb7: /* movzx */
  4475. ctxt->dst.bytes = ctxt->op_bytes;
  4476. ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
  4477. : (u16) ctxt->src.val;
  4478. break;
  4479. case 0xbe ... 0xbf: /* movsx */
  4480. ctxt->dst.bytes = ctxt->op_bytes;
  4481. ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
  4482. (s16) ctxt->src.val;
  4483. break;
  4484. default:
  4485. goto cannot_emulate;
  4486. }
  4487. threebyte_insn:
  4488. if (rc != X86EMUL_CONTINUE)
  4489. goto done;
  4490. goto writeback;
  4491. cannot_emulate:
  4492. return EMULATION_FAILED;
  4493. }
  4494. void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
  4495. {
  4496. invalidate_registers(ctxt);
  4497. }
  4498. void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
  4499. {
  4500. writeback_registers(ctxt);
  4501. }