fsl_ddr_edac.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * Freescale Memory Controller kernel module
  3. *
  4. * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
  5. * ARM-based Layerscape SoCs including LS2xxx. Originally split
  6. * out from mpc85xx_edac EDAC driver.
  7. *
  8. * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
  9. *
  10. * Author: Dave Jiang <djiang@mvista.com>
  11. *
  12. * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
  13. * the terms of the GNU General Public License version 2. This program
  14. * is licensed "as is" without any warranty of any kind, whether express
  15. * or implied.
  16. *
  17. */
  18. #include <linux/module.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/ctype.h>
  22. #include <linux/io.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/edac.h>
  25. #include <linux/smp.h>
  26. #include <linux/gfp.h>
  27. #include <linux/of_platform.h>
  28. #include <linux/of_device.h>
  29. #include "edac_module.h"
  30. #include "edac_core.h"
  31. #include "fsl_ddr_edac.h"
  32. #define EDAC_MOD_STR "fsl_ddr_edac"
  33. static int edac_mc_idx;
  34. static u32 orig_ddr_err_disable;
  35. static u32 orig_ddr_err_sbe;
  36. /************************ MC SYSFS parts ***********************************/
  37. #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
  38. static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
  39. struct device_attribute *mattr,
  40. char *data)
  41. {
  42. struct mem_ctl_info *mci = to_mci(dev);
  43. struct fsl_mc_pdata *pdata = mci->pvt_info;
  44. return sprintf(data, "0x%08x",
  45. in_be32(pdata->mc_vbase +
  46. FSL_MC_DATA_ERR_INJECT_HI));
  47. }
  48. static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
  49. struct device_attribute *mattr,
  50. char *data)
  51. {
  52. struct mem_ctl_info *mci = to_mci(dev);
  53. struct fsl_mc_pdata *pdata = mci->pvt_info;
  54. return sprintf(data, "0x%08x",
  55. in_be32(pdata->mc_vbase +
  56. FSL_MC_DATA_ERR_INJECT_LO));
  57. }
  58. static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
  59. struct device_attribute *mattr,
  60. char *data)
  61. {
  62. struct mem_ctl_info *mci = to_mci(dev);
  63. struct fsl_mc_pdata *pdata = mci->pvt_info;
  64. return sprintf(data, "0x%08x",
  65. in_be32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
  66. }
  67. static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
  68. struct device_attribute *mattr,
  69. const char *data, size_t count)
  70. {
  71. struct mem_ctl_info *mci = to_mci(dev);
  72. struct fsl_mc_pdata *pdata = mci->pvt_info;
  73. if (isdigit(*data)) {
  74. out_be32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI,
  75. simple_strtoul(data, NULL, 0));
  76. return count;
  77. }
  78. return 0;
  79. }
  80. static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
  81. struct device_attribute *mattr,
  82. const char *data, size_t count)
  83. {
  84. struct mem_ctl_info *mci = to_mci(dev);
  85. struct fsl_mc_pdata *pdata = mci->pvt_info;
  86. if (isdigit(*data)) {
  87. out_be32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO,
  88. simple_strtoul(data, NULL, 0));
  89. return count;
  90. }
  91. return 0;
  92. }
  93. static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
  94. struct device_attribute *mattr,
  95. const char *data, size_t count)
  96. {
  97. struct mem_ctl_info *mci = to_mci(dev);
  98. struct fsl_mc_pdata *pdata = mci->pvt_info;
  99. if (isdigit(*data)) {
  100. out_be32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT,
  101. simple_strtoul(data, NULL, 0));
  102. return count;
  103. }
  104. return 0;
  105. }
  106. DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
  107. fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
  108. DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
  109. fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
  110. DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
  111. fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
  112. static struct attribute *fsl_ddr_dev_attrs[] = {
  113. &dev_attr_inject_data_hi.attr,
  114. &dev_attr_inject_data_lo.attr,
  115. &dev_attr_inject_ctrl.attr,
  116. NULL
  117. };
  118. ATTRIBUTE_GROUPS(fsl_ddr_dev);
  119. /**************************** MC Err device ***************************/
  120. /*
  121. * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
  122. * MPC8572 User's Manual. Each line represents a syndrome bit column as a
  123. * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
  124. * below correspond to Freescale's manuals.
  125. */
  126. static unsigned int ecc_table[16] = {
  127. /* MSB LSB */
  128. /* [0:31] [32:63] */
  129. 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
  130. 0x00ff00ff, 0x00fff0ff,
  131. 0x0f0f0f0f, 0x0f0fff00,
  132. 0x11113333, 0x7777000f,
  133. 0x22224444, 0x8888222f,
  134. 0x44448888, 0xffff4441,
  135. 0x8888ffff, 0x11118882,
  136. 0xffff1111, 0x22221114, /* Syndrome bit 0 */
  137. };
  138. /*
  139. * Calculate the correct ECC value for a 64-bit value specified by high:low
  140. */
  141. static u8 calculate_ecc(u32 high, u32 low)
  142. {
  143. u32 mask_low;
  144. u32 mask_high;
  145. int bit_cnt;
  146. u8 ecc = 0;
  147. int i;
  148. int j;
  149. for (i = 0; i < 8; i++) {
  150. mask_high = ecc_table[i * 2];
  151. mask_low = ecc_table[i * 2 + 1];
  152. bit_cnt = 0;
  153. for (j = 0; j < 32; j++) {
  154. if ((mask_high >> j) & 1)
  155. bit_cnt ^= (high >> j) & 1;
  156. if ((mask_low >> j) & 1)
  157. bit_cnt ^= (low >> j) & 1;
  158. }
  159. ecc |= bit_cnt << i;
  160. }
  161. return ecc;
  162. }
  163. /*
  164. * Create the syndrome code which is generated if the data line specified by
  165. * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
  166. * User's Manual and 9-61 in the MPC8572 User's Manual.
  167. */
  168. static u8 syndrome_from_bit(unsigned int bit) {
  169. int i;
  170. u8 syndrome = 0;
  171. /*
  172. * Cycle through the upper or lower 32-bit portion of each value in
  173. * ecc_table depending on if 'bit' is in the upper or lower half of
  174. * 64-bit data.
  175. */
  176. for (i = bit < 32; i < 16; i += 2)
  177. syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
  178. return syndrome;
  179. }
  180. /*
  181. * Decode data and ecc syndrome to determine what went wrong
  182. * Note: This can only decode single-bit errors
  183. */
  184. static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
  185. int *bad_data_bit, int *bad_ecc_bit)
  186. {
  187. int i;
  188. u8 syndrome;
  189. *bad_data_bit = -1;
  190. *bad_ecc_bit = -1;
  191. /*
  192. * Calculate the ECC of the captured data and XOR it with the captured
  193. * ECC to find an ECC syndrome value we can search for
  194. */
  195. syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
  196. /* Check if a data line is stuck... */
  197. for (i = 0; i < 64; i++) {
  198. if (syndrome == syndrome_from_bit(i)) {
  199. *bad_data_bit = i;
  200. return;
  201. }
  202. }
  203. /* If data is correct, check ECC bits for errors... */
  204. for (i = 0; i < 8; i++) {
  205. if ((syndrome >> i) & 0x1) {
  206. *bad_ecc_bit = i;
  207. return;
  208. }
  209. }
  210. }
  211. #define make64(high, low) (((u64)(high) << 32) | (low))
  212. static void fsl_mc_check(struct mem_ctl_info *mci)
  213. {
  214. struct fsl_mc_pdata *pdata = mci->pvt_info;
  215. struct csrow_info *csrow;
  216. u32 bus_width;
  217. u32 err_detect;
  218. u32 syndrome;
  219. u64 err_addr;
  220. u32 pfn;
  221. int row_index;
  222. u32 cap_high;
  223. u32 cap_low;
  224. int bad_data_bit;
  225. int bad_ecc_bit;
  226. err_detect = in_be32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  227. if (!err_detect)
  228. return;
  229. fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
  230. err_detect);
  231. /* no more processing if not ECC bit errors */
  232. if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
  233. out_be32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  234. return;
  235. }
  236. syndrome = in_be32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
  237. /* Mask off appropriate bits of syndrome based on bus width */
  238. bus_width = (in_be32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
  239. DSC_DBW_MASK) ? 32 : 64;
  240. if (bus_width == 64)
  241. syndrome &= 0xff;
  242. else
  243. syndrome &= 0xffff;
  244. err_addr = make64(
  245. in_be32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
  246. in_be32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
  247. pfn = err_addr >> PAGE_SHIFT;
  248. for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
  249. csrow = mci->csrows[row_index];
  250. if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
  251. break;
  252. }
  253. cap_high = in_be32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
  254. cap_low = in_be32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
  255. /*
  256. * Analyze single-bit errors on 64-bit wide buses
  257. * TODO: Add support for 32-bit wide buses
  258. */
  259. if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
  260. sbe_ecc_decode(cap_high, cap_low, syndrome,
  261. &bad_data_bit, &bad_ecc_bit);
  262. if (bad_data_bit != -1)
  263. fsl_mc_printk(mci, KERN_ERR,
  264. "Faulty Data bit: %d\n", bad_data_bit);
  265. if (bad_ecc_bit != -1)
  266. fsl_mc_printk(mci, KERN_ERR,
  267. "Faulty ECC bit: %d\n", bad_ecc_bit);
  268. fsl_mc_printk(mci, KERN_ERR,
  269. "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  270. cap_high ^ (1 << (bad_data_bit - 32)),
  271. cap_low ^ (1 << bad_data_bit),
  272. syndrome ^ (1 << bad_ecc_bit));
  273. }
  274. fsl_mc_printk(mci, KERN_ERR,
  275. "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
  276. cap_high, cap_low, syndrome);
  277. fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
  278. fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
  279. /* we are out of range */
  280. if (row_index == mci->nr_csrows)
  281. fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
  282. if (err_detect & DDR_EDE_SBE)
  283. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
  284. pfn, err_addr & ~PAGE_MASK, syndrome,
  285. row_index, 0, -1,
  286. mci->ctl_name, "");
  287. if (err_detect & DDR_EDE_MBE)
  288. edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
  289. pfn, err_addr & ~PAGE_MASK, syndrome,
  290. row_index, 0, -1,
  291. mci->ctl_name, "");
  292. out_be32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
  293. }
  294. static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
  295. {
  296. struct mem_ctl_info *mci = dev_id;
  297. struct fsl_mc_pdata *pdata = mci->pvt_info;
  298. u32 err_detect;
  299. err_detect = in_be32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
  300. if (!err_detect)
  301. return IRQ_NONE;
  302. fsl_mc_check(mci);
  303. return IRQ_HANDLED;
  304. }
  305. static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
  306. {
  307. struct fsl_mc_pdata *pdata = mci->pvt_info;
  308. struct csrow_info *csrow;
  309. struct dimm_info *dimm;
  310. u32 sdram_ctl;
  311. u32 sdtype;
  312. enum mem_type mtype;
  313. u32 cs_bnds;
  314. int index;
  315. sdram_ctl = in_be32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  316. sdtype = sdram_ctl & DSC_SDTYPE_MASK;
  317. if (sdram_ctl & DSC_RD_EN) {
  318. switch (sdtype) {
  319. case DSC_SDTYPE_DDR:
  320. mtype = MEM_RDDR;
  321. break;
  322. case DSC_SDTYPE_DDR2:
  323. mtype = MEM_RDDR2;
  324. break;
  325. case DSC_SDTYPE_DDR3:
  326. mtype = MEM_RDDR3;
  327. break;
  328. default:
  329. mtype = MEM_UNKNOWN;
  330. break;
  331. }
  332. } else {
  333. switch (sdtype) {
  334. case DSC_SDTYPE_DDR:
  335. mtype = MEM_DDR;
  336. break;
  337. case DSC_SDTYPE_DDR2:
  338. mtype = MEM_DDR2;
  339. break;
  340. case DSC_SDTYPE_DDR3:
  341. mtype = MEM_DDR3;
  342. break;
  343. default:
  344. mtype = MEM_UNKNOWN;
  345. break;
  346. }
  347. }
  348. for (index = 0; index < mci->nr_csrows; index++) {
  349. u32 start;
  350. u32 end;
  351. csrow = mci->csrows[index];
  352. dimm = csrow->channels[0]->dimm;
  353. cs_bnds = in_be32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
  354. (index * FSL_MC_CS_BNDS_OFS));
  355. start = (cs_bnds & 0xffff0000) >> 16;
  356. end = (cs_bnds & 0x0000ffff);
  357. if (start == end)
  358. continue; /* not populated */
  359. start <<= (24 - PAGE_SHIFT);
  360. end <<= (24 - PAGE_SHIFT);
  361. end |= (1 << (24 - PAGE_SHIFT)) - 1;
  362. csrow->first_page = start;
  363. csrow->last_page = end;
  364. dimm->nr_pages = end + 1 - start;
  365. dimm->grain = 8;
  366. dimm->mtype = mtype;
  367. dimm->dtype = DEV_UNKNOWN;
  368. if (sdram_ctl & DSC_X32_EN)
  369. dimm->dtype = DEV_X32;
  370. dimm->edac_mode = EDAC_SECDED;
  371. }
  372. }
  373. int fsl_mc_err_probe(struct platform_device *op)
  374. {
  375. struct mem_ctl_info *mci;
  376. struct edac_mc_layer layers[2];
  377. struct fsl_mc_pdata *pdata;
  378. struct resource r;
  379. u32 sdram_ctl;
  380. int res;
  381. if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
  382. return -ENOMEM;
  383. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  384. layers[0].size = 4;
  385. layers[0].is_virt_csrow = true;
  386. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  387. layers[1].size = 1;
  388. layers[1].is_virt_csrow = false;
  389. mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
  390. sizeof(*pdata));
  391. if (!mci) {
  392. devres_release_group(&op->dev, fsl_mc_err_probe);
  393. return -ENOMEM;
  394. }
  395. pdata = mci->pvt_info;
  396. pdata->name = "fsl_mc_err";
  397. pdata->irq = NO_IRQ;
  398. mci->pdev = &op->dev;
  399. pdata->edac_idx = edac_mc_idx++;
  400. dev_set_drvdata(mci->pdev, mci);
  401. mci->ctl_name = pdata->name;
  402. mci->dev_name = pdata->name;
  403. res = of_address_to_resource(op->dev.of_node, 0, &r);
  404. if (res) {
  405. pr_err("%s: Unable to get resource for MC err regs\n",
  406. __func__);
  407. goto err;
  408. }
  409. if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
  410. pdata->name)) {
  411. pr_err("%s: Error while requesting mem region\n",
  412. __func__);
  413. res = -EBUSY;
  414. goto err;
  415. }
  416. pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
  417. if (!pdata->mc_vbase) {
  418. pr_err("%s: Unable to setup MC err regs\n", __func__);
  419. res = -ENOMEM;
  420. goto err;
  421. }
  422. sdram_ctl = in_be32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
  423. if (!(sdram_ctl & DSC_ECC_EN)) {
  424. /* no ECC */
  425. pr_warn("%s: No ECC DIMMs discovered\n", __func__);
  426. res = -ENODEV;
  427. goto err;
  428. }
  429. edac_dbg(3, "init mci\n");
  430. mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_RDDR2 |
  431. MEM_FLAG_DDR | MEM_FLAG_DDR2;
  432. mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
  433. mci->edac_cap = EDAC_FLAG_SECDED;
  434. mci->mod_name = EDAC_MOD_STR;
  435. if (edac_op_state == EDAC_OPSTATE_POLL)
  436. mci->edac_check = fsl_mc_check;
  437. mci->ctl_page_to_phys = NULL;
  438. mci->scrub_mode = SCRUB_SW_SRC;
  439. fsl_ddr_init_csrows(mci);
  440. /* store the original error disable bits */
  441. orig_ddr_err_disable =
  442. in_be32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
  443. out_be32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
  444. /* clear all error bits */
  445. out_be32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
  446. if (edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups)) {
  447. edac_dbg(3, "failed edac_mc_add_mc()\n");
  448. goto err;
  449. }
  450. if (edac_op_state == EDAC_OPSTATE_INT) {
  451. out_be32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
  452. DDR_EIE_MBEE | DDR_EIE_SBEE);
  453. /* store the original error management threshold */
  454. orig_ddr_err_sbe = in_be32(pdata->mc_vbase +
  455. FSL_MC_ERR_SBE) & 0xff0000;
  456. /* set threshold to 1 error per interrupt */
  457. out_be32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
  458. /* register interrupts */
  459. pdata->irq = irq_of_parse_and_map(op->dev.of_node, 0);
  460. res = devm_request_irq(&op->dev, pdata->irq,
  461. fsl_mc_isr,
  462. IRQF_SHARED,
  463. "[EDAC] MC err", mci);
  464. if (res < 0) {
  465. pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
  466. __func__, pdata->irq);
  467. irq_dispose_mapping(pdata->irq);
  468. res = -ENODEV;
  469. goto err2;
  470. }
  471. pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
  472. pdata->irq);
  473. }
  474. devres_remove_group(&op->dev, fsl_mc_err_probe);
  475. edac_dbg(3, "success\n");
  476. pr_info(EDAC_MOD_STR " MC err registered\n");
  477. return 0;
  478. err2:
  479. edac_mc_del_mc(&op->dev);
  480. err:
  481. devres_release_group(&op->dev, fsl_mc_err_probe);
  482. edac_mc_free(mci);
  483. return res;
  484. }
  485. int fsl_mc_err_remove(struct platform_device *op)
  486. {
  487. struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
  488. struct fsl_mc_pdata *pdata = mci->pvt_info;
  489. edac_dbg(0, "\n");
  490. if (edac_op_state == EDAC_OPSTATE_INT) {
  491. out_be32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
  492. irq_dispose_mapping(pdata->irq);
  493. }
  494. out_be32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
  495. orig_ddr_err_disable);
  496. out_be32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
  497. edac_mc_del_mc(&op->dev);
  498. edac_mc_free(mci);
  499. return 0;
  500. }