fault.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/sched/task_stack.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/string.h>
  23. #include <linux/types.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/mman.h>
  26. #include <linux/mm.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/highmem.h>
  29. #include <linux/extable.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/kdebug.h>
  32. #include <linux/perf_event.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/context_tracking.h>
  35. #include <linux/hugetlb.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/firmware.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/mmu.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/siginfo.h>
  44. #include <asm/debug.h>
  45. #include "icswx.h"
  46. static inline bool notify_page_fault(struct pt_regs *regs)
  47. {
  48. bool ret = false;
  49. #ifdef CONFIG_KPROBES
  50. /* kprobe_running() needs smp_processor_id() */
  51. if (!user_mode(regs)) {
  52. preempt_disable();
  53. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  54. ret = true;
  55. preempt_enable();
  56. }
  57. #endif /* CONFIG_KPROBES */
  58. if (unlikely(debugger_fault_handler(regs)))
  59. ret = true;
  60. return ret;
  61. }
  62. /*
  63. * Check whether the instruction at regs->nip is a store using
  64. * an update addressing form which will update r1.
  65. */
  66. static int store_updates_sp(struct pt_regs *regs)
  67. {
  68. unsigned int inst;
  69. if (get_user(inst, (unsigned int __user *)regs->nip))
  70. return 0;
  71. /* check for 1 in the rA field */
  72. if (((inst >> 16) & 0x1f) != 1)
  73. return 0;
  74. /* check major opcode */
  75. switch (inst >> 26) {
  76. case 37: /* stwu */
  77. case 39: /* stbu */
  78. case 45: /* sthu */
  79. case 53: /* stfsu */
  80. case 55: /* stfdu */
  81. return 1;
  82. case 62: /* std or stdu */
  83. return (inst & 3) == 1;
  84. case 31:
  85. /* check minor opcode */
  86. switch ((inst >> 1) & 0x3ff) {
  87. case 181: /* stdux */
  88. case 183: /* stwux */
  89. case 247: /* stbux */
  90. case 439: /* sthux */
  91. case 695: /* stfsux */
  92. case 759: /* stfdux */
  93. return 1;
  94. }
  95. }
  96. return 0;
  97. }
  98. /*
  99. * do_page_fault error handling helpers
  100. */
  101. #define MM_FAULT_RETURN 0
  102. #define MM_FAULT_CONTINUE -1
  103. #define MM_FAULT_ERR(sig) (sig)
  104. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  105. unsigned int fault)
  106. {
  107. siginfo_t info;
  108. unsigned int lsb = 0;
  109. if (!user_mode(regs))
  110. return MM_FAULT_ERR(SIGBUS);
  111. current->thread.trap_nr = BUS_ADRERR;
  112. info.si_signo = SIGBUS;
  113. info.si_errno = 0;
  114. info.si_code = BUS_ADRERR;
  115. info.si_addr = (void __user *)address;
  116. #ifdef CONFIG_MEMORY_FAILURE
  117. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  118. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  119. current->comm, current->pid, address);
  120. info.si_code = BUS_MCEERR_AR;
  121. }
  122. if (fault & VM_FAULT_HWPOISON_LARGE)
  123. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  124. if (fault & VM_FAULT_HWPOISON)
  125. lsb = PAGE_SHIFT;
  126. #endif
  127. info.si_addr_lsb = lsb;
  128. force_sig_info(SIGBUS, &info, current);
  129. return MM_FAULT_RETURN;
  130. }
  131. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  132. {
  133. /*
  134. * Pagefault was interrupted by SIGKILL. We have no reason to
  135. * continue the pagefault.
  136. */
  137. if (fatal_signal_pending(current)) {
  138. /* Coming from kernel, we need to deal with uaccess fixups */
  139. if (user_mode(regs))
  140. return MM_FAULT_RETURN;
  141. return MM_FAULT_ERR(SIGKILL);
  142. }
  143. /* No fault: be happy */
  144. if (!(fault & VM_FAULT_ERROR))
  145. return MM_FAULT_CONTINUE;
  146. /* Out of memory */
  147. if (fault & VM_FAULT_OOM) {
  148. /*
  149. * We ran out of memory, or some other thing happened to us that
  150. * made us unable to handle the page fault gracefully.
  151. */
  152. if (!user_mode(regs))
  153. return MM_FAULT_ERR(SIGKILL);
  154. pagefault_out_of_memory();
  155. return MM_FAULT_RETURN;
  156. }
  157. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
  158. return do_sigbus(regs, addr, fault);
  159. /* We don't understand the fault code, this is fatal */
  160. BUG();
  161. return MM_FAULT_CONTINUE;
  162. }
  163. /* Is this a bad kernel fault ? */
  164. static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
  165. unsigned long address)
  166. {
  167. if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
  168. printk_ratelimited(KERN_CRIT "kernel tried to execute"
  169. " exec-protected page (%lx) -"
  170. "exploit attempt? (uid: %d)\n",
  171. address, from_kuid(&init_user_ns,
  172. current_uid()));
  173. }
  174. return is_exec || (address >= TASK_SIZE);
  175. }
  176. /*
  177. * Define the correct "is_write" bit in error_code based
  178. * on the processor family
  179. */
  180. #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  181. #define page_fault_is_write(__err) ((__err) & ESR_DST)
  182. #define page_fault_is_bad(__err) (0)
  183. #else
  184. #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
  185. #if defined(CONFIG_8xx)
  186. #define page_fault_is_bad(__err) ((__err) & 0x10000000)
  187. #elif defined(CONFIG_PPC64)
  188. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
  189. #else
  190. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
  191. #endif
  192. #endif
  193. /*
  194. * For 600- and 800-family processors, the error_code parameter is DSISR
  195. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  196. * the error_code parameter is ESR for a data fault, 0 for an instruction
  197. * fault.
  198. * For 64-bit processors, the error_code parameter is
  199. * - DSISR for a non-SLB data access fault,
  200. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  201. * - 0 any SLB fault.
  202. *
  203. * The return value is 0 if the fault was handled, or the signal
  204. * number if this is a kernel fault that can't be handled here.
  205. */
  206. static int __do_page_fault(struct pt_regs *regs, unsigned long address,
  207. unsigned long error_code)
  208. {
  209. struct vm_area_struct * vma;
  210. struct mm_struct *mm = current->mm;
  211. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  212. int code = SEGV_MAPERR;
  213. int is_exec = TRAP(regs) == 0x400;
  214. int is_user = user_mode(regs);
  215. int is_write = page_fault_is_write(error_code);
  216. int fault;
  217. int rc = 0, store_update_sp = 0;
  218. #ifdef CONFIG_PPC_ICSWX
  219. /*
  220. * we need to do this early because this "data storage
  221. * interrupt" does not update the DAR/DEAR so we don't want to
  222. * look at it
  223. */
  224. if (error_code & ICSWX_DSI_UCT) {
  225. rc = acop_handle_fault(regs, address, error_code);
  226. if (rc)
  227. return rc;
  228. }
  229. #endif /* CONFIG_PPC_ICSWX */
  230. if (notify_page_fault(regs))
  231. return 0;
  232. if (unlikely(page_fault_is_bad(error_code))) {
  233. if (is_user) {
  234. _exception(SIGBUS, regs, BUS_OBJERR, address);
  235. return 0;
  236. }
  237. return SIGBUS;
  238. }
  239. /*
  240. * The kernel should never take an execute fault nor should it
  241. * take a page fault to a kernel address.
  242. */
  243. if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
  244. return SIGSEGV;
  245. /* We restore the interrupt state now */
  246. if (!arch_irq_disabled_regs(regs))
  247. local_irq_enable();
  248. if (faulthandler_disabled() || mm == NULL) {
  249. if (!is_user)
  250. return SIGSEGV;
  251. /* faulthandler_disabled() in user mode is really bad,
  252. as is current->mm == NULL. */
  253. printk(KERN_EMERG "Page fault in user mode with "
  254. "faulthandler_disabled() = %d mm = %p\n",
  255. faulthandler_disabled(), mm);
  256. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  257. regs->nip, regs->msr);
  258. die("Weird page fault", regs, SIGSEGV);
  259. }
  260. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  261. /*
  262. * We want to do this outside mmap_sem, because reading code around nip
  263. * can result in fault, which will cause a deadlock when called with
  264. * mmap_sem held
  265. */
  266. if (is_write && is_user)
  267. store_update_sp = store_updates_sp(regs);
  268. if (is_user)
  269. flags |= FAULT_FLAG_USER;
  270. /* When running in the kernel we expect faults to occur only to
  271. * addresses in user space. All other faults represent errors in the
  272. * kernel and should generate an OOPS. Unfortunately, in the case of an
  273. * erroneous fault occurring in a code path which already holds mmap_sem
  274. * we will deadlock attempting to validate the fault against the
  275. * address space. Luckily the kernel only validly references user
  276. * space from well defined areas of code, which are listed in the
  277. * exceptions table.
  278. *
  279. * As the vast majority of faults will be valid we will only perform
  280. * the source reference check when there is a possibility of a deadlock.
  281. * Attempt to lock the address space, if we cannot we then validate the
  282. * source. If this is invalid we can skip the address space check,
  283. * thus avoiding the deadlock.
  284. */
  285. if (!down_read_trylock(&mm->mmap_sem)) {
  286. if (!is_user && !search_exception_tables(regs->nip))
  287. goto bad_area_nosemaphore;
  288. retry:
  289. down_read(&mm->mmap_sem);
  290. } else {
  291. /*
  292. * The above down_read_trylock() might have succeeded in
  293. * which case we'll have missed the might_sleep() from
  294. * down_read():
  295. */
  296. might_sleep();
  297. }
  298. vma = find_vma(mm, address);
  299. if (!vma)
  300. goto bad_area;
  301. if (vma->vm_start <= address)
  302. goto good_area;
  303. if (!(vma->vm_flags & VM_GROWSDOWN))
  304. goto bad_area;
  305. /*
  306. * N.B. The POWER/Open ABI allows programs to access up to
  307. * 288 bytes below the stack pointer.
  308. * The kernel signal delivery code writes up to about 1.5kB
  309. * below the stack pointer (r1) before decrementing it.
  310. * The exec code can write slightly over 640kB to the stack
  311. * before setting the user r1. Thus we allow the stack to
  312. * expand to 1MB without further checks.
  313. */
  314. if (address + 0x100000 < vma->vm_end) {
  315. /* get user regs even if this fault is in kernel mode */
  316. struct pt_regs *uregs = current->thread.regs;
  317. if (uregs == NULL)
  318. goto bad_area;
  319. /*
  320. * A user-mode access to an address a long way below
  321. * the stack pointer is only valid if the instruction
  322. * is one which would update the stack pointer to the
  323. * address accessed if the instruction completed,
  324. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  325. * (or the byte, halfword, float or double forms).
  326. *
  327. * If we don't check this then any write to the area
  328. * between the last mapped region and the stack will
  329. * expand the stack rather than segfaulting.
  330. */
  331. if (address + 2048 < uregs->gpr[1] && !store_update_sp)
  332. goto bad_area;
  333. }
  334. if (expand_stack(vma, address))
  335. goto bad_area;
  336. good_area:
  337. code = SEGV_ACCERR;
  338. if (is_exec) {
  339. /*
  340. * Allow execution from readable areas if the MMU does not
  341. * provide separate controls over reading and executing.
  342. *
  343. * Note: That code used to not be enabled for 4xx/BookE.
  344. * It is now as I/D cache coherency for these is done at
  345. * set_pte_at() time and I see no reason why the test
  346. * below wouldn't be valid on those processors. This -may-
  347. * break programs compiled with a really old ABI though.
  348. */
  349. if (!(vma->vm_flags & VM_EXEC) &&
  350. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  351. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  352. goto bad_area;
  353. /* a write */
  354. } else if (is_write) {
  355. if (!(vma->vm_flags & VM_WRITE))
  356. goto bad_area;
  357. flags |= FAULT_FLAG_WRITE;
  358. /* a read */
  359. } else {
  360. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  361. goto bad_area;
  362. }
  363. #ifdef CONFIG_PPC_STD_MMU
  364. /*
  365. * For hash translation mode, we should never get a
  366. * PROTFAULT. Any update to pte to reduce access will result in us
  367. * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
  368. * fault instead of DSISR_PROTFAULT.
  369. *
  370. * A pte update to relax the access will not result in a hash page table
  371. * entry invalidate and hence can result in DSISR_PROTFAULT.
  372. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
  373. * the special !is_write in the below conditional.
  374. *
  375. * For platforms that doesn't supports coherent icache and do support
  376. * per page noexec bit, we do setup things such that we do the
  377. * sync between D/I cache via fault. But that is handled via low level
  378. * hash fault code (hash_page_do_lazy_icache()) and we should not reach
  379. * here in such case.
  380. *
  381. * For wrong access that can result in PROTFAULT, the above vma->vm_flags
  382. * check should handle those and hence we should fall to the bad_area
  383. * handling correctly.
  384. *
  385. * For embedded with per page exec support that doesn't support coherent
  386. * icache we do get PROTFAULT and we handle that D/I cache sync in
  387. * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
  388. * is conditional for server MMU.
  389. *
  390. * For radix, we can get prot fault for autonuma case, because radix
  391. * page table will have them marked noaccess for user.
  392. */
  393. if (!radix_enabled() && !is_write)
  394. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  395. #endif /* CONFIG_PPC_STD_MMU */
  396. /*
  397. * If for any reason at all we couldn't handle the fault,
  398. * make sure we exit gracefully rather than endlessly redo
  399. * the fault.
  400. */
  401. fault = handle_mm_fault(vma, address, flags);
  402. /*
  403. * Handle the retry right now, the mmap_sem has been released in that
  404. * case.
  405. */
  406. if (unlikely(fault & VM_FAULT_RETRY)) {
  407. /* We retry only once */
  408. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  409. /*
  410. * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  411. * of starvation.
  412. */
  413. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  414. flags |= FAULT_FLAG_TRIED;
  415. if (!fatal_signal_pending(current))
  416. goto retry;
  417. }
  418. /* We will enter mm_fault_error() below */
  419. } else
  420. up_read(&current->mm->mmap_sem);
  421. if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
  422. if (fault & VM_FAULT_SIGSEGV)
  423. goto bad_area_nosemaphore;
  424. rc = mm_fault_error(regs, address, fault);
  425. if (rc >= MM_FAULT_RETURN)
  426. return rc;
  427. rc = 0;
  428. }
  429. /*
  430. * Major/minor page fault accounting.
  431. */
  432. if (fault & VM_FAULT_MAJOR) {
  433. current->maj_flt++;
  434. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  435. regs, address);
  436. #ifdef CONFIG_PPC_SMLPAR
  437. if (firmware_has_feature(FW_FEATURE_CMO)) {
  438. u32 page_ins;
  439. preempt_disable();
  440. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  441. page_ins += 1 << PAGE_FACTOR;
  442. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  443. preempt_enable();
  444. }
  445. #endif /* CONFIG_PPC_SMLPAR */
  446. } else {
  447. current->min_flt++;
  448. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  449. regs, address);
  450. }
  451. return rc;
  452. bad_area:
  453. up_read(&mm->mmap_sem);
  454. bad_area_nosemaphore:
  455. /* User mode accesses cause a SIGSEGV */
  456. if (is_user) {
  457. _exception(SIGSEGV, regs, code, address);
  458. return 0;
  459. }
  460. return SIGSEGV;
  461. }
  462. NOKPROBE_SYMBOL(__do_page_fault);
  463. int do_page_fault(struct pt_regs *regs, unsigned long address,
  464. unsigned long error_code)
  465. {
  466. enum ctx_state prev_state = exception_enter();
  467. int rc = __do_page_fault(regs, address, error_code);
  468. exception_exit(prev_state);
  469. return rc;
  470. }
  471. NOKPROBE_SYMBOL(do_page_fault);
  472. /*
  473. * bad_page_fault is called when we have a bad access from the kernel.
  474. * It is called from the DSI and ISI handlers in head.S and from some
  475. * of the procedures in traps.c.
  476. */
  477. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  478. {
  479. const struct exception_table_entry *entry;
  480. /* Are we prepared to handle this fault? */
  481. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  482. regs->nip = extable_fixup(entry);
  483. return;
  484. }
  485. /* kernel has accessed a bad area */
  486. switch (regs->trap) {
  487. case 0x300:
  488. case 0x380:
  489. printk(KERN_ALERT "Unable to handle kernel paging request for "
  490. "data at address 0x%08lx\n", regs->dar);
  491. break;
  492. case 0x400:
  493. case 0x480:
  494. printk(KERN_ALERT "Unable to handle kernel paging request for "
  495. "instruction fetch\n");
  496. break;
  497. case 0x600:
  498. printk(KERN_ALERT "Unable to handle kernel paging request for "
  499. "unaligned access at address 0x%08lx\n", regs->dar);
  500. break;
  501. default:
  502. printk(KERN_ALERT "Unable to handle kernel paging request for "
  503. "unknown fault\n");
  504. break;
  505. }
  506. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  507. regs->nip);
  508. if (task_stack_end_corrupted(current))
  509. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  510. die("Kernel access of bad area", regs, sig);
  511. }