node.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. static void clear_node_page_dirty(struct page *page)
  26. {
  27. struct address_space *mapping = page->mapping;
  28. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  29. unsigned int long flags;
  30. if (PageDirty(page)) {
  31. spin_lock_irqsave(&mapping->tree_lock, flags);
  32. radix_tree_tag_clear(&mapping->page_tree,
  33. page_index(page),
  34. PAGECACHE_TAG_DIRTY);
  35. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  36. clear_page_dirty_for_io(page);
  37. dec_page_count(sbi, F2FS_DIRTY_NODES);
  38. }
  39. ClearPageUptodate(page);
  40. }
  41. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  42. {
  43. pgoff_t index = current_nat_addr(sbi, nid);
  44. return get_meta_page(sbi, index);
  45. }
  46. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  47. {
  48. struct page *src_page;
  49. struct page *dst_page;
  50. pgoff_t src_off;
  51. pgoff_t dst_off;
  52. void *src_addr;
  53. void *dst_addr;
  54. struct f2fs_nm_info *nm_i = NM_I(sbi);
  55. src_off = current_nat_addr(sbi, nid);
  56. dst_off = next_nat_addr(sbi, src_off);
  57. /* get current nat block page with lock */
  58. src_page = get_meta_page(sbi, src_off);
  59. /* Dirty src_page means that it is already the new target NAT page. */
  60. if (PageDirty(src_page))
  61. return src_page;
  62. dst_page = grab_meta_page(sbi, dst_off);
  63. src_addr = page_address(src_page);
  64. dst_addr = page_address(dst_page);
  65. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  66. set_page_dirty(dst_page);
  67. f2fs_put_page(src_page, 1);
  68. set_to_next_nat(nm_i, nid);
  69. return dst_page;
  70. }
  71. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  72. {
  73. return radix_tree_lookup(&nm_i->nat_root, n);
  74. }
  75. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  76. nid_t start, unsigned int nr, struct nat_entry **ep)
  77. {
  78. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  79. }
  80. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  81. {
  82. list_del(&e->list);
  83. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  84. nm_i->nat_cnt--;
  85. kmem_cache_free(nat_entry_slab, e);
  86. }
  87. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  88. {
  89. struct f2fs_nm_info *nm_i = NM_I(sbi);
  90. struct nat_entry *e;
  91. int is_cp = 1;
  92. read_lock(&nm_i->nat_tree_lock);
  93. e = __lookup_nat_cache(nm_i, nid);
  94. if (e && !e->checkpointed)
  95. is_cp = 0;
  96. read_unlock(&nm_i->nat_tree_lock);
  97. return is_cp;
  98. }
  99. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  100. {
  101. struct nat_entry *new;
  102. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  103. if (!new)
  104. return NULL;
  105. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  106. kmem_cache_free(nat_entry_slab, new);
  107. return NULL;
  108. }
  109. memset(new, 0, sizeof(struct nat_entry));
  110. nat_set_nid(new, nid);
  111. new->checkpointed = true;
  112. list_add_tail(&new->list, &nm_i->nat_entries);
  113. nm_i->nat_cnt++;
  114. return new;
  115. }
  116. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  117. struct f2fs_nat_entry *ne)
  118. {
  119. struct nat_entry *e;
  120. retry:
  121. write_lock(&nm_i->nat_tree_lock);
  122. e = __lookup_nat_cache(nm_i, nid);
  123. if (!e) {
  124. e = grab_nat_entry(nm_i, nid);
  125. if (!e) {
  126. write_unlock(&nm_i->nat_tree_lock);
  127. goto retry;
  128. }
  129. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  130. nat_set_ino(e, le32_to_cpu(ne->ino));
  131. nat_set_version(e, ne->version);
  132. }
  133. write_unlock(&nm_i->nat_tree_lock);
  134. }
  135. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  136. block_t new_blkaddr)
  137. {
  138. struct f2fs_nm_info *nm_i = NM_I(sbi);
  139. struct nat_entry *e;
  140. retry:
  141. write_lock(&nm_i->nat_tree_lock);
  142. e = __lookup_nat_cache(nm_i, ni->nid);
  143. if (!e) {
  144. e = grab_nat_entry(nm_i, ni->nid);
  145. if (!e) {
  146. write_unlock(&nm_i->nat_tree_lock);
  147. goto retry;
  148. }
  149. e->ni = *ni;
  150. f2fs_bug_on(ni->blk_addr == NEW_ADDR);
  151. } else if (new_blkaddr == NEW_ADDR) {
  152. /*
  153. * when nid is reallocated,
  154. * previous nat entry can be remained in nat cache.
  155. * So, reinitialize it with new information.
  156. */
  157. e->ni = *ni;
  158. f2fs_bug_on(ni->blk_addr != NULL_ADDR);
  159. }
  160. /* sanity check */
  161. f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
  162. f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
  163. new_blkaddr == NULL_ADDR);
  164. f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
  165. new_blkaddr == NEW_ADDR);
  166. f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
  167. nat_get_blkaddr(e) != NULL_ADDR &&
  168. new_blkaddr == NEW_ADDR);
  169. /* increament version no as node is removed */
  170. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  171. unsigned char version = nat_get_version(e);
  172. nat_set_version(e, inc_node_version(version));
  173. }
  174. /* change address */
  175. nat_set_blkaddr(e, new_blkaddr);
  176. __set_nat_cache_dirty(nm_i, e);
  177. write_unlock(&nm_i->nat_tree_lock);
  178. }
  179. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  180. {
  181. struct f2fs_nm_info *nm_i = NM_I(sbi);
  182. if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
  183. return 0;
  184. write_lock(&nm_i->nat_tree_lock);
  185. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  186. struct nat_entry *ne;
  187. ne = list_first_entry(&nm_i->nat_entries,
  188. struct nat_entry, list);
  189. __del_from_nat_cache(nm_i, ne);
  190. nr_shrink--;
  191. }
  192. write_unlock(&nm_i->nat_tree_lock);
  193. return nr_shrink;
  194. }
  195. /*
  196. * This function returns always success
  197. */
  198. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  199. {
  200. struct f2fs_nm_info *nm_i = NM_I(sbi);
  201. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  202. struct f2fs_summary_block *sum = curseg->sum_blk;
  203. nid_t start_nid = START_NID(nid);
  204. struct f2fs_nat_block *nat_blk;
  205. struct page *page = NULL;
  206. struct f2fs_nat_entry ne;
  207. struct nat_entry *e;
  208. int i;
  209. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  210. ni->nid = nid;
  211. /* Check nat cache */
  212. read_lock(&nm_i->nat_tree_lock);
  213. e = __lookup_nat_cache(nm_i, nid);
  214. if (e) {
  215. ni->ino = nat_get_ino(e);
  216. ni->blk_addr = nat_get_blkaddr(e);
  217. ni->version = nat_get_version(e);
  218. }
  219. read_unlock(&nm_i->nat_tree_lock);
  220. if (e)
  221. return;
  222. /* Check current segment summary */
  223. mutex_lock(&curseg->curseg_mutex);
  224. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  225. if (i >= 0) {
  226. ne = nat_in_journal(sum, i);
  227. node_info_from_raw_nat(ni, &ne);
  228. }
  229. mutex_unlock(&curseg->curseg_mutex);
  230. if (i >= 0)
  231. goto cache;
  232. /* Fill node_info from nat page */
  233. page = get_current_nat_page(sbi, start_nid);
  234. nat_blk = (struct f2fs_nat_block *)page_address(page);
  235. ne = nat_blk->entries[nid - start_nid];
  236. node_info_from_raw_nat(ni, &ne);
  237. f2fs_put_page(page, 1);
  238. cache:
  239. /* cache nat entry */
  240. cache_nat_entry(NM_I(sbi), nid, &ne);
  241. }
  242. /*
  243. * The maximum depth is four.
  244. * Offset[0] will have raw inode offset.
  245. */
  246. static int get_node_path(struct f2fs_inode_info *fi, long block,
  247. int offset[4], unsigned int noffset[4])
  248. {
  249. const long direct_index = ADDRS_PER_INODE(fi);
  250. const long direct_blks = ADDRS_PER_BLOCK;
  251. const long dptrs_per_blk = NIDS_PER_BLOCK;
  252. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  253. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  254. int n = 0;
  255. int level = 0;
  256. noffset[0] = 0;
  257. if (block < direct_index) {
  258. offset[n] = block;
  259. goto got;
  260. }
  261. block -= direct_index;
  262. if (block < direct_blks) {
  263. offset[n++] = NODE_DIR1_BLOCK;
  264. noffset[n] = 1;
  265. offset[n] = block;
  266. level = 1;
  267. goto got;
  268. }
  269. block -= direct_blks;
  270. if (block < direct_blks) {
  271. offset[n++] = NODE_DIR2_BLOCK;
  272. noffset[n] = 2;
  273. offset[n] = block;
  274. level = 1;
  275. goto got;
  276. }
  277. block -= direct_blks;
  278. if (block < indirect_blks) {
  279. offset[n++] = NODE_IND1_BLOCK;
  280. noffset[n] = 3;
  281. offset[n++] = block / direct_blks;
  282. noffset[n] = 4 + offset[n - 1];
  283. offset[n] = block % direct_blks;
  284. level = 2;
  285. goto got;
  286. }
  287. block -= indirect_blks;
  288. if (block < indirect_blks) {
  289. offset[n++] = NODE_IND2_BLOCK;
  290. noffset[n] = 4 + dptrs_per_blk;
  291. offset[n++] = block / direct_blks;
  292. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  293. offset[n] = block % direct_blks;
  294. level = 2;
  295. goto got;
  296. }
  297. block -= indirect_blks;
  298. if (block < dindirect_blks) {
  299. offset[n++] = NODE_DIND_BLOCK;
  300. noffset[n] = 5 + (dptrs_per_blk * 2);
  301. offset[n++] = block / indirect_blks;
  302. noffset[n] = 6 + (dptrs_per_blk * 2) +
  303. offset[n - 1] * (dptrs_per_blk + 1);
  304. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  305. noffset[n] = 7 + (dptrs_per_blk * 2) +
  306. offset[n - 2] * (dptrs_per_blk + 1) +
  307. offset[n - 1];
  308. offset[n] = block % direct_blks;
  309. level = 3;
  310. goto got;
  311. } else {
  312. BUG();
  313. }
  314. got:
  315. return level;
  316. }
  317. /*
  318. * Caller should call f2fs_put_dnode(dn).
  319. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  320. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  321. * In the case of RDONLY_NODE, we don't need to care about mutex.
  322. */
  323. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  324. {
  325. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  326. struct page *npage[4];
  327. struct page *parent;
  328. int offset[4];
  329. unsigned int noffset[4];
  330. nid_t nids[4];
  331. int level, i;
  332. int err = 0;
  333. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  334. nids[0] = dn->inode->i_ino;
  335. npage[0] = dn->inode_page;
  336. if (!npage[0]) {
  337. npage[0] = get_node_page(sbi, nids[0]);
  338. if (IS_ERR(npage[0]))
  339. return PTR_ERR(npage[0]);
  340. }
  341. parent = npage[0];
  342. if (level != 0)
  343. nids[1] = get_nid(parent, offset[0], true);
  344. dn->inode_page = npage[0];
  345. dn->inode_page_locked = true;
  346. /* get indirect or direct nodes */
  347. for (i = 1; i <= level; i++) {
  348. bool done = false;
  349. if (!nids[i] && mode == ALLOC_NODE) {
  350. /* alloc new node */
  351. if (!alloc_nid(sbi, &(nids[i]))) {
  352. err = -ENOSPC;
  353. goto release_pages;
  354. }
  355. dn->nid = nids[i];
  356. npage[i] = new_node_page(dn, noffset[i], NULL);
  357. if (IS_ERR(npage[i])) {
  358. alloc_nid_failed(sbi, nids[i]);
  359. err = PTR_ERR(npage[i]);
  360. goto release_pages;
  361. }
  362. set_nid(parent, offset[i - 1], nids[i], i == 1);
  363. alloc_nid_done(sbi, nids[i]);
  364. done = true;
  365. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  366. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  367. if (IS_ERR(npage[i])) {
  368. err = PTR_ERR(npage[i]);
  369. goto release_pages;
  370. }
  371. done = true;
  372. }
  373. if (i == 1) {
  374. dn->inode_page_locked = false;
  375. unlock_page(parent);
  376. } else {
  377. f2fs_put_page(parent, 1);
  378. }
  379. if (!done) {
  380. npage[i] = get_node_page(sbi, nids[i]);
  381. if (IS_ERR(npage[i])) {
  382. err = PTR_ERR(npage[i]);
  383. f2fs_put_page(npage[0], 0);
  384. goto release_out;
  385. }
  386. }
  387. if (i < level) {
  388. parent = npage[i];
  389. nids[i + 1] = get_nid(parent, offset[i], false);
  390. }
  391. }
  392. dn->nid = nids[level];
  393. dn->ofs_in_node = offset[level];
  394. dn->node_page = npage[level];
  395. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  396. return 0;
  397. release_pages:
  398. f2fs_put_page(parent, 1);
  399. if (i > 1)
  400. f2fs_put_page(npage[0], 0);
  401. release_out:
  402. dn->inode_page = NULL;
  403. dn->node_page = NULL;
  404. return err;
  405. }
  406. static void truncate_node(struct dnode_of_data *dn)
  407. {
  408. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  409. struct node_info ni;
  410. get_node_info(sbi, dn->nid, &ni);
  411. if (dn->inode->i_blocks == 0) {
  412. f2fs_bug_on(ni.blk_addr != NULL_ADDR);
  413. goto invalidate;
  414. }
  415. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  416. /* Deallocate node address */
  417. invalidate_blocks(sbi, ni.blk_addr);
  418. dec_valid_node_count(sbi, dn->inode);
  419. set_node_addr(sbi, &ni, NULL_ADDR);
  420. if (dn->nid == dn->inode->i_ino) {
  421. remove_orphan_inode(sbi, dn->nid);
  422. dec_valid_inode_count(sbi);
  423. } else {
  424. sync_inode_page(dn);
  425. }
  426. invalidate:
  427. clear_node_page_dirty(dn->node_page);
  428. F2FS_SET_SB_DIRT(sbi);
  429. f2fs_put_page(dn->node_page, 1);
  430. invalidate_mapping_pages(NODE_MAPPING(sbi),
  431. dn->node_page->index, dn->node_page->index);
  432. dn->node_page = NULL;
  433. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  434. }
  435. static int truncate_dnode(struct dnode_of_data *dn)
  436. {
  437. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  438. struct page *page;
  439. if (dn->nid == 0)
  440. return 1;
  441. /* get direct node */
  442. page = get_node_page(sbi, dn->nid);
  443. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  444. return 1;
  445. else if (IS_ERR(page))
  446. return PTR_ERR(page);
  447. /* Make dnode_of_data for parameter */
  448. dn->node_page = page;
  449. dn->ofs_in_node = 0;
  450. truncate_data_blocks(dn);
  451. truncate_node(dn);
  452. return 1;
  453. }
  454. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  455. int ofs, int depth)
  456. {
  457. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  458. struct dnode_of_data rdn = *dn;
  459. struct page *page;
  460. struct f2fs_node *rn;
  461. nid_t child_nid;
  462. unsigned int child_nofs;
  463. int freed = 0;
  464. int i, ret;
  465. if (dn->nid == 0)
  466. return NIDS_PER_BLOCK + 1;
  467. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  468. page = get_node_page(sbi, dn->nid);
  469. if (IS_ERR(page)) {
  470. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  471. return PTR_ERR(page);
  472. }
  473. rn = F2FS_NODE(page);
  474. if (depth < 3) {
  475. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  476. child_nid = le32_to_cpu(rn->in.nid[i]);
  477. if (child_nid == 0)
  478. continue;
  479. rdn.nid = child_nid;
  480. ret = truncate_dnode(&rdn);
  481. if (ret < 0)
  482. goto out_err;
  483. set_nid(page, i, 0, false);
  484. }
  485. } else {
  486. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  487. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  488. child_nid = le32_to_cpu(rn->in.nid[i]);
  489. if (child_nid == 0) {
  490. child_nofs += NIDS_PER_BLOCK + 1;
  491. continue;
  492. }
  493. rdn.nid = child_nid;
  494. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  495. if (ret == (NIDS_PER_BLOCK + 1)) {
  496. set_nid(page, i, 0, false);
  497. child_nofs += ret;
  498. } else if (ret < 0 && ret != -ENOENT) {
  499. goto out_err;
  500. }
  501. }
  502. freed = child_nofs;
  503. }
  504. if (!ofs) {
  505. /* remove current indirect node */
  506. dn->node_page = page;
  507. truncate_node(dn);
  508. freed++;
  509. } else {
  510. f2fs_put_page(page, 1);
  511. }
  512. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  513. return freed;
  514. out_err:
  515. f2fs_put_page(page, 1);
  516. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  517. return ret;
  518. }
  519. static int truncate_partial_nodes(struct dnode_of_data *dn,
  520. struct f2fs_inode *ri, int *offset, int depth)
  521. {
  522. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  523. struct page *pages[2];
  524. nid_t nid[3];
  525. nid_t child_nid;
  526. int err = 0;
  527. int i;
  528. int idx = depth - 2;
  529. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  530. if (!nid[0])
  531. return 0;
  532. /* get indirect nodes in the path */
  533. for (i = 0; i < idx + 1; i++) {
  534. /* refernece count'll be increased */
  535. pages[i] = get_node_page(sbi, nid[i]);
  536. if (IS_ERR(pages[i])) {
  537. err = PTR_ERR(pages[i]);
  538. idx = i - 1;
  539. goto fail;
  540. }
  541. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  542. }
  543. /* free direct nodes linked to a partial indirect node */
  544. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  545. child_nid = get_nid(pages[idx], i, false);
  546. if (!child_nid)
  547. continue;
  548. dn->nid = child_nid;
  549. err = truncate_dnode(dn);
  550. if (err < 0)
  551. goto fail;
  552. set_nid(pages[idx], i, 0, false);
  553. }
  554. if (offset[idx + 1] == 0) {
  555. dn->node_page = pages[idx];
  556. dn->nid = nid[idx];
  557. truncate_node(dn);
  558. } else {
  559. f2fs_put_page(pages[idx], 1);
  560. }
  561. offset[idx]++;
  562. offset[idx + 1] = 0;
  563. idx--;
  564. fail:
  565. for (i = idx; i >= 0; i--)
  566. f2fs_put_page(pages[i], 1);
  567. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  568. return err;
  569. }
  570. /*
  571. * All the block addresses of data and nodes should be nullified.
  572. */
  573. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  574. {
  575. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  576. int err = 0, cont = 1;
  577. int level, offset[4], noffset[4];
  578. unsigned int nofs = 0;
  579. struct f2fs_inode *ri;
  580. struct dnode_of_data dn;
  581. struct page *page;
  582. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  583. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  584. restart:
  585. page = get_node_page(sbi, inode->i_ino);
  586. if (IS_ERR(page)) {
  587. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  588. return PTR_ERR(page);
  589. }
  590. set_new_dnode(&dn, inode, page, NULL, 0);
  591. unlock_page(page);
  592. ri = F2FS_INODE(page);
  593. switch (level) {
  594. case 0:
  595. case 1:
  596. nofs = noffset[1];
  597. break;
  598. case 2:
  599. nofs = noffset[1];
  600. if (!offset[level - 1])
  601. goto skip_partial;
  602. err = truncate_partial_nodes(&dn, ri, offset, level);
  603. if (err < 0 && err != -ENOENT)
  604. goto fail;
  605. nofs += 1 + NIDS_PER_BLOCK;
  606. break;
  607. case 3:
  608. nofs = 5 + 2 * NIDS_PER_BLOCK;
  609. if (!offset[level - 1])
  610. goto skip_partial;
  611. err = truncate_partial_nodes(&dn, ri, offset, level);
  612. if (err < 0 && err != -ENOENT)
  613. goto fail;
  614. break;
  615. default:
  616. BUG();
  617. }
  618. skip_partial:
  619. while (cont) {
  620. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  621. switch (offset[0]) {
  622. case NODE_DIR1_BLOCK:
  623. case NODE_DIR2_BLOCK:
  624. err = truncate_dnode(&dn);
  625. break;
  626. case NODE_IND1_BLOCK:
  627. case NODE_IND2_BLOCK:
  628. err = truncate_nodes(&dn, nofs, offset[1], 2);
  629. break;
  630. case NODE_DIND_BLOCK:
  631. err = truncate_nodes(&dn, nofs, offset[1], 3);
  632. cont = 0;
  633. break;
  634. default:
  635. BUG();
  636. }
  637. if (err < 0 && err != -ENOENT)
  638. goto fail;
  639. if (offset[1] == 0 &&
  640. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  641. lock_page(page);
  642. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  643. f2fs_put_page(page, 1);
  644. goto restart;
  645. }
  646. wait_on_page_writeback(page);
  647. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  648. set_page_dirty(page);
  649. unlock_page(page);
  650. }
  651. offset[1] = 0;
  652. offset[0]++;
  653. nofs += err;
  654. }
  655. fail:
  656. f2fs_put_page(page, 0);
  657. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  658. return err > 0 ? 0 : err;
  659. }
  660. int truncate_xattr_node(struct inode *inode, struct page *page)
  661. {
  662. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  663. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  664. struct dnode_of_data dn;
  665. struct page *npage;
  666. if (!nid)
  667. return 0;
  668. npage = get_node_page(sbi, nid);
  669. if (IS_ERR(npage))
  670. return PTR_ERR(npage);
  671. F2FS_I(inode)->i_xattr_nid = 0;
  672. /* need to do checkpoint during fsync */
  673. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  674. set_new_dnode(&dn, inode, page, npage, nid);
  675. if (page)
  676. dn.inode_page_locked = true;
  677. truncate_node(&dn);
  678. return 0;
  679. }
  680. /*
  681. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  682. * f2fs_unlock_op().
  683. */
  684. void remove_inode_page(struct inode *inode)
  685. {
  686. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  687. struct page *page;
  688. nid_t ino = inode->i_ino;
  689. struct dnode_of_data dn;
  690. page = get_node_page(sbi, ino);
  691. if (IS_ERR(page))
  692. return;
  693. if (truncate_xattr_node(inode, page)) {
  694. f2fs_put_page(page, 1);
  695. return;
  696. }
  697. /* 0 is possible, after f2fs_new_inode() is failed */
  698. f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
  699. set_new_dnode(&dn, inode, page, page, ino);
  700. truncate_node(&dn);
  701. }
  702. struct page *new_inode_page(struct inode *inode, const struct qstr *name)
  703. {
  704. struct dnode_of_data dn;
  705. /* allocate inode page for new inode */
  706. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  707. /* caller should f2fs_put_page(page, 1); */
  708. return new_node_page(&dn, 0, NULL);
  709. }
  710. struct page *new_node_page(struct dnode_of_data *dn,
  711. unsigned int ofs, struct page *ipage)
  712. {
  713. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  714. struct node_info old_ni, new_ni;
  715. struct page *page;
  716. int err;
  717. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  718. return ERR_PTR(-EPERM);
  719. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  720. if (!page)
  721. return ERR_PTR(-ENOMEM);
  722. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  723. err = -ENOSPC;
  724. goto fail;
  725. }
  726. get_node_info(sbi, dn->nid, &old_ni);
  727. /* Reinitialize old_ni with new node page */
  728. f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
  729. new_ni = old_ni;
  730. new_ni.ino = dn->inode->i_ino;
  731. set_node_addr(sbi, &new_ni, NEW_ADDR);
  732. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  733. set_cold_node(dn->inode, page);
  734. SetPageUptodate(page);
  735. set_page_dirty(page);
  736. if (f2fs_has_xattr_block(ofs))
  737. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  738. dn->node_page = page;
  739. if (ipage)
  740. update_inode(dn->inode, ipage);
  741. else
  742. sync_inode_page(dn);
  743. if (ofs == 0)
  744. inc_valid_inode_count(sbi);
  745. return page;
  746. fail:
  747. clear_node_page_dirty(page);
  748. f2fs_put_page(page, 1);
  749. return ERR_PTR(err);
  750. }
  751. /*
  752. * Caller should do after getting the following values.
  753. * 0: f2fs_put_page(page, 0)
  754. * LOCKED_PAGE: f2fs_put_page(page, 1)
  755. * error: nothing
  756. */
  757. static int read_node_page(struct page *page, int rw)
  758. {
  759. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  760. struct node_info ni;
  761. get_node_info(sbi, page->index, &ni);
  762. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  763. f2fs_put_page(page, 1);
  764. return -ENOENT;
  765. }
  766. if (PageUptodate(page))
  767. return LOCKED_PAGE;
  768. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  769. }
  770. /*
  771. * Readahead a node page
  772. */
  773. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  774. {
  775. struct page *apage;
  776. int err;
  777. apage = find_get_page(NODE_MAPPING(sbi), nid);
  778. if (apage && PageUptodate(apage)) {
  779. f2fs_put_page(apage, 0);
  780. return;
  781. }
  782. f2fs_put_page(apage, 0);
  783. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  784. if (!apage)
  785. return;
  786. err = read_node_page(apage, READA);
  787. if (err == 0)
  788. f2fs_put_page(apage, 0);
  789. else if (err == LOCKED_PAGE)
  790. f2fs_put_page(apage, 1);
  791. }
  792. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  793. {
  794. struct page *page;
  795. int err;
  796. repeat:
  797. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  798. if (!page)
  799. return ERR_PTR(-ENOMEM);
  800. err = read_node_page(page, READ_SYNC);
  801. if (err < 0)
  802. return ERR_PTR(err);
  803. else if (err == LOCKED_PAGE)
  804. goto got_it;
  805. lock_page(page);
  806. if (unlikely(!PageUptodate(page))) {
  807. f2fs_put_page(page, 1);
  808. return ERR_PTR(-EIO);
  809. }
  810. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  811. f2fs_put_page(page, 1);
  812. goto repeat;
  813. }
  814. got_it:
  815. f2fs_bug_on(nid != nid_of_node(page));
  816. mark_page_accessed(page);
  817. return page;
  818. }
  819. /*
  820. * Return a locked page for the desired node page.
  821. * And, readahead MAX_RA_NODE number of node pages.
  822. */
  823. struct page *get_node_page_ra(struct page *parent, int start)
  824. {
  825. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  826. struct blk_plug plug;
  827. struct page *page;
  828. int err, i, end;
  829. nid_t nid;
  830. /* First, try getting the desired direct node. */
  831. nid = get_nid(parent, start, false);
  832. if (!nid)
  833. return ERR_PTR(-ENOENT);
  834. repeat:
  835. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  836. if (!page)
  837. return ERR_PTR(-ENOMEM);
  838. err = read_node_page(page, READ_SYNC);
  839. if (err < 0)
  840. return ERR_PTR(err);
  841. else if (err == LOCKED_PAGE)
  842. goto page_hit;
  843. blk_start_plug(&plug);
  844. /* Then, try readahead for siblings of the desired node */
  845. end = start + MAX_RA_NODE;
  846. end = min(end, NIDS_PER_BLOCK);
  847. for (i = start + 1; i < end; i++) {
  848. nid = get_nid(parent, i, false);
  849. if (!nid)
  850. continue;
  851. ra_node_page(sbi, nid);
  852. }
  853. blk_finish_plug(&plug);
  854. lock_page(page);
  855. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  856. f2fs_put_page(page, 1);
  857. goto repeat;
  858. }
  859. page_hit:
  860. if (unlikely(!PageUptodate(page))) {
  861. f2fs_put_page(page, 1);
  862. return ERR_PTR(-EIO);
  863. }
  864. mark_page_accessed(page);
  865. return page;
  866. }
  867. void sync_inode_page(struct dnode_of_data *dn)
  868. {
  869. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  870. update_inode(dn->inode, dn->node_page);
  871. } else if (dn->inode_page) {
  872. if (!dn->inode_page_locked)
  873. lock_page(dn->inode_page);
  874. update_inode(dn->inode, dn->inode_page);
  875. if (!dn->inode_page_locked)
  876. unlock_page(dn->inode_page);
  877. } else {
  878. update_inode_page(dn->inode);
  879. }
  880. }
  881. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  882. struct writeback_control *wbc)
  883. {
  884. pgoff_t index, end;
  885. struct pagevec pvec;
  886. int step = ino ? 2 : 0;
  887. int nwritten = 0, wrote = 0;
  888. pagevec_init(&pvec, 0);
  889. next_step:
  890. index = 0;
  891. end = LONG_MAX;
  892. while (index <= end) {
  893. int i, nr_pages;
  894. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  895. PAGECACHE_TAG_DIRTY,
  896. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  897. if (nr_pages == 0)
  898. break;
  899. for (i = 0; i < nr_pages; i++) {
  900. struct page *page = pvec.pages[i];
  901. /*
  902. * flushing sequence with step:
  903. * 0. indirect nodes
  904. * 1. dentry dnodes
  905. * 2. file dnodes
  906. */
  907. if (step == 0 && IS_DNODE(page))
  908. continue;
  909. if (step == 1 && (!IS_DNODE(page) ||
  910. is_cold_node(page)))
  911. continue;
  912. if (step == 2 && (!IS_DNODE(page) ||
  913. !is_cold_node(page)))
  914. continue;
  915. /*
  916. * If an fsync mode,
  917. * we should not skip writing node pages.
  918. */
  919. if (ino && ino_of_node(page) == ino)
  920. lock_page(page);
  921. else if (!trylock_page(page))
  922. continue;
  923. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  924. continue_unlock:
  925. unlock_page(page);
  926. continue;
  927. }
  928. if (ino && ino_of_node(page) != ino)
  929. goto continue_unlock;
  930. if (!PageDirty(page)) {
  931. /* someone wrote it for us */
  932. goto continue_unlock;
  933. }
  934. if (!clear_page_dirty_for_io(page))
  935. goto continue_unlock;
  936. /* called by fsync() */
  937. if (ino && IS_DNODE(page)) {
  938. int mark = !is_checkpointed_node(sbi, ino);
  939. set_fsync_mark(page, 1);
  940. if (IS_INODE(page))
  941. set_dentry_mark(page, mark);
  942. nwritten++;
  943. } else {
  944. set_fsync_mark(page, 0);
  945. set_dentry_mark(page, 0);
  946. }
  947. NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
  948. wrote++;
  949. if (--wbc->nr_to_write == 0)
  950. break;
  951. }
  952. pagevec_release(&pvec);
  953. cond_resched();
  954. if (wbc->nr_to_write == 0) {
  955. step = 2;
  956. break;
  957. }
  958. }
  959. if (step < 2) {
  960. step++;
  961. goto next_step;
  962. }
  963. if (wrote)
  964. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  965. return nwritten;
  966. }
  967. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  968. {
  969. pgoff_t index = 0, end = LONG_MAX;
  970. struct pagevec pvec;
  971. int ret2 = 0, ret = 0;
  972. pagevec_init(&pvec, 0);
  973. while (index <= end) {
  974. int i, nr_pages;
  975. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  976. PAGECACHE_TAG_WRITEBACK,
  977. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  978. if (nr_pages == 0)
  979. break;
  980. for (i = 0; i < nr_pages; i++) {
  981. struct page *page = pvec.pages[i];
  982. /* until radix tree lookup accepts end_index */
  983. if (unlikely(page->index > end))
  984. continue;
  985. if (ino && ino_of_node(page) == ino) {
  986. wait_on_page_writeback(page);
  987. if (TestClearPageError(page))
  988. ret = -EIO;
  989. }
  990. }
  991. pagevec_release(&pvec);
  992. cond_resched();
  993. }
  994. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  995. ret2 = -ENOSPC;
  996. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  997. ret2 = -EIO;
  998. if (!ret)
  999. ret = ret2;
  1000. return ret;
  1001. }
  1002. static int f2fs_write_node_page(struct page *page,
  1003. struct writeback_control *wbc)
  1004. {
  1005. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  1006. nid_t nid;
  1007. block_t new_addr;
  1008. struct node_info ni;
  1009. struct f2fs_io_info fio = {
  1010. .type = NODE,
  1011. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1012. };
  1013. if (unlikely(sbi->por_doing))
  1014. goto redirty_out;
  1015. wait_on_page_writeback(page);
  1016. /* get old block addr of this node page */
  1017. nid = nid_of_node(page);
  1018. f2fs_bug_on(page->index != nid);
  1019. get_node_info(sbi, nid, &ni);
  1020. /* This page is already truncated */
  1021. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1022. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1023. unlock_page(page);
  1024. return 0;
  1025. }
  1026. if (wbc->for_reclaim)
  1027. goto redirty_out;
  1028. mutex_lock(&sbi->node_write);
  1029. set_page_writeback(page);
  1030. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1031. set_node_addr(sbi, &ni, new_addr);
  1032. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1033. mutex_unlock(&sbi->node_write);
  1034. unlock_page(page);
  1035. return 0;
  1036. redirty_out:
  1037. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1038. wbc->pages_skipped++;
  1039. account_page_redirty(page);
  1040. set_page_dirty(page);
  1041. return AOP_WRITEPAGE_ACTIVATE;
  1042. }
  1043. static int f2fs_write_node_pages(struct address_space *mapping,
  1044. struct writeback_control *wbc)
  1045. {
  1046. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1047. long nr_to_write = wbc->nr_to_write;
  1048. /* balancing f2fs's metadata in background */
  1049. f2fs_balance_fs_bg(sbi);
  1050. /* collect a number of dirty node pages and write together */
  1051. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1052. goto skip_write;
  1053. /* if mounting is failed, skip writing node pages */
  1054. wbc->nr_to_write = 3 * max_hw_blocks(sbi);
  1055. wbc->sync_mode = WB_SYNC_NONE;
  1056. sync_node_pages(sbi, 0, wbc);
  1057. wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
  1058. wbc->nr_to_write);
  1059. return 0;
  1060. skip_write:
  1061. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1062. return 0;
  1063. }
  1064. static int f2fs_set_node_page_dirty(struct page *page)
  1065. {
  1066. struct address_space *mapping = page->mapping;
  1067. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1068. trace_f2fs_set_page_dirty(page, NODE);
  1069. SetPageUptodate(page);
  1070. if (!PageDirty(page)) {
  1071. __set_page_dirty_nobuffers(page);
  1072. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1073. SetPagePrivate(page);
  1074. return 1;
  1075. }
  1076. return 0;
  1077. }
  1078. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1079. unsigned int length)
  1080. {
  1081. struct inode *inode = page->mapping->host;
  1082. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1083. if (PageDirty(page))
  1084. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1085. ClearPagePrivate(page);
  1086. }
  1087. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1088. {
  1089. ClearPagePrivate(page);
  1090. return 1;
  1091. }
  1092. /*
  1093. * Structure of the f2fs node operations
  1094. */
  1095. const struct address_space_operations f2fs_node_aops = {
  1096. .writepage = f2fs_write_node_page,
  1097. .writepages = f2fs_write_node_pages,
  1098. .set_page_dirty = f2fs_set_node_page_dirty,
  1099. .invalidatepage = f2fs_invalidate_node_page,
  1100. .releasepage = f2fs_release_node_page,
  1101. };
  1102. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1103. nid_t n)
  1104. {
  1105. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1106. }
  1107. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1108. struct free_nid *i)
  1109. {
  1110. list_del(&i->list);
  1111. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1112. kmem_cache_free(free_nid_slab, i);
  1113. }
  1114. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
  1115. {
  1116. struct free_nid *i;
  1117. struct nat_entry *ne;
  1118. bool allocated = false;
  1119. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1120. return -1;
  1121. /* 0 nid should not be used */
  1122. if (unlikely(nid == 0))
  1123. return 0;
  1124. if (build) {
  1125. /* do not add allocated nids */
  1126. read_lock(&nm_i->nat_tree_lock);
  1127. ne = __lookup_nat_cache(nm_i, nid);
  1128. if (ne &&
  1129. (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
  1130. allocated = true;
  1131. read_unlock(&nm_i->nat_tree_lock);
  1132. if (allocated)
  1133. return 0;
  1134. }
  1135. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1136. i->nid = nid;
  1137. i->state = NID_NEW;
  1138. spin_lock(&nm_i->free_nid_list_lock);
  1139. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1140. spin_unlock(&nm_i->free_nid_list_lock);
  1141. kmem_cache_free(free_nid_slab, i);
  1142. return 0;
  1143. }
  1144. list_add_tail(&i->list, &nm_i->free_nid_list);
  1145. nm_i->fcnt++;
  1146. spin_unlock(&nm_i->free_nid_list_lock);
  1147. return 1;
  1148. }
  1149. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1150. {
  1151. struct free_nid *i;
  1152. spin_lock(&nm_i->free_nid_list_lock);
  1153. i = __lookup_free_nid_list(nm_i, nid);
  1154. if (i && i->state == NID_NEW) {
  1155. __del_from_free_nid_list(nm_i, i);
  1156. nm_i->fcnt--;
  1157. }
  1158. spin_unlock(&nm_i->free_nid_list_lock);
  1159. }
  1160. static void scan_nat_page(struct f2fs_nm_info *nm_i,
  1161. struct page *nat_page, nid_t start_nid)
  1162. {
  1163. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1164. block_t blk_addr;
  1165. int i;
  1166. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1167. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1168. if (unlikely(start_nid >= nm_i->max_nid))
  1169. break;
  1170. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1171. f2fs_bug_on(blk_addr == NEW_ADDR);
  1172. if (blk_addr == NULL_ADDR) {
  1173. if (add_free_nid(nm_i, start_nid, true) < 0)
  1174. break;
  1175. }
  1176. }
  1177. }
  1178. static void build_free_nids(struct f2fs_sb_info *sbi)
  1179. {
  1180. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1181. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1182. struct f2fs_summary_block *sum = curseg->sum_blk;
  1183. int i = 0;
  1184. nid_t nid = nm_i->next_scan_nid;
  1185. /* Enough entries */
  1186. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1187. return;
  1188. /* readahead nat pages to be scanned */
  1189. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1190. while (1) {
  1191. struct page *page = get_current_nat_page(sbi, nid);
  1192. scan_nat_page(nm_i, page, nid);
  1193. f2fs_put_page(page, 1);
  1194. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1195. if (unlikely(nid >= nm_i->max_nid))
  1196. nid = 0;
  1197. if (i++ == FREE_NID_PAGES)
  1198. break;
  1199. }
  1200. /* go to the next free nat pages to find free nids abundantly */
  1201. nm_i->next_scan_nid = nid;
  1202. /* find free nids from current sum_pages */
  1203. mutex_lock(&curseg->curseg_mutex);
  1204. for (i = 0; i < nats_in_cursum(sum); i++) {
  1205. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1206. nid = le32_to_cpu(nid_in_journal(sum, i));
  1207. if (addr == NULL_ADDR)
  1208. add_free_nid(nm_i, nid, true);
  1209. else
  1210. remove_free_nid(nm_i, nid);
  1211. }
  1212. mutex_unlock(&curseg->curseg_mutex);
  1213. }
  1214. /*
  1215. * If this function returns success, caller can obtain a new nid
  1216. * from second parameter of this function.
  1217. * The returned nid could be used ino as well as nid when inode is created.
  1218. */
  1219. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1220. {
  1221. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1222. struct free_nid *i = NULL;
  1223. struct list_head *this;
  1224. retry:
  1225. if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
  1226. return false;
  1227. spin_lock(&nm_i->free_nid_list_lock);
  1228. /* We should not use stale free nids created by build_free_nids */
  1229. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1230. f2fs_bug_on(list_empty(&nm_i->free_nid_list));
  1231. list_for_each(this, &nm_i->free_nid_list) {
  1232. i = list_entry(this, struct free_nid, list);
  1233. if (i->state == NID_NEW)
  1234. break;
  1235. }
  1236. f2fs_bug_on(i->state != NID_NEW);
  1237. *nid = i->nid;
  1238. i->state = NID_ALLOC;
  1239. nm_i->fcnt--;
  1240. spin_unlock(&nm_i->free_nid_list_lock);
  1241. return true;
  1242. }
  1243. spin_unlock(&nm_i->free_nid_list_lock);
  1244. /* Let's scan nat pages and its caches to get free nids */
  1245. mutex_lock(&nm_i->build_lock);
  1246. build_free_nids(sbi);
  1247. mutex_unlock(&nm_i->build_lock);
  1248. goto retry;
  1249. }
  1250. /*
  1251. * alloc_nid() should be called prior to this function.
  1252. */
  1253. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1254. {
  1255. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1256. struct free_nid *i;
  1257. spin_lock(&nm_i->free_nid_list_lock);
  1258. i = __lookup_free_nid_list(nm_i, nid);
  1259. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1260. __del_from_free_nid_list(nm_i, i);
  1261. spin_unlock(&nm_i->free_nid_list_lock);
  1262. }
  1263. /*
  1264. * alloc_nid() should be called prior to this function.
  1265. */
  1266. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1267. {
  1268. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1269. struct free_nid *i;
  1270. if (!nid)
  1271. return;
  1272. spin_lock(&nm_i->free_nid_list_lock);
  1273. i = __lookup_free_nid_list(nm_i, nid);
  1274. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1275. if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
  1276. __del_from_free_nid_list(nm_i, i);
  1277. } else {
  1278. i->state = NID_NEW;
  1279. nm_i->fcnt++;
  1280. }
  1281. spin_unlock(&nm_i->free_nid_list_lock);
  1282. }
  1283. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1284. struct f2fs_summary *sum, struct node_info *ni,
  1285. block_t new_blkaddr)
  1286. {
  1287. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1288. set_node_addr(sbi, ni, new_blkaddr);
  1289. clear_node_page_dirty(page);
  1290. }
  1291. void recover_inline_xattr(struct inode *inode, struct page *page)
  1292. {
  1293. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1294. void *src_addr, *dst_addr;
  1295. size_t inline_size;
  1296. struct page *ipage;
  1297. struct f2fs_inode *ri;
  1298. if (!f2fs_has_inline_xattr(inode))
  1299. return;
  1300. if (!IS_INODE(page))
  1301. return;
  1302. ri = F2FS_INODE(page);
  1303. if (!(ri->i_inline & F2FS_INLINE_XATTR))
  1304. return;
  1305. ipage = get_node_page(sbi, inode->i_ino);
  1306. f2fs_bug_on(IS_ERR(ipage));
  1307. dst_addr = inline_xattr_addr(ipage);
  1308. src_addr = inline_xattr_addr(page);
  1309. inline_size = inline_xattr_size(inode);
  1310. memcpy(dst_addr, src_addr, inline_size);
  1311. update_inode(inode, ipage);
  1312. f2fs_put_page(ipage, 1);
  1313. }
  1314. bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1315. {
  1316. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1317. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1318. nid_t new_xnid = nid_of_node(page);
  1319. struct node_info ni;
  1320. recover_inline_xattr(inode, page);
  1321. if (!f2fs_has_xattr_block(ofs_of_node(page)))
  1322. return false;
  1323. /* 1: invalidate the previous xattr nid */
  1324. if (!prev_xnid)
  1325. goto recover_xnid;
  1326. /* Deallocate node address */
  1327. get_node_info(sbi, prev_xnid, &ni);
  1328. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  1329. invalidate_blocks(sbi, ni.blk_addr);
  1330. dec_valid_node_count(sbi, inode);
  1331. set_node_addr(sbi, &ni, NULL_ADDR);
  1332. recover_xnid:
  1333. /* 2: allocate new xattr nid */
  1334. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1335. f2fs_bug_on(1);
  1336. remove_free_nid(NM_I(sbi), new_xnid);
  1337. get_node_info(sbi, new_xnid, &ni);
  1338. ni.ino = inode->i_ino;
  1339. set_node_addr(sbi, &ni, NEW_ADDR);
  1340. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1341. /* 3: update xattr blkaddr */
  1342. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1343. set_node_addr(sbi, &ni, blkaddr);
  1344. update_inode_page(inode);
  1345. return true;
  1346. }
  1347. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1348. {
  1349. struct f2fs_inode *src, *dst;
  1350. nid_t ino = ino_of_node(page);
  1351. struct node_info old_ni, new_ni;
  1352. struct page *ipage;
  1353. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1354. if (!ipage)
  1355. return -ENOMEM;
  1356. /* Should not use this inode from free nid list */
  1357. remove_free_nid(NM_I(sbi), ino);
  1358. get_node_info(sbi, ino, &old_ni);
  1359. SetPageUptodate(ipage);
  1360. fill_node_footer(ipage, ino, ino, 0, true);
  1361. src = F2FS_INODE(page);
  1362. dst = F2FS_INODE(ipage);
  1363. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1364. dst->i_size = 0;
  1365. dst->i_blocks = cpu_to_le64(1);
  1366. dst->i_links = cpu_to_le32(1);
  1367. dst->i_xattr_nid = 0;
  1368. new_ni = old_ni;
  1369. new_ni.ino = ino;
  1370. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1371. WARN_ON(1);
  1372. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1373. inc_valid_inode_count(sbi);
  1374. f2fs_put_page(ipage, 1);
  1375. return 0;
  1376. }
  1377. /*
  1378. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1379. * these pre-readed pages are linked in pages list.
  1380. */
  1381. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
  1382. int start, int nrpages)
  1383. {
  1384. struct page *page;
  1385. int page_idx = start;
  1386. struct f2fs_io_info fio = {
  1387. .type = META,
  1388. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1389. };
  1390. for (; page_idx < start + nrpages; page_idx++) {
  1391. /* alloc temporal page for read node summary info*/
  1392. page = alloc_page(GFP_F2FS_ZERO);
  1393. if (!page)
  1394. break;
  1395. lock_page(page);
  1396. page->index = page_idx;
  1397. list_add_tail(&page->lru, pages);
  1398. }
  1399. list_for_each_entry(page, pages, lru)
  1400. f2fs_submit_page_mbio(sbi, page, page->index, &fio);
  1401. f2fs_submit_merged_bio(sbi, META, READ);
  1402. return page_idx - start;
  1403. }
  1404. int restore_node_summary(struct f2fs_sb_info *sbi,
  1405. unsigned int segno, struct f2fs_summary_block *sum)
  1406. {
  1407. struct f2fs_node *rn;
  1408. struct f2fs_summary *sum_entry;
  1409. struct page *page, *tmp;
  1410. block_t addr;
  1411. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  1412. int i, last_offset, nrpages, err = 0;
  1413. LIST_HEAD(page_list);
  1414. /* scan the node segment */
  1415. last_offset = sbi->blocks_per_seg;
  1416. addr = START_BLOCK(sbi, segno);
  1417. sum_entry = &sum->entries[0];
  1418. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1419. nrpages = min(last_offset - i, bio_blocks);
  1420. /* read ahead node pages */
  1421. nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
  1422. if (!nrpages)
  1423. return -ENOMEM;
  1424. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  1425. if (err)
  1426. goto skip;
  1427. lock_page(page);
  1428. if (unlikely(!PageUptodate(page))) {
  1429. err = -EIO;
  1430. } else {
  1431. rn = F2FS_NODE(page);
  1432. sum_entry->nid = rn->footer.nid;
  1433. sum_entry->version = 0;
  1434. sum_entry->ofs_in_node = 0;
  1435. sum_entry++;
  1436. }
  1437. unlock_page(page);
  1438. skip:
  1439. list_del(&page->lru);
  1440. __free_pages(page, 0);
  1441. }
  1442. }
  1443. return err;
  1444. }
  1445. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1446. {
  1447. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1448. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1449. struct f2fs_summary_block *sum = curseg->sum_blk;
  1450. int i;
  1451. mutex_lock(&curseg->curseg_mutex);
  1452. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1453. mutex_unlock(&curseg->curseg_mutex);
  1454. return false;
  1455. }
  1456. for (i = 0; i < nats_in_cursum(sum); i++) {
  1457. struct nat_entry *ne;
  1458. struct f2fs_nat_entry raw_ne;
  1459. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1460. raw_ne = nat_in_journal(sum, i);
  1461. retry:
  1462. write_lock(&nm_i->nat_tree_lock);
  1463. ne = __lookup_nat_cache(nm_i, nid);
  1464. if (ne) {
  1465. __set_nat_cache_dirty(nm_i, ne);
  1466. write_unlock(&nm_i->nat_tree_lock);
  1467. continue;
  1468. }
  1469. ne = grab_nat_entry(nm_i, nid);
  1470. if (!ne) {
  1471. write_unlock(&nm_i->nat_tree_lock);
  1472. goto retry;
  1473. }
  1474. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1475. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1476. nat_set_version(ne, raw_ne.version);
  1477. __set_nat_cache_dirty(nm_i, ne);
  1478. write_unlock(&nm_i->nat_tree_lock);
  1479. }
  1480. update_nats_in_cursum(sum, -i);
  1481. mutex_unlock(&curseg->curseg_mutex);
  1482. return true;
  1483. }
  1484. /*
  1485. * This function is called during the checkpointing process.
  1486. */
  1487. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1488. {
  1489. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1490. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1491. struct f2fs_summary_block *sum = curseg->sum_blk;
  1492. struct list_head *cur, *n;
  1493. struct page *page = NULL;
  1494. struct f2fs_nat_block *nat_blk = NULL;
  1495. nid_t start_nid = 0, end_nid = 0;
  1496. bool flushed;
  1497. flushed = flush_nats_in_journal(sbi);
  1498. if (!flushed)
  1499. mutex_lock(&curseg->curseg_mutex);
  1500. /* 1) flush dirty nat caches */
  1501. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1502. struct nat_entry *ne;
  1503. nid_t nid;
  1504. struct f2fs_nat_entry raw_ne;
  1505. int offset = -1;
  1506. block_t new_blkaddr;
  1507. ne = list_entry(cur, struct nat_entry, list);
  1508. nid = nat_get_nid(ne);
  1509. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1510. continue;
  1511. if (flushed)
  1512. goto to_nat_page;
  1513. /* if there is room for nat enries in curseg->sumpage */
  1514. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1515. if (offset >= 0) {
  1516. raw_ne = nat_in_journal(sum, offset);
  1517. goto flush_now;
  1518. }
  1519. to_nat_page:
  1520. if (!page || (start_nid > nid || nid > end_nid)) {
  1521. if (page) {
  1522. f2fs_put_page(page, 1);
  1523. page = NULL;
  1524. }
  1525. start_nid = START_NID(nid);
  1526. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1527. /*
  1528. * get nat block with dirty flag, increased reference
  1529. * count, mapped and lock
  1530. */
  1531. page = get_next_nat_page(sbi, start_nid);
  1532. nat_blk = page_address(page);
  1533. }
  1534. f2fs_bug_on(!nat_blk);
  1535. raw_ne = nat_blk->entries[nid - start_nid];
  1536. flush_now:
  1537. new_blkaddr = nat_get_blkaddr(ne);
  1538. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1539. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1540. raw_ne.version = nat_get_version(ne);
  1541. if (offset < 0) {
  1542. nat_blk->entries[nid - start_nid] = raw_ne;
  1543. } else {
  1544. nat_in_journal(sum, offset) = raw_ne;
  1545. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1546. }
  1547. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1548. add_free_nid(NM_I(sbi), nid, false) <= 0) {
  1549. write_lock(&nm_i->nat_tree_lock);
  1550. __del_from_nat_cache(nm_i, ne);
  1551. write_unlock(&nm_i->nat_tree_lock);
  1552. } else {
  1553. write_lock(&nm_i->nat_tree_lock);
  1554. __clear_nat_cache_dirty(nm_i, ne);
  1555. write_unlock(&nm_i->nat_tree_lock);
  1556. }
  1557. }
  1558. if (!flushed)
  1559. mutex_unlock(&curseg->curseg_mutex);
  1560. f2fs_put_page(page, 1);
  1561. /* 2) shrink nat caches if necessary */
  1562. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1563. }
  1564. static int init_node_manager(struct f2fs_sb_info *sbi)
  1565. {
  1566. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1567. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1568. unsigned char *version_bitmap;
  1569. unsigned int nat_segs, nat_blocks;
  1570. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1571. /* segment_count_nat includes pair segment so divide to 2. */
  1572. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1573. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1574. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1575. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
  1576. nm_i->fcnt = 0;
  1577. nm_i->nat_cnt = 0;
  1578. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1579. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1580. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1581. INIT_LIST_HEAD(&nm_i->nat_entries);
  1582. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1583. mutex_init(&nm_i->build_lock);
  1584. spin_lock_init(&nm_i->free_nid_list_lock);
  1585. rwlock_init(&nm_i->nat_tree_lock);
  1586. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1587. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1588. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1589. if (!version_bitmap)
  1590. return -EFAULT;
  1591. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1592. GFP_KERNEL);
  1593. if (!nm_i->nat_bitmap)
  1594. return -ENOMEM;
  1595. return 0;
  1596. }
  1597. int build_node_manager(struct f2fs_sb_info *sbi)
  1598. {
  1599. int err;
  1600. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1601. if (!sbi->nm_info)
  1602. return -ENOMEM;
  1603. err = init_node_manager(sbi);
  1604. if (err)
  1605. return err;
  1606. build_free_nids(sbi);
  1607. return 0;
  1608. }
  1609. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1610. {
  1611. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1612. struct free_nid *i, *next_i;
  1613. struct nat_entry *natvec[NATVEC_SIZE];
  1614. nid_t nid = 0;
  1615. unsigned int found;
  1616. if (!nm_i)
  1617. return;
  1618. /* destroy free nid list */
  1619. spin_lock(&nm_i->free_nid_list_lock);
  1620. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1621. f2fs_bug_on(i->state == NID_ALLOC);
  1622. __del_from_free_nid_list(nm_i, i);
  1623. nm_i->fcnt--;
  1624. }
  1625. f2fs_bug_on(nm_i->fcnt);
  1626. spin_unlock(&nm_i->free_nid_list_lock);
  1627. /* destroy nat cache */
  1628. write_lock(&nm_i->nat_tree_lock);
  1629. while ((found = __gang_lookup_nat_cache(nm_i,
  1630. nid, NATVEC_SIZE, natvec))) {
  1631. unsigned idx;
  1632. nid = nat_get_nid(natvec[found - 1]) + 1;
  1633. for (idx = 0; idx < found; idx++)
  1634. __del_from_nat_cache(nm_i, natvec[idx]);
  1635. }
  1636. f2fs_bug_on(nm_i->nat_cnt);
  1637. write_unlock(&nm_i->nat_tree_lock);
  1638. kfree(nm_i->nat_bitmap);
  1639. sbi->nm_info = NULL;
  1640. kfree(nm_i);
  1641. }
  1642. int __init create_node_manager_caches(void)
  1643. {
  1644. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1645. sizeof(struct nat_entry));
  1646. if (!nat_entry_slab)
  1647. return -ENOMEM;
  1648. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1649. sizeof(struct free_nid));
  1650. if (!free_nid_slab) {
  1651. kmem_cache_destroy(nat_entry_slab);
  1652. return -ENOMEM;
  1653. }
  1654. return 0;
  1655. }
  1656. void destroy_node_manager_caches(void)
  1657. {
  1658. kmem_cache_destroy(free_nid_slab);
  1659. kmem_cache_destroy(nat_entry_slab);
  1660. }