kvm_main.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <asm/processor.h>
  42. #include <asm/io.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/pgtable.h>
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. DEFINE_SPINLOCK(kvm_lock);
  48. LIST_HEAD(vm_list);
  49. static cpumask_t cpus_hardware_enabled;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. static struct dentry *debugfs_dir;
  54. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  55. unsigned long arg);
  56. static inline int valid_vcpu(int n)
  57. {
  58. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  59. }
  60. /*
  61. * Switches to specified vcpu, until a matching vcpu_put()
  62. */
  63. void vcpu_load(struct kvm_vcpu *vcpu)
  64. {
  65. int cpu;
  66. mutex_lock(&vcpu->mutex);
  67. cpu = get_cpu();
  68. preempt_notifier_register(&vcpu->preempt_notifier);
  69. kvm_arch_vcpu_load(vcpu, cpu);
  70. put_cpu();
  71. }
  72. void vcpu_put(struct kvm_vcpu *vcpu)
  73. {
  74. preempt_disable();
  75. kvm_arch_vcpu_put(vcpu);
  76. preempt_notifier_unregister(&vcpu->preempt_notifier);
  77. preempt_enable();
  78. mutex_unlock(&vcpu->mutex);
  79. }
  80. static void ack_flush(void *_completed)
  81. {
  82. }
  83. void kvm_flush_remote_tlbs(struct kvm *kvm)
  84. {
  85. int i, cpu;
  86. cpumask_t cpus;
  87. struct kvm_vcpu *vcpu;
  88. cpus_clear(cpus);
  89. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  90. vcpu = kvm->vcpus[i];
  91. if (!vcpu)
  92. continue;
  93. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  94. continue;
  95. cpu = vcpu->cpu;
  96. if (cpu != -1 && cpu != raw_smp_processor_id())
  97. cpu_set(cpu, cpus);
  98. }
  99. if (cpus_empty(cpus))
  100. return;
  101. ++kvm->stat.remote_tlb_flush;
  102. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  103. }
  104. void kvm_reload_remote_mmus(struct kvm *kvm)
  105. {
  106. int i, cpu;
  107. cpumask_t cpus;
  108. struct kvm_vcpu *vcpu;
  109. cpus_clear(cpus);
  110. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  111. vcpu = kvm->vcpus[i];
  112. if (!vcpu)
  113. continue;
  114. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  115. continue;
  116. cpu = vcpu->cpu;
  117. if (cpu != -1 && cpu != raw_smp_processor_id())
  118. cpu_set(cpu, cpus);
  119. }
  120. if (cpus_empty(cpus))
  121. return;
  122. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  123. }
  124. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  125. {
  126. struct page *page;
  127. int r;
  128. mutex_init(&vcpu->mutex);
  129. vcpu->cpu = -1;
  130. vcpu->kvm = kvm;
  131. vcpu->vcpu_id = id;
  132. init_waitqueue_head(&vcpu->wq);
  133. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  134. if (!page) {
  135. r = -ENOMEM;
  136. goto fail;
  137. }
  138. vcpu->run = page_address(page);
  139. r = kvm_arch_vcpu_init(vcpu);
  140. if (r < 0)
  141. goto fail_free_run;
  142. return 0;
  143. fail_free_run:
  144. free_page((unsigned long)vcpu->run);
  145. fail:
  146. return r;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  149. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  150. {
  151. kvm_arch_vcpu_uninit(vcpu);
  152. free_page((unsigned long)vcpu->run);
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  155. static struct kvm *kvm_create_vm(void)
  156. {
  157. struct kvm *kvm = kvm_arch_create_vm();
  158. if (IS_ERR(kvm))
  159. goto out;
  160. kvm->mm = current->mm;
  161. atomic_inc(&kvm->mm->mm_count);
  162. spin_lock_init(&kvm->mmu_lock);
  163. kvm_io_bus_init(&kvm->pio_bus);
  164. mutex_init(&kvm->lock);
  165. kvm_io_bus_init(&kvm->mmio_bus);
  166. init_rwsem(&kvm->slots_lock);
  167. atomic_set(&kvm->users_count, 1);
  168. spin_lock(&kvm_lock);
  169. list_add(&kvm->vm_list, &vm_list);
  170. spin_unlock(&kvm_lock);
  171. out:
  172. return kvm;
  173. }
  174. /*
  175. * Free any memory in @free but not in @dont.
  176. */
  177. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  178. struct kvm_memory_slot *dont)
  179. {
  180. if (!dont || free->rmap != dont->rmap)
  181. vfree(free->rmap);
  182. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  183. vfree(free->dirty_bitmap);
  184. if (!dont || free->lpage_info != dont->lpage_info)
  185. vfree(free->lpage_info);
  186. free->npages = 0;
  187. free->dirty_bitmap = NULL;
  188. free->rmap = NULL;
  189. free->lpage_info = NULL;
  190. }
  191. void kvm_free_physmem(struct kvm *kvm)
  192. {
  193. int i;
  194. for (i = 0; i < kvm->nmemslots; ++i)
  195. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  196. }
  197. static void kvm_destroy_vm(struct kvm *kvm)
  198. {
  199. struct mm_struct *mm = kvm->mm;
  200. spin_lock(&kvm_lock);
  201. list_del(&kvm->vm_list);
  202. spin_unlock(&kvm_lock);
  203. kvm_io_bus_destroy(&kvm->pio_bus);
  204. kvm_io_bus_destroy(&kvm->mmio_bus);
  205. kvm_arch_destroy_vm(kvm);
  206. mmdrop(mm);
  207. }
  208. void kvm_get_kvm(struct kvm *kvm)
  209. {
  210. atomic_inc(&kvm->users_count);
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  213. void kvm_put_kvm(struct kvm *kvm)
  214. {
  215. if (atomic_dec_and_test(&kvm->users_count))
  216. kvm_destroy_vm(kvm);
  217. }
  218. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  219. static int kvm_vm_release(struct inode *inode, struct file *filp)
  220. {
  221. struct kvm *kvm = filp->private_data;
  222. kvm_put_kvm(kvm);
  223. return 0;
  224. }
  225. /*
  226. * Allocate some memory and give it an address in the guest physical address
  227. * space.
  228. *
  229. * Discontiguous memory is allowed, mostly for framebuffers.
  230. *
  231. * Must be called holding mmap_sem for write.
  232. */
  233. int __kvm_set_memory_region(struct kvm *kvm,
  234. struct kvm_userspace_memory_region *mem,
  235. int user_alloc)
  236. {
  237. int r;
  238. gfn_t base_gfn;
  239. unsigned long npages;
  240. unsigned long i;
  241. struct kvm_memory_slot *memslot;
  242. struct kvm_memory_slot old, new;
  243. r = -EINVAL;
  244. /* General sanity checks */
  245. if (mem->memory_size & (PAGE_SIZE - 1))
  246. goto out;
  247. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  248. goto out;
  249. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  250. goto out;
  251. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  252. goto out;
  253. memslot = &kvm->memslots[mem->slot];
  254. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  255. npages = mem->memory_size >> PAGE_SHIFT;
  256. if (!npages)
  257. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  258. new = old = *memslot;
  259. new.base_gfn = base_gfn;
  260. new.npages = npages;
  261. new.flags = mem->flags;
  262. /* Disallow changing a memory slot's size. */
  263. r = -EINVAL;
  264. if (npages && old.npages && npages != old.npages)
  265. goto out_free;
  266. /* Check for overlaps */
  267. r = -EEXIST;
  268. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  269. struct kvm_memory_slot *s = &kvm->memslots[i];
  270. if (s == memslot)
  271. continue;
  272. if (!((base_gfn + npages <= s->base_gfn) ||
  273. (base_gfn >= s->base_gfn + s->npages)))
  274. goto out_free;
  275. }
  276. /* Free page dirty bitmap if unneeded */
  277. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  278. new.dirty_bitmap = NULL;
  279. r = -ENOMEM;
  280. /* Allocate if a slot is being created */
  281. if (npages && !new.rmap) {
  282. new.rmap = vmalloc(npages * sizeof(struct page *));
  283. if (!new.rmap)
  284. goto out_free;
  285. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  286. new.user_alloc = user_alloc;
  287. new.userspace_addr = mem->userspace_addr;
  288. }
  289. if (npages && !new.lpage_info) {
  290. int largepages = npages / KVM_PAGES_PER_HPAGE;
  291. if (npages % KVM_PAGES_PER_HPAGE)
  292. largepages++;
  293. if (base_gfn % KVM_PAGES_PER_HPAGE)
  294. largepages++;
  295. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  296. if (!new.lpage_info)
  297. goto out_free;
  298. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  299. if (base_gfn % KVM_PAGES_PER_HPAGE)
  300. new.lpage_info[0].write_count = 1;
  301. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  302. new.lpage_info[largepages-1].write_count = 1;
  303. }
  304. /* Allocate page dirty bitmap if needed */
  305. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  306. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  307. new.dirty_bitmap = vmalloc(dirty_bytes);
  308. if (!new.dirty_bitmap)
  309. goto out_free;
  310. memset(new.dirty_bitmap, 0, dirty_bytes);
  311. }
  312. if (mem->slot >= kvm->nmemslots)
  313. kvm->nmemslots = mem->slot + 1;
  314. *memslot = new;
  315. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  316. if (r) {
  317. *memslot = old;
  318. goto out_free;
  319. }
  320. kvm_free_physmem_slot(&old, &new);
  321. return 0;
  322. out_free:
  323. kvm_free_physmem_slot(&new, &old);
  324. out:
  325. return r;
  326. }
  327. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  328. int kvm_set_memory_region(struct kvm *kvm,
  329. struct kvm_userspace_memory_region *mem,
  330. int user_alloc)
  331. {
  332. int r;
  333. down_write(&kvm->slots_lock);
  334. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  335. up_write(&kvm->slots_lock);
  336. return r;
  337. }
  338. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  339. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  340. struct
  341. kvm_userspace_memory_region *mem,
  342. int user_alloc)
  343. {
  344. if (mem->slot >= KVM_MEMORY_SLOTS)
  345. return -EINVAL;
  346. return kvm_set_memory_region(kvm, mem, user_alloc);
  347. }
  348. int kvm_get_dirty_log(struct kvm *kvm,
  349. struct kvm_dirty_log *log, int *is_dirty)
  350. {
  351. struct kvm_memory_slot *memslot;
  352. int r, i;
  353. int n;
  354. unsigned long any = 0;
  355. r = -EINVAL;
  356. if (log->slot >= KVM_MEMORY_SLOTS)
  357. goto out;
  358. memslot = &kvm->memslots[log->slot];
  359. r = -ENOENT;
  360. if (!memslot->dirty_bitmap)
  361. goto out;
  362. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  363. for (i = 0; !any && i < n/sizeof(long); ++i)
  364. any = memslot->dirty_bitmap[i];
  365. r = -EFAULT;
  366. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  367. goto out;
  368. if (any)
  369. *is_dirty = 1;
  370. r = 0;
  371. out:
  372. return r;
  373. }
  374. int is_error_page(struct page *page)
  375. {
  376. return page == bad_page;
  377. }
  378. EXPORT_SYMBOL_GPL(is_error_page);
  379. static inline unsigned long bad_hva(void)
  380. {
  381. return PAGE_OFFSET;
  382. }
  383. int kvm_is_error_hva(unsigned long addr)
  384. {
  385. return addr == bad_hva();
  386. }
  387. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  388. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  389. {
  390. int i;
  391. for (i = 0; i < kvm->nmemslots; ++i) {
  392. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  393. if (gfn >= memslot->base_gfn
  394. && gfn < memslot->base_gfn + memslot->npages)
  395. return memslot;
  396. }
  397. return NULL;
  398. }
  399. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  400. {
  401. gfn = unalias_gfn(kvm, gfn);
  402. return __gfn_to_memslot(kvm, gfn);
  403. }
  404. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  405. {
  406. int i;
  407. gfn = unalias_gfn(kvm, gfn);
  408. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  409. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  410. if (gfn >= memslot->base_gfn
  411. && gfn < memslot->base_gfn + memslot->npages)
  412. return 1;
  413. }
  414. return 0;
  415. }
  416. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  417. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  418. {
  419. struct kvm_memory_slot *slot;
  420. gfn = unalias_gfn(kvm, gfn);
  421. slot = __gfn_to_memslot(kvm, gfn);
  422. if (!slot)
  423. return bad_hva();
  424. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  425. }
  426. /*
  427. * Requires current->mm->mmap_sem to be held
  428. */
  429. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  430. {
  431. struct page *page[1];
  432. unsigned long addr;
  433. int npages;
  434. might_sleep();
  435. addr = gfn_to_hva(kvm, gfn);
  436. if (kvm_is_error_hva(addr)) {
  437. get_page(bad_page);
  438. return bad_page;
  439. }
  440. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  441. NULL);
  442. if (npages != 1) {
  443. get_page(bad_page);
  444. return bad_page;
  445. }
  446. return page[0];
  447. }
  448. EXPORT_SYMBOL_GPL(gfn_to_page);
  449. void kvm_release_page_clean(struct page *page)
  450. {
  451. put_page(page);
  452. }
  453. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  454. void kvm_release_page_dirty(struct page *page)
  455. {
  456. if (!PageReserved(page))
  457. SetPageDirty(page);
  458. put_page(page);
  459. }
  460. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  461. static int next_segment(unsigned long len, int offset)
  462. {
  463. if (len > PAGE_SIZE - offset)
  464. return PAGE_SIZE - offset;
  465. else
  466. return len;
  467. }
  468. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  469. int len)
  470. {
  471. int r;
  472. unsigned long addr;
  473. addr = gfn_to_hva(kvm, gfn);
  474. if (kvm_is_error_hva(addr))
  475. return -EFAULT;
  476. r = copy_from_user(data, (void __user *)addr + offset, len);
  477. if (r)
  478. return -EFAULT;
  479. return 0;
  480. }
  481. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  482. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  483. {
  484. gfn_t gfn = gpa >> PAGE_SHIFT;
  485. int seg;
  486. int offset = offset_in_page(gpa);
  487. int ret;
  488. while ((seg = next_segment(len, offset)) != 0) {
  489. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  490. if (ret < 0)
  491. return ret;
  492. offset = 0;
  493. len -= seg;
  494. data += seg;
  495. ++gfn;
  496. }
  497. return 0;
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_read_guest);
  500. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  501. unsigned long len)
  502. {
  503. int r;
  504. unsigned long addr;
  505. gfn_t gfn = gpa >> PAGE_SHIFT;
  506. int offset = offset_in_page(gpa);
  507. addr = gfn_to_hva(kvm, gfn);
  508. if (kvm_is_error_hva(addr))
  509. return -EFAULT;
  510. pagefault_disable();
  511. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  512. pagefault_enable();
  513. if (r)
  514. return -EFAULT;
  515. return 0;
  516. }
  517. EXPORT_SYMBOL(kvm_read_guest_atomic);
  518. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  519. int offset, int len)
  520. {
  521. int r;
  522. unsigned long addr;
  523. addr = gfn_to_hva(kvm, gfn);
  524. if (kvm_is_error_hva(addr))
  525. return -EFAULT;
  526. r = copy_to_user((void __user *)addr + offset, data, len);
  527. if (r)
  528. return -EFAULT;
  529. mark_page_dirty(kvm, gfn);
  530. return 0;
  531. }
  532. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  533. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  534. unsigned long len)
  535. {
  536. gfn_t gfn = gpa >> PAGE_SHIFT;
  537. int seg;
  538. int offset = offset_in_page(gpa);
  539. int ret;
  540. while ((seg = next_segment(len, offset)) != 0) {
  541. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  542. if (ret < 0)
  543. return ret;
  544. offset = 0;
  545. len -= seg;
  546. data += seg;
  547. ++gfn;
  548. }
  549. return 0;
  550. }
  551. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  552. {
  553. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  554. }
  555. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  556. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  557. {
  558. gfn_t gfn = gpa >> PAGE_SHIFT;
  559. int seg;
  560. int offset = offset_in_page(gpa);
  561. int ret;
  562. while ((seg = next_segment(len, offset)) != 0) {
  563. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  564. if (ret < 0)
  565. return ret;
  566. offset = 0;
  567. len -= seg;
  568. ++gfn;
  569. }
  570. return 0;
  571. }
  572. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  573. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  574. {
  575. struct kvm_memory_slot *memslot;
  576. gfn = unalias_gfn(kvm, gfn);
  577. memslot = __gfn_to_memslot(kvm, gfn);
  578. if (memslot && memslot->dirty_bitmap) {
  579. unsigned long rel_gfn = gfn - memslot->base_gfn;
  580. /* avoid RMW */
  581. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  582. set_bit(rel_gfn, memslot->dirty_bitmap);
  583. }
  584. }
  585. /*
  586. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  587. */
  588. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  589. {
  590. DECLARE_WAITQUEUE(wait, current);
  591. add_wait_queue(&vcpu->wq, &wait);
  592. /*
  593. * We will block until either an interrupt or a signal wakes us up
  594. */
  595. while (!kvm_cpu_has_interrupt(vcpu)
  596. && !signal_pending(current)
  597. && !kvm_arch_vcpu_runnable(vcpu)) {
  598. set_current_state(TASK_INTERRUPTIBLE);
  599. vcpu_put(vcpu);
  600. schedule();
  601. vcpu_load(vcpu);
  602. }
  603. __set_current_state(TASK_RUNNING);
  604. remove_wait_queue(&vcpu->wq, &wait);
  605. }
  606. void kvm_resched(struct kvm_vcpu *vcpu)
  607. {
  608. if (!need_resched())
  609. return;
  610. cond_resched();
  611. }
  612. EXPORT_SYMBOL_GPL(kvm_resched);
  613. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  614. {
  615. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  616. struct page *page;
  617. if (vmf->pgoff == 0)
  618. page = virt_to_page(vcpu->run);
  619. #ifdef CONFIG_X86
  620. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  621. page = virt_to_page(vcpu->arch.pio_data);
  622. #endif
  623. else
  624. return VM_FAULT_SIGBUS;
  625. get_page(page);
  626. vmf->page = page;
  627. return 0;
  628. }
  629. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  630. .fault = kvm_vcpu_fault,
  631. };
  632. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  633. {
  634. vma->vm_ops = &kvm_vcpu_vm_ops;
  635. return 0;
  636. }
  637. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  638. {
  639. struct kvm_vcpu *vcpu = filp->private_data;
  640. fput(vcpu->kvm->filp);
  641. return 0;
  642. }
  643. static const struct file_operations kvm_vcpu_fops = {
  644. .release = kvm_vcpu_release,
  645. .unlocked_ioctl = kvm_vcpu_ioctl,
  646. .compat_ioctl = kvm_vcpu_ioctl,
  647. .mmap = kvm_vcpu_mmap,
  648. };
  649. /*
  650. * Allocates an inode for the vcpu.
  651. */
  652. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  653. {
  654. int fd, r;
  655. struct inode *inode;
  656. struct file *file;
  657. r = anon_inode_getfd(&fd, &inode, &file,
  658. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  659. if (r)
  660. return r;
  661. atomic_inc(&vcpu->kvm->filp->f_count);
  662. return fd;
  663. }
  664. /*
  665. * Creates some virtual cpus. Good luck creating more than one.
  666. */
  667. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  668. {
  669. int r;
  670. struct kvm_vcpu *vcpu;
  671. if (!valid_vcpu(n))
  672. return -EINVAL;
  673. vcpu = kvm_arch_vcpu_create(kvm, n);
  674. if (IS_ERR(vcpu))
  675. return PTR_ERR(vcpu);
  676. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  677. r = kvm_arch_vcpu_setup(vcpu);
  678. if (r)
  679. goto vcpu_destroy;
  680. mutex_lock(&kvm->lock);
  681. if (kvm->vcpus[n]) {
  682. r = -EEXIST;
  683. mutex_unlock(&kvm->lock);
  684. goto vcpu_destroy;
  685. }
  686. kvm->vcpus[n] = vcpu;
  687. mutex_unlock(&kvm->lock);
  688. /* Now it's all set up, let userspace reach it */
  689. r = create_vcpu_fd(vcpu);
  690. if (r < 0)
  691. goto unlink;
  692. return r;
  693. unlink:
  694. mutex_lock(&kvm->lock);
  695. kvm->vcpus[n] = NULL;
  696. mutex_unlock(&kvm->lock);
  697. vcpu_destroy:
  698. kvm_arch_vcpu_destroy(vcpu);
  699. return r;
  700. }
  701. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  702. {
  703. if (sigset) {
  704. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  705. vcpu->sigset_active = 1;
  706. vcpu->sigset = *sigset;
  707. } else
  708. vcpu->sigset_active = 0;
  709. return 0;
  710. }
  711. static long kvm_vcpu_ioctl(struct file *filp,
  712. unsigned int ioctl, unsigned long arg)
  713. {
  714. struct kvm_vcpu *vcpu = filp->private_data;
  715. void __user *argp = (void __user *)arg;
  716. int r;
  717. if (vcpu->kvm->mm != current->mm)
  718. return -EIO;
  719. switch (ioctl) {
  720. case KVM_RUN:
  721. r = -EINVAL;
  722. if (arg)
  723. goto out;
  724. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  725. break;
  726. case KVM_GET_REGS: {
  727. struct kvm_regs *kvm_regs;
  728. r = -ENOMEM;
  729. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  730. if (!kvm_regs)
  731. goto out;
  732. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  733. if (r)
  734. goto out_free1;
  735. r = -EFAULT;
  736. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  737. goto out_free1;
  738. r = 0;
  739. out_free1:
  740. kfree(kvm_regs);
  741. break;
  742. }
  743. case KVM_SET_REGS: {
  744. struct kvm_regs *kvm_regs;
  745. r = -ENOMEM;
  746. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  747. if (!kvm_regs)
  748. goto out;
  749. r = -EFAULT;
  750. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  751. goto out_free2;
  752. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  753. if (r)
  754. goto out_free2;
  755. r = 0;
  756. out_free2:
  757. kfree(kvm_regs);
  758. break;
  759. }
  760. case KVM_GET_SREGS: {
  761. struct kvm_sregs kvm_sregs;
  762. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  763. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  764. if (r)
  765. goto out;
  766. r = -EFAULT;
  767. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  768. goto out;
  769. r = 0;
  770. break;
  771. }
  772. case KVM_SET_SREGS: {
  773. struct kvm_sregs kvm_sregs;
  774. r = -EFAULT;
  775. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  776. goto out;
  777. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  778. if (r)
  779. goto out;
  780. r = 0;
  781. break;
  782. }
  783. case KVM_TRANSLATE: {
  784. struct kvm_translation tr;
  785. r = -EFAULT;
  786. if (copy_from_user(&tr, argp, sizeof tr))
  787. goto out;
  788. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  789. if (r)
  790. goto out;
  791. r = -EFAULT;
  792. if (copy_to_user(argp, &tr, sizeof tr))
  793. goto out;
  794. r = 0;
  795. break;
  796. }
  797. case KVM_DEBUG_GUEST: {
  798. struct kvm_debug_guest dbg;
  799. r = -EFAULT;
  800. if (copy_from_user(&dbg, argp, sizeof dbg))
  801. goto out;
  802. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  803. if (r)
  804. goto out;
  805. r = 0;
  806. break;
  807. }
  808. case KVM_SET_SIGNAL_MASK: {
  809. struct kvm_signal_mask __user *sigmask_arg = argp;
  810. struct kvm_signal_mask kvm_sigmask;
  811. sigset_t sigset, *p;
  812. p = NULL;
  813. if (argp) {
  814. r = -EFAULT;
  815. if (copy_from_user(&kvm_sigmask, argp,
  816. sizeof kvm_sigmask))
  817. goto out;
  818. r = -EINVAL;
  819. if (kvm_sigmask.len != sizeof sigset)
  820. goto out;
  821. r = -EFAULT;
  822. if (copy_from_user(&sigset, sigmask_arg->sigset,
  823. sizeof sigset))
  824. goto out;
  825. p = &sigset;
  826. }
  827. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  828. break;
  829. }
  830. case KVM_GET_FPU: {
  831. struct kvm_fpu fpu;
  832. memset(&fpu, 0, sizeof fpu);
  833. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  834. if (r)
  835. goto out;
  836. r = -EFAULT;
  837. if (copy_to_user(argp, &fpu, sizeof fpu))
  838. goto out;
  839. r = 0;
  840. break;
  841. }
  842. case KVM_SET_FPU: {
  843. struct kvm_fpu fpu;
  844. r = -EFAULT;
  845. if (copy_from_user(&fpu, argp, sizeof fpu))
  846. goto out;
  847. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  848. if (r)
  849. goto out;
  850. r = 0;
  851. break;
  852. }
  853. default:
  854. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  855. }
  856. out:
  857. return r;
  858. }
  859. static long kvm_vm_ioctl(struct file *filp,
  860. unsigned int ioctl, unsigned long arg)
  861. {
  862. struct kvm *kvm = filp->private_data;
  863. void __user *argp = (void __user *)arg;
  864. int r;
  865. if (kvm->mm != current->mm)
  866. return -EIO;
  867. switch (ioctl) {
  868. case KVM_CREATE_VCPU:
  869. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  870. if (r < 0)
  871. goto out;
  872. break;
  873. case KVM_SET_USER_MEMORY_REGION: {
  874. struct kvm_userspace_memory_region kvm_userspace_mem;
  875. r = -EFAULT;
  876. if (copy_from_user(&kvm_userspace_mem, argp,
  877. sizeof kvm_userspace_mem))
  878. goto out;
  879. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  880. if (r)
  881. goto out;
  882. break;
  883. }
  884. case KVM_GET_DIRTY_LOG: {
  885. struct kvm_dirty_log log;
  886. r = -EFAULT;
  887. if (copy_from_user(&log, argp, sizeof log))
  888. goto out;
  889. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  890. if (r)
  891. goto out;
  892. break;
  893. }
  894. default:
  895. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  896. }
  897. out:
  898. return r;
  899. }
  900. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  901. {
  902. struct kvm *kvm = vma->vm_file->private_data;
  903. struct page *page;
  904. if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
  905. return VM_FAULT_SIGBUS;
  906. page = gfn_to_page(kvm, vmf->pgoff);
  907. if (is_error_page(page)) {
  908. kvm_release_page_clean(page);
  909. return VM_FAULT_SIGBUS;
  910. }
  911. vmf->page = page;
  912. return 0;
  913. }
  914. static struct vm_operations_struct kvm_vm_vm_ops = {
  915. .fault = kvm_vm_fault,
  916. };
  917. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  918. {
  919. vma->vm_ops = &kvm_vm_vm_ops;
  920. return 0;
  921. }
  922. static const struct file_operations kvm_vm_fops = {
  923. .release = kvm_vm_release,
  924. .unlocked_ioctl = kvm_vm_ioctl,
  925. .compat_ioctl = kvm_vm_ioctl,
  926. .mmap = kvm_vm_mmap,
  927. };
  928. static int kvm_dev_ioctl_create_vm(void)
  929. {
  930. int fd, r;
  931. struct inode *inode;
  932. struct file *file;
  933. struct kvm *kvm;
  934. kvm = kvm_create_vm();
  935. if (IS_ERR(kvm))
  936. return PTR_ERR(kvm);
  937. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  938. if (r) {
  939. kvm_destroy_vm(kvm);
  940. return r;
  941. }
  942. kvm->filp = file;
  943. return fd;
  944. }
  945. static long kvm_dev_ioctl(struct file *filp,
  946. unsigned int ioctl, unsigned long arg)
  947. {
  948. void __user *argp = (void __user *)arg;
  949. long r = -EINVAL;
  950. switch (ioctl) {
  951. case KVM_GET_API_VERSION:
  952. r = -EINVAL;
  953. if (arg)
  954. goto out;
  955. r = KVM_API_VERSION;
  956. break;
  957. case KVM_CREATE_VM:
  958. r = -EINVAL;
  959. if (arg)
  960. goto out;
  961. r = kvm_dev_ioctl_create_vm();
  962. break;
  963. case KVM_CHECK_EXTENSION:
  964. r = kvm_dev_ioctl_check_extension((long)argp);
  965. break;
  966. case KVM_GET_VCPU_MMAP_SIZE:
  967. r = -EINVAL;
  968. if (arg)
  969. goto out;
  970. r = PAGE_SIZE; /* struct kvm_run */
  971. #ifdef CONFIG_X86
  972. r += PAGE_SIZE; /* pio data page */
  973. #endif
  974. break;
  975. default:
  976. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  977. }
  978. out:
  979. return r;
  980. }
  981. static struct file_operations kvm_chardev_ops = {
  982. .unlocked_ioctl = kvm_dev_ioctl,
  983. .compat_ioctl = kvm_dev_ioctl,
  984. };
  985. static struct miscdevice kvm_dev = {
  986. KVM_MINOR,
  987. "kvm",
  988. &kvm_chardev_ops,
  989. };
  990. static void hardware_enable(void *junk)
  991. {
  992. int cpu = raw_smp_processor_id();
  993. if (cpu_isset(cpu, cpus_hardware_enabled))
  994. return;
  995. cpu_set(cpu, cpus_hardware_enabled);
  996. kvm_arch_hardware_enable(NULL);
  997. }
  998. static void hardware_disable(void *junk)
  999. {
  1000. int cpu = raw_smp_processor_id();
  1001. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1002. return;
  1003. cpu_clear(cpu, cpus_hardware_enabled);
  1004. decache_vcpus_on_cpu(cpu);
  1005. kvm_arch_hardware_disable(NULL);
  1006. }
  1007. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1008. void *v)
  1009. {
  1010. int cpu = (long)v;
  1011. val &= ~CPU_TASKS_FROZEN;
  1012. switch (val) {
  1013. case CPU_DYING:
  1014. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1015. cpu);
  1016. hardware_disable(NULL);
  1017. break;
  1018. case CPU_UP_CANCELED:
  1019. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1020. cpu);
  1021. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1022. break;
  1023. case CPU_ONLINE:
  1024. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1025. cpu);
  1026. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1027. break;
  1028. }
  1029. return NOTIFY_OK;
  1030. }
  1031. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1032. void *v)
  1033. {
  1034. if (val == SYS_RESTART) {
  1035. /*
  1036. * Some (well, at least mine) BIOSes hang on reboot if
  1037. * in vmx root mode.
  1038. */
  1039. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1040. on_each_cpu(hardware_disable, NULL, 0, 1);
  1041. }
  1042. return NOTIFY_OK;
  1043. }
  1044. static struct notifier_block kvm_reboot_notifier = {
  1045. .notifier_call = kvm_reboot,
  1046. .priority = 0,
  1047. };
  1048. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1049. {
  1050. memset(bus, 0, sizeof(*bus));
  1051. }
  1052. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1053. {
  1054. int i;
  1055. for (i = 0; i < bus->dev_count; i++) {
  1056. struct kvm_io_device *pos = bus->devs[i];
  1057. kvm_iodevice_destructor(pos);
  1058. }
  1059. }
  1060. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1061. {
  1062. int i;
  1063. for (i = 0; i < bus->dev_count; i++) {
  1064. struct kvm_io_device *pos = bus->devs[i];
  1065. if (pos->in_range(pos, addr))
  1066. return pos;
  1067. }
  1068. return NULL;
  1069. }
  1070. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1071. {
  1072. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1073. bus->devs[bus->dev_count++] = dev;
  1074. }
  1075. static struct notifier_block kvm_cpu_notifier = {
  1076. .notifier_call = kvm_cpu_hotplug,
  1077. .priority = 20, /* must be > scheduler priority */
  1078. };
  1079. static int vm_stat_get(void *_offset, u64 *val)
  1080. {
  1081. unsigned offset = (long)_offset;
  1082. struct kvm *kvm;
  1083. *val = 0;
  1084. spin_lock(&kvm_lock);
  1085. list_for_each_entry(kvm, &vm_list, vm_list)
  1086. *val += *(u32 *)((void *)kvm + offset);
  1087. spin_unlock(&kvm_lock);
  1088. return 0;
  1089. }
  1090. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1091. static int vcpu_stat_get(void *_offset, u64 *val)
  1092. {
  1093. unsigned offset = (long)_offset;
  1094. struct kvm *kvm;
  1095. struct kvm_vcpu *vcpu;
  1096. int i;
  1097. *val = 0;
  1098. spin_lock(&kvm_lock);
  1099. list_for_each_entry(kvm, &vm_list, vm_list)
  1100. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1101. vcpu = kvm->vcpus[i];
  1102. if (vcpu)
  1103. *val += *(u32 *)((void *)vcpu + offset);
  1104. }
  1105. spin_unlock(&kvm_lock);
  1106. return 0;
  1107. }
  1108. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1109. static struct file_operations *stat_fops[] = {
  1110. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1111. [KVM_STAT_VM] = &vm_stat_fops,
  1112. };
  1113. static void kvm_init_debug(void)
  1114. {
  1115. struct kvm_stats_debugfs_item *p;
  1116. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1117. for (p = debugfs_entries; p->name; ++p)
  1118. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1119. (void *)(long)p->offset,
  1120. stat_fops[p->kind]);
  1121. }
  1122. static void kvm_exit_debug(void)
  1123. {
  1124. struct kvm_stats_debugfs_item *p;
  1125. for (p = debugfs_entries; p->name; ++p)
  1126. debugfs_remove(p->dentry);
  1127. debugfs_remove(debugfs_dir);
  1128. }
  1129. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1130. {
  1131. hardware_disable(NULL);
  1132. return 0;
  1133. }
  1134. static int kvm_resume(struct sys_device *dev)
  1135. {
  1136. hardware_enable(NULL);
  1137. return 0;
  1138. }
  1139. static struct sysdev_class kvm_sysdev_class = {
  1140. .name = "kvm",
  1141. .suspend = kvm_suspend,
  1142. .resume = kvm_resume,
  1143. };
  1144. static struct sys_device kvm_sysdev = {
  1145. .id = 0,
  1146. .cls = &kvm_sysdev_class,
  1147. };
  1148. struct page *bad_page;
  1149. static inline
  1150. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1151. {
  1152. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1153. }
  1154. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1155. {
  1156. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1157. kvm_arch_vcpu_load(vcpu, cpu);
  1158. }
  1159. static void kvm_sched_out(struct preempt_notifier *pn,
  1160. struct task_struct *next)
  1161. {
  1162. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1163. kvm_arch_vcpu_put(vcpu);
  1164. }
  1165. int kvm_init(void *opaque, unsigned int vcpu_size,
  1166. struct module *module)
  1167. {
  1168. int r;
  1169. int cpu;
  1170. kvm_init_debug();
  1171. r = kvm_arch_init(opaque);
  1172. if (r)
  1173. goto out_fail;
  1174. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1175. if (bad_page == NULL) {
  1176. r = -ENOMEM;
  1177. goto out;
  1178. }
  1179. r = kvm_arch_hardware_setup();
  1180. if (r < 0)
  1181. goto out_free_0;
  1182. for_each_online_cpu(cpu) {
  1183. smp_call_function_single(cpu,
  1184. kvm_arch_check_processor_compat,
  1185. &r, 0, 1);
  1186. if (r < 0)
  1187. goto out_free_1;
  1188. }
  1189. on_each_cpu(hardware_enable, NULL, 0, 1);
  1190. r = register_cpu_notifier(&kvm_cpu_notifier);
  1191. if (r)
  1192. goto out_free_2;
  1193. register_reboot_notifier(&kvm_reboot_notifier);
  1194. r = sysdev_class_register(&kvm_sysdev_class);
  1195. if (r)
  1196. goto out_free_3;
  1197. r = sysdev_register(&kvm_sysdev);
  1198. if (r)
  1199. goto out_free_4;
  1200. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1201. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1202. __alignof__(struct kvm_vcpu),
  1203. 0, NULL);
  1204. if (!kvm_vcpu_cache) {
  1205. r = -ENOMEM;
  1206. goto out_free_5;
  1207. }
  1208. kvm_chardev_ops.owner = module;
  1209. r = misc_register(&kvm_dev);
  1210. if (r) {
  1211. printk(KERN_ERR "kvm: misc device register failed\n");
  1212. goto out_free;
  1213. }
  1214. kvm_preempt_ops.sched_in = kvm_sched_in;
  1215. kvm_preempt_ops.sched_out = kvm_sched_out;
  1216. return 0;
  1217. out_free:
  1218. kmem_cache_destroy(kvm_vcpu_cache);
  1219. out_free_5:
  1220. sysdev_unregister(&kvm_sysdev);
  1221. out_free_4:
  1222. sysdev_class_unregister(&kvm_sysdev_class);
  1223. out_free_3:
  1224. unregister_reboot_notifier(&kvm_reboot_notifier);
  1225. unregister_cpu_notifier(&kvm_cpu_notifier);
  1226. out_free_2:
  1227. on_each_cpu(hardware_disable, NULL, 0, 1);
  1228. out_free_1:
  1229. kvm_arch_hardware_unsetup();
  1230. out_free_0:
  1231. __free_page(bad_page);
  1232. out:
  1233. kvm_arch_exit();
  1234. kvm_exit_debug();
  1235. out_fail:
  1236. return r;
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_init);
  1239. void kvm_exit(void)
  1240. {
  1241. misc_deregister(&kvm_dev);
  1242. kmem_cache_destroy(kvm_vcpu_cache);
  1243. sysdev_unregister(&kvm_sysdev);
  1244. sysdev_class_unregister(&kvm_sysdev_class);
  1245. unregister_reboot_notifier(&kvm_reboot_notifier);
  1246. unregister_cpu_notifier(&kvm_cpu_notifier);
  1247. on_each_cpu(hardware_disable, NULL, 0, 1);
  1248. kvm_arch_hardware_unsetup();
  1249. kvm_arch_exit();
  1250. kvm_exit_debug();
  1251. __free_page(bad_page);
  1252. }
  1253. EXPORT_SYMBOL_GPL(kvm_exit);