rtnetlink.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/tcp.h>
  51. #include <net/sock.h>
  52. #include <net/pkt_sched.h>
  53. #include <net/fib_rules.h>
  54. #include <net/rtnetlink.h>
  55. #include <net/net_namespace.h>
  56. struct rtnl_link {
  57. rtnl_doit_func doit;
  58. rtnl_dumpit_func dumpit;
  59. rtnl_calcit_func calcit;
  60. };
  61. static DEFINE_MUTEX(rtnl_mutex);
  62. void rtnl_lock(void)
  63. {
  64. mutex_lock(&rtnl_mutex);
  65. }
  66. EXPORT_SYMBOL(rtnl_lock);
  67. void __rtnl_unlock(void)
  68. {
  69. mutex_unlock(&rtnl_mutex);
  70. }
  71. void rtnl_unlock(void)
  72. {
  73. /* This fellow will unlock it for us. */
  74. netdev_run_todo();
  75. }
  76. EXPORT_SYMBOL(rtnl_unlock);
  77. int rtnl_trylock(void)
  78. {
  79. return mutex_trylock(&rtnl_mutex);
  80. }
  81. EXPORT_SYMBOL(rtnl_trylock);
  82. int rtnl_is_locked(void)
  83. {
  84. return mutex_is_locked(&rtnl_mutex);
  85. }
  86. EXPORT_SYMBOL(rtnl_is_locked);
  87. #ifdef CONFIG_PROVE_LOCKING
  88. int lockdep_rtnl_is_held(void)
  89. {
  90. return lockdep_is_held(&rtnl_mutex);
  91. }
  92. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  93. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  94. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  95. static inline int rtm_msgindex(int msgtype)
  96. {
  97. int msgindex = msgtype - RTM_BASE;
  98. /*
  99. * msgindex < 0 implies someone tried to register a netlink
  100. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  101. * the message type has not been added to linux/rtnetlink.h
  102. */
  103. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  104. return msgindex;
  105. }
  106. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  107. {
  108. struct rtnl_link *tab;
  109. if (protocol <= RTNL_FAMILY_MAX)
  110. tab = rtnl_msg_handlers[protocol];
  111. else
  112. tab = NULL;
  113. if (tab == NULL || tab[msgindex].doit == NULL)
  114. tab = rtnl_msg_handlers[PF_UNSPEC];
  115. return tab[msgindex].doit;
  116. }
  117. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  118. {
  119. struct rtnl_link *tab;
  120. if (protocol <= RTNL_FAMILY_MAX)
  121. tab = rtnl_msg_handlers[protocol];
  122. else
  123. tab = NULL;
  124. if (tab == NULL || tab[msgindex].dumpit == NULL)
  125. tab = rtnl_msg_handlers[PF_UNSPEC];
  126. return tab[msgindex].dumpit;
  127. }
  128. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  129. {
  130. struct rtnl_link *tab;
  131. if (protocol <= RTNL_FAMILY_MAX)
  132. tab = rtnl_msg_handlers[protocol];
  133. else
  134. tab = NULL;
  135. if (tab == NULL || tab[msgindex].calcit == NULL)
  136. tab = rtnl_msg_handlers[PF_UNSPEC];
  137. return tab[msgindex].calcit;
  138. }
  139. /**
  140. * __rtnl_register - Register a rtnetlink message type
  141. * @protocol: Protocol family or PF_UNSPEC
  142. * @msgtype: rtnetlink message type
  143. * @doit: Function pointer called for each request message
  144. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  145. * @calcit: Function pointer to calc size of dump message
  146. *
  147. * Registers the specified function pointers (at least one of them has
  148. * to be non-NULL) to be called whenever a request message for the
  149. * specified protocol family and message type is received.
  150. *
  151. * The special protocol family PF_UNSPEC may be used to define fallback
  152. * function pointers for the case when no entry for the specific protocol
  153. * family exists.
  154. *
  155. * Returns 0 on success or a negative error code.
  156. */
  157. int __rtnl_register(int protocol, int msgtype,
  158. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  159. rtnl_calcit_func calcit)
  160. {
  161. struct rtnl_link *tab;
  162. int msgindex;
  163. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  164. msgindex = rtm_msgindex(msgtype);
  165. tab = rtnl_msg_handlers[protocol];
  166. if (tab == NULL) {
  167. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  168. if (tab == NULL)
  169. return -ENOBUFS;
  170. rtnl_msg_handlers[protocol] = tab;
  171. }
  172. if (doit)
  173. tab[msgindex].doit = doit;
  174. if (dumpit)
  175. tab[msgindex].dumpit = dumpit;
  176. if (calcit)
  177. tab[msgindex].calcit = calcit;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL_GPL(__rtnl_register);
  181. /**
  182. * rtnl_register - Register a rtnetlink message type
  183. *
  184. * Identical to __rtnl_register() but panics on failure. This is useful
  185. * as failure of this function is very unlikely, it can only happen due
  186. * to lack of memory when allocating the chain to store all message
  187. * handlers for a protocol. Meant for use in init functions where lack
  188. * of memory implies no sense in continuing.
  189. */
  190. void rtnl_register(int protocol, int msgtype,
  191. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  192. rtnl_calcit_func calcit)
  193. {
  194. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  195. panic("Unable to register rtnetlink message handler, "
  196. "protocol = %d, message type = %d\n",
  197. protocol, msgtype);
  198. }
  199. EXPORT_SYMBOL_GPL(rtnl_register);
  200. /**
  201. * rtnl_unregister - Unregister a rtnetlink message type
  202. * @protocol: Protocol family or PF_UNSPEC
  203. * @msgtype: rtnetlink message type
  204. *
  205. * Returns 0 on success or a negative error code.
  206. */
  207. int rtnl_unregister(int protocol, int msgtype)
  208. {
  209. int msgindex;
  210. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  211. msgindex = rtm_msgindex(msgtype);
  212. if (rtnl_msg_handlers[protocol] == NULL)
  213. return -ENOENT;
  214. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  215. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(rtnl_unregister);
  219. /**
  220. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  221. * @protocol : Protocol family or PF_UNSPEC
  222. *
  223. * Identical to calling rtnl_unregster() for all registered message types
  224. * of a certain protocol family.
  225. */
  226. void rtnl_unregister_all(int protocol)
  227. {
  228. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  229. kfree(rtnl_msg_handlers[protocol]);
  230. rtnl_msg_handlers[protocol] = NULL;
  231. }
  232. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  233. static LIST_HEAD(link_ops);
  234. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  235. {
  236. const struct rtnl_link_ops *ops;
  237. list_for_each_entry(ops, &link_ops, list) {
  238. if (!strcmp(ops->kind, kind))
  239. return ops;
  240. }
  241. return NULL;
  242. }
  243. /**
  244. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  245. * @ops: struct rtnl_link_ops * to register
  246. *
  247. * The caller must hold the rtnl_mutex. This function should be used
  248. * by drivers that create devices during module initialization. It
  249. * must be called before registering the devices.
  250. *
  251. * Returns 0 on success or a negative error code.
  252. */
  253. int __rtnl_link_register(struct rtnl_link_ops *ops)
  254. {
  255. if (rtnl_link_ops_get(ops->kind))
  256. return -EEXIST;
  257. /* The check for setup is here because if ops
  258. * does not have that filled up, it is not possible
  259. * to use the ops for creating device. So do not
  260. * fill up dellink as well. That disables rtnl_dellink.
  261. */
  262. if (ops->setup && !ops->dellink)
  263. ops->dellink = unregister_netdevice_queue;
  264. list_add_tail(&ops->list, &link_ops);
  265. return 0;
  266. }
  267. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  268. /**
  269. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  270. * @ops: struct rtnl_link_ops * to register
  271. *
  272. * Returns 0 on success or a negative error code.
  273. */
  274. int rtnl_link_register(struct rtnl_link_ops *ops)
  275. {
  276. int err;
  277. rtnl_lock();
  278. err = __rtnl_link_register(ops);
  279. rtnl_unlock();
  280. return err;
  281. }
  282. EXPORT_SYMBOL_GPL(rtnl_link_register);
  283. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  284. {
  285. struct net_device *dev;
  286. LIST_HEAD(list_kill);
  287. for_each_netdev(net, dev) {
  288. if (dev->rtnl_link_ops == ops)
  289. ops->dellink(dev, &list_kill);
  290. }
  291. unregister_netdevice_many(&list_kill);
  292. }
  293. /**
  294. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  295. * @ops: struct rtnl_link_ops * to unregister
  296. *
  297. * The caller must hold the rtnl_mutex.
  298. */
  299. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  300. {
  301. struct net *net;
  302. for_each_net(net) {
  303. __rtnl_kill_links(net, ops);
  304. }
  305. list_del(&ops->list);
  306. }
  307. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  308. /* Return with the rtnl_lock held when there are no network
  309. * devices unregistering in any network namespace.
  310. */
  311. static void rtnl_lock_unregistering_all(void)
  312. {
  313. struct net *net;
  314. bool unregistering;
  315. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  316. add_wait_queue(&netdev_unregistering_wq, &wait);
  317. for (;;) {
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  330. }
  331. remove_wait_queue(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  425. {
  426. struct rtnl_af_ops *af_ops;
  427. size_t size;
  428. /* IFLA_AF_SPEC */
  429. size = nla_total_size(sizeof(struct nlattr));
  430. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  431. if (af_ops->get_link_af_size) {
  432. /* AF_* + nested data */
  433. size += nla_total_size(sizeof(struct nlattr)) +
  434. af_ops->get_link_af_size(dev);
  435. }
  436. }
  437. return size;
  438. }
  439. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  440. {
  441. struct net_device *master_dev;
  442. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  443. if (master_dev && master_dev->rtnl_link_ops)
  444. return true;
  445. return false;
  446. }
  447. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  448. const struct net_device *dev)
  449. {
  450. struct net_device *master_dev;
  451. const struct rtnl_link_ops *ops;
  452. struct nlattr *slave_data;
  453. int err;
  454. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  455. if (!master_dev)
  456. return 0;
  457. ops = master_dev->rtnl_link_ops;
  458. if (!ops)
  459. return 0;
  460. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  461. return -EMSGSIZE;
  462. if (ops->fill_slave_info) {
  463. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  464. if (!slave_data)
  465. return -EMSGSIZE;
  466. err = ops->fill_slave_info(skb, master_dev, dev);
  467. if (err < 0)
  468. goto err_cancel_slave_data;
  469. nla_nest_end(skb, slave_data);
  470. }
  471. return 0;
  472. err_cancel_slave_data:
  473. nla_nest_cancel(skb, slave_data);
  474. return err;
  475. }
  476. static int rtnl_link_info_fill(struct sk_buff *skb,
  477. const struct net_device *dev)
  478. {
  479. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  480. struct nlattr *data;
  481. int err;
  482. if (!ops)
  483. return 0;
  484. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  485. return -EMSGSIZE;
  486. if (ops->fill_xstats) {
  487. err = ops->fill_xstats(skb, dev);
  488. if (err < 0)
  489. return err;
  490. }
  491. if (ops->fill_info) {
  492. data = nla_nest_start(skb, IFLA_INFO_DATA);
  493. if (data == NULL)
  494. return -EMSGSIZE;
  495. err = ops->fill_info(skb, dev);
  496. if (err < 0)
  497. goto err_cancel_data;
  498. nla_nest_end(skb, data);
  499. }
  500. return 0;
  501. err_cancel_data:
  502. nla_nest_cancel(skb, data);
  503. return err;
  504. }
  505. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  506. {
  507. struct nlattr *linkinfo;
  508. int err = -EMSGSIZE;
  509. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  510. if (linkinfo == NULL)
  511. goto out;
  512. err = rtnl_link_info_fill(skb, dev);
  513. if (err < 0)
  514. goto err_cancel_link;
  515. err = rtnl_link_slave_info_fill(skb, dev);
  516. if (err < 0)
  517. goto err_cancel_link;
  518. nla_nest_end(skb, linkinfo);
  519. return 0;
  520. err_cancel_link:
  521. nla_nest_cancel(skb, linkinfo);
  522. out:
  523. return err;
  524. }
  525. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  526. {
  527. struct sock *rtnl = net->rtnl;
  528. int err = 0;
  529. NETLINK_CB(skb).dst_group = group;
  530. if (echo)
  531. atomic_inc(&skb->users);
  532. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  533. if (echo)
  534. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  535. return err;
  536. }
  537. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  538. {
  539. struct sock *rtnl = net->rtnl;
  540. return nlmsg_unicast(rtnl, skb, pid);
  541. }
  542. EXPORT_SYMBOL(rtnl_unicast);
  543. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  544. struct nlmsghdr *nlh, gfp_t flags)
  545. {
  546. struct sock *rtnl = net->rtnl;
  547. int report = 0;
  548. if (nlh)
  549. report = nlmsg_report(nlh);
  550. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  551. }
  552. EXPORT_SYMBOL(rtnl_notify);
  553. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  554. {
  555. struct sock *rtnl = net->rtnl;
  556. netlink_set_err(rtnl, 0, group, error);
  557. }
  558. EXPORT_SYMBOL(rtnl_set_sk_err);
  559. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  560. {
  561. struct nlattr *mx;
  562. int i, valid = 0;
  563. mx = nla_nest_start(skb, RTA_METRICS);
  564. if (mx == NULL)
  565. return -ENOBUFS;
  566. for (i = 0; i < RTAX_MAX; i++) {
  567. if (metrics[i]) {
  568. if (i == RTAX_CC_ALGO - 1) {
  569. char tmp[TCP_CA_NAME_MAX], *name;
  570. name = tcp_ca_get_name_by_key(metrics[i], tmp);
  571. if (!name)
  572. continue;
  573. if (nla_put_string(skb, i + 1, name))
  574. goto nla_put_failure;
  575. } else {
  576. if (nla_put_u32(skb, i + 1, metrics[i]))
  577. goto nla_put_failure;
  578. }
  579. valid++;
  580. }
  581. }
  582. if (!valid) {
  583. nla_nest_cancel(skb, mx);
  584. return 0;
  585. }
  586. return nla_nest_end(skb, mx);
  587. nla_put_failure:
  588. nla_nest_cancel(skb, mx);
  589. return -EMSGSIZE;
  590. }
  591. EXPORT_SYMBOL(rtnetlink_put_metrics);
  592. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  593. long expires, u32 error)
  594. {
  595. struct rta_cacheinfo ci = {
  596. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  597. .rta_used = dst->__use,
  598. .rta_clntref = atomic_read(&(dst->__refcnt)),
  599. .rta_error = error,
  600. .rta_id = id,
  601. };
  602. if (expires) {
  603. unsigned long clock;
  604. clock = jiffies_to_clock_t(abs(expires));
  605. clock = min_t(unsigned long, clock, INT_MAX);
  606. ci.rta_expires = (expires > 0) ? clock : -clock;
  607. }
  608. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  609. }
  610. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  611. static void set_operstate(struct net_device *dev, unsigned char transition)
  612. {
  613. unsigned char operstate = dev->operstate;
  614. switch (transition) {
  615. case IF_OPER_UP:
  616. if ((operstate == IF_OPER_DORMANT ||
  617. operstate == IF_OPER_UNKNOWN) &&
  618. !netif_dormant(dev))
  619. operstate = IF_OPER_UP;
  620. break;
  621. case IF_OPER_DORMANT:
  622. if (operstate == IF_OPER_UP ||
  623. operstate == IF_OPER_UNKNOWN)
  624. operstate = IF_OPER_DORMANT;
  625. break;
  626. }
  627. if (dev->operstate != operstate) {
  628. write_lock_bh(&dev_base_lock);
  629. dev->operstate = operstate;
  630. write_unlock_bh(&dev_base_lock);
  631. netdev_state_change(dev);
  632. }
  633. }
  634. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  635. {
  636. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  637. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  638. }
  639. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  640. const struct ifinfomsg *ifm)
  641. {
  642. unsigned int flags = ifm->ifi_flags;
  643. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  644. if (ifm->ifi_change)
  645. flags = (flags & ifm->ifi_change) |
  646. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  647. return flags;
  648. }
  649. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  650. const struct rtnl_link_stats64 *b)
  651. {
  652. a->rx_packets = b->rx_packets;
  653. a->tx_packets = b->tx_packets;
  654. a->rx_bytes = b->rx_bytes;
  655. a->tx_bytes = b->tx_bytes;
  656. a->rx_errors = b->rx_errors;
  657. a->tx_errors = b->tx_errors;
  658. a->rx_dropped = b->rx_dropped;
  659. a->tx_dropped = b->tx_dropped;
  660. a->multicast = b->multicast;
  661. a->collisions = b->collisions;
  662. a->rx_length_errors = b->rx_length_errors;
  663. a->rx_over_errors = b->rx_over_errors;
  664. a->rx_crc_errors = b->rx_crc_errors;
  665. a->rx_frame_errors = b->rx_frame_errors;
  666. a->rx_fifo_errors = b->rx_fifo_errors;
  667. a->rx_missed_errors = b->rx_missed_errors;
  668. a->tx_aborted_errors = b->tx_aborted_errors;
  669. a->tx_carrier_errors = b->tx_carrier_errors;
  670. a->tx_fifo_errors = b->tx_fifo_errors;
  671. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  672. a->tx_window_errors = b->tx_window_errors;
  673. a->rx_compressed = b->rx_compressed;
  674. a->tx_compressed = b->tx_compressed;
  675. }
  676. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  677. {
  678. memcpy(v, b, sizeof(*b));
  679. }
  680. /* All VF info */
  681. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  682. u32 ext_filter_mask)
  683. {
  684. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  685. (ext_filter_mask & RTEXT_FILTER_VF)) {
  686. int num_vfs = dev_num_vf(dev->dev.parent);
  687. size_t size = nla_total_size(sizeof(struct nlattr));
  688. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  689. size += num_vfs *
  690. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  691. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  692. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  693. nla_total_size(sizeof(struct ifla_vf_rate)) +
  694. nla_total_size(sizeof(struct ifla_vf_link_state)) +
  695. nla_total_size(sizeof(struct ifla_vf_rss_query_en)) +
  696. /* IFLA_VF_STATS_RX_PACKETS */
  697. nla_total_size(sizeof(__u64)) +
  698. /* IFLA_VF_STATS_TX_PACKETS */
  699. nla_total_size(sizeof(__u64)) +
  700. /* IFLA_VF_STATS_RX_BYTES */
  701. nla_total_size(sizeof(__u64)) +
  702. /* IFLA_VF_STATS_TX_BYTES */
  703. nla_total_size(sizeof(__u64)) +
  704. /* IFLA_VF_STATS_BROADCAST */
  705. nla_total_size(sizeof(__u64)) +
  706. /* IFLA_VF_STATS_MULTICAST */
  707. nla_total_size(sizeof(__u64)));
  708. return size;
  709. } else
  710. return 0;
  711. }
  712. static size_t rtnl_port_size(const struct net_device *dev,
  713. u32 ext_filter_mask)
  714. {
  715. size_t port_size = nla_total_size(4) /* PORT_VF */
  716. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  717. + nla_total_size(sizeof(struct ifla_port_vsi))
  718. /* PORT_VSI_TYPE */
  719. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  720. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  721. + nla_total_size(1) /* PROT_VDP_REQUEST */
  722. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  723. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  724. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  725. + port_size;
  726. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  727. + port_size;
  728. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  729. !(ext_filter_mask & RTEXT_FILTER_VF))
  730. return 0;
  731. if (dev_num_vf(dev->dev.parent))
  732. return port_self_size + vf_ports_size +
  733. vf_port_size * dev_num_vf(dev->dev.parent);
  734. else
  735. return port_self_size;
  736. }
  737. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  738. u32 ext_filter_mask)
  739. {
  740. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  741. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  742. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  743. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  744. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  745. + nla_total_size(sizeof(struct rtnl_link_stats))
  746. + nla_total_size(sizeof(struct rtnl_link_stats64))
  747. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  748. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  749. + nla_total_size(4) /* IFLA_TXQLEN */
  750. + nla_total_size(4) /* IFLA_WEIGHT */
  751. + nla_total_size(4) /* IFLA_MTU */
  752. + nla_total_size(4) /* IFLA_LINK */
  753. + nla_total_size(4) /* IFLA_MASTER */
  754. + nla_total_size(1) /* IFLA_CARRIER */
  755. + nla_total_size(4) /* IFLA_PROMISCUITY */
  756. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  757. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  758. + nla_total_size(1) /* IFLA_OPERSTATE */
  759. + nla_total_size(1) /* IFLA_LINKMODE */
  760. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  761. + nla_total_size(4) /* IFLA_LINK_NETNSID */
  762. + nla_total_size(ext_filter_mask
  763. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  764. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  765. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  766. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  767. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  768. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  769. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_SWITCH_ID */
  770. + nla_total_size(1); /* IFLA_PROTO_DOWN */
  771. }
  772. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  773. {
  774. struct nlattr *vf_ports;
  775. struct nlattr *vf_port;
  776. int vf;
  777. int err;
  778. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  779. if (!vf_ports)
  780. return -EMSGSIZE;
  781. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  782. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  783. if (!vf_port)
  784. goto nla_put_failure;
  785. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  786. goto nla_put_failure;
  787. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  788. if (err == -EMSGSIZE)
  789. goto nla_put_failure;
  790. if (err) {
  791. nla_nest_cancel(skb, vf_port);
  792. continue;
  793. }
  794. nla_nest_end(skb, vf_port);
  795. }
  796. nla_nest_end(skb, vf_ports);
  797. return 0;
  798. nla_put_failure:
  799. nla_nest_cancel(skb, vf_ports);
  800. return -EMSGSIZE;
  801. }
  802. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  803. {
  804. struct nlattr *port_self;
  805. int err;
  806. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  807. if (!port_self)
  808. return -EMSGSIZE;
  809. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  810. if (err) {
  811. nla_nest_cancel(skb, port_self);
  812. return (err == -EMSGSIZE) ? err : 0;
  813. }
  814. nla_nest_end(skb, port_self);
  815. return 0;
  816. }
  817. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  818. u32 ext_filter_mask)
  819. {
  820. int err;
  821. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  822. !(ext_filter_mask & RTEXT_FILTER_VF))
  823. return 0;
  824. err = rtnl_port_self_fill(skb, dev);
  825. if (err)
  826. return err;
  827. if (dev_num_vf(dev->dev.parent)) {
  828. err = rtnl_vf_ports_fill(skb, dev);
  829. if (err)
  830. return err;
  831. }
  832. return 0;
  833. }
  834. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  835. {
  836. int err;
  837. struct netdev_phys_item_id ppid;
  838. err = dev_get_phys_port_id(dev, &ppid);
  839. if (err) {
  840. if (err == -EOPNOTSUPP)
  841. return 0;
  842. return err;
  843. }
  844. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  845. return -EMSGSIZE;
  846. return 0;
  847. }
  848. static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
  849. {
  850. char name[IFNAMSIZ];
  851. int err;
  852. err = dev_get_phys_port_name(dev, name, sizeof(name));
  853. if (err) {
  854. if (err == -EOPNOTSUPP)
  855. return 0;
  856. return err;
  857. }
  858. if (nla_put(skb, IFLA_PHYS_PORT_NAME, strlen(name), name))
  859. return -EMSGSIZE;
  860. return 0;
  861. }
  862. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  863. {
  864. int err;
  865. struct switchdev_attr attr = {
  866. .id = SWITCHDEV_ATTR_PORT_PARENT_ID,
  867. .flags = SWITCHDEV_F_NO_RECURSE,
  868. };
  869. err = switchdev_port_attr_get(dev, &attr);
  870. if (err) {
  871. if (err == -EOPNOTSUPP)
  872. return 0;
  873. return err;
  874. }
  875. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, attr.u.ppid.id_len,
  876. attr.u.ppid.id))
  877. return -EMSGSIZE;
  878. return 0;
  879. }
  880. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  881. int type, u32 pid, u32 seq, u32 change,
  882. unsigned int flags, u32 ext_filter_mask)
  883. {
  884. struct ifinfomsg *ifm;
  885. struct nlmsghdr *nlh;
  886. struct rtnl_link_stats64 temp;
  887. const struct rtnl_link_stats64 *stats;
  888. struct nlattr *attr, *af_spec;
  889. struct rtnl_af_ops *af_ops;
  890. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  891. ASSERT_RTNL();
  892. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  893. if (nlh == NULL)
  894. return -EMSGSIZE;
  895. ifm = nlmsg_data(nlh);
  896. ifm->ifi_family = AF_UNSPEC;
  897. ifm->__ifi_pad = 0;
  898. ifm->ifi_type = dev->type;
  899. ifm->ifi_index = dev->ifindex;
  900. ifm->ifi_flags = dev_get_flags(dev);
  901. ifm->ifi_change = change;
  902. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  903. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  904. nla_put_u8(skb, IFLA_OPERSTATE,
  905. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  906. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  907. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  908. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  909. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  910. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  911. #ifdef CONFIG_RPS
  912. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  913. #endif
  914. (dev->ifindex != dev_get_iflink(dev) &&
  915. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))) ||
  916. (upper_dev &&
  917. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  918. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  919. (dev->qdisc &&
  920. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  921. (dev->ifalias &&
  922. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  923. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  924. atomic_read(&dev->carrier_changes)) ||
  925. nla_put_u8(skb, IFLA_PROTO_DOWN, dev->proto_down))
  926. goto nla_put_failure;
  927. if (1) {
  928. struct rtnl_link_ifmap map = {
  929. .mem_start = dev->mem_start,
  930. .mem_end = dev->mem_end,
  931. .base_addr = dev->base_addr,
  932. .irq = dev->irq,
  933. .dma = dev->dma,
  934. .port = dev->if_port,
  935. };
  936. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  937. goto nla_put_failure;
  938. }
  939. if (dev->addr_len) {
  940. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  941. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  942. goto nla_put_failure;
  943. }
  944. if (rtnl_phys_port_id_fill(skb, dev))
  945. goto nla_put_failure;
  946. if (rtnl_phys_port_name_fill(skb, dev))
  947. goto nla_put_failure;
  948. if (rtnl_phys_switch_id_fill(skb, dev))
  949. goto nla_put_failure;
  950. attr = nla_reserve(skb, IFLA_STATS,
  951. sizeof(struct rtnl_link_stats));
  952. if (attr == NULL)
  953. goto nla_put_failure;
  954. stats = dev_get_stats(dev, &temp);
  955. copy_rtnl_link_stats(nla_data(attr), stats);
  956. attr = nla_reserve(skb, IFLA_STATS64,
  957. sizeof(struct rtnl_link_stats64));
  958. if (attr == NULL)
  959. goto nla_put_failure;
  960. copy_rtnl_link_stats64(nla_data(attr), stats);
  961. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  962. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  963. goto nla_put_failure;
  964. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  965. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  966. int i;
  967. struct nlattr *vfinfo, *vf, *vfstats;
  968. int num_vfs = dev_num_vf(dev->dev.parent);
  969. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  970. if (!vfinfo)
  971. goto nla_put_failure;
  972. for (i = 0; i < num_vfs; i++) {
  973. struct ifla_vf_info ivi;
  974. struct ifla_vf_mac vf_mac;
  975. struct ifla_vf_vlan vf_vlan;
  976. struct ifla_vf_rate vf_rate;
  977. struct ifla_vf_tx_rate vf_tx_rate;
  978. struct ifla_vf_spoofchk vf_spoofchk;
  979. struct ifla_vf_link_state vf_linkstate;
  980. struct ifla_vf_rss_query_en vf_rss_query_en;
  981. struct ifla_vf_stats vf_stats;
  982. /*
  983. * Not all SR-IOV capable drivers support the
  984. * spoofcheck and "RSS query enable" query. Preset to
  985. * -1 so the user space tool can detect that the driver
  986. * didn't report anything.
  987. */
  988. ivi.spoofchk = -1;
  989. ivi.rss_query_en = -1;
  990. memset(ivi.mac, 0, sizeof(ivi.mac));
  991. /* The default value for VF link state is "auto"
  992. * IFLA_VF_LINK_STATE_AUTO which equals zero
  993. */
  994. ivi.linkstate = 0;
  995. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  996. break;
  997. vf_mac.vf =
  998. vf_vlan.vf =
  999. vf_rate.vf =
  1000. vf_tx_rate.vf =
  1001. vf_spoofchk.vf =
  1002. vf_linkstate.vf =
  1003. vf_rss_query_en.vf = ivi.vf;
  1004. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  1005. vf_vlan.vlan = ivi.vlan;
  1006. vf_vlan.qos = ivi.qos;
  1007. vf_tx_rate.rate = ivi.max_tx_rate;
  1008. vf_rate.min_tx_rate = ivi.min_tx_rate;
  1009. vf_rate.max_tx_rate = ivi.max_tx_rate;
  1010. vf_spoofchk.setting = ivi.spoofchk;
  1011. vf_linkstate.link_state = ivi.linkstate;
  1012. vf_rss_query_en.setting = ivi.rss_query_en;
  1013. vf = nla_nest_start(skb, IFLA_VF_INFO);
  1014. if (!vf) {
  1015. nla_nest_cancel(skb, vfinfo);
  1016. goto nla_put_failure;
  1017. }
  1018. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  1019. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  1020. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  1021. &vf_rate) ||
  1022. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  1023. &vf_tx_rate) ||
  1024. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  1025. &vf_spoofchk) ||
  1026. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  1027. &vf_linkstate) ||
  1028. nla_put(skb, IFLA_VF_RSS_QUERY_EN,
  1029. sizeof(vf_rss_query_en),
  1030. &vf_rss_query_en))
  1031. goto nla_put_failure;
  1032. memset(&vf_stats, 0, sizeof(vf_stats));
  1033. if (dev->netdev_ops->ndo_get_vf_stats)
  1034. dev->netdev_ops->ndo_get_vf_stats(dev, i,
  1035. &vf_stats);
  1036. vfstats = nla_nest_start(skb, IFLA_VF_STATS);
  1037. if (!vfstats) {
  1038. nla_nest_cancel(skb, vf);
  1039. nla_nest_cancel(skb, vfinfo);
  1040. goto nla_put_failure;
  1041. }
  1042. if (nla_put_u64(skb, IFLA_VF_STATS_RX_PACKETS,
  1043. vf_stats.rx_packets) ||
  1044. nla_put_u64(skb, IFLA_VF_STATS_TX_PACKETS,
  1045. vf_stats.tx_packets) ||
  1046. nla_put_u64(skb, IFLA_VF_STATS_RX_BYTES,
  1047. vf_stats.rx_bytes) ||
  1048. nla_put_u64(skb, IFLA_VF_STATS_TX_BYTES,
  1049. vf_stats.tx_bytes) ||
  1050. nla_put_u64(skb, IFLA_VF_STATS_BROADCAST,
  1051. vf_stats.broadcast) ||
  1052. nla_put_u64(skb, IFLA_VF_STATS_MULTICAST,
  1053. vf_stats.multicast))
  1054. goto nla_put_failure;
  1055. nla_nest_end(skb, vfstats);
  1056. nla_nest_end(skb, vf);
  1057. }
  1058. nla_nest_end(skb, vfinfo);
  1059. }
  1060. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  1061. goto nla_put_failure;
  1062. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  1063. if (rtnl_link_fill(skb, dev) < 0)
  1064. goto nla_put_failure;
  1065. }
  1066. if (dev->rtnl_link_ops &&
  1067. dev->rtnl_link_ops->get_link_net) {
  1068. struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
  1069. if (!net_eq(dev_net(dev), link_net)) {
  1070. int id = peernet2id_alloc(dev_net(dev), link_net);
  1071. if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
  1072. goto nla_put_failure;
  1073. }
  1074. }
  1075. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  1076. goto nla_put_failure;
  1077. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  1078. if (af_ops->fill_link_af) {
  1079. struct nlattr *af;
  1080. int err;
  1081. if (!(af = nla_nest_start(skb, af_ops->family)))
  1082. goto nla_put_failure;
  1083. err = af_ops->fill_link_af(skb, dev);
  1084. /*
  1085. * Caller may return ENODATA to indicate that there
  1086. * was no data to be dumped. This is not an error, it
  1087. * means we should trim the attribute header and
  1088. * continue.
  1089. */
  1090. if (err == -ENODATA)
  1091. nla_nest_cancel(skb, af);
  1092. else if (err < 0)
  1093. goto nla_put_failure;
  1094. nla_nest_end(skb, af);
  1095. }
  1096. }
  1097. nla_nest_end(skb, af_spec);
  1098. nlmsg_end(skb, nlh);
  1099. return 0;
  1100. nla_put_failure:
  1101. nlmsg_cancel(skb, nlh);
  1102. return -EMSGSIZE;
  1103. }
  1104. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1105. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1106. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1107. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1108. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1109. [IFLA_MTU] = { .type = NLA_U32 },
  1110. [IFLA_LINK] = { .type = NLA_U32 },
  1111. [IFLA_MASTER] = { .type = NLA_U32 },
  1112. [IFLA_CARRIER] = { .type = NLA_U8 },
  1113. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1114. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1115. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1116. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1117. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1118. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1119. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1120. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1121. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1122. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1123. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1124. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1125. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1126. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1127. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1128. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1129. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1130. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1131. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1132. [IFLA_LINK_NETNSID] = { .type = NLA_S32 },
  1133. [IFLA_PROTO_DOWN] = { .type = NLA_U8 },
  1134. };
  1135. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1136. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1137. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1138. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1139. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1140. };
  1141. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1142. [IFLA_VF_MAC] = { .len = sizeof(struct ifla_vf_mac) },
  1143. [IFLA_VF_VLAN] = { .len = sizeof(struct ifla_vf_vlan) },
  1144. [IFLA_VF_TX_RATE] = { .len = sizeof(struct ifla_vf_tx_rate) },
  1145. [IFLA_VF_SPOOFCHK] = { .len = sizeof(struct ifla_vf_spoofchk) },
  1146. [IFLA_VF_RATE] = { .len = sizeof(struct ifla_vf_rate) },
  1147. [IFLA_VF_LINK_STATE] = { .len = sizeof(struct ifla_vf_link_state) },
  1148. [IFLA_VF_RSS_QUERY_EN] = { .len = sizeof(struct ifla_vf_rss_query_en) },
  1149. [IFLA_VF_STATS] = { .type = NLA_NESTED },
  1150. };
  1151. static const struct nla_policy ifla_vf_stats_policy[IFLA_VF_STATS_MAX + 1] = {
  1152. [IFLA_VF_STATS_RX_PACKETS] = { .type = NLA_U64 },
  1153. [IFLA_VF_STATS_TX_PACKETS] = { .type = NLA_U64 },
  1154. [IFLA_VF_STATS_RX_BYTES] = { .type = NLA_U64 },
  1155. [IFLA_VF_STATS_TX_BYTES] = { .type = NLA_U64 },
  1156. [IFLA_VF_STATS_BROADCAST] = { .type = NLA_U64 },
  1157. [IFLA_VF_STATS_MULTICAST] = { .type = NLA_U64 },
  1158. };
  1159. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1160. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1161. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1162. .len = PORT_PROFILE_MAX },
  1163. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1164. .len = sizeof(struct ifla_port_vsi)},
  1165. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1166. .len = PORT_UUID_MAX },
  1167. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1168. .len = PORT_UUID_MAX },
  1169. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1170. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1171. };
  1172. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1173. {
  1174. struct net *net = sock_net(skb->sk);
  1175. int h, s_h;
  1176. int idx = 0, s_idx;
  1177. struct net_device *dev;
  1178. struct hlist_head *head;
  1179. struct nlattr *tb[IFLA_MAX+1];
  1180. u32 ext_filter_mask = 0;
  1181. int err;
  1182. int hdrlen;
  1183. s_h = cb->args[0];
  1184. s_idx = cb->args[1];
  1185. cb->seq = net->dev_base_seq;
  1186. /* A hack to preserve kernel<->userspace interface.
  1187. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1188. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1189. * what iproute2 < v3.9.0 used.
  1190. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1191. * attribute, its netlink message is shorter than struct ifinfomsg.
  1192. */
  1193. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1194. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1195. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1196. if (tb[IFLA_EXT_MASK])
  1197. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1198. }
  1199. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1200. idx = 0;
  1201. head = &net->dev_index_head[h];
  1202. hlist_for_each_entry(dev, head, index_hlist) {
  1203. if (idx < s_idx)
  1204. goto cont;
  1205. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1206. NETLINK_CB(cb->skb).portid,
  1207. cb->nlh->nlmsg_seq, 0,
  1208. NLM_F_MULTI,
  1209. ext_filter_mask);
  1210. /* If we ran out of room on the first message,
  1211. * we're in trouble
  1212. */
  1213. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1214. if (err < 0)
  1215. goto out;
  1216. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1217. cont:
  1218. idx++;
  1219. }
  1220. }
  1221. out:
  1222. cb->args[1] = idx;
  1223. cb->args[0] = h;
  1224. return skb->len;
  1225. }
  1226. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1227. {
  1228. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1229. }
  1230. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1231. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1232. {
  1233. struct net *net;
  1234. /* Examine the link attributes and figure out which
  1235. * network namespace we are talking about.
  1236. */
  1237. if (tb[IFLA_NET_NS_PID])
  1238. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1239. else if (tb[IFLA_NET_NS_FD])
  1240. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1241. else
  1242. net = get_net(src_net);
  1243. return net;
  1244. }
  1245. EXPORT_SYMBOL(rtnl_link_get_net);
  1246. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1247. {
  1248. if (dev) {
  1249. if (tb[IFLA_ADDRESS] &&
  1250. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1251. return -EINVAL;
  1252. if (tb[IFLA_BROADCAST] &&
  1253. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1254. return -EINVAL;
  1255. }
  1256. if (tb[IFLA_AF_SPEC]) {
  1257. struct nlattr *af;
  1258. int rem, err;
  1259. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1260. const struct rtnl_af_ops *af_ops;
  1261. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1262. return -EAFNOSUPPORT;
  1263. if (!af_ops->set_link_af)
  1264. return -EOPNOTSUPP;
  1265. if (af_ops->validate_link_af) {
  1266. err = af_ops->validate_link_af(dev, af);
  1267. if (err < 0)
  1268. return err;
  1269. }
  1270. }
  1271. }
  1272. return 0;
  1273. }
  1274. static int do_setvfinfo(struct net_device *dev, struct nlattr **tb)
  1275. {
  1276. const struct net_device_ops *ops = dev->netdev_ops;
  1277. int err = -EINVAL;
  1278. if (tb[IFLA_VF_MAC]) {
  1279. struct ifla_vf_mac *ivm = nla_data(tb[IFLA_VF_MAC]);
  1280. err = -EOPNOTSUPP;
  1281. if (ops->ndo_set_vf_mac)
  1282. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1283. ivm->mac);
  1284. if (err < 0)
  1285. return err;
  1286. }
  1287. if (tb[IFLA_VF_VLAN]) {
  1288. struct ifla_vf_vlan *ivv = nla_data(tb[IFLA_VF_VLAN]);
  1289. err = -EOPNOTSUPP;
  1290. if (ops->ndo_set_vf_vlan)
  1291. err = ops->ndo_set_vf_vlan(dev, ivv->vf, ivv->vlan,
  1292. ivv->qos);
  1293. if (err < 0)
  1294. return err;
  1295. }
  1296. if (tb[IFLA_VF_TX_RATE]) {
  1297. struct ifla_vf_tx_rate *ivt = nla_data(tb[IFLA_VF_TX_RATE]);
  1298. struct ifla_vf_info ivf;
  1299. err = -EOPNOTSUPP;
  1300. if (ops->ndo_get_vf_config)
  1301. err = ops->ndo_get_vf_config(dev, ivt->vf, &ivf);
  1302. if (err < 0)
  1303. return err;
  1304. err = -EOPNOTSUPP;
  1305. if (ops->ndo_set_vf_rate)
  1306. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1307. ivf.min_tx_rate,
  1308. ivt->rate);
  1309. if (err < 0)
  1310. return err;
  1311. }
  1312. if (tb[IFLA_VF_RATE]) {
  1313. struct ifla_vf_rate *ivt = nla_data(tb[IFLA_VF_RATE]);
  1314. err = -EOPNOTSUPP;
  1315. if (ops->ndo_set_vf_rate)
  1316. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1317. ivt->min_tx_rate,
  1318. ivt->max_tx_rate);
  1319. if (err < 0)
  1320. return err;
  1321. }
  1322. if (tb[IFLA_VF_SPOOFCHK]) {
  1323. struct ifla_vf_spoofchk *ivs = nla_data(tb[IFLA_VF_SPOOFCHK]);
  1324. err = -EOPNOTSUPP;
  1325. if (ops->ndo_set_vf_spoofchk)
  1326. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1327. ivs->setting);
  1328. if (err < 0)
  1329. return err;
  1330. }
  1331. if (tb[IFLA_VF_LINK_STATE]) {
  1332. struct ifla_vf_link_state *ivl = nla_data(tb[IFLA_VF_LINK_STATE]);
  1333. err = -EOPNOTSUPP;
  1334. if (ops->ndo_set_vf_link_state)
  1335. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1336. ivl->link_state);
  1337. if (err < 0)
  1338. return err;
  1339. }
  1340. if (tb[IFLA_VF_RSS_QUERY_EN]) {
  1341. struct ifla_vf_rss_query_en *ivrssq_en;
  1342. err = -EOPNOTSUPP;
  1343. ivrssq_en = nla_data(tb[IFLA_VF_RSS_QUERY_EN]);
  1344. if (ops->ndo_set_vf_rss_query_en)
  1345. err = ops->ndo_set_vf_rss_query_en(dev, ivrssq_en->vf,
  1346. ivrssq_en->setting);
  1347. if (err < 0)
  1348. return err;
  1349. }
  1350. return err;
  1351. }
  1352. static int do_set_master(struct net_device *dev, int ifindex)
  1353. {
  1354. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1355. const struct net_device_ops *ops;
  1356. int err;
  1357. if (upper_dev) {
  1358. if (upper_dev->ifindex == ifindex)
  1359. return 0;
  1360. ops = upper_dev->netdev_ops;
  1361. if (ops->ndo_del_slave) {
  1362. err = ops->ndo_del_slave(upper_dev, dev);
  1363. if (err)
  1364. return err;
  1365. } else {
  1366. return -EOPNOTSUPP;
  1367. }
  1368. }
  1369. if (ifindex) {
  1370. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1371. if (!upper_dev)
  1372. return -EINVAL;
  1373. ops = upper_dev->netdev_ops;
  1374. if (ops->ndo_add_slave) {
  1375. err = ops->ndo_add_slave(upper_dev, dev);
  1376. if (err)
  1377. return err;
  1378. } else {
  1379. return -EOPNOTSUPP;
  1380. }
  1381. }
  1382. return 0;
  1383. }
  1384. #define DO_SETLINK_MODIFIED 0x01
  1385. /* notify flag means notify + modified. */
  1386. #define DO_SETLINK_NOTIFY 0x03
  1387. static int do_setlink(const struct sk_buff *skb,
  1388. struct net_device *dev, struct ifinfomsg *ifm,
  1389. struct nlattr **tb, char *ifname, int status)
  1390. {
  1391. const struct net_device_ops *ops = dev->netdev_ops;
  1392. int err;
  1393. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1394. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1395. if (IS_ERR(net)) {
  1396. err = PTR_ERR(net);
  1397. goto errout;
  1398. }
  1399. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1400. put_net(net);
  1401. err = -EPERM;
  1402. goto errout;
  1403. }
  1404. err = dev_change_net_namespace(dev, net, ifname);
  1405. put_net(net);
  1406. if (err)
  1407. goto errout;
  1408. status |= DO_SETLINK_MODIFIED;
  1409. }
  1410. if (tb[IFLA_MAP]) {
  1411. struct rtnl_link_ifmap *u_map;
  1412. struct ifmap k_map;
  1413. if (!ops->ndo_set_config) {
  1414. err = -EOPNOTSUPP;
  1415. goto errout;
  1416. }
  1417. if (!netif_device_present(dev)) {
  1418. err = -ENODEV;
  1419. goto errout;
  1420. }
  1421. u_map = nla_data(tb[IFLA_MAP]);
  1422. k_map.mem_start = (unsigned long) u_map->mem_start;
  1423. k_map.mem_end = (unsigned long) u_map->mem_end;
  1424. k_map.base_addr = (unsigned short) u_map->base_addr;
  1425. k_map.irq = (unsigned char) u_map->irq;
  1426. k_map.dma = (unsigned char) u_map->dma;
  1427. k_map.port = (unsigned char) u_map->port;
  1428. err = ops->ndo_set_config(dev, &k_map);
  1429. if (err < 0)
  1430. goto errout;
  1431. status |= DO_SETLINK_NOTIFY;
  1432. }
  1433. if (tb[IFLA_ADDRESS]) {
  1434. struct sockaddr *sa;
  1435. int len;
  1436. len = sizeof(sa_family_t) + dev->addr_len;
  1437. sa = kmalloc(len, GFP_KERNEL);
  1438. if (!sa) {
  1439. err = -ENOMEM;
  1440. goto errout;
  1441. }
  1442. sa->sa_family = dev->type;
  1443. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1444. dev->addr_len);
  1445. err = dev_set_mac_address(dev, sa);
  1446. kfree(sa);
  1447. if (err)
  1448. goto errout;
  1449. status |= DO_SETLINK_MODIFIED;
  1450. }
  1451. if (tb[IFLA_MTU]) {
  1452. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1453. if (err < 0)
  1454. goto errout;
  1455. status |= DO_SETLINK_MODIFIED;
  1456. }
  1457. if (tb[IFLA_GROUP]) {
  1458. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1459. status |= DO_SETLINK_NOTIFY;
  1460. }
  1461. /*
  1462. * Interface selected by interface index but interface
  1463. * name provided implies that a name change has been
  1464. * requested.
  1465. */
  1466. if (ifm->ifi_index > 0 && ifname[0]) {
  1467. err = dev_change_name(dev, ifname);
  1468. if (err < 0)
  1469. goto errout;
  1470. status |= DO_SETLINK_MODIFIED;
  1471. }
  1472. if (tb[IFLA_IFALIAS]) {
  1473. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1474. nla_len(tb[IFLA_IFALIAS]));
  1475. if (err < 0)
  1476. goto errout;
  1477. status |= DO_SETLINK_NOTIFY;
  1478. }
  1479. if (tb[IFLA_BROADCAST]) {
  1480. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1481. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1482. }
  1483. if (ifm->ifi_flags || ifm->ifi_change) {
  1484. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1485. if (err < 0)
  1486. goto errout;
  1487. }
  1488. if (tb[IFLA_MASTER]) {
  1489. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1490. if (err)
  1491. goto errout;
  1492. status |= DO_SETLINK_MODIFIED;
  1493. }
  1494. if (tb[IFLA_CARRIER]) {
  1495. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1496. if (err)
  1497. goto errout;
  1498. status |= DO_SETLINK_MODIFIED;
  1499. }
  1500. if (tb[IFLA_TXQLEN]) {
  1501. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1502. if (dev->tx_queue_len ^ value)
  1503. status |= DO_SETLINK_NOTIFY;
  1504. dev->tx_queue_len = value;
  1505. }
  1506. if (tb[IFLA_OPERSTATE])
  1507. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1508. if (tb[IFLA_LINKMODE]) {
  1509. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1510. write_lock_bh(&dev_base_lock);
  1511. if (dev->link_mode ^ value)
  1512. status |= DO_SETLINK_NOTIFY;
  1513. dev->link_mode = value;
  1514. write_unlock_bh(&dev_base_lock);
  1515. }
  1516. if (tb[IFLA_VFINFO_LIST]) {
  1517. struct nlattr *vfinfo[IFLA_VF_MAX + 1];
  1518. struct nlattr *attr;
  1519. int rem;
  1520. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1521. if (nla_type(attr) != IFLA_VF_INFO ||
  1522. nla_len(attr) < NLA_HDRLEN) {
  1523. err = -EINVAL;
  1524. goto errout;
  1525. }
  1526. err = nla_parse_nested(vfinfo, IFLA_VF_MAX, attr,
  1527. ifla_vf_policy);
  1528. if (err < 0)
  1529. goto errout;
  1530. err = do_setvfinfo(dev, vfinfo);
  1531. if (err < 0)
  1532. goto errout;
  1533. status |= DO_SETLINK_NOTIFY;
  1534. }
  1535. }
  1536. err = 0;
  1537. if (tb[IFLA_VF_PORTS]) {
  1538. struct nlattr *port[IFLA_PORT_MAX+1];
  1539. struct nlattr *attr;
  1540. int vf;
  1541. int rem;
  1542. err = -EOPNOTSUPP;
  1543. if (!ops->ndo_set_vf_port)
  1544. goto errout;
  1545. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1546. if (nla_type(attr) != IFLA_VF_PORT)
  1547. continue;
  1548. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1549. attr, ifla_port_policy);
  1550. if (err < 0)
  1551. goto errout;
  1552. if (!port[IFLA_PORT_VF]) {
  1553. err = -EOPNOTSUPP;
  1554. goto errout;
  1555. }
  1556. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1557. err = ops->ndo_set_vf_port(dev, vf, port);
  1558. if (err < 0)
  1559. goto errout;
  1560. status |= DO_SETLINK_NOTIFY;
  1561. }
  1562. }
  1563. err = 0;
  1564. if (tb[IFLA_PORT_SELF]) {
  1565. struct nlattr *port[IFLA_PORT_MAX+1];
  1566. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1567. tb[IFLA_PORT_SELF], ifla_port_policy);
  1568. if (err < 0)
  1569. goto errout;
  1570. err = -EOPNOTSUPP;
  1571. if (ops->ndo_set_vf_port)
  1572. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1573. if (err < 0)
  1574. goto errout;
  1575. status |= DO_SETLINK_NOTIFY;
  1576. }
  1577. if (tb[IFLA_AF_SPEC]) {
  1578. struct nlattr *af;
  1579. int rem;
  1580. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1581. const struct rtnl_af_ops *af_ops;
  1582. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1583. BUG();
  1584. err = af_ops->set_link_af(dev, af);
  1585. if (err < 0)
  1586. goto errout;
  1587. status |= DO_SETLINK_NOTIFY;
  1588. }
  1589. }
  1590. err = 0;
  1591. if (tb[IFLA_PROTO_DOWN]) {
  1592. err = dev_change_proto_down(dev,
  1593. nla_get_u8(tb[IFLA_PROTO_DOWN]));
  1594. if (err)
  1595. goto errout;
  1596. status |= DO_SETLINK_NOTIFY;
  1597. }
  1598. errout:
  1599. if (status & DO_SETLINK_MODIFIED) {
  1600. if (status & DO_SETLINK_NOTIFY)
  1601. netdev_state_change(dev);
  1602. if (err < 0)
  1603. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1604. dev->name);
  1605. }
  1606. return err;
  1607. }
  1608. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1609. {
  1610. struct net *net = sock_net(skb->sk);
  1611. struct ifinfomsg *ifm;
  1612. struct net_device *dev;
  1613. int err;
  1614. struct nlattr *tb[IFLA_MAX+1];
  1615. char ifname[IFNAMSIZ];
  1616. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1617. if (err < 0)
  1618. goto errout;
  1619. if (tb[IFLA_IFNAME])
  1620. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1621. else
  1622. ifname[0] = '\0';
  1623. err = -EINVAL;
  1624. ifm = nlmsg_data(nlh);
  1625. if (ifm->ifi_index > 0)
  1626. dev = __dev_get_by_index(net, ifm->ifi_index);
  1627. else if (tb[IFLA_IFNAME])
  1628. dev = __dev_get_by_name(net, ifname);
  1629. else
  1630. goto errout;
  1631. if (dev == NULL) {
  1632. err = -ENODEV;
  1633. goto errout;
  1634. }
  1635. err = validate_linkmsg(dev, tb);
  1636. if (err < 0)
  1637. goto errout;
  1638. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1639. errout:
  1640. return err;
  1641. }
  1642. static int rtnl_group_dellink(const struct net *net, int group)
  1643. {
  1644. struct net_device *dev, *aux;
  1645. LIST_HEAD(list_kill);
  1646. bool found = false;
  1647. if (!group)
  1648. return -EPERM;
  1649. for_each_netdev(net, dev) {
  1650. if (dev->group == group) {
  1651. const struct rtnl_link_ops *ops;
  1652. found = true;
  1653. ops = dev->rtnl_link_ops;
  1654. if (!ops || !ops->dellink)
  1655. return -EOPNOTSUPP;
  1656. }
  1657. }
  1658. if (!found)
  1659. return -ENODEV;
  1660. for_each_netdev_safe(net, dev, aux) {
  1661. if (dev->group == group) {
  1662. const struct rtnl_link_ops *ops;
  1663. ops = dev->rtnl_link_ops;
  1664. ops->dellink(dev, &list_kill);
  1665. }
  1666. }
  1667. unregister_netdevice_many(&list_kill);
  1668. return 0;
  1669. }
  1670. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1671. {
  1672. struct net *net = sock_net(skb->sk);
  1673. const struct rtnl_link_ops *ops;
  1674. struct net_device *dev;
  1675. struct ifinfomsg *ifm;
  1676. char ifname[IFNAMSIZ];
  1677. struct nlattr *tb[IFLA_MAX+1];
  1678. int err;
  1679. LIST_HEAD(list_kill);
  1680. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1681. if (err < 0)
  1682. return err;
  1683. if (tb[IFLA_IFNAME])
  1684. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1685. ifm = nlmsg_data(nlh);
  1686. if (ifm->ifi_index > 0)
  1687. dev = __dev_get_by_index(net, ifm->ifi_index);
  1688. else if (tb[IFLA_IFNAME])
  1689. dev = __dev_get_by_name(net, ifname);
  1690. else if (tb[IFLA_GROUP])
  1691. return rtnl_group_dellink(net, nla_get_u32(tb[IFLA_GROUP]));
  1692. else
  1693. return -EINVAL;
  1694. if (!dev)
  1695. return -ENODEV;
  1696. ops = dev->rtnl_link_ops;
  1697. if (!ops || !ops->dellink)
  1698. return -EOPNOTSUPP;
  1699. ops->dellink(dev, &list_kill);
  1700. unregister_netdevice_many(&list_kill);
  1701. return 0;
  1702. }
  1703. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1704. {
  1705. unsigned int old_flags;
  1706. int err;
  1707. old_flags = dev->flags;
  1708. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1709. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1710. if (err < 0)
  1711. return err;
  1712. }
  1713. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1714. __dev_notify_flags(dev, old_flags, ~0U);
  1715. return 0;
  1716. }
  1717. EXPORT_SYMBOL(rtnl_configure_link);
  1718. struct net_device *rtnl_create_link(struct net *net,
  1719. const char *ifname, unsigned char name_assign_type,
  1720. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1721. {
  1722. int err;
  1723. struct net_device *dev;
  1724. unsigned int num_tx_queues = 1;
  1725. unsigned int num_rx_queues = 1;
  1726. if (tb[IFLA_NUM_TX_QUEUES])
  1727. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1728. else if (ops->get_num_tx_queues)
  1729. num_tx_queues = ops->get_num_tx_queues();
  1730. if (tb[IFLA_NUM_RX_QUEUES])
  1731. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1732. else if (ops->get_num_rx_queues)
  1733. num_rx_queues = ops->get_num_rx_queues();
  1734. err = -ENOMEM;
  1735. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1736. ops->setup, num_tx_queues, num_rx_queues);
  1737. if (!dev)
  1738. goto err;
  1739. dev_net_set(dev, net);
  1740. dev->rtnl_link_ops = ops;
  1741. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1742. if (tb[IFLA_MTU])
  1743. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1744. if (tb[IFLA_ADDRESS]) {
  1745. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1746. nla_len(tb[IFLA_ADDRESS]));
  1747. dev->addr_assign_type = NET_ADDR_SET;
  1748. }
  1749. if (tb[IFLA_BROADCAST])
  1750. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1751. nla_len(tb[IFLA_BROADCAST]));
  1752. if (tb[IFLA_TXQLEN])
  1753. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1754. if (tb[IFLA_OPERSTATE])
  1755. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1756. if (tb[IFLA_LINKMODE])
  1757. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1758. if (tb[IFLA_GROUP])
  1759. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1760. return dev;
  1761. err:
  1762. return ERR_PTR(err);
  1763. }
  1764. EXPORT_SYMBOL(rtnl_create_link);
  1765. static int rtnl_group_changelink(const struct sk_buff *skb,
  1766. struct net *net, int group,
  1767. struct ifinfomsg *ifm,
  1768. struct nlattr **tb)
  1769. {
  1770. struct net_device *dev, *aux;
  1771. int err;
  1772. for_each_netdev_safe(net, dev, aux) {
  1773. if (dev->group == group) {
  1774. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1775. if (err < 0)
  1776. return err;
  1777. }
  1778. }
  1779. return 0;
  1780. }
  1781. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1782. {
  1783. struct net *net = sock_net(skb->sk);
  1784. const struct rtnl_link_ops *ops;
  1785. const struct rtnl_link_ops *m_ops = NULL;
  1786. struct net_device *dev;
  1787. struct net_device *master_dev = NULL;
  1788. struct ifinfomsg *ifm;
  1789. char kind[MODULE_NAME_LEN];
  1790. char ifname[IFNAMSIZ];
  1791. struct nlattr *tb[IFLA_MAX+1];
  1792. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1793. unsigned char name_assign_type = NET_NAME_USER;
  1794. int err;
  1795. #ifdef CONFIG_MODULES
  1796. replay:
  1797. #endif
  1798. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1799. if (err < 0)
  1800. return err;
  1801. if (tb[IFLA_IFNAME])
  1802. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1803. else
  1804. ifname[0] = '\0';
  1805. ifm = nlmsg_data(nlh);
  1806. if (ifm->ifi_index > 0)
  1807. dev = __dev_get_by_index(net, ifm->ifi_index);
  1808. else {
  1809. if (ifname[0])
  1810. dev = __dev_get_by_name(net, ifname);
  1811. else
  1812. dev = NULL;
  1813. }
  1814. if (dev) {
  1815. master_dev = netdev_master_upper_dev_get(dev);
  1816. if (master_dev)
  1817. m_ops = master_dev->rtnl_link_ops;
  1818. }
  1819. err = validate_linkmsg(dev, tb);
  1820. if (err < 0)
  1821. return err;
  1822. if (tb[IFLA_LINKINFO]) {
  1823. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1824. tb[IFLA_LINKINFO], ifla_info_policy);
  1825. if (err < 0)
  1826. return err;
  1827. } else
  1828. memset(linkinfo, 0, sizeof(linkinfo));
  1829. if (linkinfo[IFLA_INFO_KIND]) {
  1830. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1831. ops = rtnl_link_ops_get(kind);
  1832. } else {
  1833. kind[0] = '\0';
  1834. ops = NULL;
  1835. }
  1836. if (1) {
  1837. struct nlattr *attr[ops ? ops->maxtype + 1 : 1];
  1838. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 1];
  1839. struct nlattr **data = NULL;
  1840. struct nlattr **slave_data = NULL;
  1841. struct net *dest_net, *link_net = NULL;
  1842. if (ops) {
  1843. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1844. err = nla_parse_nested(attr, ops->maxtype,
  1845. linkinfo[IFLA_INFO_DATA],
  1846. ops->policy);
  1847. if (err < 0)
  1848. return err;
  1849. data = attr;
  1850. }
  1851. if (ops->validate) {
  1852. err = ops->validate(tb, data);
  1853. if (err < 0)
  1854. return err;
  1855. }
  1856. }
  1857. if (m_ops) {
  1858. if (m_ops->slave_maxtype &&
  1859. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1860. err = nla_parse_nested(slave_attr,
  1861. m_ops->slave_maxtype,
  1862. linkinfo[IFLA_INFO_SLAVE_DATA],
  1863. m_ops->slave_policy);
  1864. if (err < 0)
  1865. return err;
  1866. slave_data = slave_attr;
  1867. }
  1868. if (m_ops->slave_validate) {
  1869. err = m_ops->slave_validate(tb, slave_data);
  1870. if (err < 0)
  1871. return err;
  1872. }
  1873. }
  1874. if (dev) {
  1875. int status = 0;
  1876. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1877. return -EEXIST;
  1878. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1879. return -EOPNOTSUPP;
  1880. if (linkinfo[IFLA_INFO_DATA]) {
  1881. if (!ops || ops != dev->rtnl_link_ops ||
  1882. !ops->changelink)
  1883. return -EOPNOTSUPP;
  1884. err = ops->changelink(dev, tb, data);
  1885. if (err < 0)
  1886. return err;
  1887. status |= DO_SETLINK_NOTIFY;
  1888. }
  1889. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1890. if (!m_ops || !m_ops->slave_changelink)
  1891. return -EOPNOTSUPP;
  1892. err = m_ops->slave_changelink(master_dev, dev,
  1893. tb, slave_data);
  1894. if (err < 0)
  1895. return err;
  1896. status |= DO_SETLINK_NOTIFY;
  1897. }
  1898. return do_setlink(skb, dev, ifm, tb, ifname, status);
  1899. }
  1900. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1901. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1902. return rtnl_group_changelink(skb, net,
  1903. nla_get_u32(tb[IFLA_GROUP]),
  1904. ifm, tb);
  1905. return -ENODEV;
  1906. }
  1907. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1908. return -EOPNOTSUPP;
  1909. if (!ops) {
  1910. #ifdef CONFIG_MODULES
  1911. if (kind[0]) {
  1912. __rtnl_unlock();
  1913. request_module("rtnl-link-%s", kind);
  1914. rtnl_lock();
  1915. ops = rtnl_link_ops_get(kind);
  1916. if (ops)
  1917. goto replay;
  1918. }
  1919. #endif
  1920. return -EOPNOTSUPP;
  1921. }
  1922. if (!ops->setup)
  1923. return -EOPNOTSUPP;
  1924. if (!ifname[0]) {
  1925. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1926. name_assign_type = NET_NAME_ENUM;
  1927. }
  1928. dest_net = rtnl_link_get_net(net, tb);
  1929. if (IS_ERR(dest_net))
  1930. return PTR_ERR(dest_net);
  1931. err = -EPERM;
  1932. if (!netlink_ns_capable(skb, dest_net->user_ns, CAP_NET_ADMIN))
  1933. goto out;
  1934. if (tb[IFLA_LINK_NETNSID]) {
  1935. int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
  1936. link_net = get_net_ns_by_id(dest_net, id);
  1937. if (!link_net) {
  1938. err = -EINVAL;
  1939. goto out;
  1940. }
  1941. err = -EPERM;
  1942. if (!netlink_ns_capable(skb, link_net->user_ns, CAP_NET_ADMIN))
  1943. goto out;
  1944. }
  1945. dev = rtnl_create_link(link_net ? : dest_net, ifname,
  1946. name_assign_type, ops, tb);
  1947. if (IS_ERR(dev)) {
  1948. err = PTR_ERR(dev);
  1949. goto out;
  1950. }
  1951. dev->ifindex = ifm->ifi_index;
  1952. if (ops->newlink) {
  1953. err = ops->newlink(link_net ? : net, dev, tb, data);
  1954. /* Drivers should call free_netdev() in ->destructor
  1955. * and unregister it on failure after registration
  1956. * so that device could be finally freed in rtnl_unlock.
  1957. */
  1958. if (err < 0) {
  1959. /* If device is not registered at all, free it now */
  1960. if (dev->reg_state == NETREG_UNINITIALIZED)
  1961. free_netdev(dev);
  1962. goto out;
  1963. }
  1964. } else {
  1965. err = register_netdevice(dev);
  1966. if (err < 0) {
  1967. free_netdev(dev);
  1968. goto out;
  1969. }
  1970. }
  1971. err = rtnl_configure_link(dev, ifm);
  1972. if (err < 0)
  1973. goto out_unregister;
  1974. if (link_net) {
  1975. err = dev_change_net_namespace(dev, dest_net, ifname);
  1976. if (err < 0)
  1977. goto out_unregister;
  1978. }
  1979. out:
  1980. if (link_net)
  1981. put_net(link_net);
  1982. put_net(dest_net);
  1983. return err;
  1984. out_unregister:
  1985. if (ops->newlink) {
  1986. LIST_HEAD(list_kill);
  1987. ops->dellink(dev, &list_kill);
  1988. unregister_netdevice_many(&list_kill);
  1989. } else {
  1990. unregister_netdevice(dev);
  1991. }
  1992. goto out;
  1993. }
  1994. }
  1995. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1996. {
  1997. struct net *net = sock_net(skb->sk);
  1998. struct ifinfomsg *ifm;
  1999. char ifname[IFNAMSIZ];
  2000. struct nlattr *tb[IFLA_MAX+1];
  2001. struct net_device *dev = NULL;
  2002. struct sk_buff *nskb;
  2003. int err;
  2004. u32 ext_filter_mask = 0;
  2005. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  2006. if (err < 0)
  2007. return err;
  2008. if (tb[IFLA_IFNAME])
  2009. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  2010. if (tb[IFLA_EXT_MASK])
  2011. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2012. ifm = nlmsg_data(nlh);
  2013. if (ifm->ifi_index > 0)
  2014. dev = __dev_get_by_index(net, ifm->ifi_index);
  2015. else if (tb[IFLA_IFNAME])
  2016. dev = __dev_get_by_name(net, ifname);
  2017. else
  2018. return -EINVAL;
  2019. if (dev == NULL)
  2020. return -ENODEV;
  2021. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  2022. if (nskb == NULL)
  2023. return -ENOBUFS;
  2024. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  2025. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  2026. if (err < 0) {
  2027. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  2028. WARN_ON(err == -EMSGSIZE);
  2029. kfree_skb(nskb);
  2030. } else
  2031. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  2032. return err;
  2033. }
  2034. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  2035. {
  2036. struct net *net = sock_net(skb->sk);
  2037. struct net_device *dev;
  2038. struct nlattr *tb[IFLA_MAX+1];
  2039. u32 ext_filter_mask = 0;
  2040. u16 min_ifinfo_dump_size = 0;
  2041. int hdrlen;
  2042. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  2043. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  2044. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  2045. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  2046. if (tb[IFLA_EXT_MASK])
  2047. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  2048. }
  2049. if (!ext_filter_mask)
  2050. return NLMSG_GOODSIZE;
  2051. /*
  2052. * traverse the list of net devices and compute the minimum
  2053. * buffer size based upon the filter mask.
  2054. */
  2055. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  2056. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  2057. if_nlmsg_size(dev,
  2058. ext_filter_mask));
  2059. }
  2060. return min_ifinfo_dump_size;
  2061. }
  2062. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  2063. {
  2064. int idx;
  2065. int s_idx = cb->family;
  2066. if (s_idx == 0)
  2067. s_idx = 1;
  2068. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  2069. int type = cb->nlh->nlmsg_type-RTM_BASE;
  2070. if (idx < s_idx || idx == PF_PACKET)
  2071. continue;
  2072. if (rtnl_msg_handlers[idx] == NULL ||
  2073. rtnl_msg_handlers[idx][type].dumpit == NULL)
  2074. continue;
  2075. if (idx > s_idx) {
  2076. memset(&cb->args[0], 0, sizeof(cb->args));
  2077. cb->prev_seq = 0;
  2078. cb->seq = 0;
  2079. }
  2080. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  2081. break;
  2082. }
  2083. cb->family = idx;
  2084. return skb->len;
  2085. }
  2086. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  2087. unsigned int change, gfp_t flags)
  2088. {
  2089. struct net *net = dev_net(dev);
  2090. struct sk_buff *skb;
  2091. int err = -ENOBUFS;
  2092. size_t if_info_size;
  2093. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  2094. if (skb == NULL)
  2095. goto errout;
  2096. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  2097. if (err < 0) {
  2098. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  2099. WARN_ON(err == -EMSGSIZE);
  2100. kfree_skb(skb);
  2101. goto errout;
  2102. }
  2103. return skb;
  2104. errout:
  2105. if (err < 0)
  2106. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2107. return NULL;
  2108. }
  2109. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  2110. {
  2111. struct net *net = dev_net(dev);
  2112. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  2113. }
  2114. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  2115. gfp_t flags)
  2116. {
  2117. struct sk_buff *skb;
  2118. if (dev->reg_state != NETREG_REGISTERED)
  2119. return;
  2120. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  2121. if (skb)
  2122. rtmsg_ifinfo_send(skb, dev, flags);
  2123. }
  2124. EXPORT_SYMBOL(rtmsg_ifinfo);
  2125. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  2126. struct net_device *dev,
  2127. u8 *addr, u16 vid, u32 pid, u32 seq,
  2128. int type, unsigned int flags,
  2129. int nlflags)
  2130. {
  2131. struct nlmsghdr *nlh;
  2132. struct ndmsg *ndm;
  2133. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  2134. if (!nlh)
  2135. return -EMSGSIZE;
  2136. ndm = nlmsg_data(nlh);
  2137. ndm->ndm_family = AF_BRIDGE;
  2138. ndm->ndm_pad1 = 0;
  2139. ndm->ndm_pad2 = 0;
  2140. ndm->ndm_flags = flags;
  2141. ndm->ndm_type = 0;
  2142. ndm->ndm_ifindex = dev->ifindex;
  2143. ndm->ndm_state = NUD_PERMANENT;
  2144. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  2145. goto nla_put_failure;
  2146. if (vid)
  2147. if (nla_put(skb, NDA_VLAN, sizeof(u16), &vid))
  2148. goto nla_put_failure;
  2149. nlmsg_end(skb, nlh);
  2150. return 0;
  2151. nla_put_failure:
  2152. nlmsg_cancel(skb, nlh);
  2153. return -EMSGSIZE;
  2154. }
  2155. static inline size_t rtnl_fdb_nlmsg_size(void)
  2156. {
  2157. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  2158. }
  2159. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, u16 vid, int type)
  2160. {
  2161. struct net *net = dev_net(dev);
  2162. struct sk_buff *skb;
  2163. int err = -ENOBUFS;
  2164. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  2165. if (!skb)
  2166. goto errout;
  2167. err = nlmsg_populate_fdb_fill(skb, dev, addr, vid,
  2168. 0, 0, type, NTF_SELF, 0);
  2169. if (err < 0) {
  2170. kfree_skb(skb);
  2171. goto errout;
  2172. }
  2173. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2174. return;
  2175. errout:
  2176. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2177. }
  2178. /**
  2179. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2180. */
  2181. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2182. struct nlattr *tb[],
  2183. struct net_device *dev,
  2184. const unsigned char *addr, u16 vid,
  2185. u16 flags)
  2186. {
  2187. int err = -EINVAL;
  2188. /* If aging addresses are supported device will need to
  2189. * implement its own handler for this.
  2190. */
  2191. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2192. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2193. return err;
  2194. }
  2195. if (vid) {
  2196. pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
  2197. return err;
  2198. }
  2199. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2200. err = dev_uc_add_excl(dev, addr);
  2201. else if (is_multicast_ether_addr(addr))
  2202. err = dev_mc_add_excl(dev, addr);
  2203. /* Only return duplicate errors if NLM_F_EXCL is set */
  2204. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2205. err = 0;
  2206. return err;
  2207. }
  2208. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2209. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2210. {
  2211. u16 vid = 0;
  2212. if (vlan_attr) {
  2213. if (nla_len(vlan_attr) != sizeof(u16)) {
  2214. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2215. return -EINVAL;
  2216. }
  2217. vid = nla_get_u16(vlan_attr);
  2218. if (!vid || vid >= VLAN_VID_MASK) {
  2219. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2220. vid);
  2221. return -EINVAL;
  2222. }
  2223. }
  2224. *p_vid = vid;
  2225. return 0;
  2226. }
  2227. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2228. {
  2229. struct net *net = sock_net(skb->sk);
  2230. struct ndmsg *ndm;
  2231. struct nlattr *tb[NDA_MAX+1];
  2232. struct net_device *dev;
  2233. u8 *addr;
  2234. u16 vid;
  2235. int err;
  2236. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2237. if (err < 0)
  2238. return err;
  2239. ndm = nlmsg_data(nlh);
  2240. if (ndm->ndm_ifindex == 0) {
  2241. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2242. return -EINVAL;
  2243. }
  2244. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2245. if (dev == NULL) {
  2246. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2247. return -ENODEV;
  2248. }
  2249. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2250. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2251. return -EINVAL;
  2252. }
  2253. addr = nla_data(tb[NDA_LLADDR]);
  2254. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2255. if (err)
  2256. return err;
  2257. err = -EOPNOTSUPP;
  2258. /* Support fdb on master device the net/bridge default case */
  2259. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2260. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2261. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2262. const struct net_device_ops *ops = br_dev->netdev_ops;
  2263. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2264. nlh->nlmsg_flags);
  2265. if (err)
  2266. goto out;
  2267. else
  2268. ndm->ndm_flags &= ~NTF_MASTER;
  2269. }
  2270. /* Embedded bridge, macvlan, and any other device support */
  2271. if ((ndm->ndm_flags & NTF_SELF)) {
  2272. if (dev->netdev_ops->ndo_fdb_add)
  2273. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2274. vid,
  2275. nlh->nlmsg_flags);
  2276. else
  2277. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2278. nlh->nlmsg_flags);
  2279. if (!err) {
  2280. rtnl_fdb_notify(dev, addr, vid, RTM_NEWNEIGH);
  2281. ndm->ndm_flags &= ~NTF_SELF;
  2282. }
  2283. }
  2284. out:
  2285. return err;
  2286. }
  2287. /**
  2288. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2289. */
  2290. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2291. struct nlattr *tb[],
  2292. struct net_device *dev,
  2293. const unsigned char *addr, u16 vid)
  2294. {
  2295. int err = -EINVAL;
  2296. /* If aging addresses are supported device will need to
  2297. * implement its own handler for this.
  2298. */
  2299. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2300. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2301. return err;
  2302. }
  2303. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2304. err = dev_uc_del(dev, addr);
  2305. else if (is_multicast_ether_addr(addr))
  2306. err = dev_mc_del(dev, addr);
  2307. return err;
  2308. }
  2309. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2310. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2311. {
  2312. struct net *net = sock_net(skb->sk);
  2313. struct ndmsg *ndm;
  2314. struct nlattr *tb[NDA_MAX+1];
  2315. struct net_device *dev;
  2316. int err = -EINVAL;
  2317. __u8 *addr;
  2318. u16 vid;
  2319. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2320. return -EPERM;
  2321. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2322. if (err < 0)
  2323. return err;
  2324. ndm = nlmsg_data(nlh);
  2325. if (ndm->ndm_ifindex == 0) {
  2326. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2327. return -EINVAL;
  2328. }
  2329. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2330. if (dev == NULL) {
  2331. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2332. return -ENODEV;
  2333. }
  2334. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2335. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2336. return -EINVAL;
  2337. }
  2338. addr = nla_data(tb[NDA_LLADDR]);
  2339. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2340. if (err)
  2341. return err;
  2342. err = -EOPNOTSUPP;
  2343. /* Support fdb on master device the net/bridge default case */
  2344. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2345. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2346. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2347. const struct net_device_ops *ops = br_dev->netdev_ops;
  2348. if (ops->ndo_fdb_del)
  2349. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2350. if (err)
  2351. goto out;
  2352. else
  2353. ndm->ndm_flags &= ~NTF_MASTER;
  2354. }
  2355. /* Embedded bridge, macvlan, and any other device support */
  2356. if (ndm->ndm_flags & NTF_SELF) {
  2357. if (dev->netdev_ops->ndo_fdb_del)
  2358. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2359. vid);
  2360. else
  2361. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2362. if (!err) {
  2363. rtnl_fdb_notify(dev, addr, vid, RTM_DELNEIGH);
  2364. ndm->ndm_flags &= ~NTF_SELF;
  2365. }
  2366. }
  2367. out:
  2368. return err;
  2369. }
  2370. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2371. struct netlink_callback *cb,
  2372. struct net_device *dev,
  2373. int *idx,
  2374. struct netdev_hw_addr_list *list)
  2375. {
  2376. struct netdev_hw_addr *ha;
  2377. int err;
  2378. u32 portid, seq;
  2379. portid = NETLINK_CB(cb->skb).portid;
  2380. seq = cb->nlh->nlmsg_seq;
  2381. list_for_each_entry(ha, &list->list, list) {
  2382. if (*idx < cb->args[0])
  2383. goto skip;
  2384. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr, 0,
  2385. portid, seq,
  2386. RTM_NEWNEIGH, NTF_SELF,
  2387. NLM_F_MULTI);
  2388. if (err < 0)
  2389. return err;
  2390. skip:
  2391. *idx += 1;
  2392. }
  2393. return 0;
  2394. }
  2395. /**
  2396. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2397. * @nlh: netlink message header
  2398. * @dev: netdevice
  2399. *
  2400. * Default netdevice operation to dump the existing unicast address list.
  2401. * Returns number of addresses from list put in skb.
  2402. */
  2403. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2404. struct netlink_callback *cb,
  2405. struct net_device *dev,
  2406. struct net_device *filter_dev,
  2407. int idx)
  2408. {
  2409. int err;
  2410. netif_addr_lock_bh(dev);
  2411. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2412. if (err)
  2413. goto out;
  2414. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2415. out:
  2416. netif_addr_unlock_bh(dev);
  2417. return idx;
  2418. }
  2419. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2420. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2421. {
  2422. struct net_device *dev;
  2423. struct nlattr *tb[IFLA_MAX+1];
  2424. struct net_device *br_dev = NULL;
  2425. const struct net_device_ops *ops = NULL;
  2426. const struct net_device_ops *cops = NULL;
  2427. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2428. struct net *net = sock_net(skb->sk);
  2429. int brport_idx = 0;
  2430. int br_idx = 0;
  2431. int idx = 0;
  2432. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2433. ifla_policy) == 0) {
  2434. if (tb[IFLA_MASTER])
  2435. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2436. }
  2437. brport_idx = ifm->ifi_index;
  2438. if (br_idx) {
  2439. br_dev = __dev_get_by_index(net, br_idx);
  2440. if (!br_dev)
  2441. return -ENODEV;
  2442. ops = br_dev->netdev_ops;
  2443. }
  2444. for_each_netdev(net, dev) {
  2445. if (brport_idx && (dev->ifindex != brport_idx))
  2446. continue;
  2447. if (!br_idx) { /* user did not specify a specific bridge */
  2448. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2449. br_dev = netdev_master_upper_dev_get(dev);
  2450. cops = br_dev->netdev_ops;
  2451. }
  2452. } else {
  2453. if (dev != br_dev &&
  2454. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2455. continue;
  2456. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2457. !(dev->priv_flags & IFF_EBRIDGE))
  2458. continue;
  2459. cops = ops;
  2460. }
  2461. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2462. if (cops && cops->ndo_fdb_dump)
  2463. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2464. idx);
  2465. }
  2466. if (dev->netdev_ops->ndo_fdb_dump)
  2467. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, dev, NULL,
  2468. idx);
  2469. else
  2470. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2471. cops = NULL;
  2472. }
  2473. cb->args[0] = idx;
  2474. return skb->len;
  2475. }
  2476. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2477. unsigned int attrnum, unsigned int flag)
  2478. {
  2479. if (mask & flag)
  2480. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2481. return 0;
  2482. }
  2483. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2484. struct net_device *dev, u16 mode,
  2485. u32 flags, u32 mask, int nlflags,
  2486. u32 filter_mask,
  2487. int (*vlan_fill)(struct sk_buff *skb,
  2488. struct net_device *dev,
  2489. u32 filter_mask))
  2490. {
  2491. struct nlmsghdr *nlh;
  2492. struct ifinfomsg *ifm;
  2493. struct nlattr *br_afspec;
  2494. struct nlattr *protinfo;
  2495. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2496. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2497. int err = 0;
  2498. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), nlflags);
  2499. if (nlh == NULL)
  2500. return -EMSGSIZE;
  2501. ifm = nlmsg_data(nlh);
  2502. ifm->ifi_family = AF_BRIDGE;
  2503. ifm->__ifi_pad = 0;
  2504. ifm->ifi_type = dev->type;
  2505. ifm->ifi_index = dev->ifindex;
  2506. ifm->ifi_flags = dev_get_flags(dev);
  2507. ifm->ifi_change = 0;
  2508. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2509. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2510. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2511. (br_dev &&
  2512. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2513. (dev->addr_len &&
  2514. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2515. (dev->ifindex != dev_get_iflink(dev) &&
  2516. nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))))
  2517. goto nla_put_failure;
  2518. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2519. if (!br_afspec)
  2520. goto nla_put_failure;
  2521. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
  2522. nla_nest_cancel(skb, br_afspec);
  2523. goto nla_put_failure;
  2524. }
  2525. if (mode != BRIDGE_MODE_UNDEF) {
  2526. if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2527. nla_nest_cancel(skb, br_afspec);
  2528. goto nla_put_failure;
  2529. }
  2530. }
  2531. if (vlan_fill) {
  2532. err = vlan_fill(skb, dev, filter_mask);
  2533. if (err) {
  2534. nla_nest_cancel(skb, br_afspec);
  2535. goto nla_put_failure;
  2536. }
  2537. }
  2538. nla_nest_end(skb, br_afspec);
  2539. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2540. if (!protinfo)
  2541. goto nla_put_failure;
  2542. if (brport_nla_put_flag(skb, flags, mask,
  2543. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2544. brport_nla_put_flag(skb, flags, mask,
  2545. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2546. brport_nla_put_flag(skb, flags, mask,
  2547. IFLA_BRPORT_FAST_LEAVE,
  2548. BR_MULTICAST_FAST_LEAVE) ||
  2549. brport_nla_put_flag(skb, flags, mask,
  2550. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2551. brport_nla_put_flag(skb, flags, mask,
  2552. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2553. brport_nla_put_flag(skb, flags, mask,
  2554. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2555. brport_nla_put_flag(skb, flags, mask,
  2556. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2557. brport_nla_put_flag(skb, flags, mask,
  2558. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2559. nla_nest_cancel(skb, protinfo);
  2560. goto nla_put_failure;
  2561. }
  2562. nla_nest_end(skb, protinfo);
  2563. nlmsg_end(skb, nlh);
  2564. return 0;
  2565. nla_put_failure:
  2566. nlmsg_cancel(skb, nlh);
  2567. return err ? err : -EMSGSIZE;
  2568. }
  2569. EXPORT_SYMBOL_GPL(ndo_dflt_bridge_getlink);
  2570. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2571. {
  2572. struct net *net = sock_net(skb->sk);
  2573. struct net_device *dev;
  2574. int idx = 0;
  2575. u32 portid = NETLINK_CB(cb->skb).portid;
  2576. u32 seq = cb->nlh->nlmsg_seq;
  2577. u32 filter_mask = 0;
  2578. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2579. struct nlattr *extfilt;
  2580. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2581. IFLA_EXT_MASK);
  2582. if (extfilt) {
  2583. if (nla_len(extfilt) < sizeof(filter_mask))
  2584. return -EINVAL;
  2585. filter_mask = nla_get_u32(extfilt);
  2586. }
  2587. }
  2588. rcu_read_lock();
  2589. for_each_netdev_rcu(net, dev) {
  2590. const struct net_device_ops *ops = dev->netdev_ops;
  2591. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2592. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2593. if (idx >= cb->args[0] &&
  2594. br_dev->netdev_ops->ndo_bridge_getlink(
  2595. skb, portid, seq, dev, filter_mask,
  2596. NLM_F_MULTI) < 0)
  2597. break;
  2598. idx++;
  2599. }
  2600. if (ops->ndo_bridge_getlink) {
  2601. if (idx >= cb->args[0] &&
  2602. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2603. filter_mask,
  2604. NLM_F_MULTI) < 0)
  2605. break;
  2606. idx++;
  2607. }
  2608. }
  2609. rcu_read_unlock();
  2610. cb->args[0] = idx;
  2611. return skb->len;
  2612. }
  2613. static inline size_t bridge_nlmsg_size(void)
  2614. {
  2615. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2616. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2617. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2618. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2619. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2620. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2621. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2622. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2623. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2624. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2625. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2626. }
  2627. static int rtnl_bridge_notify(struct net_device *dev)
  2628. {
  2629. struct net *net = dev_net(dev);
  2630. struct sk_buff *skb;
  2631. int err = -EOPNOTSUPP;
  2632. if (!dev->netdev_ops->ndo_bridge_getlink)
  2633. return 0;
  2634. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2635. if (!skb) {
  2636. err = -ENOMEM;
  2637. goto errout;
  2638. }
  2639. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0, 0);
  2640. if (err < 0)
  2641. goto errout;
  2642. if (!skb->len)
  2643. goto errout;
  2644. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2645. return 0;
  2646. errout:
  2647. WARN_ON(err == -EMSGSIZE);
  2648. kfree_skb(skb);
  2649. if (err)
  2650. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2651. return err;
  2652. }
  2653. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2654. {
  2655. struct net *net = sock_net(skb->sk);
  2656. struct ifinfomsg *ifm;
  2657. struct net_device *dev;
  2658. struct nlattr *br_spec, *attr = NULL;
  2659. int rem, err = -EOPNOTSUPP;
  2660. u16 flags = 0;
  2661. bool have_flags = false;
  2662. if (nlmsg_len(nlh) < sizeof(*ifm))
  2663. return -EINVAL;
  2664. ifm = nlmsg_data(nlh);
  2665. if (ifm->ifi_family != AF_BRIDGE)
  2666. return -EPFNOSUPPORT;
  2667. dev = __dev_get_by_index(net, ifm->ifi_index);
  2668. if (!dev) {
  2669. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2670. return -ENODEV;
  2671. }
  2672. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2673. if (br_spec) {
  2674. nla_for_each_nested(attr, br_spec, rem) {
  2675. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2676. if (nla_len(attr) < sizeof(flags))
  2677. return -EINVAL;
  2678. have_flags = true;
  2679. flags = nla_get_u16(attr);
  2680. break;
  2681. }
  2682. }
  2683. }
  2684. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2685. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2686. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2687. err = -EOPNOTSUPP;
  2688. goto out;
  2689. }
  2690. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh, flags);
  2691. if (err)
  2692. goto out;
  2693. flags &= ~BRIDGE_FLAGS_MASTER;
  2694. }
  2695. if ((flags & BRIDGE_FLAGS_SELF)) {
  2696. if (!dev->netdev_ops->ndo_bridge_setlink)
  2697. err = -EOPNOTSUPP;
  2698. else
  2699. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh,
  2700. flags);
  2701. if (!err) {
  2702. flags &= ~BRIDGE_FLAGS_SELF;
  2703. /* Generate event to notify upper layer of bridge
  2704. * change
  2705. */
  2706. err = rtnl_bridge_notify(dev);
  2707. }
  2708. }
  2709. if (have_flags)
  2710. memcpy(nla_data(attr), &flags, sizeof(flags));
  2711. out:
  2712. return err;
  2713. }
  2714. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2715. {
  2716. struct net *net = sock_net(skb->sk);
  2717. struct ifinfomsg *ifm;
  2718. struct net_device *dev;
  2719. struct nlattr *br_spec, *attr = NULL;
  2720. int rem, err = -EOPNOTSUPP;
  2721. u16 flags = 0;
  2722. bool have_flags = false;
  2723. if (nlmsg_len(nlh) < sizeof(*ifm))
  2724. return -EINVAL;
  2725. ifm = nlmsg_data(nlh);
  2726. if (ifm->ifi_family != AF_BRIDGE)
  2727. return -EPFNOSUPPORT;
  2728. dev = __dev_get_by_index(net, ifm->ifi_index);
  2729. if (!dev) {
  2730. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2731. return -ENODEV;
  2732. }
  2733. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2734. if (br_spec) {
  2735. nla_for_each_nested(attr, br_spec, rem) {
  2736. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2737. if (nla_len(attr) < sizeof(flags))
  2738. return -EINVAL;
  2739. have_flags = true;
  2740. flags = nla_get_u16(attr);
  2741. break;
  2742. }
  2743. }
  2744. }
  2745. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2746. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2747. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2748. err = -EOPNOTSUPP;
  2749. goto out;
  2750. }
  2751. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh, flags);
  2752. if (err)
  2753. goto out;
  2754. flags &= ~BRIDGE_FLAGS_MASTER;
  2755. }
  2756. if ((flags & BRIDGE_FLAGS_SELF)) {
  2757. if (!dev->netdev_ops->ndo_bridge_dellink)
  2758. err = -EOPNOTSUPP;
  2759. else
  2760. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh,
  2761. flags);
  2762. if (!err) {
  2763. flags &= ~BRIDGE_FLAGS_SELF;
  2764. /* Generate event to notify upper layer of bridge
  2765. * change
  2766. */
  2767. err = rtnl_bridge_notify(dev);
  2768. }
  2769. }
  2770. if (have_flags)
  2771. memcpy(nla_data(attr), &flags, sizeof(flags));
  2772. out:
  2773. return err;
  2774. }
  2775. /* Process one rtnetlink message. */
  2776. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2777. {
  2778. struct net *net = sock_net(skb->sk);
  2779. rtnl_doit_func doit;
  2780. int sz_idx, kind;
  2781. int family;
  2782. int type;
  2783. int err;
  2784. type = nlh->nlmsg_type;
  2785. if (type > RTM_MAX)
  2786. return -EOPNOTSUPP;
  2787. type -= RTM_BASE;
  2788. /* All the messages must have at least 1 byte length */
  2789. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2790. return 0;
  2791. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2792. sz_idx = type>>2;
  2793. kind = type&3;
  2794. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2795. return -EPERM;
  2796. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2797. struct sock *rtnl;
  2798. rtnl_dumpit_func dumpit;
  2799. rtnl_calcit_func calcit;
  2800. u16 min_dump_alloc = 0;
  2801. dumpit = rtnl_get_dumpit(family, type);
  2802. if (dumpit == NULL)
  2803. return -EOPNOTSUPP;
  2804. calcit = rtnl_get_calcit(family, type);
  2805. if (calcit)
  2806. min_dump_alloc = calcit(skb, nlh);
  2807. __rtnl_unlock();
  2808. rtnl = net->rtnl;
  2809. {
  2810. struct netlink_dump_control c = {
  2811. .dump = dumpit,
  2812. .min_dump_alloc = min_dump_alloc,
  2813. };
  2814. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2815. }
  2816. rtnl_lock();
  2817. return err;
  2818. }
  2819. doit = rtnl_get_doit(family, type);
  2820. if (doit == NULL)
  2821. return -EOPNOTSUPP;
  2822. return doit(skb, nlh);
  2823. }
  2824. static void rtnetlink_rcv(struct sk_buff *skb)
  2825. {
  2826. rtnl_lock();
  2827. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2828. rtnl_unlock();
  2829. }
  2830. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2831. {
  2832. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2833. switch (event) {
  2834. case NETDEV_UP:
  2835. case NETDEV_DOWN:
  2836. case NETDEV_PRE_UP:
  2837. case NETDEV_POST_INIT:
  2838. case NETDEV_REGISTER:
  2839. case NETDEV_CHANGE:
  2840. case NETDEV_PRE_TYPE_CHANGE:
  2841. case NETDEV_GOING_DOWN:
  2842. case NETDEV_UNREGISTER:
  2843. case NETDEV_UNREGISTER_FINAL:
  2844. case NETDEV_RELEASE:
  2845. case NETDEV_JOIN:
  2846. case NETDEV_BONDING_INFO:
  2847. break;
  2848. default:
  2849. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2850. break;
  2851. }
  2852. return NOTIFY_DONE;
  2853. }
  2854. static struct notifier_block rtnetlink_dev_notifier = {
  2855. .notifier_call = rtnetlink_event,
  2856. };
  2857. static int __net_init rtnetlink_net_init(struct net *net)
  2858. {
  2859. struct sock *sk;
  2860. struct netlink_kernel_cfg cfg = {
  2861. .groups = RTNLGRP_MAX,
  2862. .input = rtnetlink_rcv,
  2863. .cb_mutex = &rtnl_mutex,
  2864. .flags = NL_CFG_F_NONROOT_RECV,
  2865. };
  2866. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2867. if (!sk)
  2868. return -ENOMEM;
  2869. net->rtnl = sk;
  2870. return 0;
  2871. }
  2872. static void __net_exit rtnetlink_net_exit(struct net *net)
  2873. {
  2874. netlink_kernel_release(net->rtnl);
  2875. net->rtnl = NULL;
  2876. }
  2877. static struct pernet_operations rtnetlink_net_ops = {
  2878. .init = rtnetlink_net_init,
  2879. .exit = rtnetlink_net_exit,
  2880. };
  2881. void __init rtnetlink_init(void)
  2882. {
  2883. if (register_pernet_subsys(&rtnetlink_net_ops))
  2884. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2885. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2886. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2887. rtnl_dump_ifinfo, rtnl_calcit);
  2888. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2889. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2890. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2891. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2892. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2893. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2894. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2895. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2896. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2897. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2898. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2899. }