fork.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE
  140. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  144. THREAD_SIZE_ORDER);
  145. if (page)
  146. memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
  147. 1 << THREAD_SIZE_ORDER);
  148. return page ? page_address(page) : NULL;
  149. }
  150. static inline void free_thread_stack(unsigned long *stack)
  151. {
  152. struct page *page = virt_to_page(stack);
  153. memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
  154. -(1 << THREAD_SIZE_ORDER));
  155. __free_pages(page, THREAD_SIZE_ORDER);
  156. }
  157. # else
  158. static struct kmem_cache *thread_stack_cache;
  159. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  160. int node)
  161. {
  162. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  163. }
  164. static void free_thread_stack(unsigned long *stack)
  165. {
  166. kmem_cache_free(thread_stack_cache, stack);
  167. }
  168. void thread_stack_cache_init(void)
  169. {
  170. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  171. THREAD_SIZE, 0, NULL);
  172. BUG_ON(thread_stack_cache == NULL);
  173. }
  174. # endif
  175. #endif
  176. /* SLAB cache for signal_struct structures (tsk->signal) */
  177. static struct kmem_cache *signal_cachep;
  178. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  179. struct kmem_cache *sighand_cachep;
  180. /* SLAB cache for files_struct structures (tsk->files) */
  181. struct kmem_cache *files_cachep;
  182. /* SLAB cache for fs_struct structures (tsk->fs) */
  183. struct kmem_cache *fs_cachep;
  184. /* SLAB cache for vm_area_struct structures */
  185. struct kmem_cache *vm_area_cachep;
  186. /* SLAB cache for mm_struct structures (tsk->mm) */
  187. static struct kmem_cache *mm_cachep;
  188. static void account_kernel_stack(unsigned long *stack, int account)
  189. {
  190. struct zone *zone = page_zone(virt_to_page(stack));
  191. mod_zone_page_state(zone, NR_KERNEL_STACK_KB,
  192. THREAD_SIZE / 1024 * account);
  193. }
  194. void free_task(struct task_struct *tsk)
  195. {
  196. account_kernel_stack(tsk->stack, -1);
  197. arch_release_thread_stack(tsk->stack);
  198. free_thread_stack(tsk->stack);
  199. rt_mutex_debug_task_free(tsk);
  200. ftrace_graph_exit_task(tsk);
  201. put_seccomp_filter(tsk);
  202. arch_release_task_struct(tsk);
  203. free_task_struct(tsk);
  204. }
  205. EXPORT_SYMBOL(free_task);
  206. static inline void free_signal_struct(struct signal_struct *sig)
  207. {
  208. taskstats_tgid_free(sig);
  209. sched_autogroup_exit(sig);
  210. kmem_cache_free(signal_cachep, sig);
  211. }
  212. static inline void put_signal_struct(struct signal_struct *sig)
  213. {
  214. if (atomic_dec_and_test(&sig->sigcnt))
  215. free_signal_struct(sig);
  216. }
  217. void __put_task_struct(struct task_struct *tsk)
  218. {
  219. WARN_ON(!tsk->exit_state);
  220. WARN_ON(atomic_read(&tsk->usage));
  221. WARN_ON(tsk == current);
  222. cgroup_free(tsk);
  223. task_numa_free(tsk);
  224. security_task_free(tsk);
  225. exit_creds(tsk);
  226. delayacct_tsk_free(tsk);
  227. put_signal_struct(tsk->signal);
  228. if (!profile_handoff_task(tsk))
  229. free_task(tsk);
  230. }
  231. EXPORT_SYMBOL_GPL(__put_task_struct);
  232. void __init __weak arch_task_cache_init(void) { }
  233. /*
  234. * set_max_threads
  235. */
  236. static void set_max_threads(unsigned int max_threads_suggested)
  237. {
  238. u64 threads;
  239. /*
  240. * The number of threads shall be limited such that the thread
  241. * structures may only consume a small part of the available memory.
  242. */
  243. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  244. threads = MAX_THREADS;
  245. else
  246. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  247. (u64) THREAD_SIZE * 8UL);
  248. if (threads > max_threads_suggested)
  249. threads = max_threads_suggested;
  250. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  251. }
  252. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  253. /* Initialized by the architecture: */
  254. int arch_task_struct_size __read_mostly;
  255. #endif
  256. void __init fork_init(void)
  257. {
  258. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  259. #ifndef ARCH_MIN_TASKALIGN
  260. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  261. #endif
  262. /* create a slab on which task_structs can be allocated */
  263. task_struct_cachep = kmem_cache_create("task_struct",
  264. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  265. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  266. #endif
  267. /* do the arch specific task caches init */
  268. arch_task_cache_init();
  269. set_max_threads(MAX_THREADS);
  270. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  271. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  272. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  273. init_task.signal->rlim[RLIMIT_NPROC];
  274. }
  275. int __weak arch_dup_task_struct(struct task_struct *dst,
  276. struct task_struct *src)
  277. {
  278. *dst = *src;
  279. return 0;
  280. }
  281. void set_task_stack_end_magic(struct task_struct *tsk)
  282. {
  283. unsigned long *stackend;
  284. stackend = end_of_stack(tsk);
  285. *stackend = STACK_END_MAGIC; /* for overflow detection */
  286. }
  287. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  288. {
  289. struct task_struct *tsk;
  290. unsigned long *stack;
  291. int err;
  292. if (node == NUMA_NO_NODE)
  293. node = tsk_fork_get_node(orig);
  294. tsk = alloc_task_struct_node(node);
  295. if (!tsk)
  296. return NULL;
  297. stack = alloc_thread_stack_node(tsk, node);
  298. if (!stack)
  299. goto free_tsk;
  300. err = arch_dup_task_struct(tsk, orig);
  301. if (err)
  302. goto free_stack;
  303. tsk->stack = stack;
  304. #ifdef CONFIG_SECCOMP
  305. /*
  306. * We must handle setting up seccomp filters once we're under
  307. * the sighand lock in case orig has changed between now and
  308. * then. Until then, filter must be NULL to avoid messing up
  309. * the usage counts on the error path calling free_task.
  310. */
  311. tsk->seccomp.filter = NULL;
  312. #endif
  313. setup_thread_stack(tsk, orig);
  314. clear_user_return_notifier(tsk);
  315. clear_tsk_need_resched(tsk);
  316. set_task_stack_end_magic(tsk);
  317. #ifdef CONFIG_CC_STACKPROTECTOR
  318. tsk->stack_canary = get_random_int();
  319. #endif
  320. /*
  321. * One for us, one for whoever does the "release_task()" (usually
  322. * parent)
  323. */
  324. atomic_set(&tsk->usage, 2);
  325. #ifdef CONFIG_BLK_DEV_IO_TRACE
  326. tsk->btrace_seq = 0;
  327. #endif
  328. tsk->splice_pipe = NULL;
  329. tsk->task_frag.page = NULL;
  330. tsk->wake_q.next = NULL;
  331. account_kernel_stack(stack, 1);
  332. kcov_task_init(tsk);
  333. return tsk;
  334. free_stack:
  335. free_thread_stack(stack);
  336. free_tsk:
  337. free_task_struct(tsk);
  338. return NULL;
  339. }
  340. #ifdef CONFIG_MMU
  341. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  342. {
  343. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  344. struct rb_node **rb_link, *rb_parent;
  345. int retval;
  346. unsigned long charge;
  347. uprobe_start_dup_mmap();
  348. if (down_write_killable(&oldmm->mmap_sem)) {
  349. retval = -EINTR;
  350. goto fail_uprobe_end;
  351. }
  352. flush_cache_dup_mm(oldmm);
  353. uprobe_dup_mmap(oldmm, mm);
  354. /*
  355. * Not linked in yet - no deadlock potential:
  356. */
  357. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  358. /* No ordering required: file already has been exposed. */
  359. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  360. mm->total_vm = oldmm->total_vm;
  361. mm->data_vm = oldmm->data_vm;
  362. mm->exec_vm = oldmm->exec_vm;
  363. mm->stack_vm = oldmm->stack_vm;
  364. rb_link = &mm->mm_rb.rb_node;
  365. rb_parent = NULL;
  366. pprev = &mm->mmap;
  367. retval = ksm_fork(mm, oldmm);
  368. if (retval)
  369. goto out;
  370. retval = khugepaged_fork(mm, oldmm);
  371. if (retval)
  372. goto out;
  373. prev = NULL;
  374. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  375. struct file *file;
  376. if (mpnt->vm_flags & VM_DONTCOPY) {
  377. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  378. continue;
  379. }
  380. charge = 0;
  381. if (mpnt->vm_flags & VM_ACCOUNT) {
  382. unsigned long len = vma_pages(mpnt);
  383. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  384. goto fail_nomem;
  385. charge = len;
  386. }
  387. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  388. if (!tmp)
  389. goto fail_nomem;
  390. *tmp = *mpnt;
  391. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  392. retval = vma_dup_policy(mpnt, tmp);
  393. if (retval)
  394. goto fail_nomem_policy;
  395. tmp->vm_mm = mm;
  396. if (anon_vma_fork(tmp, mpnt))
  397. goto fail_nomem_anon_vma_fork;
  398. tmp->vm_flags &=
  399. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  400. tmp->vm_next = tmp->vm_prev = NULL;
  401. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  402. file = tmp->vm_file;
  403. if (file) {
  404. struct inode *inode = file_inode(file);
  405. struct address_space *mapping = file->f_mapping;
  406. get_file(file);
  407. if (tmp->vm_flags & VM_DENYWRITE)
  408. atomic_dec(&inode->i_writecount);
  409. i_mmap_lock_write(mapping);
  410. if (tmp->vm_flags & VM_SHARED)
  411. atomic_inc(&mapping->i_mmap_writable);
  412. flush_dcache_mmap_lock(mapping);
  413. /* insert tmp into the share list, just after mpnt */
  414. vma_interval_tree_insert_after(tmp, mpnt,
  415. &mapping->i_mmap);
  416. flush_dcache_mmap_unlock(mapping);
  417. i_mmap_unlock_write(mapping);
  418. }
  419. /*
  420. * Clear hugetlb-related page reserves for children. This only
  421. * affects MAP_PRIVATE mappings. Faults generated by the child
  422. * are not guaranteed to succeed, even if read-only
  423. */
  424. if (is_vm_hugetlb_page(tmp))
  425. reset_vma_resv_huge_pages(tmp);
  426. /*
  427. * Link in the new vma and copy the page table entries.
  428. */
  429. *pprev = tmp;
  430. pprev = &tmp->vm_next;
  431. tmp->vm_prev = prev;
  432. prev = tmp;
  433. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  434. rb_link = &tmp->vm_rb.rb_right;
  435. rb_parent = &tmp->vm_rb;
  436. mm->map_count++;
  437. retval = copy_page_range(mm, oldmm, mpnt);
  438. if (tmp->vm_ops && tmp->vm_ops->open)
  439. tmp->vm_ops->open(tmp);
  440. if (retval)
  441. goto out;
  442. }
  443. /* a new mm has just been created */
  444. arch_dup_mmap(oldmm, mm);
  445. retval = 0;
  446. out:
  447. up_write(&mm->mmap_sem);
  448. flush_tlb_mm(oldmm);
  449. up_write(&oldmm->mmap_sem);
  450. fail_uprobe_end:
  451. uprobe_end_dup_mmap();
  452. return retval;
  453. fail_nomem_anon_vma_fork:
  454. mpol_put(vma_policy(tmp));
  455. fail_nomem_policy:
  456. kmem_cache_free(vm_area_cachep, tmp);
  457. fail_nomem:
  458. retval = -ENOMEM;
  459. vm_unacct_memory(charge);
  460. goto out;
  461. }
  462. static inline int mm_alloc_pgd(struct mm_struct *mm)
  463. {
  464. mm->pgd = pgd_alloc(mm);
  465. if (unlikely(!mm->pgd))
  466. return -ENOMEM;
  467. return 0;
  468. }
  469. static inline void mm_free_pgd(struct mm_struct *mm)
  470. {
  471. pgd_free(mm, mm->pgd);
  472. }
  473. #else
  474. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  475. {
  476. down_write(&oldmm->mmap_sem);
  477. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  478. up_write(&oldmm->mmap_sem);
  479. return 0;
  480. }
  481. #define mm_alloc_pgd(mm) (0)
  482. #define mm_free_pgd(mm)
  483. #endif /* CONFIG_MMU */
  484. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  485. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  486. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  487. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  488. static int __init coredump_filter_setup(char *s)
  489. {
  490. default_dump_filter =
  491. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  492. MMF_DUMP_FILTER_MASK;
  493. return 1;
  494. }
  495. __setup("coredump_filter=", coredump_filter_setup);
  496. #include <linux/init_task.h>
  497. static void mm_init_aio(struct mm_struct *mm)
  498. {
  499. #ifdef CONFIG_AIO
  500. spin_lock_init(&mm->ioctx_lock);
  501. mm->ioctx_table = NULL;
  502. #endif
  503. }
  504. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  505. {
  506. #ifdef CONFIG_MEMCG
  507. mm->owner = p;
  508. #endif
  509. }
  510. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  511. {
  512. mm->mmap = NULL;
  513. mm->mm_rb = RB_ROOT;
  514. mm->vmacache_seqnum = 0;
  515. atomic_set(&mm->mm_users, 1);
  516. atomic_set(&mm->mm_count, 1);
  517. init_rwsem(&mm->mmap_sem);
  518. INIT_LIST_HEAD(&mm->mmlist);
  519. mm->core_state = NULL;
  520. atomic_long_set(&mm->nr_ptes, 0);
  521. mm_nr_pmds_init(mm);
  522. mm->map_count = 0;
  523. mm->locked_vm = 0;
  524. mm->pinned_vm = 0;
  525. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  526. spin_lock_init(&mm->page_table_lock);
  527. mm_init_cpumask(mm);
  528. mm_init_aio(mm);
  529. mm_init_owner(mm, p);
  530. mmu_notifier_mm_init(mm);
  531. clear_tlb_flush_pending(mm);
  532. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  533. mm->pmd_huge_pte = NULL;
  534. #endif
  535. if (current->mm) {
  536. mm->flags = current->mm->flags & MMF_INIT_MASK;
  537. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  538. } else {
  539. mm->flags = default_dump_filter;
  540. mm->def_flags = 0;
  541. }
  542. if (mm_alloc_pgd(mm))
  543. goto fail_nopgd;
  544. if (init_new_context(p, mm))
  545. goto fail_nocontext;
  546. return mm;
  547. fail_nocontext:
  548. mm_free_pgd(mm);
  549. fail_nopgd:
  550. free_mm(mm);
  551. return NULL;
  552. }
  553. static void check_mm(struct mm_struct *mm)
  554. {
  555. int i;
  556. for (i = 0; i < NR_MM_COUNTERS; i++) {
  557. long x = atomic_long_read(&mm->rss_stat.count[i]);
  558. if (unlikely(x))
  559. printk(KERN_ALERT "BUG: Bad rss-counter state "
  560. "mm:%p idx:%d val:%ld\n", mm, i, x);
  561. }
  562. if (atomic_long_read(&mm->nr_ptes))
  563. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  564. atomic_long_read(&mm->nr_ptes));
  565. if (mm_nr_pmds(mm))
  566. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  567. mm_nr_pmds(mm));
  568. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  569. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  570. #endif
  571. }
  572. /*
  573. * Allocate and initialize an mm_struct.
  574. */
  575. struct mm_struct *mm_alloc(void)
  576. {
  577. struct mm_struct *mm;
  578. mm = allocate_mm();
  579. if (!mm)
  580. return NULL;
  581. memset(mm, 0, sizeof(*mm));
  582. return mm_init(mm, current);
  583. }
  584. /*
  585. * Called when the last reference to the mm
  586. * is dropped: either by a lazy thread or by
  587. * mmput. Free the page directory and the mm.
  588. */
  589. void __mmdrop(struct mm_struct *mm)
  590. {
  591. BUG_ON(mm == &init_mm);
  592. mm_free_pgd(mm);
  593. destroy_context(mm);
  594. mmu_notifier_mm_destroy(mm);
  595. check_mm(mm);
  596. free_mm(mm);
  597. }
  598. EXPORT_SYMBOL_GPL(__mmdrop);
  599. static inline void __mmput(struct mm_struct *mm)
  600. {
  601. VM_BUG_ON(atomic_read(&mm->mm_users));
  602. uprobe_clear_state(mm);
  603. exit_aio(mm);
  604. ksm_exit(mm);
  605. khugepaged_exit(mm); /* must run before exit_mmap */
  606. exit_mmap(mm);
  607. set_mm_exe_file(mm, NULL);
  608. if (!list_empty(&mm->mmlist)) {
  609. spin_lock(&mmlist_lock);
  610. list_del(&mm->mmlist);
  611. spin_unlock(&mmlist_lock);
  612. }
  613. if (mm->binfmt)
  614. module_put(mm->binfmt->module);
  615. mmdrop(mm);
  616. }
  617. /*
  618. * Decrement the use count and release all resources for an mm.
  619. */
  620. void mmput(struct mm_struct *mm)
  621. {
  622. might_sleep();
  623. if (atomic_dec_and_test(&mm->mm_users))
  624. __mmput(mm);
  625. }
  626. EXPORT_SYMBOL_GPL(mmput);
  627. #ifdef CONFIG_MMU
  628. static void mmput_async_fn(struct work_struct *work)
  629. {
  630. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  631. __mmput(mm);
  632. }
  633. void mmput_async(struct mm_struct *mm)
  634. {
  635. if (atomic_dec_and_test(&mm->mm_users)) {
  636. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  637. schedule_work(&mm->async_put_work);
  638. }
  639. }
  640. #endif
  641. /**
  642. * set_mm_exe_file - change a reference to the mm's executable file
  643. *
  644. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  645. *
  646. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  647. * invocations: in mmput() nobody alive left, in execve task is single
  648. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  649. * mm->exe_file, but does so without using set_mm_exe_file() in order
  650. * to do avoid the need for any locks.
  651. */
  652. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  653. {
  654. struct file *old_exe_file;
  655. /*
  656. * It is safe to dereference the exe_file without RCU as
  657. * this function is only called if nobody else can access
  658. * this mm -- see comment above for justification.
  659. */
  660. old_exe_file = rcu_dereference_raw(mm->exe_file);
  661. if (new_exe_file)
  662. get_file(new_exe_file);
  663. rcu_assign_pointer(mm->exe_file, new_exe_file);
  664. if (old_exe_file)
  665. fput(old_exe_file);
  666. }
  667. /**
  668. * get_mm_exe_file - acquire a reference to the mm's executable file
  669. *
  670. * Returns %NULL if mm has no associated executable file.
  671. * User must release file via fput().
  672. */
  673. struct file *get_mm_exe_file(struct mm_struct *mm)
  674. {
  675. struct file *exe_file;
  676. rcu_read_lock();
  677. exe_file = rcu_dereference(mm->exe_file);
  678. if (exe_file && !get_file_rcu(exe_file))
  679. exe_file = NULL;
  680. rcu_read_unlock();
  681. return exe_file;
  682. }
  683. EXPORT_SYMBOL(get_mm_exe_file);
  684. /**
  685. * get_task_mm - acquire a reference to the task's mm
  686. *
  687. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  688. * this kernel workthread has transiently adopted a user mm with use_mm,
  689. * to do its AIO) is not set and if so returns a reference to it, after
  690. * bumping up the use count. User must release the mm via mmput()
  691. * after use. Typically used by /proc and ptrace.
  692. */
  693. struct mm_struct *get_task_mm(struct task_struct *task)
  694. {
  695. struct mm_struct *mm;
  696. task_lock(task);
  697. mm = task->mm;
  698. if (mm) {
  699. if (task->flags & PF_KTHREAD)
  700. mm = NULL;
  701. else
  702. atomic_inc(&mm->mm_users);
  703. }
  704. task_unlock(task);
  705. return mm;
  706. }
  707. EXPORT_SYMBOL_GPL(get_task_mm);
  708. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  709. {
  710. struct mm_struct *mm;
  711. int err;
  712. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  713. if (err)
  714. return ERR_PTR(err);
  715. mm = get_task_mm(task);
  716. if (mm && mm != current->mm &&
  717. !ptrace_may_access(task, mode)) {
  718. mmput(mm);
  719. mm = ERR_PTR(-EACCES);
  720. }
  721. mutex_unlock(&task->signal->cred_guard_mutex);
  722. return mm;
  723. }
  724. static void complete_vfork_done(struct task_struct *tsk)
  725. {
  726. struct completion *vfork;
  727. task_lock(tsk);
  728. vfork = tsk->vfork_done;
  729. if (likely(vfork)) {
  730. tsk->vfork_done = NULL;
  731. complete(vfork);
  732. }
  733. task_unlock(tsk);
  734. }
  735. static int wait_for_vfork_done(struct task_struct *child,
  736. struct completion *vfork)
  737. {
  738. int killed;
  739. freezer_do_not_count();
  740. killed = wait_for_completion_killable(vfork);
  741. freezer_count();
  742. if (killed) {
  743. task_lock(child);
  744. child->vfork_done = NULL;
  745. task_unlock(child);
  746. }
  747. put_task_struct(child);
  748. return killed;
  749. }
  750. /* Please note the differences between mmput and mm_release.
  751. * mmput is called whenever we stop holding onto a mm_struct,
  752. * error success whatever.
  753. *
  754. * mm_release is called after a mm_struct has been removed
  755. * from the current process.
  756. *
  757. * This difference is important for error handling, when we
  758. * only half set up a mm_struct for a new process and need to restore
  759. * the old one. Because we mmput the new mm_struct before
  760. * restoring the old one. . .
  761. * Eric Biederman 10 January 1998
  762. */
  763. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  764. {
  765. /* Get rid of any futexes when releasing the mm */
  766. #ifdef CONFIG_FUTEX
  767. if (unlikely(tsk->robust_list)) {
  768. exit_robust_list(tsk);
  769. tsk->robust_list = NULL;
  770. }
  771. #ifdef CONFIG_COMPAT
  772. if (unlikely(tsk->compat_robust_list)) {
  773. compat_exit_robust_list(tsk);
  774. tsk->compat_robust_list = NULL;
  775. }
  776. #endif
  777. if (unlikely(!list_empty(&tsk->pi_state_list)))
  778. exit_pi_state_list(tsk);
  779. #endif
  780. uprobe_free_utask(tsk);
  781. /* Get rid of any cached register state */
  782. deactivate_mm(tsk, mm);
  783. /*
  784. * If we're exiting normally, clear a user-space tid field if
  785. * requested. We leave this alone when dying by signal, to leave
  786. * the value intact in a core dump, and to save the unnecessary
  787. * trouble, say, a killed vfork parent shouldn't touch this mm.
  788. * Userland only wants this done for a sys_exit.
  789. */
  790. if (tsk->clear_child_tid) {
  791. if (!(tsk->flags & PF_SIGNALED) &&
  792. atomic_read(&mm->mm_users) > 1) {
  793. /*
  794. * We don't check the error code - if userspace has
  795. * not set up a proper pointer then tough luck.
  796. */
  797. put_user(0, tsk->clear_child_tid);
  798. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  799. 1, NULL, NULL, 0);
  800. }
  801. tsk->clear_child_tid = NULL;
  802. }
  803. /*
  804. * All done, finally we can wake up parent and return this mm to him.
  805. * Also kthread_stop() uses this completion for synchronization.
  806. */
  807. if (tsk->vfork_done)
  808. complete_vfork_done(tsk);
  809. }
  810. /*
  811. * Allocate a new mm structure and copy contents from the
  812. * mm structure of the passed in task structure.
  813. */
  814. static struct mm_struct *dup_mm(struct task_struct *tsk)
  815. {
  816. struct mm_struct *mm, *oldmm = current->mm;
  817. int err;
  818. mm = allocate_mm();
  819. if (!mm)
  820. goto fail_nomem;
  821. memcpy(mm, oldmm, sizeof(*mm));
  822. if (!mm_init(mm, tsk))
  823. goto fail_nomem;
  824. err = dup_mmap(mm, oldmm);
  825. if (err)
  826. goto free_pt;
  827. mm->hiwater_rss = get_mm_rss(mm);
  828. mm->hiwater_vm = mm->total_vm;
  829. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  830. goto free_pt;
  831. return mm;
  832. free_pt:
  833. /* don't put binfmt in mmput, we haven't got module yet */
  834. mm->binfmt = NULL;
  835. mmput(mm);
  836. fail_nomem:
  837. return NULL;
  838. }
  839. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  840. {
  841. struct mm_struct *mm, *oldmm;
  842. int retval;
  843. tsk->min_flt = tsk->maj_flt = 0;
  844. tsk->nvcsw = tsk->nivcsw = 0;
  845. #ifdef CONFIG_DETECT_HUNG_TASK
  846. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  847. #endif
  848. tsk->mm = NULL;
  849. tsk->active_mm = NULL;
  850. /*
  851. * Are we cloning a kernel thread?
  852. *
  853. * We need to steal a active VM for that..
  854. */
  855. oldmm = current->mm;
  856. if (!oldmm)
  857. return 0;
  858. /* initialize the new vmacache entries */
  859. vmacache_flush(tsk);
  860. if (clone_flags & CLONE_VM) {
  861. atomic_inc(&oldmm->mm_users);
  862. mm = oldmm;
  863. goto good_mm;
  864. }
  865. retval = -ENOMEM;
  866. mm = dup_mm(tsk);
  867. if (!mm)
  868. goto fail_nomem;
  869. good_mm:
  870. tsk->mm = mm;
  871. tsk->active_mm = mm;
  872. return 0;
  873. fail_nomem:
  874. return retval;
  875. }
  876. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  877. {
  878. struct fs_struct *fs = current->fs;
  879. if (clone_flags & CLONE_FS) {
  880. /* tsk->fs is already what we want */
  881. spin_lock(&fs->lock);
  882. if (fs->in_exec) {
  883. spin_unlock(&fs->lock);
  884. return -EAGAIN;
  885. }
  886. fs->users++;
  887. spin_unlock(&fs->lock);
  888. return 0;
  889. }
  890. tsk->fs = copy_fs_struct(fs);
  891. if (!tsk->fs)
  892. return -ENOMEM;
  893. return 0;
  894. }
  895. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  896. {
  897. struct files_struct *oldf, *newf;
  898. int error = 0;
  899. /*
  900. * A background process may not have any files ...
  901. */
  902. oldf = current->files;
  903. if (!oldf)
  904. goto out;
  905. if (clone_flags & CLONE_FILES) {
  906. atomic_inc(&oldf->count);
  907. goto out;
  908. }
  909. newf = dup_fd(oldf, &error);
  910. if (!newf)
  911. goto out;
  912. tsk->files = newf;
  913. error = 0;
  914. out:
  915. return error;
  916. }
  917. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  918. {
  919. #ifdef CONFIG_BLOCK
  920. struct io_context *ioc = current->io_context;
  921. struct io_context *new_ioc;
  922. if (!ioc)
  923. return 0;
  924. /*
  925. * Share io context with parent, if CLONE_IO is set
  926. */
  927. if (clone_flags & CLONE_IO) {
  928. ioc_task_link(ioc);
  929. tsk->io_context = ioc;
  930. } else if (ioprio_valid(ioc->ioprio)) {
  931. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  932. if (unlikely(!new_ioc))
  933. return -ENOMEM;
  934. new_ioc->ioprio = ioc->ioprio;
  935. put_io_context(new_ioc);
  936. }
  937. #endif
  938. return 0;
  939. }
  940. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  941. {
  942. struct sighand_struct *sig;
  943. if (clone_flags & CLONE_SIGHAND) {
  944. atomic_inc(&current->sighand->count);
  945. return 0;
  946. }
  947. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  948. rcu_assign_pointer(tsk->sighand, sig);
  949. if (!sig)
  950. return -ENOMEM;
  951. atomic_set(&sig->count, 1);
  952. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  953. return 0;
  954. }
  955. void __cleanup_sighand(struct sighand_struct *sighand)
  956. {
  957. if (atomic_dec_and_test(&sighand->count)) {
  958. signalfd_cleanup(sighand);
  959. /*
  960. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  961. * without an RCU grace period, see __lock_task_sighand().
  962. */
  963. kmem_cache_free(sighand_cachep, sighand);
  964. }
  965. }
  966. /*
  967. * Initialize POSIX timer handling for a thread group.
  968. */
  969. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  970. {
  971. unsigned long cpu_limit;
  972. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  973. if (cpu_limit != RLIM_INFINITY) {
  974. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  975. sig->cputimer.running = true;
  976. }
  977. /* The timer lists. */
  978. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  979. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  980. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  981. }
  982. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  983. {
  984. struct signal_struct *sig;
  985. if (clone_flags & CLONE_THREAD)
  986. return 0;
  987. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  988. tsk->signal = sig;
  989. if (!sig)
  990. return -ENOMEM;
  991. sig->nr_threads = 1;
  992. atomic_set(&sig->live, 1);
  993. atomic_set(&sig->sigcnt, 1);
  994. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  995. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  996. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  997. init_waitqueue_head(&sig->wait_chldexit);
  998. sig->curr_target = tsk;
  999. init_sigpending(&sig->shared_pending);
  1000. INIT_LIST_HEAD(&sig->posix_timers);
  1001. seqlock_init(&sig->stats_lock);
  1002. prev_cputime_init(&sig->prev_cputime);
  1003. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1004. sig->real_timer.function = it_real_fn;
  1005. task_lock(current->group_leader);
  1006. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1007. task_unlock(current->group_leader);
  1008. posix_cpu_timers_init_group(sig);
  1009. tty_audit_fork(sig);
  1010. sched_autogroup_fork(sig);
  1011. sig->oom_score_adj = current->signal->oom_score_adj;
  1012. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1013. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1014. current->signal->is_child_subreaper;
  1015. mutex_init(&sig->cred_guard_mutex);
  1016. return 0;
  1017. }
  1018. static void copy_seccomp(struct task_struct *p)
  1019. {
  1020. #ifdef CONFIG_SECCOMP
  1021. /*
  1022. * Must be called with sighand->lock held, which is common to
  1023. * all threads in the group. Holding cred_guard_mutex is not
  1024. * needed because this new task is not yet running and cannot
  1025. * be racing exec.
  1026. */
  1027. assert_spin_locked(&current->sighand->siglock);
  1028. /* Ref-count the new filter user, and assign it. */
  1029. get_seccomp_filter(current);
  1030. p->seccomp = current->seccomp;
  1031. /*
  1032. * Explicitly enable no_new_privs here in case it got set
  1033. * between the task_struct being duplicated and holding the
  1034. * sighand lock. The seccomp state and nnp must be in sync.
  1035. */
  1036. if (task_no_new_privs(current))
  1037. task_set_no_new_privs(p);
  1038. /*
  1039. * If the parent gained a seccomp mode after copying thread
  1040. * flags and between before we held the sighand lock, we have
  1041. * to manually enable the seccomp thread flag here.
  1042. */
  1043. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1044. set_tsk_thread_flag(p, TIF_SECCOMP);
  1045. #endif
  1046. }
  1047. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1048. {
  1049. current->clear_child_tid = tidptr;
  1050. return task_pid_vnr(current);
  1051. }
  1052. static void rt_mutex_init_task(struct task_struct *p)
  1053. {
  1054. raw_spin_lock_init(&p->pi_lock);
  1055. #ifdef CONFIG_RT_MUTEXES
  1056. p->pi_waiters = RB_ROOT;
  1057. p->pi_waiters_leftmost = NULL;
  1058. p->pi_blocked_on = NULL;
  1059. #endif
  1060. }
  1061. /*
  1062. * Initialize POSIX timer handling for a single task.
  1063. */
  1064. static void posix_cpu_timers_init(struct task_struct *tsk)
  1065. {
  1066. tsk->cputime_expires.prof_exp = 0;
  1067. tsk->cputime_expires.virt_exp = 0;
  1068. tsk->cputime_expires.sched_exp = 0;
  1069. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1070. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1071. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1072. }
  1073. static inline void
  1074. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1075. {
  1076. task->pids[type].pid = pid;
  1077. }
  1078. /*
  1079. * This creates a new process as a copy of the old one,
  1080. * but does not actually start it yet.
  1081. *
  1082. * It copies the registers, and all the appropriate
  1083. * parts of the process environment (as per the clone
  1084. * flags). The actual kick-off is left to the caller.
  1085. */
  1086. static struct task_struct *copy_process(unsigned long clone_flags,
  1087. unsigned long stack_start,
  1088. unsigned long stack_size,
  1089. int __user *child_tidptr,
  1090. struct pid *pid,
  1091. int trace,
  1092. unsigned long tls,
  1093. int node)
  1094. {
  1095. int retval;
  1096. struct task_struct *p;
  1097. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1098. return ERR_PTR(-EINVAL);
  1099. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1100. return ERR_PTR(-EINVAL);
  1101. /*
  1102. * Thread groups must share signals as well, and detached threads
  1103. * can only be started up within the thread group.
  1104. */
  1105. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1106. return ERR_PTR(-EINVAL);
  1107. /*
  1108. * Shared signal handlers imply shared VM. By way of the above,
  1109. * thread groups also imply shared VM. Blocking this case allows
  1110. * for various simplifications in other code.
  1111. */
  1112. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1113. return ERR_PTR(-EINVAL);
  1114. /*
  1115. * Siblings of global init remain as zombies on exit since they are
  1116. * not reaped by their parent (swapper). To solve this and to avoid
  1117. * multi-rooted process trees, prevent global and container-inits
  1118. * from creating siblings.
  1119. */
  1120. if ((clone_flags & CLONE_PARENT) &&
  1121. current->signal->flags & SIGNAL_UNKILLABLE)
  1122. return ERR_PTR(-EINVAL);
  1123. /*
  1124. * If the new process will be in a different pid or user namespace
  1125. * do not allow it to share a thread group with the forking task.
  1126. */
  1127. if (clone_flags & CLONE_THREAD) {
  1128. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1129. (task_active_pid_ns(current) !=
  1130. current->nsproxy->pid_ns_for_children))
  1131. return ERR_PTR(-EINVAL);
  1132. }
  1133. retval = security_task_create(clone_flags);
  1134. if (retval)
  1135. goto fork_out;
  1136. retval = -ENOMEM;
  1137. p = dup_task_struct(current, node);
  1138. if (!p)
  1139. goto fork_out;
  1140. ftrace_graph_init_task(p);
  1141. rt_mutex_init_task(p);
  1142. #ifdef CONFIG_PROVE_LOCKING
  1143. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1144. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1145. #endif
  1146. retval = -EAGAIN;
  1147. if (atomic_read(&p->real_cred->user->processes) >=
  1148. task_rlimit(p, RLIMIT_NPROC)) {
  1149. if (p->real_cred->user != INIT_USER &&
  1150. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1151. goto bad_fork_free;
  1152. }
  1153. current->flags &= ~PF_NPROC_EXCEEDED;
  1154. retval = copy_creds(p, clone_flags);
  1155. if (retval < 0)
  1156. goto bad_fork_free;
  1157. /*
  1158. * If multiple threads are within copy_process(), then this check
  1159. * triggers too late. This doesn't hurt, the check is only there
  1160. * to stop root fork bombs.
  1161. */
  1162. retval = -EAGAIN;
  1163. if (nr_threads >= max_threads)
  1164. goto bad_fork_cleanup_count;
  1165. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1166. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1167. p->flags |= PF_FORKNOEXEC;
  1168. INIT_LIST_HEAD(&p->children);
  1169. INIT_LIST_HEAD(&p->sibling);
  1170. rcu_copy_process(p);
  1171. p->vfork_done = NULL;
  1172. spin_lock_init(&p->alloc_lock);
  1173. init_sigpending(&p->pending);
  1174. p->utime = p->stime = p->gtime = 0;
  1175. p->utimescaled = p->stimescaled = 0;
  1176. prev_cputime_init(&p->prev_cputime);
  1177. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1178. seqcount_init(&p->vtime_seqcount);
  1179. p->vtime_snap = 0;
  1180. p->vtime_snap_whence = VTIME_INACTIVE;
  1181. #endif
  1182. #if defined(SPLIT_RSS_COUNTING)
  1183. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1184. #endif
  1185. p->default_timer_slack_ns = current->timer_slack_ns;
  1186. task_io_accounting_init(&p->ioac);
  1187. acct_clear_integrals(p);
  1188. posix_cpu_timers_init(p);
  1189. p->start_time = ktime_get_ns();
  1190. p->real_start_time = ktime_get_boot_ns();
  1191. p->io_context = NULL;
  1192. p->audit_context = NULL;
  1193. threadgroup_change_begin(current);
  1194. cgroup_fork(p);
  1195. #ifdef CONFIG_NUMA
  1196. p->mempolicy = mpol_dup(p->mempolicy);
  1197. if (IS_ERR(p->mempolicy)) {
  1198. retval = PTR_ERR(p->mempolicy);
  1199. p->mempolicy = NULL;
  1200. goto bad_fork_cleanup_threadgroup_lock;
  1201. }
  1202. #endif
  1203. #ifdef CONFIG_CPUSETS
  1204. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1205. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1206. seqcount_init(&p->mems_allowed_seq);
  1207. #endif
  1208. #ifdef CONFIG_TRACE_IRQFLAGS
  1209. p->irq_events = 0;
  1210. p->hardirqs_enabled = 0;
  1211. p->hardirq_enable_ip = 0;
  1212. p->hardirq_enable_event = 0;
  1213. p->hardirq_disable_ip = _THIS_IP_;
  1214. p->hardirq_disable_event = 0;
  1215. p->softirqs_enabled = 1;
  1216. p->softirq_enable_ip = _THIS_IP_;
  1217. p->softirq_enable_event = 0;
  1218. p->softirq_disable_ip = 0;
  1219. p->softirq_disable_event = 0;
  1220. p->hardirq_context = 0;
  1221. p->softirq_context = 0;
  1222. #endif
  1223. p->pagefault_disabled = 0;
  1224. #ifdef CONFIG_LOCKDEP
  1225. p->lockdep_depth = 0; /* no locks held yet */
  1226. p->curr_chain_key = 0;
  1227. p->lockdep_recursion = 0;
  1228. #endif
  1229. #ifdef CONFIG_DEBUG_MUTEXES
  1230. p->blocked_on = NULL; /* not blocked yet */
  1231. #endif
  1232. #ifdef CONFIG_BCACHE
  1233. p->sequential_io = 0;
  1234. p->sequential_io_avg = 0;
  1235. #endif
  1236. /* Perform scheduler related setup. Assign this task to a CPU. */
  1237. retval = sched_fork(clone_flags, p);
  1238. if (retval)
  1239. goto bad_fork_cleanup_policy;
  1240. retval = perf_event_init_task(p);
  1241. if (retval)
  1242. goto bad_fork_cleanup_policy;
  1243. retval = audit_alloc(p);
  1244. if (retval)
  1245. goto bad_fork_cleanup_perf;
  1246. /* copy all the process information */
  1247. shm_init_task(p);
  1248. retval = copy_semundo(clone_flags, p);
  1249. if (retval)
  1250. goto bad_fork_cleanup_audit;
  1251. retval = copy_files(clone_flags, p);
  1252. if (retval)
  1253. goto bad_fork_cleanup_semundo;
  1254. retval = copy_fs(clone_flags, p);
  1255. if (retval)
  1256. goto bad_fork_cleanup_files;
  1257. retval = copy_sighand(clone_flags, p);
  1258. if (retval)
  1259. goto bad_fork_cleanup_fs;
  1260. retval = copy_signal(clone_flags, p);
  1261. if (retval)
  1262. goto bad_fork_cleanup_sighand;
  1263. retval = copy_mm(clone_flags, p);
  1264. if (retval)
  1265. goto bad_fork_cleanup_signal;
  1266. retval = copy_namespaces(clone_flags, p);
  1267. if (retval)
  1268. goto bad_fork_cleanup_mm;
  1269. retval = copy_io(clone_flags, p);
  1270. if (retval)
  1271. goto bad_fork_cleanup_namespaces;
  1272. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1273. if (retval)
  1274. goto bad_fork_cleanup_io;
  1275. if (pid != &init_struct_pid) {
  1276. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1277. if (IS_ERR(pid)) {
  1278. retval = PTR_ERR(pid);
  1279. goto bad_fork_cleanup_thread;
  1280. }
  1281. }
  1282. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1283. /*
  1284. * Clear TID on mm_release()?
  1285. */
  1286. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1287. #ifdef CONFIG_BLOCK
  1288. p->plug = NULL;
  1289. #endif
  1290. #ifdef CONFIG_FUTEX
  1291. p->robust_list = NULL;
  1292. #ifdef CONFIG_COMPAT
  1293. p->compat_robust_list = NULL;
  1294. #endif
  1295. INIT_LIST_HEAD(&p->pi_state_list);
  1296. p->pi_state_cache = NULL;
  1297. #endif
  1298. /*
  1299. * sigaltstack should be cleared when sharing the same VM
  1300. */
  1301. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1302. sas_ss_reset(p);
  1303. /*
  1304. * Syscall tracing and stepping should be turned off in the
  1305. * child regardless of CLONE_PTRACE.
  1306. */
  1307. user_disable_single_step(p);
  1308. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1309. #ifdef TIF_SYSCALL_EMU
  1310. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1311. #endif
  1312. clear_all_latency_tracing(p);
  1313. /* ok, now we should be set up.. */
  1314. p->pid = pid_nr(pid);
  1315. if (clone_flags & CLONE_THREAD) {
  1316. p->exit_signal = -1;
  1317. p->group_leader = current->group_leader;
  1318. p->tgid = current->tgid;
  1319. } else {
  1320. if (clone_flags & CLONE_PARENT)
  1321. p->exit_signal = current->group_leader->exit_signal;
  1322. else
  1323. p->exit_signal = (clone_flags & CSIGNAL);
  1324. p->group_leader = p;
  1325. p->tgid = p->pid;
  1326. }
  1327. p->nr_dirtied = 0;
  1328. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1329. p->dirty_paused_when = 0;
  1330. p->pdeath_signal = 0;
  1331. INIT_LIST_HEAD(&p->thread_group);
  1332. p->task_works = NULL;
  1333. /*
  1334. * Ensure that the cgroup subsystem policies allow the new process to be
  1335. * forked. It should be noted the the new process's css_set can be changed
  1336. * between here and cgroup_post_fork() if an organisation operation is in
  1337. * progress.
  1338. */
  1339. retval = cgroup_can_fork(p);
  1340. if (retval)
  1341. goto bad_fork_free_pid;
  1342. /*
  1343. * Make it visible to the rest of the system, but dont wake it up yet.
  1344. * Need tasklist lock for parent etc handling!
  1345. */
  1346. write_lock_irq(&tasklist_lock);
  1347. /* CLONE_PARENT re-uses the old parent */
  1348. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1349. p->real_parent = current->real_parent;
  1350. p->parent_exec_id = current->parent_exec_id;
  1351. } else {
  1352. p->real_parent = current;
  1353. p->parent_exec_id = current->self_exec_id;
  1354. }
  1355. spin_lock(&current->sighand->siglock);
  1356. /*
  1357. * Copy seccomp details explicitly here, in case they were changed
  1358. * before holding sighand lock.
  1359. */
  1360. copy_seccomp(p);
  1361. /*
  1362. * Process group and session signals need to be delivered to just the
  1363. * parent before the fork or both the parent and the child after the
  1364. * fork. Restart if a signal comes in before we add the new process to
  1365. * it's process group.
  1366. * A fatal signal pending means that current will exit, so the new
  1367. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1368. */
  1369. recalc_sigpending();
  1370. if (signal_pending(current)) {
  1371. spin_unlock(&current->sighand->siglock);
  1372. write_unlock_irq(&tasklist_lock);
  1373. retval = -ERESTARTNOINTR;
  1374. goto bad_fork_cancel_cgroup;
  1375. }
  1376. if (likely(p->pid)) {
  1377. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1378. init_task_pid(p, PIDTYPE_PID, pid);
  1379. if (thread_group_leader(p)) {
  1380. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1381. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1382. if (is_child_reaper(pid)) {
  1383. ns_of_pid(pid)->child_reaper = p;
  1384. p->signal->flags |= SIGNAL_UNKILLABLE;
  1385. }
  1386. p->signal->leader_pid = pid;
  1387. p->signal->tty = tty_kref_get(current->signal->tty);
  1388. list_add_tail(&p->sibling, &p->real_parent->children);
  1389. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1390. attach_pid(p, PIDTYPE_PGID);
  1391. attach_pid(p, PIDTYPE_SID);
  1392. __this_cpu_inc(process_counts);
  1393. } else {
  1394. current->signal->nr_threads++;
  1395. atomic_inc(&current->signal->live);
  1396. atomic_inc(&current->signal->sigcnt);
  1397. list_add_tail_rcu(&p->thread_group,
  1398. &p->group_leader->thread_group);
  1399. list_add_tail_rcu(&p->thread_node,
  1400. &p->signal->thread_head);
  1401. }
  1402. attach_pid(p, PIDTYPE_PID);
  1403. nr_threads++;
  1404. }
  1405. total_forks++;
  1406. spin_unlock(&current->sighand->siglock);
  1407. syscall_tracepoint_update(p);
  1408. write_unlock_irq(&tasklist_lock);
  1409. proc_fork_connector(p);
  1410. cgroup_post_fork(p);
  1411. threadgroup_change_end(current);
  1412. perf_event_fork(p);
  1413. trace_task_newtask(p, clone_flags);
  1414. uprobe_copy_process(p, clone_flags);
  1415. return p;
  1416. bad_fork_cancel_cgroup:
  1417. cgroup_cancel_fork(p);
  1418. bad_fork_free_pid:
  1419. if (pid != &init_struct_pid)
  1420. free_pid(pid);
  1421. bad_fork_cleanup_thread:
  1422. exit_thread(p);
  1423. bad_fork_cleanup_io:
  1424. if (p->io_context)
  1425. exit_io_context(p);
  1426. bad_fork_cleanup_namespaces:
  1427. exit_task_namespaces(p);
  1428. bad_fork_cleanup_mm:
  1429. if (p->mm)
  1430. mmput(p->mm);
  1431. bad_fork_cleanup_signal:
  1432. if (!(clone_flags & CLONE_THREAD))
  1433. free_signal_struct(p->signal);
  1434. bad_fork_cleanup_sighand:
  1435. __cleanup_sighand(p->sighand);
  1436. bad_fork_cleanup_fs:
  1437. exit_fs(p); /* blocking */
  1438. bad_fork_cleanup_files:
  1439. exit_files(p); /* blocking */
  1440. bad_fork_cleanup_semundo:
  1441. exit_sem(p);
  1442. bad_fork_cleanup_audit:
  1443. audit_free(p);
  1444. bad_fork_cleanup_perf:
  1445. perf_event_free_task(p);
  1446. bad_fork_cleanup_policy:
  1447. #ifdef CONFIG_NUMA
  1448. mpol_put(p->mempolicy);
  1449. bad_fork_cleanup_threadgroup_lock:
  1450. #endif
  1451. threadgroup_change_end(current);
  1452. delayacct_tsk_free(p);
  1453. bad_fork_cleanup_count:
  1454. atomic_dec(&p->cred->user->processes);
  1455. exit_creds(p);
  1456. bad_fork_free:
  1457. free_task(p);
  1458. fork_out:
  1459. return ERR_PTR(retval);
  1460. }
  1461. static inline void init_idle_pids(struct pid_link *links)
  1462. {
  1463. enum pid_type type;
  1464. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1465. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1466. links[type].pid = &init_struct_pid;
  1467. }
  1468. }
  1469. struct task_struct *fork_idle(int cpu)
  1470. {
  1471. struct task_struct *task;
  1472. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1473. cpu_to_node(cpu));
  1474. if (!IS_ERR(task)) {
  1475. init_idle_pids(task->pids);
  1476. init_idle(task, cpu);
  1477. }
  1478. return task;
  1479. }
  1480. /*
  1481. * Ok, this is the main fork-routine.
  1482. *
  1483. * It copies the process, and if successful kick-starts
  1484. * it and waits for it to finish using the VM if required.
  1485. */
  1486. long _do_fork(unsigned long clone_flags,
  1487. unsigned long stack_start,
  1488. unsigned long stack_size,
  1489. int __user *parent_tidptr,
  1490. int __user *child_tidptr,
  1491. unsigned long tls)
  1492. {
  1493. struct task_struct *p;
  1494. int trace = 0;
  1495. long nr;
  1496. /*
  1497. * Determine whether and which event to report to ptracer. When
  1498. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1499. * requested, no event is reported; otherwise, report if the event
  1500. * for the type of forking is enabled.
  1501. */
  1502. if (!(clone_flags & CLONE_UNTRACED)) {
  1503. if (clone_flags & CLONE_VFORK)
  1504. trace = PTRACE_EVENT_VFORK;
  1505. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1506. trace = PTRACE_EVENT_CLONE;
  1507. else
  1508. trace = PTRACE_EVENT_FORK;
  1509. if (likely(!ptrace_event_enabled(current, trace)))
  1510. trace = 0;
  1511. }
  1512. p = copy_process(clone_flags, stack_start, stack_size,
  1513. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1514. /*
  1515. * Do this prior waking up the new thread - the thread pointer
  1516. * might get invalid after that point, if the thread exits quickly.
  1517. */
  1518. if (!IS_ERR(p)) {
  1519. struct completion vfork;
  1520. struct pid *pid;
  1521. trace_sched_process_fork(current, p);
  1522. pid = get_task_pid(p, PIDTYPE_PID);
  1523. nr = pid_vnr(pid);
  1524. if (clone_flags & CLONE_PARENT_SETTID)
  1525. put_user(nr, parent_tidptr);
  1526. if (clone_flags & CLONE_VFORK) {
  1527. p->vfork_done = &vfork;
  1528. init_completion(&vfork);
  1529. get_task_struct(p);
  1530. }
  1531. wake_up_new_task(p);
  1532. /* forking complete and child started to run, tell ptracer */
  1533. if (unlikely(trace))
  1534. ptrace_event_pid(trace, pid);
  1535. if (clone_flags & CLONE_VFORK) {
  1536. if (!wait_for_vfork_done(p, &vfork))
  1537. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1538. }
  1539. put_pid(pid);
  1540. } else {
  1541. nr = PTR_ERR(p);
  1542. }
  1543. return nr;
  1544. }
  1545. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1546. /* For compatibility with architectures that call do_fork directly rather than
  1547. * using the syscall entry points below. */
  1548. long do_fork(unsigned long clone_flags,
  1549. unsigned long stack_start,
  1550. unsigned long stack_size,
  1551. int __user *parent_tidptr,
  1552. int __user *child_tidptr)
  1553. {
  1554. return _do_fork(clone_flags, stack_start, stack_size,
  1555. parent_tidptr, child_tidptr, 0);
  1556. }
  1557. #endif
  1558. /*
  1559. * Create a kernel thread.
  1560. */
  1561. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1562. {
  1563. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1564. (unsigned long)arg, NULL, NULL, 0);
  1565. }
  1566. #ifdef __ARCH_WANT_SYS_FORK
  1567. SYSCALL_DEFINE0(fork)
  1568. {
  1569. #ifdef CONFIG_MMU
  1570. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1571. #else
  1572. /* can not support in nommu mode */
  1573. return -EINVAL;
  1574. #endif
  1575. }
  1576. #endif
  1577. #ifdef __ARCH_WANT_SYS_VFORK
  1578. SYSCALL_DEFINE0(vfork)
  1579. {
  1580. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1581. 0, NULL, NULL, 0);
  1582. }
  1583. #endif
  1584. #ifdef __ARCH_WANT_SYS_CLONE
  1585. #ifdef CONFIG_CLONE_BACKWARDS
  1586. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1587. int __user *, parent_tidptr,
  1588. unsigned long, tls,
  1589. int __user *, child_tidptr)
  1590. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1591. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1592. int __user *, parent_tidptr,
  1593. int __user *, child_tidptr,
  1594. unsigned long, tls)
  1595. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1596. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1597. int, stack_size,
  1598. int __user *, parent_tidptr,
  1599. int __user *, child_tidptr,
  1600. unsigned long, tls)
  1601. #else
  1602. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1603. int __user *, parent_tidptr,
  1604. int __user *, child_tidptr,
  1605. unsigned long, tls)
  1606. #endif
  1607. {
  1608. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1609. }
  1610. #endif
  1611. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1612. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1613. #endif
  1614. static void sighand_ctor(void *data)
  1615. {
  1616. struct sighand_struct *sighand = data;
  1617. spin_lock_init(&sighand->siglock);
  1618. init_waitqueue_head(&sighand->signalfd_wqh);
  1619. }
  1620. void __init proc_caches_init(void)
  1621. {
  1622. sighand_cachep = kmem_cache_create("sighand_cache",
  1623. sizeof(struct sighand_struct), 0,
  1624. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1625. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1626. signal_cachep = kmem_cache_create("signal_cache",
  1627. sizeof(struct signal_struct), 0,
  1628. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1629. NULL);
  1630. files_cachep = kmem_cache_create("files_cache",
  1631. sizeof(struct files_struct), 0,
  1632. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1633. NULL);
  1634. fs_cachep = kmem_cache_create("fs_cache",
  1635. sizeof(struct fs_struct), 0,
  1636. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1637. NULL);
  1638. /*
  1639. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1640. * whole struct cpumask for the OFFSTACK case. We could change
  1641. * this to *only* allocate as much of it as required by the
  1642. * maximum number of CPU's we can ever have. The cpumask_allocation
  1643. * is at the end of the structure, exactly for that reason.
  1644. */
  1645. mm_cachep = kmem_cache_create("mm_struct",
  1646. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1647. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1648. NULL);
  1649. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1650. mmap_init();
  1651. nsproxy_cache_init();
  1652. }
  1653. /*
  1654. * Check constraints on flags passed to the unshare system call.
  1655. */
  1656. static int check_unshare_flags(unsigned long unshare_flags)
  1657. {
  1658. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1659. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1660. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1661. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1662. return -EINVAL;
  1663. /*
  1664. * Not implemented, but pretend it works if there is nothing
  1665. * to unshare. Note that unsharing the address space or the
  1666. * signal handlers also need to unshare the signal queues (aka
  1667. * CLONE_THREAD).
  1668. */
  1669. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1670. if (!thread_group_empty(current))
  1671. return -EINVAL;
  1672. }
  1673. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1674. if (atomic_read(&current->sighand->count) > 1)
  1675. return -EINVAL;
  1676. }
  1677. if (unshare_flags & CLONE_VM) {
  1678. if (!current_is_single_threaded())
  1679. return -EINVAL;
  1680. }
  1681. return 0;
  1682. }
  1683. /*
  1684. * Unshare the filesystem structure if it is being shared
  1685. */
  1686. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1687. {
  1688. struct fs_struct *fs = current->fs;
  1689. if (!(unshare_flags & CLONE_FS) || !fs)
  1690. return 0;
  1691. /* don't need lock here; in the worst case we'll do useless copy */
  1692. if (fs->users == 1)
  1693. return 0;
  1694. *new_fsp = copy_fs_struct(fs);
  1695. if (!*new_fsp)
  1696. return -ENOMEM;
  1697. return 0;
  1698. }
  1699. /*
  1700. * Unshare file descriptor table if it is being shared
  1701. */
  1702. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1703. {
  1704. struct files_struct *fd = current->files;
  1705. int error = 0;
  1706. if ((unshare_flags & CLONE_FILES) &&
  1707. (fd && atomic_read(&fd->count) > 1)) {
  1708. *new_fdp = dup_fd(fd, &error);
  1709. if (!*new_fdp)
  1710. return error;
  1711. }
  1712. return 0;
  1713. }
  1714. /*
  1715. * unshare allows a process to 'unshare' part of the process
  1716. * context which was originally shared using clone. copy_*
  1717. * functions used by do_fork() cannot be used here directly
  1718. * because they modify an inactive task_struct that is being
  1719. * constructed. Here we are modifying the current, active,
  1720. * task_struct.
  1721. */
  1722. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1723. {
  1724. struct fs_struct *fs, *new_fs = NULL;
  1725. struct files_struct *fd, *new_fd = NULL;
  1726. struct cred *new_cred = NULL;
  1727. struct nsproxy *new_nsproxy = NULL;
  1728. int do_sysvsem = 0;
  1729. int err;
  1730. /*
  1731. * If unsharing a user namespace must also unshare the thread group
  1732. * and unshare the filesystem root and working directories.
  1733. */
  1734. if (unshare_flags & CLONE_NEWUSER)
  1735. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1736. /*
  1737. * If unsharing vm, must also unshare signal handlers.
  1738. */
  1739. if (unshare_flags & CLONE_VM)
  1740. unshare_flags |= CLONE_SIGHAND;
  1741. /*
  1742. * If unsharing a signal handlers, must also unshare the signal queues.
  1743. */
  1744. if (unshare_flags & CLONE_SIGHAND)
  1745. unshare_flags |= CLONE_THREAD;
  1746. /*
  1747. * If unsharing namespace, must also unshare filesystem information.
  1748. */
  1749. if (unshare_flags & CLONE_NEWNS)
  1750. unshare_flags |= CLONE_FS;
  1751. err = check_unshare_flags(unshare_flags);
  1752. if (err)
  1753. goto bad_unshare_out;
  1754. /*
  1755. * CLONE_NEWIPC must also detach from the undolist: after switching
  1756. * to a new ipc namespace, the semaphore arrays from the old
  1757. * namespace are unreachable.
  1758. */
  1759. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1760. do_sysvsem = 1;
  1761. err = unshare_fs(unshare_flags, &new_fs);
  1762. if (err)
  1763. goto bad_unshare_out;
  1764. err = unshare_fd(unshare_flags, &new_fd);
  1765. if (err)
  1766. goto bad_unshare_cleanup_fs;
  1767. err = unshare_userns(unshare_flags, &new_cred);
  1768. if (err)
  1769. goto bad_unshare_cleanup_fd;
  1770. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1771. new_cred, new_fs);
  1772. if (err)
  1773. goto bad_unshare_cleanup_cred;
  1774. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1775. if (do_sysvsem) {
  1776. /*
  1777. * CLONE_SYSVSEM is equivalent to sys_exit().
  1778. */
  1779. exit_sem(current);
  1780. }
  1781. if (unshare_flags & CLONE_NEWIPC) {
  1782. /* Orphan segments in old ns (see sem above). */
  1783. exit_shm(current);
  1784. shm_init_task(current);
  1785. }
  1786. if (new_nsproxy)
  1787. switch_task_namespaces(current, new_nsproxy);
  1788. task_lock(current);
  1789. if (new_fs) {
  1790. fs = current->fs;
  1791. spin_lock(&fs->lock);
  1792. current->fs = new_fs;
  1793. if (--fs->users)
  1794. new_fs = NULL;
  1795. else
  1796. new_fs = fs;
  1797. spin_unlock(&fs->lock);
  1798. }
  1799. if (new_fd) {
  1800. fd = current->files;
  1801. current->files = new_fd;
  1802. new_fd = fd;
  1803. }
  1804. task_unlock(current);
  1805. if (new_cred) {
  1806. /* Install the new user namespace */
  1807. commit_creds(new_cred);
  1808. new_cred = NULL;
  1809. }
  1810. }
  1811. bad_unshare_cleanup_cred:
  1812. if (new_cred)
  1813. put_cred(new_cred);
  1814. bad_unshare_cleanup_fd:
  1815. if (new_fd)
  1816. put_files_struct(new_fd);
  1817. bad_unshare_cleanup_fs:
  1818. if (new_fs)
  1819. free_fs_struct(new_fs);
  1820. bad_unshare_out:
  1821. return err;
  1822. }
  1823. /*
  1824. * Helper to unshare the files of the current task.
  1825. * We don't want to expose copy_files internals to
  1826. * the exec layer of the kernel.
  1827. */
  1828. int unshare_files(struct files_struct **displaced)
  1829. {
  1830. struct task_struct *task = current;
  1831. struct files_struct *copy = NULL;
  1832. int error;
  1833. error = unshare_fd(CLONE_FILES, &copy);
  1834. if (error || !copy) {
  1835. *displaced = NULL;
  1836. return error;
  1837. }
  1838. *displaced = task->files;
  1839. task_lock(task);
  1840. task->files = copy;
  1841. task_unlock(task);
  1842. return 0;
  1843. }
  1844. int sysctl_max_threads(struct ctl_table *table, int write,
  1845. void __user *buffer, size_t *lenp, loff_t *ppos)
  1846. {
  1847. struct ctl_table t;
  1848. int ret;
  1849. int threads = max_threads;
  1850. int min = MIN_THREADS;
  1851. int max = MAX_THREADS;
  1852. t = *table;
  1853. t.data = &threads;
  1854. t.extra1 = &min;
  1855. t.extra2 = &max;
  1856. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1857. if (ret || !write)
  1858. return ret;
  1859. set_max_threads(threads);
  1860. return 0;
  1861. }