interrupt.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * handling kvm guest interrupts
  4. *
  5. * Copyright IBM Corp. 2008, 2015
  6. *
  7. * Author(s): Carsten Otte <cotte@de.ibm.com>
  8. */
  9. #include <linux/interrupt.h>
  10. #include <linux/kvm_host.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/mmu_context.h>
  13. #include <linux/signal.h>
  14. #include <linux/slab.h>
  15. #include <linux/bitmap.h>
  16. #include <linux/vmalloc.h>
  17. #include <asm/asm-offsets.h>
  18. #include <asm/dis.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/sclp.h>
  21. #include <asm/isc.h>
  22. #include <asm/gmap.h>
  23. #include <asm/switch_to.h>
  24. #include <asm/nmi.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define PFAULT_INIT 0x0600
  29. #define PFAULT_DONE 0x0680
  30. #define VIRTIO_PARAM 0x0d00
  31. /* handle external calls via sigp interpretation facility */
  32. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  33. {
  34. int c, scn;
  35. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  36. return 0;
  37. BUG_ON(!kvm_s390_use_sca_entries());
  38. read_lock(&vcpu->kvm->arch.sca_lock);
  39. if (vcpu->kvm->arch.use_esca) {
  40. struct esca_block *sca = vcpu->kvm->arch.sca;
  41. union esca_sigp_ctrl sigp_ctrl =
  42. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  43. c = sigp_ctrl.c;
  44. scn = sigp_ctrl.scn;
  45. } else {
  46. struct bsca_block *sca = vcpu->kvm->arch.sca;
  47. union bsca_sigp_ctrl sigp_ctrl =
  48. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  49. c = sigp_ctrl.c;
  50. scn = sigp_ctrl.scn;
  51. }
  52. read_unlock(&vcpu->kvm->arch.sca_lock);
  53. if (src_id)
  54. *src_id = scn;
  55. return c;
  56. }
  57. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  58. {
  59. int expect, rc;
  60. BUG_ON(!kvm_s390_use_sca_entries());
  61. read_lock(&vcpu->kvm->arch.sca_lock);
  62. if (vcpu->kvm->arch.use_esca) {
  63. struct esca_block *sca = vcpu->kvm->arch.sca;
  64. union esca_sigp_ctrl *sigp_ctrl =
  65. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  66. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  67. new_val.scn = src_id;
  68. new_val.c = 1;
  69. old_val.c = 0;
  70. expect = old_val.value;
  71. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  72. } else {
  73. struct bsca_block *sca = vcpu->kvm->arch.sca;
  74. union bsca_sigp_ctrl *sigp_ctrl =
  75. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  76. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  77. new_val.scn = src_id;
  78. new_val.c = 1;
  79. old_val.c = 0;
  80. expect = old_val.value;
  81. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  82. }
  83. read_unlock(&vcpu->kvm->arch.sca_lock);
  84. if (rc != expect) {
  85. /* another external call is pending */
  86. return -EBUSY;
  87. }
  88. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  89. return 0;
  90. }
  91. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  92. {
  93. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  94. int rc, expect;
  95. if (!kvm_s390_use_sca_entries())
  96. return;
  97. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  98. read_lock(&vcpu->kvm->arch.sca_lock);
  99. if (vcpu->kvm->arch.use_esca) {
  100. struct esca_block *sca = vcpu->kvm->arch.sca;
  101. union esca_sigp_ctrl *sigp_ctrl =
  102. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  103. union esca_sigp_ctrl old = *sigp_ctrl;
  104. expect = old.value;
  105. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  106. } else {
  107. struct bsca_block *sca = vcpu->kvm->arch.sca;
  108. union bsca_sigp_ctrl *sigp_ctrl =
  109. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  110. union bsca_sigp_ctrl old = *sigp_ctrl;
  111. expect = old.value;
  112. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  113. }
  114. read_unlock(&vcpu->kvm->arch.sca_lock);
  115. WARN_ON(rc != expect); /* cannot clear? */
  116. }
  117. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  118. {
  119. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  120. }
  121. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  122. {
  123. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  124. }
  125. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  126. {
  127. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  128. }
  129. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  130. {
  131. return psw_extint_disabled(vcpu) &&
  132. psw_ioint_disabled(vcpu) &&
  133. psw_mchk_disabled(vcpu);
  134. }
  135. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  136. {
  137. if (psw_extint_disabled(vcpu) ||
  138. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  139. return 0;
  140. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  141. /* No timer interrupts when single stepping */
  142. return 0;
  143. return 1;
  144. }
  145. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  146. {
  147. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  148. return 0;
  149. return ckc_interrupts_enabled(vcpu);
  150. }
  151. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  152. {
  153. return !psw_extint_disabled(vcpu) &&
  154. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  155. }
  156. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  157. {
  158. if (!cpu_timer_interrupts_enabled(vcpu))
  159. return 0;
  160. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  161. }
  162. static inline int is_ioirq(unsigned long irq_type)
  163. {
  164. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  165. (irq_type <= IRQ_PEND_IO_ISC_7));
  166. }
  167. static uint64_t isc_to_isc_bits(int isc)
  168. {
  169. return (0x80 >> isc) << 24;
  170. }
  171. static inline u8 int_word_to_isc(u32 int_word)
  172. {
  173. return (int_word & 0x38000000) >> 27;
  174. }
  175. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  176. {
  177. return vcpu->kvm->arch.float_int.pending_irqs |
  178. vcpu->arch.local_int.pending_irqs;
  179. }
  180. static inline int isc_to_irq_type(unsigned long isc)
  181. {
  182. return IRQ_PEND_IO_ISC_0 + isc;
  183. }
  184. static inline int irq_type_to_isc(unsigned long irq_type)
  185. {
  186. return irq_type - IRQ_PEND_IO_ISC_0;
  187. }
  188. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  189. unsigned long active_mask)
  190. {
  191. int i;
  192. for (i = 0; i <= MAX_ISC; i++)
  193. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  194. active_mask &= ~(1UL << (isc_to_irq_type(i)));
  195. return active_mask;
  196. }
  197. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  198. {
  199. unsigned long active_mask;
  200. active_mask = pending_irqs(vcpu);
  201. if (!active_mask)
  202. return 0;
  203. if (psw_extint_disabled(vcpu))
  204. active_mask &= ~IRQ_PEND_EXT_MASK;
  205. if (psw_ioint_disabled(vcpu))
  206. active_mask &= ~IRQ_PEND_IO_MASK;
  207. else
  208. active_mask = disable_iscs(vcpu, active_mask);
  209. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  210. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  211. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  212. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  213. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  214. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  215. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  216. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  217. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  218. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  219. if (psw_mchk_disabled(vcpu))
  220. active_mask &= ~IRQ_PEND_MCHK_MASK;
  221. /*
  222. * Check both floating and local interrupt's cr14 because
  223. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  224. */
  225. if (!(vcpu->arch.sie_block->gcr[14] &
  226. (vcpu->kvm->arch.float_int.mchk.cr14 |
  227. vcpu->arch.local_int.irq.mchk.cr14)))
  228. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  229. /*
  230. * STOP irqs will never be actively delivered. They are triggered via
  231. * intercept requests and cleared when the stop intercept is performed.
  232. */
  233. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  234. return active_mask;
  235. }
  236. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  237. {
  238. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  239. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  240. }
  241. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  242. {
  243. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  244. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  245. }
  246. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  247. {
  248. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  249. &vcpu->arch.sie_block->cpuflags);
  250. vcpu->arch.sie_block->lctl = 0x0000;
  251. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  252. if (guestdbg_enabled(vcpu)) {
  253. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  254. LCTL_CR10 | LCTL_CR11);
  255. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  256. }
  257. }
  258. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  259. {
  260. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  261. }
  262. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  263. {
  264. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  265. return;
  266. else if (psw_ioint_disabled(vcpu))
  267. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  268. else
  269. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  270. }
  271. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  272. {
  273. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  274. return;
  275. if (psw_extint_disabled(vcpu))
  276. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  277. else
  278. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  279. }
  280. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  281. {
  282. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  283. return;
  284. if (psw_mchk_disabled(vcpu))
  285. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  286. else
  287. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  288. }
  289. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  290. {
  291. if (kvm_s390_is_stop_irq_pending(vcpu))
  292. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  293. }
  294. /* Set interception request for non-deliverable interrupts */
  295. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  296. {
  297. set_intercept_indicators_io(vcpu);
  298. set_intercept_indicators_ext(vcpu);
  299. set_intercept_indicators_mchk(vcpu);
  300. set_intercept_indicators_stop(vcpu);
  301. }
  302. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  303. {
  304. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  305. int rc;
  306. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  307. 0, 0);
  308. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  309. (u16 *)__LC_EXT_INT_CODE);
  310. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  311. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  312. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  313. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  314. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  315. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  316. return rc ? -EFAULT : 0;
  317. }
  318. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  319. {
  320. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  321. int rc;
  322. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  323. 0, 0);
  324. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  325. (u16 __user *)__LC_EXT_INT_CODE);
  326. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  327. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  328. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  329. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  330. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  331. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  332. return rc ? -EFAULT : 0;
  333. }
  334. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  335. {
  336. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  337. struct kvm_s390_ext_info ext;
  338. int rc;
  339. spin_lock(&li->lock);
  340. ext = li->irq.ext;
  341. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  342. li->irq.ext.ext_params2 = 0;
  343. spin_unlock(&li->lock);
  344. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  345. ext.ext_params2);
  346. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  347. KVM_S390_INT_PFAULT_INIT,
  348. 0, ext.ext_params2);
  349. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  350. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  351. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  352. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  353. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  354. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  355. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  356. return rc ? -EFAULT : 0;
  357. }
  358. static int __write_machine_check(struct kvm_vcpu *vcpu,
  359. struct kvm_s390_mchk_info *mchk)
  360. {
  361. unsigned long ext_sa_addr;
  362. unsigned long lc;
  363. freg_t fprs[NUM_FPRS];
  364. union mci mci;
  365. int rc;
  366. mci.val = mchk->mcic;
  367. /* take care of lazy register loading */
  368. save_fpu_regs();
  369. save_access_regs(vcpu->run->s.regs.acrs);
  370. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  371. save_gs_cb(current->thread.gs_cb);
  372. /* Extended save area */
  373. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  374. sizeof(unsigned long));
  375. /* Only bits 0 through 63-LC are used for address formation */
  376. lc = ext_sa_addr & MCESA_LC_MASK;
  377. if (test_kvm_facility(vcpu->kvm, 133)) {
  378. switch (lc) {
  379. case 0:
  380. case 10:
  381. ext_sa_addr &= ~0x3ffUL;
  382. break;
  383. case 11:
  384. ext_sa_addr &= ~0x7ffUL;
  385. break;
  386. case 12:
  387. ext_sa_addr &= ~0xfffUL;
  388. break;
  389. default:
  390. ext_sa_addr = 0;
  391. break;
  392. }
  393. } else {
  394. ext_sa_addr &= ~0x3ffUL;
  395. }
  396. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  397. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  398. 512))
  399. mci.vr = 0;
  400. } else {
  401. mci.vr = 0;
  402. }
  403. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  404. && (lc == 11 || lc == 12)) {
  405. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  406. &vcpu->run->s.regs.gscb, 32))
  407. mci.gs = 0;
  408. } else {
  409. mci.gs = 0;
  410. }
  411. /* General interruption information */
  412. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  413. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  414. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  415. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  416. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  417. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  418. /* Register-save areas */
  419. if (MACHINE_HAS_VX) {
  420. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  421. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  422. } else {
  423. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  424. vcpu->run->s.regs.fprs, 128);
  425. }
  426. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  427. vcpu->run->s.regs.gprs, 128);
  428. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  429. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  430. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  431. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  432. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  433. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  434. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  435. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  436. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  437. &vcpu->run->s.regs.acrs, 64);
  438. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  439. &vcpu->arch.sie_block->gcr, 128);
  440. /* Extended interruption information */
  441. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  442. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  443. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  444. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  445. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  446. sizeof(mchk->fixed_logout));
  447. return rc ? -EFAULT : 0;
  448. }
  449. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  450. {
  451. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  452. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  453. struct kvm_s390_mchk_info mchk = {};
  454. int deliver = 0;
  455. int rc = 0;
  456. spin_lock(&fi->lock);
  457. spin_lock(&li->lock);
  458. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  459. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  460. /*
  461. * If there was an exigent machine check pending, then any
  462. * repressible machine checks that might have been pending
  463. * are indicated along with it, so always clear bits for
  464. * repressible and exigent interrupts
  465. */
  466. mchk = li->irq.mchk;
  467. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  468. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  469. memset(&li->irq.mchk, 0, sizeof(mchk));
  470. deliver = 1;
  471. }
  472. /*
  473. * We indicate floating repressible conditions along with
  474. * other pending conditions. Channel Report Pending and Channel
  475. * Subsystem damage are the only two and and are indicated by
  476. * bits in mcic and masked in cr14.
  477. */
  478. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  479. mchk.mcic |= fi->mchk.mcic;
  480. mchk.cr14 |= fi->mchk.cr14;
  481. memset(&fi->mchk, 0, sizeof(mchk));
  482. deliver = 1;
  483. }
  484. spin_unlock(&li->lock);
  485. spin_unlock(&fi->lock);
  486. if (deliver) {
  487. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  488. mchk.mcic);
  489. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  490. KVM_S390_MCHK,
  491. mchk.cr14, mchk.mcic);
  492. rc = __write_machine_check(vcpu, &mchk);
  493. }
  494. return rc;
  495. }
  496. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  497. {
  498. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  499. int rc;
  500. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  501. vcpu->stat.deliver_restart_signal++;
  502. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  503. rc = write_guest_lc(vcpu,
  504. offsetof(struct lowcore, restart_old_psw),
  505. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  506. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  507. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  508. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  509. return rc ? -EFAULT : 0;
  510. }
  511. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  512. {
  513. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  514. struct kvm_s390_prefix_info prefix;
  515. spin_lock(&li->lock);
  516. prefix = li->irq.prefix;
  517. li->irq.prefix.address = 0;
  518. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  519. spin_unlock(&li->lock);
  520. vcpu->stat.deliver_prefix_signal++;
  521. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  522. KVM_S390_SIGP_SET_PREFIX,
  523. prefix.address, 0);
  524. kvm_s390_set_prefix(vcpu, prefix.address);
  525. return 0;
  526. }
  527. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  528. {
  529. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  530. int rc;
  531. int cpu_addr;
  532. spin_lock(&li->lock);
  533. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  534. clear_bit(cpu_addr, li->sigp_emerg_pending);
  535. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  536. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  537. spin_unlock(&li->lock);
  538. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  539. vcpu->stat.deliver_emergency_signal++;
  540. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  541. cpu_addr, 0);
  542. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  543. (u16 *)__LC_EXT_INT_CODE);
  544. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  545. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  546. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  547. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  548. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  549. return rc ? -EFAULT : 0;
  550. }
  551. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  552. {
  553. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  554. struct kvm_s390_extcall_info extcall;
  555. int rc;
  556. spin_lock(&li->lock);
  557. extcall = li->irq.extcall;
  558. li->irq.extcall.code = 0;
  559. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  560. spin_unlock(&li->lock);
  561. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  562. vcpu->stat.deliver_external_call++;
  563. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  564. KVM_S390_INT_EXTERNAL_CALL,
  565. extcall.code, 0);
  566. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  567. (u16 *)__LC_EXT_INT_CODE);
  568. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  569. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  570. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  571. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  572. sizeof(psw_t));
  573. return rc ? -EFAULT : 0;
  574. }
  575. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  576. {
  577. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  578. struct kvm_s390_pgm_info pgm_info;
  579. int rc = 0, nullifying = false;
  580. u16 ilen;
  581. spin_lock(&li->lock);
  582. pgm_info = li->irq.pgm;
  583. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  584. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  585. spin_unlock(&li->lock);
  586. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  587. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  588. pgm_info.code, ilen);
  589. vcpu->stat.deliver_program_int++;
  590. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  591. pgm_info.code, 0);
  592. switch (pgm_info.code & ~PGM_PER) {
  593. case PGM_AFX_TRANSLATION:
  594. case PGM_ASX_TRANSLATION:
  595. case PGM_EX_TRANSLATION:
  596. case PGM_LFX_TRANSLATION:
  597. case PGM_LSTE_SEQUENCE:
  598. case PGM_LSX_TRANSLATION:
  599. case PGM_LX_TRANSLATION:
  600. case PGM_PRIMARY_AUTHORITY:
  601. case PGM_SECONDARY_AUTHORITY:
  602. nullifying = true;
  603. /* fall through */
  604. case PGM_SPACE_SWITCH:
  605. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  606. (u64 *)__LC_TRANS_EXC_CODE);
  607. break;
  608. case PGM_ALEN_TRANSLATION:
  609. case PGM_ALE_SEQUENCE:
  610. case PGM_ASTE_INSTANCE:
  611. case PGM_ASTE_SEQUENCE:
  612. case PGM_ASTE_VALIDITY:
  613. case PGM_EXTENDED_AUTHORITY:
  614. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  615. (u8 *)__LC_EXC_ACCESS_ID);
  616. nullifying = true;
  617. break;
  618. case PGM_ASCE_TYPE:
  619. case PGM_PAGE_TRANSLATION:
  620. case PGM_REGION_FIRST_TRANS:
  621. case PGM_REGION_SECOND_TRANS:
  622. case PGM_REGION_THIRD_TRANS:
  623. case PGM_SEGMENT_TRANSLATION:
  624. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  625. (u64 *)__LC_TRANS_EXC_CODE);
  626. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  627. (u8 *)__LC_EXC_ACCESS_ID);
  628. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  629. (u8 *)__LC_OP_ACCESS_ID);
  630. nullifying = true;
  631. break;
  632. case PGM_MONITOR:
  633. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  634. (u16 *)__LC_MON_CLASS_NR);
  635. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  636. (u64 *)__LC_MON_CODE);
  637. break;
  638. case PGM_VECTOR_PROCESSING:
  639. case PGM_DATA:
  640. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  641. (u32 *)__LC_DATA_EXC_CODE);
  642. break;
  643. case PGM_PROTECTION:
  644. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  645. (u64 *)__LC_TRANS_EXC_CODE);
  646. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  647. (u8 *)__LC_EXC_ACCESS_ID);
  648. break;
  649. case PGM_STACK_FULL:
  650. case PGM_STACK_EMPTY:
  651. case PGM_STACK_SPECIFICATION:
  652. case PGM_STACK_TYPE:
  653. case PGM_STACK_OPERATION:
  654. case PGM_TRACE_TABEL:
  655. case PGM_CRYPTO_OPERATION:
  656. nullifying = true;
  657. break;
  658. }
  659. if (pgm_info.code & PGM_PER) {
  660. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  661. (u8 *) __LC_PER_CODE);
  662. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  663. (u8 *)__LC_PER_ATMID);
  664. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  665. (u64 *) __LC_PER_ADDRESS);
  666. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  667. (u8 *) __LC_PER_ACCESS_ID);
  668. }
  669. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  670. kvm_s390_rewind_psw(vcpu, ilen);
  671. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  672. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  673. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  674. (u64 *) __LC_LAST_BREAK);
  675. rc |= put_guest_lc(vcpu, pgm_info.code,
  676. (u16 *)__LC_PGM_INT_CODE);
  677. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  678. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  679. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  680. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  681. return rc ? -EFAULT : 0;
  682. }
  683. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  684. {
  685. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  686. struct kvm_s390_ext_info ext;
  687. int rc = 0;
  688. spin_lock(&fi->lock);
  689. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  690. spin_unlock(&fi->lock);
  691. return 0;
  692. }
  693. ext = fi->srv_signal;
  694. memset(&fi->srv_signal, 0, sizeof(ext));
  695. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  696. spin_unlock(&fi->lock);
  697. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  698. ext.ext_params);
  699. vcpu->stat.deliver_service_signal++;
  700. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  701. ext.ext_params, 0);
  702. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  703. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  704. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  705. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  706. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  707. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  708. rc |= put_guest_lc(vcpu, ext.ext_params,
  709. (u32 *)__LC_EXT_PARAMS);
  710. return rc ? -EFAULT : 0;
  711. }
  712. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  713. {
  714. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  715. struct kvm_s390_interrupt_info *inti;
  716. int rc = 0;
  717. spin_lock(&fi->lock);
  718. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  719. struct kvm_s390_interrupt_info,
  720. list);
  721. if (inti) {
  722. list_del(&inti->list);
  723. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  724. }
  725. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  726. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  727. spin_unlock(&fi->lock);
  728. if (inti) {
  729. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  730. KVM_S390_INT_PFAULT_DONE, 0,
  731. inti->ext.ext_params2);
  732. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  733. inti->ext.ext_params2);
  734. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  735. (u16 *)__LC_EXT_INT_CODE);
  736. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  737. (u16 *)__LC_EXT_CPU_ADDR);
  738. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  739. &vcpu->arch.sie_block->gpsw,
  740. sizeof(psw_t));
  741. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  742. &vcpu->arch.sie_block->gpsw,
  743. sizeof(psw_t));
  744. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  745. (u64 *)__LC_EXT_PARAMS2);
  746. kfree(inti);
  747. }
  748. return rc ? -EFAULT : 0;
  749. }
  750. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  751. {
  752. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  753. struct kvm_s390_interrupt_info *inti;
  754. int rc = 0;
  755. spin_lock(&fi->lock);
  756. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  757. struct kvm_s390_interrupt_info,
  758. list);
  759. if (inti) {
  760. VCPU_EVENT(vcpu, 4,
  761. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  762. inti->ext.ext_params, inti->ext.ext_params2);
  763. vcpu->stat.deliver_virtio_interrupt++;
  764. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  765. inti->type,
  766. inti->ext.ext_params,
  767. inti->ext.ext_params2);
  768. list_del(&inti->list);
  769. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  770. }
  771. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  772. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  773. spin_unlock(&fi->lock);
  774. if (inti) {
  775. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  776. (u16 *)__LC_EXT_INT_CODE);
  777. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  778. (u16 *)__LC_EXT_CPU_ADDR);
  779. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  780. &vcpu->arch.sie_block->gpsw,
  781. sizeof(psw_t));
  782. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  783. &vcpu->arch.sie_block->gpsw,
  784. sizeof(psw_t));
  785. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  786. (u32 *)__LC_EXT_PARAMS);
  787. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  788. (u64 *)__LC_EXT_PARAMS2);
  789. kfree(inti);
  790. }
  791. return rc ? -EFAULT : 0;
  792. }
  793. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  794. unsigned long irq_type)
  795. {
  796. struct list_head *isc_list;
  797. struct kvm_s390_float_interrupt *fi;
  798. struct kvm_s390_interrupt_info *inti = NULL;
  799. int rc = 0;
  800. fi = &vcpu->kvm->arch.float_int;
  801. spin_lock(&fi->lock);
  802. isc_list = &fi->lists[irq_type_to_isc(irq_type)];
  803. inti = list_first_entry_or_null(isc_list,
  804. struct kvm_s390_interrupt_info,
  805. list);
  806. if (inti) {
  807. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  808. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  809. else
  810. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  811. inti->io.subchannel_id >> 8,
  812. inti->io.subchannel_id >> 1 & 0x3,
  813. inti->io.subchannel_nr);
  814. vcpu->stat.deliver_io_int++;
  815. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  816. inti->type,
  817. ((__u32)inti->io.subchannel_id << 16) |
  818. inti->io.subchannel_nr,
  819. ((__u64)inti->io.io_int_parm << 32) |
  820. inti->io.io_int_word);
  821. list_del(&inti->list);
  822. fi->counters[FIRQ_CNTR_IO] -= 1;
  823. }
  824. if (list_empty(isc_list))
  825. clear_bit(irq_type, &fi->pending_irqs);
  826. spin_unlock(&fi->lock);
  827. if (inti) {
  828. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  829. (u16 *)__LC_SUBCHANNEL_ID);
  830. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  831. (u16 *)__LC_SUBCHANNEL_NR);
  832. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  833. (u32 *)__LC_IO_INT_PARM);
  834. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  835. (u32 *)__LC_IO_INT_WORD);
  836. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  837. &vcpu->arch.sie_block->gpsw,
  838. sizeof(psw_t));
  839. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  840. &vcpu->arch.sie_block->gpsw,
  841. sizeof(psw_t));
  842. kfree(inti);
  843. }
  844. return rc ? -EFAULT : 0;
  845. }
  846. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  847. static const deliver_irq_t deliver_irq_funcs[] = {
  848. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  849. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  850. [IRQ_PEND_PROG] = __deliver_prog,
  851. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  852. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  853. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  854. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  855. [IRQ_PEND_RESTART] = __deliver_restart,
  856. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  857. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  858. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  859. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  860. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  861. };
  862. /* Check whether an external call is pending (deliverable or not) */
  863. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  864. {
  865. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  866. if (!sclp.has_sigpif)
  867. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  868. return sca_ext_call_pending(vcpu, NULL);
  869. }
  870. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  871. {
  872. if (deliverable_irqs(vcpu))
  873. return 1;
  874. if (kvm_cpu_has_pending_timer(vcpu))
  875. return 1;
  876. /* external call pending and deliverable */
  877. if (kvm_s390_ext_call_pending(vcpu) &&
  878. !psw_extint_disabled(vcpu) &&
  879. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  880. return 1;
  881. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  882. return 1;
  883. return 0;
  884. }
  885. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  886. {
  887. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  888. }
  889. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  890. {
  891. u64 now, cputm, sltime = 0;
  892. if (ckc_interrupts_enabled(vcpu)) {
  893. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  894. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  895. /* already expired or overflow? */
  896. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  897. return 0;
  898. if (cpu_timer_interrupts_enabled(vcpu)) {
  899. cputm = kvm_s390_get_cpu_timer(vcpu);
  900. /* already expired? */
  901. if (cputm >> 63)
  902. return 0;
  903. return min(sltime, tod_to_ns(cputm));
  904. }
  905. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  906. sltime = kvm_s390_get_cpu_timer(vcpu);
  907. /* already expired? */
  908. if (sltime >> 63)
  909. return 0;
  910. }
  911. return sltime;
  912. }
  913. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  914. {
  915. u64 sltime;
  916. vcpu->stat.exit_wait_state++;
  917. /* fast path */
  918. if (kvm_arch_vcpu_runnable(vcpu))
  919. return 0;
  920. if (psw_interrupts_disabled(vcpu)) {
  921. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  922. return -EOPNOTSUPP; /* disabled wait */
  923. }
  924. if (!ckc_interrupts_enabled(vcpu) &&
  925. !cpu_timer_interrupts_enabled(vcpu)) {
  926. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  927. __set_cpu_idle(vcpu);
  928. goto no_timer;
  929. }
  930. sltime = __calculate_sltime(vcpu);
  931. if (!sltime)
  932. return 0;
  933. __set_cpu_idle(vcpu);
  934. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  935. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  936. no_timer:
  937. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  938. kvm_vcpu_block(vcpu);
  939. __unset_cpu_idle(vcpu);
  940. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  941. hrtimer_cancel(&vcpu->arch.ckc_timer);
  942. return 0;
  943. }
  944. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  945. {
  946. /*
  947. * We cannot move this into the if, as the CPU might be already
  948. * in kvm_vcpu_block without having the waitqueue set (polling)
  949. */
  950. vcpu->valid_wakeup = true;
  951. /*
  952. * This is mostly to document, that the read in swait_active could
  953. * be moved before other stores, leading to subtle races.
  954. * All current users do not store or use an atomic like update
  955. */
  956. smp_mb__after_atomic();
  957. if (swait_active(&vcpu->wq)) {
  958. /*
  959. * The vcpu gave up the cpu voluntarily, mark it as a good
  960. * yield-candidate.
  961. */
  962. vcpu->preempted = true;
  963. swake_up(&vcpu->wq);
  964. vcpu->stat.halt_wakeup++;
  965. }
  966. /*
  967. * The VCPU might not be sleeping but is executing the VSIE. Let's
  968. * kick it, so it leaves the SIE to process the request.
  969. */
  970. kvm_s390_vsie_kick(vcpu);
  971. }
  972. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  973. {
  974. struct kvm_vcpu *vcpu;
  975. u64 sltime;
  976. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  977. sltime = __calculate_sltime(vcpu);
  978. /*
  979. * If the monotonic clock runs faster than the tod clock we might be
  980. * woken up too early and have to go back to sleep to avoid deadlocks.
  981. */
  982. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  983. return HRTIMER_RESTART;
  984. kvm_s390_vcpu_wakeup(vcpu);
  985. return HRTIMER_NORESTART;
  986. }
  987. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  988. {
  989. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  990. spin_lock(&li->lock);
  991. li->pending_irqs = 0;
  992. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  993. memset(&li->irq, 0, sizeof(li->irq));
  994. spin_unlock(&li->lock);
  995. sca_clear_ext_call(vcpu);
  996. }
  997. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  998. {
  999. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1000. deliver_irq_t func;
  1001. int rc = 0;
  1002. unsigned long irq_type;
  1003. unsigned long irqs;
  1004. __reset_intercept_indicators(vcpu);
  1005. /* pending ckc conditions might have been invalidated */
  1006. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1007. if (ckc_irq_pending(vcpu))
  1008. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1009. /* pending cpu timer conditions might have been invalidated */
  1010. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1011. if (cpu_timer_irq_pending(vcpu))
  1012. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1013. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1014. /* bits are in the order of interrupt priority */
  1015. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  1016. if (is_ioirq(irq_type)) {
  1017. rc = __deliver_io(vcpu, irq_type);
  1018. } else {
  1019. func = deliver_irq_funcs[irq_type];
  1020. if (!func) {
  1021. WARN_ON_ONCE(func == NULL);
  1022. clear_bit(irq_type, &li->pending_irqs);
  1023. continue;
  1024. }
  1025. rc = func(vcpu);
  1026. }
  1027. }
  1028. set_intercept_indicators(vcpu);
  1029. return rc;
  1030. }
  1031. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1032. {
  1033. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1034. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1035. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1036. irq->u.pgm.code, 0);
  1037. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1038. /* auto detection if no valid ILC was given */
  1039. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1040. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1041. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1042. }
  1043. if (irq->u.pgm.code == PGM_PER) {
  1044. li->irq.pgm.code |= PGM_PER;
  1045. li->irq.pgm.flags = irq->u.pgm.flags;
  1046. /* only modify PER related information */
  1047. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1048. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1049. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1050. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1051. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1052. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1053. irq->u.pgm.code;
  1054. li->irq.pgm.flags = irq->u.pgm.flags;
  1055. /* only modify non-PER information */
  1056. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1057. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1058. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1059. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1060. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1061. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1062. } else {
  1063. li->irq.pgm = irq->u.pgm;
  1064. }
  1065. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1066. return 0;
  1067. }
  1068. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1069. {
  1070. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1071. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1072. irq->u.ext.ext_params2);
  1073. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1074. irq->u.ext.ext_params,
  1075. irq->u.ext.ext_params2);
  1076. li->irq.ext = irq->u.ext;
  1077. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1078. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1079. return 0;
  1080. }
  1081. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1082. {
  1083. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1084. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1085. uint16_t src_id = irq->u.extcall.code;
  1086. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1087. src_id);
  1088. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1089. src_id, 0);
  1090. /* sending vcpu invalid */
  1091. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1092. return -EINVAL;
  1093. if (sclp.has_sigpif)
  1094. return sca_inject_ext_call(vcpu, src_id);
  1095. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1096. return -EBUSY;
  1097. *extcall = irq->u.extcall;
  1098. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1099. return 0;
  1100. }
  1101. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1102. {
  1103. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1104. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1105. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1106. irq->u.prefix.address);
  1107. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1108. irq->u.prefix.address, 0);
  1109. if (!is_vcpu_stopped(vcpu))
  1110. return -EBUSY;
  1111. *prefix = irq->u.prefix;
  1112. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1113. return 0;
  1114. }
  1115. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1116. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1117. {
  1118. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1119. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1120. int rc = 0;
  1121. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1122. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1123. return -EINVAL;
  1124. if (is_vcpu_stopped(vcpu)) {
  1125. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1126. rc = kvm_s390_store_status_unloaded(vcpu,
  1127. KVM_S390_STORE_STATUS_NOADDR);
  1128. return rc;
  1129. }
  1130. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1131. return -EBUSY;
  1132. stop->flags = irq->u.stop.flags;
  1133. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1134. return 0;
  1135. }
  1136. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1137. struct kvm_s390_irq *irq)
  1138. {
  1139. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1140. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1141. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1142. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1143. return 0;
  1144. }
  1145. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1146. struct kvm_s390_irq *irq)
  1147. {
  1148. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1149. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1150. irq->u.emerg.code);
  1151. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1152. irq->u.emerg.code, 0);
  1153. /* sending vcpu invalid */
  1154. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1155. return -EINVAL;
  1156. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1157. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1158. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1159. return 0;
  1160. }
  1161. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1162. {
  1163. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1164. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1165. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1166. irq->u.mchk.mcic);
  1167. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1168. irq->u.mchk.mcic);
  1169. /*
  1170. * Because repressible machine checks can be indicated along with
  1171. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1172. * we need to combine cr14, mcic and external damage code.
  1173. * Failing storage address and the logout area should not be or'ed
  1174. * together, we just indicate the last occurrence of the corresponding
  1175. * machine check
  1176. */
  1177. mchk->cr14 |= irq->u.mchk.cr14;
  1178. mchk->mcic |= irq->u.mchk.mcic;
  1179. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1180. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1181. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1182. sizeof(mchk->fixed_logout));
  1183. if (mchk->mcic & MCHK_EX_MASK)
  1184. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1185. else if (mchk->mcic & MCHK_REP_MASK)
  1186. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1187. return 0;
  1188. }
  1189. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1190. {
  1191. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1192. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1193. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1194. 0, 0);
  1195. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1196. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1197. return 0;
  1198. }
  1199. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1200. {
  1201. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1202. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1203. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1204. 0, 0);
  1205. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1206. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1207. return 0;
  1208. }
  1209. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1210. int isc, u32 schid)
  1211. {
  1212. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1213. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1214. struct kvm_s390_interrupt_info *iter;
  1215. u16 id = (schid & 0xffff0000U) >> 16;
  1216. u16 nr = schid & 0x0000ffffU;
  1217. spin_lock(&fi->lock);
  1218. list_for_each_entry(iter, isc_list, list) {
  1219. if (schid && (id != iter->io.subchannel_id ||
  1220. nr != iter->io.subchannel_nr))
  1221. continue;
  1222. /* found an appropriate entry */
  1223. list_del_init(&iter->list);
  1224. fi->counters[FIRQ_CNTR_IO] -= 1;
  1225. if (list_empty(isc_list))
  1226. clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1227. spin_unlock(&fi->lock);
  1228. return iter;
  1229. }
  1230. spin_unlock(&fi->lock);
  1231. return NULL;
  1232. }
  1233. /*
  1234. * Dequeue and return an I/O interrupt matching any of the interruption
  1235. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1236. */
  1237. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1238. u64 isc_mask, u32 schid)
  1239. {
  1240. struct kvm_s390_interrupt_info *inti = NULL;
  1241. int isc;
  1242. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1243. if (isc_mask & isc_to_isc_bits(isc))
  1244. inti = get_io_int(kvm, isc, schid);
  1245. }
  1246. return inti;
  1247. }
  1248. #define SCCB_MASK 0xFFFFFFF8
  1249. #define SCCB_EVENT_PENDING 0x3
  1250. static int __inject_service(struct kvm *kvm,
  1251. struct kvm_s390_interrupt_info *inti)
  1252. {
  1253. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1254. spin_lock(&fi->lock);
  1255. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1256. /*
  1257. * Early versions of the QEMU s390 bios will inject several
  1258. * service interrupts after another without handling a
  1259. * condition code indicating busy.
  1260. * We will silently ignore those superfluous sccb values.
  1261. * A future version of QEMU will take care of serialization
  1262. * of servc requests
  1263. */
  1264. if (fi->srv_signal.ext_params & SCCB_MASK)
  1265. goto out;
  1266. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1267. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1268. out:
  1269. spin_unlock(&fi->lock);
  1270. kfree(inti);
  1271. return 0;
  1272. }
  1273. static int __inject_virtio(struct kvm *kvm,
  1274. struct kvm_s390_interrupt_info *inti)
  1275. {
  1276. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1277. spin_lock(&fi->lock);
  1278. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1279. spin_unlock(&fi->lock);
  1280. return -EBUSY;
  1281. }
  1282. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1283. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1284. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1285. spin_unlock(&fi->lock);
  1286. return 0;
  1287. }
  1288. static int __inject_pfault_done(struct kvm *kvm,
  1289. struct kvm_s390_interrupt_info *inti)
  1290. {
  1291. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1292. spin_lock(&fi->lock);
  1293. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1294. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1295. spin_unlock(&fi->lock);
  1296. return -EBUSY;
  1297. }
  1298. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1299. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1300. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1301. spin_unlock(&fi->lock);
  1302. return 0;
  1303. }
  1304. #define CR_PENDING_SUBCLASS 28
  1305. static int __inject_float_mchk(struct kvm *kvm,
  1306. struct kvm_s390_interrupt_info *inti)
  1307. {
  1308. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1309. spin_lock(&fi->lock);
  1310. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1311. fi->mchk.mcic |= inti->mchk.mcic;
  1312. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1313. spin_unlock(&fi->lock);
  1314. kfree(inti);
  1315. return 0;
  1316. }
  1317. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1318. {
  1319. struct kvm_s390_float_interrupt *fi;
  1320. struct list_head *list;
  1321. int isc;
  1322. fi = &kvm->arch.float_int;
  1323. spin_lock(&fi->lock);
  1324. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1325. spin_unlock(&fi->lock);
  1326. return -EBUSY;
  1327. }
  1328. fi->counters[FIRQ_CNTR_IO] += 1;
  1329. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1330. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1331. else
  1332. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1333. inti->io.subchannel_id >> 8,
  1334. inti->io.subchannel_id >> 1 & 0x3,
  1335. inti->io.subchannel_nr);
  1336. isc = int_word_to_isc(inti->io.io_int_word);
  1337. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1338. list_add_tail(&inti->list, list);
  1339. set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1340. spin_unlock(&fi->lock);
  1341. return 0;
  1342. }
  1343. /*
  1344. * Find a destination VCPU for a floating irq and kick it.
  1345. */
  1346. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1347. {
  1348. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1349. struct kvm_s390_local_interrupt *li;
  1350. struct kvm_vcpu *dst_vcpu;
  1351. int sigcpu, online_vcpus, nr_tries = 0;
  1352. online_vcpus = atomic_read(&kvm->online_vcpus);
  1353. if (!online_vcpus)
  1354. return;
  1355. /* find idle VCPUs first, then round robin */
  1356. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1357. if (sigcpu == online_vcpus) {
  1358. do {
  1359. sigcpu = fi->next_rr_cpu;
  1360. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1361. /* avoid endless loops if all vcpus are stopped */
  1362. if (nr_tries++ >= online_vcpus)
  1363. return;
  1364. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1365. }
  1366. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1367. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1368. li = &dst_vcpu->arch.local_int;
  1369. spin_lock(&li->lock);
  1370. switch (type) {
  1371. case KVM_S390_MCHK:
  1372. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1373. break;
  1374. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1375. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1376. break;
  1377. default:
  1378. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1379. break;
  1380. }
  1381. spin_unlock(&li->lock);
  1382. kvm_s390_vcpu_wakeup(dst_vcpu);
  1383. }
  1384. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1385. {
  1386. u64 type = READ_ONCE(inti->type);
  1387. int rc;
  1388. switch (type) {
  1389. case KVM_S390_MCHK:
  1390. rc = __inject_float_mchk(kvm, inti);
  1391. break;
  1392. case KVM_S390_INT_VIRTIO:
  1393. rc = __inject_virtio(kvm, inti);
  1394. break;
  1395. case KVM_S390_INT_SERVICE:
  1396. rc = __inject_service(kvm, inti);
  1397. break;
  1398. case KVM_S390_INT_PFAULT_DONE:
  1399. rc = __inject_pfault_done(kvm, inti);
  1400. break;
  1401. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1402. rc = __inject_io(kvm, inti);
  1403. break;
  1404. default:
  1405. rc = -EINVAL;
  1406. }
  1407. if (rc)
  1408. return rc;
  1409. __floating_irq_kick(kvm, type);
  1410. return 0;
  1411. }
  1412. int kvm_s390_inject_vm(struct kvm *kvm,
  1413. struct kvm_s390_interrupt *s390int)
  1414. {
  1415. struct kvm_s390_interrupt_info *inti;
  1416. int rc;
  1417. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1418. if (!inti)
  1419. return -ENOMEM;
  1420. inti->type = s390int->type;
  1421. switch (inti->type) {
  1422. case KVM_S390_INT_VIRTIO:
  1423. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1424. s390int->parm, s390int->parm64);
  1425. inti->ext.ext_params = s390int->parm;
  1426. inti->ext.ext_params2 = s390int->parm64;
  1427. break;
  1428. case KVM_S390_INT_SERVICE:
  1429. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1430. inti->ext.ext_params = s390int->parm;
  1431. break;
  1432. case KVM_S390_INT_PFAULT_DONE:
  1433. inti->ext.ext_params2 = s390int->parm64;
  1434. break;
  1435. case KVM_S390_MCHK:
  1436. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1437. s390int->parm64);
  1438. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1439. inti->mchk.mcic = s390int->parm64;
  1440. break;
  1441. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1442. inti->io.subchannel_id = s390int->parm >> 16;
  1443. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1444. inti->io.io_int_parm = s390int->parm64 >> 32;
  1445. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1446. break;
  1447. default:
  1448. kfree(inti);
  1449. return -EINVAL;
  1450. }
  1451. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1452. 2);
  1453. rc = __inject_vm(kvm, inti);
  1454. if (rc)
  1455. kfree(inti);
  1456. return rc;
  1457. }
  1458. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1459. struct kvm_s390_interrupt_info *inti)
  1460. {
  1461. return __inject_vm(kvm, inti);
  1462. }
  1463. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1464. struct kvm_s390_irq *irq)
  1465. {
  1466. irq->type = s390int->type;
  1467. switch (irq->type) {
  1468. case KVM_S390_PROGRAM_INT:
  1469. if (s390int->parm & 0xffff0000)
  1470. return -EINVAL;
  1471. irq->u.pgm.code = s390int->parm;
  1472. break;
  1473. case KVM_S390_SIGP_SET_PREFIX:
  1474. irq->u.prefix.address = s390int->parm;
  1475. break;
  1476. case KVM_S390_SIGP_STOP:
  1477. irq->u.stop.flags = s390int->parm;
  1478. break;
  1479. case KVM_S390_INT_EXTERNAL_CALL:
  1480. if (s390int->parm & 0xffff0000)
  1481. return -EINVAL;
  1482. irq->u.extcall.code = s390int->parm;
  1483. break;
  1484. case KVM_S390_INT_EMERGENCY:
  1485. if (s390int->parm & 0xffff0000)
  1486. return -EINVAL;
  1487. irq->u.emerg.code = s390int->parm;
  1488. break;
  1489. case KVM_S390_MCHK:
  1490. irq->u.mchk.mcic = s390int->parm64;
  1491. break;
  1492. }
  1493. return 0;
  1494. }
  1495. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1496. {
  1497. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1498. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1499. }
  1500. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1501. {
  1502. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1503. spin_lock(&li->lock);
  1504. li->irq.stop.flags = 0;
  1505. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1506. spin_unlock(&li->lock);
  1507. }
  1508. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1509. {
  1510. int rc;
  1511. switch (irq->type) {
  1512. case KVM_S390_PROGRAM_INT:
  1513. rc = __inject_prog(vcpu, irq);
  1514. break;
  1515. case KVM_S390_SIGP_SET_PREFIX:
  1516. rc = __inject_set_prefix(vcpu, irq);
  1517. break;
  1518. case KVM_S390_SIGP_STOP:
  1519. rc = __inject_sigp_stop(vcpu, irq);
  1520. break;
  1521. case KVM_S390_RESTART:
  1522. rc = __inject_sigp_restart(vcpu, irq);
  1523. break;
  1524. case KVM_S390_INT_CLOCK_COMP:
  1525. rc = __inject_ckc(vcpu);
  1526. break;
  1527. case KVM_S390_INT_CPU_TIMER:
  1528. rc = __inject_cpu_timer(vcpu);
  1529. break;
  1530. case KVM_S390_INT_EXTERNAL_CALL:
  1531. rc = __inject_extcall(vcpu, irq);
  1532. break;
  1533. case KVM_S390_INT_EMERGENCY:
  1534. rc = __inject_sigp_emergency(vcpu, irq);
  1535. break;
  1536. case KVM_S390_MCHK:
  1537. rc = __inject_mchk(vcpu, irq);
  1538. break;
  1539. case KVM_S390_INT_PFAULT_INIT:
  1540. rc = __inject_pfault_init(vcpu, irq);
  1541. break;
  1542. case KVM_S390_INT_VIRTIO:
  1543. case KVM_S390_INT_SERVICE:
  1544. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1545. default:
  1546. rc = -EINVAL;
  1547. }
  1548. return rc;
  1549. }
  1550. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1551. {
  1552. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1553. int rc;
  1554. spin_lock(&li->lock);
  1555. rc = do_inject_vcpu(vcpu, irq);
  1556. spin_unlock(&li->lock);
  1557. if (!rc)
  1558. kvm_s390_vcpu_wakeup(vcpu);
  1559. return rc;
  1560. }
  1561. static inline void clear_irq_list(struct list_head *_list)
  1562. {
  1563. struct kvm_s390_interrupt_info *inti, *n;
  1564. list_for_each_entry_safe(inti, n, _list, list) {
  1565. list_del(&inti->list);
  1566. kfree(inti);
  1567. }
  1568. }
  1569. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1570. struct kvm_s390_irq *irq)
  1571. {
  1572. irq->type = inti->type;
  1573. switch (inti->type) {
  1574. case KVM_S390_INT_PFAULT_INIT:
  1575. case KVM_S390_INT_PFAULT_DONE:
  1576. case KVM_S390_INT_VIRTIO:
  1577. irq->u.ext = inti->ext;
  1578. break;
  1579. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1580. irq->u.io = inti->io;
  1581. break;
  1582. }
  1583. }
  1584. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1585. {
  1586. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1587. int i;
  1588. spin_lock(&fi->lock);
  1589. fi->pending_irqs = 0;
  1590. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1591. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1592. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1593. clear_irq_list(&fi->lists[i]);
  1594. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1595. fi->counters[i] = 0;
  1596. spin_unlock(&fi->lock);
  1597. };
  1598. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1599. {
  1600. struct kvm_s390_interrupt_info *inti;
  1601. struct kvm_s390_float_interrupt *fi;
  1602. struct kvm_s390_irq *buf;
  1603. struct kvm_s390_irq *irq;
  1604. int max_irqs;
  1605. int ret = 0;
  1606. int n = 0;
  1607. int i;
  1608. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1609. return -EINVAL;
  1610. /*
  1611. * We are already using -ENOMEM to signal
  1612. * userspace it may retry with a bigger buffer,
  1613. * so we need to use something else for this case
  1614. */
  1615. buf = vzalloc(len);
  1616. if (!buf)
  1617. return -ENOBUFS;
  1618. max_irqs = len / sizeof(struct kvm_s390_irq);
  1619. fi = &kvm->arch.float_int;
  1620. spin_lock(&fi->lock);
  1621. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1622. list_for_each_entry(inti, &fi->lists[i], list) {
  1623. if (n == max_irqs) {
  1624. /* signal userspace to try again */
  1625. ret = -ENOMEM;
  1626. goto out;
  1627. }
  1628. inti_to_irq(inti, &buf[n]);
  1629. n++;
  1630. }
  1631. }
  1632. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1633. if (n == max_irqs) {
  1634. /* signal userspace to try again */
  1635. ret = -ENOMEM;
  1636. goto out;
  1637. }
  1638. irq = (struct kvm_s390_irq *) &buf[n];
  1639. irq->type = KVM_S390_INT_SERVICE;
  1640. irq->u.ext = fi->srv_signal;
  1641. n++;
  1642. }
  1643. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1644. if (n == max_irqs) {
  1645. /* signal userspace to try again */
  1646. ret = -ENOMEM;
  1647. goto out;
  1648. }
  1649. irq = (struct kvm_s390_irq *) &buf[n];
  1650. irq->type = KVM_S390_MCHK;
  1651. irq->u.mchk = fi->mchk;
  1652. n++;
  1653. }
  1654. out:
  1655. spin_unlock(&fi->lock);
  1656. if (!ret && n > 0) {
  1657. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1658. ret = -EFAULT;
  1659. }
  1660. vfree(buf);
  1661. return ret < 0 ? ret : n;
  1662. }
  1663. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1664. {
  1665. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1666. struct kvm_s390_ais_all ais;
  1667. if (attr->attr < sizeof(ais))
  1668. return -EINVAL;
  1669. if (!test_kvm_facility(kvm, 72))
  1670. return -ENOTSUPP;
  1671. mutex_lock(&fi->ais_lock);
  1672. ais.simm = fi->simm;
  1673. ais.nimm = fi->nimm;
  1674. mutex_unlock(&fi->ais_lock);
  1675. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1676. return -EFAULT;
  1677. return 0;
  1678. }
  1679. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1680. {
  1681. int r;
  1682. switch (attr->group) {
  1683. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1684. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1685. attr->attr);
  1686. break;
  1687. case KVM_DEV_FLIC_AISM_ALL:
  1688. r = flic_ais_mode_get_all(dev->kvm, attr);
  1689. break;
  1690. default:
  1691. r = -EINVAL;
  1692. }
  1693. return r;
  1694. }
  1695. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1696. u64 addr)
  1697. {
  1698. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1699. void *target = NULL;
  1700. void __user *source;
  1701. u64 size;
  1702. if (get_user(inti->type, (u64 __user *)addr))
  1703. return -EFAULT;
  1704. switch (inti->type) {
  1705. case KVM_S390_INT_PFAULT_INIT:
  1706. case KVM_S390_INT_PFAULT_DONE:
  1707. case KVM_S390_INT_VIRTIO:
  1708. case KVM_S390_INT_SERVICE:
  1709. target = (void *) &inti->ext;
  1710. source = &uptr->u.ext;
  1711. size = sizeof(inti->ext);
  1712. break;
  1713. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1714. target = (void *) &inti->io;
  1715. source = &uptr->u.io;
  1716. size = sizeof(inti->io);
  1717. break;
  1718. case KVM_S390_MCHK:
  1719. target = (void *) &inti->mchk;
  1720. source = &uptr->u.mchk;
  1721. size = sizeof(inti->mchk);
  1722. break;
  1723. default:
  1724. return -EINVAL;
  1725. }
  1726. if (copy_from_user(target, source, size))
  1727. return -EFAULT;
  1728. return 0;
  1729. }
  1730. static int enqueue_floating_irq(struct kvm_device *dev,
  1731. struct kvm_device_attr *attr)
  1732. {
  1733. struct kvm_s390_interrupt_info *inti = NULL;
  1734. int r = 0;
  1735. int len = attr->attr;
  1736. if (len % sizeof(struct kvm_s390_irq) != 0)
  1737. return -EINVAL;
  1738. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1739. return -EINVAL;
  1740. while (len >= sizeof(struct kvm_s390_irq)) {
  1741. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1742. if (!inti)
  1743. return -ENOMEM;
  1744. r = copy_irq_from_user(inti, attr->addr);
  1745. if (r) {
  1746. kfree(inti);
  1747. return r;
  1748. }
  1749. r = __inject_vm(dev->kvm, inti);
  1750. if (r) {
  1751. kfree(inti);
  1752. return r;
  1753. }
  1754. len -= sizeof(struct kvm_s390_irq);
  1755. attr->addr += sizeof(struct kvm_s390_irq);
  1756. }
  1757. return r;
  1758. }
  1759. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1760. {
  1761. if (id >= MAX_S390_IO_ADAPTERS)
  1762. return NULL;
  1763. return kvm->arch.adapters[id];
  1764. }
  1765. static int register_io_adapter(struct kvm_device *dev,
  1766. struct kvm_device_attr *attr)
  1767. {
  1768. struct s390_io_adapter *adapter;
  1769. struct kvm_s390_io_adapter adapter_info;
  1770. if (copy_from_user(&adapter_info,
  1771. (void __user *)attr->addr, sizeof(adapter_info)))
  1772. return -EFAULT;
  1773. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1774. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1775. return -EINVAL;
  1776. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1777. if (!adapter)
  1778. return -ENOMEM;
  1779. INIT_LIST_HEAD(&adapter->maps);
  1780. init_rwsem(&adapter->maps_lock);
  1781. atomic_set(&adapter->nr_maps, 0);
  1782. adapter->id = adapter_info.id;
  1783. adapter->isc = adapter_info.isc;
  1784. adapter->maskable = adapter_info.maskable;
  1785. adapter->masked = false;
  1786. adapter->swap = adapter_info.swap;
  1787. adapter->suppressible = (adapter_info.flags) &
  1788. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1789. dev->kvm->arch.adapters[adapter->id] = adapter;
  1790. return 0;
  1791. }
  1792. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1793. {
  1794. int ret;
  1795. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1796. if (!adapter || !adapter->maskable)
  1797. return -EINVAL;
  1798. ret = adapter->masked;
  1799. adapter->masked = masked;
  1800. return ret;
  1801. }
  1802. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1803. {
  1804. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1805. struct s390_map_info *map;
  1806. int ret;
  1807. if (!adapter || !addr)
  1808. return -EINVAL;
  1809. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1810. if (!map) {
  1811. ret = -ENOMEM;
  1812. goto out;
  1813. }
  1814. INIT_LIST_HEAD(&map->list);
  1815. map->guest_addr = addr;
  1816. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1817. if (map->addr == -EFAULT) {
  1818. ret = -EFAULT;
  1819. goto out;
  1820. }
  1821. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1822. if (ret < 0)
  1823. goto out;
  1824. BUG_ON(ret != 1);
  1825. down_write(&adapter->maps_lock);
  1826. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1827. list_add_tail(&map->list, &adapter->maps);
  1828. ret = 0;
  1829. } else {
  1830. put_page(map->page);
  1831. ret = -EINVAL;
  1832. }
  1833. up_write(&adapter->maps_lock);
  1834. out:
  1835. if (ret)
  1836. kfree(map);
  1837. return ret;
  1838. }
  1839. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1840. {
  1841. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1842. struct s390_map_info *map, *tmp;
  1843. int found = 0;
  1844. if (!adapter || !addr)
  1845. return -EINVAL;
  1846. down_write(&adapter->maps_lock);
  1847. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1848. if (map->guest_addr == addr) {
  1849. found = 1;
  1850. atomic_dec(&adapter->nr_maps);
  1851. list_del(&map->list);
  1852. put_page(map->page);
  1853. kfree(map);
  1854. break;
  1855. }
  1856. }
  1857. up_write(&adapter->maps_lock);
  1858. return found ? 0 : -EINVAL;
  1859. }
  1860. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1861. {
  1862. int i;
  1863. struct s390_map_info *map, *tmp;
  1864. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1865. if (!kvm->arch.adapters[i])
  1866. continue;
  1867. list_for_each_entry_safe(map, tmp,
  1868. &kvm->arch.adapters[i]->maps, list) {
  1869. list_del(&map->list);
  1870. put_page(map->page);
  1871. kfree(map);
  1872. }
  1873. kfree(kvm->arch.adapters[i]);
  1874. }
  1875. }
  1876. static int modify_io_adapter(struct kvm_device *dev,
  1877. struct kvm_device_attr *attr)
  1878. {
  1879. struct kvm_s390_io_adapter_req req;
  1880. struct s390_io_adapter *adapter;
  1881. int ret;
  1882. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1883. return -EFAULT;
  1884. adapter = get_io_adapter(dev->kvm, req.id);
  1885. if (!adapter)
  1886. return -EINVAL;
  1887. switch (req.type) {
  1888. case KVM_S390_IO_ADAPTER_MASK:
  1889. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1890. if (ret > 0)
  1891. ret = 0;
  1892. break;
  1893. case KVM_S390_IO_ADAPTER_MAP:
  1894. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1895. break;
  1896. case KVM_S390_IO_ADAPTER_UNMAP:
  1897. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1898. break;
  1899. default:
  1900. ret = -EINVAL;
  1901. }
  1902. return ret;
  1903. }
  1904. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  1905. {
  1906. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  1907. u32 schid;
  1908. if (attr->flags)
  1909. return -EINVAL;
  1910. if (attr->attr != sizeof(schid))
  1911. return -EINVAL;
  1912. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  1913. return -EFAULT;
  1914. if (!schid)
  1915. return -EINVAL;
  1916. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  1917. /*
  1918. * If userspace is conforming to the architecture, we can have at most
  1919. * one pending I/O interrupt per subchannel, so this is effectively a
  1920. * clear all.
  1921. */
  1922. return 0;
  1923. }
  1924. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  1925. {
  1926. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1927. struct kvm_s390_ais_req req;
  1928. int ret = 0;
  1929. if (!test_kvm_facility(kvm, 72))
  1930. return -ENOTSUPP;
  1931. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1932. return -EFAULT;
  1933. if (req.isc > MAX_ISC)
  1934. return -EINVAL;
  1935. trace_kvm_s390_modify_ais_mode(req.isc,
  1936. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  1937. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  1938. 2 : KVM_S390_AIS_MODE_SINGLE :
  1939. KVM_S390_AIS_MODE_ALL, req.mode);
  1940. mutex_lock(&fi->ais_lock);
  1941. switch (req.mode) {
  1942. case KVM_S390_AIS_MODE_ALL:
  1943. fi->simm &= ~AIS_MODE_MASK(req.isc);
  1944. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1945. break;
  1946. case KVM_S390_AIS_MODE_SINGLE:
  1947. fi->simm |= AIS_MODE_MASK(req.isc);
  1948. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  1949. break;
  1950. default:
  1951. ret = -EINVAL;
  1952. }
  1953. mutex_unlock(&fi->ais_lock);
  1954. return ret;
  1955. }
  1956. static int kvm_s390_inject_airq(struct kvm *kvm,
  1957. struct s390_io_adapter *adapter)
  1958. {
  1959. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1960. struct kvm_s390_interrupt s390int = {
  1961. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1962. .parm = 0,
  1963. .parm64 = (adapter->isc << 27) | 0x80000000,
  1964. };
  1965. int ret = 0;
  1966. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  1967. return kvm_s390_inject_vm(kvm, &s390int);
  1968. mutex_lock(&fi->ais_lock);
  1969. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  1970. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  1971. goto out;
  1972. }
  1973. ret = kvm_s390_inject_vm(kvm, &s390int);
  1974. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  1975. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  1976. trace_kvm_s390_modify_ais_mode(adapter->isc,
  1977. KVM_S390_AIS_MODE_SINGLE, 2);
  1978. }
  1979. out:
  1980. mutex_unlock(&fi->ais_lock);
  1981. return ret;
  1982. }
  1983. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  1984. {
  1985. unsigned int id = attr->attr;
  1986. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1987. if (!adapter)
  1988. return -EINVAL;
  1989. return kvm_s390_inject_airq(kvm, adapter);
  1990. }
  1991. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1992. {
  1993. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1994. struct kvm_s390_ais_all ais;
  1995. if (!test_kvm_facility(kvm, 72))
  1996. return -ENOTSUPP;
  1997. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  1998. return -EFAULT;
  1999. mutex_lock(&fi->ais_lock);
  2000. fi->simm = ais.simm;
  2001. fi->nimm = ais.nimm;
  2002. mutex_unlock(&fi->ais_lock);
  2003. return 0;
  2004. }
  2005. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  2006. {
  2007. int r = 0;
  2008. unsigned int i;
  2009. struct kvm_vcpu *vcpu;
  2010. switch (attr->group) {
  2011. case KVM_DEV_FLIC_ENQUEUE:
  2012. r = enqueue_floating_irq(dev, attr);
  2013. break;
  2014. case KVM_DEV_FLIC_CLEAR_IRQS:
  2015. kvm_s390_clear_float_irqs(dev->kvm);
  2016. break;
  2017. case KVM_DEV_FLIC_APF_ENABLE:
  2018. dev->kvm->arch.gmap->pfault_enabled = 1;
  2019. break;
  2020. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2021. dev->kvm->arch.gmap->pfault_enabled = 0;
  2022. /*
  2023. * Make sure no async faults are in transition when
  2024. * clearing the queues. So we don't need to worry
  2025. * about late coming workers.
  2026. */
  2027. synchronize_srcu(&dev->kvm->srcu);
  2028. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2029. kvm_clear_async_pf_completion_queue(vcpu);
  2030. break;
  2031. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2032. r = register_io_adapter(dev, attr);
  2033. break;
  2034. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2035. r = modify_io_adapter(dev, attr);
  2036. break;
  2037. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2038. r = clear_io_irq(dev->kvm, attr);
  2039. break;
  2040. case KVM_DEV_FLIC_AISM:
  2041. r = modify_ais_mode(dev->kvm, attr);
  2042. break;
  2043. case KVM_DEV_FLIC_AIRQ_INJECT:
  2044. r = flic_inject_airq(dev->kvm, attr);
  2045. break;
  2046. case KVM_DEV_FLIC_AISM_ALL:
  2047. r = flic_ais_mode_set_all(dev->kvm, attr);
  2048. break;
  2049. default:
  2050. r = -EINVAL;
  2051. }
  2052. return r;
  2053. }
  2054. static int flic_has_attr(struct kvm_device *dev,
  2055. struct kvm_device_attr *attr)
  2056. {
  2057. switch (attr->group) {
  2058. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2059. case KVM_DEV_FLIC_ENQUEUE:
  2060. case KVM_DEV_FLIC_CLEAR_IRQS:
  2061. case KVM_DEV_FLIC_APF_ENABLE:
  2062. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2063. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2064. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2065. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2066. case KVM_DEV_FLIC_AISM:
  2067. case KVM_DEV_FLIC_AIRQ_INJECT:
  2068. case KVM_DEV_FLIC_AISM_ALL:
  2069. return 0;
  2070. }
  2071. return -ENXIO;
  2072. }
  2073. static int flic_create(struct kvm_device *dev, u32 type)
  2074. {
  2075. if (!dev)
  2076. return -EINVAL;
  2077. if (dev->kvm->arch.flic)
  2078. return -EINVAL;
  2079. dev->kvm->arch.flic = dev;
  2080. return 0;
  2081. }
  2082. static void flic_destroy(struct kvm_device *dev)
  2083. {
  2084. dev->kvm->arch.flic = NULL;
  2085. kfree(dev);
  2086. }
  2087. /* s390 floating irq controller (flic) */
  2088. struct kvm_device_ops kvm_flic_ops = {
  2089. .name = "kvm-flic",
  2090. .get_attr = flic_get_attr,
  2091. .set_attr = flic_set_attr,
  2092. .has_attr = flic_has_attr,
  2093. .create = flic_create,
  2094. .destroy = flic_destroy,
  2095. };
  2096. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2097. {
  2098. unsigned long bit;
  2099. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2100. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2101. }
  2102. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2103. u64 addr)
  2104. {
  2105. struct s390_map_info *map;
  2106. if (!adapter)
  2107. return NULL;
  2108. list_for_each_entry(map, &adapter->maps, list) {
  2109. if (map->guest_addr == addr)
  2110. return map;
  2111. }
  2112. return NULL;
  2113. }
  2114. static int adapter_indicators_set(struct kvm *kvm,
  2115. struct s390_io_adapter *adapter,
  2116. struct kvm_s390_adapter_int *adapter_int)
  2117. {
  2118. unsigned long bit;
  2119. int summary_set, idx;
  2120. struct s390_map_info *info;
  2121. void *map;
  2122. info = get_map_info(adapter, adapter_int->ind_addr);
  2123. if (!info)
  2124. return -1;
  2125. map = page_address(info->page);
  2126. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2127. set_bit(bit, map);
  2128. idx = srcu_read_lock(&kvm->srcu);
  2129. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2130. set_page_dirty_lock(info->page);
  2131. info = get_map_info(adapter, adapter_int->summary_addr);
  2132. if (!info) {
  2133. srcu_read_unlock(&kvm->srcu, idx);
  2134. return -1;
  2135. }
  2136. map = page_address(info->page);
  2137. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2138. adapter->swap);
  2139. summary_set = test_and_set_bit(bit, map);
  2140. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2141. set_page_dirty_lock(info->page);
  2142. srcu_read_unlock(&kvm->srcu, idx);
  2143. return summary_set ? 0 : 1;
  2144. }
  2145. /*
  2146. * < 0 - not injected due to error
  2147. * = 0 - coalesced, summary indicator already active
  2148. * > 0 - injected interrupt
  2149. */
  2150. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2151. struct kvm *kvm, int irq_source_id, int level,
  2152. bool line_status)
  2153. {
  2154. int ret;
  2155. struct s390_io_adapter *adapter;
  2156. /* We're only interested in the 0->1 transition. */
  2157. if (!level)
  2158. return 0;
  2159. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2160. if (!adapter)
  2161. return -1;
  2162. down_read(&adapter->maps_lock);
  2163. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2164. up_read(&adapter->maps_lock);
  2165. if ((ret > 0) && !adapter->masked) {
  2166. ret = kvm_s390_inject_airq(kvm, adapter);
  2167. if (ret == 0)
  2168. ret = 1;
  2169. }
  2170. return ret;
  2171. }
  2172. /*
  2173. * Inject the machine check to the guest.
  2174. */
  2175. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2176. struct mcck_volatile_info *mcck_info)
  2177. {
  2178. struct kvm_s390_interrupt_info inti;
  2179. struct kvm_s390_irq irq;
  2180. struct kvm_s390_mchk_info *mchk;
  2181. union mci mci;
  2182. __u64 cr14 = 0; /* upper bits are not used */
  2183. int rc;
  2184. mci.val = mcck_info->mcic;
  2185. if (mci.sr)
  2186. cr14 |= CR14_RECOVERY_SUBMASK;
  2187. if (mci.dg)
  2188. cr14 |= CR14_DEGRADATION_SUBMASK;
  2189. if (mci.w)
  2190. cr14 |= CR14_WARNING_SUBMASK;
  2191. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2192. mchk->cr14 = cr14;
  2193. mchk->mcic = mcck_info->mcic;
  2194. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2195. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2196. if (mci.ck) {
  2197. /* Inject the floating machine check */
  2198. inti.type = KVM_S390_MCHK;
  2199. rc = __inject_vm(vcpu->kvm, &inti);
  2200. } else {
  2201. /* Inject the machine check to specified vcpu */
  2202. irq.type = KVM_S390_MCHK;
  2203. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2204. }
  2205. WARN_ON_ONCE(rc);
  2206. }
  2207. int kvm_set_routing_entry(struct kvm *kvm,
  2208. struct kvm_kernel_irq_routing_entry *e,
  2209. const struct kvm_irq_routing_entry *ue)
  2210. {
  2211. int ret;
  2212. switch (ue->type) {
  2213. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2214. e->set = set_adapter_int;
  2215. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2216. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2217. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2218. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2219. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2220. ret = 0;
  2221. break;
  2222. default:
  2223. ret = -EINVAL;
  2224. }
  2225. return ret;
  2226. }
  2227. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2228. int irq_source_id, int level, bool line_status)
  2229. {
  2230. return -EINVAL;
  2231. }
  2232. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2233. {
  2234. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2235. struct kvm_s390_irq *buf;
  2236. int r = 0;
  2237. int n;
  2238. buf = vmalloc(len);
  2239. if (!buf)
  2240. return -ENOMEM;
  2241. if (copy_from_user((void *) buf, irqstate, len)) {
  2242. r = -EFAULT;
  2243. goto out_free;
  2244. }
  2245. /*
  2246. * Don't allow setting the interrupt state
  2247. * when there are already interrupts pending
  2248. */
  2249. spin_lock(&li->lock);
  2250. if (li->pending_irqs) {
  2251. r = -EBUSY;
  2252. goto out_unlock;
  2253. }
  2254. for (n = 0; n < len / sizeof(*buf); n++) {
  2255. r = do_inject_vcpu(vcpu, &buf[n]);
  2256. if (r)
  2257. break;
  2258. }
  2259. out_unlock:
  2260. spin_unlock(&li->lock);
  2261. out_free:
  2262. vfree(buf);
  2263. return r;
  2264. }
  2265. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2266. struct kvm_s390_irq *irq,
  2267. unsigned long irq_type)
  2268. {
  2269. switch (irq_type) {
  2270. case IRQ_PEND_MCHK_EX:
  2271. case IRQ_PEND_MCHK_REP:
  2272. irq->type = KVM_S390_MCHK;
  2273. irq->u.mchk = li->irq.mchk;
  2274. break;
  2275. case IRQ_PEND_PROG:
  2276. irq->type = KVM_S390_PROGRAM_INT;
  2277. irq->u.pgm = li->irq.pgm;
  2278. break;
  2279. case IRQ_PEND_PFAULT_INIT:
  2280. irq->type = KVM_S390_INT_PFAULT_INIT;
  2281. irq->u.ext = li->irq.ext;
  2282. break;
  2283. case IRQ_PEND_EXT_EXTERNAL:
  2284. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2285. irq->u.extcall = li->irq.extcall;
  2286. break;
  2287. case IRQ_PEND_EXT_CLOCK_COMP:
  2288. irq->type = KVM_S390_INT_CLOCK_COMP;
  2289. break;
  2290. case IRQ_PEND_EXT_CPU_TIMER:
  2291. irq->type = KVM_S390_INT_CPU_TIMER;
  2292. break;
  2293. case IRQ_PEND_SIGP_STOP:
  2294. irq->type = KVM_S390_SIGP_STOP;
  2295. irq->u.stop = li->irq.stop;
  2296. break;
  2297. case IRQ_PEND_RESTART:
  2298. irq->type = KVM_S390_RESTART;
  2299. break;
  2300. case IRQ_PEND_SET_PREFIX:
  2301. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2302. irq->u.prefix = li->irq.prefix;
  2303. break;
  2304. }
  2305. }
  2306. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2307. {
  2308. int scn;
  2309. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2310. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2311. unsigned long pending_irqs;
  2312. struct kvm_s390_irq irq;
  2313. unsigned long irq_type;
  2314. int cpuaddr;
  2315. int n = 0;
  2316. spin_lock(&li->lock);
  2317. pending_irqs = li->pending_irqs;
  2318. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2319. sizeof(sigp_emerg_pending));
  2320. spin_unlock(&li->lock);
  2321. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2322. memset(&irq, 0, sizeof(irq));
  2323. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2324. continue;
  2325. if (n + sizeof(irq) > len)
  2326. return -ENOBUFS;
  2327. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2328. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2329. return -EFAULT;
  2330. n += sizeof(irq);
  2331. }
  2332. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2333. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2334. memset(&irq, 0, sizeof(irq));
  2335. if (n + sizeof(irq) > len)
  2336. return -ENOBUFS;
  2337. irq.type = KVM_S390_INT_EMERGENCY;
  2338. irq.u.emerg.code = cpuaddr;
  2339. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2340. return -EFAULT;
  2341. n += sizeof(irq);
  2342. }
  2343. }
  2344. if (sca_ext_call_pending(vcpu, &scn)) {
  2345. if (n + sizeof(irq) > len)
  2346. return -ENOBUFS;
  2347. memset(&irq, 0, sizeof(irq));
  2348. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2349. irq.u.extcall.code = scn;
  2350. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2351. return -EFAULT;
  2352. n += sizeof(irq);
  2353. }
  2354. return n;
  2355. }