intel_hdmi.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_atomic_helper.h>
  34. #include <drm/drm_crtc.h>
  35. #include <drm/drm_edid.h>
  36. #include "intel_drv.h"
  37. #include <drm/i915_drm.h>
  38. #include "i915_drv.h"
  39. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  40. {
  41. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  42. }
  43. static void
  44. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  45. {
  46. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  47. struct drm_i915_private *dev_priv = dev->dev_private;
  48. uint32_t enabled_bits;
  49. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  50. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  51. "HDMI port enabled, expecting disabled\n");
  52. }
  53. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  54. {
  55. struct intel_digital_port *intel_dig_port =
  56. container_of(encoder, struct intel_digital_port, base.base);
  57. return &intel_dig_port->hdmi;
  58. }
  59. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  60. {
  61. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  62. }
  63. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  64. {
  65. switch (type) {
  66. case HDMI_INFOFRAME_TYPE_AVI:
  67. return VIDEO_DIP_SELECT_AVI;
  68. case HDMI_INFOFRAME_TYPE_SPD:
  69. return VIDEO_DIP_SELECT_SPD;
  70. case HDMI_INFOFRAME_TYPE_VENDOR:
  71. return VIDEO_DIP_SELECT_VENDOR;
  72. default:
  73. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  74. return 0;
  75. }
  76. }
  77. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  78. {
  79. switch (type) {
  80. case HDMI_INFOFRAME_TYPE_AVI:
  81. return VIDEO_DIP_ENABLE_AVI;
  82. case HDMI_INFOFRAME_TYPE_SPD:
  83. return VIDEO_DIP_ENABLE_SPD;
  84. case HDMI_INFOFRAME_TYPE_VENDOR:
  85. return VIDEO_DIP_ENABLE_VENDOR;
  86. default:
  87. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  88. return 0;
  89. }
  90. }
  91. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  92. {
  93. switch (type) {
  94. case HDMI_INFOFRAME_TYPE_AVI:
  95. return VIDEO_DIP_ENABLE_AVI_HSW;
  96. case HDMI_INFOFRAME_TYPE_SPD:
  97. return VIDEO_DIP_ENABLE_SPD_HSW;
  98. case HDMI_INFOFRAME_TYPE_VENDOR:
  99. return VIDEO_DIP_ENABLE_VS_HSW;
  100. default:
  101. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  102. return 0;
  103. }
  104. }
  105. static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
  106. enum transcoder cpu_transcoder,
  107. struct drm_i915_private *dev_priv)
  108. {
  109. switch (type) {
  110. case HDMI_INFOFRAME_TYPE_AVI:
  111. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
  112. case HDMI_INFOFRAME_TYPE_SPD:
  113. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
  114. case HDMI_INFOFRAME_TYPE_VENDOR:
  115. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
  116. default:
  117. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  118. return 0;
  119. }
  120. }
  121. static void g4x_write_infoframe(struct drm_encoder *encoder,
  122. enum hdmi_infoframe_type type,
  123. const void *frame, ssize_t len)
  124. {
  125. const uint32_t *data = frame;
  126. struct drm_device *dev = encoder->dev;
  127. struct drm_i915_private *dev_priv = dev->dev_private;
  128. u32 val = I915_READ(VIDEO_DIP_CTL);
  129. int i;
  130. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  131. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  132. val |= g4x_infoframe_index(type);
  133. val &= ~g4x_infoframe_enable(type);
  134. I915_WRITE(VIDEO_DIP_CTL, val);
  135. mmiowb();
  136. for (i = 0; i < len; i += 4) {
  137. I915_WRITE(VIDEO_DIP_DATA, *data);
  138. data++;
  139. }
  140. /* Write every possible data byte to force correct ECC calculation. */
  141. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  142. I915_WRITE(VIDEO_DIP_DATA, 0);
  143. mmiowb();
  144. val |= g4x_infoframe_enable(type);
  145. val &= ~VIDEO_DIP_FREQ_MASK;
  146. val |= VIDEO_DIP_FREQ_VSYNC;
  147. I915_WRITE(VIDEO_DIP_CTL, val);
  148. POSTING_READ(VIDEO_DIP_CTL);
  149. }
  150. static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
  151. {
  152. struct drm_device *dev = encoder->dev;
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  155. u32 val = I915_READ(VIDEO_DIP_CTL);
  156. if (VIDEO_DIP_PORT(intel_dig_port->port) == (val & VIDEO_DIP_PORT_MASK))
  157. return val & VIDEO_DIP_ENABLE;
  158. return false;
  159. }
  160. static void ibx_write_infoframe(struct drm_encoder *encoder,
  161. enum hdmi_infoframe_type type,
  162. const void *frame, ssize_t len)
  163. {
  164. const uint32_t *data = frame;
  165. struct drm_device *dev = encoder->dev;
  166. struct drm_i915_private *dev_priv = dev->dev_private;
  167. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  168. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  169. u32 val = I915_READ(reg);
  170. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  171. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  172. val |= g4x_infoframe_index(type);
  173. val &= ~g4x_infoframe_enable(type);
  174. I915_WRITE(reg, val);
  175. mmiowb();
  176. for (i = 0; i < len; i += 4) {
  177. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  178. data++;
  179. }
  180. /* Write every possible data byte to force correct ECC calculation. */
  181. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  182. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  183. mmiowb();
  184. val |= g4x_infoframe_enable(type);
  185. val &= ~VIDEO_DIP_FREQ_MASK;
  186. val |= VIDEO_DIP_FREQ_VSYNC;
  187. I915_WRITE(reg, val);
  188. POSTING_READ(reg);
  189. }
  190. static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
  191. {
  192. struct drm_device *dev = encoder->dev;
  193. struct drm_i915_private *dev_priv = dev->dev_private;
  194. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  195. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  196. int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  197. u32 val = I915_READ(reg);
  198. if (VIDEO_DIP_PORT(intel_dig_port->port) == (val & VIDEO_DIP_PORT_MASK))
  199. return val & VIDEO_DIP_ENABLE;
  200. return false;
  201. }
  202. static void cpt_write_infoframe(struct drm_encoder *encoder,
  203. enum hdmi_infoframe_type type,
  204. const void *frame, ssize_t len)
  205. {
  206. const uint32_t *data = frame;
  207. struct drm_device *dev = encoder->dev;
  208. struct drm_i915_private *dev_priv = dev->dev_private;
  209. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  210. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  211. u32 val = I915_READ(reg);
  212. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  213. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  214. val |= g4x_infoframe_index(type);
  215. /* The DIP control register spec says that we need to update the AVI
  216. * infoframe without clearing its enable bit */
  217. if (type != HDMI_INFOFRAME_TYPE_AVI)
  218. val &= ~g4x_infoframe_enable(type);
  219. I915_WRITE(reg, val);
  220. mmiowb();
  221. for (i = 0; i < len; i += 4) {
  222. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  223. data++;
  224. }
  225. /* Write every possible data byte to force correct ECC calculation. */
  226. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  227. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  228. mmiowb();
  229. val |= g4x_infoframe_enable(type);
  230. val &= ~VIDEO_DIP_FREQ_MASK;
  231. val |= VIDEO_DIP_FREQ_VSYNC;
  232. I915_WRITE(reg, val);
  233. POSTING_READ(reg);
  234. }
  235. static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
  236. {
  237. struct drm_device *dev = encoder->dev;
  238. struct drm_i915_private *dev_priv = dev->dev_private;
  239. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  240. int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  241. u32 val = I915_READ(reg);
  242. return val & VIDEO_DIP_ENABLE;
  243. }
  244. static void vlv_write_infoframe(struct drm_encoder *encoder,
  245. enum hdmi_infoframe_type type,
  246. const void *frame, ssize_t len)
  247. {
  248. const uint32_t *data = frame;
  249. struct drm_device *dev = encoder->dev;
  250. struct drm_i915_private *dev_priv = dev->dev_private;
  251. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  252. int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  253. u32 val = I915_READ(reg);
  254. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  255. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  256. val |= g4x_infoframe_index(type);
  257. val &= ~g4x_infoframe_enable(type);
  258. I915_WRITE(reg, val);
  259. mmiowb();
  260. for (i = 0; i < len; i += 4) {
  261. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  262. data++;
  263. }
  264. /* Write every possible data byte to force correct ECC calculation. */
  265. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  266. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  267. mmiowb();
  268. val |= g4x_infoframe_enable(type);
  269. val &= ~VIDEO_DIP_FREQ_MASK;
  270. val |= VIDEO_DIP_FREQ_VSYNC;
  271. I915_WRITE(reg, val);
  272. POSTING_READ(reg);
  273. }
  274. static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
  275. {
  276. struct drm_device *dev = encoder->dev;
  277. struct drm_i915_private *dev_priv = dev->dev_private;
  278. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  279. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  280. int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  281. u32 val = I915_READ(reg);
  282. if (VIDEO_DIP_PORT(intel_dig_port->port) == (val & VIDEO_DIP_PORT_MASK))
  283. return val & VIDEO_DIP_ENABLE;
  284. return false;
  285. }
  286. static void hsw_write_infoframe(struct drm_encoder *encoder,
  287. enum hdmi_infoframe_type type,
  288. const void *frame, ssize_t len)
  289. {
  290. const uint32_t *data = frame;
  291. struct drm_device *dev = encoder->dev;
  292. struct drm_i915_private *dev_priv = dev->dev_private;
  293. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  294. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
  295. u32 data_reg;
  296. int i;
  297. u32 val = I915_READ(ctl_reg);
  298. data_reg = hsw_infoframe_data_reg(type,
  299. intel_crtc->config->cpu_transcoder,
  300. dev_priv);
  301. if (data_reg == 0)
  302. return;
  303. val &= ~hsw_infoframe_enable(type);
  304. I915_WRITE(ctl_reg, val);
  305. mmiowb();
  306. for (i = 0; i < len; i += 4) {
  307. I915_WRITE(data_reg + i, *data);
  308. data++;
  309. }
  310. /* Write every possible data byte to force correct ECC calculation. */
  311. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  312. I915_WRITE(data_reg + i, 0);
  313. mmiowb();
  314. val |= hsw_infoframe_enable(type);
  315. I915_WRITE(ctl_reg, val);
  316. POSTING_READ(ctl_reg);
  317. }
  318. static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
  319. {
  320. struct drm_device *dev = encoder->dev;
  321. struct drm_i915_private *dev_priv = dev->dev_private;
  322. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  323. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
  324. u32 val = I915_READ(ctl_reg);
  325. return val & (VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
  326. VIDEO_DIP_ENABLE_VS_HSW);
  327. }
  328. /*
  329. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  330. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  331. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  332. * used for both technologies.
  333. *
  334. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  335. * DW1: DB3 | DB2 | DB1 | DB0
  336. * DW2: DB7 | DB6 | DB5 | DB4
  337. * DW3: ...
  338. *
  339. * (HB is Header Byte, DB is Data Byte)
  340. *
  341. * The hdmi pack() functions don't know about that hardware specific hole so we
  342. * trick them by giving an offset into the buffer and moving back the header
  343. * bytes by one.
  344. */
  345. static void intel_write_infoframe(struct drm_encoder *encoder,
  346. union hdmi_infoframe *frame)
  347. {
  348. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  349. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  350. ssize_t len;
  351. /* see comment above for the reason for this offset */
  352. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  353. if (len < 0)
  354. return;
  355. /* Insert the 'hole' (see big comment above) at position 3 */
  356. buffer[0] = buffer[1];
  357. buffer[1] = buffer[2];
  358. buffer[2] = buffer[3];
  359. buffer[3] = 0;
  360. len++;
  361. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  362. }
  363. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  364. struct drm_display_mode *adjusted_mode)
  365. {
  366. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  367. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  368. union hdmi_infoframe frame;
  369. int ret;
  370. /* Set user selected PAR to incoming mode's member */
  371. adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
  372. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  373. adjusted_mode);
  374. if (ret < 0) {
  375. DRM_ERROR("couldn't fill AVI infoframe\n");
  376. return;
  377. }
  378. if (intel_hdmi->rgb_quant_range_selectable) {
  379. if (intel_crtc->config->limited_color_range)
  380. frame.avi.quantization_range =
  381. HDMI_QUANTIZATION_RANGE_LIMITED;
  382. else
  383. frame.avi.quantization_range =
  384. HDMI_QUANTIZATION_RANGE_FULL;
  385. }
  386. intel_write_infoframe(encoder, &frame);
  387. }
  388. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  389. {
  390. union hdmi_infoframe frame;
  391. int ret;
  392. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  393. if (ret < 0) {
  394. DRM_ERROR("couldn't fill SPD infoframe\n");
  395. return;
  396. }
  397. frame.spd.sdi = HDMI_SPD_SDI_PC;
  398. intel_write_infoframe(encoder, &frame);
  399. }
  400. static void
  401. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  402. struct drm_display_mode *adjusted_mode)
  403. {
  404. union hdmi_infoframe frame;
  405. int ret;
  406. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  407. adjusted_mode);
  408. if (ret < 0)
  409. return;
  410. intel_write_infoframe(encoder, &frame);
  411. }
  412. static void g4x_set_infoframes(struct drm_encoder *encoder,
  413. bool enable,
  414. struct drm_display_mode *adjusted_mode)
  415. {
  416. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  417. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  418. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  419. u32 reg = VIDEO_DIP_CTL;
  420. u32 val = I915_READ(reg);
  421. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  422. assert_hdmi_port_disabled(intel_hdmi);
  423. /* If the registers were not initialized yet, they might be zeroes,
  424. * which means we're selecting the AVI DIP and we're setting its
  425. * frequency to once. This seems to really confuse the HW and make
  426. * things stop working (the register spec says the AVI always needs to
  427. * be sent every VSync). So here we avoid writing to the register more
  428. * than we need and also explicitly select the AVI DIP and explicitly
  429. * set its frequency to every VSync. Avoiding to write it twice seems to
  430. * be enough to solve the problem, but being defensive shouldn't hurt us
  431. * either. */
  432. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  433. if (!enable) {
  434. if (!(val & VIDEO_DIP_ENABLE))
  435. return;
  436. val &= ~VIDEO_DIP_ENABLE;
  437. I915_WRITE(reg, val);
  438. POSTING_READ(reg);
  439. return;
  440. }
  441. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  442. if (val & VIDEO_DIP_ENABLE) {
  443. val &= ~VIDEO_DIP_ENABLE;
  444. I915_WRITE(reg, val);
  445. POSTING_READ(reg);
  446. }
  447. val &= ~VIDEO_DIP_PORT_MASK;
  448. val |= port;
  449. }
  450. val |= VIDEO_DIP_ENABLE;
  451. val &= ~VIDEO_DIP_ENABLE_VENDOR;
  452. I915_WRITE(reg, val);
  453. POSTING_READ(reg);
  454. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  455. intel_hdmi_set_spd_infoframe(encoder);
  456. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  457. }
  458. static void ibx_set_infoframes(struct drm_encoder *encoder,
  459. bool enable,
  460. struct drm_display_mode *adjusted_mode)
  461. {
  462. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  463. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  464. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  465. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  466. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  467. u32 val = I915_READ(reg);
  468. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  469. assert_hdmi_port_disabled(intel_hdmi);
  470. /* See the big comment in g4x_set_infoframes() */
  471. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  472. if (!enable) {
  473. if (!(val & VIDEO_DIP_ENABLE))
  474. return;
  475. val &= ~VIDEO_DIP_ENABLE;
  476. I915_WRITE(reg, val);
  477. POSTING_READ(reg);
  478. return;
  479. }
  480. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  481. if (val & VIDEO_DIP_ENABLE) {
  482. val &= ~VIDEO_DIP_ENABLE;
  483. I915_WRITE(reg, val);
  484. POSTING_READ(reg);
  485. }
  486. val &= ~VIDEO_DIP_PORT_MASK;
  487. val |= port;
  488. }
  489. val |= VIDEO_DIP_ENABLE;
  490. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  491. VIDEO_DIP_ENABLE_GCP);
  492. I915_WRITE(reg, val);
  493. POSTING_READ(reg);
  494. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  495. intel_hdmi_set_spd_infoframe(encoder);
  496. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  497. }
  498. static void cpt_set_infoframes(struct drm_encoder *encoder,
  499. bool enable,
  500. struct drm_display_mode *adjusted_mode)
  501. {
  502. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  503. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  504. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  505. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  506. u32 val = I915_READ(reg);
  507. assert_hdmi_port_disabled(intel_hdmi);
  508. /* See the big comment in g4x_set_infoframes() */
  509. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  510. if (!enable) {
  511. if (!(val & VIDEO_DIP_ENABLE))
  512. return;
  513. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  514. I915_WRITE(reg, val);
  515. POSTING_READ(reg);
  516. return;
  517. }
  518. /* Set both together, unset both together: see the spec. */
  519. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  520. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  521. VIDEO_DIP_ENABLE_GCP);
  522. I915_WRITE(reg, val);
  523. POSTING_READ(reg);
  524. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  525. intel_hdmi_set_spd_infoframe(encoder);
  526. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  527. }
  528. static void vlv_set_infoframes(struct drm_encoder *encoder,
  529. bool enable,
  530. struct drm_display_mode *adjusted_mode)
  531. {
  532. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  533. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  534. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  535. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  536. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  537. u32 val = I915_READ(reg);
  538. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  539. assert_hdmi_port_disabled(intel_hdmi);
  540. /* See the big comment in g4x_set_infoframes() */
  541. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  542. if (!enable) {
  543. if (!(val & VIDEO_DIP_ENABLE))
  544. return;
  545. val &= ~VIDEO_DIP_ENABLE;
  546. I915_WRITE(reg, val);
  547. POSTING_READ(reg);
  548. return;
  549. }
  550. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  551. if (val & VIDEO_DIP_ENABLE) {
  552. val &= ~VIDEO_DIP_ENABLE;
  553. I915_WRITE(reg, val);
  554. POSTING_READ(reg);
  555. }
  556. val &= ~VIDEO_DIP_PORT_MASK;
  557. val |= port;
  558. }
  559. val |= VIDEO_DIP_ENABLE;
  560. val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
  561. VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
  562. I915_WRITE(reg, val);
  563. POSTING_READ(reg);
  564. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  565. intel_hdmi_set_spd_infoframe(encoder);
  566. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  567. }
  568. static void hsw_set_infoframes(struct drm_encoder *encoder,
  569. bool enable,
  570. struct drm_display_mode *adjusted_mode)
  571. {
  572. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  573. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  574. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  575. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
  576. u32 val = I915_READ(reg);
  577. assert_hdmi_port_disabled(intel_hdmi);
  578. if (!enable) {
  579. I915_WRITE(reg, 0);
  580. POSTING_READ(reg);
  581. return;
  582. }
  583. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
  584. VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
  585. I915_WRITE(reg, val);
  586. POSTING_READ(reg);
  587. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  588. intel_hdmi_set_spd_infoframe(encoder);
  589. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  590. }
  591. static void intel_hdmi_prepare(struct intel_encoder *encoder)
  592. {
  593. struct drm_device *dev = encoder->base.dev;
  594. struct drm_i915_private *dev_priv = dev->dev_private;
  595. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  596. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  597. struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
  598. u32 hdmi_val;
  599. hdmi_val = SDVO_ENCODING_HDMI;
  600. if (!HAS_PCH_SPLIT(dev))
  601. hdmi_val |= intel_hdmi->color_range;
  602. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  603. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  604. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  605. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  606. if (crtc->config->pipe_bpp > 24)
  607. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  608. else
  609. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  610. if (crtc->config->has_hdmi_sink)
  611. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  612. if (HAS_PCH_CPT(dev))
  613. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  614. else if (IS_CHERRYVIEW(dev))
  615. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  616. else
  617. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  618. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  619. POSTING_READ(intel_hdmi->hdmi_reg);
  620. }
  621. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  622. enum pipe *pipe)
  623. {
  624. struct drm_device *dev = encoder->base.dev;
  625. struct drm_i915_private *dev_priv = dev->dev_private;
  626. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  627. enum intel_display_power_domain power_domain;
  628. u32 tmp;
  629. power_domain = intel_display_port_power_domain(encoder);
  630. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  631. return false;
  632. tmp = I915_READ(intel_hdmi->hdmi_reg);
  633. if (!(tmp & SDVO_ENABLE))
  634. return false;
  635. if (HAS_PCH_CPT(dev))
  636. *pipe = PORT_TO_PIPE_CPT(tmp);
  637. else if (IS_CHERRYVIEW(dev))
  638. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  639. else
  640. *pipe = PORT_TO_PIPE(tmp);
  641. return true;
  642. }
  643. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  644. struct intel_crtc_state *pipe_config)
  645. {
  646. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  647. struct drm_device *dev = encoder->base.dev;
  648. struct drm_i915_private *dev_priv = dev->dev_private;
  649. u32 tmp, flags = 0;
  650. int dotclock;
  651. tmp = I915_READ(intel_hdmi->hdmi_reg);
  652. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  653. flags |= DRM_MODE_FLAG_PHSYNC;
  654. else
  655. flags |= DRM_MODE_FLAG_NHSYNC;
  656. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  657. flags |= DRM_MODE_FLAG_PVSYNC;
  658. else
  659. flags |= DRM_MODE_FLAG_NVSYNC;
  660. if (tmp & HDMI_MODE_SELECT_HDMI)
  661. pipe_config->has_hdmi_sink = true;
  662. if (intel_hdmi->infoframe_enabled(&encoder->base))
  663. pipe_config->has_infoframe = true;
  664. if (tmp & SDVO_AUDIO_ENABLE)
  665. pipe_config->has_audio = true;
  666. if (!HAS_PCH_SPLIT(dev) &&
  667. tmp & HDMI_COLOR_RANGE_16_235)
  668. pipe_config->limited_color_range = true;
  669. pipe_config->base.adjusted_mode.flags |= flags;
  670. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  671. dotclock = pipe_config->port_clock * 2 / 3;
  672. else
  673. dotclock = pipe_config->port_clock;
  674. if (HAS_PCH_SPLIT(dev_priv->dev))
  675. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  676. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  677. }
  678. static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
  679. {
  680. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  681. WARN_ON(!crtc->config->has_hdmi_sink);
  682. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  683. pipe_name(crtc->pipe));
  684. intel_audio_codec_enable(encoder);
  685. }
  686. static void intel_enable_hdmi(struct intel_encoder *encoder)
  687. {
  688. struct drm_device *dev = encoder->base.dev;
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  691. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  692. u32 temp;
  693. u32 enable_bits = SDVO_ENABLE;
  694. if (intel_crtc->config->has_audio)
  695. enable_bits |= SDVO_AUDIO_ENABLE;
  696. temp = I915_READ(intel_hdmi->hdmi_reg);
  697. /* HW workaround for IBX, we need to move the port to transcoder A
  698. * before disabling it, so restore the transcoder select bit here. */
  699. if (HAS_PCH_IBX(dev))
  700. enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
  701. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  702. * we do this anyway which shows more stable in testing.
  703. */
  704. if (HAS_PCH_SPLIT(dev)) {
  705. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  706. POSTING_READ(intel_hdmi->hdmi_reg);
  707. }
  708. temp |= enable_bits;
  709. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  710. POSTING_READ(intel_hdmi->hdmi_reg);
  711. /* HW workaround, need to write this twice for issue that may result
  712. * in first write getting masked.
  713. */
  714. if (HAS_PCH_SPLIT(dev)) {
  715. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  716. POSTING_READ(intel_hdmi->hdmi_reg);
  717. }
  718. if (intel_crtc->config->has_audio)
  719. intel_enable_hdmi_audio(encoder);
  720. }
  721. static void cpt_enable_hdmi(struct intel_encoder *encoder)
  722. {
  723. struct drm_device *dev = encoder->base.dev;
  724. struct drm_i915_private *dev_priv = dev->dev_private;
  725. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  726. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  727. enum pipe pipe = crtc->pipe;
  728. u32 temp;
  729. temp = I915_READ(intel_hdmi->hdmi_reg);
  730. temp |= SDVO_ENABLE;
  731. if (crtc->config->has_audio)
  732. temp |= SDVO_AUDIO_ENABLE;
  733. /*
  734. * WaEnableHDMI8bpcBefore12bpc:snb,ivb
  735. *
  736. * The procedure for 12bpc is as follows:
  737. * 1. disable HDMI clock gating
  738. * 2. enable HDMI with 8bpc
  739. * 3. enable HDMI with 12bpc
  740. * 4. enable HDMI clock gating
  741. */
  742. if (crtc->config->pipe_bpp > 24) {
  743. I915_WRITE(TRANS_CHICKEN1(pipe),
  744. I915_READ(TRANS_CHICKEN1(pipe)) |
  745. TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  746. temp &= ~SDVO_COLOR_FORMAT_MASK;
  747. temp |= SDVO_COLOR_FORMAT_8bpc;
  748. }
  749. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  750. POSTING_READ(intel_hdmi->hdmi_reg);
  751. if (crtc->config->pipe_bpp > 24) {
  752. temp &= ~SDVO_COLOR_FORMAT_MASK;
  753. temp |= HDMI_COLOR_FORMAT_12bpc;
  754. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  755. POSTING_READ(intel_hdmi->hdmi_reg);
  756. I915_WRITE(TRANS_CHICKEN1(pipe),
  757. I915_READ(TRANS_CHICKEN1(pipe)) &
  758. ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
  759. }
  760. if (crtc->config->has_audio)
  761. intel_enable_hdmi_audio(encoder);
  762. }
  763. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  764. {
  765. }
  766. static void intel_disable_hdmi(struct intel_encoder *encoder)
  767. {
  768. struct drm_device *dev = encoder->base.dev;
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  771. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  772. u32 temp;
  773. temp = I915_READ(intel_hdmi->hdmi_reg);
  774. temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
  775. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  776. POSTING_READ(intel_hdmi->hdmi_reg);
  777. /*
  778. * HW workaround for IBX, we need to move the port
  779. * to transcoder A after disabling it to allow the
  780. * matching DP port to be enabled on transcoder A.
  781. */
  782. if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
  783. temp &= ~SDVO_PIPE_B_SELECT;
  784. temp |= SDVO_ENABLE;
  785. /*
  786. * HW workaround, need to write this twice for issue
  787. * that may result in first write getting masked.
  788. */
  789. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  790. POSTING_READ(intel_hdmi->hdmi_reg);
  791. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  792. POSTING_READ(intel_hdmi->hdmi_reg);
  793. temp &= ~SDVO_ENABLE;
  794. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  795. POSTING_READ(intel_hdmi->hdmi_reg);
  796. }
  797. }
  798. static void g4x_disable_hdmi(struct intel_encoder *encoder)
  799. {
  800. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  801. if (crtc->config->has_audio)
  802. intel_audio_codec_disable(encoder);
  803. intel_disable_hdmi(encoder);
  804. }
  805. static void pch_disable_hdmi(struct intel_encoder *encoder)
  806. {
  807. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  808. if (crtc->config->has_audio)
  809. intel_audio_codec_disable(encoder);
  810. }
  811. static void pch_post_disable_hdmi(struct intel_encoder *encoder)
  812. {
  813. intel_disable_hdmi(encoder);
  814. }
  815. static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
  816. {
  817. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  818. if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
  819. return 165000;
  820. else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
  821. return 300000;
  822. else
  823. return 225000;
  824. }
  825. static enum drm_mode_status
  826. intel_hdmi_mode_valid(struct drm_connector *connector,
  827. struct drm_display_mode *mode)
  828. {
  829. int clock = mode->clock;
  830. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  831. clock *= 2;
  832. if (clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
  833. true))
  834. return MODE_CLOCK_HIGH;
  835. if (clock < 20000)
  836. return MODE_CLOCK_LOW;
  837. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  838. return MODE_NO_DBLESCAN;
  839. return MODE_OK;
  840. }
  841. static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
  842. {
  843. struct drm_device *dev = crtc_state->base.crtc->dev;
  844. struct drm_atomic_state *state;
  845. struct intel_encoder *encoder;
  846. struct drm_connector *connector;
  847. struct drm_connector_state *connector_state;
  848. int count = 0, count_hdmi = 0;
  849. int i;
  850. if (HAS_GMCH_DISPLAY(dev))
  851. return false;
  852. state = crtc_state->base.state;
  853. for_each_connector_in_state(state, connector, connector_state, i) {
  854. if (connector_state->crtc != crtc_state->base.crtc)
  855. continue;
  856. encoder = to_intel_encoder(connector_state->best_encoder);
  857. count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
  858. count++;
  859. }
  860. /*
  861. * HDMI 12bpc affects the clocks, so it's only possible
  862. * when not cloning with other encoder types.
  863. */
  864. return count_hdmi > 0 && count_hdmi == count;
  865. }
  866. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  867. struct intel_crtc_state *pipe_config)
  868. {
  869. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  870. struct drm_device *dev = encoder->base.dev;
  871. struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
  872. int clock_12bpc = pipe_config->base.adjusted_mode.crtc_clock * 3 / 2;
  873. int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
  874. int desired_bpp;
  875. pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
  876. if (pipe_config->has_hdmi_sink)
  877. pipe_config->has_infoframe = true;
  878. if (intel_hdmi->color_range_auto) {
  879. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  880. if (pipe_config->has_hdmi_sink &&
  881. drm_match_cea_mode(adjusted_mode) > 1)
  882. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  883. else
  884. intel_hdmi->color_range = 0;
  885. }
  886. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
  887. pipe_config->pixel_multiplier = 2;
  888. }
  889. if (intel_hdmi->color_range)
  890. pipe_config->limited_color_range = true;
  891. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  892. pipe_config->has_pch_encoder = true;
  893. if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
  894. pipe_config->has_audio = true;
  895. /*
  896. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  897. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  898. * outputs. We also need to check that the higher clock still fits
  899. * within limits.
  900. */
  901. if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
  902. clock_12bpc <= portclock_limit &&
  903. hdmi_12bpc_possible(pipe_config) &&
  904. 0 /* FIXME 12bpc support totally broken */) {
  905. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  906. desired_bpp = 12*3;
  907. /* Need to adjust the port link by 1.5x for 12bpc. */
  908. pipe_config->port_clock = clock_12bpc;
  909. } else {
  910. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  911. desired_bpp = 8*3;
  912. }
  913. if (!pipe_config->bw_constrained) {
  914. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  915. pipe_config->pipe_bpp = desired_bpp;
  916. }
  917. if (adjusted_mode->crtc_clock > portclock_limit) {
  918. DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
  919. return false;
  920. }
  921. return true;
  922. }
  923. static void
  924. intel_hdmi_unset_edid(struct drm_connector *connector)
  925. {
  926. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  927. intel_hdmi->has_hdmi_sink = false;
  928. intel_hdmi->has_audio = false;
  929. intel_hdmi->rgb_quant_range_selectable = false;
  930. kfree(to_intel_connector(connector)->detect_edid);
  931. to_intel_connector(connector)->detect_edid = NULL;
  932. }
  933. static bool
  934. intel_hdmi_set_edid(struct drm_connector *connector)
  935. {
  936. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  937. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  938. struct intel_encoder *intel_encoder =
  939. &hdmi_to_dig_port(intel_hdmi)->base;
  940. enum intel_display_power_domain power_domain;
  941. struct edid *edid;
  942. bool connected = false;
  943. power_domain = intel_display_port_power_domain(intel_encoder);
  944. intel_display_power_get(dev_priv, power_domain);
  945. edid = drm_get_edid(connector,
  946. intel_gmbus_get_adapter(dev_priv,
  947. intel_hdmi->ddc_bus));
  948. intel_display_power_put(dev_priv, power_domain);
  949. to_intel_connector(connector)->detect_edid = edid;
  950. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
  951. intel_hdmi->rgb_quant_range_selectable =
  952. drm_rgb_quant_range_selectable(edid);
  953. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  954. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  955. intel_hdmi->has_audio =
  956. intel_hdmi->force_audio == HDMI_AUDIO_ON;
  957. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  958. intel_hdmi->has_hdmi_sink =
  959. drm_detect_hdmi_monitor(edid);
  960. connected = true;
  961. }
  962. return connected;
  963. }
  964. static enum drm_connector_status
  965. intel_hdmi_detect(struct drm_connector *connector, bool force)
  966. {
  967. enum drm_connector_status status;
  968. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  969. connector->base.id, connector->name);
  970. intel_hdmi_unset_edid(connector);
  971. if (intel_hdmi_set_edid(connector)) {
  972. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  973. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  974. status = connector_status_connected;
  975. } else
  976. status = connector_status_disconnected;
  977. return status;
  978. }
  979. static void
  980. intel_hdmi_force(struct drm_connector *connector)
  981. {
  982. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  983. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  984. connector->base.id, connector->name);
  985. intel_hdmi_unset_edid(connector);
  986. if (connector->status != connector_status_connected)
  987. return;
  988. intel_hdmi_set_edid(connector);
  989. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  990. }
  991. static int intel_hdmi_get_modes(struct drm_connector *connector)
  992. {
  993. struct edid *edid;
  994. edid = to_intel_connector(connector)->detect_edid;
  995. if (edid == NULL)
  996. return 0;
  997. return intel_connector_update_modes(connector, edid);
  998. }
  999. static bool
  1000. intel_hdmi_detect_audio(struct drm_connector *connector)
  1001. {
  1002. bool has_audio = false;
  1003. struct edid *edid;
  1004. edid = to_intel_connector(connector)->detect_edid;
  1005. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
  1006. has_audio = drm_detect_monitor_audio(edid);
  1007. return has_audio;
  1008. }
  1009. static int
  1010. intel_hdmi_set_property(struct drm_connector *connector,
  1011. struct drm_property *property,
  1012. uint64_t val)
  1013. {
  1014. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  1015. struct intel_digital_port *intel_dig_port =
  1016. hdmi_to_dig_port(intel_hdmi);
  1017. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1018. int ret;
  1019. ret = drm_object_property_set_value(&connector->base, property, val);
  1020. if (ret)
  1021. return ret;
  1022. if (property == dev_priv->force_audio_property) {
  1023. enum hdmi_force_audio i = val;
  1024. bool has_audio;
  1025. if (i == intel_hdmi->force_audio)
  1026. return 0;
  1027. intel_hdmi->force_audio = i;
  1028. if (i == HDMI_AUDIO_AUTO)
  1029. has_audio = intel_hdmi_detect_audio(connector);
  1030. else
  1031. has_audio = (i == HDMI_AUDIO_ON);
  1032. if (i == HDMI_AUDIO_OFF_DVI)
  1033. intel_hdmi->has_hdmi_sink = 0;
  1034. intel_hdmi->has_audio = has_audio;
  1035. goto done;
  1036. }
  1037. if (property == dev_priv->broadcast_rgb_property) {
  1038. bool old_auto = intel_hdmi->color_range_auto;
  1039. uint32_t old_range = intel_hdmi->color_range;
  1040. switch (val) {
  1041. case INTEL_BROADCAST_RGB_AUTO:
  1042. intel_hdmi->color_range_auto = true;
  1043. break;
  1044. case INTEL_BROADCAST_RGB_FULL:
  1045. intel_hdmi->color_range_auto = false;
  1046. intel_hdmi->color_range = 0;
  1047. break;
  1048. case INTEL_BROADCAST_RGB_LIMITED:
  1049. intel_hdmi->color_range_auto = false;
  1050. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  1051. break;
  1052. default:
  1053. return -EINVAL;
  1054. }
  1055. if (old_auto == intel_hdmi->color_range_auto &&
  1056. old_range == intel_hdmi->color_range)
  1057. return 0;
  1058. goto done;
  1059. }
  1060. if (property == connector->dev->mode_config.aspect_ratio_property) {
  1061. switch (val) {
  1062. case DRM_MODE_PICTURE_ASPECT_NONE:
  1063. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1064. break;
  1065. case DRM_MODE_PICTURE_ASPECT_4_3:
  1066. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
  1067. break;
  1068. case DRM_MODE_PICTURE_ASPECT_16_9:
  1069. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
  1070. break;
  1071. default:
  1072. return -EINVAL;
  1073. }
  1074. goto done;
  1075. }
  1076. return -EINVAL;
  1077. done:
  1078. if (intel_dig_port->base.base.crtc)
  1079. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  1080. return 0;
  1081. }
  1082. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  1083. {
  1084. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  1085. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1086. struct drm_display_mode *adjusted_mode =
  1087. &intel_crtc->config->base.adjusted_mode;
  1088. intel_hdmi_prepare(encoder);
  1089. intel_hdmi->set_infoframes(&encoder->base,
  1090. intel_crtc->config->has_hdmi_sink,
  1091. adjusted_mode);
  1092. }
  1093. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
  1094. {
  1095. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1096. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  1097. struct drm_device *dev = encoder->base.dev;
  1098. struct drm_i915_private *dev_priv = dev->dev_private;
  1099. struct intel_crtc *intel_crtc =
  1100. to_intel_crtc(encoder->base.crtc);
  1101. struct drm_display_mode *adjusted_mode =
  1102. &intel_crtc->config->base.adjusted_mode;
  1103. enum dpio_channel port = vlv_dport_to_channel(dport);
  1104. int pipe = intel_crtc->pipe;
  1105. u32 val;
  1106. /* Enable clock channels for this port */
  1107. mutex_lock(&dev_priv->sb_lock);
  1108. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  1109. val = 0;
  1110. if (pipe)
  1111. val |= (1<<21);
  1112. else
  1113. val &= ~(1<<21);
  1114. val |= 0x001000c4;
  1115. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1116. /* HDMI 1.0V-2dB */
  1117. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
  1118. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
  1119. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
  1120. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
  1121. vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
  1122. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  1123. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1124. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1125. /* Program lane clock */
  1126. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1127. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1128. mutex_unlock(&dev_priv->sb_lock);
  1129. intel_hdmi->set_infoframes(&encoder->base,
  1130. intel_crtc->config->has_hdmi_sink,
  1131. adjusted_mode);
  1132. intel_enable_hdmi(encoder);
  1133. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1134. }
  1135. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1136. {
  1137. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1138. struct drm_device *dev = encoder->base.dev;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. struct intel_crtc *intel_crtc =
  1141. to_intel_crtc(encoder->base.crtc);
  1142. enum dpio_channel port = vlv_dport_to_channel(dport);
  1143. int pipe = intel_crtc->pipe;
  1144. intel_hdmi_prepare(encoder);
  1145. /* Program Tx lane resets to default */
  1146. mutex_lock(&dev_priv->sb_lock);
  1147. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1148. DPIO_PCS_TX_LANE2_RESET |
  1149. DPIO_PCS_TX_LANE1_RESET);
  1150. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1151. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1152. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1153. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1154. DPIO_PCS_CLK_SOFT_RESET);
  1155. /* Fix up inter-pair skew failure */
  1156. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1157. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1158. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1159. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1160. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1161. mutex_unlock(&dev_priv->sb_lock);
  1162. }
  1163. static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1164. {
  1165. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1166. struct drm_device *dev = encoder->base.dev;
  1167. struct drm_i915_private *dev_priv = dev->dev_private;
  1168. struct intel_crtc *intel_crtc =
  1169. to_intel_crtc(encoder->base.crtc);
  1170. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1171. enum pipe pipe = intel_crtc->pipe;
  1172. u32 val;
  1173. intel_hdmi_prepare(encoder);
  1174. mutex_lock(&dev_priv->sb_lock);
  1175. /* program left/right clock distribution */
  1176. if (pipe != PIPE_B) {
  1177. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1178. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1179. if (ch == DPIO_CH0)
  1180. val |= CHV_BUFLEFTENA1_FORCE;
  1181. if (ch == DPIO_CH1)
  1182. val |= CHV_BUFRIGHTENA1_FORCE;
  1183. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1184. } else {
  1185. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1186. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1187. if (ch == DPIO_CH0)
  1188. val |= CHV_BUFLEFTENA2_FORCE;
  1189. if (ch == DPIO_CH1)
  1190. val |= CHV_BUFRIGHTENA2_FORCE;
  1191. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1192. }
  1193. /* program clock channel usage */
  1194. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
  1195. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1196. if (pipe != PIPE_B)
  1197. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1198. else
  1199. val |= CHV_PCS_USEDCLKCHANNEL;
  1200. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
  1201. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
  1202. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1203. if (pipe != PIPE_B)
  1204. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1205. else
  1206. val |= CHV_PCS_USEDCLKCHANNEL;
  1207. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
  1208. /*
  1209. * This a a bit weird since generally CL
  1210. * matches the pipe, but here we need to
  1211. * pick the CL based on the port.
  1212. */
  1213. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
  1214. if (pipe != PIPE_B)
  1215. val &= ~CHV_CMN_USEDCLKCHANNEL;
  1216. else
  1217. val |= CHV_CMN_USEDCLKCHANNEL;
  1218. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
  1219. mutex_unlock(&dev_priv->sb_lock);
  1220. }
  1221. static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
  1222. {
  1223. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1224. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1225. struct intel_crtc *intel_crtc =
  1226. to_intel_crtc(encoder->base.crtc);
  1227. enum dpio_channel port = vlv_dport_to_channel(dport);
  1228. int pipe = intel_crtc->pipe;
  1229. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1230. mutex_lock(&dev_priv->sb_lock);
  1231. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
  1232. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
  1233. mutex_unlock(&dev_priv->sb_lock);
  1234. }
  1235. static void chv_hdmi_post_disable(struct intel_encoder *encoder)
  1236. {
  1237. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1238. struct drm_device *dev = encoder->base.dev;
  1239. struct drm_i915_private *dev_priv = dev->dev_private;
  1240. struct intel_crtc *intel_crtc =
  1241. to_intel_crtc(encoder->base.crtc);
  1242. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1243. enum pipe pipe = intel_crtc->pipe;
  1244. u32 val;
  1245. mutex_lock(&dev_priv->sb_lock);
  1246. /* Propagate soft reset to data lane reset */
  1247. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1248. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1249. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1250. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1251. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1252. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1253. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1254. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1255. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1256. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1257. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1258. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1259. mutex_unlock(&dev_priv->sb_lock);
  1260. }
  1261. static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
  1262. {
  1263. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1264. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  1265. struct drm_device *dev = encoder->base.dev;
  1266. struct drm_i915_private *dev_priv = dev->dev_private;
  1267. struct intel_crtc *intel_crtc =
  1268. to_intel_crtc(encoder->base.crtc);
  1269. struct drm_display_mode *adjusted_mode =
  1270. &intel_crtc->config->base.adjusted_mode;
  1271. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1272. int pipe = intel_crtc->pipe;
  1273. int data, i, stagger;
  1274. u32 val;
  1275. mutex_lock(&dev_priv->sb_lock);
  1276. /* allow hardware to manage TX FIFO reset source */
  1277. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
  1278. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1279. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
  1280. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
  1281. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1282. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
  1283. /* Deassert soft data lane reset*/
  1284. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1285. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1286. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1287. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1288. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1289. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1290. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1291. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1292. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1293. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1294. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1295. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1296. /* Program Tx latency optimal setting */
  1297. for (i = 0; i < 4; i++) {
  1298. /* Set the upar bit */
  1299. data = (i == 1) ? 0x0 : 0x1;
  1300. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1301. data << DPIO_UPAR_SHIFT);
  1302. }
  1303. /* Data lane stagger programming */
  1304. if (intel_crtc->config->port_clock > 270000)
  1305. stagger = 0x18;
  1306. else if (intel_crtc->config->port_clock > 135000)
  1307. stagger = 0xd;
  1308. else if (intel_crtc->config->port_clock > 67500)
  1309. stagger = 0x7;
  1310. else if (intel_crtc->config->port_clock > 33750)
  1311. stagger = 0x4;
  1312. else
  1313. stagger = 0x2;
  1314. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
  1315. val |= DPIO_TX2_STAGGER_MASK(0x1f);
  1316. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
  1317. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
  1318. val |= DPIO_TX2_STAGGER_MASK(0x1f);
  1319. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
  1320. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
  1321. DPIO_LANESTAGGER_STRAP(stagger) |
  1322. DPIO_LANESTAGGER_STRAP_OVRD |
  1323. DPIO_TX1_STAGGER_MASK(0x1f) |
  1324. DPIO_TX1_STAGGER_MULT(6) |
  1325. DPIO_TX2_STAGGER_MULT(0));
  1326. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
  1327. DPIO_LANESTAGGER_STRAP(stagger) |
  1328. DPIO_LANESTAGGER_STRAP_OVRD |
  1329. DPIO_TX1_STAGGER_MASK(0x1f) |
  1330. DPIO_TX1_STAGGER_MULT(7) |
  1331. DPIO_TX2_STAGGER_MULT(5));
  1332. /* Clear calc init */
  1333. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1334. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1335. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1336. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1337. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1338. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1339. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1340. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1341. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1342. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1343. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
  1344. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1345. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1346. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
  1347. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
  1348. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1349. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1350. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
  1351. /* FIXME: Program the support xxx V-dB */
  1352. /* Use 800mV-0dB */
  1353. for (i = 0; i < 4; i++) {
  1354. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  1355. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  1356. val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
  1357. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  1358. }
  1359. for (i = 0; i < 4; i++) {
  1360. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  1361. val &= ~DPIO_SWING_MARGIN000_MASK;
  1362. val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
  1363. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  1364. }
  1365. /* Disable unique transition scale */
  1366. for (i = 0; i < 4; i++) {
  1367. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  1368. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  1369. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  1370. }
  1371. /* Additional steps for 1200mV-0dB */
  1372. #if 0
  1373. val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
  1374. if (ch)
  1375. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
  1376. else
  1377. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
  1378. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
  1379. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
  1380. vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
  1381. (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
  1382. #endif
  1383. /* Start swing calculation */
  1384. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1385. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1386. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1387. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1388. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1389. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1390. /* LRC Bypass */
  1391. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  1392. val |= DPIO_LRC_BYPASS;
  1393. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  1394. mutex_unlock(&dev_priv->sb_lock);
  1395. intel_hdmi->set_infoframes(&encoder->base,
  1396. intel_crtc->config->has_hdmi_sink,
  1397. adjusted_mode);
  1398. intel_enable_hdmi(encoder);
  1399. vlv_wait_port_ready(dev_priv, dport, 0x0);
  1400. }
  1401. static void intel_hdmi_destroy(struct drm_connector *connector)
  1402. {
  1403. kfree(to_intel_connector(connector)->detect_edid);
  1404. drm_connector_cleanup(connector);
  1405. kfree(connector);
  1406. }
  1407. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1408. .dpms = intel_connector_dpms,
  1409. .detect = intel_hdmi_detect,
  1410. .force = intel_hdmi_force,
  1411. .fill_modes = drm_helper_probe_single_connector_modes,
  1412. .set_property = intel_hdmi_set_property,
  1413. .atomic_get_property = intel_connector_atomic_get_property,
  1414. .destroy = intel_hdmi_destroy,
  1415. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  1416. .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
  1417. };
  1418. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1419. .get_modes = intel_hdmi_get_modes,
  1420. .mode_valid = intel_hdmi_mode_valid,
  1421. .best_encoder = intel_best_encoder,
  1422. };
  1423. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1424. .destroy = intel_encoder_destroy,
  1425. };
  1426. static void
  1427. intel_attach_aspect_ratio_property(struct drm_connector *connector)
  1428. {
  1429. if (!drm_mode_create_aspect_ratio_property(connector->dev))
  1430. drm_object_attach_property(&connector->base,
  1431. connector->dev->mode_config.aspect_ratio_property,
  1432. DRM_MODE_PICTURE_ASPECT_NONE);
  1433. }
  1434. static void
  1435. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1436. {
  1437. intel_attach_force_audio_property(connector);
  1438. intel_attach_broadcast_rgb_property(connector);
  1439. intel_hdmi->color_range_auto = true;
  1440. intel_attach_aspect_ratio_property(connector);
  1441. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1442. }
  1443. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1444. struct intel_connector *intel_connector)
  1445. {
  1446. struct drm_connector *connector = &intel_connector->base;
  1447. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1448. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1449. struct drm_device *dev = intel_encoder->base.dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. enum port port = intel_dig_port->port;
  1452. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1453. DRM_MODE_CONNECTOR_HDMIA);
  1454. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1455. connector->interlace_allowed = 1;
  1456. connector->doublescan_allowed = 0;
  1457. connector->stereo_allowed = 1;
  1458. switch (port) {
  1459. case PORT_B:
  1460. if (IS_BROXTON(dev_priv))
  1461. intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
  1462. else
  1463. intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
  1464. intel_encoder->hpd_pin = HPD_PORT_B;
  1465. break;
  1466. case PORT_C:
  1467. if (IS_BROXTON(dev_priv))
  1468. intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
  1469. else
  1470. intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
  1471. intel_encoder->hpd_pin = HPD_PORT_C;
  1472. break;
  1473. case PORT_D:
  1474. if (WARN_ON(IS_BROXTON(dev_priv)))
  1475. intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
  1476. else if (IS_CHERRYVIEW(dev_priv))
  1477. intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
  1478. else
  1479. intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
  1480. intel_encoder->hpd_pin = HPD_PORT_D;
  1481. break;
  1482. case PORT_A:
  1483. intel_encoder->hpd_pin = HPD_PORT_A;
  1484. /* Internal port only for eDP. */
  1485. default:
  1486. BUG();
  1487. }
  1488. if (IS_VALLEYVIEW(dev)) {
  1489. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1490. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1491. intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
  1492. } else if (IS_G4X(dev)) {
  1493. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1494. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1495. intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
  1496. } else if (HAS_DDI(dev)) {
  1497. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1498. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1499. intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
  1500. } else if (HAS_PCH_IBX(dev)) {
  1501. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1502. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1503. intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
  1504. } else {
  1505. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1506. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1507. intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
  1508. }
  1509. if (HAS_DDI(dev))
  1510. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1511. else
  1512. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1513. intel_connector->unregister = intel_connector_unregister;
  1514. intel_hdmi_add_properties(intel_hdmi, connector);
  1515. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1516. drm_connector_register(connector);
  1517. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1518. * 0xd. Failure to do so will result in spurious interrupts being
  1519. * generated on the port when a cable is not attached.
  1520. */
  1521. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1522. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1523. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1524. }
  1525. }
  1526. void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
  1527. {
  1528. struct intel_digital_port *intel_dig_port;
  1529. struct intel_encoder *intel_encoder;
  1530. struct intel_connector *intel_connector;
  1531. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1532. if (!intel_dig_port)
  1533. return;
  1534. intel_connector = intel_connector_alloc();
  1535. if (!intel_connector) {
  1536. kfree(intel_dig_port);
  1537. return;
  1538. }
  1539. intel_encoder = &intel_dig_port->base;
  1540. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1541. DRM_MODE_ENCODER_TMDS);
  1542. intel_encoder->compute_config = intel_hdmi_compute_config;
  1543. if (HAS_PCH_SPLIT(dev)) {
  1544. intel_encoder->disable = pch_disable_hdmi;
  1545. intel_encoder->post_disable = pch_post_disable_hdmi;
  1546. } else {
  1547. intel_encoder->disable = g4x_disable_hdmi;
  1548. }
  1549. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1550. intel_encoder->get_config = intel_hdmi_get_config;
  1551. if (IS_CHERRYVIEW(dev)) {
  1552. intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
  1553. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1554. intel_encoder->enable = vlv_enable_hdmi;
  1555. intel_encoder->post_disable = chv_hdmi_post_disable;
  1556. } else if (IS_VALLEYVIEW(dev)) {
  1557. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1558. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1559. intel_encoder->enable = vlv_enable_hdmi;
  1560. intel_encoder->post_disable = vlv_hdmi_post_disable;
  1561. } else {
  1562. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1563. if (HAS_PCH_CPT(dev))
  1564. intel_encoder->enable = cpt_enable_hdmi;
  1565. else
  1566. intel_encoder->enable = intel_enable_hdmi;
  1567. }
  1568. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1569. if (IS_CHERRYVIEW(dev)) {
  1570. if (port == PORT_D)
  1571. intel_encoder->crtc_mask = 1 << 2;
  1572. else
  1573. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1574. } else {
  1575. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1576. }
  1577. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  1578. /*
  1579. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  1580. * to work on real hardware. And since g4x can send infoframes to
  1581. * only one port anyway, nothing is lost by allowing it.
  1582. */
  1583. if (IS_G4X(dev))
  1584. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  1585. intel_dig_port->port = port;
  1586. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1587. intel_dig_port->dp.output_reg = 0;
  1588. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1589. }