file.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  35. {
  36. struct page *page = vmf->page;
  37. struct inode *inode = file_inode(vmf->vma->vm_file);
  38. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  39. struct dnode_of_data dn;
  40. int err;
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. f2fs_balance_fs(sbi, dn.node_changed);
  54. file_update_time(vmf->vma->vm_file);
  55. lock_page(page);
  56. if (unlikely(page->mapping != inode->i_mapping ||
  57. page_offset(page) > i_size_read(inode) ||
  58. !PageUptodate(page))) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto mapped;
  68. /* page is wholly or partially inside EOF */
  69. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  70. i_size_read(inode)) {
  71. unsigned offset;
  72. offset = i_size_read(inode) & ~PAGE_MASK;
  73. zero_user_segment(page, offset, PAGE_SIZE);
  74. }
  75. set_page_dirty(page);
  76. if (!PageUptodate(page))
  77. SetPageUptodate(page);
  78. trace_f2fs_vm_page_mkwrite(page, DATA);
  79. mapped:
  80. /* fill the page */
  81. f2fs_wait_on_page_writeback(page, DATA, false);
  82. /* wait for GCed encrypted page writeback */
  83. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  84. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  85. out:
  86. sb_end_pagefault(inode->i_sb);
  87. f2fs_update_time(sbi, REQ_TIME);
  88. return block_page_mkwrite_return(err);
  89. }
  90. static const struct vm_operations_struct f2fs_file_vm_ops = {
  91. .fault = filemap_fault,
  92. .map_pages = filemap_map_pages,
  93. .page_mkwrite = f2fs_vm_page_mkwrite,
  94. };
  95. static int get_parent_ino(struct inode *inode, nid_t *pino)
  96. {
  97. struct dentry *dentry;
  98. inode = igrab(inode);
  99. dentry = d_find_any_alias(inode);
  100. iput(inode);
  101. if (!dentry)
  102. return 0;
  103. *pino = parent_ino(dentry);
  104. dput(dentry);
  105. return 1;
  106. }
  107. static inline bool need_do_checkpoint(struct inode *inode)
  108. {
  109. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  110. bool need_cp = false;
  111. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  112. need_cp = true;
  113. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  114. need_cp = true;
  115. else if (file_wrong_pino(inode))
  116. need_cp = true;
  117. else if (!space_for_roll_forward(sbi))
  118. need_cp = true;
  119. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  120. need_cp = true;
  121. else if (test_opt(sbi, FASTBOOT))
  122. need_cp = true;
  123. else if (sbi->active_logs == 2)
  124. need_cp = true;
  125. return need_cp;
  126. }
  127. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  128. {
  129. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  130. bool ret = false;
  131. /* But we need to avoid that there are some inode updates */
  132. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  133. ret = true;
  134. f2fs_put_page(i, 0);
  135. return ret;
  136. }
  137. static void try_to_fix_pino(struct inode *inode)
  138. {
  139. struct f2fs_inode_info *fi = F2FS_I(inode);
  140. nid_t pino;
  141. down_write(&fi->i_sem);
  142. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  143. get_parent_ino(inode, &pino)) {
  144. f2fs_i_pino_write(inode, pino);
  145. file_got_pino(inode);
  146. }
  147. up_write(&fi->i_sem);
  148. }
  149. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  150. int datasync, bool atomic)
  151. {
  152. struct inode *inode = file->f_mapping->host;
  153. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  154. nid_t ino = inode->i_ino;
  155. int ret = 0;
  156. bool need_cp = false;
  157. struct writeback_control wbc = {
  158. .sync_mode = WB_SYNC_ALL,
  159. .nr_to_write = LONG_MAX,
  160. .for_reclaim = 0,
  161. };
  162. if (unlikely(f2fs_readonly(inode->i_sb)))
  163. return 0;
  164. trace_f2fs_sync_file_enter(inode);
  165. /* if fdatasync is triggered, let's do in-place-update */
  166. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  167. set_inode_flag(inode, FI_NEED_IPU);
  168. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  169. clear_inode_flag(inode, FI_NEED_IPU);
  170. if (ret) {
  171. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  172. return ret;
  173. }
  174. /* if the inode is dirty, let's recover all the time */
  175. if (!f2fs_skip_inode_update(inode, datasync)) {
  176. f2fs_write_inode(inode, NULL);
  177. goto go_write;
  178. }
  179. /*
  180. * if there is no written data, don't waste time to write recovery info.
  181. */
  182. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  183. !exist_written_data(sbi, ino, APPEND_INO)) {
  184. /* it may call write_inode just prior to fsync */
  185. if (need_inode_page_update(sbi, ino))
  186. goto go_write;
  187. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  188. exist_written_data(sbi, ino, UPDATE_INO))
  189. goto flush_out;
  190. goto out;
  191. }
  192. go_write:
  193. /*
  194. * Both of fdatasync() and fsync() are able to be recovered from
  195. * sudden-power-off.
  196. */
  197. down_read(&F2FS_I(inode)->i_sem);
  198. need_cp = need_do_checkpoint(inode);
  199. up_read(&F2FS_I(inode)->i_sem);
  200. if (need_cp) {
  201. /* all the dirty node pages should be flushed for POR */
  202. ret = f2fs_sync_fs(inode->i_sb, 1);
  203. /*
  204. * We've secured consistency through sync_fs. Following pino
  205. * will be used only for fsynced inodes after checkpoint.
  206. */
  207. try_to_fix_pino(inode);
  208. clear_inode_flag(inode, FI_APPEND_WRITE);
  209. clear_inode_flag(inode, FI_UPDATE_WRITE);
  210. goto out;
  211. }
  212. sync_nodes:
  213. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  214. if (ret)
  215. goto out;
  216. /* if cp_error was enabled, we should avoid infinite loop */
  217. if (unlikely(f2fs_cp_error(sbi))) {
  218. ret = -EIO;
  219. goto out;
  220. }
  221. if (need_inode_block_update(sbi, ino)) {
  222. f2fs_mark_inode_dirty_sync(inode, true);
  223. f2fs_write_inode(inode, NULL);
  224. goto sync_nodes;
  225. }
  226. ret = wait_on_node_pages_writeback(sbi, ino);
  227. if (ret)
  228. goto out;
  229. /* once recovery info is written, don't need to tack this */
  230. remove_ino_entry(sbi, ino, APPEND_INO);
  231. clear_inode_flag(inode, FI_APPEND_WRITE);
  232. flush_out:
  233. remove_ino_entry(sbi, ino, UPDATE_INO);
  234. clear_inode_flag(inode, FI_UPDATE_WRITE);
  235. if (!atomic)
  236. ret = f2fs_issue_flush(sbi);
  237. f2fs_update_time(sbi, REQ_TIME);
  238. out:
  239. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  240. f2fs_trace_ios(NULL, 1);
  241. return ret;
  242. }
  243. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  244. {
  245. return f2fs_do_sync_file(file, start, end, datasync, false);
  246. }
  247. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  248. pgoff_t pgofs, int whence)
  249. {
  250. struct pagevec pvec;
  251. int nr_pages;
  252. if (whence != SEEK_DATA)
  253. return 0;
  254. /* find first dirty page index */
  255. pagevec_init(&pvec, 0);
  256. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  257. PAGECACHE_TAG_DIRTY, 1);
  258. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  259. pagevec_release(&pvec);
  260. return pgofs;
  261. }
  262. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  263. int whence)
  264. {
  265. switch (whence) {
  266. case SEEK_DATA:
  267. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  268. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  269. return true;
  270. break;
  271. case SEEK_HOLE:
  272. if (blkaddr == NULL_ADDR)
  273. return true;
  274. break;
  275. }
  276. return false;
  277. }
  278. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  279. {
  280. struct inode *inode = file->f_mapping->host;
  281. loff_t maxbytes = inode->i_sb->s_maxbytes;
  282. struct dnode_of_data dn;
  283. pgoff_t pgofs, end_offset, dirty;
  284. loff_t data_ofs = offset;
  285. loff_t isize;
  286. int err = 0;
  287. inode_lock(inode);
  288. isize = i_size_read(inode);
  289. if (offset >= isize)
  290. goto fail;
  291. /* handle inline data case */
  292. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  293. if (whence == SEEK_HOLE)
  294. data_ofs = isize;
  295. goto found;
  296. }
  297. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  298. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  299. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  300. set_new_dnode(&dn, inode, NULL, NULL, 0);
  301. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  302. if (err && err != -ENOENT) {
  303. goto fail;
  304. } else if (err == -ENOENT) {
  305. /* direct node does not exists */
  306. if (whence == SEEK_DATA) {
  307. pgofs = get_next_page_offset(&dn, pgofs);
  308. continue;
  309. } else {
  310. goto found;
  311. }
  312. }
  313. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  314. /* find data/hole in dnode block */
  315. for (; dn.ofs_in_node < end_offset;
  316. dn.ofs_in_node++, pgofs++,
  317. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  318. block_t blkaddr;
  319. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  320. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  321. f2fs_put_dnode(&dn);
  322. goto found;
  323. }
  324. }
  325. f2fs_put_dnode(&dn);
  326. }
  327. if (whence == SEEK_DATA)
  328. goto fail;
  329. found:
  330. if (whence == SEEK_HOLE && data_ofs > isize)
  331. data_ofs = isize;
  332. inode_unlock(inode);
  333. return vfs_setpos(file, data_ofs, maxbytes);
  334. fail:
  335. inode_unlock(inode);
  336. return -ENXIO;
  337. }
  338. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  339. {
  340. struct inode *inode = file->f_mapping->host;
  341. loff_t maxbytes = inode->i_sb->s_maxbytes;
  342. switch (whence) {
  343. case SEEK_SET:
  344. case SEEK_CUR:
  345. case SEEK_END:
  346. return generic_file_llseek_size(file, offset, whence,
  347. maxbytes, i_size_read(inode));
  348. case SEEK_DATA:
  349. case SEEK_HOLE:
  350. if (offset < 0)
  351. return -ENXIO;
  352. return f2fs_seek_block(file, offset, whence);
  353. }
  354. return -EINVAL;
  355. }
  356. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  357. {
  358. struct inode *inode = file_inode(file);
  359. int err;
  360. if (f2fs_encrypted_inode(inode)) {
  361. err = fscrypt_get_encryption_info(inode);
  362. if (err)
  363. return 0;
  364. if (!f2fs_encrypted_inode(inode))
  365. return -ENOKEY;
  366. }
  367. /* we don't need to use inline_data strictly */
  368. err = f2fs_convert_inline_inode(inode);
  369. if (err)
  370. return err;
  371. file_accessed(file);
  372. vma->vm_ops = &f2fs_file_vm_ops;
  373. return 0;
  374. }
  375. static int f2fs_file_open(struct inode *inode, struct file *filp)
  376. {
  377. int ret = generic_file_open(inode, filp);
  378. struct dentry *dir;
  379. if (!ret && f2fs_encrypted_inode(inode)) {
  380. ret = fscrypt_get_encryption_info(inode);
  381. if (ret)
  382. return -EACCES;
  383. if (!fscrypt_has_encryption_key(inode))
  384. return -ENOKEY;
  385. }
  386. dir = dget_parent(file_dentry(filp));
  387. if (f2fs_encrypted_inode(d_inode(dir)) &&
  388. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  389. dput(dir);
  390. return -EPERM;
  391. }
  392. dput(dir);
  393. return ret;
  394. }
  395. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  396. {
  397. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  398. struct f2fs_node *raw_node;
  399. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  400. __le32 *addr;
  401. raw_node = F2FS_NODE(dn->node_page);
  402. addr = blkaddr_in_node(raw_node) + ofs;
  403. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  404. block_t blkaddr = le32_to_cpu(*addr);
  405. if (blkaddr == NULL_ADDR)
  406. continue;
  407. dn->data_blkaddr = NULL_ADDR;
  408. set_data_blkaddr(dn);
  409. invalidate_blocks(sbi, blkaddr);
  410. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  411. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  412. nr_free++;
  413. }
  414. if (nr_free) {
  415. pgoff_t fofs;
  416. /*
  417. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  418. * we will invalidate all blkaddr in the whole range.
  419. */
  420. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  421. dn->inode) + ofs;
  422. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  423. dec_valid_block_count(sbi, dn->inode, nr_free);
  424. }
  425. dn->ofs_in_node = ofs;
  426. f2fs_update_time(sbi, REQ_TIME);
  427. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  428. dn->ofs_in_node, nr_free);
  429. return nr_free;
  430. }
  431. void truncate_data_blocks(struct dnode_of_data *dn)
  432. {
  433. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  434. }
  435. static int truncate_partial_data_page(struct inode *inode, u64 from,
  436. bool cache_only)
  437. {
  438. unsigned offset = from & (PAGE_SIZE - 1);
  439. pgoff_t index = from >> PAGE_SHIFT;
  440. struct address_space *mapping = inode->i_mapping;
  441. struct page *page;
  442. if (!offset && !cache_only)
  443. return 0;
  444. if (cache_only) {
  445. page = find_lock_page(mapping, index);
  446. if (page && PageUptodate(page))
  447. goto truncate_out;
  448. f2fs_put_page(page, 1);
  449. return 0;
  450. }
  451. page = get_lock_data_page(inode, index, true);
  452. if (IS_ERR(page))
  453. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  454. truncate_out:
  455. f2fs_wait_on_page_writeback(page, DATA, true);
  456. zero_user(page, offset, PAGE_SIZE - offset);
  457. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  458. !S_ISREG(inode->i_mode))
  459. set_page_dirty(page);
  460. f2fs_put_page(page, 1);
  461. return 0;
  462. }
  463. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  464. {
  465. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  466. unsigned int blocksize = inode->i_sb->s_blocksize;
  467. struct dnode_of_data dn;
  468. pgoff_t free_from;
  469. int count = 0, err = 0;
  470. struct page *ipage;
  471. bool truncate_page = false;
  472. trace_f2fs_truncate_blocks_enter(inode, from);
  473. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  474. if (free_from >= sbi->max_file_blocks)
  475. goto free_partial;
  476. if (lock)
  477. f2fs_lock_op(sbi);
  478. ipage = get_node_page(sbi, inode->i_ino);
  479. if (IS_ERR(ipage)) {
  480. err = PTR_ERR(ipage);
  481. goto out;
  482. }
  483. if (f2fs_has_inline_data(inode)) {
  484. truncate_inline_inode(inode, ipage, from);
  485. f2fs_put_page(ipage, 1);
  486. truncate_page = true;
  487. goto out;
  488. }
  489. set_new_dnode(&dn, inode, ipage, NULL, 0);
  490. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  491. if (err) {
  492. if (err == -ENOENT)
  493. goto free_next;
  494. goto out;
  495. }
  496. count = ADDRS_PER_PAGE(dn.node_page, inode);
  497. count -= dn.ofs_in_node;
  498. f2fs_bug_on(sbi, count < 0);
  499. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  500. truncate_data_blocks_range(&dn, count);
  501. free_from += count;
  502. }
  503. f2fs_put_dnode(&dn);
  504. free_next:
  505. err = truncate_inode_blocks(inode, free_from);
  506. out:
  507. if (lock)
  508. f2fs_unlock_op(sbi);
  509. free_partial:
  510. /* lastly zero out the first data page */
  511. if (!err)
  512. err = truncate_partial_data_page(inode, from, truncate_page);
  513. trace_f2fs_truncate_blocks_exit(inode, err);
  514. return err;
  515. }
  516. int f2fs_truncate(struct inode *inode)
  517. {
  518. int err;
  519. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  520. S_ISLNK(inode->i_mode)))
  521. return 0;
  522. trace_f2fs_truncate(inode);
  523. #ifdef CONFIG_F2FS_FAULT_INJECTION
  524. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  525. f2fs_show_injection_info(FAULT_TRUNCATE);
  526. return -EIO;
  527. }
  528. #endif
  529. /* we should check inline_data size */
  530. if (!f2fs_may_inline_data(inode)) {
  531. err = f2fs_convert_inline_inode(inode);
  532. if (err)
  533. return err;
  534. }
  535. err = truncate_blocks(inode, i_size_read(inode), true);
  536. if (err)
  537. return err;
  538. inode->i_mtime = inode->i_ctime = current_time(inode);
  539. f2fs_mark_inode_dirty_sync(inode, false);
  540. return 0;
  541. }
  542. int f2fs_getattr(const struct path *path, struct kstat *stat,
  543. u32 request_mask, unsigned int flags)
  544. {
  545. struct inode *inode = d_inode(path->dentry);
  546. generic_fillattr(inode, stat);
  547. stat->blocks <<= 3;
  548. return 0;
  549. }
  550. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  551. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  552. {
  553. unsigned int ia_valid = attr->ia_valid;
  554. if (ia_valid & ATTR_UID)
  555. inode->i_uid = attr->ia_uid;
  556. if (ia_valid & ATTR_GID)
  557. inode->i_gid = attr->ia_gid;
  558. if (ia_valid & ATTR_ATIME)
  559. inode->i_atime = timespec_trunc(attr->ia_atime,
  560. inode->i_sb->s_time_gran);
  561. if (ia_valid & ATTR_MTIME)
  562. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  563. inode->i_sb->s_time_gran);
  564. if (ia_valid & ATTR_CTIME)
  565. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  566. inode->i_sb->s_time_gran);
  567. if (ia_valid & ATTR_MODE) {
  568. umode_t mode = attr->ia_mode;
  569. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  570. mode &= ~S_ISGID;
  571. set_acl_inode(inode, mode);
  572. }
  573. }
  574. #else
  575. #define __setattr_copy setattr_copy
  576. #endif
  577. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  578. {
  579. struct inode *inode = d_inode(dentry);
  580. int err;
  581. bool size_changed = false;
  582. err = setattr_prepare(dentry, attr);
  583. if (err)
  584. return err;
  585. if (attr->ia_valid & ATTR_SIZE) {
  586. if (f2fs_encrypted_inode(inode) &&
  587. fscrypt_get_encryption_info(inode))
  588. return -EACCES;
  589. if (attr->ia_size <= i_size_read(inode)) {
  590. truncate_setsize(inode, attr->ia_size);
  591. err = f2fs_truncate(inode);
  592. if (err)
  593. return err;
  594. } else {
  595. /*
  596. * do not trim all blocks after i_size if target size is
  597. * larger than i_size.
  598. */
  599. truncate_setsize(inode, attr->ia_size);
  600. /* should convert inline inode here */
  601. if (!f2fs_may_inline_data(inode)) {
  602. err = f2fs_convert_inline_inode(inode);
  603. if (err)
  604. return err;
  605. }
  606. inode->i_mtime = inode->i_ctime = current_time(inode);
  607. }
  608. size_changed = true;
  609. }
  610. __setattr_copy(inode, attr);
  611. if (attr->ia_valid & ATTR_MODE) {
  612. err = posix_acl_chmod(inode, get_inode_mode(inode));
  613. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  614. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  615. clear_inode_flag(inode, FI_ACL_MODE);
  616. }
  617. }
  618. /* file size may changed here */
  619. f2fs_mark_inode_dirty_sync(inode, size_changed);
  620. /* inode change will produce dirty node pages flushed by checkpoint */
  621. f2fs_balance_fs(F2FS_I_SB(inode), true);
  622. return err;
  623. }
  624. const struct inode_operations f2fs_file_inode_operations = {
  625. .getattr = f2fs_getattr,
  626. .setattr = f2fs_setattr,
  627. .get_acl = f2fs_get_acl,
  628. .set_acl = f2fs_set_acl,
  629. #ifdef CONFIG_F2FS_FS_XATTR
  630. .listxattr = f2fs_listxattr,
  631. #endif
  632. .fiemap = f2fs_fiemap,
  633. };
  634. static int fill_zero(struct inode *inode, pgoff_t index,
  635. loff_t start, loff_t len)
  636. {
  637. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  638. struct page *page;
  639. if (!len)
  640. return 0;
  641. f2fs_balance_fs(sbi, true);
  642. f2fs_lock_op(sbi);
  643. page = get_new_data_page(inode, NULL, index, false);
  644. f2fs_unlock_op(sbi);
  645. if (IS_ERR(page))
  646. return PTR_ERR(page);
  647. f2fs_wait_on_page_writeback(page, DATA, true);
  648. zero_user(page, start, len);
  649. set_page_dirty(page);
  650. f2fs_put_page(page, 1);
  651. return 0;
  652. }
  653. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  654. {
  655. int err;
  656. while (pg_start < pg_end) {
  657. struct dnode_of_data dn;
  658. pgoff_t end_offset, count;
  659. set_new_dnode(&dn, inode, NULL, NULL, 0);
  660. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  661. if (err) {
  662. if (err == -ENOENT) {
  663. pg_start++;
  664. continue;
  665. }
  666. return err;
  667. }
  668. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  669. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  670. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  671. truncate_data_blocks_range(&dn, count);
  672. f2fs_put_dnode(&dn);
  673. pg_start += count;
  674. }
  675. return 0;
  676. }
  677. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  678. {
  679. pgoff_t pg_start, pg_end;
  680. loff_t off_start, off_end;
  681. int ret;
  682. ret = f2fs_convert_inline_inode(inode);
  683. if (ret)
  684. return ret;
  685. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  686. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  687. off_start = offset & (PAGE_SIZE - 1);
  688. off_end = (offset + len) & (PAGE_SIZE - 1);
  689. if (pg_start == pg_end) {
  690. ret = fill_zero(inode, pg_start, off_start,
  691. off_end - off_start);
  692. if (ret)
  693. return ret;
  694. } else {
  695. if (off_start) {
  696. ret = fill_zero(inode, pg_start++, off_start,
  697. PAGE_SIZE - off_start);
  698. if (ret)
  699. return ret;
  700. }
  701. if (off_end) {
  702. ret = fill_zero(inode, pg_end, 0, off_end);
  703. if (ret)
  704. return ret;
  705. }
  706. if (pg_start < pg_end) {
  707. struct address_space *mapping = inode->i_mapping;
  708. loff_t blk_start, blk_end;
  709. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  710. f2fs_balance_fs(sbi, true);
  711. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  712. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  713. truncate_inode_pages_range(mapping, blk_start,
  714. blk_end - 1);
  715. f2fs_lock_op(sbi);
  716. ret = truncate_hole(inode, pg_start, pg_end);
  717. f2fs_unlock_op(sbi);
  718. }
  719. }
  720. return ret;
  721. }
  722. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  723. int *do_replace, pgoff_t off, pgoff_t len)
  724. {
  725. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  726. struct dnode_of_data dn;
  727. int ret, done, i;
  728. next_dnode:
  729. set_new_dnode(&dn, inode, NULL, NULL, 0);
  730. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  731. if (ret && ret != -ENOENT) {
  732. return ret;
  733. } else if (ret == -ENOENT) {
  734. if (dn.max_level == 0)
  735. return -ENOENT;
  736. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  737. blkaddr += done;
  738. do_replace += done;
  739. goto next;
  740. }
  741. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  742. dn.ofs_in_node, len);
  743. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  744. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  745. if (!is_checkpointed_data(sbi, *blkaddr)) {
  746. if (test_opt(sbi, LFS)) {
  747. f2fs_put_dnode(&dn);
  748. return -ENOTSUPP;
  749. }
  750. /* do not invalidate this block address */
  751. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  752. *do_replace = 1;
  753. }
  754. }
  755. f2fs_put_dnode(&dn);
  756. next:
  757. len -= done;
  758. off += done;
  759. if (len)
  760. goto next_dnode;
  761. return 0;
  762. }
  763. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  764. int *do_replace, pgoff_t off, int len)
  765. {
  766. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  767. struct dnode_of_data dn;
  768. int ret, i;
  769. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  770. if (*do_replace == 0)
  771. continue;
  772. set_new_dnode(&dn, inode, NULL, NULL, 0);
  773. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  774. if (ret) {
  775. dec_valid_block_count(sbi, inode, 1);
  776. invalidate_blocks(sbi, *blkaddr);
  777. } else {
  778. f2fs_update_data_blkaddr(&dn, *blkaddr);
  779. }
  780. f2fs_put_dnode(&dn);
  781. }
  782. return 0;
  783. }
  784. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  785. block_t *blkaddr, int *do_replace,
  786. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  787. {
  788. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  789. pgoff_t i = 0;
  790. int ret;
  791. while (i < len) {
  792. if (blkaddr[i] == NULL_ADDR && !full) {
  793. i++;
  794. continue;
  795. }
  796. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  797. struct dnode_of_data dn;
  798. struct node_info ni;
  799. size_t new_size;
  800. pgoff_t ilen;
  801. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  802. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  803. if (ret)
  804. return ret;
  805. get_node_info(sbi, dn.nid, &ni);
  806. ilen = min((pgoff_t)
  807. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  808. dn.ofs_in_node, len - i);
  809. do {
  810. dn.data_blkaddr = datablock_addr(dn.node_page,
  811. dn.ofs_in_node);
  812. truncate_data_blocks_range(&dn, 1);
  813. if (do_replace[i]) {
  814. f2fs_i_blocks_write(src_inode,
  815. 1, false);
  816. f2fs_i_blocks_write(dst_inode,
  817. 1, true);
  818. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  819. blkaddr[i], ni.version, true, false);
  820. do_replace[i] = 0;
  821. }
  822. dn.ofs_in_node++;
  823. i++;
  824. new_size = (dst + i) << PAGE_SHIFT;
  825. if (dst_inode->i_size < new_size)
  826. f2fs_i_size_write(dst_inode, new_size);
  827. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  828. f2fs_put_dnode(&dn);
  829. } else {
  830. struct page *psrc, *pdst;
  831. psrc = get_lock_data_page(src_inode, src + i, true);
  832. if (IS_ERR(psrc))
  833. return PTR_ERR(psrc);
  834. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  835. true);
  836. if (IS_ERR(pdst)) {
  837. f2fs_put_page(psrc, 1);
  838. return PTR_ERR(pdst);
  839. }
  840. f2fs_copy_page(psrc, pdst);
  841. set_page_dirty(pdst);
  842. f2fs_put_page(pdst, 1);
  843. f2fs_put_page(psrc, 1);
  844. ret = truncate_hole(src_inode, src + i, src + i + 1);
  845. if (ret)
  846. return ret;
  847. i++;
  848. }
  849. }
  850. return 0;
  851. }
  852. static int __exchange_data_block(struct inode *src_inode,
  853. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  854. pgoff_t len, bool full)
  855. {
  856. block_t *src_blkaddr;
  857. int *do_replace;
  858. pgoff_t olen;
  859. int ret;
  860. while (len) {
  861. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  862. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  863. if (!src_blkaddr)
  864. return -ENOMEM;
  865. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  866. if (!do_replace) {
  867. kvfree(src_blkaddr);
  868. return -ENOMEM;
  869. }
  870. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  871. do_replace, src, olen);
  872. if (ret)
  873. goto roll_back;
  874. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  875. do_replace, src, dst, olen, full);
  876. if (ret)
  877. goto roll_back;
  878. src += olen;
  879. dst += olen;
  880. len -= olen;
  881. kvfree(src_blkaddr);
  882. kvfree(do_replace);
  883. }
  884. return 0;
  885. roll_back:
  886. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  887. kvfree(src_blkaddr);
  888. kvfree(do_replace);
  889. return ret;
  890. }
  891. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  892. {
  893. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  894. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  895. int ret;
  896. f2fs_balance_fs(sbi, true);
  897. f2fs_lock_op(sbi);
  898. f2fs_drop_extent_tree(inode);
  899. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  900. f2fs_unlock_op(sbi);
  901. return ret;
  902. }
  903. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  904. {
  905. pgoff_t pg_start, pg_end;
  906. loff_t new_size;
  907. int ret;
  908. if (offset + len >= i_size_read(inode))
  909. return -EINVAL;
  910. /* collapse range should be aligned to block size of f2fs. */
  911. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  912. return -EINVAL;
  913. ret = f2fs_convert_inline_inode(inode);
  914. if (ret)
  915. return ret;
  916. pg_start = offset >> PAGE_SHIFT;
  917. pg_end = (offset + len) >> PAGE_SHIFT;
  918. /* write out all dirty pages from offset */
  919. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  920. if (ret)
  921. return ret;
  922. truncate_pagecache(inode, offset);
  923. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  924. if (ret)
  925. return ret;
  926. /* write out all moved pages, if possible */
  927. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  928. truncate_pagecache(inode, offset);
  929. new_size = i_size_read(inode) - len;
  930. truncate_pagecache(inode, new_size);
  931. ret = truncate_blocks(inode, new_size, true);
  932. if (!ret)
  933. f2fs_i_size_write(inode, new_size);
  934. return ret;
  935. }
  936. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  937. pgoff_t end)
  938. {
  939. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  940. pgoff_t index = start;
  941. unsigned int ofs_in_node = dn->ofs_in_node;
  942. blkcnt_t count = 0;
  943. int ret;
  944. for (; index < end; index++, dn->ofs_in_node++) {
  945. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  946. count++;
  947. }
  948. dn->ofs_in_node = ofs_in_node;
  949. ret = reserve_new_blocks(dn, count);
  950. if (ret)
  951. return ret;
  952. dn->ofs_in_node = ofs_in_node;
  953. for (index = start; index < end; index++, dn->ofs_in_node++) {
  954. dn->data_blkaddr =
  955. datablock_addr(dn->node_page, dn->ofs_in_node);
  956. /*
  957. * reserve_new_blocks will not guarantee entire block
  958. * allocation.
  959. */
  960. if (dn->data_blkaddr == NULL_ADDR) {
  961. ret = -ENOSPC;
  962. break;
  963. }
  964. if (dn->data_blkaddr != NEW_ADDR) {
  965. invalidate_blocks(sbi, dn->data_blkaddr);
  966. dn->data_blkaddr = NEW_ADDR;
  967. set_data_blkaddr(dn);
  968. }
  969. }
  970. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  971. return ret;
  972. }
  973. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  974. int mode)
  975. {
  976. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  977. struct address_space *mapping = inode->i_mapping;
  978. pgoff_t index, pg_start, pg_end;
  979. loff_t new_size = i_size_read(inode);
  980. loff_t off_start, off_end;
  981. int ret = 0;
  982. ret = inode_newsize_ok(inode, (len + offset));
  983. if (ret)
  984. return ret;
  985. ret = f2fs_convert_inline_inode(inode);
  986. if (ret)
  987. return ret;
  988. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  989. if (ret)
  990. return ret;
  991. truncate_pagecache_range(inode, offset, offset + len - 1);
  992. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  993. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  994. off_start = offset & (PAGE_SIZE - 1);
  995. off_end = (offset + len) & (PAGE_SIZE - 1);
  996. if (pg_start == pg_end) {
  997. ret = fill_zero(inode, pg_start, off_start,
  998. off_end - off_start);
  999. if (ret)
  1000. return ret;
  1001. new_size = max_t(loff_t, new_size, offset + len);
  1002. } else {
  1003. if (off_start) {
  1004. ret = fill_zero(inode, pg_start++, off_start,
  1005. PAGE_SIZE - off_start);
  1006. if (ret)
  1007. return ret;
  1008. new_size = max_t(loff_t, new_size,
  1009. (loff_t)pg_start << PAGE_SHIFT);
  1010. }
  1011. for (index = pg_start; index < pg_end;) {
  1012. struct dnode_of_data dn;
  1013. unsigned int end_offset;
  1014. pgoff_t end;
  1015. f2fs_lock_op(sbi);
  1016. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1017. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1018. if (ret) {
  1019. f2fs_unlock_op(sbi);
  1020. goto out;
  1021. }
  1022. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1023. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1024. ret = f2fs_do_zero_range(&dn, index, end);
  1025. f2fs_put_dnode(&dn);
  1026. f2fs_unlock_op(sbi);
  1027. f2fs_balance_fs(sbi, dn.node_changed);
  1028. if (ret)
  1029. goto out;
  1030. index = end;
  1031. new_size = max_t(loff_t, new_size,
  1032. (loff_t)index << PAGE_SHIFT);
  1033. }
  1034. if (off_end) {
  1035. ret = fill_zero(inode, pg_end, 0, off_end);
  1036. if (ret)
  1037. goto out;
  1038. new_size = max_t(loff_t, new_size, offset + len);
  1039. }
  1040. }
  1041. out:
  1042. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1043. f2fs_i_size_write(inode, new_size);
  1044. return ret;
  1045. }
  1046. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1047. {
  1048. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1049. pgoff_t nr, pg_start, pg_end, delta, idx;
  1050. loff_t new_size;
  1051. int ret = 0;
  1052. new_size = i_size_read(inode) + len;
  1053. ret = inode_newsize_ok(inode, new_size);
  1054. if (ret)
  1055. return ret;
  1056. if (offset >= i_size_read(inode))
  1057. return -EINVAL;
  1058. /* insert range should be aligned to block size of f2fs. */
  1059. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1060. return -EINVAL;
  1061. ret = f2fs_convert_inline_inode(inode);
  1062. if (ret)
  1063. return ret;
  1064. f2fs_balance_fs(sbi, true);
  1065. ret = truncate_blocks(inode, i_size_read(inode), true);
  1066. if (ret)
  1067. return ret;
  1068. /* write out all dirty pages from offset */
  1069. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1070. if (ret)
  1071. return ret;
  1072. truncate_pagecache(inode, offset);
  1073. pg_start = offset >> PAGE_SHIFT;
  1074. pg_end = (offset + len) >> PAGE_SHIFT;
  1075. delta = pg_end - pg_start;
  1076. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1077. while (!ret && idx > pg_start) {
  1078. nr = idx - pg_start;
  1079. if (nr > delta)
  1080. nr = delta;
  1081. idx -= nr;
  1082. f2fs_lock_op(sbi);
  1083. f2fs_drop_extent_tree(inode);
  1084. ret = __exchange_data_block(inode, inode, idx,
  1085. idx + delta, nr, false);
  1086. f2fs_unlock_op(sbi);
  1087. }
  1088. /* write out all moved pages, if possible */
  1089. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1090. truncate_pagecache(inode, offset);
  1091. if (!ret)
  1092. f2fs_i_size_write(inode, new_size);
  1093. return ret;
  1094. }
  1095. static int expand_inode_data(struct inode *inode, loff_t offset,
  1096. loff_t len, int mode)
  1097. {
  1098. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1099. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1100. pgoff_t pg_end;
  1101. loff_t new_size = i_size_read(inode);
  1102. loff_t off_end;
  1103. int err;
  1104. err = inode_newsize_ok(inode, (len + offset));
  1105. if (err)
  1106. return err;
  1107. err = f2fs_convert_inline_inode(inode);
  1108. if (err)
  1109. return err;
  1110. f2fs_balance_fs(sbi, true);
  1111. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1112. off_end = (offset + len) & (PAGE_SIZE - 1);
  1113. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1114. map.m_len = pg_end - map.m_lblk;
  1115. if (off_end)
  1116. map.m_len++;
  1117. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1118. if (err) {
  1119. pgoff_t last_off;
  1120. if (!map.m_len)
  1121. return err;
  1122. last_off = map.m_lblk + map.m_len - 1;
  1123. /* update new size to the failed position */
  1124. new_size = (last_off == pg_end) ? offset + len:
  1125. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1126. } else {
  1127. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1128. }
  1129. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1130. f2fs_i_size_write(inode, new_size);
  1131. return err;
  1132. }
  1133. static long f2fs_fallocate(struct file *file, int mode,
  1134. loff_t offset, loff_t len)
  1135. {
  1136. struct inode *inode = file_inode(file);
  1137. long ret = 0;
  1138. /* f2fs only support ->fallocate for regular file */
  1139. if (!S_ISREG(inode->i_mode))
  1140. return -EINVAL;
  1141. if (f2fs_encrypted_inode(inode) &&
  1142. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1143. return -EOPNOTSUPP;
  1144. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1145. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1146. FALLOC_FL_INSERT_RANGE))
  1147. return -EOPNOTSUPP;
  1148. inode_lock(inode);
  1149. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1150. if (offset >= inode->i_size)
  1151. goto out;
  1152. ret = punch_hole(inode, offset, len);
  1153. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1154. ret = f2fs_collapse_range(inode, offset, len);
  1155. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1156. ret = f2fs_zero_range(inode, offset, len, mode);
  1157. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1158. ret = f2fs_insert_range(inode, offset, len);
  1159. } else {
  1160. ret = expand_inode_data(inode, offset, len, mode);
  1161. }
  1162. if (!ret) {
  1163. inode->i_mtime = inode->i_ctime = current_time(inode);
  1164. f2fs_mark_inode_dirty_sync(inode, false);
  1165. if (mode & FALLOC_FL_KEEP_SIZE)
  1166. file_set_keep_isize(inode);
  1167. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1168. }
  1169. out:
  1170. inode_unlock(inode);
  1171. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1172. return ret;
  1173. }
  1174. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1175. {
  1176. /*
  1177. * f2fs_relase_file is called at every close calls. So we should
  1178. * not drop any inmemory pages by close called by other process.
  1179. */
  1180. if (!(filp->f_mode & FMODE_WRITE) ||
  1181. atomic_read(&inode->i_writecount) != 1)
  1182. return 0;
  1183. /* some remained atomic pages should discarded */
  1184. if (f2fs_is_atomic_file(inode))
  1185. drop_inmem_pages(inode);
  1186. if (f2fs_is_volatile_file(inode)) {
  1187. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1188. set_inode_flag(inode, FI_DROP_CACHE);
  1189. filemap_fdatawrite(inode->i_mapping);
  1190. clear_inode_flag(inode, FI_DROP_CACHE);
  1191. }
  1192. return 0;
  1193. }
  1194. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1195. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1196. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1197. {
  1198. if (S_ISDIR(mode))
  1199. return flags;
  1200. else if (S_ISREG(mode))
  1201. return flags & F2FS_REG_FLMASK;
  1202. else
  1203. return flags & F2FS_OTHER_FLMASK;
  1204. }
  1205. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1206. {
  1207. struct inode *inode = file_inode(filp);
  1208. struct f2fs_inode_info *fi = F2FS_I(inode);
  1209. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1210. return put_user(flags, (int __user *)arg);
  1211. }
  1212. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1213. {
  1214. struct inode *inode = file_inode(filp);
  1215. struct f2fs_inode_info *fi = F2FS_I(inode);
  1216. unsigned int flags;
  1217. unsigned int oldflags;
  1218. int ret;
  1219. if (!inode_owner_or_capable(inode))
  1220. return -EACCES;
  1221. if (get_user(flags, (int __user *)arg))
  1222. return -EFAULT;
  1223. ret = mnt_want_write_file(filp);
  1224. if (ret)
  1225. return ret;
  1226. flags = f2fs_mask_flags(inode->i_mode, flags);
  1227. inode_lock(inode);
  1228. oldflags = fi->i_flags;
  1229. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1230. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1231. inode_unlock(inode);
  1232. ret = -EPERM;
  1233. goto out;
  1234. }
  1235. }
  1236. flags = flags & FS_FL_USER_MODIFIABLE;
  1237. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1238. fi->i_flags = flags;
  1239. inode_unlock(inode);
  1240. inode->i_ctime = current_time(inode);
  1241. f2fs_set_inode_flags(inode);
  1242. out:
  1243. mnt_drop_write_file(filp);
  1244. return ret;
  1245. }
  1246. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1247. {
  1248. struct inode *inode = file_inode(filp);
  1249. return put_user(inode->i_generation, (int __user *)arg);
  1250. }
  1251. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1252. {
  1253. struct inode *inode = file_inode(filp);
  1254. int ret;
  1255. if (!inode_owner_or_capable(inode))
  1256. return -EACCES;
  1257. if (!S_ISREG(inode->i_mode))
  1258. return -EINVAL;
  1259. ret = mnt_want_write_file(filp);
  1260. if (ret)
  1261. return ret;
  1262. inode_lock(inode);
  1263. if (f2fs_is_atomic_file(inode))
  1264. goto out;
  1265. ret = f2fs_convert_inline_inode(inode);
  1266. if (ret)
  1267. goto out;
  1268. set_inode_flag(inode, FI_ATOMIC_FILE);
  1269. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1270. if (!get_dirty_pages(inode))
  1271. goto out;
  1272. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1273. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1274. inode->i_ino, get_dirty_pages(inode));
  1275. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1276. if (ret)
  1277. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1278. out:
  1279. stat_inc_atomic_write(inode);
  1280. stat_update_max_atomic_write(inode);
  1281. inode_unlock(inode);
  1282. mnt_drop_write_file(filp);
  1283. return ret;
  1284. }
  1285. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1286. {
  1287. struct inode *inode = file_inode(filp);
  1288. int ret;
  1289. if (!inode_owner_or_capable(inode))
  1290. return -EACCES;
  1291. ret = mnt_want_write_file(filp);
  1292. if (ret)
  1293. return ret;
  1294. inode_lock(inode);
  1295. if (f2fs_is_volatile_file(inode))
  1296. goto err_out;
  1297. if (f2fs_is_atomic_file(inode)) {
  1298. ret = commit_inmem_pages(inode);
  1299. if (ret)
  1300. goto err_out;
  1301. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1302. if (!ret) {
  1303. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1304. stat_dec_atomic_write(inode);
  1305. }
  1306. } else {
  1307. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1308. }
  1309. err_out:
  1310. inode_unlock(inode);
  1311. mnt_drop_write_file(filp);
  1312. return ret;
  1313. }
  1314. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1315. {
  1316. struct inode *inode = file_inode(filp);
  1317. int ret;
  1318. if (!inode_owner_or_capable(inode))
  1319. return -EACCES;
  1320. if (!S_ISREG(inode->i_mode))
  1321. return -EINVAL;
  1322. ret = mnt_want_write_file(filp);
  1323. if (ret)
  1324. return ret;
  1325. inode_lock(inode);
  1326. if (f2fs_is_volatile_file(inode))
  1327. goto out;
  1328. ret = f2fs_convert_inline_inode(inode);
  1329. if (ret)
  1330. goto out;
  1331. set_inode_flag(inode, FI_VOLATILE_FILE);
  1332. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1333. out:
  1334. inode_unlock(inode);
  1335. mnt_drop_write_file(filp);
  1336. return ret;
  1337. }
  1338. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1339. {
  1340. struct inode *inode = file_inode(filp);
  1341. int ret;
  1342. if (!inode_owner_or_capable(inode))
  1343. return -EACCES;
  1344. ret = mnt_want_write_file(filp);
  1345. if (ret)
  1346. return ret;
  1347. inode_lock(inode);
  1348. if (!f2fs_is_volatile_file(inode))
  1349. goto out;
  1350. if (!f2fs_is_first_block_written(inode)) {
  1351. ret = truncate_partial_data_page(inode, 0, true);
  1352. goto out;
  1353. }
  1354. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1355. out:
  1356. inode_unlock(inode);
  1357. mnt_drop_write_file(filp);
  1358. return ret;
  1359. }
  1360. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1361. {
  1362. struct inode *inode = file_inode(filp);
  1363. int ret;
  1364. if (!inode_owner_or_capable(inode))
  1365. return -EACCES;
  1366. ret = mnt_want_write_file(filp);
  1367. if (ret)
  1368. return ret;
  1369. inode_lock(inode);
  1370. if (f2fs_is_atomic_file(inode))
  1371. drop_inmem_pages(inode);
  1372. if (f2fs_is_volatile_file(inode)) {
  1373. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1374. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1375. }
  1376. inode_unlock(inode);
  1377. mnt_drop_write_file(filp);
  1378. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1379. return ret;
  1380. }
  1381. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1382. {
  1383. struct inode *inode = file_inode(filp);
  1384. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1385. struct super_block *sb = sbi->sb;
  1386. __u32 in;
  1387. int ret;
  1388. if (!capable(CAP_SYS_ADMIN))
  1389. return -EPERM;
  1390. if (get_user(in, (__u32 __user *)arg))
  1391. return -EFAULT;
  1392. ret = mnt_want_write_file(filp);
  1393. if (ret)
  1394. return ret;
  1395. switch (in) {
  1396. case F2FS_GOING_DOWN_FULLSYNC:
  1397. sb = freeze_bdev(sb->s_bdev);
  1398. if (sb && !IS_ERR(sb)) {
  1399. f2fs_stop_checkpoint(sbi, false);
  1400. thaw_bdev(sb->s_bdev, sb);
  1401. }
  1402. break;
  1403. case F2FS_GOING_DOWN_METASYNC:
  1404. /* do checkpoint only */
  1405. f2fs_sync_fs(sb, 1);
  1406. f2fs_stop_checkpoint(sbi, false);
  1407. break;
  1408. case F2FS_GOING_DOWN_NOSYNC:
  1409. f2fs_stop_checkpoint(sbi, false);
  1410. break;
  1411. case F2FS_GOING_DOWN_METAFLUSH:
  1412. sync_meta_pages(sbi, META, LONG_MAX);
  1413. f2fs_stop_checkpoint(sbi, false);
  1414. break;
  1415. default:
  1416. ret = -EINVAL;
  1417. goto out;
  1418. }
  1419. f2fs_update_time(sbi, REQ_TIME);
  1420. out:
  1421. mnt_drop_write_file(filp);
  1422. return ret;
  1423. }
  1424. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1425. {
  1426. struct inode *inode = file_inode(filp);
  1427. struct super_block *sb = inode->i_sb;
  1428. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1429. struct fstrim_range range;
  1430. int ret;
  1431. if (!capable(CAP_SYS_ADMIN))
  1432. return -EPERM;
  1433. if (!blk_queue_discard(q))
  1434. return -EOPNOTSUPP;
  1435. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1436. sizeof(range)))
  1437. return -EFAULT;
  1438. ret = mnt_want_write_file(filp);
  1439. if (ret)
  1440. return ret;
  1441. range.minlen = max((unsigned int)range.minlen,
  1442. q->limits.discard_granularity);
  1443. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1444. mnt_drop_write_file(filp);
  1445. if (ret < 0)
  1446. return ret;
  1447. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1448. sizeof(range)))
  1449. return -EFAULT;
  1450. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1451. return 0;
  1452. }
  1453. static bool uuid_is_nonzero(__u8 u[16])
  1454. {
  1455. int i;
  1456. for (i = 0; i < 16; i++)
  1457. if (u[i])
  1458. return true;
  1459. return false;
  1460. }
  1461. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1462. {
  1463. struct inode *inode = file_inode(filp);
  1464. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1465. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1466. }
  1467. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1468. {
  1469. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1470. }
  1471. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1472. {
  1473. struct inode *inode = file_inode(filp);
  1474. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1475. int err;
  1476. if (!f2fs_sb_has_crypto(inode->i_sb))
  1477. return -EOPNOTSUPP;
  1478. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1479. goto got_it;
  1480. err = mnt_want_write_file(filp);
  1481. if (err)
  1482. return err;
  1483. /* update superblock with uuid */
  1484. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1485. err = f2fs_commit_super(sbi, false);
  1486. if (err) {
  1487. /* undo new data */
  1488. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1489. mnt_drop_write_file(filp);
  1490. return err;
  1491. }
  1492. mnt_drop_write_file(filp);
  1493. got_it:
  1494. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1495. 16))
  1496. return -EFAULT;
  1497. return 0;
  1498. }
  1499. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1500. {
  1501. struct inode *inode = file_inode(filp);
  1502. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1503. __u32 sync;
  1504. int ret;
  1505. if (!capable(CAP_SYS_ADMIN))
  1506. return -EPERM;
  1507. if (get_user(sync, (__u32 __user *)arg))
  1508. return -EFAULT;
  1509. if (f2fs_readonly(sbi->sb))
  1510. return -EROFS;
  1511. ret = mnt_want_write_file(filp);
  1512. if (ret)
  1513. return ret;
  1514. if (!sync) {
  1515. if (!mutex_trylock(&sbi->gc_mutex)) {
  1516. ret = -EBUSY;
  1517. goto out;
  1518. }
  1519. } else {
  1520. mutex_lock(&sbi->gc_mutex);
  1521. }
  1522. ret = f2fs_gc(sbi, sync, true);
  1523. out:
  1524. mnt_drop_write_file(filp);
  1525. return ret;
  1526. }
  1527. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1528. {
  1529. struct inode *inode = file_inode(filp);
  1530. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1531. int ret;
  1532. if (!capable(CAP_SYS_ADMIN))
  1533. return -EPERM;
  1534. if (f2fs_readonly(sbi->sb))
  1535. return -EROFS;
  1536. ret = mnt_want_write_file(filp);
  1537. if (ret)
  1538. return ret;
  1539. ret = f2fs_sync_fs(sbi->sb, 1);
  1540. mnt_drop_write_file(filp);
  1541. return ret;
  1542. }
  1543. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1544. struct file *filp,
  1545. struct f2fs_defragment *range)
  1546. {
  1547. struct inode *inode = file_inode(filp);
  1548. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1549. struct extent_info ei = {0,0,0};
  1550. pgoff_t pg_start, pg_end;
  1551. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1552. unsigned int total = 0, sec_num;
  1553. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1554. block_t blk_end = 0;
  1555. bool fragmented = false;
  1556. int err;
  1557. /* if in-place-update policy is enabled, don't waste time here */
  1558. if (need_inplace_update(inode))
  1559. return -EINVAL;
  1560. pg_start = range->start >> PAGE_SHIFT;
  1561. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1562. f2fs_balance_fs(sbi, true);
  1563. inode_lock(inode);
  1564. /* writeback all dirty pages in the range */
  1565. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1566. range->start + range->len - 1);
  1567. if (err)
  1568. goto out;
  1569. /*
  1570. * lookup mapping info in extent cache, skip defragmenting if physical
  1571. * block addresses are continuous.
  1572. */
  1573. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1574. if (ei.fofs + ei.len >= pg_end)
  1575. goto out;
  1576. }
  1577. map.m_lblk = pg_start;
  1578. /*
  1579. * lookup mapping info in dnode page cache, skip defragmenting if all
  1580. * physical block addresses are continuous even if there are hole(s)
  1581. * in logical blocks.
  1582. */
  1583. while (map.m_lblk < pg_end) {
  1584. map.m_len = pg_end - map.m_lblk;
  1585. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1586. if (err)
  1587. goto out;
  1588. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1589. map.m_lblk++;
  1590. continue;
  1591. }
  1592. if (blk_end && blk_end != map.m_pblk) {
  1593. fragmented = true;
  1594. break;
  1595. }
  1596. blk_end = map.m_pblk + map.m_len;
  1597. map.m_lblk += map.m_len;
  1598. }
  1599. if (!fragmented)
  1600. goto out;
  1601. map.m_lblk = pg_start;
  1602. map.m_len = pg_end - pg_start;
  1603. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1604. /*
  1605. * make sure there are enough free section for LFS allocation, this can
  1606. * avoid defragment running in SSR mode when free section are allocated
  1607. * intensively
  1608. */
  1609. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1610. err = -EAGAIN;
  1611. goto out;
  1612. }
  1613. while (map.m_lblk < pg_end) {
  1614. pgoff_t idx;
  1615. int cnt = 0;
  1616. do_map:
  1617. map.m_len = pg_end - map.m_lblk;
  1618. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1619. if (err)
  1620. goto clear_out;
  1621. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1622. map.m_lblk++;
  1623. continue;
  1624. }
  1625. set_inode_flag(inode, FI_DO_DEFRAG);
  1626. idx = map.m_lblk;
  1627. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1628. struct page *page;
  1629. page = get_lock_data_page(inode, idx, true);
  1630. if (IS_ERR(page)) {
  1631. err = PTR_ERR(page);
  1632. goto clear_out;
  1633. }
  1634. set_page_dirty(page);
  1635. f2fs_put_page(page, 1);
  1636. idx++;
  1637. cnt++;
  1638. total++;
  1639. }
  1640. map.m_lblk = idx;
  1641. if (idx < pg_end && cnt < blk_per_seg)
  1642. goto do_map;
  1643. clear_inode_flag(inode, FI_DO_DEFRAG);
  1644. err = filemap_fdatawrite(inode->i_mapping);
  1645. if (err)
  1646. goto out;
  1647. }
  1648. clear_out:
  1649. clear_inode_flag(inode, FI_DO_DEFRAG);
  1650. out:
  1651. inode_unlock(inode);
  1652. if (!err)
  1653. range->len = (u64)total << PAGE_SHIFT;
  1654. return err;
  1655. }
  1656. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1657. {
  1658. struct inode *inode = file_inode(filp);
  1659. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1660. struct f2fs_defragment range;
  1661. int err;
  1662. if (!capable(CAP_SYS_ADMIN))
  1663. return -EPERM;
  1664. if (!S_ISREG(inode->i_mode))
  1665. return -EINVAL;
  1666. if (f2fs_readonly(sbi->sb))
  1667. return -EROFS;
  1668. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1669. sizeof(range)))
  1670. return -EFAULT;
  1671. /* verify alignment of offset & size */
  1672. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1673. return -EINVAL;
  1674. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1675. sbi->max_file_blocks))
  1676. return -EINVAL;
  1677. err = mnt_want_write_file(filp);
  1678. if (err)
  1679. return err;
  1680. err = f2fs_defragment_range(sbi, filp, &range);
  1681. mnt_drop_write_file(filp);
  1682. f2fs_update_time(sbi, REQ_TIME);
  1683. if (err < 0)
  1684. return err;
  1685. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1686. sizeof(range)))
  1687. return -EFAULT;
  1688. return 0;
  1689. }
  1690. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1691. struct file *file_out, loff_t pos_out, size_t len)
  1692. {
  1693. struct inode *src = file_inode(file_in);
  1694. struct inode *dst = file_inode(file_out);
  1695. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1696. size_t olen = len, dst_max_i_size = 0;
  1697. size_t dst_osize;
  1698. int ret;
  1699. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1700. src->i_sb != dst->i_sb)
  1701. return -EXDEV;
  1702. if (unlikely(f2fs_readonly(src->i_sb)))
  1703. return -EROFS;
  1704. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1705. return -EINVAL;
  1706. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1707. return -EOPNOTSUPP;
  1708. if (src == dst) {
  1709. if (pos_in == pos_out)
  1710. return 0;
  1711. if (pos_out > pos_in && pos_out < pos_in + len)
  1712. return -EINVAL;
  1713. }
  1714. inode_lock(src);
  1715. if (src != dst) {
  1716. if (!inode_trylock(dst)) {
  1717. ret = -EBUSY;
  1718. goto out;
  1719. }
  1720. }
  1721. ret = -EINVAL;
  1722. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1723. goto out_unlock;
  1724. if (len == 0)
  1725. olen = len = src->i_size - pos_in;
  1726. if (pos_in + len == src->i_size)
  1727. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1728. if (len == 0) {
  1729. ret = 0;
  1730. goto out_unlock;
  1731. }
  1732. dst_osize = dst->i_size;
  1733. if (pos_out + olen > dst->i_size)
  1734. dst_max_i_size = pos_out + olen;
  1735. /* verify the end result is block aligned */
  1736. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1737. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1738. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1739. goto out_unlock;
  1740. ret = f2fs_convert_inline_inode(src);
  1741. if (ret)
  1742. goto out_unlock;
  1743. ret = f2fs_convert_inline_inode(dst);
  1744. if (ret)
  1745. goto out_unlock;
  1746. /* write out all dirty pages from offset */
  1747. ret = filemap_write_and_wait_range(src->i_mapping,
  1748. pos_in, pos_in + len);
  1749. if (ret)
  1750. goto out_unlock;
  1751. ret = filemap_write_and_wait_range(dst->i_mapping,
  1752. pos_out, pos_out + len);
  1753. if (ret)
  1754. goto out_unlock;
  1755. f2fs_balance_fs(sbi, true);
  1756. f2fs_lock_op(sbi);
  1757. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1758. pos_out >> F2FS_BLKSIZE_BITS,
  1759. len >> F2FS_BLKSIZE_BITS, false);
  1760. if (!ret) {
  1761. if (dst_max_i_size)
  1762. f2fs_i_size_write(dst, dst_max_i_size);
  1763. else if (dst_osize != dst->i_size)
  1764. f2fs_i_size_write(dst, dst_osize);
  1765. }
  1766. f2fs_unlock_op(sbi);
  1767. out_unlock:
  1768. if (src != dst)
  1769. inode_unlock(dst);
  1770. out:
  1771. inode_unlock(src);
  1772. return ret;
  1773. }
  1774. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1775. {
  1776. struct f2fs_move_range range;
  1777. struct fd dst;
  1778. int err;
  1779. if (!(filp->f_mode & FMODE_READ) ||
  1780. !(filp->f_mode & FMODE_WRITE))
  1781. return -EBADF;
  1782. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1783. sizeof(range)))
  1784. return -EFAULT;
  1785. dst = fdget(range.dst_fd);
  1786. if (!dst.file)
  1787. return -EBADF;
  1788. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1789. err = -EBADF;
  1790. goto err_out;
  1791. }
  1792. err = mnt_want_write_file(filp);
  1793. if (err)
  1794. goto err_out;
  1795. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1796. range.pos_out, range.len);
  1797. mnt_drop_write_file(filp);
  1798. if (err)
  1799. goto err_out;
  1800. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1801. &range, sizeof(range)))
  1802. err = -EFAULT;
  1803. err_out:
  1804. fdput(dst);
  1805. return err;
  1806. }
  1807. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1808. {
  1809. switch (cmd) {
  1810. case F2FS_IOC_GETFLAGS:
  1811. return f2fs_ioc_getflags(filp, arg);
  1812. case F2FS_IOC_SETFLAGS:
  1813. return f2fs_ioc_setflags(filp, arg);
  1814. case F2FS_IOC_GETVERSION:
  1815. return f2fs_ioc_getversion(filp, arg);
  1816. case F2FS_IOC_START_ATOMIC_WRITE:
  1817. return f2fs_ioc_start_atomic_write(filp);
  1818. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1819. return f2fs_ioc_commit_atomic_write(filp);
  1820. case F2FS_IOC_START_VOLATILE_WRITE:
  1821. return f2fs_ioc_start_volatile_write(filp);
  1822. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1823. return f2fs_ioc_release_volatile_write(filp);
  1824. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1825. return f2fs_ioc_abort_volatile_write(filp);
  1826. case F2FS_IOC_SHUTDOWN:
  1827. return f2fs_ioc_shutdown(filp, arg);
  1828. case FITRIM:
  1829. return f2fs_ioc_fitrim(filp, arg);
  1830. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1831. return f2fs_ioc_set_encryption_policy(filp, arg);
  1832. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1833. return f2fs_ioc_get_encryption_policy(filp, arg);
  1834. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1835. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1836. case F2FS_IOC_GARBAGE_COLLECT:
  1837. return f2fs_ioc_gc(filp, arg);
  1838. case F2FS_IOC_WRITE_CHECKPOINT:
  1839. return f2fs_ioc_write_checkpoint(filp, arg);
  1840. case F2FS_IOC_DEFRAGMENT:
  1841. return f2fs_ioc_defragment(filp, arg);
  1842. case F2FS_IOC_MOVE_RANGE:
  1843. return f2fs_ioc_move_range(filp, arg);
  1844. default:
  1845. return -ENOTTY;
  1846. }
  1847. }
  1848. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1849. {
  1850. struct file *file = iocb->ki_filp;
  1851. struct inode *inode = file_inode(file);
  1852. struct blk_plug plug;
  1853. ssize_t ret;
  1854. if (f2fs_encrypted_inode(inode) &&
  1855. !fscrypt_has_encryption_key(inode) &&
  1856. fscrypt_get_encryption_info(inode))
  1857. return -EACCES;
  1858. inode_lock(inode);
  1859. ret = generic_write_checks(iocb, from);
  1860. if (ret > 0) {
  1861. int err;
  1862. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  1863. set_inode_flag(inode, FI_NO_PREALLOC);
  1864. err = f2fs_preallocate_blocks(iocb, from);
  1865. if (err) {
  1866. inode_unlock(inode);
  1867. return err;
  1868. }
  1869. blk_start_plug(&plug);
  1870. ret = __generic_file_write_iter(iocb, from);
  1871. blk_finish_plug(&plug);
  1872. clear_inode_flag(inode, FI_NO_PREALLOC);
  1873. }
  1874. inode_unlock(inode);
  1875. if (ret > 0)
  1876. ret = generic_write_sync(iocb, ret);
  1877. return ret;
  1878. }
  1879. #ifdef CONFIG_COMPAT
  1880. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1881. {
  1882. switch (cmd) {
  1883. case F2FS_IOC32_GETFLAGS:
  1884. cmd = F2FS_IOC_GETFLAGS;
  1885. break;
  1886. case F2FS_IOC32_SETFLAGS:
  1887. cmd = F2FS_IOC_SETFLAGS;
  1888. break;
  1889. case F2FS_IOC32_GETVERSION:
  1890. cmd = F2FS_IOC_GETVERSION;
  1891. break;
  1892. case F2FS_IOC_START_ATOMIC_WRITE:
  1893. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1894. case F2FS_IOC_START_VOLATILE_WRITE:
  1895. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1896. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1897. case F2FS_IOC_SHUTDOWN:
  1898. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1899. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1900. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1901. case F2FS_IOC_GARBAGE_COLLECT:
  1902. case F2FS_IOC_WRITE_CHECKPOINT:
  1903. case F2FS_IOC_DEFRAGMENT:
  1904. break;
  1905. case F2FS_IOC_MOVE_RANGE:
  1906. break;
  1907. default:
  1908. return -ENOIOCTLCMD;
  1909. }
  1910. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1911. }
  1912. #endif
  1913. const struct file_operations f2fs_file_operations = {
  1914. .llseek = f2fs_llseek,
  1915. .read_iter = generic_file_read_iter,
  1916. .write_iter = f2fs_file_write_iter,
  1917. .open = f2fs_file_open,
  1918. .release = f2fs_release_file,
  1919. .mmap = f2fs_file_mmap,
  1920. .fsync = f2fs_sync_file,
  1921. .fallocate = f2fs_fallocate,
  1922. .unlocked_ioctl = f2fs_ioctl,
  1923. #ifdef CONFIG_COMPAT
  1924. .compat_ioctl = f2fs_compat_ioctl,
  1925. #endif
  1926. .splice_read = generic_file_splice_read,
  1927. .splice_write = iter_file_splice_write,
  1928. };