page_alloc.c 194 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/prefetch.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page_ext.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/page_owner.h>
  63. #include <linux/kthread.h>
  64. #include <asm/sections.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/div64.h>
  67. #include "internal.h"
  68. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  69. static DEFINE_MUTEX(pcp_batch_high_lock);
  70. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  71. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  72. DEFINE_PER_CPU(int, numa_node);
  73. EXPORT_PER_CPU_SYMBOL(numa_node);
  74. #endif
  75. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  76. /*
  77. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  78. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  79. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  80. * defined in <linux/topology.h>.
  81. */
  82. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  83. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  84. int _node_numa_mem_[MAX_NUMNODES];
  85. #endif
  86. /*
  87. * Array of node states.
  88. */
  89. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  90. [N_POSSIBLE] = NODE_MASK_ALL,
  91. [N_ONLINE] = { { [0] = 1UL } },
  92. #ifndef CONFIG_NUMA
  93. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  94. #ifdef CONFIG_HIGHMEM
  95. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. #ifdef CONFIG_MOVABLE_NODE
  98. [N_MEMORY] = { { [0] = 1UL } },
  99. #endif
  100. [N_CPU] = { { [0] = 1UL } },
  101. #endif /* NUMA */
  102. };
  103. EXPORT_SYMBOL(node_states);
  104. /* Protect totalram_pages and zone->managed_pages */
  105. static DEFINE_SPINLOCK(managed_page_count_lock);
  106. unsigned long totalram_pages __read_mostly;
  107. unsigned long totalreserve_pages __read_mostly;
  108. unsigned long totalcma_pages __read_mostly;
  109. /*
  110. * When calculating the number of globally allowed dirty pages, there
  111. * is a certain number of per-zone reserves that should not be
  112. * considered dirtyable memory. This is the sum of those reserves
  113. * over all existing zones that contribute dirtyable memory.
  114. */
  115. unsigned long dirty_balance_reserve __read_mostly;
  116. int percpu_pagelist_fraction;
  117. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  118. /*
  119. * A cached value of the page's pageblock's migratetype, used when the page is
  120. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  121. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  122. * Also the migratetype set in the page does not necessarily match the pcplist
  123. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  124. * other index - this ensures that it will be put on the correct CMA freelist.
  125. */
  126. static inline int get_pcppage_migratetype(struct page *page)
  127. {
  128. return page->index;
  129. }
  130. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  131. {
  132. page->index = migratetype;
  133. }
  134. #ifdef CONFIG_PM_SLEEP
  135. /*
  136. * The following functions are used by the suspend/hibernate code to temporarily
  137. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  138. * while devices are suspended. To avoid races with the suspend/hibernate code,
  139. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  140. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  141. * guaranteed not to run in parallel with that modification).
  142. */
  143. static gfp_t saved_gfp_mask;
  144. void pm_restore_gfp_mask(void)
  145. {
  146. WARN_ON(!mutex_is_locked(&pm_mutex));
  147. if (saved_gfp_mask) {
  148. gfp_allowed_mask = saved_gfp_mask;
  149. saved_gfp_mask = 0;
  150. }
  151. }
  152. void pm_restrict_gfp_mask(void)
  153. {
  154. WARN_ON(!mutex_is_locked(&pm_mutex));
  155. WARN_ON(saved_gfp_mask);
  156. saved_gfp_mask = gfp_allowed_mask;
  157. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  158. }
  159. bool pm_suspended_storage(void)
  160. {
  161. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  162. return false;
  163. return true;
  164. }
  165. #endif /* CONFIG_PM_SLEEP */
  166. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  167. int pageblock_order __read_mostly;
  168. #endif
  169. static void __free_pages_ok(struct page *page, unsigned int order);
  170. /*
  171. * results with 256, 32 in the lowmem_reserve sysctl:
  172. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  173. * 1G machine -> (16M dma, 784M normal, 224M high)
  174. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  175. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  176. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  177. *
  178. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  179. * don't need any ZONE_NORMAL reservation
  180. */
  181. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  182. #ifdef CONFIG_ZONE_DMA
  183. 256,
  184. #endif
  185. #ifdef CONFIG_ZONE_DMA32
  186. 256,
  187. #endif
  188. #ifdef CONFIG_HIGHMEM
  189. 32,
  190. #endif
  191. 32,
  192. };
  193. EXPORT_SYMBOL(totalram_pages);
  194. static char * const zone_names[MAX_NR_ZONES] = {
  195. #ifdef CONFIG_ZONE_DMA
  196. "DMA",
  197. #endif
  198. #ifdef CONFIG_ZONE_DMA32
  199. "DMA32",
  200. #endif
  201. "Normal",
  202. #ifdef CONFIG_HIGHMEM
  203. "HighMem",
  204. #endif
  205. "Movable",
  206. #ifdef CONFIG_ZONE_DEVICE
  207. "Device",
  208. #endif
  209. };
  210. int min_free_kbytes = 1024;
  211. int user_min_free_kbytes = -1;
  212. static unsigned long __meminitdata nr_kernel_pages;
  213. static unsigned long __meminitdata nr_all_pages;
  214. static unsigned long __meminitdata dma_reserve;
  215. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  216. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  217. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  218. static unsigned long __initdata required_kernelcore;
  219. static unsigned long __initdata required_movablecore;
  220. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  221. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  222. int movable_zone;
  223. EXPORT_SYMBOL(movable_zone);
  224. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  225. #if MAX_NUMNODES > 1
  226. int nr_node_ids __read_mostly = MAX_NUMNODES;
  227. int nr_online_nodes __read_mostly = 1;
  228. EXPORT_SYMBOL(nr_node_ids);
  229. EXPORT_SYMBOL(nr_online_nodes);
  230. #endif
  231. int page_group_by_mobility_disabled __read_mostly;
  232. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  233. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  234. {
  235. pgdat->first_deferred_pfn = ULONG_MAX;
  236. }
  237. /* Returns true if the struct page for the pfn is uninitialised */
  238. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  239. {
  240. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  241. return true;
  242. return false;
  243. }
  244. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  245. {
  246. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  247. return true;
  248. return false;
  249. }
  250. /*
  251. * Returns false when the remaining initialisation should be deferred until
  252. * later in the boot cycle when it can be parallelised.
  253. */
  254. static inline bool update_defer_init(pg_data_t *pgdat,
  255. unsigned long pfn, unsigned long zone_end,
  256. unsigned long *nr_initialised)
  257. {
  258. /* Always populate low zones for address-contrained allocations */
  259. if (zone_end < pgdat_end_pfn(pgdat))
  260. return true;
  261. /* Initialise at least 2G of the highest zone */
  262. (*nr_initialised)++;
  263. if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
  264. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  265. pgdat->first_deferred_pfn = pfn;
  266. return false;
  267. }
  268. return true;
  269. }
  270. #else
  271. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  272. {
  273. }
  274. static inline bool early_page_uninitialised(unsigned long pfn)
  275. {
  276. return false;
  277. }
  278. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  279. {
  280. return false;
  281. }
  282. static inline bool update_defer_init(pg_data_t *pgdat,
  283. unsigned long pfn, unsigned long zone_end,
  284. unsigned long *nr_initialised)
  285. {
  286. return true;
  287. }
  288. #endif
  289. void set_pageblock_migratetype(struct page *page, int migratetype)
  290. {
  291. if (unlikely(page_group_by_mobility_disabled &&
  292. migratetype < MIGRATE_PCPTYPES))
  293. migratetype = MIGRATE_UNMOVABLE;
  294. set_pageblock_flags_group(page, (unsigned long)migratetype,
  295. PB_migrate, PB_migrate_end);
  296. }
  297. #ifdef CONFIG_DEBUG_VM
  298. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  299. {
  300. int ret = 0;
  301. unsigned seq;
  302. unsigned long pfn = page_to_pfn(page);
  303. unsigned long sp, start_pfn;
  304. do {
  305. seq = zone_span_seqbegin(zone);
  306. start_pfn = zone->zone_start_pfn;
  307. sp = zone->spanned_pages;
  308. if (!zone_spans_pfn(zone, pfn))
  309. ret = 1;
  310. } while (zone_span_seqretry(zone, seq));
  311. if (ret)
  312. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  313. pfn, zone_to_nid(zone), zone->name,
  314. start_pfn, start_pfn + sp);
  315. return ret;
  316. }
  317. static int page_is_consistent(struct zone *zone, struct page *page)
  318. {
  319. if (!pfn_valid_within(page_to_pfn(page)))
  320. return 0;
  321. if (zone != page_zone(page))
  322. return 0;
  323. return 1;
  324. }
  325. /*
  326. * Temporary debugging check for pages not lying within a given zone.
  327. */
  328. static int bad_range(struct zone *zone, struct page *page)
  329. {
  330. if (page_outside_zone_boundaries(zone, page))
  331. return 1;
  332. if (!page_is_consistent(zone, page))
  333. return 1;
  334. return 0;
  335. }
  336. #else
  337. static inline int bad_range(struct zone *zone, struct page *page)
  338. {
  339. return 0;
  340. }
  341. #endif
  342. static void bad_page(struct page *page, const char *reason,
  343. unsigned long bad_flags)
  344. {
  345. static unsigned long resume;
  346. static unsigned long nr_shown;
  347. static unsigned long nr_unshown;
  348. /* Don't complain about poisoned pages */
  349. if (PageHWPoison(page)) {
  350. page_mapcount_reset(page); /* remove PageBuddy */
  351. return;
  352. }
  353. /*
  354. * Allow a burst of 60 reports, then keep quiet for that minute;
  355. * or allow a steady drip of one report per second.
  356. */
  357. if (nr_shown == 60) {
  358. if (time_before(jiffies, resume)) {
  359. nr_unshown++;
  360. goto out;
  361. }
  362. if (nr_unshown) {
  363. printk(KERN_ALERT
  364. "BUG: Bad page state: %lu messages suppressed\n",
  365. nr_unshown);
  366. nr_unshown = 0;
  367. }
  368. nr_shown = 0;
  369. }
  370. if (nr_shown++ == 0)
  371. resume = jiffies + 60 * HZ;
  372. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  373. current->comm, page_to_pfn(page));
  374. dump_page_badflags(page, reason, bad_flags);
  375. print_modules();
  376. dump_stack();
  377. out:
  378. /* Leave bad fields for debug, except PageBuddy could make trouble */
  379. page_mapcount_reset(page); /* remove PageBuddy */
  380. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  381. }
  382. /*
  383. * Higher-order pages are called "compound pages". They are structured thusly:
  384. *
  385. * The first PAGE_SIZE page is called the "head page".
  386. *
  387. * The remaining PAGE_SIZE pages are called "tail pages".
  388. *
  389. * All pages have PG_compound set. All tail pages have their ->first_page
  390. * pointing at the head page.
  391. *
  392. * The first tail page's ->lru.next holds the address of the compound page's
  393. * put_page() function. Its ->lru.prev holds the order of allocation.
  394. * This usage means that zero-order pages may not be compound.
  395. */
  396. static void free_compound_page(struct page *page)
  397. {
  398. __free_pages_ok(page, compound_order(page));
  399. }
  400. void prep_compound_page(struct page *page, unsigned long order)
  401. {
  402. int i;
  403. int nr_pages = 1 << order;
  404. set_compound_page_dtor(page, free_compound_page);
  405. set_compound_order(page, order);
  406. __SetPageHead(page);
  407. for (i = 1; i < nr_pages; i++) {
  408. struct page *p = page + i;
  409. set_page_count(p, 0);
  410. p->first_page = page;
  411. /* Make sure p->first_page is always valid for PageTail() */
  412. smp_wmb();
  413. __SetPageTail(p);
  414. }
  415. }
  416. #ifdef CONFIG_DEBUG_PAGEALLOC
  417. unsigned int _debug_guardpage_minorder;
  418. bool _debug_pagealloc_enabled __read_mostly;
  419. bool _debug_guardpage_enabled __read_mostly;
  420. static int __init early_debug_pagealloc(char *buf)
  421. {
  422. if (!buf)
  423. return -EINVAL;
  424. if (strcmp(buf, "on") == 0)
  425. _debug_pagealloc_enabled = true;
  426. return 0;
  427. }
  428. early_param("debug_pagealloc", early_debug_pagealloc);
  429. static bool need_debug_guardpage(void)
  430. {
  431. /* If we don't use debug_pagealloc, we don't need guard page */
  432. if (!debug_pagealloc_enabled())
  433. return false;
  434. return true;
  435. }
  436. static void init_debug_guardpage(void)
  437. {
  438. if (!debug_pagealloc_enabled())
  439. return;
  440. _debug_guardpage_enabled = true;
  441. }
  442. struct page_ext_operations debug_guardpage_ops = {
  443. .need = need_debug_guardpage,
  444. .init = init_debug_guardpage,
  445. };
  446. static int __init debug_guardpage_minorder_setup(char *buf)
  447. {
  448. unsigned long res;
  449. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  450. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  451. return 0;
  452. }
  453. _debug_guardpage_minorder = res;
  454. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  455. return 0;
  456. }
  457. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  458. static inline void set_page_guard(struct zone *zone, struct page *page,
  459. unsigned int order, int migratetype)
  460. {
  461. struct page_ext *page_ext;
  462. if (!debug_guardpage_enabled())
  463. return;
  464. page_ext = lookup_page_ext(page);
  465. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  466. INIT_LIST_HEAD(&page->lru);
  467. set_page_private(page, order);
  468. /* Guard pages are not available for any usage */
  469. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  470. }
  471. static inline void clear_page_guard(struct zone *zone, struct page *page,
  472. unsigned int order, int migratetype)
  473. {
  474. struct page_ext *page_ext;
  475. if (!debug_guardpage_enabled())
  476. return;
  477. page_ext = lookup_page_ext(page);
  478. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  479. set_page_private(page, 0);
  480. if (!is_migrate_isolate(migratetype))
  481. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  482. }
  483. #else
  484. struct page_ext_operations debug_guardpage_ops = { NULL, };
  485. static inline void set_page_guard(struct zone *zone, struct page *page,
  486. unsigned int order, int migratetype) {}
  487. static inline void clear_page_guard(struct zone *zone, struct page *page,
  488. unsigned int order, int migratetype) {}
  489. #endif
  490. static inline void set_page_order(struct page *page, unsigned int order)
  491. {
  492. set_page_private(page, order);
  493. __SetPageBuddy(page);
  494. }
  495. static inline void rmv_page_order(struct page *page)
  496. {
  497. __ClearPageBuddy(page);
  498. set_page_private(page, 0);
  499. }
  500. /*
  501. * This function checks whether a page is free && is the buddy
  502. * we can do coalesce a page and its buddy if
  503. * (a) the buddy is not in a hole &&
  504. * (b) the buddy is in the buddy system &&
  505. * (c) a page and its buddy have the same order &&
  506. * (d) a page and its buddy are in the same zone.
  507. *
  508. * For recording whether a page is in the buddy system, we set ->_mapcount
  509. * PAGE_BUDDY_MAPCOUNT_VALUE.
  510. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  511. * serialized by zone->lock.
  512. *
  513. * For recording page's order, we use page_private(page).
  514. */
  515. static inline int page_is_buddy(struct page *page, struct page *buddy,
  516. unsigned int order)
  517. {
  518. if (!pfn_valid_within(page_to_pfn(buddy)))
  519. return 0;
  520. if (page_is_guard(buddy) && page_order(buddy) == order) {
  521. if (page_zone_id(page) != page_zone_id(buddy))
  522. return 0;
  523. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  524. return 1;
  525. }
  526. if (PageBuddy(buddy) && page_order(buddy) == order) {
  527. /*
  528. * zone check is done late to avoid uselessly
  529. * calculating zone/node ids for pages that could
  530. * never merge.
  531. */
  532. if (page_zone_id(page) != page_zone_id(buddy))
  533. return 0;
  534. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  535. return 1;
  536. }
  537. return 0;
  538. }
  539. /*
  540. * Freeing function for a buddy system allocator.
  541. *
  542. * The concept of a buddy system is to maintain direct-mapped table
  543. * (containing bit values) for memory blocks of various "orders".
  544. * The bottom level table contains the map for the smallest allocatable
  545. * units of memory (here, pages), and each level above it describes
  546. * pairs of units from the levels below, hence, "buddies".
  547. * At a high level, all that happens here is marking the table entry
  548. * at the bottom level available, and propagating the changes upward
  549. * as necessary, plus some accounting needed to play nicely with other
  550. * parts of the VM system.
  551. * At each level, we keep a list of pages, which are heads of continuous
  552. * free pages of length of (1 << order) and marked with _mapcount
  553. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  554. * field.
  555. * So when we are allocating or freeing one, we can derive the state of the
  556. * other. That is, if we allocate a small block, and both were
  557. * free, the remainder of the region must be split into blocks.
  558. * If a block is freed, and its buddy is also free, then this
  559. * triggers coalescing into a block of larger size.
  560. *
  561. * -- nyc
  562. */
  563. static inline void __free_one_page(struct page *page,
  564. unsigned long pfn,
  565. struct zone *zone, unsigned int order,
  566. int migratetype)
  567. {
  568. unsigned long page_idx;
  569. unsigned long combined_idx;
  570. unsigned long uninitialized_var(buddy_idx);
  571. struct page *buddy;
  572. int max_order = MAX_ORDER;
  573. VM_BUG_ON(!zone_is_initialized(zone));
  574. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  575. VM_BUG_ON(migratetype == -1);
  576. if (is_migrate_isolate(migratetype)) {
  577. /*
  578. * We restrict max order of merging to prevent merge
  579. * between freepages on isolate pageblock and normal
  580. * pageblock. Without this, pageblock isolation
  581. * could cause incorrect freepage accounting.
  582. */
  583. max_order = min(MAX_ORDER, pageblock_order + 1);
  584. } else {
  585. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  586. }
  587. page_idx = pfn & ((1 << max_order) - 1);
  588. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  589. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  590. while (order < max_order - 1) {
  591. buddy_idx = __find_buddy_index(page_idx, order);
  592. buddy = page + (buddy_idx - page_idx);
  593. if (!page_is_buddy(page, buddy, order))
  594. break;
  595. /*
  596. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  597. * merge with it and move up one order.
  598. */
  599. if (page_is_guard(buddy)) {
  600. clear_page_guard(zone, buddy, order, migratetype);
  601. } else {
  602. list_del(&buddy->lru);
  603. zone->free_area[order].nr_free--;
  604. rmv_page_order(buddy);
  605. }
  606. combined_idx = buddy_idx & page_idx;
  607. page = page + (combined_idx - page_idx);
  608. page_idx = combined_idx;
  609. order++;
  610. }
  611. set_page_order(page, order);
  612. /*
  613. * If this is not the largest possible page, check if the buddy
  614. * of the next-highest order is free. If it is, it's possible
  615. * that pages are being freed that will coalesce soon. In case,
  616. * that is happening, add the free page to the tail of the list
  617. * so it's less likely to be used soon and more likely to be merged
  618. * as a higher order page
  619. */
  620. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  621. struct page *higher_page, *higher_buddy;
  622. combined_idx = buddy_idx & page_idx;
  623. higher_page = page + (combined_idx - page_idx);
  624. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  625. higher_buddy = higher_page + (buddy_idx - combined_idx);
  626. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  627. list_add_tail(&page->lru,
  628. &zone->free_area[order].free_list[migratetype]);
  629. goto out;
  630. }
  631. }
  632. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  633. out:
  634. zone->free_area[order].nr_free++;
  635. }
  636. static inline int free_pages_check(struct page *page)
  637. {
  638. const char *bad_reason = NULL;
  639. unsigned long bad_flags = 0;
  640. if (unlikely(page_mapcount(page)))
  641. bad_reason = "nonzero mapcount";
  642. if (unlikely(page->mapping != NULL))
  643. bad_reason = "non-NULL mapping";
  644. if (unlikely(atomic_read(&page->_count) != 0))
  645. bad_reason = "nonzero _count";
  646. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  647. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  648. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  649. }
  650. #ifdef CONFIG_MEMCG
  651. if (unlikely(page->mem_cgroup))
  652. bad_reason = "page still charged to cgroup";
  653. #endif
  654. if (unlikely(bad_reason)) {
  655. bad_page(page, bad_reason, bad_flags);
  656. return 1;
  657. }
  658. page_cpupid_reset_last(page);
  659. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  660. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  661. return 0;
  662. }
  663. /*
  664. * Frees a number of pages from the PCP lists
  665. * Assumes all pages on list are in same zone, and of same order.
  666. * count is the number of pages to free.
  667. *
  668. * If the zone was previously in an "all pages pinned" state then look to
  669. * see if this freeing clears that state.
  670. *
  671. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  672. * pinned" detection logic.
  673. */
  674. static void free_pcppages_bulk(struct zone *zone, int count,
  675. struct per_cpu_pages *pcp)
  676. {
  677. int migratetype = 0;
  678. int batch_free = 0;
  679. int to_free = count;
  680. unsigned long nr_scanned;
  681. spin_lock(&zone->lock);
  682. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  683. if (nr_scanned)
  684. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  685. while (to_free) {
  686. struct page *page;
  687. struct list_head *list;
  688. /*
  689. * Remove pages from lists in a round-robin fashion. A
  690. * batch_free count is maintained that is incremented when an
  691. * empty list is encountered. This is so more pages are freed
  692. * off fuller lists instead of spinning excessively around empty
  693. * lists
  694. */
  695. do {
  696. batch_free++;
  697. if (++migratetype == MIGRATE_PCPTYPES)
  698. migratetype = 0;
  699. list = &pcp->lists[migratetype];
  700. } while (list_empty(list));
  701. /* This is the only non-empty list. Free them all. */
  702. if (batch_free == MIGRATE_PCPTYPES)
  703. batch_free = to_free;
  704. do {
  705. int mt; /* migratetype of the to-be-freed page */
  706. page = list_entry(list->prev, struct page, lru);
  707. /* must delete as __free_one_page list manipulates */
  708. list_del(&page->lru);
  709. mt = get_pcppage_migratetype(page);
  710. /* MIGRATE_ISOLATE page should not go to pcplists */
  711. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  712. /* Pageblock could have been isolated meanwhile */
  713. if (unlikely(has_isolate_pageblock(zone)))
  714. mt = get_pageblock_migratetype(page);
  715. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  716. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  717. trace_mm_page_pcpu_drain(page, 0, mt);
  718. } while (--to_free && --batch_free && !list_empty(list));
  719. }
  720. spin_unlock(&zone->lock);
  721. }
  722. static void free_one_page(struct zone *zone,
  723. struct page *page, unsigned long pfn,
  724. unsigned int order,
  725. int migratetype)
  726. {
  727. unsigned long nr_scanned;
  728. spin_lock(&zone->lock);
  729. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  730. if (nr_scanned)
  731. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  732. if (unlikely(has_isolate_pageblock(zone) ||
  733. is_migrate_isolate(migratetype))) {
  734. migratetype = get_pfnblock_migratetype(page, pfn);
  735. }
  736. __free_one_page(page, pfn, zone, order, migratetype);
  737. spin_unlock(&zone->lock);
  738. }
  739. static int free_tail_pages_check(struct page *head_page, struct page *page)
  740. {
  741. if (!IS_ENABLED(CONFIG_DEBUG_VM))
  742. return 0;
  743. if (unlikely(!PageTail(page))) {
  744. bad_page(page, "PageTail not set", 0);
  745. return 1;
  746. }
  747. if (unlikely(page->first_page != head_page)) {
  748. bad_page(page, "first_page not consistent", 0);
  749. return 1;
  750. }
  751. return 0;
  752. }
  753. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  754. unsigned long zone, int nid)
  755. {
  756. set_page_links(page, zone, nid, pfn);
  757. init_page_count(page);
  758. page_mapcount_reset(page);
  759. page_cpupid_reset_last(page);
  760. INIT_LIST_HEAD(&page->lru);
  761. #ifdef WANT_PAGE_VIRTUAL
  762. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  763. if (!is_highmem_idx(zone))
  764. set_page_address(page, __va(pfn << PAGE_SHIFT));
  765. #endif
  766. }
  767. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  768. int nid)
  769. {
  770. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  771. }
  772. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  773. static void init_reserved_page(unsigned long pfn)
  774. {
  775. pg_data_t *pgdat;
  776. int nid, zid;
  777. if (!early_page_uninitialised(pfn))
  778. return;
  779. nid = early_pfn_to_nid(pfn);
  780. pgdat = NODE_DATA(nid);
  781. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  782. struct zone *zone = &pgdat->node_zones[zid];
  783. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  784. break;
  785. }
  786. __init_single_pfn(pfn, zid, nid);
  787. }
  788. #else
  789. static inline void init_reserved_page(unsigned long pfn)
  790. {
  791. }
  792. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  793. /*
  794. * Initialised pages do not have PageReserved set. This function is
  795. * called for each range allocated by the bootmem allocator and
  796. * marks the pages PageReserved. The remaining valid pages are later
  797. * sent to the buddy page allocator.
  798. */
  799. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  800. {
  801. unsigned long start_pfn = PFN_DOWN(start);
  802. unsigned long end_pfn = PFN_UP(end);
  803. for (; start_pfn < end_pfn; start_pfn++) {
  804. if (pfn_valid(start_pfn)) {
  805. struct page *page = pfn_to_page(start_pfn);
  806. init_reserved_page(start_pfn);
  807. SetPageReserved(page);
  808. }
  809. }
  810. }
  811. static bool free_pages_prepare(struct page *page, unsigned int order)
  812. {
  813. bool compound = PageCompound(page);
  814. int i, bad = 0;
  815. VM_BUG_ON_PAGE(PageTail(page), page);
  816. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  817. trace_mm_page_free(page, order);
  818. kmemcheck_free_shadow(page, order);
  819. kasan_free_pages(page, order);
  820. if (PageAnon(page))
  821. page->mapping = NULL;
  822. bad += free_pages_check(page);
  823. for (i = 1; i < (1 << order); i++) {
  824. if (compound)
  825. bad += free_tail_pages_check(page, page + i);
  826. bad += free_pages_check(page + i);
  827. }
  828. if (bad)
  829. return false;
  830. reset_page_owner(page, order);
  831. if (!PageHighMem(page)) {
  832. debug_check_no_locks_freed(page_address(page),
  833. PAGE_SIZE << order);
  834. debug_check_no_obj_freed(page_address(page),
  835. PAGE_SIZE << order);
  836. }
  837. arch_free_page(page, order);
  838. kernel_map_pages(page, 1 << order, 0);
  839. return true;
  840. }
  841. static void __free_pages_ok(struct page *page, unsigned int order)
  842. {
  843. unsigned long flags;
  844. int migratetype;
  845. unsigned long pfn = page_to_pfn(page);
  846. if (!free_pages_prepare(page, order))
  847. return;
  848. migratetype = get_pfnblock_migratetype(page, pfn);
  849. local_irq_save(flags);
  850. __count_vm_events(PGFREE, 1 << order);
  851. free_one_page(page_zone(page), page, pfn, order, migratetype);
  852. local_irq_restore(flags);
  853. }
  854. static void __init __free_pages_boot_core(struct page *page,
  855. unsigned long pfn, unsigned int order)
  856. {
  857. unsigned int nr_pages = 1 << order;
  858. struct page *p = page;
  859. unsigned int loop;
  860. prefetchw(p);
  861. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  862. prefetchw(p + 1);
  863. __ClearPageReserved(p);
  864. set_page_count(p, 0);
  865. }
  866. __ClearPageReserved(p);
  867. set_page_count(p, 0);
  868. page_zone(page)->managed_pages += nr_pages;
  869. set_page_refcounted(page);
  870. __free_pages(page, order);
  871. }
  872. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  873. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  874. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  875. int __meminit early_pfn_to_nid(unsigned long pfn)
  876. {
  877. static DEFINE_SPINLOCK(early_pfn_lock);
  878. int nid;
  879. spin_lock(&early_pfn_lock);
  880. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  881. if (nid < 0)
  882. nid = 0;
  883. spin_unlock(&early_pfn_lock);
  884. return nid;
  885. }
  886. #endif
  887. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  888. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  889. struct mminit_pfnnid_cache *state)
  890. {
  891. int nid;
  892. nid = __early_pfn_to_nid(pfn, state);
  893. if (nid >= 0 && nid != node)
  894. return false;
  895. return true;
  896. }
  897. /* Only safe to use early in boot when initialisation is single-threaded */
  898. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  899. {
  900. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  901. }
  902. #else
  903. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  904. {
  905. return true;
  906. }
  907. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  908. struct mminit_pfnnid_cache *state)
  909. {
  910. return true;
  911. }
  912. #endif
  913. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  914. unsigned int order)
  915. {
  916. if (early_page_uninitialised(pfn))
  917. return;
  918. return __free_pages_boot_core(page, pfn, order);
  919. }
  920. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  921. static void __init deferred_free_range(struct page *page,
  922. unsigned long pfn, int nr_pages)
  923. {
  924. int i;
  925. if (!page)
  926. return;
  927. /* Free a large naturally-aligned chunk if possible */
  928. if (nr_pages == MAX_ORDER_NR_PAGES &&
  929. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  930. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  931. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  932. return;
  933. }
  934. for (i = 0; i < nr_pages; i++, page++, pfn++)
  935. __free_pages_boot_core(page, pfn, 0);
  936. }
  937. /* Completion tracking for deferred_init_memmap() threads */
  938. static atomic_t pgdat_init_n_undone __initdata;
  939. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  940. static inline void __init pgdat_init_report_one_done(void)
  941. {
  942. if (atomic_dec_and_test(&pgdat_init_n_undone))
  943. complete(&pgdat_init_all_done_comp);
  944. }
  945. /* Initialise remaining memory on a node */
  946. static int __init deferred_init_memmap(void *data)
  947. {
  948. pg_data_t *pgdat = data;
  949. int nid = pgdat->node_id;
  950. struct mminit_pfnnid_cache nid_init_state = { };
  951. unsigned long start = jiffies;
  952. unsigned long nr_pages = 0;
  953. unsigned long walk_start, walk_end;
  954. int i, zid;
  955. struct zone *zone;
  956. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  957. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  958. if (first_init_pfn == ULONG_MAX) {
  959. pgdat_init_report_one_done();
  960. return 0;
  961. }
  962. /* Bind memory initialisation thread to a local node if possible */
  963. if (!cpumask_empty(cpumask))
  964. set_cpus_allowed_ptr(current, cpumask);
  965. /* Sanity check boundaries */
  966. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  967. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  968. pgdat->first_deferred_pfn = ULONG_MAX;
  969. /* Only the highest zone is deferred so find it */
  970. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  971. zone = pgdat->node_zones + zid;
  972. if (first_init_pfn < zone_end_pfn(zone))
  973. break;
  974. }
  975. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  976. unsigned long pfn, end_pfn;
  977. struct page *page = NULL;
  978. struct page *free_base_page = NULL;
  979. unsigned long free_base_pfn = 0;
  980. int nr_to_free = 0;
  981. end_pfn = min(walk_end, zone_end_pfn(zone));
  982. pfn = first_init_pfn;
  983. if (pfn < walk_start)
  984. pfn = walk_start;
  985. if (pfn < zone->zone_start_pfn)
  986. pfn = zone->zone_start_pfn;
  987. for (; pfn < end_pfn; pfn++) {
  988. if (!pfn_valid_within(pfn))
  989. goto free_range;
  990. /*
  991. * Ensure pfn_valid is checked every
  992. * MAX_ORDER_NR_PAGES for memory holes
  993. */
  994. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  995. if (!pfn_valid(pfn)) {
  996. page = NULL;
  997. goto free_range;
  998. }
  999. }
  1000. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1001. page = NULL;
  1002. goto free_range;
  1003. }
  1004. /* Minimise pfn page lookups and scheduler checks */
  1005. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1006. page++;
  1007. } else {
  1008. nr_pages += nr_to_free;
  1009. deferred_free_range(free_base_page,
  1010. free_base_pfn, nr_to_free);
  1011. free_base_page = NULL;
  1012. free_base_pfn = nr_to_free = 0;
  1013. page = pfn_to_page(pfn);
  1014. cond_resched();
  1015. }
  1016. if (page->flags) {
  1017. VM_BUG_ON(page_zone(page) != zone);
  1018. goto free_range;
  1019. }
  1020. __init_single_page(page, pfn, zid, nid);
  1021. if (!free_base_page) {
  1022. free_base_page = page;
  1023. free_base_pfn = pfn;
  1024. nr_to_free = 0;
  1025. }
  1026. nr_to_free++;
  1027. /* Where possible, batch up pages for a single free */
  1028. continue;
  1029. free_range:
  1030. /* Free the current block of pages to allocator */
  1031. nr_pages += nr_to_free;
  1032. deferred_free_range(free_base_page, free_base_pfn,
  1033. nr_to_free);
  1034. free_base_page = NULL;
  1035. free_base_pfn = nr_to_free = 0;
  1036. }
  1037. first_init_pfn = max(end_pfn, first_init_pfn);
  1038. }
  1039. /* Sanity check that the next zone really is unpopulated */
  1040. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1041. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1042. jiffies_to_msecs(jiffies - start));
  1043. pgdat_init_report_one_done();
  1044. return 0;
  1045. }
  1046. void __init page_alloc_init_late(void)
  1047. {
  1048. int nid;
  1049. /* There will be num_node_state(N_MEMORY) threads */
  1050. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1051. for_each_node_state(nid, N_MEMORY) {
  1052. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1053. }
  1054. /* Block until all are initialised */
  1055. wait_for_completion(&pgdat_init_all_done_comp);
  1056. /* Reinit limits that are based on free pages after the kernel is up */
  1057. files_maxfiles_init();
  1058. }
  1059. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1060. #ifdef CONFIG_CMA
  1061. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1062. void __init init_cma_reserved_pageblock(struct page *page)
  1063. {
  1064. unsigned i = pageblock_nr_pages;
  1065. struct page *p = page;
  1066. do {
  1067. __ClearPageReserved(p);
  1068. set_page_count(p, 0);
  1069. } while (++p, --i);
  1070. set_pageblock_migratetype(page, MIGRATE_CMA);
  1071. if (pageblock_order >= MAX_ORDER) {
  1072. i = pageblock_nr_pages;
  1073. p = page;
  1074. do {
  1075. set_page_refcounted(p);
  1076. __free_pages(p, MAX_ORDER - 1);
  1077. p += MAX_ORDER_NR_PAGES;
  1078. } while (i -= MAX_ORDER_NR_PAGES);
  1079. } else {
  1080. set_page_refcounted(page);
  1081. __free_pages(page, pageblock_order);
  1082. }
  1083. adjust_managed_page_count(page, pageblock_nr_pages);
  1084. }
  1085. #endif
  1086. /*
  1087. * The order of subdivision here is critical for the IO subsystem.
  1088. * Please do not alter this order without good reasons and regression
  1089. * testing. Specifically, as large blocks of memory are subdivided,
  1090. * the order in which smaller blocks are delivered depends on the order
  1091. * they're subdivided in this function. This is the primary factor
  1092. * influencing the order in which pages are delivered to the IO
  1093. * subsystem according to empirical testing, and this is also justified
  1094. * by considering the behavior of a buddy system containing a single
  1095. * large block of memory acted on by a series of small allocations.
  1096. * This behavior is a critical factor in sglist merging's success.
  1097. *
  1098. * -- nyc
  1099. */
  1100. static inline void expand(struct zone *zone, struct page *page,
  1101. int low, int high, struct free_area *area,
  1102. int migratetype)
  1103. {
  1104. unsigned long size = 1 << high;
  1105. while (high > low) {
  1106. area--;
  1107. high--;
  1108. size >>= 1;
  1109. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1110. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1111. debug_guardpage_enabled() &&
  1112. high < debug_guardpage_minorder()) {
  1113. /*
  1114. * Mark as guard pages (or page), that will allow to
  1115. * merge back to allocator when buddy will be freed.
  1116. * Corresponding page table entries will not be touched,
  1117. * pages will stay not present in virtual address space
  1118. */
  1119. set_page_guard(zone, &page[size], high, migratetype);
  1120. continue;
  1121. }
  1122. list_add(&page[size].lru, &area->free_list[migratetype]);
  1123. area->nr_free++;
  1124. set_page_order(&page[size], high);
  1125. }
  1126. }
  1127. /*
  1128. * This page is about to be returned from the page allocator
  1129. */
  1130. static inline int check_new_page(struct page *page)
  1131. {
  1132. const char *bad_reason = NULL;
  1133. unsigned long bad_flags = 0;
  1134. if (unlikely(page_mapcount(page)))
  1135. bad_reason = "nonzero mapcount";
  1136. if (unlikely(page->mapping != NULL))
  1137. bad_reason = "non-NULL mapping";
  1138. if (unlikely(atomic_read(&page->_count) != 0))
  1139. bad_reason = "nonzero _count";
  1140. if (unlikely(page->flags & __PG_HWPOISON)) {
  1141. bad_reason = "HWPoisoned (hardware-corrupted)";
  1142. bad_flags = __PG_HWPOISON;
  1143. }
  1144. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1145. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1146. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1147. }
  1148. #ifdef CONFIG_MEMCG
  1149. if (unlikely(page->mem_cgroup))
  1150. bad_reason = "page still charged to cgroup";
  1151. #endif
  1152. if (unlikely(bad_reason)) {
  1153. bad_page(page, bad_reason, bad_flags);
  1154. return 1;
  1155. }
  1156. return 0;
  1157. }
  1158. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1159. int alloc_flags)
  1160. {
  1161. int i;
  1162. for (i = 0; i < (1 << order); i++) {
  1163. struct page *p = page + i;
  1164. if (unlikely(check_new_page(p)))
  1165. return 1;
  1166. }
  1167. set_page_private(page, 0);
  1168. set_page_refcounted(page);
  1169. arch_alloc_page(page, order);
  1170. kernel_map_pages(page, 1 << order, 1);
  1171. kasan_alloc_pages(page, order);
  1172. if (gfp_flags & __GFP_ZERO)
  1173. for (i = 0; i < (1 << order); i++)
  1174. clear_highpage(page + i);
  1175. if (order && (gfp_flags & __GFP_COMP))
  1176. prep_compound_page(page, order);
  1177. set_page_owner(page, order, gfp_flags);
  1178. /*
  1179. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1180. * allocate the page. The expectation is that the caller is taking
  1181. * steps that will free more memory. The caller should avoid the page
  1182. * being used for !PFMEMALLOC purposes.
  1183. */
  1184. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1185. set_page_pfmemalloc(page);
  1186. else
  1187. clear_page_pfmemalloc(page);
  1188. return 0;
  1189. }
  1190. /*
  1191. * Go through the free lists for the given migratetype and remove
  1192. * the smallest available page from the freelists
  1193. */
  1194. static inline
  1195. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1196. int migratetype)
  1197. {
  1198. unsigned int current_order;
  1199. struct free_area *area;
  1200. struct page *page;
  1201. /* Find a page of the appropriate size in the preferred list */
  1202. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1203. area = &(zone->free_area[current_order]);
  1204. if (list_empty(&area->free_list[migratetype]))
  1205. continue;
  1206. page = list_entry(area->free_list[migratetype].next,
  1207. struct page, lru);
  1208. list_del(&page->lru);
  1209. rmv_page_order(page);
  1210. area->nr_free--;
  1211. expand(zone, page, order, current_order, area, migratetype);
  1212. set_pcppage_migratetype(page, migratetype);
  1213. return page;
  1214. }
  1215. return NULL;
  1216. }
  1217. /*
  1218. * This array describes the order lists are fallen back to when
  1219. * the free lists for the desirable migrate type are depleted
  1220. */
  1221. static int fallbacks[MIGRATE_TYPES][4] = {
  1222. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  1223. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  1224. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  1225. #ifdef CONFIG_CMA
  1226. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  1227. #endif
  1228. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  1229. #ifdef CONFIG_MEMORY_ISOLATION
  1230. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  1231. #endif
  1232. };
  1233. #ifdef CONFIG_CMA
  1234. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1235. unsigned int order)
  1236. {
  1237. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1238. }
  1239. #else
  1240. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1241. unsigned int order) { return NULL; }
  1242. #endif
  1243. /*
  1244. * Move the free pages in a range to the free lists of the requested type.
  1245. * Note that start_page and end_pages are not aligned on a pageblock
  1246. * boundary. If alignment is required, use move_freepages_block()
  1247. */
  1248. int move_freepages(struct zone *zone,
  1249. struct page *start_page, struct page *end_page,
  1250. int migratetype)
  1251. {
  1252. struct page *page;
  1253. unsigned long order;
  1254. int pages_moved = 0;
  1255. #ifndef CONFIG_HOLES_IN_ZONE
  1256. /*
  1257. * page_zone is not safe to call in this context when
  1258. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1259. * anyway as we check zone boundaries in move_freepages_block().
  1260. * Remove at a later date when no bug reports exist related to
  1261. * grouping pages by mobility
  1262. */
  1263. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1264. #endif
  1265. for (page = start_page; page <= end_page;) {
  1266. /* Make sure we are not inadvertently changing nodes */
  1267. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1268. if (!pfn_valid_within(page_to_pfn(page))) {
  1269. page++;
  1270. continue;
  1271. }
  1272. if (!PageBuddy(page)) {
  1273. page++;
  1274. continue;
  1275. }
  1276. order = page_order(page);
  1277. list_move(&page->lru,
  1278. &zone->free_area[order].free_list[migratetype]);
  1279. page += 1 << order;
  1280. pages_moved += 1 << order;
  1281. }
  1282. return pages_moved;
  1283. }
  1284. int move_freepages_block(struct zone *zone, struct page *page,
  1285. int migratetype)
  1286. {
  1287. unsigned long start_pfn, end_pfn;
  1288. struct page *start_page, *end_page;
  1289. start_pfn = page_to_pfn(page);
  1290. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1291. start_page = pfn_to_page(start_pfn);
  1292. end_page = start_page + pageblock_nr_pages - 1;
  1293. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1294. /* Do not cross zone boundaries */
  1295. if (!zone_spans_pfn(zone, start_pfn))
  1296. start_page = page;
  1297. if (!zone_spans_pfn(zone, end_pfn))
  1298. return 0;
  1299. return move_freepages(zone, start_page, end_page, migratetype);
  1300. }
  1301. static void change_pageblock_range(struct page *pageblock_page,
  1302. int start_order, int migratetype)
  1303. {
  1304. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1305. while (nr_pageblocks--) {
  1306. set_pageblock_migratetype(pageblock_page, migratetype);
  1307. pageblock_page += pageblock_nr_pages;
  1308. }
  1309. }
  1310. /*
  1311. * When we are falling back to another migratetype during allocation, try to
  1312. * steal extra free pages from the same pageblocks to satisfy further
  1313. * allocations, instead of polluting multiple pageblocks.
  1314. *
  1315. * If we are stealing a relatively large buddy page, it is likely there will
  1316. * be more free pages in the pageblock, so try to steal them all. For
  1317. * reclaimable and unmovable allocations, we steal regardless of page size,
  1318. * as fragmentation caused by those allocations polluting movable pageblocks
  1319. * is worse than movable allocations stealing from unmovable and reclaimable
  1320. * pageblocks.
  1321. */
  1322. static bool can_steal_fallback(unsigned int order, int start_mt)
  1323. {
  1324. /*
  1325. * Leaving this order check is intended, although there is
  1326. * relaxed order check in next check. The reason is that
  1327. * we can actually steal whole pageblock if this condition met,
  1328. * but, below check doesn't guarantee it and that is just heuristic
  1329. * so could be changed anytime.
  1330. */
  1331. if (order >= pageblock_order)
  1332. return true;
  1333. if (order >= pageblock_order / 2 ||
  1334. start_mt == MIGRATE_RECLAIMABLE ||
  1335. start_mt == MIGRATE_UNMOVABLE ||
  1336. page_group_by_mobility_disabled)
  1337. return true;
  1338. return false;
  1339. }
  1340. /*
  1341. * This function implements actual steal behaviour. If order is large enough,
  1342. * we can steal whole pageblock. If not, we first move freepages in this
  1343. * pageblock and check whether half of pages are moved or not. If half of
  1344. * pages are moved, we can change migratetype of pageblock and permanently
  1345. * use it's pages as requested migratetype in the future.
  1346. */
  1347. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1348. int start_type)
  1349. {
  1350. int current_order = page_order(page);
  1351. int pages;
  1352. /* Take ownership for orders >= pageblock_order */
  1353. if (current_order >= pageblock_order) {
  1354. change_pageblock_range(page, current_order, start_type);
  1355. return;
  1356. }
  1357. pages = move_freepages_block(zone, page, start_type);
  1358. /* Claim the whole block if over half of it is free */
  1359. if (pages >= (1 << (pageblock_order-1)) ||
  1360. page_group_by_mobility_disabled)
  1361. set_pageblock_migratetype(page, start_type);
  1362. }
  1363. /*
  1364. * Check whether there is a suitable fallback freepage with requested order.
  1365. * If only_stealable is true, this function returns fallback_mt only if
  1366. * we can steal other freepages all together. This would help to reduce
  1367. * fragmentation due to mixed migratetype pages in one pageblock.
  1368. */
  1369. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1370. int migratetype, bool only_stealable, bool *can_steal)
  1371. {
  1372. int i;
  1373. int fallback_mt;
  1374. if (area->nr_free == 0)
  1375. return -1;
  1376. *can_steal = false;
  1377. for (i = 0;; i++) {
  1378. fallback_mt = fallbacks[migratetype][i];
  1379. if (fallback_mt == MIGRATE_RESERVE)
  1380. break;
  1381. if (list_empty(&area->free_list[fallback_mt]))
  1382. continue;
  1383. if (can_steal_fallback(order, migratetype))
  1384. *can_steal = true;
  1385. if (!only_stealable)
  1386. return fallback_mt;
  1387. if (*can_steal)
  1388. return fallback_mt;
  1389. }
  1390. return -1;
  1391. }
  1392. /* Remove an element from the buddy allocator from the fallback list */
  1393. static inline struct page *
  1394. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1395. {
  1396. struct free_area *area;
  1397. unsigned int current_order;
  1398. struct page *page;
  1399. int fallback_mt;
  1400. bool can_steal;
  1401. /* Find the largest possible block of pages in the other list */
  1402. for (current_order = MAX_ORDER-1;
  1403. current_order >= order && current_order <= MAX_ORDER-1;
  1404. --current_order) {
  1405. area = &(zone->free_area[current_order]);
  1406. fallback_mt = find_suitable_fallback(area, current_order,
  1407. start_migratetype, false, &can_steal);
  1408. if (fallback_mt == -1)
  1409. continue;
  1410. page = list_entry(area->free_list[fallback_mt].next,
  1411. struct page, lru);
  1412. if (can_steal)
  1413. steal_suitable_fallback(zone, page, start_migratetype);
  1414. /* Remove the page from the freelists */
  1415. area->nr_free--;
  1416. list_del(&page->lru);
  1417. rmv_page_order(page);
  1418. expand(zone, page, order, current_order, area,
  1419. start_migratetype);
  1420. /*
  1421. * The pcppage_migratetype may differ from pageblock's
  1422. * migratetype depending on the decisions in
  1423. * find_suitable_fallback(). This is OK as long as it does not
  1424. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1425. * fallback only via special __rmqueue_cma_fallback() function
  1426. */
  1427. set_pcppage_migratetype(page, start_migratetype);
  1428. trace_mm_page_alloc_extfrag(page, order, current_order,
  1429. start_migratetype, fallback_mt);
  1430. return page;
  1431. }
  1432. return NULL;
  1433. }
  1434. /*
  1435. * Do the hard work of removing an element from the buddy allocator.
  1436. * Call me with the zone->lock already held.
  1437. */
  1438. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1439. int migratetype)
  1440. {
  1441. struct page *page;
  1442. retry_reserve:
  1443. page = __rmqueue_smallest(zone, order, migratetype);
  1444. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1445. if (migratetype == MIGRATE_MOVABLE)
  1446. page = __rmqueue_cma_fallback(zone, order);
  1447. if (!page)
  1448. page = __rmqueue_fallback(zone, order, migratetype);
  1449. /*
  1450. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1451. * is used because __rmqueue_smallest is an inline function
  1452. * and we want just one call site
  1453. */
  1454. if (!page) {
  1455. migratetype = MIGRATE_RESERVE;
  1456. goto retry_reserve;
  1457. }
  1458. }
  1459. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1460. return page;
  1461. }
  1462. /*
  1463. * Obtain a specified number of elements from the buddy allocator, all under
  1464. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1465. * Returns the number of new pages which were placed at *list.
  1466. */
  1467. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1468. unsigned long count, struct list_head *list,
  1469. int migratetype, bool cold)
  1470. {
  1471. int i;
  1472. spin_lock(&zone->lock);
  1473. for (i = 0; i < count; ++i) {
  1474. struct page *page = __rmqueue(zone, order, migratetype);
  1475. if (unlikely(page == NULL))
  1476. break;
  1477. /*
  1478. * Split buddy pages returned by expand() are received here
  1479. * in physical page order. The page is added to the callers and
  1480. * list and the list head then moves forward. From the callers
  1481. * perspective, the linked list is ordered by page number in
  1482. * some conditions. This is useful for IO devices that can
  1483. * merge IO requests if the physical pages are ordered
  1484. * properly.
  1485. */
  1486. if (likely(!cold))
  1487. list_add(&page->lru, list);
  1488. else
  1489. list_add_tail(&page->lru, list);
  1490. list = &page->lru;
  1491. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1492. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1493. -(1 << order));
  1494. }
  1495. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1496. spin_unlock(&zone->lock);
  1497. return i;
  1498. }
  1499. #ifdef CONFIG_NUMA
  1500. /*
  1501. * Called from the vmstat counter updater to drain pagesets of this
  1502. * currently executing processor on remote nodes after they have
  1503. * expired.
  1504. *
  1505. * Note that this function must be called with the thread pinned to
  1506. * a single processor.
  1507. */
  1508. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1509. {
  1510. unsigned long flags;
  1511. int to_drain, batch;
  1512. local_irq_save(flags);
  1513. batch = READ_ONCE(pcp->batch);
  1514. to_drain = min(pcp->count, batch);
  1515. if (to_drain > 0) {
  1516. free_pcppages_bulk(zone, to_drain, pcp);
  1517. pcp->count -= to_drain;
  1518. }
  1519. local_irq_restore(flags);
  1520. }
  1521. #endif
  1522. /*
  1523. * Drain pcplists of the indicated processor and zone.
  1524. *
  1525. * The processor must either be the current processor and the
  1526. * thread pinned to the current processor or a processor that
  1527. * is not online.
  1528. */
  1529. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1530. {
  1531. unsigned long flags;
  1532. struct per_cpu_pageset *pset;
  1533. struct per_cpu_pages *pcp;
  1534. local_irq_save(flags);
  1535. pset = per_cpu_ptr(zone->pageset, cpu);
  1536. pcp = &pset->pcp;
  1537. if (pcp->count) {
  1538. free_pcppages_bulk(zone, pcp->count, pcp);
  1539. pcp->count = 0;
  1540. }
  1541. local_irq_restore(flags);
  1542. }
  1543. /*
  1544. * Drain pcplists of all zones on the indicated processor.
  1545. *
  1546. * The processor must either be the current processor and the
  1547. * thread pinned to the current processor or a processor that
  1548. * is not online.
  1549. */
  1550. static void drain_pages(unsigned int cpu)
  1551. {
  1552. struct zone *zone;
  1553. for_each_populated_zone(zone) {
  1554. drain_pages_zone(cpu, zone);
  1555. }
  1556. }
  1557. /*
  1558. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1559. *
  1560. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1561. * the single zone's pages.
  1562. */
  1563. void drain_local_pages(struct zone *zone)
  1564. {
  1565. int cpu = smp_processor_id();
  1566. if (zone)
  1567. drain_pages_zone(cpu, zone);
  1568. else
  1569. drain_pages(cpu);
  1570. }
  1571. /*
  1572. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1573. *
  1574. * When zone parameter is non-NULL, spill just the single zone's pages.
  1575. *
  1576. * Note that this code is protected against sending an IPI to an offline
  1577. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1578. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1579. * nothing keeps CPUs from showing up after we populated the cpumask and
  1580. * before the call to on_each_cpu_mask().
  1581. */
  1582. void drain_all_pages(struct zone *zone)
  1583. {
  1584. int cpu;
  1585. /*
  1586. * Allocate in the BSS so we wont require allocation in
  1587. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1588. */
  1589. static cpumask_t cpus_with_pcps;
  1590. /*
  1591. * We don't care about racing with CPU hotplug event
  1592. * as offline notification will cause the notified
  1593. * cpu to drain that CPU pcps and on_each_cpu_mask
  1594. * disables preemption as part of its processing
  1595. */
  1596. for_each_online_cpu(cpu) {
  1597. struct per_cpu_pageset *pcp;
  1598. struct zone *z;
  1599. bool has_pcps = false;
  1600. if (zone) {
  1601. pcp = per_cpu_ptr(zone->pageset, cpu);
  1602. if (pcp->pcp.count)
  1603. has_pcps = true;
  1604. } else {
  1605. for_each_populated_zone(z) {
  1606. pcp = per_cpu_ptr(z->pageset, cpu);
  1607. if (pcp->pcp.count) {
  1608. has_pcps = true;
  1609. break;
  1610. }
  1611. }
  1612. }
  1613. if (has_pcps)
  1614. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1615. else
  1616. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1617. }
  1618. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1619. zone, 1);
  1620. }
  1621. #ifdef CONFIG_HIBERNATION
  1622. void mark_free_pages(struct zone *zone)
  1623. {
  1624. unsigned long pfn, max_zone_pfn;
  1625. unsigned long flags;
  1626. unsigned int order, t;
  1627. struct list_head *curr;
  1628. if (zone_is_empty(zone))
  1629. return;
  1630. spin_lock_irqsave(&zone->lock, flags);
  1631. max_zone_pfn = zone_end_pfn(zone);
  1632. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1633. if (pfn_valid(pfn)) {
  1634. struct page *page = pfn_to_page(pfn);
  1635. if (!swsusp_page_is_forbidden(page))
  1636. swsusp_unset_page_free(page);
  1637. }
  1638. for_each_migratetype_order(order, t) {
  1639. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1640. unsigned long i;
  1641. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1642. for (i = 0; i < (1UL << order); i++)
  1643. swsusp_set_page_free(pfn_to_page(pfn + i));
  1644. }
  1645. }
  1646. spin_unlock_irqrestore(&zone->lock, flags);
  1647. }
  1648. #endif /* CONFIG_PM */
  1649. /*
  1650. * Free a 0-order page
  1651. * cold == true ? free a cold page : free a hot page
  1652. */
  1653. void free_hot_cold_page(struct page *page, bool cold)
  1654. {
  1655. struct zone *zone = page_zone(page);
  1656. struct per_cpu_pages *pcp;
  1657. unsigned long flags;
  1658. unsigned long pfn = page_to_pfn(page);
  1659. int migratetype;
  1660. if (!free_pages_prepare(page, 0))
  1661. return;
  1662. migratetype = get_pfnblock_migratetype(page, pfn);
  1663. set_pcppage_migratetype(page, migratetype);
  1664. local_irq_save(flags);
  1665. __count_vm_event(PGFREE);
  1666. /*
  1667. * We only track unmovable, reclaimable and movable on pcp lists.
  1668. * Free ISOLATE pages back to the allocator because they are being
  1669. * offlined but treat RESERVE as movable pages so we can get those
  1670. * areas back if necessary. Otherwise, we may have to free
  1671. * excessively into the page allocator
  1672. */
  1673. if (migratetype >= MIGRATE_PCPTYPES) {
  1674. if (unlikely(is_migrate_isolate(migratetype))) {
  1675. free_one_page(zone, page, pfn, 0, migratetype);
  1676. goto out;
  1677. }
  1678. migratetype = MIGRATE_MOVABLE;
  1679. }
  1680. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1681. if (!cold)
  1682. list_add(&page->lru, &pcp->lists[migratetype]);
  1683. else
  1684. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1685. pcp->count++;
  1686. if (pcp->count >= pcp->high) {
  1687. unsigned long batch = READ_ONCE(pcp->batch);
  1688. free_pcppages_bulk(zone, batch, pcp);
  1689. pcp->count -= batch;
  1690. }
  1691. out:
  1692. local_irq_restore(flags);
  1693. }
  1694. /*
  1695. * Free a list of 0-order pages
  1696. */
  1697. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1698. {
  1699. struct page *page, *next;
  1700. list_for_each_entry_safe(page, next, list, lru) {
  1701. trace_mm_page_free_batched(page, cold);
  1702. free_hot_cold_page(page, cold);
  1703. }
  1704. }
  1705. /*
  1706. * split_page takes a non-compound higher-order page, and splits it into
  1707. * n (1<<order) sub-pages: page[0..n]
  1708. * Each sub-page must be freed individually.
  1709. *
  1710. * Note: this is probably too low level an operation for use in drivers.
  1711. * Please consult with lkml before using this in your driver.
  1712. */
  1713. void split_page(struct page *page, unsigned int order)
  1714. {
  1715. int i;
  1716. gfp_t gfp_mask;
  1717. VM_BUG_ON_PAGE(PageCompound(page), page);
  1718. VM_BUG_ON_PAGE(!page_count(page), page);
  1719. #ifdef CONFIG_KMEMCHECK
  1720. /*
  1721. * Split shadow pages too, because free(page[0]) would
  1722. * otherwise free the whole shadow.
  1723. */
  1724. if (kmemcheck_page_is_tracked(page))
  1725. split_page(virt_to_page(page[0].shadow), order);
  1726. #endif
  1727. gfp_mask = get_page_owner_gfp(page);
  1728. set_page_owner(page, 0, gfp_mask);
  1729. for (i = 1; i < (1 << order); i++) {
  1730. set_page_refcounted(page + i);
  1731. set_page_owner(page + i, 0, gfp_mask);
  1732. }
  1733. }
  1734. EXPORT_SYMBOL_GPL(split_page);
  1735. int __isolate_free_page(struct page *page, unsigned int order)
  1736. {
  1737. unsigned long watermark;
  1738. struct zone *zone;
  1739. int mt;
  1740. BUG_ON(!PageBuddy(page));
  1741. zone = page_zone(page);
  1742. mt = get_pageblock_migratetype(page);
  1743. if (!is_migrate_isolate(mt)) {
  1744. /* Obey watermarks as if the page was being allocated */
  1745. watermark = low_wmark_pages(zone) + (1 << order);
  1746. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1747. return 0;
  1748. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1749. }
  1750. /* Remove page from free list */
  1751. list_del(&page->lru);
  1752. zone->free_area[order].nr_free--;
  1753. rmv_page_order(page);
  1754. set_page_owner(page, order, __GFP_MOVABLE);
  1755. /* Set the pageblock if the isolated page is at least a pageblock */
  1756. if (order >= pageblock_order - 1) {
  1757. struct page *endpage = page + (1 << order) - 1;
  1758. for (; page < endpage; page += pageblock_nr_pages) {
  1759. int mt = get_pageblock_migratetype(page);
  1760. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1761. set_pageblock_migratetype(page,
  1762. MIGRATE_MOVABLE);
  1763. }
  1764. }
  1765. return 1UL << order;
  1766. }
  1767. /*
  1768. * Similar to split_page except the page is already free. As this is only
  1769. * being used for migration, the migratetype of the block also changes.
  1770. * As this is called with interrupts disabled, the caller is responsible
  1771. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1772. * are enabled.
  1773. *
  1774. * Note: this is probably too low level an operation for use in drivers.
  1775. * Please consult with lkml before using this in your driver.
  1776. */
  1777. int split_free_page(struct page *page)
  1778. {
  1779. unsigned int order;
  1780. int nr_pages;
  1781. order = page_order(page);
  1782. nr_pages = __isolate_free_page(page, order);
  1783. if (!nr_pages)
  1784. return 0;
  1785. /* Split into individual pages */
  1786. set_page_refcounted(page);
  1787. split_page(page, order);
  1788. return nr_pages;
  1789. }
  1790. /*
  1791. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1792. */
  1793. static inline
  1794. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1795. struct zone *zone, unsigned int order,
  1796. gfp_t gfp_flags, int migratetype)
  1797. {
  1798. unsigned long flags;
  1799. struct page *page;
  1800. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1801. if (likely(order == 0)) {
  1802. struct per_cpu_pages *pcp;
  1803. struct list_head *list;
  1804. local_irq_save(flags);
  1805. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1806. list = &pcp->lists[migratetype];
  1807. if (list_empty(list)) {
  1808. pcp->count += rmqueue_bulk(zone, 0,
  1809. pcp->batch, list,
  1810. migratetype, cold);
  1811. if (unlikely(list_empty(list)))
  1812. goto failed;
  1813. }
  1814. if (cold)
  1815. page = list_entry(list->prev, struct page, lru);
  1816. else
  1817. page = list_entry(list->next, struct page, lru);
  1818. list_del(&page->lru);
  1819. pcp->count--;
  1820. } else {
  1821. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1822. /*
  1823. * __GFP_NOFAIL is not to be used in new code.
  1824. *
  1825. * All __GFP_NOFAIL callers should be fixed so that they
  1826. * properly detect and handle allocation failures.
  1827. *
  1828. * We most definitely don't want callers attempting to
  1829. * allocate greater than order-1 page units with
  1830. * __GFP_NOFAIL.
  1831. */
  1832. WARN_ON_ONCE(order > 1);
  1833. }
  1834. spin_lock_irqsave(&zone->lock, flags);
  1835. page = __rmqueue(zone, order, migratetype);
  1836. spin_unlock(&zone->lock);
  1837. if (!page)
  1838. goto failed;
  1839. __mod_zone_freepage_state(zone, -(1 << order),
  1840. get_pcppage_migratetype(page));
  1841. }
  1842. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1843. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1844. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1845. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1846. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1847. zone_statistics(preferred_zone, zone, gfp_flags);
  1848. local_irq_restore(flags);
  1849. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1850. return page;
  1851. failed:
  1852. local_irq_restore(flags);
  1853. return NULL;
  1854. }
  1855. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1856. static struct {
  1857. struct fault_attr attr;
  1858. bool ignore_gfp_highmem;
  1859. bool ignore_gfp_wait;
  1860. u32 min_order;
  1861. } fail_page_alloc = {
  1862. .attr = FAULT_ATTR_INITIALIZER,
  1863. .ignore_gfp_wait = true,
  1864. .ignore_gfp_highmem = true,
  1865. .min_order = 1,
  1866. };
  1867. static int __init setup_fail_page_alloc(char *str)
  1868. {
  1869. return setup_fault_attr(&fail_page_alloc.attr, str);
  1870. }
  1871. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1872. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1873. {
  1874. if (order < fail_page_alloc.min_order)
  1875. return false;
  1876. if (gfp_mask & __GFP_NOFAIL)
  1877. return false;
  1878. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1879. return false;
  1880. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_DIRECT_RECLAIM))
  1881. return false;
  1882. return should_fail(&fail_page_alloc.attr, 1 << order);
  1883. }
  1884. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1885. static int __init fail_page_alloc_debugfs(void)
  1886. {
  1887. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1888. struct dentry *dir;
  1889. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1890. &fail_page_alloc.attr);
  1891. if (IS_ERR(dir))
  1892. return PTR_ERR(dir);
  1893. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1894. &fail_page_alloc.ignore_gfp_wait))
  1895. goto fail;
  1896. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1897. &fail_page_alloc.ignore_gfp_highmem))
  1898. goto fail;
  1899. if (!debugfs_create_u32("min-order", mode, dir,
  1900. &fail_page_alloc.min_order))
  1901. goto fail;
  1902. return 0;
  1903. fail:
  1904. debugfs_remove_recursive(dir);
  1905. return -ENOMEM;
  1906. }
  1907. late_initcall(fail_page_alloc_debugfs);
  1908. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1909. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1910. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1911. {
  1912. return false;
  1913. }
  1914. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1915. /*
  1916. * Return true if free pages are above 'mark'. This takes into account the order
  1917. * of the allocation.
  1918. */
  1919. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1920. unsigned long mark, int classzone_idx, int alloc_flags,
  1921. long free_pages)
  1922. {
  1923. /* free_pages may go negative - that's OK */
  1924. long min = mark;
  1925. int o;
  1926. long free_cma = 0;
  1927. free_pages -= (1 << order) - 1;
  1928. if (alloc_flags & ALLOC_HIGH)
  1929. min -= min / 2;
  1930. if (alloc_flags & ALLOC_HARDER)
  1931. min -= min / 4;
  1932. #ifdef CONFIG_CMA
  1933. /* If allocation can't use CMA areas don't use free CMA pages */
  1934. if (!(alloc_flags & ALLOC_CMA))
  1935. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1936. #endif
  1937. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1938. return false;
  1939. for (o = 0; o < order; o++) {
  1940. /* At the next order, this order's pages become unavailable */
  1941. free_pages -= z->free_area[o].nr_free << o;
  1942. /* Require fewer higher order pages to be free */
  1943. min >>= 1;
  1944. if (free_pages <= min)
  1945. return false;
  1946. }
  1947. return true;
  1948. }
  1949. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1950. int classzone_idx, int alloc_flags)
  1951. {
  1952. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1953. zone_page_state(z, NR_FREE_PAGES));
  1954. }
  1955. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1956. unsigned long mark, int classzone_idx)
  1957. {
  1958. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1959. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1960. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1961. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  1962. free_pages);
  1963. }
  1964. #ifdef CONFIG_NUMA
  1965. /*
  1966. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1967. * skip over zones that are not allowed by the cpuset, or that have
  1968. * been recently (in last second) found to be nearly full. See further
  1969. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1970. * that have to skip over a lot of full or unallowed zones.
  1971. *
  1972. * If the zonelist cache is present in the passed zonelist, then
  1973. * returns a pointer to the allowed node mask (either the current
  1974. * tasks mems_allowed, or node_states[N_MEMORY].)
  1975. *
  1976. * If the zonelist cache is not available for this zonelist, does
  1977. * nothing and returns NULL.
  1978. *
  1979. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1980. * a second since last zap'd) then we zap it out (clear its bits.)
  1981. *
  1982. * We hold off even calling zlc_setup, until after we've checked the
  1983. * first zone in the zonelist, on the theory that most allocations will
  1984. * be satisfied from that first zone, so best to examine that zone as
  1985. * quickly as we can.
  1986. */
  1987. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1988. {
  1989. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1990. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1991. zlc = zonelist->zlcache_ptr;
  1992. if (!zlc)
  1993. return NULL;
  1994. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1995. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1996. zlc->last_full_zap = jiffies;
  1997. }
  1998. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1999. &cpuset_current_mems_allowed :
  2000. &node_states[N_MEMORY];
  2001. return allowednodes;
  2002. }
  2003. /*
  2004. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  2005. * if it is worth looking at further for free memory:
  2006. * 1) Check that the zone isn't thought to be full (doesn't have its
  2007. * bit set in the zonelist_cache fullzones BITMAP).
  2008. * 2) Check that the zones node (obtained from the zonelist_cache
  2009. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  2010. * Return true (non-zero) if zone is worth looking at further, or
  2011. * else return false (zero) if it is not.
  2012. *
  2013. * This check -ignores- the distinction between various watermarks,
  2014. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  2015. * found to be full for any variation of these watermarks, it will
  2016. * be considered full for up to one second by all requests, unless
  2017. * we are so low on memory on all allowed nodes that we are forced
  2018. * into the second scan of the zonelist.
  2019. *
  2020. * In the second scan we ignore this zonelist cache and exactly
  2021. * apply the watermarks to all zones, even it is slower to do so.
  2022. * We are low on memory in the second scan, and should leave no stone
  2023. * unturned looking for a free page.
  2024. */
  2025. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  2026. nodemask_t *allowednodes)
  2027. {
  2028. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  2029. int i; /* index of *z in zonelist zones */
  2030. int n; /* node that zone *z is on */
  2031. zlc = zonelist->zlcache_ptr;
  2032. if (!zlc)
  2033. return 1;
  2034. i = z - zonelist->_zonerefs;
  2035. n = zlc->z_to_n[i];
  2036. /* This zone is worth trying if it is allowed but not full */
  2037. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  2038. }
  2039. /*
  2040. * Given 'z' scanning a zonelist, set the corresponding bit in
  2041. * zlc->fullzones, so that subsequent attempts to allocate a page
  2042. * from that zone don't waste time re-examining it.
  2043. */
  2044. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  2045. {
  2046. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  2047. int i; /* index of *z in zonelist zones */
  2048. zlc = zonelist->zlcache_ptr;
  2049. if (!zlc)
  2050. return;
  2051. i = z - zonelist->_zonerefs;
  2052. set_bit(i, zlc->fullzones);
  2053. }
  2054. /*
  2055. * clear all zones full, called after direct reclaim makes progress so that
  2056. * a zone that was recently full is not skipped over for up to a second
  2057. */
  2058. static void zlc_clear_zones_full(struct zonelist *zonelist)
  2059. {
  2060. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  2061. zlc = zonelist->zlcache_ptr;
  2062. if (!zlc)
  2063. return;
  2064. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2065. }
  2066. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2067. {
  2068. return local_zone->node == zone->node;
  2069. }
  2070. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2071. {
  2072. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2073. RECLAIM_DISTANCE;
  2074. }
  2075. #else /* CONFIG_NUMA */
  2076. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  2077. {
  2078. return NULL;
  2079. }
  2080. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  2081. nodemask_t *allowednodes)
  2082. {
  2083. return 1;
  2084. }
  2085. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  2086. {
  2087. }
  2088. static void zlc_clear_zones_full(struct zonelist *zonelist)
  2089. {
  2090. }
  2091. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2092. {
  2093. return true;
  2094. }
  2095. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2096. {
  2097. return true;
  2098. }
  2099. #endif /* CONFIG_NUMA */
  2100. static void reset_alloc_batches(struct zone *preferred_zone)
  2101. {
  2102. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2103. do {
  2104. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2105. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2106. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2107. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2108. } while (zone++ != preferred_zone);
  2109. }
  2110. /*
  2111. * get_page_from_freelist goes through the zonelist trying to allocate
  2112. * a page.
  2113. */
  2114. static struct page *
  2115. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2116. const struct alloc_context *ac)
  2117. {
  2118. struct zonelist *zonelist = ac->zonelist;
  2119. struct zoneref *z;
  2120. struct page *page = NULL;
  2121. struct zone *zone;
  2122. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  2123. int zlc_active = 0; /* set if using zonelist_cache */
  2124. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  2125. int nr_fair_skipped = 0;
  2126. bool zonelist_rescan;
  2127. zonelist_scan:
  2128. zonelist_rescan = false;
  2129. /*
  2130. * Scan zonelist, looking for a zone with enough free.
  2131. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2132. */
  2133. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2134. ac->nodemask) {
  2135. unsigned long mark;
  2136. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  2137. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  2138. continue;
  2139. if (cpusets_enabled() &&
  2140. (alloc_flags & ALLOC_CPUSET) &&
  2141. !cpuset_zone_allowed(zone, gfp_mask))
  2142. continue;
  2143. /*
  2144. * Distribute pages in proportion to the individual
  2145. * zone size to ensure fair page aging. The zone a
  2146. * page was allocated in should have no effect on the
  2147. * time the page has in memory before being reclaimed.
  2148. */
  2149. if (alloc_flags & ALLOC_FAIR) {
  2150. if (!zone_local(ac->preferred_zone, zone))
  2151. break;
  2152. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2153. nr_fair_skipped++;
  2154. continue;
  2155. }
  2156. }
  2157. /*
  2158. * When allocating a page cache page for writing, we
  2159. * want to get it from a zone that is within its dirty
  2160. * limit, such that no single zone holds more than its
  2161. * proportional share of globally allowed dirty pages.
  2162. * The dirty limits take into account the zone's
  2163. * lowmem reserves and high watermark so that kswapd
  2164. * should be able to balance it without having to
  2165. * write pages from its LRU list.
  2166. *
  2167. * This may look like it could increase pressure on
  2168. * lower zones by failing allocations in higher zones
  2169. * before they are full. But the pages that do spill
  2170. * over are limited as the lower zones are protected
  2171. * by this very same mechanism. It should not become
  2172. * a practical burden to them.
  2173. *
  2174. * XXX: For now, allow allocations to potentially
  2175. * exceed the per-zone dirty limit in the slowpath
  2176. * (spread_dirty_pages unset) before going into reclaim,
  2177. * which is important when on a NUMA setup the allowed
  2178. * zones are together not big enough to reach the
  2179. * global limit. The proper fix for these situations
  2180. * will require awareness of zones in the
  2181. * dirty-throttling and the flusher threads.
  2182. */
  2183. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2184. continue;
  2185. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2186. if (!zone_watermark_ok(zone, order, mark,
  2187. ac->classzone_idx, alloc_flags)) {
  2188. int ret;
  2189. /* Checked here to keep the fast path fast */
  2190. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2191. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2192. goto try_this_zone;
  2193. if (IS_ENABLED(CONFIG_NUMA) &&
  2194. !did_zlc_setup && nr_online_nodes > 1) {
  2195. /*
  2196. * we do zlc_setup if there are multiple nodes
  2197. * and before considering the first zone allowed
  2198. * by the cpuset.
  2199. */
  2200. allowednodes = zlc_setup(zonelist, alloc_flags);
  2201. zlc_active = 1;
  2202. did_zlc_setup = 1;
  2203. }
  2204. if (zone_reclaim_mode == 0 ||
  2205. !zone_allows_reclaim(ac->preferred_zone, zone))
  2206. goto this_zone_full;
  2207. /*
  2208. * As we may have just activated ZLC, check if the first
  2209. * eligible zone has failed zone_reclaim recently.
  2210. */
  2211. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  2212. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  2213. continue;
  2214. ret = zone_reclaim(zone, gfp_mask, order);
  2215. switch (ret) {
  2216. case ZONE_RECLAIM_NOSCAN:
  2217. /* did not scan */
  2218. continue;
  2219. case ZONE_RECLAIM_FULL:
  2220. /* scanned but unreclaimable */
  2221. continue;
  2222. default:
  2223. /* did we reclaim enough */
  2224. if (zone_watermark_ok(zone, order, mark,
  2225. ac->classzone_idx, alloc_flags))
  2226. goto try_this_zone;
  2227. /*
  2228. * Failed to reclaim enough to meet watermark.
  2229. * Only mark the zone full if checking the min
  2230. * watermark or if we failed to reclaim just
  2231. * 1<<order pages or else the page allocator
  2232. * fastpath will prematurely mark zones full
  2233. * when the watermark is between the low and
  2234. * min watermarks.
  2235. */
  2236. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  2237. ret == ZONE_RECLAIM_SOME)
  2238. goto this_zone_full;
  2239. continue;
  2240. }
  2241. }
  2242. try_this_zone:
  2243. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2244. gfp_mask, ac->migratetype);
  2245. if (page) {
  2246. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2247. goto try_this_zone;
  2248. return page;
  2249. }
  2250. this_zone_full:
  2251. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  2252. zlc_mark_zone_full(zonelist, z);
  2253. }
  2254. /*
  2255. * The first pass makes sure allocations are spread fairly within the
  2256. * local node. However, the local node might have free pages left
  2257. * after the fairness batches are exhausted, and remote zones haven't
  2258. * even been considered yet. Try once more without fairness, and
  2259. * include remote zones now, before entering the slowpath and waking
  2260. * kswapd: prefer spilling to a remote zone over swapping locally.
  2261. */
  2262. if (alloc_flags & ALLOC_FAIR) {
  2263. alloc_flags &= ~ALLOC_FAIR;
  2264. if (nr_fair_skipped) {
  2265. zonelist_rescan = true;
  2266. reset_alloc_batches(ac->preferred_zone);
  2267. }
  2268. if (nr_online_nodes > 1)
  2269. zonelist_rescan = true;
  2270. }
  2271. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  2272. /* Disable zlc cache for second zonelist scan */
  2273. zlc_active = 0;
  2274. zonelist_rescan = true;
  2275. }
  2276. if (zonelist_rescan)
  2277. goto zonelist_scan;
  2278. return NULL;
  2279. }
  2280. /*
  2281. * Large machines with many possible nodes should not always dump per-node
  2282. * meminfo in irq context.
  2283. */
  2284. static inline bool should_suppress_show_mem(void)
  2285. {
  2286. bool ret = false;
  2287. #if NODES_SHIFT > 8
  2288. ret = in_interrupt();
  2289. #endif
  2290. return ret;
  2291. }
  2292. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2293. DEFAULT_RATELIMIT_INTERVAL,
  2294. DEFAULT_RATELIMIT_BURST);
  2295. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  2296. {
  2297. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2298. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2299. debug_guardpage_minorder() > 0)
  2300. return;
  2301. /*
  2302. * This documents exceptions given to allocations in certain
  2303. * contexts that are allowed to allocate outside current's set
  2304. * of allowed nodes.
  2305. */
  2306. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2307. if (test_thread_flag(TIF_MEMDIE) ||
  2308. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2309. filter &= ~SHOW_MEM_FILTER_NODES;
  2310. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2311. filter &= ~SHOW_MEM_FILTER_NODES;
  2312. if (fmt) {
  2313. struct va_format vaf;
  2314. va_list args;
  2315. va_start(args, fmt);
  2316. vaf.fmt = fmt;
  2317. vaf.va = &args;
  2318. pr_warn("%pV", &vaf);
  2319. va_end(args);
  2320. }
  2321. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  2322. current->comm, order, gfp_mask);
  2323. dump_stack();
  2324. if (!should_suppress_show_mem())
  2325. show_mem(filter);
  2326. }
  2327. static inline struct page *
  2328. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2329. const struct alloc_context *ac, unsigned long *did_some_progress)
  2330. {
  2331. struct oom_control oc = {
  2332. .zonelist = ac->zonelist,
  2333. .nodemask = ac->nodemask,
  2334. .gfp_mask = gfp_mask,
  2335. .order = order,
  2336. };
  2337. struct page *page;
  2338. *did_some_progress = 0;
  2339. /*
  2340. * Acquire the oom lock. If that fails, somebody else is
  2341. * making progress for us.
  2342. */
  2343. if (!mutex_trylock(&oom_lock)) {
  2344. *did_some_progress = 1;
  2345. schedule_timeout_uninterruptible(1);
  2346. return NULL;
  2347. }
  2348. /*
  2349. * Go through the zonelist yet one more time, keep very high watermark
  2350. * here, this is only to catch a parallel oom killing, we must fail if
  2351. * we're still under heavy pressure.
  2352. */
  2353. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2354. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2355. if (page)
  2356. goto out;
  2357. if (!(gfp_mask & __GFP_NOFAIL)) {
  2358. /* Coredumps can quickly deplete all memory reserves */
  2359. if (current->flags & PF_DUMPCORE)
  2360. goto out;
  2361. /* The OOM killer will not help higher order allocs */
  2362. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2363. goto out;
  2364. /* The OOM killer does not needlessly kill tasks for lowmem */
  2365. if (ac->high_zoneidx < ZONE_NORMAL)
  2366. goto out;
  2367. /* The OOM killer does not compensate for IO-less reclaim */
  2368. if (!(gfp_mask & __GFP_FS)) {
  2369. /*
  2370. * XXX: Page reclaim didn't yield anything,
  2371. * and the OOM killer can't be invoked, but
  2372. * keep looping as per tradition.
  2373. */
  2374. *did_some_progress = 1;
  2375. goto out;
  2376. }
  2377. if (pm_suspended_storage())
  2378. goto out;
  2379. /* The OOM killer may not free memory on a specific node */
  2380. if (gfp_mask & __GFP_THISNODE)
  2381. goto out;
  2382. }
  2383. /* Exhausted what can be done so it's blamo time */
  2384. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
  2385. *did_some_progress = 1;
  2386. out:
  2387. mutex_unlock(&oom_lock);
  2388. return page;
  2389. }
  2390. #ifdef CONFIG_COMPACTION
  2391. /* Try memory compaction for high-order allocations before reclaim */
  2392. static struct page *
  2393. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2394. int alloc_flags, const struct alloc_context *ac,
  2395. enum migrate_mode mode, int *contended_compaction,
  2396. bool *deferred_compaction)
  2397. {
  2398. unsigned long compact_result;
  2399. struct page *page;
  2400. if (!order)
  2401. return NULL;
  2402. current->flags |= PF_MEMALLOC;
  2403. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2404. mode, contended_compaction);
  2405. current->flags &= ~PF_MEMALLOC;
  2406. switch (compact_result) {
  2407. case COMPACT_DEFERRED:
  2408. *deferred_compaction = true;
  2409. /* fall-through */
  2410. case COMPACT_SKIPPED:
  2411. return NULL;
  2412. default:
  2413. break;
  2414. }
  2415. /*
  2416. * At least in one zone compaction wasn't deferred or skipped, so let's
  2417. * count a compaction stall
  2418. */
  2419. count_vm_event(COMPACTSTALL);
  2420. page = get_page_from_freelist(gfp_mask, order,
  2421. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2422. if (page) {
  2423. struct zone *zone = page_zone(page);
  2424. zone->compact_blockskip_flush = false;
  2425. compaction_defer_reset(zone, order, true);
  2426. count_vm_event(COMPACTSUCCESS);
  2427. return page;
  2428. }
  2429. /*
  2430. * It's bad if compaction run occurs and fails. The most likely reason
  2431. * is that pages exist, but not enough to satisfy watermarks.
  2432. */
  2433. count_vm_event(COMPACTFAIL);
  2434. cond_resched();
  2435. return NULL;
  2436. }
  2437. #else
  2438. static inline struct page *
  2439. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2440. int alloc_flags, const struct alloc_context *ac,
  2441. enum migrate_mode mode, int *contended_compaction,
  2442. bool *deferred_compaction)
  2443. {
  2444. return NULL;
  2445. }
  2446. #endif /* CONFIG_COMPACTION */
  2447. /* Perform direct synchronous page reclaim */
  2448. static int
  2449. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2450. const struct alloc_context *ac)
  2451. {
  2452. struct reclaim_state reclaim_state;
  2453. int progress;
  2454. cond_resched();
  2455. /* We now go into synchronous reclaim */
  2456. cpuset_memory_pressure_bump();
  2457. current->flags |= PF_MEMALLOC;
  2458. lockdep_set_current_reclaim_state(gfp_mask);
  2459. reclaim_state.reclaimed_slab = 0;
  2460. current->reclaim_state = &reclaim_state;
  2461. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2462. ac->nodemask);
  2463. current->reclaim_state = NULL;
  2464. lockdep_clear_current_reclaim_state();
  2465. current->flags &= ~PF_MEMALLOC;
  2466. cond_resched();
  2467. return progress;
  2468. }
  2469. /* The really slow allocator path where we enter direct reclaim */
  2470. static inline struct page *
  2471. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2472. int alloc_flags, const struct alloc_context *ac,
  2473. unsigned long *did_some_progress)
  2474. {
  2475. struct page *page = NULL;
  2476. bool drained = false;
  2477. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2478. if (unlikely(!(*did_some_progress)))
  2479. return NULL;
  2480. /* After successful reclaim, reconsider all zones for allocation */
  2481. if (IS_ENABLED(CONFIG_NUMA))
  2482. zlc_clear_zones_full(ac->zonelist);
  2483. retry:
  2484. page = get_page_from_freelist(gfp_mask, order,
  2485. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2486. /*
  2487. * If an allocation failed after direct reclaim, it could be because
  2488. * pages are pinned on the per-cpu lists. Drain them and try again
  2489. */
  2490. if (!page && !drained) {
  2491. drain_all_pages(NULL);
  2492. drained = true;
  2493. goto retry;
  2494. }
  2495. return page;
  2496. }
  2497. /*
  2498. * This is called in the allocator slow-path if the allocation request is of
  2499. * sufficient urgency to ignore watermarks and take other desperate measures
  2500. */
  2501. static inline struct page *
  2502. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2503. const struct alloc_context *ac)
  2504. {
  2505. struct page *page;
  2506. do {
  2507. page = get_page_from_freelist(gfp_mask, order,
  2508. ALLOC_NO_WATERMARKS, ac);
  2509. if (!page && gfp_mask & __GFP_NOFAIL)
  2510. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2511. HZ/50);
  2512. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2513. return page;
  2514. }
  2515. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2516. {
  2517. struct zoneref *z;
  2518. struct zone *zone;
  2519. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2520. ac->high_zoneidx, ac->nodemask)
  2521. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2522. }
  2523. static inline int
  2524. gfp_to_alloc_flags(gfp_t gfp_mask)
  2525. {
  2526. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2527. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2528. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2529. /*
  2530. * The caller may dip into page reserves a bit more if the caller
  2531. * cannot run direct reclaim, or if the caller has realtime scheduling
  2532. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2533. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2534. */
  2535. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2536. if (gfp_mask & __GFP_ATOMIC) {
  2537. /*
  2538. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2539. * if it can't schedule.
  2540. */
  2541. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2542. alloc_flags |= ALLOC_HARDER;
  2543. /*
  2544. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2545. * comment for __cpuset_node_allowed().
  2546. */
  2547. alloc_flags &= ~ALLOC_CPUSET;
  2548. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2549. alloc_flags |= ALLOC_HARDER;
  2550. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2551. if (gfp_mask & __GFP_MEMALLOC)
  2552. alloc_flags |= ALLOC_NO_WATERMARKS;
  2553. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2554. alloc_flags |= ALLOC_NO_WATERMARKS;
  2555. else if (!in_interrupt() &&
  2556. ((current->flags & PF_MEMALLOC) ||
  2557. unlikely(test_thread_flag(TIF_MEMDIE))))
  2558. alloc_flags |= ALLOC_NO_WATERMARKS;
  2559. }
  2560. #ifdef CONFIG_CMA
  2561. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2562. alloc_flags |= ALLOC_CMA;
  2563. #endif
  2564. return alloc_flags;
  2565. }
  2566. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2567. {
  2568. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2569. }
  2570. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2571. {
  2572. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2573. }
  2574. static inline struct page *
  2575. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2576. struct alloc_context *ac)
  2577. {
  2578. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2579. struct page *page = NULL;
  2580. int alloc_flags;
  2581. unsigned long pages_reclaimed = 0;
  2582. unsigned long did_some_progress;
  2583. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2584. bool deferred_compaction = false;
  2585. int contended_compaction = COMPACT_CONTENDED_NONE;
  2586. /*
  2587. * In the slowpath, we sanity check order to avoid ever trying to
  2588. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2589. * be using allocators in order of preference for an area that is
  2590. * too large.
  2591. */
  2592. if (order >= MAX_ORDER) {
  2593. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2594. return NULL;
  2595. }
  2596. /*
  2597. * We also sanity check to catch abuse of atomic reserves being used by
  2598. * callers that are not in atomic context.
  2599. */
  2600. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  2601. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  2602. gfp_mask &= ~__GFP_ATOMIC;
  2603. /*
  2604. * If this allocation cannot block and it is for a specific node, then
  2605. * fail early. There's no need to wakeup kswapd or retry for a
  2606. * speculative node-specific allocation.
  2607. */
  2608. if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
  2609. goto nopage;
  2610. retry:
  2611. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  2612. wake_all_kswapds(order, ac);
  2613. /*
  2614. * OK, we're below the kswapd watermark and have kicked background
  2615. * reclaim. Now things get more complex, so set up alloc_flags according
  2616. * to how we want to proceed.
  2617. */
  2618. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2619. /*
  2620. * Find the true preferred zone if the allocation is unconstrained by
  2621. * cpusets.
  2622. */
  2623. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2624. struct zoneref *preferred_zoneref;
  2625. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2626. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2627. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2628. }
  2629. /* This is the last chance, in general, before the goto nopage. */
  2630. page = get_page_from_freelist(gfp_mask, order,
  2631. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2632. if (page)
  2633. goto got_pg;
  2634. /* Allocate without watermarks if the context allows */
  2635. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2636. /*
  2637. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2638. * the allocation is high priority and these type of
  2639. * allocations are system rather than user orientated
  2640. */
  2641. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2642. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2643. if (page) {
  2644. goto got_pg;
  2645. }
  2646. }
  2647. /* Caller is not willing to reclaim, we can't balance anything */
  2648. if (!can_direct_reclaim) {
  2649. /*
  2650. * All existing users of the deprecated __GFP_NOFAIL are
  2651. * blockable, so warn of any new users that actually allow this
  2652. * type of allocation to fail.
  2653. */
  2654. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2655. goto nopage;
  2656. }
  2657. /* Avoid recursion of direct reclaim */
  2658. if (current->flags & PF_MEMALLOC)
  2659. goto nopage;
  2660. /* Avoid allocations with no watermarks from looping endlessly */
  2661. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2662. goto nopage;
  2663. /*
  2664. * Try direct compaction. The first pass is asynchronous. Subsequent
  2665. * attempts after direct reclaim are synchronous
  2666. */
  2667. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2668. migration_mode,
  2669. &contended_compaction,
  2670. &deferred_compaction);
  2671. if (page)
  2672. goto got_pg;
  2673. /* Checks for THP-specific high-order allocations */
  2674. if (is_thp_gfp_mask(gfp_mask)) {
  2675. /*
  2676. * If compaction is deferred for high-order allocations, it is
  2677. * because sync compaction recently failed. If this is the case
  2678. * and the caller requested a THP allocation, we do not want
  2679. * to heavily disrupt the system, so we fail the allocation
  2680. * instead of entering direct reclaim.
  2681. */
  2682. if (deferred_compaction)
  2683. goto nopage;
  2684. /*
  2685. * In all zones where compaction was attempted (and not
  2686. * deferred or skipped), lock contention has been detected.
  2687. * For THP allocation we do not want to disrupt the others
  2688. * so we fallback to base pages instead.
  2689. */
  2690. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2691. goto nopage;
  2692. /*
  2693. * If compaction was aborted due to need_resched(), we do not
  2694. * want to further increase allocation latency, unless it is
  2695. * khugepaged trying to collapse.
  2696. */
  2697. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2698. && !(current->flags & PF_KTHREAD))
  2699. goto nopage;
  2700. }
  2701. /*
  2702. * It can become very expensive to allocate transparent hugepages at
  2703. * fault, so use asynchronous memory compaction for THP unless it is
  2704. * khugepaged trying to collapse.
  2705. */
  2706. if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
  2707. migration_mode = MIGRATE_SYNC_LIGHT;
  2708. /* Try direct reclaim and then allocating */
  2709. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2710. &did_some_progress);
  2711. if (page)
  2712. goto got_pg;
  2713. /* Do not loop if specifically requested */
  2714. if (gfp_mask & __GFP_NORETRY)
  2715. goto noretry;
  2716. /* Keep reclaiming pages as long as there is reasonable progress */
  2717. pages_reclaimed += did_some_progress;
  2718. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2719. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2720. /* Wait for some write requests to complete then retry */
  2721. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2722. goto retry;
  2723. }
  2724. /* Reclaim has failed us, start killing things */
  2725. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2726. if (page)
  2727. goto got_pg;
  2728. /* Retry as long as the OOM killer is making progress */
  2729. if (did_some_progress)
  2730. goto retry;
  2731. noretry:
  2732. /*
  2733. * High-order allocations do not necessarily loop after
  2734. * direct reclaim and reclaim/compaction depends on compaction
  2735. * being called after reclaim so call directly if necessary
  2736. */
  2737. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2738. ac, migration_mode,
  2739. &contended_compaction,
  2740. &deferred_compaction);
  2741. if (page)
  2742. goto got_pg;
  2743. nopage:
  2744. warn_alloc_failed(gfp_mask, order, NULL);
  2745. got_pg:
  2746. return page;
  2747. }
  2748. /*
  2749. * This is the 'heart' of the zoned buddy allocator.
  2750. */
  2751. struct page *
  2752. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2753. struct zonelist *zonelist, nodemask_t *nodemask)
  2754. {
  2755. struct zoneref *preferred_zoneref;
  2756. struct page *page = NULL;
  2757. unsigned int cpuset_mems_cookie;
  2758. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2759. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2760. struct alloc_context ac = {
  2761. .high_zoneidx = gfp_zone(gfp_mask),
  2762. .nodemask = nodemask,
  2763. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2764. };
  2765. gfp_mask &= gfp_allowed_mask;
  2766. lockdep_trace_alloc(gfp_mask);
  2767. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  2768. if (should_fail_alloc_page(gfp_mask, order))
  2769. return NULL;
  2770. /*
  2771. * Check the zones suitable for the gfp_mask contain at least one
  2772. * valid zone. It's possible to have an empty zonelist as a result
  2773. * of __GFP_THISNODE and a memoryless node
  2774. */
  2775. if (unlikely(!zonelist->_zonerefs->zone))
  2776. return NULL;
  2777. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2778. alloc_flags |= ALLOC_CMA;
  2779. retry_cpuset:
  2780. cpuset_mems_cookie = read_mems_allowed_begin();
  2781. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2782. ac.zonelist = zonelist;
  2783. /* Dirty zone balancing only done in the fast path */
  2784. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  2785. /* The preferred zone is used for statistics later */
  2786. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2787. ac.nodemask ? : &cpuset_current_mems_allowed,
  2788. &ac.preferred_zone);
  2789. if (!ac.preferred_zone)
  2790. goto out;
  2791. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2792. /* First allocation attempt */
  2793. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2794. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2795. if (unlikely(!page)) {
  2796. /*
  2797. * Runtime PM, block IO and its error handling path
  2798. * can deadlock because I/O on the device might not
  2799. * complete.
  2800. */
  2801. alloc_mask = memalloc_noio_flags(gfp_mask);
  2802. ac.spread_dirty_pages = false;
  2803. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2804. }
  2805. if (kmemcheck_enabled && page)
  2806. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2807. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2808. out:
  2809. /*
  2810. * When updating a task's mems_allowed, it is possible to race with
  2811. * parallel threads in such a way that an allocation can fail while
  2812. * the mask is being updated. If a page allocation is about to fail,
  2813. * check if the cpuset changed during allocation and if so, retry.
  2814. */
  2815. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2816. goto retry_cpuset;
  2817. return page;
  2818. }
  2819. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2820. /*
  2821. * Common helper functions.
  2822. */
  2823. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2824. {
  2825. struct page *page;
  2826. /*
  2827. * __get_free_pages() returns a 32-bit address, which cannot represent
  2828. * a highmem page
  2829. */
  2830. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2831. page = alloc_pages(gfp_mask, order);
  2832. if (!page)
  2833. return 0;
  2834. return (unsigned long) page_address(page);
  2835. }
  2836. EXPORT_SYMBOL(__get_free_pages);
  2837. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2838. {
  2839. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2840. }
  2841. EXPORT_SYMBOL(get_zeroed_page);
  2842. void __free_pages(struct page *page, unsigned int order)
  2843. {
  2844. if (put_page_testzero(page)) {
  2845. if (order == 0)
  2846. free_hot_cold_page(page, false);
  2847. else
  2848. __free_pages_ok(page, order);
  2849. }
  2850. }
  2851. EXPORT_SYMBOL(__free_pages);
  2852. void free_pages(unsigned long addr, unsigned int order)
  2853. {
  2854. if (addr != 0) {
  2855. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2856. __free_pages(virt_to_page((void *)addr), order);
  2857. }
  2858. }
  2859. EXPORT_SYMBOL(free_pages);
  2860. /*
  2861. * Page Fragment:
  2862. * An arbitrary-length arbitrary-offset area of memory which resides
  2863. * within a 0 or higher order page. Multiple fragments within that page
  2864. * are individually refcounted, in the page's reference counter.
  2865. *
  2866. * The page_frag functions below provide a simple allocation framework for
  2867. * page fragments. This is used by the network stack and network device
  2868. * drivers to provide a backing region of memory for use as either an
  2869. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2870. */
  2871. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2872. gfp_t gfp_mask)
  2873. {
  2874. struct page *page = NULL;
  2875. gfp_t gfp = gfp_mask;
  2876. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2877. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2878. __GFP_NOMEMALLOC;
  2879. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2880. PAGE_FRAG_CACHE_MAX_ORDER);
  2881. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2882. #endif
  2883. if (unlikely(!page))
  2884. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2885. nc->va = page ? page_address(page) : NULL;
  2886. return page;
  2887. }
  2888. void *__alloc_page_frag(struct page_frag_cache *nc,
  2889. unsigned int fragsz, gfp_t gfp_mask)
  2890. {
  2891. unsigned int size = PAGE_SIZE;
  2892. struct page *page;
  2893. int offset;
  2894. if (unlikely(!nc->va)) {
  2895. refill:
  2896. page = __page_frag_refill(nc, gfp_mask);
  2897. if (!page)
  2898. return NULL;
  2899. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2900. /* if size can vary use size else just use PAGE_SIZE */
  2901. size = nc->size;
  2902. #endif
  2903. /* Even if we own the page, we do not use atomic_set().
  2904. * This would break get_page_unless_zero() users.
  2905. */
  2906. atomic_add(size - 1, &page->_count);
  2907. /* reset page count bias and offset to start of new frag */
  2908. nc->pfmemalloc = page_is_pfmemalloc(page);
  2909. nc->pagecnt_bias = size;
  2910. nc->offset = size;
  2911. }
  2912. offset = nc->offset - fragsz;
  2913. if (unlikely(offset < 0)) {
  2914. page = virt_to_page(nc->va);
  2915. if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
  2916. goto refill;
  2917. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2918. /* if size can vary use size else just use PAGE_SIZE */
  2919. size = nc->size;
  2920. #endif
  2921. /* OK, page count is 0, we can safely set it */
  2922. atomic_set(&page->_count, size);
  2923. /* reset page count bias and offset to start of new frag */
  2924. nc->pagecnt_bias = size;
  2925. offset = size - fragsz;
  2926. }
  2927. nc->pagecnt_bias--;
  2928. nc->offset = offset;
  2929. return nc->va + offset;
  2930. }
  2931. EXPORT_SYMBOL(__alloc_page_frag);
  2932. /*
  2933. * Frees a page fragment allocated out of either a compound or order 0 page.
  2934. */
  2935. void __free_page_frag(void *addr)
  2936. {
  2937. struct page *page = virt_to_head_page(addr);
  2938. if (unlikely(put_page_testzero(page)))
  2939. __free_pages_ok(page, compound_order(page));
  2940. }
  2941. EXPORT_SYMBOL(__free_page_frag);
  2942. /*
  2943. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2944. * of the current memory cgroup.
  2945. *
  2946. * It should be used when the caller would like to use kmalloc, but since the
  2947. * allocation is large, it has to fall back to the page allocator.
  2948. */
  2949. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2950. {
  2951. struct page *page;
  2952. page = alloc_pages(gfp_mask, order);
  2953. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2954. __free_pages(page, order);
  2955. page = NULL;
  2956. }
  2957. return page;
  2958. }
  2959. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2960. {
  2961. struct page *page;
  2962. page = alloc_pages_node(nid, gfp_mask, order);
  2963. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2964. __free_pages(page, order);
  2965. page = NULL;
  2966. }
  2967. return page;
  2968. }
  2969. /*
  2970. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2971. * alloc_kmem_pages.
  2972. */
  2973. void __free_kmem_pages(struct page *page, unsigned int order)
  2974. {
  2975. memcg_kmem_uncharge(page, order);
  2976. __free_pages(page, order);
  2977. }
  2978. void free_kmem_pages(unsigned long addr, unsigned int order)
  2979. {
  2980. if (addr != 0) {
  2981. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2982. __free_kmem_pages(virt_to_page((void *)addr), order);
  2983. }
  2984. }
  2985. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2986. {
  2987. if (addr) {
  2988. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2989. unsigned long used = addr + PAGE_ALIGN(size);
  2990. split_page(virt_to_page((void *)addr), order);
  2991. while (used < alloc_end) {
  2992. free_page(used);
  2993. used += PAGE_SIZE;
  2994. }
  2995. }
  2996. return (void *)addr;
  2997. }
  2998. /**
  2999. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3000. * @size: the number of bytes to allocate
  3001. * @gfp_mask: GFP flags for the allocation
  3002. *
  3003. * This function is similar to alloc_pages(), except that it allocates the
  3004. * minimum number of pages to satisfy the request. alloc_pages() can only
  3005. * allocate memory in power-of-two pages.
  3006. *
  3007. * This function is also limited by MAX_ORDER.
  3008. *
  3009. * Memory allocated by this function must be released by free_pages_exact().
  3010. */
  3011. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3012. {
  3013. unsigned int order = get_order(size);
  3014. unsigned long addr;
  3015. addr = __get_free_pages(gfp_mask, order);
  3016. return make_alloc_exact(addr, order, size);
  3017. }
  3018. EXPORT_SYMBOL(alloc_pages_exact);
  3019. /**
  3020. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3021. * pages on a node.
  3022. * @nid: the preferred node ID where memory should be allocated
  3023. * @size: the number of bytes to allocate
  3024. * @gfp_mask: GFP flags for the allocation
  3025. *
  3026. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3027. * back.
  3028. */
  3029. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3030. {
  3031. unsigned order = get_order(size);
  3032. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3033. if (!p)
  3034. return NULL;
  3035. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3036. }
  3037. /**
  3038. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3039. * @virt: the value returned by alloc_pages_exact.
  3040. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3041. *
  3042. * Release the memory allocated by a previous call to alloc_pages_exact.
  3043. */
  3044. void free_pages_exact(void *virt, size_t size)
  3045. {
  3046. unsigned long addr = (unsigned long)virt;
  3047. unsigned long end = addr + PAGE_ALIGN(size);
  3048. while (addr < end) {
  3049. free_page(addr);
  3050. addr += PAGE_SIZE;
  3051. }
  3052. }
  3053. EXPORT_SYMBOL(free_pages_exact);
  3054. /**
  3055. * nr_free_zone_pages - count number of pages beyond high watermark
  3056. * @offset: The zone index of the highest zone
  3057. *
  3058. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3059. * high watermark within all zones at or below a given zone index. For each
  3060. * zone, the number of pages is calculated as:
  3061. * managed_pages - high_pages
  3062. */
  3063. static unsigned long nr_free_zone_pages(int offset)
  3064. {
  3065. struct zoneref *z;
  3066. struct zone *zone;
  3067. /* Just pick one node, since fallback list is circular */
  3068. unsigned long sum = 0;
  3069. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3070. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3071. unsigned long size = zone->managed_pages;
  3072. unsigned long high = high_wmark_pages(zone);
  3073. if (size > high)
  3074. sum += size - high;
  3075. }
  3076. return sum;
  3077. }
  3078. /**
  3079. * nr_free_buffer_pages - count number of pages beyond high watermark
  3080. *
  3081. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3082. * watermark within ZONE_DMA and ZONE_NORMAL.
  3083. */
  3084. unsigned long nr_free_buffer_pages(void)
  3085. {
  3086. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3087. }
  3088. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3089. /**
  3090. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3091. *
  3092. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3093. * high watermark within all zones.
  3094. */
  3095. unsigned long nr_free_pagecache_pages(void)
  3096. {
  3097. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3098. }
  3099. static inline void show_node(struct zone *zone)
  3100. {
  3101. if (IS_ENABLED(CONFIG_NUMA))
  3102. printk("Node %d ", zone_to_nid(zone));
  3103. }
  3104. void si_meminfo(struct sysinfo *val)
  3105. {
  3106. val->totalram = totalram_pages;
  3107. val->sharedram = global_page_state(NR_SHMEM);
  3108. val->freeram = global_page_state(NR_FREE_PAGES);
  3109. val->bufferram = nr_blockdev_pages();
  3110. val->totalhigh = totalhigh_pages;
  3111. val->freehigh = nr_free_highpages();
  3112. val->mem_unit = PAGE_SIZE;
  3113. }
  3114. EXPORT_SYMBOL(si_meminfo);
  3115. #ifdef CONFIG_NUMA
  3116. void si_meminfo_node(struct sysinfo *val, int nid)
  3117. {
  3118. int zone_type; /* needs to be signed */
  3119. unsigned long managed_pages = 0;
  3120. pg_data_t *pgdat = NODE_DATA(nid);
  3121. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3122. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3123. val->totalram = managed_pages;
  3124. val->sharedram = node_page_state(nid, NR_SHMEM);
  3125. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3126. #ifdef CONFIG_HIGHMEM
  3127. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3128. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3129. NR_FREE_PAGES);
  3130. #else
  3131. val->totalhigh = 0;
  3132. val->freehigh = 0;
  3133. #endif
  3134. val->mem_unit = PAGE_SIZE;
  3135. }
  3136. #endif
  3137. /*
  3138. * Determine whether the node should be displayed or not, depending on whether
  3139. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3140. */
  3141. bool skip_free_areas_node(unsigned int flags, int nid)
  3142. {
  3143. bool ret = false;
  3144. unsigned int cpuset_mems_cookie;
  3145. if (!(flags & SHOW_MEM_FILTER_NODES))
  3146. goto out;
  3147. do {
  3148. cpuset_mems_cookie = read_mems_allowed_begin();
  3149. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3150. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3151. out:
  3152. return ret;
  3153. }
  3154. #define K(x) ((x) << (PAGE_SHIFT-10))
  3155. static void show_migration_types(unsigned char type)
  3156. {
  3157. static const char types[MIGRATE_TYPES] = {
  3158. [MIGRATE_UNMOVABLE] = 'U',
  3159. [MIGRATE_RECLAIMABLE] = 'E',
  3160. [MIGRATE_MOVABLE] = 'M',
  3161. [MIGRATE_RESERVE] = 'R',
  3162. #ifdef CONFIG_CMA
  3163. [MIGRATE_CMA] = 'C',
  3164. #endif
  3165. #ifdef CONFIG_MEMORY_ISOLATION
  3166. [MIGRATE_ISOLATE] = 'I',
  3167. #endif
  3168. };
  3169. char tmp[MIGRATE_TYPES + 1];
  3170. char *p = tmp;
  3171. int i;
  3172. for (i = 0; i < MIGRATE_TYPES; i++) {
  3173. if (type & (1 << i))
  3174. *p++ = types[i];
  3175. }
  3176. *p = '\0';
  3177. printk("(%s) ", tmp);
  3178. }
  3179. /*
  3180. * Show free area list (used inside shift_scroll-lock stuff)
  3181. * We also calculate the percentage fragmentation. We do this by counting the
  3182. * memory on each free list with the exception of the first item on the list.
  3183. *
  3184. * Bits in @filter:
  3185. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3186. * cpuset.
  3187. */
  3188. void show_free_areas(unsigned int filter)
  3189. {
  3190. unsigned long free_pcp = 0;
  3191. int cpu;
  3192. struct zone *zone;
  3193. for_each_populated_zone(zone) {
  3194. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3195. continue;
  3196. for_each_online_cpu(cpu)
  3197. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3198. }
  3199. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3200. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3201. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3202. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3203. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3204. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3205. global_page_state(NR_ACTIVE_ANON),
  3206. global_page_state(NR_INACTIVE_ANON),
  3207. global_page_state(NR_ISOLATED_ANON),
  3208. global_page_state(NR_ACTIVE_FILE),
  3209. global_page_state(NR_INACTIVE_FILE),
  3210. global_page_state(NR_ISOLATED_FILE),
  3211. global_page_state(NR_UNEVICTABLE),
  3212. global_page_state(NR_FILE_DIRTY),
  3213. global_page_state(NR_WRITEBACK),
  3214. global_page_state(NR_UNSTABLE_NFS),
  3215. global_page_state(NR_SLAB_RECLAIMABLE),
  3216. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3217. global_page_state(NR_FILE_MAPPED),
  3218. global_page_state(NR_SHMEM),
  3219. global_page_state(NR_PAGETABLE),
  3220. global_page_state(NR_BOUNCE),
  3221. global_page_state(NR_FREE_PAGES),
  3222. free_pcp,
  3223. global_page_state(NR_FREE_CMA_PAGES));
  3224. for_each_populated_zone(zone) {
  3225. int i;
  3226. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3227. continue;
  3228. free_pcp = 0;
  3229. for_each_online_cpu(cpu)
  3230. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3231. show_node(zone);
  3232. printk("%s"
  3233. " free:%lukB"
  3234. " min:%lukB"
  3235. " low:%lukB"
  3236. " high:%lukB"
  3237. " active_anon:%lukB"
  3238. " inactive_anon:%lukB"
  3239. " active_file:%lukB"
  3240. " inactive_file:%lukB"
  3241. " unevictable:%lukB"
  3242. " isolated(anon):%lukB"
  3243. " isolated(file):%lukB"
  3244. " present:%lukB"
  3245. " managed:%lukB"
  3246. " mlocked:%lukB"
  3247. " dirty:%lukB"
  3248. " writeback:%lukB"
  3249. " mapped:%lukB"
  3250. " shmem:%lukB"
  3251. " slab_reclaimable:%lukB"
  3252. " slab_unreclaimable:%lukB"
  3253. " kernel_stack:%lukB"
  3254. " pagetables:%lukB"
  3255. " unstable:%lukB"
  3256. " bounce:%lukB"
  3257. " free_pcp:%lukB"
  3258. " local_pcp:%ukB"
  3259. " free_cma:%lukB"
  3260. " writeback_tmp:%lukB"
  3261. " pages_scanned:%lu"
  3262. " all_unreclaimable? %s"
  3263. "\n",
  3264. zone->name,
  3265. K(zone_page_state(zone, NR_FREE_PAGES)),
  3266. K(min_wmark_pages(zone)),
  3267. K(low_wmark_pages(zone)),
  3268. K(high_wmark_pages(zone)),
  3269. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3270. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3271. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3272. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3273. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3274. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3275. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3276. K(zone->present_pages),
  3277. K(zone->managed_pages),
  3278. K(zone_page_state(zone, NR_MLOCK)),
  3279. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3280. K(zone_page_state(zone, NR_WRITEBACK)),
  3281. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3282. K(zone_page_state(zone, NR_SHMEM)),
  3283. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3284. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3285. zone_page_state(zone, NR_KERNEL_STACK) *
  3286. THREAD_SIZE / 1024,
  3287. K(zone_page_state(zone, NR_PAGETABLE)),
  3288. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3289. K(zone_page_state(zone, NR_BOUNCE)),
  3290. K(free_pcp),
  3291. K(this_cpu_read(zone->pageset->pcp.count)),
  3292. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3293. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3294. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3295. (!zone_reclaimable(zone) ? "yes" : "no")
  3296. );
  3297. printk("lowmem_reserve[]:");
  3298. for (i = 0; i < MAX_NR_ZONES; i++)
  3299. printk(" %ld", zone->lowmem_reserve[i]);
  3300. printk("\n");
  3301. }
  3302. for_each_populated_zone(zone) {
  3303. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  3304. unsigned char types[MAX_ORDER];
  3305. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3306. continue;
  3307. show_node(zone);
  3308. printk("%s: ", zone->name);
  3309. spin_lock_irqsave(&zone->lock, flags);
  3310. for (order = 0; order < MAX_ORDER; order++) {
  3311. struct free_area *area = &zone->free_area[order];
  3312. int type;
  3313. nr[order] = area->nr_free;
  3314. total += nr[order] << order;
  3315. types[order] = 0;
  3316. for (type = 0; type < MIGRATE_TYPES; type++) {
  3317. if (!list_empty(&area->free_list[type]))
  3318. types[order] |= 1 << type;
  3319. }
  3320. }
  3321. spin_unlock_irqrestore(&zone->lock, flags);
  3322. for (order = 0; order < MAX_ORDER; order++) {
  3323. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3324. if (nr[order])
  3325. show_migration_types(types[order]);
  3326. }
  3327. printk("= %lukB\n", K(total));
  3328. }
  3329. hugetlb_show_meminfo();
  3330. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3331. show_swap_cache_info();
  3332. }
  3333. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3334. {
  3335. zoneref->zone = zone;
  3336. zoneref->zone_idx = zone_idx(zone);
  3337. }
  3338. /*
  3339. * Builds allocation fallback zone lists.
  3340. *
  3341. * Add all populated zones of a node to the zonelist.
  3342. */
  3343. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3344. int nr_zones)
  3345. {
  3346. struct zone *zone;
  3347. enum zone_type zone_type = MAX_NR_ZONES;
  3348. do {
  3349. zone_type--;
  3350. zone = pgdat->node_zones + zone_type;
  3351. if (populated_zone(zone)) {
  3352. zoneref_set_zone(zone,
  3353. &zonelist->_zonerefs[nr_zones++]);
  3354. check_highest_zone(zone_type);
  3355. }
  3356. } while (zone_type);
  3357. return nr_zones;
  3358. }
  3359. /*
  3360. * zonelist_order:
  3361. * 0 = automatic detection of better ordering.
  3362. * 1 = order by ([node] distance, -zonetype)
  3363. * 2 = order by (-zonetype, [node] distance)
  3364. *
  3365. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3366. * the same zonelist. So only NUMA can configure this param.
  3367. */
  3368. #define ZONELIST_ORDER_DEFAULT 0
  3369. #define ZONELIST_ORDER_NODE 1
  3370. #define ZONELIST_ORDER_ZONE 2
  3371. /* zonelist order in the kernel.
  3372. * set_zonelist_order() will set this to NODE or ZONE.
  3373. */
  3374. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3375. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3376. #ifdef CONFIG_NUMA
  3377. /* The value user specified ....changed by config */
  3378. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3379. /* string for sysctl */
  3380. #define NUMA_ZONELIST_ORDER_LEN 16
  3381. char numa_zonelist_order[16] = "default";
  3382. /*
  3383. * interface for configure zonelist ordering.
  3384. * command line option "numa_zonelist_order"
  3385. * = "[dD]efault - default, automatic configuration.
  3386. * = "[nN]ode - order by node locality, then by zone within node
  3387. * = "[zZ]one - order by zone, then by locality within zone
  3388. */
  3389. static int __parse_numa_zonelist_order(char *s)
  3390. {
  3391. if (*s == 'd' || *s == 'D') {
  3392. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3393. } else if (*s == 'n' || *s == 'N') {
  3394. user_zonelist_order = ZONELIST_ORDER_NODE;
  3395. } else if (*s == 'z' || *s == 'Z') {
  3396. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3397. } else {
  3398. printk(KERN_WARNING
  3399. "Ignoring invalid numa_zonelist_order value: "
  3400. "%s\n", s);
  3401. return -EINVAL;
  3402. }
  3403. return 0;
  3404. }
  3405. static __init int setup_numa_zonelist_order(char *s)
  3406. {
  3407. int ret;
  3408. if (!s)
  3409. return 0;
  3410. ret = __parse_numa_zonelist_order(s);
  3411. if (ret == 0)
  3412. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3413. return ret;
  3414. }
  3415. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3416. /*
  3417. * sysctl handler for numa_zonelist_order
  3418. */
  3419. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3420. void __user *buffer, size_t *length,
  3421. loff_t *ppos)
  3422. {
  3423. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3424. int ret;
  3425. static DEFINE_MUTEX(zl_order_mutex);
  3426. mutex_lock(&zl_order_mutex);
  3427. if (write) {
  3428. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3429. ret = -EINVAL;
  3430. goto out;
  3431. }
  3432. strcpy(saved_string, (char *)table->data);
  3433. }
  3434. ret = proc_dostring(table, write, buffer, length, ppos);
  3435. if (ret)
  3436. goto out;
  3437. if (write) {
  3438. int oldval = user_zonelist_order;
  3439. ret = __parse_numa_zonelist_order((char *)table->data);
  3440. if (ret) {
  3441. /*
  3442. * bogus value. restore saved string
  3443. */
  3444. strncpy((char *)table->data, saved_string,
  3445. NUMA_ZONELIST_ORDER_LEN);
  3446. user_zonelist_order = oldval;
  3447. } else if (oldval != user_zonelist_order) {
  3448. mutex_lock(&zonelists_mutex);
  3449. build_all_zonelists(NULL, NULL);
  3450. mutex_unlock(&zonelists_mutex);
  3451. }
  3452. }
  3453. out:
  3454. mutex_unlock(&zl_order_mutex);
  3455. return ret;
  3456. }
  3457. #define MAX_NODE_LOAD (nr_online_nodes)
  3458. static int node_load[MAX_NUMNODES];
  3459. /**
  3460. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3461. * @node: node whose fallback list we're appending
  3462. * @used_node_mask: nodemask_t of already used nodes
  3463. *
  3464. * We use a number of factors to determine which is the next node that should
  3465. * appear on a given node's fallback list. The node should not have appeared
  3466. * already in @node's fallback list, and it should be the next closest node
  3467. * according to the distance array (which contains arbitrary distance values
  3468. * from each node to each node in the system), and should also prefer nodes
  3469. * with no CPUs, since presumably they'll have very little allocation pressure
  3470. * on them otherwise.
  3471. * It returns -1 if no node is found.
  3472. */
  3473. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3474. {
  3475. int n, val;
  3476. int min_val = INT_MAX;
  3477. int best_node = NUMA_NO_NODE;
  3478. const struct cpumask *tmp = cpumask_of_node(0);
  3479. /* Use the local node if we haven't already */
  3480. if (!node_isset(node, *used_node_mask)) {
  3481. node_set(node, *used_node_mask);
  3482. return node;
  3483. }
  3484. for_each_node_state(n, N_MEMORY) {
  3485. /* Don't want a node to appear more than once */
  3486. if (node_isset(n, *used_node_mask))
  3487. continue;
  3488. /* Use the distance array to find the distance */
  3489. val = node_distance(node, n);
  3490. /* Penalize nodes under us ("prefer the next node") */
  3491. val += (n < node);
  3492. /* Give preference to headless and unused nodes */
  3493. tmp = cpumask_of_node(n);
  3494. if (!cpumask_empty(tmp))
  3495. val += PENALTY_FOR_NODE_WITH_CPUS;
  3496. /* Slight preference for less loaded node */
  3497. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3498. val += node_load[n];
  3499. if (val < min_val) {
  3500. min_val = val;
  3501. best_node = n;
  3502. }
  3503. }
  3504. if (best_node >= 0)
  3505. node_set(best_node, *used_node_mask);
  3506. return best_node;
  3507. }
  3508. /*
  3509. * Build zonelists ordered by node and zones within node.
  3510. * This results in maximum locality--normal zone overflows into local
  3511. * DMA zone, if any--but risks exhausting DMA zone.
  3512. */
  3513. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3514. {
  3515. int j;
  3516. struct zonelist *zonelist;
  3517. zonelist = &pgdat->node_zonelists[0];
  3518. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3519. ;
  3520. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3521. zonelist->_zonerefs[j].zone = NULL;
  3522. zonelist->_zonerefs[j].zone_idx = 0;
  3523. }
  3524. /*
  3525. * Build gfp_thisnode zonelists
  3526. */
  3527. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3528. {
  3529. int j;
  3530. struct zonelist *zonelist;
  3531. zonelist = &pgdat->node_zonelists[1];
  3532. j = build_zonelists_node(pgdat, zonelist, 0);
  3533. zonelist->_zonerefs[j].zone = NULL;
  3534. zonelist->_zonerefs[j].zone_idx = 0;
  3535. }
  3536. /*
  3537. * Build zonelists ordered by zone and nodes within zones.
  3538. * This results in conserving DMA zone[s] until all Normal memory is
  3539. * exhausted, but results in overflowing to remote node while memory
  3540. * may still exist in local DMA zone.
  3541. */
  3542. static int node_order[MAX_NUMNODES];
  3543. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3544. {
  3545. int pos, j, node;
  3546. int zone_type; /* needs to be signed */
  3547. struct zone *z;
  3548. struct zonelist *zonelist;
  3549. zonelist = &pgdat->node_zonelists[0];
  3550. pos = 0;
  3551. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3552. for (j = 0; j < nr_nodes; j++) {
  3553. node = node_order[j];
  3554. z = &NODE_DATA(node)->node_zones[zone_type];
  3555. if (populated_zone(z)) {
  3556. zoneref_set_zone(z,
  3557. &zonelist->_zonerefs[pos++]);
  3558. check_highest_zone(zone_type);
  3559. }
  3560. }
  3561. }
  3562. zonelist->_zonerefs[pos].zone = NULL;
  3563. zonelist->_zonerefs[pos].zone_idx = 0;
  3564. }
  3565. #if defined(CONFIG_64BIT)
  3566. /*
  3567. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3568. * penalty to every machine in case the specialised case applies. Default
  3569. * to Node-ordering on 64-bit NUMA machines
  3570. */
  3571. static int default_zonelist_order(void)
  3572. {
  3573. return ZONELIST_ORDER_NODE;
  3574. }
  3575. #else
  3576. /*
  3577. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3578. * by the kernel. If processes running on node 0 deplete the low memory zone
  3579. * then reclaim will occur more frequency increasing stalls and potentially
  3580. * be easier to OOM if a large percentage of the zone is under writeback or
  3581. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3582. * Hence, default to zone ordering on 32-bit.
  3583. */
  3584. static int default_zonelist_order(void)
  3585. {
  3586. return ZONELIST_ORDER_ZONE;
  3587. }
  3588. #endif /* CONFIG_64BIT */
  3589. static void set_zonelist_order(void)
  3590. {
  3591. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3592. current_zonelist_order = default_zonelist_order();
  3593. else
  3594. current_zonelist_order = user_zonelist_order;
  3595. }
  3596. static void build_zonelists(pg_data_t *pgdat)
  3597. {
  3598. int j, node, load;
  3599. enum zone_type i;
  3600. nodemask_t used_mask;
  3601. int local_node, prev_node;
  3602. struct zonelist *zonelist;
  3603. int order = current_zonelist_order;
  3604. /* initialize zonelists */
  3605. for (i = 0; i < MAX_ZONELISTS; i++) {
  3606. zonelist = pgdat->node_zonelists + i;
  3607. zonelist->_zonerefs[0].zone = NULL;
  3608. zonelist->_zonerefs[0].zone_idx = 0;
  3609. }
  3610. /* NUMA-aware ordering of nodes */
  3611. local_node = pgdat->node_id;
  3612. load = nr_online_nodes;
  3613. prev_node = local_node;
  3614. nodes_clear(used_mask);
  3615. memset(node_order, 0, sizeof(node_order));
  3616. j = 0;
  3617. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3618. /*
  3619. * We don't want to pressure a particular node.
  3620. * So adding penalty to the first node in same
  3621. * distance group to make it round-robin.
  3622. */
  3623. if (node_distance(local_node, node) !=
  3624. node_distance(local_node, prev_node))
  3625. node_load[node] = load;
  3626. prev_node = node;
  3627. load--;
  3628. if (order == ZONELIST_ORDER_NODE)
  3629. build_zonelists_in_node_order(pgdat, node);
  3630. else
  3631. node_order[j++] = node; /* remember order */
  3632. }
  3633. if (order == ZONELIST_ORDER_ZONE) {
  3634. /* calculate node order -- i.e., DMA last! */
  3635. build_zonelists_in_zone_order(pgdat, j);
  3636. }
  3637. build_thisnode_zonelists(pgdat);
  3638. }
  3639. /* Construct the zonelist performance cache - see further mmzone.h */
  3640. static void build_zonelist_cache(pg_data_t *pgdat)
  3641. {
  3642. struct zonelist *zonelist;
  3643. struct zonelist_cache *zlc;
  3644. struct zoneref *z;
  3645. zonelist = &pgdat->node_zonelists[0];
  3646. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3647. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3648. for (z = zonelist->_zonerefs; z->zone; z++)
  3649. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3650. }
  3651. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3652. /*
  3653. * Return node id of node used for "local" allocations.
  3654. * I.e., first node id of first zone in arg node's generic zonelist.
  3655. * Used for initializing percpu 'numa_mem', which is used primarily
  3656. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3657. */
  3658. int local_memory_node(int node)
  3659. {
  3660. struct zone *zone;
  3661. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3662. gfp_zone(GFP_KERNEL),
  3663. NULL,
  3664. &zone);
  3665. return zone->node;
  3666. }
  3667. #endif
  3668. #else /* CONFIG_NUMA */
  3669. static void set_zonelist_order(void)
  3670. {
  3671. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3672. }
  3673. static void build_zonelists(pg_data_t *pgdat)
  3674. {
  3675. int node, local_node;
  3676. enum zone_type j;
  3677. struct zonelist *zonelist;
  3678. local_node = pgdat->node_id;
  3679. zonelist = &pgdat->node_zonelists[0];
  3680. j = build_zonelists_node(pgdat, zonelist, 0);
  3681. /*
  3682. * Now we build the zonelist so that it contains the zones
  3683. * of all the other nodes.
  3684. * We don't want to pressure a particular node, so when
  3685. * building the zones for node N, we make sure that the
  3686. * zones coming right after the local ones are those from
  3687. * node N+1 (modulo N)
  3688. */
  3689. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3690. if (!node_online(node))
  3691. continue;
  3692. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3693. }
  3694. for (node = 0; node < local_node; node++) {
  3695. if (!node_online(node))
  3696. continue;
  3697. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3698. }
  3699. zonelist->_zonerefs[j].zone = NULL;
  3700. zonelist->_zonerefs[j].zone_idx = 0;
  3701. }
  3702. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3703. static void build_zonelist_cache(pg_data_t *pgdat)
  3704. {
  3705. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3706. }
  3707. #endif /* CONFIG_NUMA */
  3708. /*
  3709. * Boot pageset table. One per cpu which is going to be used for all
  3710. * zones and all nodes. The parameters will be set in such a way
  3711. * that an item put on a list will immediately be handed over to
  3712. * the buddy list. This is safe since pageset manipulation is done
  3713. * with interrupts disabled.
  3714. *
  3715. * The boot_pagesets must be kept even after bootup is complete for
  3716. * unused processors and/or zones. They do play a role for bootstrapping
  3717. * hotplugged processors.
  3718. *
  3719. * zoneinfo_show() and maybe other functions do
  3720. * not check if the processor is online before following the pageset pointer.
  3721. * Other parts of the kernel may not check if the zone is available.
  3722. */
  3723. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3724. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3725. static void setup_zone_pageset(struct zone *zone);
  3726. /*
  3727. * Global mutex to protect against size modification of zonelists
  3728. * as well as to serialize pageset setup for the new populated zone.
  3729. */
  3730. DEFINE_MUTEX(zonelists_mutex);
  3731. /* return values int ....just for stop_machine() */
  3732. static int __build_all_zonelists(void *data)
  3733. {
  3734. int nid;
  3735. int cpu;
  3736. pg_data_t *self = data;
  3737. #ifdef CONFIG_NUMA
  3738. memset(node_load, 0, sizeof(node_load));
  3739. #endif
  3740. if (self && !node_online(self->node_id)) {
  3741. build_zonelists(self);
  3742. build_zonelist_cache(self);
  3743. }
  3744. for_each_online_node(nid) {
  3745. pg_data_t *pgdat = NODE_DATA(nid);
  3746. build_zonelists(pgdat);
  3747. build_zonelist_cache(pgdat);
  3748. }
  3749. /*
  3750. * Initialize the boot_pagesets that are going to be used
  3751. * for bootstrapping processors. The real pagesets for
  3752. * each zone will be allocated later when the per cpu
  3753. * allocator is available.
  3754. *
  3755. * boot_pagesets are used also for bootstrapping offline
  3756. * cpus if the system is already booted because the pagesets
  3757. * are needed to initialize allocators on a specific cpu too.
  3758. * F.e. the percpu allocator needs the page allocator which
  3759. * needs the percpu allocator in order to allocate its pagesets
  3760. * (a chicken-egg dilemma).
  3761. */
  3762. for_each_possible_cpu(cpu) {
  3763. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3764. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3765. /*
  3766. * We now know the "local memory node" for each node--
  3767. * i.e., the node of the first zone in the generic zonelist.
  3768. * Set up numa_mem percpu variable for on-line cpus. During
  3769. * boot, only the boot cpu should be on-line; we'll init the
  3770. * secondary cpus' numa_mem as they come on-line. During
  3771. * node/memory hotplug, we'll fixup all on-line cpus.
  3772. */
  3773. if (cpu_online(cpu))
  3774. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3775. #endif
  3776. }
  3777. return 0;
  3778. }
  3779. static noinline void __init
  3780. build_all_zonelists_init(void)
  3781. {
  3782. __build_all_zonelists(NULL);
  3783. mminit_verify_zonelist();
  3784. cpuset_init_current_mems_allowed();
  3785. }
  3786. /*
  3787. * Called with zonelists_mutex held always
  3788. * unless system_state == SYSTEM_BOOTING.
  3789. *
  3790. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3791. * [we're only called with non-NULL zone through __meminit paths] and
  3792. * (2) call of __init annotated helper build_all_zonelists_init
  3793. * [protected by SYSTEM_BOOTING].
  3794. */
  3795. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3796. {
  3797. set_zonelist_order();
  3798. if (system_state == SYSTEM_BOOTING) {
  3799. build_all_zonelists_init();
  3800. } else {
  3801. #ifdef CONFIG_MEMORY_HOTPLUG
  3802. if (zone)
  3803. setup_zone_pageset(zone);
  3804. #endif
  3805. /* we have to stop all cpus to guarantee there is no user
  3806. of zonelist */
  3807. stop_machine(__build_all_zonelists, pgdat, NULL);
  3808. /* cpuset refresh routine should be here */
  3809. }
  3810. vm_total_pages = nr_free_pagecache_pages();
  3811. /*
  3812. * Disable grouping by mobility if the number of pages in the
  3813. * system is too low to allow the mechanism to work. It would be
  3814. * more accurate, but expensive to check per-zone. This check is
  3815. * made on memory-hotadd so a system can start with mobility
  3816. * disabled and enable it later
  3817. */
  3818. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3819. page_group_by_mobility_disabled = 1;
  3820. else
  3821. page_group_by_mobility_disabled = 0;
  3822. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3823. "Total pages: %ld\n",
  3824. nr_online_nodes,
  3825. zonelist_order_name[current_zonelist_order],
  3826. page_group_by_mobility_disabled ? "off" : "on",
  3827. vm_total_pages);
  3828. #ifdef CONFIG_NUMA
  3829. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3830. #endif
  3831. }
  3832. /*
  3833. * Helper functions to size the waitqueue hash table.
  3834. * Essentially these want to choose hash table sizes sufficiently
  3835. * large so that collisions trying to wait on pages are rare.
  3836. * But in fact, the number of active page waitqueues on typical
  3837. * systems is ridiculously low, less than 200. So this is even
  3838. * conservative, even though it seems large.
  3839. *
  3840. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3841. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3842. */
  3843. #define PAGES_PER_WAITQUEUE 256
  3844. #ifndef CONFIG_MEMORY_HOTPLUG
  3845. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3846. {
  3847. unsigned long size = 1;
  3848. pages /= PAGES_PER_WAITQUEUE;
  3849. while (size < pages)
  3850. size <<= 1;
  3851. /*
  3852. * Once we have dozens or even hundreds of threads sleeping
  3853. * on IO we've got bigger problems than wait queue collision.
  3854. * Limit the size of the wait table to a reasonable size.
  3855. */
  3856. size = min(size, 4096UL);
  3857. return max(size, 4UL);
  3858. }
  3859. #else
  3860. /*
  3861. * A zone's size might be changed by hot-add, so it is not possible to determine
  3862. * a suitable size for its wait_table. So we use the maximum size now.
  3863. *
  3864. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3865. *
  3866. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3867. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3868. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3869. *
  3870. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3871. * or more by the traditional way. (See above). It equals:
  3872. *
  3873. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3874. * ia64(16K page size) : = ( 8G + 4M)byte.
  3875. * powerpc (64K page size) : = (32G +16M)byte.
  3876. */
  3877. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3878. {
  3879. return 4096UL;
  3880. }
  3881. #endif
  3882. /*
  3883. * This is an integer logarithm so that shifts can be used later
  3884. * to extract the more random high bits from the multiplicative
  3885. * hash function before the remainder is taken.
  3886. */
  3887. static inline unsigned long wait_table_bits(unsigned long size)
  3888. {
  3889. return ffz(~size);
  3890. }
  3891. /*
  3892. * Check if a pageblock contains reserved pages
  3893. */
  3894. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3895. {
  3896. unsigned long pfn;
  3897. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3898. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3899. return 1;
  3900. }
  3901. return 0;
  3902. }
  3903. /*
  3904. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3905. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3906. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3907. * higher will lead to a bigger reserve which will get freed as contiguous
  3908. * blocks as reclaim kicks in
  3909. */
  3910. static void setup_zone_migrate_reserve(struct zone *zone)
  3911. {
  3912. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3913. struct page *page;
  3914. unsigned long block_migratetype;
  3915. int reserve;
  3916. int old_reserve;
  3917. /*
  3918. * Get the start pfn, end pfn and the number of blocks to reserve
  3919. * We have to be careful to be aligned to pageblock_nr_pages to
  3920. * make sure that we always check pfn_valid for the first page in
  3921. * the block.
  3922. */
  3923. start_pfn = zone->zone_start_pfn;
  3924. end_pfn = zone_end_pfn(zone);
  3925. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3926. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3927. pageblock_order;
  3928. /*
  3929. * Reserve blocks are generally in place to help high-order atomic
  3930. * allocations that are short-lived. A min_free_kbytes value that
  3931. * would result in more than 2 reserve blocks for atomic allocations
  3932. * is assumed to be in place to help anti-fragmentation for the
  3933. * future allocation of hugepages at runtime.
  3934. */
  3935. reserve = min(2, reserve);
  3936. old_reserve = zone->nr_migrate_reserve_block;
  3937. /* When memory hot-add, we almost always need to do nothing */
  3938. if (reserve == old_reserve)
  3939. return;
  3940. zone->nr_migrate_reserve_block = reserve;
  3941. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3942. if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
  3943. return;
  3944. if (!pfn_valid(pfn))
  3945. continue;
  3946. page = pfn_to_page(pfn);
  3947. /* Watch out for overlapping nodes */
  3948. if (page_to_nid(page) != zone_to_nid(zone))
  3949. continue;
  3950. block_migratetype = get_pageblock_migratetype(page);
  3951. /* Only test what is necessary when the reserves are not met */
  3952. if (reserve > 0) {
  3953. /*
  3954. * Blocks with reserved pages will never free, skip
  3955. * them.
  3956. */
  3957. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3958. if (pageblock_is_reserved(pfn, block_end_pfn))
  3959. continue;
  3960. /* If this block is reserved, account for it */
  3961. if (block_migratetype == MIGRATE_RESERVE) {
  3962. reserve--;
  3963. continue;
  3964. }
  3965. /* Suitable for reserving if this block is movable */
  3966. if (block_migratetype == MIGRATE_MOVABLE) {
  3967. set_pageblock_migratetype(page,
  3968. MIGRATE_RESERVE);
  3969. move_freepages_block(zone, page,
  3970. MIGRATE_RESERVE);
  3971. reserve--;
  3972. continue;
  3973. }
  3974. } else if (!old_reserve) {
  3975. /*
  3976. * At boot time we don't need to scan the whole zone
  3977. * for turning off MIGRATE_RESERVE.
  3978. */
  3979. break;
  3980. }
  3981. /*
  3982. * If the reserve is met and this is a previous reserved block,
  3983. * take it back
  3984. */
  3985. if (block_migratetype == MIGRATE_RESERVE) {
  3986. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3987. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3988. }
  3989. }
  3990. }
  3991. /*
  3992. * Initially all pages are reserved - free ones are freed
  3993. * up by free_all_bootmem() once the early boot process is
  3994. * done. Non-atomic initialization, single-pass.
  3995. */
  3996. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3997. unsigned long start_pfn, enum memmap_context context)
  3998. {
  3999. pg_data_t *pgdat = NODE_DATA(nid);
  4000. unsigned long end_pfn = start_pfn + size;
  4001. unsigned long pfn;
  4002. struct zone *z;
  4003. unsigned long nr_initialised = 0;
  4004. if (highest_memmap_pfn < end_pfn - 1)
  4005. highest_memmap_pfn = end_pfn - 1;
  4006. z = &pgdat->node_zones[zone];
  4007. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4008. /*
  4009. * There can be holes in boot-time mem_map[]s
  4010. * handed to this function. They do not
  4011. * exist on hotplugged memory.
  4012. */
  4013. if (context == MEMMAP_EARLY) {
  4014. if (!early_pfn_valid(pfn))
  4015. continue;
  4016. if (!early_pfn_in_nid(pfn, nid))
  4017. continue;
  4018. if (!update_defer_init(pgdat, pfn, end_pfn,
  4019. &nr_initialised))
  4020. break;
  4021. }
  4022. /*
  4023. * Mark the block movable so that blocks are reserved for
  4024. * movable at startup. This will force kernel allocations
  4025. * to reserve their blocks rather than leaking throughout
  4026. * the address space during boot when many long-lived
  4027. * kernel allocations are made. Later some blocks near
  4028. * the start are marked MIGRATE_RESERVE by
  4029. * setup_zone_migrate_reserve()
  4030. *
  4031. * bitmap is created for zone's valid pfn range. but memmap
  4032. * can be created for invalid pages (for alignment)
  4033. * check here not to call set_pageblock_migratetype() against
  4034. * pfn out of zone.
  4035. */
  4036. if (!(pfn & (pageblock_nr_pages - 1))) {
  4037. struct page *page = pfn_to_page(pfn);
  4038. __init_single_page(page, pfn, zone, nid);
  4039. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4040. } else {
  4041. __init_single_pfn(pfn, zone, nid);
  4042. }
  4043. }
  4044. }
  4045. static void __meminit zone_init_free_lists(struct zone *zone)
  4046. {
  4047. unsigned int order, t;
  4048. for_each_migratetype_order(order, t) {
  4049. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4050. zone->free_area[order].nr_free = 0;
  4051. }
  4052. }
  4053. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4054. #define memmap_init(size, nid, zone, start_pfn) \
  4055. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4056. #endif
  4057. static int zone_batchsize(struct zone *zone)
  4058. {
  4059. #ifdef CONFIG_MMU
  4060. int batch;
  4061. /*
  4062. * The per-cpu-pages pools are set to around 1000th of the
  4063. * size of the zone. But no more than 1/2 of a meg.
  4064. *
  4065. * OK, so we don't know how big the cache is. So guess.
  4066. */
  4067. batch = zone->managed_pages / 1024;
  4068. if (batch * PAGE_SIZE > 512 * 1024)
  4069. batch = (512 * 1024) / PAGE_SIZE;
  4070. batch /= 4; /* We effectively *= 4 below */
  4071. if (batch < 1)
  4072. batch = 1;
  4073. /*
  4074. * Clamp the batch to a 2^n - 1 value. Having a power
  4075. * of 2 value was found to be more likely to have
  4076. * suboptimal cache aliasing properties in some cases.
  4077. *
  4078. * For example if 2 tasks are alternately allocating
  4079. * batches of pages, one task can end up with a lot
  4080. * of pages of one half of the possible page colors
  4081. * and the other with pages of the other colors.
  4082. */
  4083. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4084. return batch;
  4085. #else
  4086. /* The deferral and batching of frees should be suppressed under NOMMU
  4087. * conditions.
  4088. *
  4089. * The problem is that NOMMU needs to be able to allocate large chunks
  4090. * of contiguous memory as there's no hardware page translation to
  4091. * assemble apparent contiguous memory from discontiguous pages.
  4092. *
  4093. * Queueing large contiguous runs of pages for batching, however,
  4094. * causes the pages to actually be freed in smaller chunks. As there
  4095. * can be a significant delay between the individual batches being
  4096. * recycled, this leads to the once large chunks of space being
  4097. * fragmented and becoming unavailable for high-order allocations.
  4098. */
  4099. return 0;
  4100. #endif
  4101. }
  4102. /*
  4103. * pcp->high and pcp->batch values are related and dependent on one another:
  4104. * ->batch must never be higher then ->high.
  4105. * The following function updates them in a safe manner without read side
  4106. * locking.
  4107. *
  4108. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4109. * those fields changing asynchronously (acording the the above rule).
  4110. *
  4111. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4112. * outside of boot time (or some other assurance that no concurrent updaters
  4113. * exist).
  4114. */
  4115. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4116. unsigned long batch)
  4117. {
  4118. /* start with a fail safe value for batch */
  4119. pcp->batch = 1;
  4120. smp_wmb();
  4121. /* Update high, then batch, in order */
  4122. pcp->high = high;
  4123. smp_wmb();
  4124. pcp->batch = batch;
  4125. }
  4126. /* a companion to pageset_set_high() */
  4127. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4128. {
  4129. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4130. }
  4131. static void pageset_init(struct per_cpu_pageset *p)
  4132. {
  4133. struct per_cpu_pages *pcp;
  4134. int migratetype;
  4135. memset(p, 0, sizeof(*p));
  4136. pcp = &p->pcp;
  4137. pcp->count = 0;
  4138. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4139. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4140. }
  4141. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4142. {
  4143. pageset_init(p);
  4144. pageset_set_batch(p, batch);
  4145. }
  4146. /*
  4147. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4148. * to the value high for the pageset p.
  4149. */
  4150. static void pageset_set_high(struct per_cpu_pageset *p,
  4151. unsigned long high)
  4152. {
  4153. unsigned long batch = max(1UL, high / 4);
  4154. if ((high / 4) > (PAGE_SHIFT * 8))
  4155. batch = PAGE_SHIFT * 8;
  4156. pageset_update(&p->pcp, high, batch);
  4157. }
  4158. static void pageset_set_high_and_batch(struct zone *zone,
  4159. struct per_cpu_pageset *pcp)
  4160. {
  4161. if (percpu_pagelist_fraction)
  4162. pageset_set_high(pcp,
  4163. (zone->managed_pages /
  4164. percpu_pagelist_fraction));
  4165. else
  4166. pageset_set_batch(pcp, zone_batchsize(zone));
  4167. }
  4168. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4169. {
  4170. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4171. pageset_init(pcp);
  4172. pageset_set_high_and_batch(zone, pcp);
  4173. }
  4174. static void __meminit setup_zone_pageset(struct zone *zone)
  4175. {
  4176. int cpu;
  4177. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4178. for_each_possible_cpu(cpu)
  4179. zone_pageset_init(zone, cpu);
  4180. }
  4181. /*
  4182. * Allocate per cpu pagesets and initialize them.
  4183. * Before this call only boot pagesets were available.
  4184. */
  4185. void __init setup_per_cpu_pageset(void)
  4186. {
  4187. struct zone *zone;
  4188. for_each_populated_zone(zone)
  4189. setup_zone_pageset(zone);
  4190. }
  4191. static noinline __init_refok
  4192. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4193. {
  4194. int i;
  4195. size_t alloc_size;
  4196. /*
  4197. * The per-page waitqueue mechanism uses hashed waitqueues
  4198. * per zone.
  4199. */
  4200. zone->wait_table_hash_nr_entries =
  4201. wait_table_hash_nr_entries(zone_size_pages);
  4202. zone->wait_table_bits =
  4203. wait_table_bits(zone->wait_table_hash_nr_entries);
  4204. alloc_size = zone->wait_table_hash_nr_entries
  4205. * sizeof(wait_queue_head_t);
  4206. if (!slab_is_available()) {
  4207. zone->wait_table = (wait_queue_head_t *)
  4208. memblock_virt_alloc_node_nopanic(
  4209. alloc_size, zone->zone_pgdat->node_id);
  4210. } else {
  4211. /*
  4212. * This case means that a zone whose size was 0 gets new memory
  4213. * via memory hot-add.
  4214. * But it may be the case that a new node was hot-added. In
  4215. * this case vmalloc() will not be able to use this new node's
  4216. * memory - this wait_table must be initialized to use this new
  4217. * node itself as well.
  4218. * To use this new node's memory, further consideration will be
  4219. * necessary.
  4220. */
  4221. zone->wait_table = vmalloc(alloc_size);
  4222. }
  4223. if (!zone->wait_table)
  4224. return -ENOMEM;
  4225. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4226. init_waitqueue_head(zone->wait_table + i);
  4227. return 0;
  4228. }
  4229. static __meminit void zone_pcp_init(struct zone *zone)
  4230. {
  4231. /*
  4232. * per cpu subsystem is not up at this point. The following code
  4233. * relies on the ability of the linker to provide the
  4234. * offset of a (static) per cpu variable into the per cpu area.
  4235. */
  4236. zone->pageset = &boot_pageset;
  4237. if (populated_zone(zone))
  4238. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4239. zone->name, zone->present_pages,
  4240. zone_batchsize(zone));
  4241. }
  4242. int __meminit init_currently_empty_zone(struct zone *zone,
  4243. unsigned long zone_start_pfn,
  4244. unsigned long size)
  4245. {
  4246. struct pglist_data *pgdat = zone->zone_pgdat;
  4247. int ret;
  4248. ret = zone_wait_table_init(zone, size);
  4249. if (ret)
  4250. return ret;
  4251. pgdat->nr_zones = zone_idx(zone) + 1;
  4252. zone->zone_start_pfn = zone_start_pfn;
  4253. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4254. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4255. pgdat->node_id,
  4256. (unsigned long)zone_idx(zone),
  4257. zone_start_pfn, (zone_start_pfn + size));
  4258. zone_init_free_lists(zone);
  4259. return 0;
  4260. }
  4261. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4262. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4263. /*
  4264. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4265. */
  4266. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4267. struct mminit_pfnnid_cache *state)
  4268. {
  4269. unsigned long start_pfn, end_pfn;
  4270. int nid;
  4271. if (state->last_start <= pfn && pfn < state->last_end)
  4272. return state->last_nid;
  4273. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4274. if (nid != -1) {
  4275. state->last_start = start_pfn;
  4276. state->last_end = end_pfn;
  4277. state->last_nid = nid;
  4278. }
  4279. return nid;
  4280. }
  4281. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4282. /**
  4283. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4284. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4285. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4286. *
  4287. * If an architecture guarantees that all ranges registered contain no holes
  4288. * and may be freed, this this function may be used instead of calling
  4289. * memblock_free_early_nid() manually.
  4290. */
  4291. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4292. {
  4293. unsigned long start_pfn, end_pfn;
  4294. int i, this_nid;
  4295. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4296. start_pfn = min(start_pfn, max_low_pfn);
  4297. end_pfn = min(end_pfn, max_low_pfn);
  4298. if (start_pfn < end_pfn)
  4299. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4300. (end_pfn - start_pfn) << PAGE_SHIFT,
  4301. this_nid);
  4302. }
  4303. }
  4304. /**
  4305. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4306. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4307. *
  4308. * If an architecture guarantees that all ranges registered contain no holes and may
  4309. * be freed, this function may be used instead of calling memory_present() manually.
  4310. */
  4311. void __init sparse_memory_present_with_active_regions(int nid)
  4312. {
  4313. unsigned long start_pfn, end_pfn;
  4314. int i, this_nid;
  4315. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4316. memory_present(this_nid, start_pfn, end_pfn);
  4317. }
  4318. /**
  4319. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4320. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4321. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4322. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4323. *
  4324. * It returns the start and end page frame of a node based on information
  4325. * provided by memblock_set_node(). If called for a node
  4326. * with no available memory, a warning is printed and the start and end
  4327. * PFNs will be 0.
  4328. */
  4329. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4330. unsigned long *start_pfn, unsigned long *end_pfn)
  4331. {
  4332. unsigned long this_start_pfn, this_end_pfn;
  4333. int i;
  4334. *start_pfn = -1UL;
  4335. *end_pfn = 0;
  4336. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4337. *start_pfn = min(*start_pfn, this_start_pfn);
  4338. *end_pfn = max(*end_pfn, this_end_pfn);
  4339. }
  4340. if (*start_pfn == -1UL)
  4341. *start_pfn = 0;
  4342. }
  4343. /*
  4344. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4345. * assumption is made that zones within a node are ordered in monotonic
  4346. * increasing memory addresses so that the "highest" populated zone is used
  4347. */
  4348. static void __init find_usable_zone_for_movable(void)
  4349. {
  4350. int zone_index;
  4351. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4352. if (zone_index == ZONE_MOVABLE)
  4353. continue;
  4354. if (arch_zone_highest_possible_pfn[zone_index] >
  4355. arch_zone_lowest_possible_pfn[zone_index])
  4356. break;
  4357. }
  4358. VM_BUG_ON(zone_index == -1);
  4359. movable_zone = zone_index;
  4360. }
  4361. /*
  4362. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4363. * because it is sized independent of architecture. Unlike the other zones,
  4364. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4365. * in each node depending on the size of each node and how evenly kernelcore
  4366. * is distributed. This helper function adjusts the zone ranges
  4367. * provided by the architecture for a given node by using the end of the
  4368. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4369. * zones within a node are in order of monotonic increases memory addresses
  4370. */
  4371. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4372. unsigned long zone_type,
  4373. unsigned long node_start_pfn,
  4374. unsigned long node_end_pfn,
  4375. unsigned long *zone_start_pfn,
  4376. unsigned long *zone_end_pfn)
  4377. {
  4378. /* Only adjust if ZONE_MOVABLE is on this node */
  4379. if (zone_movable_pfn[nid]) {
  4380. /* Size ZONE_MOVABLE */
  4381. if (zone_type == ZONE_MOVABLE) {
  4382. *zone_start_pfn = zone_movable_pfn[nid];
  4383. *zone_end_pfn = min(node_end_pfn,
  4384. arch_zone_highest_possible_pfn[movable_zone]);
  4385. /* Adjust for ZONE_MOVABLE starting within this range */
  4386. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  4387. *zone_end_pfn > zone_movable_pfn[nid]) {
  4388. *zone_end_pfn = zone_movable_pfn[nid];
  4389. /* Check if this whole range is within ZONE_MOVABLE */
  4390. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4391. *zone_start_pfn = *zone_end_pfn;
  4392. }
  4393. }
  4394. /*
  4395. * Return the number of pages a zone spans in a node, including holes
  4396. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4397. */
  4398. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4399. unsigned long zone_type,
  4400. unsigned long node_start_pfn,
  4401. unsigned long node_end_pfn,
  4402. unsigned long *ignored)
  4403. {
  4404. unsigned long zone_start_pfn, zone_end_pfn;
  4405. /* When hotadd a new node from cpu_up(), the node should be empty */
  4406. if (!node_start_pfn && !node_end_pfn)
  4407. return 0;
  4408. /* Get the start and end of the zone */
  4409. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4410. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4411. adjust_zone_range_for_zone_movable(nid, zone_type,
  4412. node_start_pfn, node_end_pfn,
  4413. &zone_start_pfn, &zone_end_pfn);
  4414. /* Check that this node has pages within the zone's required range */
  4415. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4416. return 0;
  4417. /* Move the zone boundaries inside the node if necessary */
  4418. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4419. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4420. /* Return the spanned pages */
  4421. return zone_end_pfn - zone_start_pfn;
  4422. }
  4423. /*
  4424. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4425. * then all holes in the requested range will be accounted for.
  4426. */
  4427. unsigned long __meminit __absent_pages_in_range(int nid,
  4428. unsigned long range_start_pfn,
  4429. unsigned long range_end_pfn)
  4430. {
  4431. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4432. unsigned long start_pfn, end_pfn;
  4433. int i;
  4434. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4435. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4436. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4437. nr_absent -= end_pfn - start_pfn;
  4438. }
  4439. return nr_absent;
  4440. }
  4441. /**
  4442. * absent_pages_in_range - Return number of page frames in holes within a range
  4443. * @start_pfn: The start PFN to start searching for holes
  4444. * @end_pfn: The end PFN to stop searching for holes
  4445. *
  4446. * It returns the number of pages frames in memory holes within a range.
  4447. */
  4448. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4449. unsigned long end_pfn)
  4450. {
  4451. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4452. }
  4453. /* Return the number of page frames in holes in a zone on a node */
  4454. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4455. unsigned long zone_type,
  4456. unsigned long node_start_pfn,
  4457. unsigned long node_end_pfn,
  4458. unsigned long *ignored)
  4459. {
  4460. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4461. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4462. unsigned long zone_start_pfn, zone_end_pfn;
  4463. /* When hotadd a new node from cpu_up(), the node should be empty */
  4464. if (!node_start_pfn && !node_end_pfn)
  4465. return 0;
  4466. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4467. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4468. adjust_zone_range_for_zone_movable(nid, zone_type,
  4469. node_start_pfn, node_end_pfn,
  4470. &zone_start_pfn, &zone_end_pfn);
  4471. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4472. }
  4473. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4474. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4475. unsigned long zone_type,
  4476. unsigned long node_start_pfn,
  4477. unsigned long node_end_pfn,
  4478. unsigned long *zones_size)
  4479. {
  4480. return zones_size[zone_type];
  4481. }
  4482. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4483. unsigned long zone_type,
  4484. unsigned long node_start_pfn,
  4485. unsigned long node_end_pfn,
  4486. unsigned long *zholes_size)
  4487. {
  4488. if (!zholes_size)
  4489. return 0;
  4490. return zholes_size[zone_type];
  4491. }
  4492. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4493. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4494. unsigned long node_start_pfn,
  4495. unsigned long node_end_pfn,
  4496. unsigned long *zones_size,
  4497. unsigned long *zholes_size)
  4498. {
  4499. unsigned long realtotalpages = 0, totalpages = 0;
  4500. enum zone_type i;
  4501. for (i = 0; i < MAX_NR_ZONES; i++) {
  4502. struct zone *zone = pgdat->node_zones + i;
  4503. unsigned long size, real_size;
  4504. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4505. node_start_pfn,
  4506. node_end_pfn,
  4507. zones_size);
  4508. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4509. node_start_pfn, node_end_pfn,
  4510. zholes_size);
  4511. zone->spanned_pages = size;
  4512. zone->present_pages = real_size;
  4513. totalpages += size;
  4514. realtotalpages += real_size;
  4515. }
  4516. pgdat->node_spanned_pages = totalpages;
  4517. pgdat->node_present_pages = realtotalpages;
  4518. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4519. realtotalpages);
  4520. }
  4521. #ifndef CONFIG_SPARSEMEM
  4522. /*
  4523. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4524. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4525. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4526. * round what is now in bits to nearest long in bits, then return it in
  4527. * bytes.
  4528. */
  4529. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4530. {
  4531. unsigned long usemapsize;
  4532. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4533. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4534. usemapsize = usemapsize >> pageblock_order;
  4535. usemapsize *= NR_PAGEBLOCK_BITS;
  4536. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4537. return usemapsize / 8;
  4538. }
  4539. static void __init setup_usemap(struct pglist_data *pgdat,
  4540. struct zone *zone,
  4541. unsigned long zone_start_pfn,
  4542. unsigned long zonesize)
  4543. {
  4544. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4545. zone->pageblock_flags = NULL;
  4546. if (usemapsize)
  4547. zone->pageblock_flags =
  4548. memblock_virt_alloc_node_nopanic(usemapsize,
  4549. pgdat->node_id);
  4550. }
  4551. #else
  4552. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4553. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4554. #endif /* CONFIG_SPARSEMEM */
  4555. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4556. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4557. void __paginginit set_pageblock_order(void)
  4558. {
  4559. unsigned int order;
  4560. /* Check that pageblock_nr_pages has not already been setup */
  4561. if (pageblock_order)
  4562. return;
  4563. if (HPAGE_SHIFT > PAGE_SHIFT)
  4564. order = HUGETLB_PAGE_ORDER;
  4565. else
  4566. order = MAX_ORDER - 1;
  4567. /*
  4568. * Assume the largest contiguous order of interest is a huge page.
  4569. * This value may be variable depending on boot parameters on IA64 and
  4570. * powerpc.
  4571. */
  4572. pageblock_order = order;
  4573. }
  4574. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4575. /*
  4576. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4577. * is unused as pageblock_order is set at compile-time. See
  4578. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4579. * the kernel config
  4580. */
  4581. void __paginginit set_pageblock_order(void)
  4582. {
  4583. }
  4584. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4585. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4586. unsigned long present_pages)
  4587. {
  4588. unsigned long pages = spanned_pages;
  4589. /*
  4590. * Provide a more accurate estimation if there are holes within
  4591. * the zone and SPARSEMEM is in use. If there are holes within the
  4592. * zone, each populated memory region may cost us one or two extra
  4593. * memmap pages due to alignment because memmap pages for each
  4594. * populated regions may not naturally algined on page boundary.
  4595. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4596. */
  4597. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4598. IS_ENABLED(CONFIG_SPARSEMEM))
  4599. pages = present_pages;
  4600. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4601. }
  4602. /*
  4603. * Set up the zone data structures:
  4604. * - mark all pages reserved
  4605. * - mark all memory queues empty
  4606. * - clear the memory bitmaps
  4607. *
  4608. * NOTE: pgdat should get zeroed by caller.
  4609. */
  4610. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4611. {
  4612. enum zone_type j;
  4613. int nid = pgdat->node_id;
  4614. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4615. int ret;
  4616. pgdat_resize_init(pgdat);
  4617. #ifdef CONFIG_NUMA_BALANCING
  4618. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4619. pgdat->numabalancing_migrate_nr_pages = 0;
  4620. pgdat->numabalancing_migrate_next_window = jiffies;
  4621. #endif
  4622. init_waitqueue_head(&pgdat->kswapd_wait);
  4623. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4624. pgdat_page_ext_init(pgdat);
  4625. for (j = 0; j < MAX_NR_ZONES; j++) {
  4626. struct zone *zone = pgdat->node_zones + j;
  4627. unsigned long size, realsize, freesize, memmap_pages;
  4628. size = zone->spanned_pages;
  4629. realsize = freesize = zone->present_pages;
  4630. /*
  4631. * Adjust freesize so that it accounts for how much memory
  4632. * is used by this zone for memmap. This affects the watermark
  4633. * and per-cpu initialisations
  4634. */
  4635. memmap_pages = calc_memmap_size(size, realsize);
  4636. if (!is_highmem_idx(j)) {
  4637. if (freesize >= memmap_pages) {
  4638. freesize -= memmap_pages;
  4639. if (memmap_pages)
  4640. printk(KERN_DEBUG
  4641. " %s zone: %lu pages used for memmap\n",
  4642. zone_names[j], memmap_pages);
  4643. } else
  4644. printk(KERN_WARNING
  4645. " %s zone: %lu pages exceeds freesize %lu\n",
  4646. zone_names[j], memmap_pages, freesize);
  4647. }
  4648. /* Account for reserved pages */
  4649. if (j == 0 && freesize > dma_reserve) {
  4650. freesize -= dma_reserve;
  4651. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4652. zone_names[0], dma_reserve);
  4653. }
  4654. if (!is_highmem_idx(j))
  4655. nr_kernel_pages += freesize;
  4656. /* Charge for highmem memmap if there are enough kernel pages */
  4657. else if (nr_kernel_pages > memmap_pages * 2)
  4658. nr_kernel_pages -= memmap_pages;
  4659. nr_all_pages += freesize;
  4660. /*
  4661. * Set an approximate value for lowmem here, it will be adjusted
  4662. * when the bootmem allocator frees pages into the buddy system.
  4663. * And all highmem pages will be managed by the buddy system.
  4664. */
  4665. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4666. #ifdef CONFIG_NUMA
  4667. zone->node = nid;
  4668. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4669. / 100;
  4670. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4671. #endif
  4672. zone->name = zone_names[j];
  4673. spin_lock_init(&zone->lock);
  4674. spin_lock_init(&zone->lru_lock);
  4675. zone_seqlock_init(zone);
  4676. zone->zone_pgdat = pgdat;
  4677. zone_pcp_init(zone);
  4678. /* For bootup, initialized properly in watermark setup */
  4679. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4680. lruvec_init(&zone->lruvec);
  4681. if (!size)
  4682. continue;
  4683. set_pageblock_order();
  4684. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4685. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  4686. BUG_ON(ret);
  4687. memmap_init(size, nid, j, zone_start_pfn);
  4688. zone_start_pfn += size;
  4689. }
  4690. }
  4691. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4692. {
  4693. unsigned long __maybe_unused offset = 0;
  4694. /* Skip empty nodes */
  4695. if (!pgdat->node_spanned_pages)
  4696. return;
  4697. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4698. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4699. if (!pgdat->node_mem_map) {
  4700. unsigned long size, start, end;
  4701. struct page *map;
  4702. /*
  4703. * The zone's endpoints aren't required to be MAX_ORDER
  4704. * aligned but the node_mem_map endpoints must be in order
  4705. * for the buddy allocator to function correctly.
  4706. */
  4707. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4708. offset = pgdat->node_start_pfn - start;
  4709. end = pgdat_end_pfn(pgdat);
  4710. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4711. size = (end - start) * sizeof(struct page);
  4712. map = alloc_remap(pgdat->node_id, size);
  4713. if (!map)
  4714. map = memblock_virt_alloc_node_nopanic(size,
  4715. pgdat->node_id);
  4716. pgdat->node_mem_map = map + offset;
  4717. }
  4718. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4719. /*
  4720. * With no DISCONTIG, the global mem_map is just set as node 0's
  4721. */
  4722. if (pgdat == NODE_DATA(0)) {
  4723. mem_map = NODE_DATA(0)->node_mem_map;
  4724. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  4725. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4726. mem_map -= offset;
  4727. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4728. }
  4729. #endif
  4730. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4731. }
  4732. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4733. unsigned long node_start_pfn, unsigned long *zholes_size)
  4734. {
  4735. pg_data_t *pgdat = NODE_DATA(nid);
  4736. unsigned long start_pfn = 0;
  4737. unsigned long end_pfn = 0;
  4738. /* pg_data_t should be reset to zero when it's allocated */
  4739. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4740. reset_deferred_meminit(pgdat);
  4741. pgdat->node_id = nid;
  4742. pgdat->node_start_pfn = node_start_pfn;
  4743. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4744. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4745. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4746. (u64)start_pfn << PAGE_SHIFT,
  4747. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  4748. #endif
  4749. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4750. zones_size, zholes_size);
  4751. alloc_node_mem_map(pgdat);
  4752. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4753. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4754. nid, (unsigned long)pgdat,
  4755. (unsigned long)pgdat->node_mem_map);
  4756. #endif
  4757. free_area_init_core(pgdat);
  4758. }
  4759. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4760. #if MAX_NUMNODES > 1
  4761. /*
  4762. * Figure out the number of possible node ids.
  4763. */
  4764. void __init setup_nr_node_ids(void)
  4765. {
  4766. unsigned int highest;
  4767. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  4768. nr_node_ids = highest + 1;
  4769. }
  4770. #endif
  4771. /**
  4772. * node_map_pfn_alignment - determine the maximum internode alignment
  4773. *
  4774. * This function should be called after node map is populated and sorted.
  4775. * It calculates the maximum power of two alignment which can distinguish
  4776. * all the nodes.
  4777. *
  4778. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4779. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4780. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4781. * shifted, 1GiB is enough and this function will indicate so.
  4782. *
  4783. * This is used to test whether pfn -> nid mapping of the chosen memory
  4784. * model has fine enough granularity to avoid incorrect mapping for the
  4785. * populated node map.
  4786. *
  4787. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4788. * requirement (single node).
  4789. */
  4790. unsigned long __init node_map_pfn_alignment(void)
  4791. {
  4792. unsigned long accl_mask = 0, last_end = 0;
  4793. unsigned long start, end, mask;
  4794. int last_nid = -1;
  4795. int i, nid;
  4796. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4797. if (!start || last_nid < 0 || last_nid == nid) {
  4798. last_nid = nid;
  4799. last_end = end;
  4800. continue;
  4801. }
  4802. /*
  4803. * Start with a mask granular enough to pin-point to the
  4804. * start pfn and tick off bits one-by-one until it becomes
  4805. * too coarse to separate the current node from the last.
  4806. */
  4807. mask = ~((1 << __ffs(start)) - 1);
  4808. while (mask && last_end <= (start & (mask << 1)))
  4809. mask <<= 1;
  4810. /* accumulate all internode masks */
  4811. accl_mask |= mask;
  4812. }
  4813. /* convert mask to number of pages */
  4814. return ~accl_mask + 1;
  4815. }
  4816. /* Find the lowest pfn for a node */
  4817. static unsigned long __init find_min_pfn_for_node(int nid)
  4818. {
  4819. unsigned long min_pfn = ULONG_MAX;
  4820. unsigned long start_pfn;
  4821. int i;
  4822. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4823. min_pfn = min(min_pfn, start_pfn);
  4824. if (min_pfn == ULONG_MAX) {
  4825. printk(KERN_WARNING
  4826. "Could not find start_pfn for node %d\n", nid);
  4827. return 0;
  4828. }
  4829. return min_pfn;
  4830. }
  4831. /**
  4832. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4833. *
  4834. * It returns the minimum PFN based on information provided via
  4835. * memblock_set_node().
  4836. */
  4837. unsigned long __init find_min_pfn_with_active_regions(void)
  4838. {
  4839. return find_min_pfn_for_node(MAX_NUMNODES);
  4840. }
  4841. /*
  4842. * early_calculate_totalpages()
  4843. * Sum pages in active regions for movable zone.
  4844. * Populate N_MEMORY for calculating usable_nodes.
  4845. */
  4846. static unsigned long __init early_calculate_totalpages(void)
  4847. {
  4848. unsigned long totalpages = 0;
  4849. unsigned long start_pfn, end_pfn;
  4850. int i, nid;
  4851. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4852. unsigned long pages = end_pfn - start_pfn;
  4853. totalpages += pages;
  4854. if (pages)
  4855. node_set_state(nid, N_MEMORY);
  4856. }
  4857. return totalpages;
  4858. }
  4859. /*
  4860. * Find the PFN the Movable zone begins in each node. Kernel memory
  4861. * is spread evenly between nodes as long as the nodes have enough
  4862. * memory. When they don't, some nodes will have more kernelcore than
  4863. * others
  4864. */
  4865. static void __init find_zone_movable_pfns_for_nodes(void)
  4866. {
  4867. int i, nid;
  4868. unsigned long usable_startpfn;
  4869. unsigned long kernelcore_node, kernelcore_remaining;
  4870. /* save the state before borrow the nodemask */
  4871. nodemask_t saved_node_state = node_states[N_MEMORY];
  4872. unsigned long totalpages = early_calculate_totalpages();
  4873. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4874. struct memblock_region *r;
  4875. /* Need to find movable_zone earlier when movable_node is specified. */
  4876. find_usable_zone_for_movable();
  4877. /*
  4878. * If movable_node is specified, ignore kernelcore and movablecore
  4879. * options.
  4880. */
  4881. if (movable_node_is_enabled()) {
  4882. for_each_memblock(memory, r) {
  4883. if (!memblock_is_hotpluggable(r))
  4884. continue;
  4885. nid = r->nid;
  4886. usable_startpfn = PFN_DOWN(r->base);
  4887. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4888. min(usable_startpfn, zone_movable_pfn[nid]) :
  4889. usable_startpfn;
  4890. }
  4891. goto out2;
  4892. }
  4893. /*
  4894. * If movablecore=nn[KMG] was specified, calculate what size of
  4895. * kernelcore that corresponds so that memory usable for
  4896. * any allocation type is evenly spread. If both kernelcore
  4897. * and movablecore are specified, then the value of kernelcore
  4898. * will be used for required_kernelcore if it's greater than
  4899. * what movablecore would have allowed.
  4900. */
  4901. if (required_movablecore) {
  4902. unsigned long corepages;
  4903. /*
  4904. * Round-up so that ZONE_MOVABLE is at least as large as what
  4905. * was requested by the user
  4906. */
  4907. required_movablecore =
  4908. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4909. required_movablecore = min(totalpages, required_movablecore);
  4910. corepages = totalpages - required_movablecore;
  4911. required_kernelcore = max(required_kernelcore, corepages);
  4912. }
  4913. /*
  4914. * If kernelcore was not specified or kernelcore size is larger
  4915. * than totalpages, there is no ZONE_MOVABLE.
  4916. */
  4917. if (!required_kernelcore || required_kernelcore >= totalpages)
  4918. goto out;
  4919. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4920. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4921. restart:
  4922. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4923. kernelcore_node = required_kernelcore / usable_nodes;
  4924. for_each_node_state(nid, N_MEMORY) {
  4925. unsigned long start_pfn, end_pfn;
  4926. /*
  4927. * Recalculate kernelcore_node if the division per node
  4928. * now exceeds what is necessary to satisfy the requested
  4929. * amount of memory for the kernel
  4930. */
  4931. if (required_kernelcore < kernelcore_node)
  4932. kernelcore_node = required_kernelcore / usable_nodes;
  4933. /*
  4934. * As the map is walked, we track how much memory is usable
  4935. * by the kernel using kernelcore_remaining. When it is
  4936. * 0, the rest of the node is usable by ZONE_MOVABLE
  4937. */
  4938. kernelcore_remaining = kernelcore_node;
  4939. /* Go through each range of PFNs within this node */
  4940. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4941. unsigned long size_pages;
  4942. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4943. if (start_pfn >= end_pfn)
  4944. continue;
  4945. /* Account for what is only usable for kernelcore */
  4946. if (start_pfn < usable_startpfn) {
  4947. unsigned long kernel_pages;
  4948. kernel_pages = min(end_pfn, usable_startpfn)
  4949. - start_pfn;
  4950. kernelcore_remaining -= min(kernel_pages,
  4951. kernelcore_remaining);
  4952. required_kernelcore -= min(kernel_pages,
  4953. required_kernelcore);
  4954. /* Continue if range is now fully accounted */
  4955. if (end_pfn <= usable_startpfn) {
  4956. /*
  4957. * Push zone_movable_pfn to the end so
  4958. * that if we have to rebalance
  4959. * kernelcore across nodes, we will
  4960. * not double account here
  4961. */
  4962. zone_movable_pfn[nid] = end_pfn;
  4963. continue;
  4964. }
  4965. start_pfn = usable_startpfn;
  4966. }
  4967. /*
  4968. * The usable PFN range for ZONE_MOVABLE is from
  4969. * start_pfn->end_pfn. Calculate size_pages as the
  4970. * number of pages used as kernelcore
  4971. */
  4972. size_pages = end_pfn - start_pfn;
  4973. if (size_pages > kernelcore_remaining)
  4974. size_pages = kernelcore_remaining;
  4975. zone_movable_pfn[nid] = start_pfn + size_pages;
  4976. /*
  4977. * Some kernelcore has been met, update counts and
  4978. * break if the kernelcore for this node has been
  4979. * satisfied
  4980. */
  4981. required_kernelcore -= min(required_kernelcore,
  4982. size_pages);
  4983. kernelcore_remaining -= size_pages;
  4984. if (!kernelcore_remaining)
  4985. break;
  4986. }
  4987. }
  4988. /*
  4989. * If there is still required_kernelcore, we do another pass with one
  4990. * less node in the count. This will push zone_movable_pfn[nid] further
  4991. * along on the nodes that still have memory until kernelcore is
  4992. * satisfied
  4993. */
  4994. usable_nodes--;
  4995. if (usable_nodes && required_kernelcore > usable_nodes)
  4996. goto restart;
  4997. out2:
  4998. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4999. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5000. zone_movable_pfn[nid] =
  5001. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5002. out:
  5003. /* restore the node_state */
  5004. node_states[N_MEMORY] = saved_node_state;
  5005. }
  5006. /* Any regular or high memory on that node ? */
  5007. static void check_for_memory(pg_data_t *pgdat, int nid)
  5008. {
  5009. enum zone_type zone_type;
  5010. if (N_MEMORY == N_NORMAL_MEMORY)
  5011. return;
  5012. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5013. struct zone *zone = &pgdat->node_zones[zone_type];
  5014. if (populated_zone(zone)) {
  5015. node_set_state(nid, N_HIGH_MEMORY);
  5016. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5017. zone_type <= ZONE_NORMAL)
  5018. node_set_state(nid, N_NORMAL_MEMORY);
  5019. break;
  5020. }
  5021. }
  5022. }
  5023. /**
  5024. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5025. * @max_zone_pfn: an array of max PFNs for each zone
  5026. *
  5027. * This will call free_area_init_node() for each active node in the system.
  5028. * Using the page ranges provided by memblock_set_node(), the size of each
  5029. * zone in each node and their holes is calculated. If the maximum PFN
  5030. * between two adjacent zones match, it is assumed that the zone is empty.
  5031. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5032. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5033. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5034. * at arch_max_dma_pfn.
  5035. */
  5036. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5037. {
  5038. unsigned long start_pfn, end_pfn;
  5039. int i, nid;
  5040. /* Record where the zone boundaries are */
  5041. memset(arch_zone_lowest_possible_pfn, 0,
  5042. sizeof(arch_zone_lowest_possible_pfn));
  5043. memset(arch_zone_highest_possible_pfn, 0,
  5044. sizeof(arch_zone_highest_possible_pfn));
  5045. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5046. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5047. for (i = 1; i < MAX_NR_ZONES; i++) {
  5048. if (i == ZONE_MOVABLE)
  5049. continue;
  5050. arch_zone_lowest_possible_pfn[i] =
  5051. arch_zone_highest_possible_pfn[i-1];
  5052. arch_zone_highest_possible_pfn[i] =
  5053. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5054. }
  5055. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5056. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5057. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5058. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5059. find_zone_movable_pfns_for_nodes();
  5060. /* Print out the zone ranges */
  5061. pr_info("Zone ranges:\n");
  5062. for (i = 0; i < MAX_NR_ZONES; i++) {
  5063. if (i == ZONE_MOVABLE)
  5064. continue;
  5065. pr_info(" %-8s ", zone_names[i]);
  5066. if (arch_zone_lowest_possible_pfn[i] ==
  5067. arch_zone_highest_possible_pfn[i])
  5068. pr_cont("empty\n");
  5069. else
  5070. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5071. (u64)arch_zone_lowest_possible_pfn[i]
  5072. << PAGE_SHIFT,
  5073. ((u64)arch_zone_highest_possible_pfn[i]
  5074. << PAGE_SHIFT) - 1);
  5075. }
  5076. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5077. pr_info("Movable zone start for each node\n");
  5078. for (i = 0; i < MAX_NUMNODES; i++) {
  5079. if (zone_movable_pfn[i])
  5080. pr_info(" Node %d: %#018Lx\n", i,
  5081. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5082. }
  5083. /* Print out the early node map */
  5084. pr_info("Early memory node ranges\n");
  5085. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5086. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5087. (u64)start_pfn << PAGE_SHIFT,
  5088. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5089. /* Initialise every node */
  5090. mminit_verify_pageflags_layout();
  5091. setup_nr_node_ids();
  5092. for_each_online_node(nid) {
  5093. pg_data_t *pgdat = NODE_DATA(nid);
  5094. free_area_init_node(nid, NULL,
  5095. find_min_pfn_for_node(nid), NULL);
  5096. /* Any memory on that node */
  5097. if (pgdat->node_present_pages)
  5098. node_set_state(nid, N_MEMORY);
  5099. check_for_memory(pgdat, nid);
  5100. }
  5101. }
  5102. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5103. {
  5104. unsigned long long coremem;
  5105. if (!p)
  5106. return -EINVAL;
  5107. coremem = memparse(p, &p);
  5108. *core = coremem >> PAGE_SHIFT;
  5109. /* Paranoid check that UL is enough for the coremem value */
  5110. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5111. return 0;
  5112. }
  5113. /*
  5114. * kernelcore=size sets the amount of memory for use for allocations that
  5115. * cannot be reclaimed or migrated.
  5116. */
  5117. static int __init cmdline_parse_kernelcore(char *p)
  5118. {
  5119. return cmdline_parse_core(p, &required_kernelcore);
  5120. }
  5121. /*
  5122. * movablecore=size sets the amount of memory for use for allocations that
  5123. * can be reclaimed or migrated.
  5124. */
  5125. static int __init cmdline_parse_movablecore(char *p)
  5126. {
  5127. return cmdline_parse_core(p, &required_movablecore);
  5128. }
  5129. early_param("kernelcore", cmdline_parse_kernelcore);
  5130. early_param("movablecore", cmdline_parse_movablecore);
  5131. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5132. void adjust_managed_page_count(struct page *page, long count)
  5133. {
  5134. spin_lock(&managed_page_count_lock);
  5135. page_zone(page)->managed_pages += count;
  5136. totalram_pages += count;
  5137. #ifdef CONFIG_HIGHMEM
  5138. if (PageHighMem(page))
  5139. totalhigh_pages += count;
  5140. #endif
  5141. spin_unlock(&managed_page_count_lock);
  5142. }
  5143. EXPORT_SYMBOL(adjust_managed_page_count);
  5144. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5145. {
  5146. void *pos;
  5147. unsigned long pages = 0;
  5148. start = (void *)PAGE_ALIGN((unsigned long)start);
  5149. end = (void *)((unsigned long)end & PAGE_MASK);
  5150. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5151. if ((unsigned int)poison <= 0xFF)
  5152. memset(pos, poison, PAGE_SIZE);
  5153. free_reserved_page(virt_to_page(pos));
  5154. }
  5155. if (pages && s)
  5156. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5157. s, pages << (PAGE_SHIFT - 10), start, end);
  5158. return pages;
  5159. }
  5160. EXPORT_SYMBOL(free_reserved_area);
  5161. #ifdef CONFIG_HIGHMEM
  5162. void free_highmem_page(struct page *page)
  5163. {
  5164. __free_reserved_page(page);
  5165. totalram_pages++;
  5166. page_zone(page)->managed_pages++;
  5167. totalhigh_pages++;
  5168. }
  5169. #endif
  5170. void __init mem_init_print_info(const char *str)
  5171. {
  5172. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5173. unsigned long init_code_size, init_data_size;
  5174. physpages = get_num_physpages();
  5175. codesize = _etext - _stext;
  5176. datasize = _edata - _sdata;
  5177. rosize = __end_rodata - __start_rodata;
  5178. bss_size = __bss_stop - __bss_start;
  5179. init_data_size = __init_end - __init_begin;
  5180. init_code_size = _einittext - _sinittext;
  5181. /*
  5182. * Detect special cases and adjust section sizes accordingly:
  5183. * 1) .init.* may be embedded into .data sections
  5184. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5185. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5186. * 3) .rodata.* may be embedded into .text or .data sections.
  5187. */
  5188. #define adj_init_size(start, end, size, pos, adj) \
  5189. do { \
  5190. if (start <= pos && pos < end && size > adj) \
  5191. size -= adj; \
  5192. } while (0)
  5193. adj_init_size(__init_begin, __init_end, init_data_size,
  5194. _sinittext, init_code_size);
  5195. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5196. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5197. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5198. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5199. #undef adj_init_size
  5200. pr_info("Memory: %luK/%luK available "
  5201. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5202. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5203. #ifdef CONFIG_HIGHMEM
  5204. ", %luK highmem"
  5205. #endif
  5206. "%s%s)\n",
  5207. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5208. codesize >> 10, datasize >> 10, rosize >> 10,
  5209. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5210. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5211. totalcma_pages << (PAGE_SHIFT-10),
  5212. #ifdef CONFIG_HIGHMEM
  5213. totalhigh_pages << (PAGE_SHIFT-10),
  5214. #endif
  5215. str ? ", " : "", str ? str : "");
  5216. }
  5217. /**
  5218. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5219. * @new_dma_reserve: The number of pages to mark reserved
  5220. *
  5221. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5222. * In the DMA zone, a significant percentage may be consumed by kernel image
  5223. * and other unfreeable allocations which can skew the watermarks badly. This
  5224. * function may optionally be used to account for unfreeable pages in the
  5225. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5226. * smaller per-cpu batchsize.
  5227. */
  5228. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5229. {
  5230. dma_reserve = new_dma_reserve;
  5231. }
  5232. void __init free_area_init(unsigned long *zones_size)
  5233. {
  5234. free_area_init_node(0, zones_size,
  5235. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5236. }
  5237. static int page_alloc_cpu_notify(struct notifier_block *self,
  5238. unsigned long action, void *hcpu)
  5239. {
  5240. int cpu = (unsigned long)hcpu;
  5241. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5242. lru_add_drain_cpu(cpu);
  5243. drain_pages(cpu);
  5244. /*
  5245. * Spill the event counters of the dead processor
  5246. * into the current processors event counters.
  5247. * This artificially elevates the count of the current
  5248. * processor.
  5249. */
  5250. vm_events_fold_cpu(cpu);
  5251. /*
  5252. * Zero the differential counters of the dead processor
  5253. * so that the vm statistics are consistent.
  5254. *
  5255. * This is only okay since the processor is dead and cannot
  5256. * race with what we are doing.
  5257. */
  5258. cpu_vm_stats_fold(cpu);
  5259. }
  5260. return NOTIFY_OK;
  5261. }
  5262. void __init page_alloc_init(void)
  5263. {
  5264. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5265. }
  5266. /*
  5267. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5268. * or min_free_kbytes changes.
  5269. */
  5270. static void calculate_totalreserve_pages(void)
  5271. {
  5272. struct pglist_data *pgdat;
  5273. unsigned long reserve_pages = 0;
  5274. enum zone_type i, j;
  5275. for_each_online_pgdat(pgdat) {
  5276. for (i = 0; i < MAX_NR_ZONES; i++) {
  5277. struct zone *zone = pgdat->node_zones + i;
  5278. long max = 0;
  5279. /* Find valid and maximum lowmem_reserve in the zone */
  5280. for (j = i; j < MAX_NR_ZONES; j++) {
  5281. if (zone->lowmem_reserve[j] > max)
  5282. max = zone->lowmem_reserve[j];
  5283. }
  5284. /* we treat the high watermark as reserved pages. */
  5285. max += high_wmark_pages(zone);
  5286. if (max > zone->managed_pages)
  5287. max = zone->managed_pages;
  5288. reserve_pages += max;
  5289. /*
  5290. * Lowmem reserves are not available to
  5291. * GFP_HIGHUSER page cache allocations and
  5292. * kswapd tries to balance zones to their high
  5293. * watermark. As a result, neither should be
  5294. * regarded as dirtyable memory, to prevent a
  5295. * situation where reclaim has to clean pages
  5296. * in order to balance the zones.
  5297. */
  5298. zone->dirty_balance_reserve = max;
  5299. }
  5300. }
  5301. dirty_balance_reserve = reserve_pages;
  5302. totalreserve_pages = reserve_pages;
  5303. }
  5304. /*
  5305. * setup_per_zone_lowmem_reserve - called whenever
  5306. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5307. * has a correct pages reserved value, so an adequate number of
  5308. * pages are left in the zone after a successful __alloc_pages().
  5309. */
  5310. static void setup_per_zone_lowmem_reserve(void)
  5311. {
  5312. struct pglist_data *pgdat;
  5313. enum zone_type j, idx;
  5314. for_each_online_pgdat(pgdat) {
  5315. for (j = 0; j < MAX_NR_ZONES; j++) {
  5316. struct zone *zone = pgdat->node_zones + j;
  5317. unsigned long managed_pages = zone->managed_pages;
  5318. zone->lowmem_reserve[j] = 0;
  5319. idx = j;
  5320. while (idx) {
  5321. struct zone *lower_zone;
  5322. idx--;
  5323. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5324. sysctl_lowmem_reserve_ratio[idx] = 1;
  5325. lower_zone = pgdat->node_zones + idx;
  5326. lower_zone->lowmem_reserve[j] = managed_pages /
  5327. sysctl_lowmem_reserve_ratio[idx];
  5328. managed_pages += lower_zone->managed_pages;
  5329. }
  5330. }
  5331. }
  5332. /* update totalreserve_pages */
  5333. calculate_totalreserve_pages();
  5334. }
  5335. static void __setup_per_zone_wmarks(void)
  5336. {
  5337. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5338. unsigned long lowmem_pages = 0;
  5339. struct zone *zone;
  5340. unsigned long flags;
  5341. /* Calculate total number of !ZONE_HIGHMEM pages */
  5342. for_each_zone(zone) {
  5343. if (!is_highmem(zone))
  5344. lowmem_pages += zone->managed_pages;
  5345. }
  5346. for_each_zone(zone) {
  5347. u64 tmp;
  5348. spin_lock_irqsave(&zone->lock, flags);
  5349. tmp = (u64)pages_min * zone->managed_pages;
  5350. do_div(tmp, lowmem_pages);
  5351. if (is_highmem(zone)) {
  5352. /*
  5353. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5354. * need highmem pages, so cap pages_min to a small
  5355. * value here.
  5356. *
  5357. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5358. * deltas control asynch page reclaim, and so should
  5359. * not be capped for highmem.
  5360. */
  5361. unsigned long min_pages;
  5362. min_pages = zone->managed_pages / 1024;
  5363. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5364. zone->watermark[WMARK_MIN] = min_pages;
  5365. } else {
  5366. /*
  5367. * If it's a lowmem zone, reserve a number of pages
  5368. * proportionate to the zone's size.
  5369. */
  5370. zone->watermark[WMARK_MIN] = tmp;
  5371. }
  5372. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5373. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5374. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5375. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5376. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5377. setup_zone_migrate_reserve(zone);
  5378. spin_unlock_irqrestore(&zone->lock, flags);
  5379. }
  5380. /* update totalreserve_pages */
  5381. calculate_totalreserve_pages();
  5382. }
  5383. /**
  5384. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5385. * or when memory is hot-{added|removed}
  5386. *
  5387. * Ensures that the watermark[min,low,high] values for each zone are set
  5388. * correctly with respect to min_free_kbytes.
  5389. */
  5390. void setup_per_zone_wmarks(void)
  5391. {
  5392. mutex_lock(&zonelists_mutex);
  5393. __setup_per_zone_wmarks();
  5394. mutex_unlock(&zonelists_mutex);
  5395. }
  5396. /*
  5397. * The inactive anon list should be small enough that the VM never has to
  5398. * do too much work, but large enough that each inactive page has a chance
  5399. * to be referenced again before it is swapped out.
  5400. *
  5401. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5402. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5403. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5404. * the anonymous pages are kept on the inactive list.
  5405. *
  5406. * total target max
  5407. * memory ratio inactive anon
  5408. * -------------------------------------
  5409. * 10MB 1 5MB
  5410. * 100MB 1 50MB
  5411. * 1GB 3 250MB
  5412. * 10GB 10 0.9GB
  5413. * 100GB 31 3GB
  5414. * 1TB 101 10GB
  5415. * 10TB 320 32GB
  5416. */
  5417. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5418. {
  5419. unsigned int gb, ratio;
  5420. /* Zone size in gigabytes */
  5421. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5422. if (gb)
  5423. ratio = int_sqrt(10 * gb);
  5424. else
  5425. ratio = 1;
  5426. zone->inactive_ratio = ratio;
  5427. }
  5428. static void __meminit setup_per_zone_inactive_ratio(void)
  5429. {
  5430. struct zone *zone;
  5431. for_each_zone(zone)
  5432. calculate_zone_inactive_ratio(zone);
  5433. }
  5434. /*
  5435. * Initialise min_free_kbytes.
  5436. *
  5437. * For small machines we want it small (128k min). For large machines
  5438. * we want it large (64MB max). But it is not linear, because network
  5439. * bandwidth does not increase linearly with machine size. We use
  5440. *
  5441. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5442. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5443. *
  5444. * which yields
  5445. *
  5446. * 16MB: 512k
  5447. * 32MB: 724k
  5448. * 64MB: 1024k
  5449. * 128MB: 1448k
  5450. * 256MB: 2048k
  5451. * 512MB: 2896k
  5452. * 1024MB: 4096k
  5453. * 2048MB: 5792k
  5454. * 4096MB: 8192k
  5455. * 8192MB: 11584k
  5456. * 16384MB: 16384k
  5457. */
  5458. int __meminit init_per_zone_wmark_min(void)
  5459. {
  5460. unsigned long lowmem_kbytes;
  5461. int new_min_free_kbytes;
  5462. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5463. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5464. if (new_min_free_kbytes > user_min_free_kbytes) {
  5465. min_free_kbytes = new_min_free_kbytes;
  5466. if (min_free_kbytes < 128)
  5467. min_free_kbytes = 128;
  5468. if (min_free_kbytes > 65536)
  5469. min_free_kbytes = 65536;
  5470. } else {
  5471. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5472. new_min_free_kbytes, user_min_free_kbytes);
  5473. }
  5474. setup_per_zone_wmarks();
  5475. refresh_zone_stat_thresholds();
  5476. setup_per_zone_lowmem_reserve();
  5477. setup_per_zone_inactive_ratio();
  5478. return 0;
  5479. }
  5480. module_init(init_per_zone_wmark_min)
  5481. /*
  5482. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5483. * that we can call two helper functions whenever min_free_kbytes
  5484. * changes.
  5485. */
  5486. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5487. void __user *buffer, size_t *length, loff_t *ppos)
  5488. {
  5489. int rc;
  5490. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5491. if (rc)
  5492. return rc;
  5493. if (write) {
  5494. user_min_free_kbytes = min_free_kbytes;
  5495. setup_per_zone_wmarks();
  5496. }
  5497. return 0;
  5498. }
  5499. #ifdef CONFIG_NUMA
  5500. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5501. void __user *buffer, size_t *length, loff_t *ppos)
  5502. {
  5503. struct zone *zone;
  5504. int rc;
  5505. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5506. if (rc)
  5507. return rc;
  5508. for_each_zone(zone)
  5509. zone->min_unmapped_pages = (zone->managed_pages *
  5510. sysctl_min_unmapped_ratio) / 100;
  5511. return 0;
  5512. }
  5513. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5514. void __user *buffer, size_t *length, loff_t *ppos)
  5515. {
  5516. struct zone *zone;
  5517. int rc;
  5518. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5519. if (rc)
  5520. return rc;
  5521. for_each_zone(zone)
  5522. zone->min_slab_pages = (zone->managed_pages *
  5523. sysctl_min_slab_ratio) / 100;
  5524. return 0;
  5525. }
  5526. #endif
  5527. /*
  5528. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5529. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5530. * whenever sysctl_lowmem_reserve_ratio changes.
  5531. *
  5532. * The reserve ratio obviously has absolutely no relation with the
  5533. * minimum watermarks. The lowmem reserve ratio can only make sense
  5534. * if in function of the boot time zone sizes.
  5535. */
  5536. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5537. void __user *buffer, size_t *length, loff_t *ppos)
  5538. {
  5539. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5540. setup_per_zone_lowmem_reserve();
  5541. return 0;
  5542. }
  5543. /*
  5544. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5545. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5546. * pagelist can have before it gets flushed back to buddy allocator.
  5547. */
  5548. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5549. void __user *buffer, size_t *length, loff_t *ppos)
  5550. {
  5551. struct zone *zone;
  5552. int old_percpu_pagelist_fraction;
  5553. int ret;
  5554. mutex_lock(&pcp_batch_high_lock);
  5555. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5556. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5557. if (!write || ret < 0)
  5558. goto out;
  5559. /* Sanity checking to avoid pcp imbalance */
  5560. if (percpu_pagelist_fraction &&
  5561. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5562. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5563. ret = -EINVAL;
  5564. goto out;
  5565. }
  5566. /* No change? */
  5567. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5568. goto out;
  5569. for_each_populated_zone(zone) {
  5570. unsigned int cpu;
  5571. for_each_possible_cpu(cpu)
  5572. pageset_set_high_and_batch(zone,
  5573. per_cpu_ptr(zone->pageset, cpu));
  5574. }
  5575. out:
  5576. mutex_unlock(&pcp_batch_high_lock);
  5577. return ret;
  5578. }
  5579. #ifdef CONFIG_NUMA
  5580. int hashdist = HASHDIST_DEFAULT;
  5581. static int __init set_hashdist(char *str)
  5582. {
  5583. if (!str)
  5584. return 0;
  5585. hashdist = simple_strtoul(str, &str, 0);
  5586. return 1;
  5587. }
  5588. __setup("hashdist=", set_hashdist);
  5589. #endif
  5590. /*
  5591. * allocate a large system hash table from bootmem
  5592. * - it is assumed that the hash table must contain an exact power-of-2
  5593. * quantity of entries
  5594. * - limit is the number of hash buckets, not the total allocation size
  5595. */
  5596. void *__init alloc_large_system_hash(const char *tablename,
  5597. unsigned long bucketsize,
  5598. unsigned long numentries,
  5599. int scale,
  5600. int flags,
  5601. unsigned int *_hash_shift,
  5602. unsigned int *_hash_mask,
  5603. unsigned long low_limit,
  5604. unsigned long high_limit)
  5605. {
  5606. unsigned long long max = high_limit;
  5607. unsigned long log2qty, size;
  5608. void *table = NULL;
  5609. /* allow the kernel cmdline to have a say */
  5610. if (!numentries) {
  5611. /* round applicable memory size up to nearest megabyte */
  5612. numentries = nr_kernel_pages;
  5613. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5614. if (PAGE_SHIFT < 20)
  5615. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5616. /* limit to 1 bucket per 2^scale bytes of low memory */
  5617. if (scale > PAGE_SHIFT)
  5618. numentries >>= (scale - PAGE_SHIFT);
  5619. else
  5620. numentries <<= (PAGE_SHIFT - scale);
  5621. /* Make sure we've got at least a 0-order allocation.. */
  5622. if (unlikely(flags & HASH_SMALL)) {
  5623. /* Makes no sense without HASH_EARLY */
  5624. WARN_ON(!(flags & HASH_EARLY));
  5625. if (!(numentries >> *_hash_shift)) {
  5626. numentries = 1UL << *_hash_shift;
  5627. BUG_ON(!numentries);
  5628. }
  5629. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5630. numentries = PAGE_SIZE / bucketsize;
  5631. }
  5632. numentries = roundup_pow_of_two(numentries);
  5633. /* limit allocation size to 1/16 total memory by default */
  5634. if (max == 0) {
  5635. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5636. do_div(max, bucketsize);
  5637. }
  5638. max = min(max, 0x80000000ULL);
  5639. if (numentries < low_limit)
  5640. numentries = low_limit;
  5641. if (numentries > max)
  5642. numentries = max;
  5643. log2qty = ilog2(numentries);
  5644. do {
  5645. size = bucketsize << log2qty;
  5646. if (flags & HASH_EARLY)
  5647. table = memblock_virt_alloc_nopanic(size, 0);
  5648. else if (hashdist)
  5649. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5650. else {
  5651. /*
  5652. * If bucketsize is not a power-of-two, we may free
  5653. * some pages at the end of hash table which
  5654. * alloc_pages_exact() automatically does
  5655. */
  5656. if (get_order(size) < MAX_ORDER) {
  5657. table = alloc_pages_exact(size, GFP_ATOMIC);
  5658. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5659. }
  5660. }
  5661. } while (!table && size > PAGE_SIZE && --log2qty);
  5662. if (!table)
  5663. panic("Failed to allocate %s hash table\n", tablename);
  5664. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5665. tablename,
  5666. (1UL << log2qty),
  5667. ilog2(size) - PAGE_SHIFT,
  5668. size);
  5669. if (_hash_shift)
  5670. *_hash_shift = log2qty;
  5671. if (_hash_mask)
  5672. *_hash_mask = (1 << log2qty) - 1;
  5673. return table;
  5674. }
  5675. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5676. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5677. unsigned long pfn)
  5678. {
  5679. #ifdef CONFIG_SPARSEMEM
  5680. return __pfn_to_section(pfn)->pageblock_flags;
  5681. #else
  5682. return zone->pageblock_flags;
  5683. #endif /* CONFIG_SPARSEMEM */
  5684. }
  5685. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5686. {
  5687. #ifdef CONFIG_SPARSEMEM
  5688. pfn &= (PAGES_PER_SECTION-1);
  5689. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5690. #else
  5691. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5692. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5693. #endif /* CONFIG_SPARSEMEM */
  5694. }
  5695. /**
  5696. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5697. * @page: The page within the block of interest
  5698. * @pfn: The target page frame number
  5699. * @end_bitidx: The last bit of interest to retrieve
  5700. * @mask: mask of bits that the caller is interested in
  5701. *
  5702. * Return: pageblock_bits flags
  5703. */
  5704. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5705. unsigned long end_bitidx,
  5706. unsigned long mask)
  5707. {
  5708. struct zone *zone;
  5709. unsigned long *bitmap;
  5710. unsigned long bitidx, word_bitidx;
  5711. unsigned long word;
  5712. zone = page_zone(page);
  5713. bitmap = get_pageblock_bitmap(zone, pfn);
  5714. bitidx = pfn_to_bitidx(zone, pfn);
  5715. word_bitidx = bitidx / BITS_PER_LONG;
  5716. bitidx &= (BITS_PER_LONG-1);
  5717. word = bitmap[word_bitidx];
  5718. bitidx += end_bitidx;
  5719. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5720. }
  5721. /**
  5722. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5723. * @page: The page within the block of interest
  5724. * @flags: The flags to set
  5725. * @pfn: The target page frame number
  5726. * @end_bitidx: The last bit of interest
  5727. * @mask: mask of bits that the caller is interested in
  5728. */
  5729. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5730. unsigned long pfn,
  5731. unsigned long end_bitidx,
  5732. unsigned long mask)
  5733. {
  5734. struct zone *zone;
  5735. unsigned long *bitmap;
  5736. unsigned long bitidx, word_bitidx;
  5737. unsigned long old_word, word;
  5738. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5739. zone = page_zone(page);
  5740. bitmap = get_pageblock_bitmap(zone, pfn);
  5741. bitidx = pfn_to_bitidx(zone, pfn);
  5742. word_bitidx = bitidx / BITS_PER_LONG;
  5743. bitidx &= (BITS_PER_LONG-1);
  5744. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5745. bitidx += end_bitidx;
  5746. mask <<= (BITS_PER_LONG - bitidx - 1);
  5747. flags <<= (BITS_PER_LONG - bitidx - 1);
  5748. word = READ_ONCE(bitmap[word_bitidx]);
  5749. for (;;) {
  5750. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5751. if (word == old_word)
  5752. break;
  5753. word = old_word;
  5754. }
  5755. }
  5756. /*
  5757. * This function checks whether pageblock includes unmovable pages or not.
  5758. * If @count is not zero, it is okay to include less @count unmovable pages
  5759. *
  5760. * PageLRU check without isolation or lru_lock could race so that
  5761. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5762. * expect this function should be exact.
  5763. */
  5764. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5765. bool skip_hwpoisoned_pages)
  5766. {
  5767. unsigned long pfn, iter, found;
  5768. int mt;
  5769. /*
  5770. * For avoiding noise data, lru_add_drain_all() should be called
  5771. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5772. */
  5773. if (zone_idx(zone) == ZONE_MOVABLE)
  5774. return false;
  5775. mt = get_pageblock_migratetype(page);
  5776. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5777. return false;
  5778. pfn = page_to_pfn(page);
  5779. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5780. unsigned long check = pfn + iter;
  5781. if (!pfn_valid_within(check))
  5782. continue;
  5783. page = pfn_to_page(check);
  5784. /*
  5785. * Hugepages are not in LRU lists, but they're movable.
  5786. * We need not scan over tail pages bacause we don't
  5787. * handle each tail page individually in migration.
  5788. */
  5789. if (PageHuge(page)) {
  5790. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5791. continue;
  5792. }
  5793. /*
  5794. * We can't use page_count without pin a page
  5795. * because another CPU can free compound page.
  5796. * This check already skips compound tails of THP
  5797. * because their page->_count is zero at all time.
  5798. */
  5799. if (!atomic_read(&page->_count)) {
  5800. if (PageBuddy(page))
  5801. iter += (1 << page_order(page)) - 1;
  5802. continue;
  5803. }
  5804. /*
  5805. * The HWPoisoned page may be not in buddy system, and
  5806. * page_count() is not 0.
  5807. */
  5808. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5809. continue;
  5810. if (!PageLRU(page))
  5811. found++;
  5812. /*
  5813. * If there are RECLAIMABLE pages, we need to check
  5814. * it. But now, memory offline itself doesn't call
  5815. * shrink_node_slabs() and it still to be fixed.
  5816. */
  5817. /*
  5818. * If the page is not RAM, page_count()should be 0.
  5819. * we don't need more check. This is an _used_ not-movable page.
  5820. *
  5821. * The problematic thing here is PG_reserved pages. PG_reserved
  5822. * is set to both of a memory hole page and a _used_ kernel
  5823. * page at boot.
  5824. */
  5825. if (found > count)
  5826. return true;
  5827. }
  5828. return false;
  5829. }
  5830. bool is_pageblock_removable_nolock(struct page *page)
  5831. {
  5832. struct zone *zone;
  5833. unsigned long pfn;
  5834. /*
  5835. * We have to be careful here because we are iterating over memory
  5836. * sections which are not zone aware so we might end up outside of
  5837. * the zone but still within the section.
  5838. * We have to take care about the node as well. If the node is offline
  5839. * its NODE_DATA will be NULL - see page_zone.
  5840. */
  5841. if (!node_online(page_to_nid(page)))
  5842. return false;
  5843. zone = page_zone(page);
  5844. pfn = page_to_pfn(page);
  5845. if (!zone_spans_pfn(zone, pfn))
  5846. return false;
  5847. return !has_unmovable_pages(zone, page, 0, true);
  5848. }
  5849. #ifdef CONFIG_CMA
  5850. static unsigned long pfn_max_align_down(unsigned long pfn)
  5851. {
  5852. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5853. pageblock_nr_pages) - 1);
  5854. }
  5855. static unsigned long pfn_max_align_up(unsigned long pfn)
  5856. {
  5857. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5858. pageblock_nr_pages));
  5859. }
  5860. /* [start, end) must belong to a single zone. */
  5861. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5862. unsigned long start, unsigned long end)
  5863. {
  5864. /* This function is based on compact_zone() from compaction.c. */
  5865. unsigned long nr_reclaimed;
  5866. unsigned long pfn = start;
  5867. unsigned int tries = 0;
  5868. int ret = 0;
  5869. migrate_prep();
  5870. while (pfn < end || !list_empty(&cc->migratepages)) {
  5871. if (fatal_signal_pending(current)) {
  5872. ret = -EINTR;
  5873. break;
  5874. }
  5875. if (list_empty(&cc->migratepages)) {
  5876. cc->nr_migratepages = 0;
  5877. pfn = isolate_migratepages_range(cc, pfn, end);
  5878. if (!pfn) {
  5879. ret = -EINTR;
  5880. break;
  5881. }
  5882. tries = 0;
  5883. } else if (++tries == 5) {
  5884. ret = ret < 0 ? ret : -EBUSY;
  5885. break;
  5886. }
  5887. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5888. &cc->migratepages);
  5889. cc->nr_migratepages -= nr_reclaimed;
  5890. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5891. NULL, 0, cc->mode, MR_CMA);
  5892. }
  5893. if (ret < 0) {
  5894. putback_movable_pages(&cc->migratepages);
  5895. return ret;
  5896. }
  5897. return 0;
  5898. }
  5899. /**
  5900. * alloc_contig_range() -- tries to allocate given range of pages
  5901. * @start: start PFN to allocate
  5902. * @end: one-past-the-last PFN to allocate
  5903. * @migratetype: migratetype of the underlaying pageblocks (either
  5904. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5905. * in range must have the same migratetype and it must
  5906. * be either of the two.
  5907. *
  5908. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5909. * aligned, however it's the caller's responsibility to guarantee that
  5910. * we are the only thread that changes migrate type of pageblocks the
  5911. * pages fall in.
  5912. *
  5913. * The PFN range must belong to a single zone.
  5914. *
  5915. * Returns zero on success or negative error code. On success all
  5916. * pages which PFN is in [start, end) are allocated for the caller and
  5917. * need to be freed with free_contig_range().
  5918. */
  5919. int alloc_contig_range(unsigned long start, unsigned long end,
  5920. unsigned migratetype)
  5921. {
  5922. unsigned long outer_start, outer_end;
  5923. int ret = 0, order;
  5924. struct compact_control cc = {
  5925. .nr_migratepages = 0,
  5926. .order = -1,
  5927. .zone = page_zone(pfn_to_page(start)),
  5928. .mode = MIGRATE_SYNC,
  5929. .ignore_skip_hint = true,
  5930. };
  5931. INIT_LIST_HEAD(&cc.migratepages);
  5932. /*
  5933. * What we do here is we mark all pageblocks in range as
  5934. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5935. * have different sizes, and due to the way page allocator
  5936. * work, we align the range to biggest of the two pages so
  5937. * that page allocator won't try to merge buddies from
  5938. * different pageblocks and change MIGRATE_ISOLATE to some
  5939. * other migration type.
  5940. *
  5941. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5942. * migrate the pages from an unaligned range (ie. pages that
  5943. * we are interested in). This will put all the pages in
  5944. * range back to page allocator as MIGRATE_ISOLATE.
  5945. *
  5946. * When this is done, we take the pages in range from page
  5947. * allocator removing them from the buddy system. This way
  5948. * page allocator will never consider using them.
  5949. *
  5950. * This lets us mark the pageblocks back as
  5951. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5952. * aligned range but not in the unaligned, original range are
  5953. * put back to page allocator so that buddy can use them.
  5954. */
  5955. ret = start_isolate_page_range(pfn_max_align_down(start),
  5956. pfn_max_align_up(end), migratetype,
  5957. false);
  5958. if (ret)
  5959. return ret;
  5960. ret = __alloc_contig_migrate_range(&cc, start, end);
  5961. if (ret)
  5962. goto done;
  5963. /*
  5964. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5965. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5966. * more, all pages in [start, end) are free in page allocator.
  5967. * What we are going to do is to allocate all pages from
  5968. * [start, end) (that is remove them from page allocator).
  5969. *
  5970. * The only problem is that pages at the beginning and at the
  5971. * end of interesting range may be not aligned with pages that
  5972. * page allocator holds, ie. they can be part of higher order
  5973. * pages. Because of this, we reserve the bigger range and
  5974. * once this is done free the pages we are not interested in.
  5975. *
  5976. * We don't have to hold zone->lock here because the pages are
  5977. * isolated thus they won't get removed from buddy.
  5978. */
  5979. lru_add_drain_all();
  5980. drain_all_pages(cc.zone);
  5981. order = 0;
  5982. outer_start = start;
  5983. while (!PageBuddy(pfn_to_page(outer_start))) {
  5984. if (++order >= MAX_ORDER) {
  5985. ret = -EBUSY;
  5986. goto done;
  5987. }
  5988. outer_start &= ~0UL << order;
  5989. }
  5990. /* Make sure the range is really isolated. */
  5991. if (test_pages_isolated(outer_start, end, false)) {
  5992. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5993. __func__, outer_start, end);
  5994. ret = -EBUSY;
  5995. goto done;
  5996. }
  5997. /* Grab isolated pages from freelists. */
  5998. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5999. if (!outer_end) {
  6000. ret = -EBUSY;
  6001. goto done;
  6002. }
  6003. /* Free head and tail (if any) */
  6004. if (start != outer_start)
  6005. free_contig_range(outer_start, start - outer_start);
  6006. if (end != outer_end)
  6007. free_contig_range(end, outer_end - end);
  6008. done:
  6009. undo_isolate_page_range(pfn_max_align_down(start),
  6010. pfn_max_align_up(end), migratetype);
  6011. return ret;
  6012. }
  6013. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6014. {
  6015. unsigned int count = 0;
  6016. for (; nr_pages--; pfn++) {
  6017. struct page *page = pfn_to_page(pfn);
  6018. count += page_count(page) != 1;
  6019. __free_page(page);
  6020. }
  6021. WARN(count != 0, "%d pages are still in use!\n", count);
  6022. }
  6023. #endif
  6024. #ifdef CONFIG_MEMORY_HOTPLUG
  6025. /*
  6026. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6027. * page high values need to be recalulated.
  6028. */
  6029. void __meminit zone_pcp_update(struct zone *zone)
  6030. {
  6031. unsigned cpu;
  6032. mutex_lock(&pcp_batch_high_lock);
  6033. for_each_possible_cpu(cpu)
  6034. pageset_set_high_and_batch(zone,
  6035. per_cpu_ptr(zone->pageset, cpu));
  6036. mutex_unlock(&pcp_batch_high_lock);
  6037. }
  6038. #endif
  6039. void zone_pcp_reset(struct zone *zone)
  6040. {
  6041. unsigned long flags;
  6042. int cpu;
  6043. struct per_cpu_pageset *pset;
  6044. /* avoid races with drain_pages() */
  6045. local_irq_save(flags);
  6046. if (zone->pageset != &boot_pageset) {
  6047. for_each_online_cpu(cpu) {
  6048. pset = per_cpu_ptr(zone->pageset, cpu);
  6049. drain_zonestat(zone, pset);
  6050. }
  6051. free_percpu(zone->pageset);
  6052. zone->pageset = &boot_pageset;
  6053. }
  6054. local_irq_restore(flags);
  6055. }
  6056. #ifdef CONFIG_MEMORY_HOTREMOVE
  6057. /*
  6058. * All pages in the range must be isolated before calling this.
  6059. */
  6060. void
  6061. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6062. {
  6063. struct page *page;
  6064. struct zone *zone;
  6065. unsigned int order, i;
  6066. unsigned long pfn;
  6067. unsigned long flags;
  6068. /* find the first valid pfn */
  6069. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6070. if (pfn_valid(pfn))
  6071. break;
  6072. if (pfn == end_pfn)
  6073. return;
  6074. zone = page_zone(pfn_to_page(pfn));
  6075. spin_lock_irqsave(&zone->lock, flags);
  6076. pfn = start_pfn;
  6077. while (pfn < end_pfn) {
  6078. if (!pfn_valid(pfn)) {
  6079. pfn++;
  6080. continue;
  6081. }
  6082. page = pfn_to_page(pfn);
  6083. /*
  6084. * The HWPoisoned page may be not in buddy system, and
  6085. * page_count() is not 0.
  6086. */
  6087. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6088. pfn++;
  6089. SetPageReserved(page);
  6090. continue;
  6091. }
  6092. BUG_ON(page_count(page));
  6093. BUG_ON(!PageBuddy(page));
  6094. order = page_order(page);
  6095. #ifdef CONFIG_DEBUG_VM
  6096. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  6097. pfn, 1 << order, end_pfn);
  6098. #endif
  6099. list_del(&page->lru);
  6100. rmv_page_order(page);
  6101. zone->free_area[order].nr_free--;
  6102. for (i = 0; i < (1 << order); i++)
  6103. SetPageReserved((page+i));
  6104. pfn += (1 << order);
  6105. }
  6106. spin_unlock_irqrestore(&zone->lock, flags);
  6107. }
  6108. #endif
  6109. #ifdef CONFIG_MEMORY_FAILURE
  6110. bool is_free_buddy_page(struct page *page)
  6111. {
  6112. struct zone *zone = page_zone(page);
  6113. unsigned long pfn = page_to_pfn(page);
  6114. unsigned long flags;
  6115. unsigned int order;
  6116. spin_lock_irqsave(&zone->lock, flags);
  6117. for (order = 0; order < MAX_ORDER; order++) {
  6118. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6119. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6120. break;
  6121. }
  6122. spin_unlock_irqrestore(&zone->lock, flags);
  6123. return order < MAX_ORDER;
  6124. }
  6125. #endif