file.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include "trace.h"
  29. #include <trace/events/f2fs.h>
  30. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  31. struct vm_fault *vmf)
  32. {
  33. struct page *page = vmf->page;
  34. struct inode *inode = file_inode(vma->vm_file);
  35. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  36. struct dnode_of_data dn;
  37. int err;
  38. f2fs_balance_fs(sbi);
  39. sb_start_pagefault(inode->i_sb);
  40. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  41. /* block allocation */
  42. f2fs_lock_op(sbi);
  43. set_new_dnode(&dn, inode, NULL, NULL, 0);
  44. err = f2fs_reserve_block(&dn, page->index);
  45. if (err) {
  46. f2fs_unlock_op(sbi);
  47. goto out;
  48. }
  49. f2fs_put_dnode(&dn);
  50. f2fs_unlock_op(sbi);
  51. file_update_time(vma->vm_file);
  52. lock_page(page);
  53. if (unlikely(page->mapping != inode->i_mapping ||
  54. page_offset(page) > i_size_read(inode) ||
  55. !PageUptodate(page))) {
  56. unlock_page(page);
  57. err = -EFAULT;
  58. goto out;
  59. }
  60. /*
  61. * check to see if the page is mapped already (no holes)
  62. */
  63. if (PageMappedToDisk(page))
  64. goto mapped;
  65. /* page is wholly or partially inside EOF */
  66. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  67. unsigned offset;
  68. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  69. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  70. }
  71. set_page_dirty(page);
  72. SetPageUptodate(page);
  73. trace_f2fs_vm_page_mkwrite(page, DATA);
  74. mapped:
  75. /* fill the page */
  76. f2fs_wait_on_page_writeback(page, DATA);
  77. out:
  78. sb_end_pagefault(inode->i_sb);
  79. return block_page_mkwrite_return(err);
  80. }
  81. static const struct vm_operations_struct f2fs_file_vm_ops = {
  82. .fault = filemap_fault,
  83. .map_pages = filemap_map_pages,
  84. .page_mkwrite = f2fs_vm_page_mkwrite,
  85. };
  86. static int get_parent_ino(struct inode *inode, nid_t *pino)
  87. {
  88. struct dentry *dentry;
  89. inode = igrab(inode);
  90. dentry = d_find_any_alias(inode);
  91. iput(inode);
  92. if (!dentry)
  93. return 0;
  94. if (update_dent_inode(inode, &dentry->d_name)) {
  95. dput(dentry);
  96. return 0;
  97. }
  98. *pino = parent_ino(dentry);
  99. dput(dentry);
  100. return 1;
  101. }
  102. static inline bool need_do_checkpoint(struct inode *inode)
  103. {
  104. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  105. bool need_cp = false;
  106. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  107. need_cp = true;
  108. else if (file_wrong_pino(inode))
  109. need_cp = true;
  110. else if (!space_for_roll_forward(sbi))
  111. need_cp = true;
  112. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  113. need_cp = true;
  114. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  115. need_cp = true;
  116. else if (test_opt(sbi, FASTBOOT))
  117. need_cp = true;
  118. else if (sbi->active_logs == 2)
  119. need_cp = true;
  120. return need_cp;
  121. }
  122. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  123. {
  124. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  125. bool ret = false;
  126. /* But we need to avoid that there are some inode updates */
  127. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  128. ret = true;
  129. f2fs_put_page(i, 0);
  130. return ret;
  131. }
  132. static void try_to_fix_pino(struct inode *inode)
  133. {
  134. struct f2fs_inode_info *fi = F2FS_I(inode);
  135. nid_t pino;
  136. down_write(&fi->i_sem);
  137. fi->xattr_ver = 0;
  138. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  139. get_parent_ino(inode, &pino)) {
  140. fi->i_pino = pino;
  141. file_got_pino(inode);
  142. up_write(&fi->i_sem);
  143. mark_inode_dirty_sync(inode);
  144. f2fs_write_inode(inode, NULL);
  145. } else {
  146. up_write(&fi->i_sem);
  147. }
  148. }
  149. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  150. {
  151. struct inode *inode = file->f_mapping->host;
  152. struct f2fs_inode_info *fi = F2FS_I(inode);
  153. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  154. nid_t ino = inode->i_ino;
  155. int ret = 0;
  156. bool need_cp = false;
  157. struct writeback_control wbc = {
  158. .sync_mode = WB_SYNC_ALL,
  159. .nr_to_write = LONG_MAX,
  160. .for_reclaim = 0,
  161. };
  162. if (unlikely(f2fs_readonly(inode->i_sb)))
  163. return 0;
  164. trace_f2fs_sync_file_enter(inode);
  165. /* if fdatasync is triggered, let's do in-place-update */
  166. if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  167. set_inode_flag(fi, FI_NEED_IPU);
  168. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  169. clear_inode_flag(fi, FI_NEED_IPU);
  170. if (ret) {
  171. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  172. return ret;
  173. }
  174. /* if the inode is dirty, let's recover all the time */
  175. if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
  176. update_inode_page(inode);
  177. goto go_write;
  178. }
  179. /*
  180. * if there is no written data, don't waste time to write recovery info.
  181. */
  182. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  183. !exist_written_data(sbi, ino, APPEND_INO)) {
  184. /* it may call write_inode just prior to fsync */
  185. if (need_inode_page_update(sbi, ino))
  186. goto go_write;
  187. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  188. exist_written_data(sbi, ino, UPDATE_INO))
  189. goto flush_out;
  190. goto out;
  191. }
  192. go_write:
  193. /* guarantee free sections for fsync */
  194. f2fs_balance_fs(sbi);
  195. /*
  196. * Both of fdatasync() and fsync() are able to be recovered from
  197. * sudden-power-off.
  198. */
  199. down_read(&fi->i_sem);
  200. need_cp = need_do_checkpoint(inode);
  201. up_read(&fi->i_sem);
  202. if (need_cp) {
  203. /* all the dirty node pages should be flushed for POR */
  204. ret = f2fs_sync_fs(inode->i_sb, 1);
  205. /*
  206. * We've secured consistency through sync_fs. Following pino
  207. * will be used only for fsynced inodes after checkpoint.
  208. */
  209. try_to_fix_pino(inode);
  210. clear_inode_flag(fi, FI_APPEND_WRITE);
  211. clear_inode_flag(fi, FI_UPDATE_WRITE);
  212. goto out;
  213. }
  214. sync_nodes:
  215. sync_node_pages(sbi, ino, &wbc);
  216. /* if cp_error was enabled, we should avoid infinite loop */
  217. if (unlikely(f2fs_cp_error(sbi)))
  218. goto out;
  219. if (need_inode_block_update(sbi, ino)) {
  220. mark_inode_dirty_sync(inode);
  221. f2fs_write_inode(inode, NULL);
  222. goto sync_nodes;
  223. }
  224. ret = wait_on_node_pages_writeback(sbi, ino);
  225. if (ret)
  226. goto out;
  227. /* once recovery info is written, don't need to tack this */
  228. remove_dirty_inode(sbi, ino, APPEND_INO);
  229. clear_inode_flag(fi, FI_APPEND_WRITE);
  230. flush_out:
  231. remove_dirty_inode(sbi, ino, UPDATE_INO);
  232. clear_inode_flag(fi, FI_UPDATE_WRITE);
  233. ret = f2fs_issue_flush(sbi);
  234. out:
  235. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  236. f2fs_trace_ios(NULL, NULL, 1);
  237. return ret;
  238. }
  239. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  240. pgoff_t pgofs, int whence)
  241. {
  242. struct pagevec pvec;
  243. int nr_pages;
  244. if (whence != SEEK_DATA)
  245. return 0;
  246. /* find first dirty page index */
  247. pagevec_init(&pvec, 0);
  248. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  249. PAGECACHE_TAG_DIRTY, 1);
  250. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  251. pagevec_release(&pvec);
  252. return pgofs;
  253. }
  254. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  255. int whence)
  256. {
  257. switch (whence) {
  258. case SEEK_DATA:
  259. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  260. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  261. return true;
  262. break;
  263. case SEEK_HOLE:
  264. if (blkaddr == NULL_ADDR)
  265. return true;
  266. break;
  267. }
  268. return false;
  269. }
  270. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  271. {
  272. struct inode *inode = file->f_mapping->host;
  273. loff_t maxbytes = inode->i_sb->s_maxbytes;
  274. struct dnode_of_data dn;
  275. pgoff_t pgofs, end_offset, dirty;
  276. loff_t data_ofs = offset;
  277. loff_t isize;
  278. int err = 0;
  279. mutex_lock(&inode->i_mutex);
  280. isize = i_size_read(inode);
  281. if (offset >= isize)
  282. goto fail;
  283. /* handle inline data case */
  284. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  285. if (whence == SEEK_HOLE)
  286. data_ofs = isize;
  287. goto found;
  288. }
  289. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  290. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  291. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  292. set_new_dnode(&dn, inode, NULL, NULL, 0);
  293. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  294. if (err && err != -ENOENT) {
  295. goto fail;
  296. } else if (err == -ENOENT) {
  297. /* direct node does not exists */
  298. if (whence == SEEK_DATA) {
  299. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  300. F2FS_I(inode));
  301. continue;
  302. } else {
  303. goto found;
  304. }
  305. }
  306. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  307. /* find data/hole in dnode block */
  308. for (; dn.ofs_in_node < end_offset;
  309. dn.ofs_in_node++, pgofs++,
  310. data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  311. block_t blkaddr;
  312. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  313. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  314. f2fs_put_dnode(&dn);
  315. goto found;
  316. }
  317. }
  318. f2fs_put_dnode(&dn);
  319. }
  320. if (whence == SEEK_DATA)
  321. goto fail;
  322. found:
  323. if (whence == SEEK_HOLE && data_ofs > isize)
  324. data_ofs = isize;
  325. mutex_unlock(&inode->i_mutex);
  326. return vfs_setpos(file, data_ofs, maxbytes);
  327. fail:
  328. mutex_unlock(&inode->i_mutex);
  329. return -ENXIO;
  330. }
  331. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  332. {
  333. struct inode *inode = file->f_mapping->host;
  334. loff_t maxbytes = inode->i_sb->s_maxbytes;
  335. switch (whence) {
  336. case SEEK_SET:
  337. case SEEK_CUR:
  338. case SEEK_END:
  339. return generic_file_llseek_size(file, offset, whence,
  340. maxbytes, i_size_read(inode));
  341. case SEEK_DATA:
  342. case SEEK_HOLE:
  343. if (offset < 0)
  344. return -ENXIO;
  345. return f2fs_seek_block(file, offset, whence);
  346. }
  347. return -EINVAL;
  348. }
  349. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  350. {
  351. struct inode *inode = file_inode(file);
  352. /* we don't need to use inline_data strictly */
  353. if (f2fs_has_inline_data(inode)) {
  354. int err = f2fs_convert_inline_inode(inode);
  355. if (err)
  356. return err;
  357. }
  358. file_accessed(file);
  359. vma->vm_ops = &f2fs_file_vm_ops;
  360. return 0;
  361. }
  362. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  363. {
  364. int nr_free = 0, ofs = dn->ofs_in_node;
  365. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  366. struct f2fs_node *raw_node;
  367. __le32 *addr;
  368. raw_node = F2FS_NODE(dn->node_page);
  369. addr = blkaddr_in_node(raw_node) + ofs;
  370. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  371. block_t blkaddr = le32_to_cpu(*addr);
  372. if (blkaddr == NULL_ADDR)
  373. continue;
  374. dn->data_blkaddr = NULL_ADDR;
  375. f2fs_update_extent_cache(dn);
  376. invalidate_blocks(sbi, blkaddr);
  377. nr_free++;
  378. }
  379. if (nr_free) {
  380. dec_valid_block_count(sbi, dn->inode, nr_free);
  381. set_page_dirty(dn->node_page);
  382. sync_inode_page(dn);
  383. }
  384. dn->ofs_in_node = ofs;
  385. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  386. dn->ofs_in_node, nr_free);
  387. return nr_free;
  388. }
  389. void truncate_data_blocks(struct dnode_of_data *dn)
  390. {
  391. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  392. }
  393. static int truncate_partial_data_page(struct inode *inode, u64 from)
  394. {
  395. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  396. struct page *page;
  397. if (!offset)
  398. return 0;
  399. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  400. if (IS_ERR(page))
  401. return 0;
  402. lock_page(page);
  403. if (unlikely(!PageUptodate(page) ||
  404. page->mapping != inode->i_mapping))
  405. goto out;
  406. f2fs_wait_on_page_writeback(page, DATA);
  407. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  408. set_page_dirty(page);
  409. out:
  410. f2fs_put_page(page, 1);
  411. return 0;
  412. }
  413. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  414. {
  415. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  416. unsigned int blocksize = inode->i_sb->s_blocksize;
  417. struct dnode_of_data dn;
  418. pgoff_t free_from;
  419. int count = 0, err = 0;
  420. struct page *ipage;
  421. trace_f2fs_truncate_blocks_enter(inode, from);
  422. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  423. if (lock)
  424. f2fs_lock_op(sbi);
  425. ipage = get_node_page(sbi, inode->i_ino);
  426. if (IS_ERR(ipage)) {
  427. err = PTR_ERR(ipage);
  428. goto out;
  429. }
  430. if (f2fs_has_inline_data(inode)) {
  431. f2fs_put_page(ipage, 1);
  432. goto out;
  433. }
  434. set_new_dnode(&dn, inode, ipage, NULL, 0);
  435. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  436. if (err) {
  437. if (err == -ENOENT)
  438. goto free_next;
  439. goto out;
  440. }
  441. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  442. count -= dn.ofs_in_node;
  443. f2fs_bug_on(sbi, count < 0);
  444. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  445. truncate_data_blocks_range(&dn, count);
  446. free_from += count;
  447. }
  448. f2fs_put_dnode(&dn);
  449. free_next:
  450. err = truncate_inode_blocks(inode, free_from);
  451. out:
  452. if (lock)
  453. f2fs_unlock_op(sbi);
  454. /* lastly zero out the first data page */
  455. if (!err)
  456. err = truncate_partial_data_page(inode, from);
  457. trace_f2fs_truncate_blocks_exit(inode, err);
  458. return err;
  459. }
  460. void f2fs_truncate(struct inode *inode)
  461. {
  462. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  463. S_ISLNK(inode->i_mode)))
  464. return;
  465. trace_f2fs_truncate(inode);
  466. /* we should check inline_data size */
  467. if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
  468. if (f2fs_convert_inline_inode(inode))
  469. return;
  470. }
  471. if (!truncate_blocks(inode, i_size_read(inode), true)) {
  472. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  473. mark_inode_dirty(inode);
  474. }
  475. }
  476. int f2fs_getattr(struct vfsmount *mnt,
  477. struct dentry *dentry, struct kstat *stat)
  478. {
  479. struct inode *inode = dentry->d_inode;
  480. generic_fillattr(inode, stat);
  481. stat->blocks <<= 3;
  482. return 0;
  483. }
  484. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  485. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  486. {
  487. struct f2fs_inode_info *fi = F2FS_I(inode);
  488. unsigned int ia_valid = attr->ia_valid;
  489. if (ia_valid & ATTR_UID)
  490. inode->i_uid = attr->ia_uid;
  491. if (ia_valid & ATTR_GID)
  492. inode->i_gid = attr->ia_gid;
  493. if (ia_valid & ATTR_ATIME)
  494. inode->i_atime = timespec_trunc(attr->ia_atime,
  495. inode->i_sb->s_time_gran);
  496. if (ia_valid & ATTR_MTIME)
  497. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  498. inode->i_sb->s_time_gran);
  499. if (ia_valid & ATTR_CTIME)
  500. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  501. inode->i_sb->s_time_gran);
  502. if (ia_valid & ATTR_MODE) {
  503. umode_t mode = attr->ia_mode;
  504. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  505. mode &= ~S_ISGID;
  506. set_acl_inode(fi, mode);
  507. }
  508. }
  509. #else
  510. #define __setattr_copy setattr_copy
  511. #endif
  512. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  513. {
  514. struct inode *inode = dentry->d_inode;
  515. struct f2fs_inode_info *fi = F2FS_I(inode);
  516. int err;
  517. err = inode_change_ok(inode, attr);
  518. if (err)
  519. return err;
  520. if (attr->ia_valid & ATTR_SIZE) {
  521. if (attr->ia_size != i_size_read(inode)) {
  522. truncate_setsize(inode, attr->ia_size);
  523. f2fs_truncate(inode);
  524. f2fs_balance_fs(F2FS_I_SB(inode));
  525. } else {
  526. /*
  527. * giving a chance to truncate blocks past EOF which
  528. * are fallocated with FALLOC_FL_KEEP_SIZE.
  529. */
  530. f2fs_truncate(inode);
  531. }
  532. }
  533. __setattr_copy(inode, attr);
  534. if (attr->ia_valid & ATTR_MODE) {
  535. err = posix_acl_chmod(inode, get_inode_mode(inode));
  536. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  537. inode->i_mode = fi->i_acl_mode;
  538. clear_inode_flag(fi, FI_ACL_MODE);
  539. }
  540. }
  541. mark_inode_dirty(inode);
  542. return err;
  543. }
  544. const struct inode_operations f2fs_file_inode_operations = {
  545. .getattr = f2fs_getattr,
  546. .setattr = f2fs_setattr,
  547. .get_acl = f2fs_get_acl,
  548. .set_acl = f2fs_set_acl,
  549. #ifdef CONFIG_F2FS_FS_XATTR
  550. .setxattr = generic_setxattr,
  551. .getxattr = generic_getxattr,
  552. .listxattr = f2fs_listxattr,
  553. .removexattr = generic_removexattr,
  554. #endif
  555. .fiemap = f2fs_fiemap,
  556. };
  557. static void fill_zero(struct inode *inode, pgoff_t index,
  558. loff_t start, loff_t len)
  559. {
  560. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  561. struct page *page;
  562. if (!len)
  563. return;
  564. f2fs_balance_fs(sbi);
  565. f2fs_lock_op(sbi);
  566. page = get_new_data_page(inode, NULL, index, false);
  567. f2fs_unlock_op(sbi);
  568. if (!IS_ERR(page)) {
  569. f2fs_wait_on_page_writeback(page, DATA);
  570. zero_user(page, start, len);
  571. set_page_dirty(page);
  572. f2fs_put_page(page, 1);
  573. }
  574. }
  575. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  576. {
  577. pgoff_t index;
  578. int err;
  579. for (index = pg_start; index < pg_end; index++) {
  580. struct dnode_of_data dn;
  581. set_new_dnode(&dn, inode, NULL, NULL, 0);
  582. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  583. if (err) {
  584. if (err == -ENOENT)
  585. continue;
  586. return err;
  587. }
  588. if (dn.data_blkaddr != NULL_ADDR)
  589. truncate_data_blocks_range(&dn, 1);
  590. f2fs_put_dnode(&dn);
  591. }
  592. return 0;
  593. }
  594. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  595. {
  596. pgoff_t pg_start, pg_end;
  597. loff_t off_start, off_end;
  598. int ret = 0;
  599. if (!S_ISREG(inode->i_mode))
  600. return -EOPNOTSUPP;
  601. /* skip punching hole beyond i_size */
  602. if (offset >= inode->i_size)
  603. return ret;
  604. if (f2fs_has_inline_data(inode)) {
  605. ret = f2fs_convert_inline_inode(inode);
  606. if (ret)
  607. return ret;
  608. }
  609. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  610. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  611. off_start = offset & (PAGE_CACHE_SIZE - 1);
  612. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  613. if (pg_start == pg_end) {
  614. fill_zero(inode, pg_start, off_start,
  615. off_end - off_start);
  616. } else {
  617. if (off_start)
  618. fill_zero(inode, pg_start++, off_start,
  619. PAGE_CACHE_SIZE - off_start);
  620. if (off_end)
  621. fill_zero(inode, pg_end, 0, off_end);
  622. if (pg_start < pg_end) {
  623. struct address_space *mapping = inode->i_mapping;
  624. loff_t blk_start, blk_end;
  625. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  626. f2fs_balance_fs(sbi);
  627. blk_start = pg_start << PAGE_CACHE_SHIFT;
  628. blk_end = pg_end << PAGE_CACHE_SHIFT;
  629. truncate_inode_pages_range(mapping, blk_start,
  630. blk_end - 1);
  631. f2fs_lock_op(sbi);
  632. ret = truncate_hole(inode, pg_start, pg_end);
  633. f2fs_unlock_op(sbi);
  634. }
  635. }
  636. return ret;
  637. }
  638. static int expand_inode_data(struct inode *inode, loff_t offset,
  639. loff_t len, int mode)
  640. {
  641. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  642. pgoff_t index, pg_start, pg_end;
  643. loff_t new_size = i_size_read(inode);
  644. loff_t off_start, off_end;
  645. int ret = 0;
  646. f2fs_balance_fs(sbi);
  647. ret = inode_newsize_ok(inode, (len + offset));
  648. if (ret)
  649. return ret;
  650. if (f2fs_has_inline_data(inode)) {
  651. ret = f2fs_convert_inline_inode(inode);
  652. if (ret)
  653. return ret;
  654. }
  655. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  656. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  657. off_start = offset & (PAGE_CACHE_SIZE - 1);
  658. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  659. f2fs_lock_op(sbi);
  660. for (index = pg_start; index <= pg_end; index++) {
  661. struct dnode_of_data dn;
  662. if (index == pg_end && !off_end)
  663. goto noalloc;
  664. set_new_dnode(&dn, inode, NULL, NULL, 0);
  665. ret = f2fs_reserve_block(&dn, index);
  666. if (ret)
  667. break;
  668. noalloc:
  669. if (pg_start == pg_end)
  670. new_size = offset + len;
  671. else if (index == pg_start && off_start)
  672. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  673. else if (index == pg_end)
  674. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  675. else
  676. new_size += PAGE_CACHE_SIZE;
  677. }
  678. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  679. i_size_read(inode) < new_size) {
  680. i_size_write(inode, new_size);
  681. mark_inode_dirty(inode);
  682. update_inode_page(inode);
  683. }
  684. f2fs_unlock_op(sbi);
  685. return ret;
  686. }
  687. static long f2fs_fallocate(struct file *file, int mode,
  688. loff_t offset, loff_t len)
  689. {
  690. struct inode *inode = file_inode(file);
  691. long ret;
  692. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  693. return -EOPNOTSUPP;
  694. mutex_lock(&inode->i_mutex);
  695. if (mode & FALLOC_FL_PUNCH_HOLE)
  696. ret = punch_hole(inode, offset, len);
  697. else
  698. ret = expand_inode_data(inode, offset, len, mode);
  699. if (!ret) {
  700. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  701. mark_inode_dirty(inode);
  702. }
  703. mutex_unlock(&inode->i_mutex);
  704. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  705. return ret;
  706. }
  707. static int f2fs_release_file(struct inode *inode, struct file *filp)
  708. {
  709. /* some remained atomic pages should discarded */
  710. if (f2fs_is_atomic_file(inode))
  711. commit_inmem_pages(inode, true);
  712. if (f2fs_is_volatile_file(inode)) {
  713. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  714. filemap_fdatawrite(inode->i_mapping);
  715. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  716. }
  717. return 0;
  718. }
  719. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  720. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  721. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  722. {
  723. if (S_ISDIR(mode))
  724. return flags;
  725. else if (S_ISREG(mode))
  726. return flags & F2FS_REG_FLMASK;
  727. else
  728. return flags & F2FS_OTHER_FLMASK;
  729. }
  730. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  731. {
  732. struct inode *inode = file_inode(filp);
  733. struct f2fs_inode_info *fi = F2FS_I(inode);
  734. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  735. return put_user(flags, (int __user *)arg);
  736. }
  737. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  738. {
  739. struct inode *inode = file_inode(filp);
  740. struct f2fs_inode_info *fi = F2FS_I(inode);
  741. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  742. unsigned int oldflags;
  743. int ret;
  744. ret = mnt_want_write_file(filp);
  745. if (ret)
  746. return ret;
  747. if (!inode_owner_or_capable(inode)) {
  748. ret = -EACCES;
  749. goto out;
  750. }
  751. if (get_user(flags, (int __user *)arg)) {
  752. ret = -EFAULT;
  753. goto out;
  754. }
  755. flags = f2fs_mask_flags(inode->i_mode, flags);
  756. mutex_lock(&inode->i_mutex);
  757. oldflags = fi->i_flags;
  758. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  759. if (!capable(CAP_LINUX_IMMUTABLE)) {
  760. mutex_unlock(&inode->i_mutex);
  761. ret = -EPERM;
  762. goto out;
  763. }
  764. }
  765. flags = flags & FS_FL_USER_MODIFIABLE;
  766. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  767. fi->i_flags = flags;
  768. mutex_unlock(&inode->i_mutex);
  769. f2fs_set_inode_flags(inode);
  770. inode->i_ctime = CURRENT_TIME;
  771. mark_inode_dirty(inode);
  772. out:
  773. mnt_drop_write_file(filp);
  774. return ret;
  775. }
  776. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  777. {
  778. struct inode *inode = file_inode(filp);
  779. return put_user(inode->i_generation, (int __user *)arg);
  780. }
  781. static int f2fs_ioc_start_atomic_write(struct file *filp)
  782. {
  783. struct inode *inode = file_inode(filp);
  784. if (!inode_owner_or_capable(inode))
  785. return -EACCES;
  786. f2fs_balance_fs(F2FS_I_SB(inode));
  787. if (f2fs_is_atomic_file(inode))
  788. return 0;
  789. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  790. return f2fs_convert_inline_inode(inode);
  791. }
  792. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  793. {
  794. struct inode *inode = file_inode(filp);
  795. int ret;
  796. if (!inode_owner_or_capable(inode))
  797. return -EACCES;
  798. if (f2fs_is_volatile_file(inode))
  799. return 0;
  800. ret = mnt_want_write_file(filp);
  801. if (ret)
  802. return ret;
  803. if (f2fs_is_atomic_file(inode))
  804. commit_inmem_pages(inode, false);
  805. ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
  806. mnt_drop_write_file(filp);
  807. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  808. return ret;
  809. }
  810. static int f2fs_ioc_start_volatile_write(struct file *filp)
  811. {
  812. struct inode *inode = file_inode(filp);
  813. if (!inode_owner_or_capable(inode))
  814. return -EACCES;
  815. if (f2fs_is_volatile_file(inode))
  816. return 0;
  817. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  818. return f2fs_convert_inline_inode(inode);
  819. }
  820. static int f2fs_ioc_release_volatile_write(struct file *filp)
  821. {
  822. struct inode *inode = file_inode(filp);
  823. if (!inode_owner_or_capable(inode))
  824. return -EACCES;
  825. if (!f2fs_is_volatile_file(inode))
  826. return 0;
  827. punch_hole(inode, 0, F2FS_BLKSIZE);
  828. return 0;
  829. }
  830. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  831. {
  832. struct inode *inode = file_inode(filp);
  833. int ret;
  834. if (!inode_owner_or_capable(inode))
  835. return -EACCES;
  836. ret = mnt_want_write_file(filp);
  837. if (ret)
  838. return ret;
  839. f2fs_balance_fs(F2FS_I_SB(inode));
  840. if (f2fs_is_atomic_file(inode)) {
  841. commit_inmem_pages(inode, false);
  842. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  843. }
  844. if (f2fs_is_volatile_file(inode)) {
  845. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  846. filemap_fdatawrite(inode->i_mapping);
  847. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  848. }
  849. mnt_drop_write_file(filp);
  850. return ret;
  851. }
  852. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  853. {
  854. struct inode *inode = file_inode(filp);
  855. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  856. struct super_block *sb = sbi->sb;
  857. __u32 in;
  858. if (!capable(CAP_SYS_ADMIN))
  859. return -EPERM;
  860. if (get_user(in, (__u32 __user *)arg))
  861. return -EFAULT;
  862. switch (in) {
  863. case F2FS_GOING_DOWN_FULLSYNC:
  864. sb = freeze_bdev(sb->s_bdev);
  865. if (sb && !IS_ERR(sb)) {
  866. f2fs_stop_checkpoint(sbi);
  867. thaw_bdev(sb->s_bdev, sb);
  868. }
  869. break;
  870. case F2FS_GOING_DOWN_METASYNC:
  871. /* do checkpoint only */
  872. f2fs_sync_fs(sb, 1);
  873. f2fs_stop_checkpoint(sbi);
  874. break;
  875. case F2FS_GOING_DOWN_NOSYNC:
  876. f2fs_stop_checkpoint(sbi);
  877. break;
  878. default:
  879. return -EINVAL;
  880. }
  881. return 0;
  882. }
  883. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  884. {
  885. struct inode *inode = file_inode(filp);
  886. struct super_block *sb = inode->i_sb;
  887. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  888. struct fstrim_range range;
  889. int ret;
  890. if (!capable(CAP_SYS_ADMIN))
  891. return -EPERM;
  892. if (!blk_queue_discard(q))
  893. return -EOPNOTSUPP;
  894. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  895. sizeof(range)))
  896. return -EFAULT;
  897. range.minlen = max((unsigned int)range.minlen,
  898. q->limits.discard_granularity);
  899. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  900. if (ret < 0)
  901. return ret;
  902. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  903. sizeof(range)))
  904. return -EFAULT;
  905. return 0;
  906. }
  907. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  908. {
  909. switch (cmd) {
  910. case F2FS_IOC_GETFLAGS:
  911. return f2fs_ioc_getflags(filp, arg);
  912. case F2FS_IOC_SETFLAGS:
  913. return f2fs_ioc_setflags(filp, arg);
  914. case F2FS_IOC_GETVERSION:
  915. return f2fs_ioc_getversion(filp, arg);
  916. case F2FS_IOC_START_ATOMIC_WRITE:
  917. return f2fs_ioc_start_atomic_write(filp);
  918. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  919. return f2fs_ioc_commit_atomic_write(filp);
  920. case F2FS_IOC_START_VOLATILE_WRITE:
  921. return f2fs_ioc_start_volatile_write(filp);
  922. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  923. return f2fs_ioc_release_volatile_write(filp);
  924. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  925. return f2fs_ioc_abort_volatile_write(filp);
  926. case F2FS_IOC_SHUTDOWN:
  927. return f2fs_ioc_shutdown(filp, arg);
  928. case FITRIM:
  929. return f2fs_ioc_fitrim(filp, arg);
  930. default:
  931. return -ENOTTY;
  932. }
  933. }
  934. #ifdef CONFIG_COMPAT
  935. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  936. {
  937. switch (cmd) {
  938. case F2FS_IOC32_GETFLAGS:
  939. cmd = F2FS_IOC_GETFLAGS;
  940. break;
  941. case F2FS_IOC32_SETFLAGS:
  942. cmd = F2FS_IOC_SETFLAGS;
  943. break;
  944. default:
  945. return -ENOIOCTLCMD;
  946. }
  947. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  948. }
  949. #endif
  950. const struct file_operations f2fs_file_operations = {
  951. .llseek = f2fs_llseek,
  952. .read = new_sync_read,
  953. .write = new_sync_write,
  954. .read_iter = generic_file_read_iter,
  955. .write_iter = generic_file_write_iter,
  956. .open = generic_file_open,
  957. .release = f2fs_release_file,
  958. .mmap = f2fs_file_mmap,
  959. .fsync = f2fs_sync_file,
  960. .fallocate = f2fs_fallocate,
  961. .unlocked_ioctl = f2fs_ioctl,
  962. #ifdef CONFIG_COMPAT
  963. .compat_ioctl = f2fs_compat_ioctl,
  964. #endif
  965. .splice_read = generic_file_splice_read,
  966. .splice_write = iter_file_splice_write,
  967. };