slab.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <asm/cacheflush.h>
  113. #include <asm/tlbflush.h>
  114. #include <asm/page.h>
  115. /*
  116. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * STATS - 1 to collect stats for /proc/slabinfo.
  120. * 0 for faster, smaller code (especially in the critical paths).
  121. *
  122. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  123. */
  124. #ifdef CONFIG_DEBUG_SLAB
  125. #define DEBUG 1
  126. #define STATS 1
  127. #define FORCED_DEBUG 1
  128. #else
  129. #define DEBUG 0
  130. #define STATS 0
  131. #define FORCED_DEBUG 0
  132. #endif
  133. /* Shouldn't this be in a header file somewhere? */
  134. #define BYTES_PER_WORD sizeof(void *)
  135. #ifndef cache_line_size
  136. #define cache_line_size() L1_CACHE_BYTES
  137. #endif
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. /*
  140. * Enforce a minimum alignment for the kmalloc caches.
  141. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  142. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  143. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  144. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  145. * Note that this flag disables some debug features.
  146. */
  147. #define ARCH_KMALLOC_MINALIGN 0
  148. #endif
  149. #ifndef ARCH_SLAB_MINALIGN
  150. /*
  151. * Enforce a minimum alignment for all caches.
  152. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  153. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  154. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  155. * some debug features.
  156. */
  157. #define ARCH_SLAB_MINALIGN 0
  158. #endif
  159. #ifndef ARCH_KMALLOC_FLAGS
  160. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  161. #endif
  162. /* Legal flag mask for kmem_cache_create(). */
  163. #if DEBUG
  164. # define CREATE_MASK (SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  166. SLAB_CACHE_DMA | \
  167. SLAB_STORE_USER | \
  168. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  169. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  170. #else
  171. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  172. SLAB_CACHE_DMA | \
  173. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  174. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  175. #endif
  176. /*
  177. * kmem_bufctl_t:
  178. *
  179. * Bufctl's are used for linking objs within a slab
  180. * linked offsets.
  181. *
  182. * This implementation relies on "struct page" for locating the cache &
  183. * slab an object belongs to.
  184. * This allows the bufctl structure to be small (one int), but limits
  185. * the number of objects a slab (not a cache) can contain when off-slab
  186. * bufctls are used. The limit is the size of the largest general cache
  187. * that does not use off-slab slabs.
  188. * For 32bit archs with 4 kB pages, is this 56.
  189. * This is not serious, as it is only for large objects, when it is unwise
  190. * to have too many per slab.
  191. * Note: This limit can be raised by introducing a general cache whose size
  192. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  193. */
  194. typedef unsigned int kmem_bufctl_t;
  195. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  196. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  197. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  198. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned int free_limit;
  278. unsigned int colour_next; /* Per-node cache coloring */
  279. spinlock_t list_lock;
  280. struct array_cache *shared; /* shared per node */
  281. struct array_cache **alien; /* on other nodes */
  282. unsigned long next_reap; /* updated without locking */
  283. int free_touched; /* updated without locking */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. static int drain_freelist(struct kmem_cache *cache,
  294. struct kmem_list3 *l3, int tofree);
  295. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  296. int node);
  297. static int enable_cpucache(struct kmem_cache *cachep);
  298. static void cache_reap(struct work_struct *unused);
  299. /*
  300. * This function must be completely optimized away if a constant is passed to
  301. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  302. */
  303. static __always_inline int index_of(const size_t size)
  304. {
  305. extern void __bad_size(void);
  306. if (__builtin_constant_p(size)) {
  307. int i = 0;
  308. #define CACHE(x) \
  309. if (size <=x) \
  310. return i; \
  311. else \
  312. i++;
  313. #include "linux/kmalloc_sizes.h"
  314. #undef CACHE
  315. __bad_size();
  316. } else
  317. __bad_size();
  318. return 0;
  319. }
  320. static int slab_early_init = 1;
  321. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  322. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  323. static void kmem_list3_init(struct kmem_list3 *parent)
  324. {
  325. INIT_LIST_HEAD(&parent->slabs_full);
  326. INIT_LIST_HEAD(&parent->slabs_partial);
  327. INIT_LIST_HEAD(&parent->slabs_free);
  328. parent->shared = NULL;
  329. parent->alien = NULL;
  330. parent->colour_next = 0;
  331. spin_lock_init(&parent->list_lock);
  332. parent->free_objects = 0;
  333. parent->free_touched = 0;
  334. }
  335. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  336. do { \
  337. INIT_LIST_HEAD(listp); \
  338. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  339. } while (0)
  340. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  341. do { \
  342. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  345. } while (0)
  346. /*
  347. * struct kmem_cache
  348. *
  349. * manages a cache.
  350. */
  351. struct kmem_cache {
  352. /* 1) per-cpu data, touched during every alloc/free */
  353. struct array_cache *array[NR_CPUS];
  354. /* 2) Cache tunables. Protected by cache_chain_mutex */
  355. unsigned int batchcount;
  356. unsigned int limit;
  357. unsigned int shared;
  358. unsigned int buffer_size;
  359. u32 reciprocal_buffer_size;
  360. /* 3) touched by every alloc & free from the backend */
  361. unsigned int flags; /* constant flags */
  362. unsigned int num; /* # of objs per slab */
  363. /* 4) cache_grow/shrink */
  364. /* order of pgs per slab (2^n) */
  365. unsigned int gfporder;
  366. /* force GFP flags, e.g. GFP_DMA */
  367. gfp_t gfpflags;
  368. size_t colour; /* cache colouring range */
  369. unsigned int colour_off; /* colour offset */
  370. struct kmem_cache *slabp_cache;
  371. unsigned int slab_size;
  372. unsigned int dflags; /* dynamic flags */
  373. /* constructor func */
  374. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  375. /* de-constructor func */
  376. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  377. /* 5) cache creation/removal */
  378. const char *name;
  379. struct list_head next;
  380. /* 6) statistics */
  381. #if STATS
  382. unsigned long num_active;
  383. unsigned long num_allocations;
  384. unsigned long high_mark;
  385. unsigned long grown;
  386. unsigned long reaped;
  387. unsigned long errors;
  388. unsigned long max_freeable;
  389. unsigned long node_allocs;
  390. unsigned long node_frees;
  391. unsigned long node_overflow;
  392. atomic_t allochit;
  393. atomic_t allocmiss;
  394. atomic_t freehit;
  395. atomic_t freemiss;
  396. #endif
  397. #if DEBUG
  398. /*
  399. * If debugging is enabled, then the allocator can add additional
  400. * fields and/or padding to every object. buffer_size contains the total
  401. * object size including these internal fields, the following two
  402. * variables contain the offset to the user object and its size.
  403. */
  404. int obj_offset;
  405. int obj_size;
  406. #endif
  407. /*
  408. * We put nodelists[] at the end of kmem_cache, because we want to size
  409. * this array to nr_node_ids slots instead of MAX_NUMNODES
  410. * (see kmem_cache_init())
  411. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  412. * is statically defined, so we reserve the max number of nodes.
  413. */
  414. struct kmem_list3 *nodelists[MAX_NUMNODES];
  415. /*
  416. * Do not add fields after nodelists[]
  417. */
  418. };
  419. #define CFLGS_OFF_SLAB (0x80000000UL)
  420. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  421. #define BATCHREFILL_LIMIT 16
  422. /*
  423. * Optimization question: fewer reaps means less probability for unnessary
  424. * cpucache drain/refill cycles.
  425. *
  426. * OTOH the cpuarrays can contain lots of objects,
  427. * which could lock up otherwise freeable slabs.
  428. */
  429. #define REAPTIMEOUT_CPUC (2*HZ)
  430. #define REAPTIMEOUT_LIST3 (4*HZ)
  431. #if STATS
  432. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  433. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  434. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  435. #define STATS_INC_GROWN(x) ((x)->grown++)
  436. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  437. #define STATS_SET_HIGH(x) \
  438. do { \
  439. if ((x)->num_active > (x)->high_mark) \
  440. (x)->high_mark = (x)->num_active; \
  441. } while (0)
  442. #define STATS_INC_ERR(x) ((x)->errors++)
  443. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  444. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  445. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  446. #define STATS_SET_FREEABLE(x, i) \
  447. do { \
  448. if ((x)->max_freeable < i) \
  449. (x)->max_freeable = i; \
  450. } while (0)
  451. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  452. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  453. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  454. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  455. #else
  456. #define STATS_INC_ACTIVE(x) do { } while (0)
  457. #define STATS_DEC_ACTIVE(x) do { } while (0)
  458. #define STATS_INC_ALLOCED(x) do { } while (0)
  459. #define STATS_INC_GROWN(x) do { } while (0)
  460. #define STATS_ADD_REAPED(x,y) do { } while (0)
  461. #define STATS_SET_HIGH(x) do { } while (0)
  462. #define STATS_INC_ERR(x) do { } while (0)
  463. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  464. #define STATS_INC_NODEFREES(x) do { } while (0)
  465. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  466. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  467. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  468. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  469. #define STATS_INC_FREEHIT(x) do { } while (0)
  470. #define STATS_INC_FREEMISS(x) do { } while (0)
  471. #endif
  472. #if DEBUG
  473. /*
  474. * memory layout of objects:
  475. * 0 : objp
  476. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  477. * the end of an object is aligned with the end of the real
  478. * allocation. Catches writes behind the end of the allocation.
  479. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  480. * redzone word.
  481. * cachep->obj_offset: The real object.
  482. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  483. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  484. * [BYTES_PER_WORD long]
  485. */
  486. static int obj_offset(struct kmem_cache *cachep)
  487. {
  488. return cachep->obj_offset;
  489. }
  490. static int obj_size(struct kmem_cache *cachep)
  491. {
  492. return cachep->obj_size;
  493. }
  494. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  495. {
  496. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  497. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  498. }
  499. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  500. {
  501. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  502. if (cachep->flags & SLAB_STORE_USER)
  503. return (unsigned long *)(objp + cachep->buffer_size -
  504. 2 * BYTES_PER_WORD);
  505. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  506. }
  507. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  508. {
  509. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  510. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  511. }
  512. #else
  513. #define obj_offset(x) 0
  514. #define obj_size(cachep) (cachep->buffer_size)
  515. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  516. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  517. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  518. #endif
  519. /*
  520. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  521. * order.
  522. */
  523. #if defined(CONFIG_LARGE_ALLOCS)
  524. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  525. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  526. #elif defined(CONFIG_MMU)
  527. #define MAX_OBJ_ORDER 5 /* 32 pages */
  528. #define MAX_GFP_ORDER 5 /* 32 pages */
  529. #else
  530. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  531. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  532. #endif
  533. /*
  534. * Do not go above this order unless 0 objects fit into the slab.
  535. */
  536. #define BREAK_GFP_ORDER_HI 1
  537. #define BREAK_GFP_ORDER_LO 0
  538. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  539. /*
  540. * Functions for storing/retrieving the cachep and or slab from the page
  541. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  542. * these are used to find the cache which an obj belongs to.
  543. */
  544. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  545. {
  546. page->lru.next = (struct list_head *)cache;
  547. }
  548. static inline struct kmem_cache *page_get_cache(struct page *page)
  549. {
  550. page = compound_head(page);
  551. BUG_ON(!PageSlab(page));
  552. return (struct kmem_cache *)page->lru.next;
  553. }
  554. static inline void page_set_slab(struct page *page, struct slab *slab)
  555. {
  556. page->lru.prev = (struct list_head *)slab;
  557. }
  558. static inline struct slab *page_get_slab(struct page *page)
  559. {
  560. BUG_ON(!PageSlab(page));
  561. return (struct slab *)page->lru.prev;
  562. }
  563. static inline struct kmem_cache *virt_to_cache(const void *obj)
  564. {
  565. struct page *page = virt_to_head_page(obj);
  566. return page_get_cache(page);
  567. }
  568. static inline struct slab *virt_to_slab(const void *obj)
  569. {
  570. struct page *page = virt_to_head_page(obj);
  571. return page_get_slab(page);
  572. }
  573. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  574. unsigned int idx)
  575. {
  576. return slab->s_mem + cache->buffer_size * idx;
  577. }
  578. /*
  579. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  580. * Using the fact that buffer_size is a constant for a particular cache,
  581. * we can replace (offset / cache->buffer_size) by
  582. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  583. */
  584. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  585. const struct slab *slab, void *obj)
  586. {
  587. u32 offset = (obj - slab->s_mem);
  588. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  589. }
  590. /*
  591. * These are the default caches for kmalloc. Custom caches can have other sizes.
  592. */
  593. struct cache_sizes malloc_sizes[] = {
  594. #define CACHE(x) { .cs_size = (x) },
  595. #include <linux/kmalloc_sizes.h>
  596. CACHE(ULONG_MAX)
  597. #undef CACHE
  598. };
  599. EXPORT_SYMBOL(malloc_sizes);
  600. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  601. struct cache_names {
  602. char *name;
  603. char *name_dma;
  604. };
  605. static struct cache_names __initdata cache_names[] = {
  606. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  607. #include <linux/kmalloc_sizes.h>
  608. {NULL,}
  609. #undef CACHE
  610. };
  611. static struct arraycache_init initarray_cache __initdata =
  612. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  613. static struct arraycache_init initarray_generic =
  614. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  615. /* internal cache of cache description objs */
  616. static struct kmem_cache cache_cache = {
  617. .batchcount = 1,
  618. .limit = BOOT_CPUCACHE_ENTRIES,
  619. .shared = 1,
  620. .buffer_size = sizeof(struct kmem_cache),
  621. .name = "kmem_cache",
  622. };
  623. #define BAD_ALIEN_MAGIC 0x01020304ul
  624. #ifdef CONFIG_LOCKDEP
  625. /*
  626. * Slab sometimes uses the kmalloc slabs to store the slab headers
  627. * for other slabs "off slab".
  628. * The locking for this is tricky in that it nests within the locks
  629. * of all other slabs in a few places; to deal with this special
  630. * locking we put on-slab caches into a separate lock-class.
  631. *
  632. * We set lock class for alien array caches which are up during init.
  633. * The lock annotation will be lost if all cpus of a node goes down and
  634. * then comes back up during hotplug
  635. */
  636. static struct lock_class_key on_slab_l3_key;
  637. static struct lock_class_key on_slab_alc_key;
  638. static inline void init_lock_keys(void)
  639. {
  640. int q;
  641. struct cache_sizes *s = malloc_sizes;
  642. while (s->cs_size != ULONG_MAX) {
  643. for_each_node(q) {
  644. struct array_cache **alc;
  645. int r;
  646. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  647. if (!l3 || OFF_SLAB(s->cs_cachep))
  648. continue;
  649. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  650. alc = l3->alien;
  651. /*
  652. * FIXME: This check for BAD_ALIEN_MAGIC
  653. * should go away when common slab code is taught to
  654. * work even without alien caches.
  655. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  656. * for alloc_alien_cache,
  657. */
  658. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  659. continue;
  660. for_each_node(r) {
  661. if (alc[r])
  662. lockdep_set_class(&alc[r]->lock,
  663. &on_slab_alc_key);
  664. }
  665. }
  666. s++;
  667. }
  668. }
  669. #else
  670. static inline void init_lock_keys(void)
  671. {
  672. }
  673. #endif
  674. /*
  675. * 1. Guard access to the cache-chain.
  676. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  677. */
  678. static DEFINE_MUTEX(cache_chain_mutex);
  679. static struct list_head cache_chain;
  680. /*
  681. * chicken and egg problem: delay the per-cpu array allocation
  682. * until the general caches are up.
  683. */
  684. static enum {
  685. NONE,
  686. PARTIAL_AC,
  687. PARTIAL_L3,
  688. FULL
  689. } g_cpucache_up;
  690. /*
  691. * used by boot code to determine if it can use slab based allocator
  692. */
  693. int slab_is_available(void)
  694. {
  695. return g_cpucache_up == FULL;
  696. }
  697. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  698. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  699. {
  700. return cachep->array[smp_processor_id()];
  701. }
  702. static inline struct kmem_cache *__find_general_cachep(size_t size,
  703. gfp_t gfpflags)
  704. {
  705. struct cache_sizes *csizep = malloc_sizes;
  706. #if DEBUG
  707. /* This happens if someone tries to call
  708. * kmem_cache_create(), or __kmalloc(), before
  709. * the generic caches are initialized.
  710. */
  711. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  712. #endif
  713. while (size > csizep->cs_size)
  714. csizep++;
  715. /*
  716. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  717. * has cs_{dma,}cachep==NULL. Thus no special case
  718. * for large kmalloc calls required.
  719. */
  720. #ifdef CONFIG_ZONE_DMA
  721. if (unlikely(gfpflags & GFP_DMA))
  722. return csizep->cs_dmacachep;
  723. #endif
  724. return csizep->cs_cachep;
  725. }
  726. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  727. {
  728. return __find_general_cachep(size, gfpflags);
  729. }
  730. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  731. {
  732. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  733. }
  734. /*
  735. * Calculate the number of objects and left-over bytes for a given buffer size.
  736. */
  737. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  738. size_t align, int flags, size_t *left_over,
  739. unsigned int *num)
  740. {
  741. int nr_objs;
  742. size_t mgmt_size;
  743. size_t slab_size = PAGE_SIZE << gfporder;
  744. /*
  745. * The slab management structure can be either off the slab or
  746. * on it. For the latter case, the memory allocated for a
  747. * slab is used for:
  748. *
  749. * - The struct slab
  750. * - One kmem_bufctl_t for each object
  751. * - Padding to respect alignment of @align
  752. * - @buffer_size bytes for each object
  753. *
  754. * If the slab management structure is off the slab, then the
  755. * alignment will already be calculated into the size. Because
  756. * the slabs are all pages aligned, the objects will be at the
  757. * correct alignment when allocated.
  758. */
  759. if (flags & CFLGS_OFF_SLAB) {
  760. mgmt_size = 0;
  761. nr_objs = slab_size / buffer_size;
  762. if (nr_objs > SLAB_LIMIT)
  763. nr_objs = SLAB_LIMIT;
  764. } else {
  765. /*
  766. * Ignore padding for the initial guess. The padding
  767. * is at most @align-1 bytes, and @buffer_size is at
  768. * least @align. In the worst case, this result will
  769. * be one greater than the number of objects that fit
  770. * into the memory allocation when taking the padding
  771. * into account.
  772. */
  773. nr_objs = (slab_size - sizeof(struct slab)) /
  774. (buffer_size + sizeof(kmem_bufctl_t));
  775. /*
  776. * This calculated number will be either the right
  777. * amount, or one greater than what we want.
  778. */
  779. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  780. > slab_size)
  781. nr_objs--;
  782. if (nr_objs > SLAB_LIMIT)
  783. nr_objs = SLAB_LIMIT;
  784. mgmt_size = slab_mgmt_size(nr_objs, align);
  785. }
  786. *num = nr_objs;
  787. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  788. }
  789. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  790. static void __slab_error(const char *function, struct kmem_cache *cachep,
  791. char *msg)
  792. {
  793. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  794. function, cachep->name, msg);
  795. dump_stack();
  796. }
  797. /*
  798. * By default on NUMA we use alien caches to stage the freeing of
  799. * objects allocated from other nodes. This causes massive memory
  800. * inefficiencies when using fake NUMA setup to split memory into a
  801. * large number of small nodes, so it can be disabled on the command
  802. * line
  803. */
  804. static int use_alien_caches __read_mostly = 1;
  805. static int __init noaliencache_setup(char *s)
  806. {
  807. use_alien_caches = 0;
  808. return 1;
  809. }
  810. __setup("noaliencache", noaliencache_setup);
  811. #ifdef CONFIG_NUMA
  812. /*
  813. * Special reaping functions for NUMA systems called from cache_reap().
  814. * These take care of doing round robin flushing of alien caches (containing
  815. * objects freed on different nodes from which they were allocated) and the
  816. * flushing of remote pcps by calling drain_node_pages.
  817. */
  818. static DEFINE_PER_CPU(unsigned long, reap_node);
  819. static void init_reap_node(int cpu)
  820. {
  821. int node;
  822. node = next_node(cpu_to_node(cpu), node_online_map);
  823. if (node == MAX_NUMNODES)
  824. node = first_node(node_online_map);
  825. per_cpu(reap_node, cpu) = node;
  826. }
  827. static void next_reap_node(void)
  828. {
  829. int node = __get_cpu_var(reap_node);
  830. /*
  831. * Also drain per cpu pages on remote zones
  832. */
  833. if (node != numa_node_id())
  834. drain_node_pages(node);
  835. node = next_node(node, node_online_map);
  836. if (unlikely(node >= MAX_NUMNODES))
  837. node = first_node(node_online_map);
  838. __get_cpu_var(reap_node) = node;
  839. }
  840. #else
  841. #define init_reap_node(cpu) do { } while (0)
  842. #define next_reap_node(void) do { } while (0)
  843. #endif
  844. /*
  845. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  846. * via the workqueue/eventd.
  847. * Add the CPU number into the expiration time to minimize the possibility of
  848. * the CPUs getting into lockstep and contending for the global cache chain
  849. * lock.
  850. */
  851. static void __devinit start_cpu_timer(int cpu)
  852. {
  853. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  854. /*
  855. * When this gets called from do_initcalls via cpucache_init(),
  856. * init_workqueues() has already run, so keventd will be setup
  857. * at that time.
  858. */
  859. if (keventd_up() && reap_work->work.func == NULL) {
  860. init_reap_node(cpu);
  861. INIT_DELAYED_WORK(reap_work, cache_reap);
  862. schedule_delayed_work_on(cpu, reap_work,
  863. __round_jiffies_relative(HZ, cpu));
  864. }
  865. }
  866. static struct array_cache *alloc_arraycache(int node, int entries,
  867. int batchcount)
  868. {
  869. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  870. struct array_cache *nc = NULL;
  871. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  872. if (nc) {
  873. nc->avail = 0;
  874. nc->limit = entries;
  875. nc->batchcount = batchcount;
  876. nc->touched = 0;
  877. spin_lock_init(&nc->lock);
  878. }
  879. return nc;
  880. }
  881. /*
  882. * Transfer objects in one arraycache to another.
  883. * Locking must be handled by the caller.
  884. *
  885. * Return the number of entries transferred.
  886. */
  887. static int transfer_objects(struct array_cache *to,
  888. struct array_cache *from, unsigned int max)
  889. {
  890. /* Figure out how many entries to transfer */
  891. int nr = min(min(from->avail, max), to->limit - to->avail);
  892. if (!nr)
  893. return 0;
  894. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  895. sizeof(void *) *nr);
  896. from->avail -= nr;
  897. to->avail += nr;
  898. to->touched = 1;
  899. return nr;
  900. }
  901. #ifndef CONFIG_NUMA
  902. #define drain_alien_cache(cachep, alien) do { } while (0)
  903. #define reap_alien(cachep, l3) do { } while (0)
  904. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  905. {
  906. return (struct array_cache **)BAD_ALIEN_MAGIC;
  907. }
  908. static inline void free_alien_cache(struct array_cache **ac_ptr)
  909. {
  910. }
  911. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  912. {
  913. return 0;
  914. }
  915. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  916. gfp_t flags)
  917. {
  918. return NULL;
  919. }
  920. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  921. gfp_t flags, int nodeid)
  922. {
  923. return NULL;
  924. }
  925. #else /* CONFIG_NUMA */
  926. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  927. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  928. static struct array_cache **alloc_alien_cache(int node, int limit)
  929. {
  930. struct array_cache **ac_ptr;
  931. int memsize = sizeof(void *) * nr_node_ids;
  932. int i;
  933. if (limit > 1)
  934. limit = 12;
  935. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  936. if (ac_ptr) {
  937. for_each_node(i) {
  938. if (i == node || !node_online(i)) {
  939. ac_ptr[i] = NULL;
  940. continue;
  941. }
  942. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  943. if (!ac_ptr[i]) {
  944. for (i--; i <= 0; i--)
  945. kfree(ac_ptr[i]);
  946. kfree(ac_ptr);
  947. return NULL;
  948. }
  949. }
  950. }
  951. return ac_ptr;
  952. }
  953. static void free_alien_cache(struct array_cache **ac_ptr)
  954. {
  955. int i;
  956. if (!ac_ptr)
  957. return;
  958. for_each_node(i)
  959. kfree(ac_ptr[i]);
  960. kfree(ac_ptr);
  961. }
  962. static void __drain_alien_cache(struct kmem_cache *cachep,
  963. struct array_cache *ac, int node)
  964. {
  965. struct kmem_list3 *rl3 = cachep->nodelists[node];
  966. if (ac->avail) {
  967. spin_lock(&rl3->list_lock);
  968. /*
  969. * Stuff objects into the remote nodes shared array first.
  970. * That way we could avoid the overhead of putting the objects
  971. * into the free lists and getting them back later.
  972. */
  973. if (rl3->shared)
  974. transfer_objects(rl3->shared, ac, ac->limit);
  975. free_block(cachep, ac->entry, ac->avail, node);
  976. ac->avail = 0;
  977. spin_unlock(&rl3->list_lock);
  978. }
  979. }
  980. /*
  981. * Called from cache_reap() to regularly drain alien caches round robin.
  982. */
  983. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  984. {
  985. int node = __get_cpu_var(reap_node);
  986. if (l3->alien) {
  987. struct array_cache *ac = l3->alien[node];
  988. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  989. __drain_alien_cache(cachep, ac, node);
  990. spin_unlock_irq(&ac->lock);
  991. }
  992. }
  993. }
  994. static void drain_alien_cache(struct kmem_cache *cachep,
  995. struct array_cache **alien)
  996. {
  997. int i = 0;
  998. struct array_cache *ac;
  999. unsigned long flags;
  1000. for_each_online_node(i) {
  1001. ac = alien[i];
  1002. if (ac) {
  1003. spin_lock_irqsave(&ac->lock, flags);
  1004. __drain_alien_cache(cachep, ac, i);
  1005. spin_unlock_irqrestore(&ac->lock, flags);
  1006. }
  1007. }
  1008. }
  1009. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1010. {
  1011. struct slab *slabp = virt_to_slab(objp);
  1012. int nodeid = slabp->nodeid;
  1013. struct kmem_list3 *l3;
  1014. struct array_cache *alien = NULL;
  1015. int node;
  1016. node = numa_node_id();
  1017. /*
  1018. * Make sure we are not freeing a object from another node to the array
  1019. * cache on this cpu.
  1020. */
  1021. if (likely(slabp->nodeid == node))
  1022. return 0;
  1023. l3 = cachep->nodelists[node];
  1024. STATS_INC_NODEFREES(cachep);
  1025. if (l3->alien && l3->alien[nodeid]) {
  1026. alien = l3->alien[nodeid];
  1027. spin_lock(&alien->lock);
  1028. if (unlikely(alien->avail == alien->limit)) {
  1029. STATS_INC_ACOVERFLOW(cachep);
  1030. __drain_alien_cache(cachep, alien, nodeid);
  1031. }
  1032. alien->entry[alien->avail++] = objp;
  1033. spin_unlock(&alien->lock);
  1034. } else {
  1035. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1036. free_block(cachep, &objp, 1, nodeid);
  1037. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1038. }
  1039. return 1;
  1040. }
  1041. #endif
  1042. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1043. unsigned long action, void *hcpu)
  1044. {
  1045. long cpu = (long)hcpu;
  1046. struct kmem_cache *cachep;
  1047. struct kmem_list3 *l3 = NULL;
  1048. int node = cpu_to_node(cpu);
  1049. int memsize = sizeof(struct kmem_list3);
  1050. switch (action) {
  1051. case CPU_UP_PREPARE:
  1052. mutex_lock(&cache_chain_mutex);
  1053. /*
  1054. * We need to do this right in the beginning since
  1055. * alloc_arraycache's are going to use this list.
  1056. * kmalloc_node allows us to add the slab to the right
  1057. * kmem_list3 and not this cpu's kmem_list3
  1058. */
  1059. list_for_each_entry(cachep, &cache_chain, next) {
  1060. /*
  1061. * Set up the size64 kmemlist for cpu before we can
  1062. * begin anything. Make sure some other cpu on this
  1063. * node has not already allocated this
  1064. */
  1065. if (!cachep->nodelists[node]) {
  1066. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1067. if (!l3)
  1068. goto bad;
  1069. kmem_list3_init(l3);
  1070. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1071. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1072. /*
  1073. * The l3s don't come and go as CPUs come and
  1074. * go. cache_chain_mutex is sufficient
  1075. * protection here.
  1076. */
  1077. cachep->nodelists[node] = l3;
  1078. }
  1079. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1080. cachep->nodelists[node]->free_limit =
  1081. (1 + nr_cpus_node(node)) *
  1082. cachep->batchcount + cachep->num;
  1083. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1084. }
  1085. /*
  1086. * Now we can go ahead with allocating the shared arrays and
  1087. * array caches
  1088. */
  1089. list_for_each_entry(cachep, &cache_chain, next) {
  1090. struct array_cache *nc;
  1091. struct array_cache *shared = NULL;
  1092. struct array_cache **alien = NULL;
  1093. nc = alloc_arraycache(node, cachep->limit,
  1094. cachep->batchcount);
  1095. if (!nc)
  1096. goto bad;
  1097. if (cachep->shared) {
  1098. shared = alloc_arraycache(node,
  1099. cachep->shared * cachep->batchcount,
  1100. 0xbaadf00d);
  1101. if (!shared)
  1102. goto bad;
  1103. }
  1104. if (use_alien_caches) {
  1105. alien = alloc_alien_cache(node, cachep->limit);
  1106. if (!alien)
  1107. goto bad;
  1108. }
  1109. cachep->array[cpu] = nc;
  1110. l3 = cachep->nodelists[node];
  1111. BUG_ON(!l3);
  1112. spin_lock_irq(&l3->list_lock);
  1113. if (!l3->shared) {
  1114. /*
  1115. * We are serialised from CPU_DEAD or
  1116. * CPU_UP_CANCELLED by the cpucontrol lock
  1117. */
  1118. l3->shared = shared;
  1119. shared = NULL;
  1120. }
  1121. #ifdef CONFIG_NUMA
  1122. if (!l3->alien) {
  1123. l3->alien = alien;
  1124. alien = NULL;
  1125. }
  1126. #endif
  1127. spin_unlock_irq(&l3->list_lock);
  1128. kfree(shared);
  1129. free_alien_cache(alien);
  1130. }
  1131. break;
  1132. case CPU_ONLINE:
  1133. mutex_unlock(&cache_chain_mutex);
  1134. start_cpu_timer(cpu);
  1135. break;
  1136. #ifdef CONFIG_HOTPLUG_CPU
  1137. case CPU_DOWN_PREPARE:
  1138. mutex_lock(&cache_chain_mutex);
  1139. break;
  1140. case CPU_DOWN_FAILED:
  1141. mutex_unlock(&cache_chain_mutex);
  1142. break;
  1143. case CPU_DEAD:
  1144. /*
  1145. * Even if all the cpus of a node are down, we don't free the
  1146. * kmem_list3 of any cache. This to avoid a race between
  1147. * cpu_down, and a kmalloc allocation from another cpu for
  1148. * memory from the node of the cpu going down. The list3
  1149. * structure is usually allocated from kmem_cache_create() and
  1150. * gets destroyed at kmem_cache_destroy().
  1151. */
  1152. /* fall thru */
  1153. #endif
  1154. case CPU_UP_CANCELED:
  1155. list_for_each_entry(cachep, &cache_chain, next) {
  1156. struct array_cache *nc;
  1157. struct array_cache *shared;
  1158. struct array_cache **alien;
  1159. cpumask_t mask;
  1160. mask = node_to_cpumask(node);
  1161. /* cpu is dead; no one can alloc from it. */
  1162. nc = cachep->array[cpu];
  1163. cachep->array[cpu] = NULL;
  1164. l3 = cachep->nodelists[node];
  1165. if (!l3)
  1166. goto free_array_cache;
  1167. spin_lock_irq(&l3->list_lock);
  1168. /* Free limit for this kmem_list3 */
  1169. l3->free_limit -= cachep->batchcount;
  1170. if (nc)
  1171. free_block(cachep, nc->entry, nc->avail, node);
  1172. if (!cpus_empty(mask)) {
  1173. spin_unlock_irq(&l3->list_lock);
  1174. goto free_array_cache;
  1175. }
  1176. shared = l3->shared;
  1177. if (shared) {
  1178. free_block(cachep, shared->entry,
  1179. shared->avail, node);
  1180. l3->shared = NULL;
  1181. }
  1182. alien = l3->alien;
  1183. l3->alien = NULL;
  1184. spin_unlock_irq(&l3->list_lock);
  1185. kfree(shared);
  1186. if (alien) {
  1187. drain_alien_cache(cachep, alien);
  1188. free_alien_cache(alien);
  1189. }
  1190. free_array_cache:
  1191. kfree(nc);
  1192. }
  1193. /*
  1194. * In the previous loop, all the objects were freed to
  1195. * the respective cache's slabs, now we can go ahead and
  1196. * shrink each nodelist to its limit.
  1197. */
  1198. list_for_each_entry(cachep, &cache_chain, next) {
  1199. l3 = cachep->nodelists[node];
  1200. if (!l3)
  1201. continue;
  1202. drain_freelist(cachep, l3, l3->free_objects);
  1203. }
  1204. mutex_unlock(&cache_chain_mutex);
  1205. break;
  1206. }
  1207. return NOTIFY_OK;
  1208. bad:
  1209. return NOTIFY_BAD;
  1210. }
  1211. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1212. &cpuup_callback, NULL, 0
  1213. };
  1214. /*
  1215. * swap the static kmem_list3 with kmalloced memory
  1216. */
  1217. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1218. int nodeid)
  1219. {
  1220. struct kmem_list3 *ptr;
  1221. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1222. BUG_ON(!ptr);
  1223. local_irq_disable();
  1224. memcpy(ptr, list, sizeof(struct kmem_list3));
  1225. /*
  1226. * Do not assume that spinlocks can be initialized via memcpy:
  1227. */
  1228. spin_lock_init(&ptr->list_lock);
  1229. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1230. cachep->nodelists[nodeid] = ptr;
  1231. local_irq_enable();
  1232. }
  1233. /*
  1234. * Initialisation. Called after the page allocator have been initialised and
  1235. * before smp_init().
  1236. */
  1237. void __init kmem_cache_init(void)
  1238. {
  1239. size_t left_over;
  1240. struct cache_sizes *sizes;
  1241. struct cache_names *names;
  1242. int i;
  1243. int order;
  1244. int node;
  1245. if (num_possible_nodes() == 1)
  1246. use_alien_caches = 0;
  1247. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1248. kmem_list3_init(&initkmem_list3[i]);
  1249. if (i < MAX_NUMNODES)
  1250. cache_cache.nodelists[i] = NULL;
  1251. }
  1252. /*
  1253. * Fragmentation resistance on low memory - only use bigger
  1254. * page orders on machines with more than 32MB of memory.
  1255. */
  1256. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1257. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1258. /* Bootstrap is tricky, because several objects are allocated
  1259. * from caches that do not exist yet:
  1260. * 1) initialize the cache_cache cache: it contains the struct
  1261. * kmem_cache structures of all caches, except cache_cache itself:
  1262. * cache_cache is statically allocated.
  1263. * Initially an __init data area is used for the head array and the
  1264. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1265. * array at the end of the bootstrap.
  1266. * 2) Create the first kmalloc cache.
  1267. * The struct kmem_cache for the new cache is allocated normally.
  1268. * An __init data area is used for the head array.
  1269. * 3) Create the remaining kmalloc caches, with minimally sized
  1270. * head arrays.
  1271. * 4) Replace the __init data head arrays for cache_cache and the first
  1272. * kmalloc cache with kmalloc allocated arrays.
  1273. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1274. * the other cache's with kmalloc allocated memory.
  1275. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1276. */
  1277. node = numa_node_id();
  1278. /* 1) create the cache_cache */
  1279. INIT_LIST_HEAD(&cache_chain);
  1280. list_add(&cache_cache.next, &cache_chain);
  1281. cache_cache.colour_off = cache_line_size();
  1282. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1283. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1284. /*
  1285. * struct kmem_cache size depends on nr_node_ids, which
  1286. * can be less than MAX_NUMNODES.
  1287. */
  1288. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1289. nr_node_ids * sizeof(struct kmem_list3 *);
  1290. #if DEBUG
  1291. cache_cache.obj_size = cache_cache.buffer_size;
  1292. #endif
  1293. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1294. cache_line_size());
  1295. cache_cache.reciprocal_buffer_size =
  1296. reciprocal_value(cache_cache.buffer_size);
  1297. for (order = 0; order < MAX_ORDER; order++) {
  1298. cache_estimate(order, cache_cache.buffer_size,
  1299. cache_line_size(), 0, &left_over, &cache_cache.num);
  1300. if (cache_cache.num)
  1301. break;
  1302. }
  1303. BUG_ON(!cache_cache.num);
  1304. cache_cache.gfporder = order;
  1305. cache_cache.colour = left_over / cache_cache.colour_off;
  1306. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1307. sizeof(struct slab), cache_line_size());
  1308. /* 2+3) create the kmalloc caches */
  1309. sizes = malloc_sizes;
  1310. names = cache_names;
  1311. /*
  1312. * Initialize the caches that provide memory for the array cache and the
  1313. * kmem_list3 structures first. Without this, further allocations will
  1314. * bug.
  1315. */
  1316. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1317. sizes[INDEX_AC].cs_size,
  1318. ARCH_KMALLOC_MINALIGN,
  1319. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1320. NULL, NULL);
  1321. if (INDEX_AC != INDEX_L3) {
  1322. sizes[INDEX_L3].cs_cachep =
  1323. kmem_cache_create(names[INDEX_L3].name,
  1324. sizes[INDEX_L3].cs_size,
  1325. ARCH_KMALLOC_MINALIGN,
  1326. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1327. NULL, NULL);
  1328. }
  1329. slab_early_init = 0;
  1330. while (sizes->cs_size != ULONG_MAX) {
  1331. /*
  1332. * For performance, all the general caches are L1 aligned.
  1333. * This should be particularly beneficial on SMP boxes, as it
  1334. * eliminates "false sharing".
  1335. * Note for systems short on memory removing the alignment will
  1336. * allow tighter packing of the smaller caches.
  1337. */
  1338. if (!sizes->cs_cachep) {
  1339. sizes->cs_cachep = kmem_cache_create(names->name,
  1340. sizes->cs_size,
  1341. ARCH_KMALLOC_MINALIGN,
  1342. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1343. NULL, NULL);
  1344. }
  1345. #ifdef CONFIG_ZONE_DMA
  1346. sizes->cs_dmacachep = kmem_cache_create(
  1347. names->name_dma,
  1348. sizes->cs_size,
  1349. ARCH_KMALLOC_MINALIGN,
  1350. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1351. SLAB_PANIC,
  1352. NULL, NULL);
  1353. #endif
  1354. sizes++;
  1355. names++;
  1356. }
  1357. /* 4) Replace the bootstrap head arrays */
  1358. {
  1359. struct array_cache *ptr;
  1360. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1361. local_irq_disable();
  1362. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1363. memcpy(ptr, cpu_cache_get(&cache_cache),
  1364. sizeof(struct arraycache_init));
  1365. /*
  1366. * Do not assume that spinlocks can be initialized via memcpy:
  1367. */
  1368. spin_lock_init(&ptr->lock);
  1369. cache_cache.array[smp_processor_id()] = ptr;
  1370. local_irq_enable();
  1371. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1372. local_irq_disable();
  1373. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1374. != &initarray_generic.cache);
  1375. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1376. sizeof(struct arraycache_init));
  1377. /*
  1378. * Do not assume that spinlocks can be initialized via memcpy:
  1379. */
  1380. spin_lock_init(&ptr->lock);
  1381. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1382. ptr;
  1383. local_irq_enable();
  1384. }
  1385. /* 5) Replace the bootstrap kmem_list3's */
  1386. {
  1387. int nid;
  1388. /* Replace the static kmem_list3 structures for the boot cpu */
  1389. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1390. for_each_online_node(nid) {
  1391. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1392. &initkmem_list3[SIZE_AC + nid], nid);
  1393. if (INDEX_AC != INDEX_L3) {
  1394. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1395. &initkmem_list3[SIZE_L3 + nid], nid);
  1396. }
  1397. }
  1398. }
  1399. /* 6) resize the head arrays to their final sizes */
  1400. {
  1401. struct kmem_cache *cachep;
  1402. mutex_lock(&cache_chain_mutex);
  1403. list_for_each_entry(cachep, &cache_chain, next)
  1404. if (enable_cpucache(cachep))
  1405. BUG();
  1406. mutex_unlock(&cache_chain_mutex);
  1407. }
  1408. /* Annotate slab for lockdep -- annotate the malloc caches */
  1409. init_lock_keys();
  1410. /* Done! */
  1411. g_cpucache_up = FULL;
  1412. /*
  1413. * Register a cpu startup notifier callback that initializes
  1414. * cpu_cache_get for all new cpus
  1415. */
  1416. register_cpu_notifier(&cpucache_notifier);
  1417. /*
  1418. * The reap timers are started later, with a module init call: That part
  1419. * of the kernel is not yet operational.
  1420. */
  1421. }
  1422. static int __init cpucache_init(void)
  1423. {
  1424. int cpu;
  1425. /*
  1426. * Register the timers that return unneeded pages to the page allocator
  1427. */
  1428. for_each_online_cpu(cpu)
  1429. start_cpu_timer(cpu);
  1430. return 0;
  1431. }
  1432. __initcall(cpucache_init);
  1433. /*
  1434. * Interface to system's page allocator. No need to hold the cache-lock.
  1435. *
  1436. * If we requested dmaable memory, we will get it. Even if we
  1437. * did not request dmaable memory, we might get it, but that
  1438. * would be relatively rare and ignorable.
  1439. */
  1440. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1441. {
  1442. struct page *page;
  1443. int nr_pages;
  1444. int i;
  1445. #ifndef CONFIG_MMU
  1446. /*
  1447. * Nommu uses slab's for process anonymous memory allocations, and thus
  1448. * requires __GFP_COMP to properly refcount higher order allocations
  1449. */
  1450. flags |= __GFP_COMP;
  1451. #endif
  1452. flags |= cachep->gfpflags;
  1453. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1454. if (!page)
  1455. return NULL;
  1456. nr_pages = (1 << cachep->gfporder);
  1457. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1458. add_zone_page_state(page_zone(page),
  1459. NR_SLAB_RECLAIMABLE, nr_pages);
  1460. else
  1461. add_zone_page_state(page_zone(page),
  1462. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1463. for (i = 0; i < nr_pages; i++)
  1464. __SetPageSlab(page + i);
  1465. return page_address(page);
  1466. }
  1467. /*
  1468. * Interface to system's page release.
  1469. */
  1470. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1471. {
  1472. unsigned long i = (1 << cachep->gfporder);
  1473. struct page *page = virt_to_page(addr);
  1474. const unsigned long nr_freed = i;
  1475. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1476. sub_zone_page_state(page_zone(page),
  1477. NR_SLAB_RECLAIMABLE, nr_freed);
  1478. else
  1479. sub_zone_page_state(page_zone(page),
  1480. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1481. while (i--) {
  1482. BUG_ON(!PageSlab(page));
  1483. __ClearPageSlab(page);
  1484. page++;
  1485. }
  1486. if (current->reclaim_state)
  1487. current->reclaim_state->reclaimed_slab += nr_freed;
  1488. free_pages((unsigned long)addr, cachep->gfporder);
  1489. }
  1490. static void kmem_rcu_free(struct rcu_head *head)
  1491. {
  1492. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1493. struct kmem_cache *cachep = slab_rcu->cachep;
  1494. kmem_freepages(cachep, slab_rcu->addr);
  1495. if (OFF_SLAB(cachep))
  1496. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1497. }
  1498. #if DEBUG
  1499. #ifdef CONFIG_DEBUG_PAGEALLOC
  1500. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1501. unsigned long caller)
  1502. {
  1503. int size = obj_size(cachep);
  1504. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1505. if (size < 5 * sizeof(unsigned long))
  1506. return;
  1507. *addr++ = 0x12345678;
  1508. *addr++ = caller;
  1509. *addr++ = smp_processor_id();
  1510. size -= 3 * sizeof(unsigned long);
  1511. {
  1512. unsigned long *sptr = &caller;
  1513. unsigned long svalue;
  1514. while (!kstack_end(sptr)) {
  1515. svalue = *sptr++;
  1516. if (kernel_text_address(svalue)) {
  1517. *addr++ = svalue;
  1518. size -= sizeof(unsigned long);
  1519. if (size <= sizeof(unsigned long))
  1520. break;
  1521. }
  1522. }
  1523. }
  1524. *addr++ = 0x87654321;
  1525. }
  1526. #endif
  1527. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1528. {
  1529. int size = obj_size(cachep);
  1530. addr = &((char *)addr)[obj_offset(cachep)];
  1531. memset(addr, val, size);
  1532. *(unsigned char *)(addr + size - 1) = POISON_END;
  1533. }
  1534. static void dump_line(char *data, int offset, int limit)
  1535. {
  1536. int i;
  1537. unsigned char error = 0;
  1538. int bad_count = 0;
  1539. printk(KERN_ERR "%03x:", offset);
  1540. for (i = 0; i < limit; i++) {
  1541. if (data[offset + i] != POISON_FREE) {
  1542. error = data[offset + i];
  1543. bad_count++;
  1544. }
  1545. printk(" %02x", (unsigned char)data[offset + i]);
  1546. }
  1547. printk("\n");
  1548. if (bad_count == 1) {
  1549. error ^= POISON_FREE;
  1550. if (!(error & (error - 1))) {
  1551. printk(KERN_ERR "Single bit error detected. Probably "
  1552. "bad RAM.\n");
  1553. #ifdef CONFIG_X86
  1554. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1555. "test tool.\n");
  1556. #else
  1557. printk(KERN_ERR "Run a memory test tool.\n");
  1558. #endif
  1559. }
  1560. }
  1561. }
  1562. #endif
  1563. #if DEBUG
  1564. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1565. {
  1566. int i, size;
  1567. char *realobj;
  1568. if (cachep->flags & SLAB_RED_ZONE) {
  1569. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1570. *dbg_redzone1(cachep, objp),
  1571. *dbg_redzone2(cachep, objp));
  1572. }
  1573. if (cachep->flags & SLAB_STORE_USER) {
  1574. printk(KERN_ERR "Last user: [<%p>]",
  1575. *dbg_userword(cachep, objp));
  1576. print_symbol("(%s)",
  1577. (unsigned long)*dbg_userword(cachep, objp));
  1578. printk("\n");
  1579. }
  1580. realobj = (char *)objp + obj_offset(cachep);
  1581. size = obj_size(cachep);
  1582. for (i = 0; i < size && lines; i += 16, lines--) {
  1583. int limit;
  1584. limit = 16;
  1585. if (i + limit > size)
  1586. limit = size - i;
  1587. dump_line(realobj, i, limit);
  1588. }
  1589. }
  1590. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1591. {
  1592. char *realobj;
  1593. int size, i;
  1594. int lines = 0;
  1595. realobj = (char *)objp + obj_offset(cachep);
  1596. size = obj_size(cachep);
  1597. for (i = 0; i < size; i++) {
  1598. char exp = POISON_FREE;
  1599. if (i == size - 1)
  1600. exp = POISON_END;
  1601. if (realobj[i] != exp) {
  1602. int limit;
  1603. /* Mismatch ! */
  1604. /* Print header */
  1605. if (lines == 0) {
  1606. printk(KERN_ERR
  1607. "Slab corruption: %s start=%p, len=%d\n",
  1608. cachep->name, realobj, size);
  1609. print_objinfo(cachep, objp, 0);
  1610. }
  1611. /* Hexdump the affected line */
  1612. i = (i / 16) * 16;
  1613. limit = 16;
  1614. if (i + limit > size)
  1615. limit = size - i;
  1616. dump_line(realobj, i, limit);
  1617. i += 16;
  1618. lines++;
  1619. /* Limit to 5 lines */
  1620. if (lines > 5)
  1621. break;
  1622. }
  1623. }
  1624. if (lines != 0) {
  1625. /* Print some data about the neighboring objects, if they
  1626. * exist:
  1627. */
  1628. struct slab *slabp = virt_to_slab(objp);
  1629. unsigned int objnr;
  1630. objnr = obj_to_index(cachep, slabp, objp);
  1631. if (objnr) {
  1632. objp = index_to_obj(cachep, slabp, objnr - 1);
  1633. realobj = (char *)objp + obj_offset(cachep);
  1634. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1635. realobj, size);
  1636. print_objinfo(cachep, objp, 2);
  1637. }
  1638. if (objnr + 1 < cachep->num) {
  1639. objp = index_to_obj(cachep, slabp, objnr + 1);
  1640. realobj = (char *)objp + obj_offset(cachep);
  1641. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1642. realobj, size);
  1643. print_objinfo(cachep, objp, 2);
  1644. }
  1645. }
  1646. }
  1647. #endif
  1648. #if DEBUG
  1649. /**
  1650. * slab_destroy_objs - destroy a slab and its objects
  1651. * @cachep: cache pointer being destroyed
  1652. * @slabp: slab pointer being destroyed
  1653. *
  1654. * Call the registered destructor for each object in a slab that is being
  1655. * destroyed.
  1656. */
  1657. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1658. {
  1659. int i;
  1660. for (i = 0; i < cachep->num; i++) {
  1661. void *objp = index_to_obj(cachep, slabp, i);
  1662. if (cachep->flags & SLAB_POISON) {
  1663. #ifdef CONFIG_DEBUG_PAGEALLOC
  1664. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1665. OFF_SLAB(cachep))
  1666. kernel_map_pages(virt_to_page(objp),
  1667. cachep->buffer_size / PAGE_SIZE, 1);
  1668. else
  1669. check_poison_obj(cachep, objp);
  1670. #else
  1671. check_poison_obj(cachep, objp);
  1672. #endif
  1673. }
  1674. if (cachep->flags & SLAB_RED_ZONE) {
  1675. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1676. slab_error(cachep, "start of a freed object "
  1677. "was overwritten");
  1678. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1679. slab_error(cachep, "end of a freed object "
  1680. "was overwritten");
  1681. }
  1682. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1683. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1684. }
  1685. }
  1686. #else
  1687. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1688. {
  1689. if (cachep->dtor) {
  1690. int i;
  1691. for (i = 0; i < cachep->num; i++) {
  1692. void *objp = index_to_obj(cachep, slabp, i);
  1693. (cachep->dtor) (objp, cachep, 0);
  1694. }
  1695. }
  1696. }
  1697. #endif
  1698. /**
  1699. * slab_destroy - destroy and release all objects in a slab
  1700. * @cachep: cache pointer being destroyed
  1701. * @slabp: slab pointer being destroyed
  1702. *
  1703. * Destroy all the objs in a slab, and release the mem back to the system.
  1704. * Before calling the slab must have been unlinked from the cache. The
  1705. * cache-lock is not held/needed.
  1706. */
  1707. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1708. {
  1709. void *addr = slabp->s_mem - slabp->colouroff;
  1710. slab_destroy_objs(cachep, slabp);
  1711. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1712. struct slab_rcu *slab_rcu;
  1713. slab_rcu = (struct slab_rcu *)slabp;
  1714. slab_rcu->cachep = cachep;
  1715. slab_rcu->addr = addr;
  1716. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1717. } else {
  1718. kmem_freepages(cachep, addr);
  1719. if (OFF_SLAB(cachep))
  1720. kmem_cache_free(cachep->slabp_cache, slabp);
  1721. }
  1722. }
  1723. /*
  1724. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1725. * size of kmem_list3.
  1726. */
  1727. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1728. {
  1729. int node;
  1730. for_each_online_node(node) {
  1731. cachep->nodelists[node] = &initkmem_list3[index + node];
  1732. cachep->nodelists[node]->next_reap = jiffies +
  1733. REAPTIMEOUT_LIST3 +
  1734. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1735. }
  1736. }
  1737. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1738. {
  1739. int i;
  1740. struct kmem_list3 *l3;
  1741. for_each_online_cpu(i)
  1742. kfree(cachep->array[i]);
  1743. /* NUMA: free the list3 structures */
  1744. for_each_online_node(i) {
  1745. l3 = cachep->nodelists[i];
  1746. if (l3) {
  1747. kfree(l3->shared);
  1748. free_alien_cache(l3->alien);
  1749. kfree(l3);
  1750. }
  1751. }
  1752. kmem_cache_free(&cache_cache, cachep);
  1753. }
  1754. /**
  1755. * calculate_slab_order - calculate size (page order) of slabs
  1756. * @cachep: pointer to the cache that is being created
  1757. * @size: size of objects to be created in this cache.
  1758. * @align: required alignment for the objects.
  1759. * @flags: slab allocation flags
  1760. *
  1761. * Also calculates the number of objects per slab.
  1762. *
  1763. * This could be made much more intelligent. For now, try to avoid using
  1764. * high order pages for slabs. When the gfp() functions are more friendly
  1765. * towards high-order requests, this should be changed.
  1766. */
  1767. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1768. size_t size, size_t align, unsigned long flags)
  1769. {
  1770. unsigned long offslab_limit;
  1771. size_t left_over = 0;
  1772. int gfporder;
  1773. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1774. unsigned int num;
  1775. size_t remainder;
  1776. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1777. if (!num)
  1778. continue;
  1779. if (flags & CFLGS_OFF_SLAB) {
  1780. /*
  1781. * Max number of objs-per-slab for caches which
  1782. * use off-slab slabs. Needed to avoid a possible
  1783. * looping condition in cache_grow().
  1784. */
  1785. offslab_limit = size - sizeof(struct slab);
  1786. offslab_limit /= sizeof(kmem_bufctl_t);
  1787. if (num > offslab_limit)
  1788. break;
  1789. }
  1790. /* Found something acceptable - save it away */
  1791. cachep->num = num;
  1792. cachep->gfporder = gfporder;
  1793. left_over = remainder;
  1794. /*
  1795. * A VFS-reclaimable slab tends to have most allocations
  1796. * as GFP_NOFS and we really don't want to have to be allocating
  1797. * higher-order pages when we are unable to shrink dcache.
  1798. */
  1799. if (flags & SLAB_RECLAIM_ACCOUNT)
  1800. break;
  1801. /*
  1802. * Large number of objects is good, but very large slabs are
  1803. * currently bad for the gfp()s.
  1804. */
  1805. if (gfporder >= slab_break_gfp_order)
  1806. break;
  1807. /*
  1808. * Acceptable internal fragmentation?
  1809. */
  1810. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1811. break;
  1812. }
  1813. return left_over;
  1814. }
  1815. static int setup_cpu_cache(struct kmem_cache *cachep)
  1816. {
  1817. if (g_cpucache_up == FULL)
  1818. return enable_cpucache(cachep);
  1819. if (g_cpucache_up == NONE) {
  1820. /*
  1821. * Note: the first kmem_cache_create must create the cache
  1822. * that's used by kmalloc(24), otherwise the creation of
  1823. * further caches will BUG().
  1824. */
  1825. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1826. /*
  1827. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1828. * the first cache, then we need to set up all its list3s,
  1829. * otherwise the creation of further caches will BUG().
  1830. */
  1831. set_up_list3s(cachep, SIZE_AC);
  1832. if (INDEX_AC == INDEX_L3)
  1833. g_cpucache_up = PARTIAL_L3;
  1834. else
  1835. g_cpucache_up = PARTIAL_AC;
  1836. } else {
  1837. cachep->array[smp_processor_id()] =
  1838. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1839. if (g_cpucache_up == PARTIAL_AC) {
  1840. set_up_list3s(cachep, SIZE_L3);
  1841. g_cpucache_up = PARTIAL_L3;
  1842. } else {
  1843. int node;
  1844. for_each_online_node(node) {
  1845. cachep->nodelists[node] =
  1846. kmalloc_node(sizeof(struct kmem_list3),
  1847. GFP_KERNEL, node);
  1848. BUG_ON(!cachep->nodelists[node]);
  1849. kmem_list3_init(cachep->nodelists[node]);
  1850. }
  1851. }
  1852. }
  1853. cachep->nodelists[numa_node_id()]->next_reap =
  1854. jiffies + REAPTIMEOUT_LIST3 +
  1855. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1856. cpu_cache_get(cachep)->avail = 0;
  1857. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1858. cpu_cache_get(cachep)->batchcount = 1;
  1859. cpu_cache_get(cachep)->touched = 0;
  1860. cachep->batchcount = 1;
  1861. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1862. return 0;
  1863. }
  1864. /**
  1865. * kmem_cache_create - Create a cache.
  1866. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1867. * @size: The size of objects to be created in this cache.
  1868. * @align: The required alignment for the objects.
  1869. * @flags: SLAB flags
  1870. * @ctor: A constructor for the objects.
  1871. * @dtor: A destructor for the objects.
  1872. *
  1873. * Returns a ptr to the cache on success, NULL on failure.
  1874. * Cannot be called within a int, but can be interrupted.
  1875. * The @ctor is run when new pages are allocated by the cache
  1876. * and the @dtor is run before the pages are handed back.
  1877. *
  1878. * @name must be valid until the cache is destroyed. This implies that
  1879. * the module calling this has to destroy the cache before getting unloaded.
  1880. *
  1881. * The flags are
  1882. *
  1883. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1884. * to catch references to uninitialised memory.
  1885. *
  1886. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1887. * for buffer overruns.
  1888. *
  1889. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1890. * cacheline. This can be beneficial if you're counting cycles as closely
  1891. * as davem.
  1892. */
  1893. struct kmem_cache *
  1894. kmem_cache_create (const char *name, size_t size, size_t align,
  1895. unsigned long flags,
  1896. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1897. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1898. {
  1899. size_t left_over, slab_size, ralign;
  1900. struct kmem_cache *cachep = NULL, *pc;
  1901. /*
  1902. * Sanity checks... these are all serious usage bugs.
  1903. */
  1904. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1905. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1906. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1907. name);
  1908. BUG();
  1909. }
  1910. /*
  1911. * We use cache_chain_mutex to ensure a consistent view of
  1912. * cpu_online_map as well. Please see cpuup_callback
  1913. */
  1914. mutex_lock(&cache_chain_mutex);
  1915. list_for_each_entry(pc, &cache_chain, next) {
  1916. char tmp;
  1917. int res;
  1918. /*
  1919. * This happens when the module gets unloaded and doesn't
  1920. * destroy its slab cache and no-one else reuses the vmalloc
  1921. * area of the module. Print a warning.
  1922. */
  1923. res = probe_kernel_address(pc->name, tmp);
  1924. if (res) {
  1925. printk(KERN_ERR
  1926. "SLAB: cache with size %d has lost its name\n",
  1927. pc->buffer_size);
  1928. continue;
  1929. }
  1930. if (!strcmp(pc->name, name)) {
  1931. printk(KERN_ERR
  1932. "kmem_cache_create: duplicate cache %s\n", name);
  1933. dump_stack();
  1934. goto oops;
  1935. }
  1936. }
  1937. #if DEBUG
  1938. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1939. #if FORCED_DEBUG
  1940. /*
  1941. * Enable redzoning and last user accounting, except for caches with
  1942. * large objects, if the increased size would increase the object size
  1943. * above the next power of two: caches with object sizes just above a
  1944. * power of two have a significant amount of internal fragmentation.
  1945. */
  1946. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1947. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1948. if (!(flags & SLAB_DESTROY_BY_RCU))
  1949. flags |= SLAB_POISON;
  1950. #endif
  1951. if (flags & SLAB_DESTROY_BY_RCU)
  1952. BUG_ON(flags & SLAB_POISON);
  1953. #endif
  1954. if (flags & SLAB_DESTROY_BY_RCU)
  1955. BUG_ON(dtor);
  1956. /*
  1957. * Always checks flags, a caller might be expecting debug support which
  1958. * isn't available.
  1959. */
  1960. BUG_ON(flags & ~CREATE_MASK);
  1961. /*
  1962. * Check that size is in terms of words. This is needed to avoid
  1963. * unaligned accesses for some archs when redzoning is used, and makes
  1964. * sure any on-slab bufctl's are also correctly aligned.
  1965. */
  1966. if (size & (BYTES_PER_WORD - 1)) {
  1967. size += (BYTES_PER_WORD - 1);
  1968. size &= ~(BYTES_PER_WORD - 1);
  1969. }
  1970. /* calculate the final buffer alignment: */
  1971. /* 1) arch recommendation: can be overridden for debug */
  1972. if (flags & SLAB_HWCACHE_ALIGN) {
  1973. /*
  1974. * Default alignment: as specified by the arch code. Except if
  1975. * an object is really small, then squeeze multiple objects into
  1976. * one cacheline.
  1977. */
  1978. ralign = cache_line_size();
  1979. while (size <= ralign / 2)
  1980. ralign /= 2;
  1981. } else {
  1982. ralign = BYTES_PER_WORD;
  1983. }
  1984. /*
  1985. * Redzoning and user store require word alignment. Note this will be
  1986. * overridden by architecture or caller mandated alignment if either
  1987. * is greater than BYTES_PER_WORD.
  1988. */
  1989. if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
  1990. ralign = BYTES_PER_WORD;
  1991. /* 2) arch mandated alignment */
  1992. if (ralign < ARCH_SLAB_MINALIGN) {
  1993. ralign = ARCH_SLAB_MINALIGN;
  1994. }
  1995. /* 3) caller mandated alignment */
  1996. if (ralign < align) {
  1997. ralign = align;
  1998. }
  1999. /* disable debug if necessary */
  2000. if (ralign > BYTES_PER_WORD)
  2001. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2002. /*
  2003. * 4) Store it.
  2004. */
  2005. align = ralign;
  2006. /* Get cache's description obj. */
  2007. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2008. if (!cachep)
  2009. goto oops;
  2010. #if DEBUG
  2011. cachep->obj_size = size;
  2012. /*
  2013. * Both debugging options require word-alignment which is calculated
  2014. * into align above.
  2015. */
  2016. if (flags & SLAB_RED_ZONE) {
  2017. /* add space for red zone words */
  2018. cachep->obj_offset += BYTES_PER_WORD;
  2019. size += 2 * BYTES_PER_WORD;
  2020. }
  2021. if (flags & SLAB_STORE_USER) {
  2022. /* user store requires one word storage behind the end of
  2023. * the real object.
  2024. */
  2025. size += BYTES_PER_WORD;
  2026. }
  2027. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2028. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2029. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2030. cachep->obj_offset += PAGE_SIZE - size;
  2031. size = PAGE_SIZE;
  2032. }
  2033. #endif
  2034. #endif
  2035. /*
  2036. * Determine if the slab management is 'on' or 'off' slab.
  2037. * (bootstrapping cannot cope with offslab caches so don't do
  2038. * it too early on.)
  2039. */
  2040. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2041. /*
  2042. * Size is large, assume best to place the slab management obj
  2043. * off-slab (should allow better packing of objs).
  2044. */
  2045. flags |= CFLGS_OFF_SLAB;
  2046. size = ALIGN(size, align);
  2047. left_over = calculate_slab_order(cachep, size, align, flags);
  2048. if (!cachep->num) {
  2049. printk(KERN_ERR
  2050. "kmem_cache_create: couldn't create cache %s.\n", name);
  2051. kmem_cache_free(&cache_cache, cachep);
  2052. cachep = NULL;
  2053. goto oops;
  2054. }
  2055. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2056. + sizeof(struct slab), align);
  2057. /*
  2058. * If the slab has been placed off-slab, and we have enough space then
  2059. * move it on-slab. This is at the expense of any extra colouring.
  2060. */
  2061. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2062. flags &= ~CFLGS_OFF_SLAB;
  2063. left_over -= slab_size;
  2064. }
  2065. if (flags & CFLGS_OFF_SLAB) {
  2066. /* really off slab. No need for manual alignment */
  2067. slab_size =
  2068. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2069. }
  2070. cachep->colour_off = cache_line_size();
  2071. /* Offset must be a multiple of the alignment. */
  2072. if (cachep->colour_off < align)
  2073. cachep->colour_off = align;
  2074. cachep->colour = left_over / cachep->colour_off;
  2075. cachep->slab_size = slab_size;
  2076. cachep->flags = flags;
  2077. cachep->gfpflags = 0;
  2078. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2079. cachep->gfpflags |= GFP_DMA;
  2080. cachep->buffer_size = size;
  2081. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2082. if (flags & CFLGS_OFF_SLAB) {
  2083. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2084. /*
  2085. * This is a possibility for one of the malloc_sizes caches.
  2086. * But since we go off slab only for object size greater than
  2087. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2088. * this should not happen at all.
  2089. * But leave a BUG_ON for some lucky dude.
  2090. */
  2091. BUG_ON(!cachep->slabp_cache);
  2092. }
  2093. cachep->ctor = ctor;
  2094. cachep->dtor = dtor;
  2095. cachep->name = name;
  2096. if (setup_cpu_cache(cachep)) {
  2097. __kmem_cache_destroy(cachep);
  2098. cachep = NULL;
  2099. goto oops;
  2100. }
  2101. /* cache setup completed, link it into the list */
  2102. list_add(&cachep->next, &cache_chain);
  2103. oops:
  2104. if (!cachep && (flags & SLAB_PANIC))
  2105. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2106. name);
  2107. mutex_unlock(&cache_chain_mutex);
  2108. return cachep;
  2109. }
  2110. EXPORT_SYMBOL(kmem_cache_create);
  2111. #if DEBUG
  2112. static void check_irq_off(void)
  2113. {
  2114. BUG_ON(!irqs_disabled());
  2115. }
  2116. static void check_irq_on(void)
  2117. {
  2118. BUG_ON(irqs_disabled());
  2119. }
  2120. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2121. {
  2122. #ifdef CONFIG_SMP
  2123. check_irq_off();
  2124. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2125. #endif
  2126. }
  2127. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2128. {
  2129. #ifdef CONFIG_SMP
  2130. check_irq_off();
  2131. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2132. #endif
  2133. }
  2134. #else
  2135. #define check_irq_off() do { } while(0)
  2136. #define check_irq_on() do { } while(0)
  2137. #define check_spinlock_acquired(x) do { } while(0)
  2138. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2139. #endif
  2140. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2141. struct array_cache *ac,
  2142. int force, int node);
  2143. static void do_drain(void *arg)
  2144. {
  2145. struct kmem_cache *cachep = arg;
  2146. struct array_cache *ac;
  2147. int node = numa_node_id();
  2148. check_irq_off();
  2149. ac = cpu_cache_get(cachep);
  2150. spin_lock(&cachep->nodelists[node]->list_lock);
  2151. free_block(cachep, ac->entry, ac->avail, node);
  2152. spin_unlock(&cachep->nodelists[node]->list_lock);
  2153. ac->avail = 0;
  2154. }
  2155. static void drain_cpu_caches(struct kmem_cache *cachep)
  2156. {
  2157. struct kmem_list3 *l3;
  2158. int node;
  2159. on_each_cpu(do_drain, cachep, 1, 1);
  2160. check_irq_on();
  2161. for_each_online_node(node) {
  2162. l3 = cachep->nodelists[node];
  2163. if (l3 && l3->alien)
  2164. drain_alien_cache(cachep, l3->alien);
  2165. }
  2166. for_each_online_node(node) {
  2167. l3 = cachep->nodelists[node];
  2168. if (l3)
  2169. drain_array(cachep, l3, l3->shared, 1, node);
  2170. }
  2171. }
  2172. /*
  2173. * Remove slabs from the list of free slabs.
  2174. * Specify the number of slabs to drain in tofree.
  2175. *
  2176. * Returns the actual number of slabs released.
  2177. */
  2178. static int drain_freelist(struct kmem_cache *cache,
  2179. struct kmem_list3 *l3, int tofree)
  2180. {
  2181. struct list_head *p;
  2182. int nr_freed;
  2183. struct slab *slabp;
  2184. nr_freed = 0;
  2185. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2186. spin_lock_irq(&l3->list_lock);
  2187. p = l3->slabs_free.prev;
  2188. if (p == &l3->slabs_free) {
  2189. spin_unlock_irq(&l3->list_lock);
  2190. goto out;
  2191. }
  2192. slabp = list_entry(p, struct slab, list);
  2193. #if DEBUG
  2194. BUG_ON(slabp->inuse);
  2195. #endif
  2196. list_del(&slabp->list);
  2197. /*
  2198. * Safe to drop the lock. The slab is no longer linked
  2199. * to the cache.
  2200. */
  2201. l3->free_objects -= cache->num;
  2202. spin_unlock_irq(&l3->list_lock);
  2203. slab_destroy(cache, slabp);
  2204. nr_freed++;
  2205. }
  2206. out:
  2207. return nr_freed;
  2208. }
  2209. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2210. static int __cache_shrink(struct kmem_cache *cachep)
  2211. {
  2212. int ret = 0, i = 0;
  2213. struct kmem_list3 *l3;
  2214. drain_cpu_caches(cachep);
  2215. check_irq_on();
  2216. for_each_online_node(i) {
  2217. l3 = cachep->nodelists[i];
  2218. if (!l3)
  2219. continue;
  2220. drain_freelist(cachep, l3, l3->free_objects);
  2221. ret += !list_empty(&l3->slabs_full) ||
  2222. !list_empty(&l3->slabs_partial);
  2223. }
  2224. return (ret ? 1 : 0);
  2225. }
  2226. /**
  2227. * kmem_cache_shrink - Shrink a cache.
  2228. * @cachep: The cache to shrink.
  2229. *
  2230. * Releases as many slabs as possible for a cache.
  2231. * To help debugging, a zero exit status indicates all slabs were released.
  2232. */
  2233. int kmem_cache_shrink(struct kmem_cache *cachep)
  2234. {
  2235. int ret;
  2236. BUG_ON(!cachep || in_interrupt());
  2237. mutex_lock(&cache_chain_mutex);
  2238. ret = __cache_shrink(cachep);
  2239. mutex_unlock(&cache_chain_mutex);
  2240. return ret;
  2241. }
  2242. EXPORT_SYMBOL(kmem_cache_shrink);
  2243. /**
  2244. * kmem_cache_destroy - delete a cache
  2245. * @cachep: the cache to destroy
  2246. *
  2247. * Remove a &struct kmem_cache object from the slab cache.
  2248. *
  2249. * It is expected this function will be called by a module when it is
  2250. * unloaded. This will remove the cache completely, and avoid a duplicate
  2251. * cache being allocated each time a module is loaded and unloaded, if the
  2252. * module doesn't have persistent in-kernel storage across loads and unloads.
  2253. *
  2254. * The cache must be empty before calling this function.
  2255. *
  2256. * The caller must guarantee that noone will allocate memory from the cache
  2257. * during the kmem_cache_destroy().
  2258. */
  2259. void kmem_cache_destroy(struct kmem_cache *cachep)
  2260. {
  2261. BUG_ON(!cachep || in_interrupt());
  2262. /* Find the cache in the chain of caches. */
  2263. mutex_lock(&cache_chain_mutex);
  2264. /*
  2265. * the chain is never empty, cache_cache is never destroyed
  2266. */
  2267. list_del(&cachep->next);
  2268. if (__cache_shrink(cachep)) {
  2269. slab_error(cachep, "Can't free all objects");
  2270. list_add(&cachep->next, &cache_chain);
  2271. mutex_unlock(&cache_chain_mutex);
  2272. return;
  2273. }
  2274. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2275. synchronize_rcu();
  2276. __kmem_cache_destroy(cachep);
  2277. mutex_unlock(&cache_chain_mutex);
  2278. }
  2279. EXPORT_SYMBOL(kmem_cache_destroy);
  2280. /*
  2281. * Get the memory for a slab management obj.
  2282. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2283. * always come from malloc_sizes caches. The slab descriptor cannot
  2284. * come from the same cache which is getting created because,
  2285. * when we are searching for an appropriate cache for these
  2286. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2287. * If we are creating a malloc_sizes cache here it would not be visible to
  2288. * kmem_find_general_cachep till the initialization is complete.
  2289. * Hence we cannot have slabp_cache same as the original cache.
  2290. */
  2291. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2292. int colour_off, gfp_t local_flags,
  2293. int nodeid)
  2294. {
  2295. struct slab *slabp;
  2296. if (OFF_SLAB(cachep)) {
  2297. /* Slab management obj is off-slab. */
  2298. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2299. local_flags & ~GFP_THISNODE, nodeid);
  2300. if (!slabp)
  2301. return NULL;
  2302. } else {
  2303. slabp = objp + colour_off;
  2304. colour_off += cachep->slab_size;
  2305. }
  2306. slabp->inuse = 0;
  2307. slabp->colouroff = colour_off;
  2308. slabp->s_mem = objp + colour_off;
  2309. slabp->nodeid = nodeid;
  2310. return slabp;
  2311. }
  2312. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2313. {
  2314. return (kmem_bufctl_t *) (slabp + 1);
  2315. }
  2316. static void cache_init_objs(struct kmem_cache *cachep,
  2317. struct slab *slabp, unsigned long ctor_flags)
  2318. {
  2319. int i;
  2320. for (i = 0; i < cachep->num; i++) {
  2321. void *objp = index_to_obj(cachep, slabp, i);
  2322. #if DEBUG
  2323. /* need to poison the objs? */
  2324. if (cachep->flags & SLAB_POISON)
  2325. poison_obj(cachep, objp, POISON_FREE);
  2326. if (cachep->flags & SLAB_STORE_USER)
  2327. *dbg_userword(cachep, objp) = NULL;
  2328. if (cachep->flags & SLAB_RED_ZONE) {
  2329. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2330. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2331. }
  2332. /*
  2333. * Constructors are not allowed to allocate memory from the same
  2334. * cache which they are a constructor for. Otherwise, deadlock.
  2335. * They must also be threaded.
  2336. */
  2337. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2338. cachep->ctor(objp + obj_offset(cachep), cachep,
  2339. ctor_flags);
  2340. if (cachep->flags & SLAB_RED_ZONE) {
  2341. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2342. slab_error(cachep, "constructor overwrote the"
  2343. " end of an object");
  2344. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2345. slab_error(cachep, "constructor overwrote the"
  2346. " start of an object");
  2347. }
  2348. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2349. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2350. kernel_map_pages(virt_to_page(objp),
  2351. cachep->buffer_size / PAGE_SIZE, 0);
  2352. #else
  2353. if (cachep->ctor)
  2354. cachep->ctor(objp, cachep, ctor_flags);
  2355. #endif
  2356. slab_bufctl(slabp)[i] = i + 1;
  2357. }
  2358. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2359. slabp->free = 0;
  2360. }
  2361. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2362. {
  2363. if (CONFIG_ZONE_DMA_FLAG) {
  2364. if (flags & GFP_DMA)
  2365. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2366. else
  2367. BUG_ON(cachep->gfpflags & GFP_DMA);
  2368. }
  2369. }
  2370. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2371. int nodeid)
  2372. {
  2373. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2374. kmem_bufctl_t next;
  2375. slabp->inuse++;
  2376. next = slab_bufctl(slabp)[slabp->free];
  2377. #if DEBUG
  2378. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2379. WARN_ON(slabp->nodeid != nodeid);
  2380. #endif
  2381. slabp->free = next;
  2382. return objp;
  2383. }
  2384. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2385. void *objp, int nodeid)
  2386. {
  2387. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2388. #if DEBUG
  2389. /* Verify that the slab belongs to the intended node */
  2390. WARN_ON(slabp->nodeid != nodeid);
  2391. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2392. printk(KERN_ERR "slab: double free detected in cache "
  2393. "'%s', objp %p\n", cachep->name, objp);
  2394. BUG();
  2395. }
  2396. #endif
  2397. slab_bufctl(slabp)[objnr] = slabp->free;
  2398. slabp->free = objnr;
  2399. slabp->inuse--;
  2400. }
  2401. /*
  2402. * Map pages beginning at addr to the given cache and slab. This is required
  2403. * for the slab allocator to be able to lookup the cache and slab of a
  2404. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2405. */
  2406. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2407. void *addr)
  2408. {
  2409. int nr_pages;
  2410. struct page *page;
  2411. page = virt_to_page(addr);
  2412. nr_pages = 1;
  2413. if (likely(!PageCompound(page)))
  2414. nr_pages <<= cache->gfporder;
  2415. do {
  2416. page_set_cache(page, cache);
  2417. page_set_slab(page, slab);
  2418. page++;
  2419. } while (--nr_pages);
  2420. }
  2421. /*
  2422. * Grow (by 1) the number of slabs within a cache. This is called by
  2423. * kmem_cache_alloc() when there are no active objs left in a cache.
  2424. */
  2425. static int cache_grow(struct kmem_cache *cachep,
  2426. gfp_t flags, int nodeid, void *objp)
  2427. {
  2428. struct slab *slabp;
  2429. size_t offset;
  2430. gfp_t local_flags;
  2431. unsigned long ctor_flags;
  2432. struct kmem_list3 *l3;
  2433. /*
  2434. * Be lazy and only check for valid flags here, keeping it out of the
  2435. * critical path in kmem_cache_alloc().
  2436. */
  2437. BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
  2438. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2439. local_flags = (flags & GFP_LEVEL_MASK);
  2440. /* Take the l3 list lock to change the colour_next on this node */
  2441. check_irq_off();
  2442. l3 = cachep->nodelists[nodeid];
  2443. spin_lock(&l3->list_lock);
  2444. /* Get colour for the slab, and cal the next value. */
  2445. offset = l3->colour_next;
  2446. l3->colour_next++;
  2447. if (l3->colour_next >= cachep->colour)
  2448. l3->colour_next = 0;
  2449. spin_unlock(&l3->list_lock);
  2450. offset *= cachep->colour_off;
  2451. if (local_flags & __GFP_WAIT)
  2452. local_irq_enable();
  2453. /*
  2454. * The test for missing atomic flag is performed here, rather than
  2455. * the more obvious place, simply to reduce the critical path length
  2456. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2457. * will eventually be caught here (where it matters).
  2458. */
  2459. kmem_flagcheck(cachep, flags);
  2460. /*
  2461. * Get mem for the objs. Attempt to allocate a physical page from
  2462. * 'nodeid'.
  2463. */
  2464. if (!objp)
  2465. objp = kmem_getpages(cachep, flags, nodeid);
  2466. if (!objp)
  2467. goto failed;
  2468. /* Get slab management. */
  2469. slabp = alloc_slabmgmt(cachep, objp, offset,
  2470. local_flags & ~GFP_THISNODE, nodeid);
  2471. if (!slabp)
  2472. goto opps1;
  2473. slabp->nodeid = nodeid;
  2474. slab_map_pages(cachep, slabp, objp);
  2475. cache_init_objs(cachep, slabp, ctor_flags);
  2476. if (local_flags & __GFP_WAIT)
  2477. local_irq_disable();
  2478. check_irq_off();
  2479. spin_lock(&l3->list_lock);
  2480. /* Make slab active. */
  2481. list_add_tail(&slabp->list, &(l3->slabs_free));
  2482. STATS_INC_GROWN(cachep);
  2483. l3->free_objects += cachep->num;
  2484. spin_unlock(&l3->list_lock);
  2485. return 1;
  2486. opps1:
  2487. kmem_freepages(cachep, objp);
  2488. failed:
  2489. if (local_flags & __GFP_WAIT)
  2490. local_irq_disable();
  2491. return 0;
  2492. }
  2493. #if DEBUG
  2494. /*
  2495. * Perform extra freeing checks:
  2496. * - detect bad pointers.
  2497. * - POISON/RED_ZONE checking
  2498. * - destructor calls, for caches with POISON+dtor
  2499. */
  2500. static void kfree_debugcheck(const void *objp)
  2501. {
  2502. if (!virt_addr_valid(objp)) {
  2503. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2504. (unsigned long)objp);
  2505. BUG();
  2506. }
  2507. }
  2508. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2509. {
  2510. unsigned long redzone1, redzone2;
  2511. redzone1 = *dbg_redzone1(cache, obj);
  2512. redzone2 = *dbg_redzone2(cache, obj);
  2513. /*
  2514. * Redzone is ok.
  2515. */
  2516. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2517. return;
  2518. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2519. slab_error(cache, "double free detected");
  2520. else
  2521. slab_error(cache, "memory outside object was overwritten");
  2522. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2523. obj, redzone1, redzone2);
  2524. }
  2525. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2526. void *caller)
  2527. {
  2528. struct page *page;
  2529. unsigned int objnr;
  2530. struct slab *slabp;
  2531. objp -= obj_offset(cachep);
  2532. kfree_debugcheck(objp);
  2533. page = virt_to_head_page(objp);
  2534. slabp = page_get_slab(page);
  2535. if (cachep->flags & SLAB_RED_ZONE) {
  2536. verify_redzone_free(cachep, objp);
  2537. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2538. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2539. }
  2540. if (cachep->flags & SLAB_STORE_USER)
  2541. *dbg_userword(cachep, objp) = caller;
  2542. objnr = obj_to_index(cachep, slabp, objp);
  2543. BUG_ON(objnr >= cachep->num);
  2544. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2545. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2546. /* we want to cache poison the object,
  2547. * call the destruction callback
  2548. */
  2549. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2550. }
  2551. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2552. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2553. #endif
  2554. if (cachep->flags & SLAB_POISON) {
  2555. #ifdef CONFIG_DEBUG_PAGEALLOC
  2556. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2557. store_stackinfo(cachep, objp, (unsigned long)caller);
  2558. kernel_map_pages(virt_to_page(objp),
  2559. cachep->buffer_size / PAGE_SIZE, 0);
  2560. } else {
  2561. poison_obj(cachep, objp, POISON_FREE);
  2562. }
  2563. #else
  2564. poison_obj(cachep, objp, POISON_FREE);
  2565. #endif
  2566. }
  2567. return objp;
  2568. }
  2569. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2570. {
  2571. kmem_bufctl_t i;
  2572. int entries = 0;
  2573. /* Check slab's freelist to see if this obj is there. */
  2574. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2575. entries++;
  2576. if (entries > cachep->num || i >= cachep->num)
  2577. goto bad;
  2578. }
  2579. if (entries != cachep->num - slabp->inuse) {
  2580. bad:
  2581. printk(KERN_ERR "slab: Internal list corruption detected in "
  2582. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2583. cachep->name, cachep->num, slabp, slabp->inuse);
  2584. for (i = 0;
  2585. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2586. i++) {
  2587. if (i % 16 == 0)
  2588. printk("\n%03x:", i);
  2589. printk(" %02x", ((unsigned char *)slabp)[i]);
  2590. }
  2591. printk("\n");
  2592. BUG();
  2593. }
  2594. }
  2595. #else
  2596. #define kfree_debugcheck(x) do { } while(0)
  2597. #define cache_free_debugcheck(x,objp,z) (objp)
  2598. #define check_slabp(x,y) do { } while(0)
  2599. #endif
  2600. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2601. {
  2602. int batchcount;
  2603. struct kmem_list3 *l3;
  2604. struct array_cache *ac;
  2605. int node;
  2606. node = numa_node_id();
  2607. check_irq_off();
  2608. ac = cpu_cache_get(cachep);
  2609. retry:
  2610. batchcount = ac->batchcount;
  2611. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2612. /*
  2613. * If there was little recent activity on this cache, then
  2614. * perform only a partial refill. Otherwise we could generate
  2615. * refill bouncing.
  2616. */
  2617. batchcount = BATCHREFILL_LIMIT;
  2618. }
  2619. l3 = cachep->nodelists[node];
  2620. BUG_ON(ac->avail > 0 || !l3);
  2621. spin_lock(&l3->list_lock);
  2622. /* See if we can refill from the shared array */
  2623. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2624. goto alloc_done;
  2625. while (batchcount > 0) {
  2626. struct list_head *entry;
  2627. struct slab *slabp;
  2628. /* Get slab alloc is to come from. */
  2629. entry = l3->slabs_partial.next;
  2630. if (entry == &l3->slabs_partial) {
  2631. l3->free_touched = 1;
  2632. entry = l3->slabs_free.next;
  2633. if (entry == &l3->slabs_free)
  2634. goto must_grow;
  2635. }
  2636. slabp = list_entry(entry, struct slab, list);
  2637. check_slabp(cachep, slabp);
  2638. check_spinlock_acquired(cachep);
  2639. /*
  2640. * The slab was either on partial or free list so
  2641. * there must be at least one object available for
  2642. * allocation.
  2643. */
  2644. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2645. while (slabp->inuse < cachep->num && batchcount--) {
  2646. STATS_INC_ALLOCED(cachep);
  2647. STATS_INC_ACTIVE(cachep);
  2648. STATS_SET_HIGH(cachep);
  2649. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2650. node);
  2651. }
  2652. check_slabp(cachep, slabp);
  2653. /* move slabp to correct slabp list: */
  2654. list_del(&slabp->list);
  2655. if (slabp->free == BUFCTL_END)
  2656. list_add(&slabp->list, &l3->slabs_full);
  2657. else
  2658. list_add(&slabp->list, &l3->slabs_partial);
  2659. }
  2660. must_grow:
  2661. l3->free_objects -= ac->avail;
  2662. alloc_done:
  2663. spin_unlock(&l3->list_lock);
  2664. if (unlikely(!ac->avail)) {
  2665. int x;
  2666. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2667. /* cache_grow can reenable interrupts, then ac could change. */
  2668. ac = cpu_cache_get(cachep);
  2669. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2670. return NULL;
  2671. if (!ac->avail) /* objects refilled by interrupt? */
  2672. goto retry;
  2673. }
  2674. ac->touched = 1;
  2675. return ac->entry[--ac->avail];
  2676. }
  2677. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2678. gfp_t flags)
  2679. {
  2680. might_sleep_if(flags & __GFP_WAIT);
  2681. #if DEBUG
  2682. kmem_flagcheck(cachep, flags);
  2683. #endif
  2684. }
  2685. #if DEBUG
  2686. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2687. gfp_t flags, void *objp, void *caller)
  2688. {
  2689. if (!objp)
  2690. return objp;
  2691. if (cachep->flags & SLAB_POISON) {
  2692. #ifdef CONFIG_DEBUG_PAGEALLOC
  2693. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2694. kernel_map_pages(virt_to_page(objp),
  2695. cachep->buffer_size / PAGE_SIZE, 1);
  2696. else
  2697. check_poison_obj(cachep, objp);
  2698. #else
  2699. check_poison_obj(cachep, objp);
  2700. #endif
  2701. poison_obj(cachep, objp, POISON_INUSE);
  2702. }
  2703. if (cachep->flags & SLAB_STORE_USER)
  2704. *dbg_userword(cachep, objp) = caller;
  2705. if (cachep->flags & SLAB_RED_ZONE) {
  2706. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2707. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2708. slab_error(cachep, "double free, or memory outside"
  2709. " object was overwritten");
  2710. printk(KERN_ERR
  2711. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2712. objp, *dbg_redzone1(cachep, objp),
  2713. *dbg_redzone2(cachep, objp));
  2714. }
  2715. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2716. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2717. }
  2718. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2719. {
  2720. struct slab *slabp;
  2721. unsigned objnr;
  2722. slabp = page_get_slab(virt_to_head_page(objp));
  2723. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2724. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2725. }
  2726. #endif
  2727. objp += obj_offset(cachep);
  2728. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2729. cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
  2730. #if ARCH_SLAB_MINALIGN
  2731. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2732. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2733. objp, ARCH_SLAB_MINALIGN);
  2734. }
  2735. #endif
  2736. return objp;
  2737. }
  2738. #else
  2739. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2740. #endif
  2741. #ifdef CONFIG_FAILSLAB
  2742. static struct failslab_attr {
  2743. struct fault_attr attr;
  2744. u32 ignore_gfp_wait;
  2745. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2746. struct dentry *ignore_gfp_wait_file;
  2747. #endif
  2748. } failslab = {
  2749. .attr = FAULT_ATTR_INITIALIZER,
  2750. .ignore_gfp_wait = 1,
  2751. };
  2752. static int __init setup_failslab(char *str)
  2753. {
  2754. return setup_fault_attr(&failslab.attr, str);
  2755. }
  2756. __setup("failslab=", setup_failslab);
  2757. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2758. {
  2759. if (cachep == &cache_cache)
  2760. return 0;
  2761. if (flags & __GFP_NOFAIL)
  2762. return 0;
  2763. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2764. return 0;
  2765. return should_fail(&failslab.attr, obj_size(cachep));
  2766. }
  2767. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2768. static int __init failslab_debugfs(void)
  2769. {
  2770. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2771. struct dentry *dir;
  2772. int err;
  2773. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2774. if (err)
  2775. return err;
  2776. dir = failslab.attr.dentries.dir;
  2777. failslab.ignore_gfp_wait_file =
  2778. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2779. &failslab.ignore_gfp_wait);
  2780. if (!failslab.ignore_gfp_wait_file) {
  2781. err = -ENOMEM;
  2782. debugfs_remove(failslab.ignore_gfp_wait_file);
  2783. cleanup_fault_attr_dentries(&failslab.attr);
  2784. }
  2785. return err;
  2786. }
  2787. late_initcall(failslab_debugfs);
  2788. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2789. #else /* CONFIG_FAILSLAB */
  2790. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2791. {
  2792. return 0;
  2793. }
  2794. #endif /* CONFIG_FAILSLAB */
  2795. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2796. {
  2797. void *objp;
  2798. struct array_cache *ac;
  2799. check_irq_off();
  2800. ac = cpu_cache_get(cachep);
  2801. if (likely(ac->avail)) {
  2802. STATS_INC_ALLOCHIT(cachep);
  2803. ac->touched = 1;
  2804. objp = ac->entry[--ac->avail];
  2805. } else {
  2806. STATS_INC_ALLOCMISS(cachep);
  2807. objp = cache_alloc_refill(cachep, flags);
  2808. }
  2809. return objp;
  2810. }
  2811. #ifdef CONFIG_NUMA
  2812. /*
  2813. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2814. *
  2815. * If we are in_interrupt, then process context, including cpusets and
  2816. * mempolicy, may not apply and should not be used for allocation policy.
  2817. */
  2818. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2819. {
  2820. int nid_alloc, nid_here;
  2821. if (in_interrupt() || (flags & __GFP_THISNODE))
  2822. return NULL;
  2823. nid_alloc = nid_here = numa_node_id();
  2824. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2825. nid_alloc = cpuset_mem_spread_node();
  2826. else if (current->mempolicy)
  2827. nid_alloc = slab_node(current->mempolicy);
  2828. if (nid_alloc != nid_here)
  2829. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2830. return NULL;
  2831. }
  2832. /*
  2833. * Fallback function if there was no memory available and no objects on a
  2834. * certain node and fall back is permitted. First we scan all the
  2835. * available nodelists for available objects. If that fails then we
  2836. * perform an allocation without specifying a node. This allows the page
  2837. * allocator to do its reclaim / fallback magic. We then insert the
  2838. * slab into the proper nodelist and then allocate from it.
  2839. */
  2840. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2841. {
  2842. struct zonelist *zonelist;
  2843. gfp_t local_flags;
  2844. struct zone **z;
  2845. void *obj = NULL;
  2846. int nid;
  2847. if (flags & __GFP_THISNODE)
  2848. return NULL;
  2849. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2850. ->node_zonelists[gfp_zone(flags)];
  2851. local_flags = (flags & GFP_LEVEL_MASK);
  2852. retry:
  2853. /*
  2854. * Look through allowed nodes for objects available
  2855. * from existing per node queues.
  2856. */
  2857. for (z = zonelist->zones; *z && !obj; z++) {
  2858. nid = zone_to_nid(*z);
  2859. if (cpuset_zone_allowed_hardwall(*z, flags) &&
  2860. cache->nodelists[nid] &&
  2861. cache->nodelists[nid]->free_objects)
  2862. obj = ____cache_alloc_node(cache,
  2863. flags | GFP_THISNODE, nid);
  2864. }
  2865. if (!obj) {
  2866. /*
  2867. * This allocation will be performed within the constraints
  2868. * of the current cpuset / memory policy requirements.
  2869. * We may trigger various forms of reclaim on the allowed
  2870. * set and go into memory reserves if necessary.
  2871. */
  2872. if (local_flags & __GFP_WAIT)
  2873. local_irq_enable();
  2874. kmem_flagcheck(cache, flags);
  2875. obj = kmem_getpages(cache, flags, -1);
  2876. if (local_flags & __GFP_WAIT)
  2877. local_irq_disable();
  2878. if (obj) {
  2879. /*
  2880. * Insert into the appropriate per node queues
  2881. */
  2882. nid = page_to_nid(virt_to_page(obj));
  2883. if (cache_grow(cache, flags, nid, obj)) {
  2884. obj = ____cache_alloc_node(cache,
  2885. flags | GFP_THISNODE, nid);
  2886. if (!obj)
  2887. /*
  2888. * Another processor may allocate the
  2889. * objects in the slab since we are
  2890. * not holding any locks.
  2891. */
  2892. goto retry;
  2893. } else {
  2894. /* cache_grow already freed obj */
  2895. obj = NULL;
  2896. }
  2897. }
  2898. }
  2899. return obj;
  2900. }
  2901. /*
  2902. * A interface to enable slab creation on nodeid
  2903. */
  2904. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2905. int nodeid)
  2906. {
  2907. struct list_head *entry;
  2908. struct slab *slabp;
  2909. struct kmem_list3 *l3;
  2910. void *obj;
  2911. int x;
  2912. l3 = cachep->nodelists[nodeid];
  2913. BUG_ON(!l3);
  2914. retry:
  2915. check_irq_off();
  2916. spin_lock(&l3->list_lock);
  2917. entry = l3->slabs_partial.next;
  2918. if (entry == &l3->slabs_partial) {
  2919. l3->free_touched = 1;
  2920. entry = l3->slabs_free.next;
  2921. if (entry == &l3->slabs_free)
  2922. goto must_grow;
  2923. }
  2924. slabp = list_entry(entry, struct slab, list);
  2925. check_spinlock_acquired_node(cachep, nodeid);
  2926. check_slabp(cachep, slabp);
  2927. STATS_INC_NODEALLOCS(cachep);
  2928. STATS_INC_ACTIVE(cachep);
  2929. STATS_SET_HIGH(cachep);
  2930. BUG_ON(slabp->inuse == cachep->num);
  2931. obj = slab_get_obj(cachep, slabp, nodeid);
  2932. check_slabp(cachep, slabp);
  2933. l3->free_objects--;
  2934. /* move slabp to correct slabp list: */
  2935. list_del(&slabp->list);
  2936. if (slabp->free == BUFCTL_END)
  2937. list_add(&slabp->list, &l3->slabs_full);
  2938. else
  2939. list_add(&slabp->list, &l3->slabs_partial);
  2940. spin_unlock(&l3->list_lock);
  2941. goto done;
  2942. must_grow:
  2943. spin_unlock(&l3->list_lock);
  2944. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2945. if (x)
  2946. goto retry;
  2947. return fallback_alloc(cachep, flags);
  2948. done:
  2949. return obj;
  2950. }
  2951. /**
  2952. * kmem_cache_alloc_node - Allocate an object on the specified node
  2953. * @cachep: The cache to allocate from.
  2954. * @flags: See kmalloc().
  2955. * @nodeid: node number of the target node.
  2956. * @caller: return address of caller, used for debug information
  2957. *
  2958. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2959. * node, which can improve the performance for cpu bound structures.
  2960. *
  2961. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2962. */
  2963. static __always_inline void *
  2964. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2965. void *caller)
  2966. {
  2967. unsigned long save_flags;
  2968. void *ptr;
  2969. if (should_failslab(cachep, flags))
  2970. return NULL;
  2971. cache_alloc_debugcheck_before(cachep, flags);
  2972. local_irq_save(save_flags);
  2973. if (unlikely(nodeid == -1))
  2974. nodeid = numa_node_id();
  2975. if (unlikely(!cachep->nodelists[nodeid])) {
  2976. /* Node not bootstrapped yet */
  2977. ptr = fallback_alloc(cachep, flags);
  2978. goto out;
  2979. }
  2980. if (nodeid == numa_node_id()) {
  2981. /*
  2982. * Use the locally cached objects if possible.
  2983. * However ____cache_alloc does not allow fallback
  2984. * to other nodes. It may fail while we still have
  2985. * objects on other nodes available.
  2986. */
  2987. ptr = ____cache_alloc(cachep, flags);
  2988. if (ptr)
  2989. goto out;
  2990. }
  2991. /* ___cache_alloc_node can fall back to other nodes */
  2992. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2993. out:
  2994. local_irq_restore(save_flags);
  2995. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2996. return ptr;
  2997. }
  2998. static __always_inline void *
  2999. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3000. {
  3001. void *objp;
  3002. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3003. objp = alternate_node_alloc(cache, flags);
  3004. if (objp)
  3005. goto out;
  3006. }
  3007. objp = ____cache_alloc(cache, flags);
  3008. /*
  3009. * We may just have run out of memory on the local node.
  3010. * ____cache_alloc_node() knows how to locate memory on other nodes
  3011. */
  3012. if (!objp)
  3013. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3014. out:
  3015. return objp;
  3016. }
  3017. #else
  3018. static __always_inline void *
  3019. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3020. {
  3021. return ____cache_alloc(cachep, flags);
  3022. }
  3023. #endif /* CONFIG_NUMA */
  3024. static __always_inline void *
  3025. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3026. {
  3027. unsigned long save_flags;
  3028. void *objp;
  3029. if (should_failslab(cachep, flags))
  3030. return NULL;
  3031. cache_alloc_debugcheck_before(cachep, flags);
  3032. local_irq_save(save_flags);
  3033. objp = __do_cache_alloc(cachep, flags);
  3034. local_irq_restore(save_flags);
  3035. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3036. prefetchw(objp);
  3037. return objp;
  3038. }
  3039. /*
  3040. * Caller needs to acquire correct kmem_list's list_lock
  3041. */
  3042. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3043. int node)
  3044. {
  3045. int i;
  3046. struct kmem_list3 *l3;
  3047. for (i = 0; i < nr_objects; i++) {
  3048. void *objp = objpp[i];
  3049. struct slab *slabp;
  3050. slabp = virt_to_slab(objp);
  3051. l3 = cachep->nodelists[node];
  3052. list_del(&slabp->list);
  3053. check_spinlock_acquired_node(cachep, node);
  3054. check_slabp(cachep, slabp);
  3055. slab_put_obj(cachep, slabp, objp, node);
  3056. STATS_DEC_ACTIVE(cachep);
  3057. l3->free_objects++;
  3058. check_slabp(cachep, slabp);
  3059. /* fixup slab chains */
  3060. if (slabp->inuse == 0) {
  3061. if (l3->free_objects > l3->free_limit) {
  3062. l3->free_objects -= cachep->num;
  3063. /* No need to drop any previously held
  3064. * lock here, even if we have a off-slab slab
  3065. * descriptor it is guaranteed to come from
  3066. * a different cache, refer to comments before
  3067. * alloc_slabmgmt.
  3068. */
  3069. slab_destroy(cachep, slabp);
  3070. } else {
  3071. list_add(&slabp->list, &l3->slabs_free);
  3072. }
  3073. } else {
  3074. /* Unconditionally move a slab to the end of the
  3075. * partial list on free - maximum time for the
  3076. * other objects to be freed, too.
  3077. */
  3078. list_add_tail(&slabp->list, &l3->slabs_partial);
  3079. }
  3080. }
  3081. }
  3082. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3083. {
  3084. int batchcount;
  3085. struct kmem_list3 *l3;
  3086. int node = numa_node_id();
  3087. batchcount = ac->batchcount;
  3088. #if DEBUG
  3089. BUG_ON(!batchcount || batchcount > ac->avail);
  3090. #endif
  3091. check_irq_off();
  3092. l3 = cachep->nodelists[node];
  3093. spin_lock(&l3->list_lock);
  3094. if (l3->shared) {
  3095. struct array_cache *shared_array = l3->shared;
  3096. int max = shared_array->limit - shared_array->avail;
  3097. if (max) {
  3098. if (batchcount > max)
  3099. batchcount = max;
  3100. memcpy(&(shared_array->entry[shared_array->avail]),
  3101. ac->entry, sizeof(void *) * batchcount);
  3102. shared_array->avail += batchcount;
  3103. goto free_done;
  3104. }
  3105. }
  3106. free_block(cachep, ac->entry, batchcount, node);
  3107. free_done:
  3108. #if STATS
  3109. {
  3110. int i = 0;
  3111. struct list_head *p;
  3112. p = l3->slabs_free.next;
  3113. while (p != &(l3->slabs_free)) {
  3114. struct slab *slabp;
  3115. slabp = list_entry(p, struct slab, list);
  3116. BUG_ON(slabp->inuse);
  3117. i++;
  3118. p = p->next;
  3119. }
  3120. STATS_SET_FREEABLE(cachep, i);
  3121. }
  3122. #endif
  3123. spin_unlock(&l3->list_lock);
  3124. ac->avail -= batchcount;
  3125. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3126. }
  3127. /*
  3128. * Release an obj back to its cache. If the obj has a constructed state, it must
  3129. * be in this state _before_ it is released. Called with disabled ints.
  3130. */
  3131. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3132. {
  3133. struct array_cache *ac = cpu_cache_get(cachep);
  3134. check_irq_off();
  3135. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3136. if (use_alien_caches && cache_free_alien(cachep, objp))
  3137. return;
  3138. if (likely(ac->avail < ac->limit)) {
  3139. STATS_INC_FREEHIT(cachep);
  3140. ac->entry[ac->avail++] = objp;
  3141. return;
  3142. } else {
  3143. STATS_INC_FREEMISS(cachep);
  3144. cache_flusharray(cachep, ac);
  3145. ac->entry[ac->avail++] = objp;
  3146. }
  3147. }
  3148. /**
  3149. * kmem_cache_alloc - Allocate an object
  3150. * @cachep: The cache to allocate from.
  3151. * @flags: See kmalloc().
  3152. *
  3153. * Allocate an object from this cache. The flags are only relevant
  3154. * if the cache has no available objects.
  3155. */
  3156. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3157. {
  3158. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3159. }
  3160. EXPORT_SYMBOL(kmem_cache_alloc);
  3161. /**
  3162. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  3163. * @cache: The cache to allocate from.
  3164. * @flags: See kmalloc().
  3165. *
  3166. * Allocate an object from this cache and set the allocated memory to zero.
  3167. * The flags are only relevant if the cache has no available objects.
  3168. */
  3169. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  3170. {
  3171. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  3172. if (ret)
  3173. memset(ret, 0, obj_size(cache));
  3174. return ret;
  3175. }
  3176. EXPORT_SYMBOL(kmem_cache_zalloc);
  3177. /**
  3178. * kmem_ptr_validate - check if an untrusted pointer might
  3179. * be a slab entry.
  3180. * @cachep: the cache we're checking against
  3181. * @ptr: pointer to validate
  3182. *
  3183. * This verifies that the untrusted pointer looks sane:
  3184. * it is _not_ a guarantee that the pointer is actually
  3185. * part of the slab cache in question, but it at least
  3186. * validates that the pointer can be dereferenced and
  3187. * looks half-way sane.
  3188. *
  3189. * Currently only used for dentry validation.
  3190. */
  3191. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3192. {
  3193. unsigned long addr = (unsigned long)ptr;
  3194. unsigned long min_addr = PAGE_OFFSET;
  3195. unsigned long align_mask = BYTES_PER_WORD - 1;
  3196. unsigned long size = cachep->buffer_size;
  3197. struct page *page;
  3198. if (unlikely(addr < min_addr))
  3199. goto out;
  3200. if (unlikely(addr > (unsigned long)high_memory - size))
  3201. goto out;
  3202. if (unlikely(addr & align_mask))
  3203. goto out;
  3204. if (unlikely(!kern_addr_valid(addr)))
  3205. goto out;
  3206. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3207. goto out;
  3208. page = virt_to_page(ptr);
  3209. if (unlikely(!PageSlab(page)))
  3210. goto out;
  3211. if (unlikely(page_get_cache(page) != cachep))
  3212. goto out;
  3213. return 1;
  3214. out:
  3215. return 0;
  3216. }
  3217. #ifdef CONFIG_NUMA
  3218. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3219. {
  3220. return __cache_alloc_node(cachep, flags, nodeid,
  3221. __builtin_return_address(0));
  3222. }
  3223. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3224. static __always_inline void *
  3225. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3226. {
  3227. struct kmem_cache *cachep;
  3228. cachep = kmem_find_general_cachep(size, flags);
  3229. if (unlikely(cachep == NULL))
  3230. return NULL;
  3231. return kmem_cache_alloc_node(cachep, flags, node);
  3232. }
  3233. #ifdef CONFIG_DEBUG_SLAB
  3234. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3235. {
  3236. return __do_kmalloc_node(size, flags, node,
  3237. __builtin_return_address(0));
  3238. }
  3239. EXPORT_SYMBOL(__kmalloc_node);
  3240. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3241. int node, void *caller)
  3242. {
  3243. return __do_kmalloc_node(size, flags, node, caller);
  3244. }
  3245. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3246. #else
  3247. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3248. {
  3249. return __do_kmalloc_node(size, flags, node, NULL);
  3250. }
  3251. EXPORT_SYMBOL(__kmalloc_node);
  3252. #endif /* CONFIG_DEBUG_SLAB */
  3253. #endif /* CONFIG_NUMA */
  3254. /**
  3255. * __do_kmalloc - allocate memory
  3256. * @size: how many bytes of memory are required.
  3257. * @flags: the type of memory to allocate (see kmalloc).
  3258. * @caller: function caller for debug tracking of the caller
  3259. */
  3260. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3261. void *caller)
  3262. {
  3263. struct kmem_cache *cachep;
  3264. /* If you want to save a few bytes .text space: replace
  3265. * __ with kmem_.
  3266. * Then kmalloc uses the uninlined functions instead of the inline
  3267. * functions.
  3268. */
  3269. cachep = __find_general_cachep(size, flags);
  3270. if (unlikely(cachep == NULL))
  3271. return NULL;
  3272. return __cache_alloc(cachep, flags, caller);
  3273. }
  3274. #ifdef CONFIG_DEBUG_SLAB
  3275. void *__kmalloc(size_t size, gfp_t flags)
  3276. {
  3277. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc);
  3280. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3281. {
  3282. return __do_kmalloc(size, flags, caller);
  3283. }
  3284. EXPORT_SYMBOL(__kmalloc_track_caller);
  3285. #else
  3286. void *__kmalloc(size_t size, gfp_t flags)
  3287. {
  3288. return __do_kmalloc(size, flags, NULL);
  3289. }
  3290. EXPORT_SYMBOL(__kmalloc);
  3291. #endif
  3292. /**
  3293. * krealloc - reallocate memory. The contents will remain unchanged.
  3294. *
  3295. * @p: object to reallocate memory for.
  3296. * @new_size: how many bytes of memory are required.
  3297. * @flags: the type of memory to allocate.
  3298. *
  3299. * The contents of the object pointed to are preserved up to the
  3300. * lesser of the new and old sizes. If @p is %NULL, krealloc()
  3301. * behaves exactly like kmalloc(). If @size is 0 and @p is not a
  3302. * %NULL pointer, the object pointed to is freed.
  3303. */
  3304. void *krealloc(const void *p, size_t new_size, gfp_t flags)
  3305. {
  3306. struct kmem_cache *cache, *new_cache;
  3307. void *ret;
  3308. if (unlikely(!p))
  3309. return kmalloc_track_caller(new_size, flags);
  3310. if (unlikely(!new_size)) {
  3311. kfree(p);
  3312. return NULL;
  3313. }
  3314. cache = virt_to_cache(p);
  3315. new_cache = __find_general_cachep(new_size, flags);
  3316. /*
  3317. * If new size fits in the current cache, bail out.
  3318. */
  3319. if (likely(cache == new_cache))
  3320. return (void *)p;
  3321. /*
  3322. * We are on the slow-path here so do not use __cache_alloc
  3323. * because it bloats kernel text.
  3324. */
  3325. ret = kmalloc_track_caller(new_size, flags);
  3326. if (ret) {
  3327. memcpy(ret, p, min(new_size, ksize(p)));
  3328. kfree(p);
  3329. }
  3330. return ret;
  3331. }
  3332. EXPORT_SYMBOL(krealloc);
  3333. /**
  3334. * kmem_cache_free - Deallocate an object
  3335. * @cachep: The cache the allocation was from.
  3336. * @objp: The previously allocated object.
  3337. *
  3338. * Free an object which was previously allocated from this
  3339. * cache.
  3340. */
  3341. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3342. {
  3343. unsigned long flags;
  3344. BUG_ON(virt_to_cache(objp) != cachep);
  3345. local_irq_save(flags);
  3346. debug_check_no_locks_freed(objp, obj_size(cachep));
  3347. __cache_free(cachep, objp);
  3348. local_irq_restore(flags);
  3349. }
  3350. EXPORT_SYMBOL(kmem_cache_free);
  3351. /**
  3352. * kfree - free previously allocated memory
  3353. * @objp: pointer returned by kmalloc.
  3354. *
  3355. * If @objp is NULL, no operation is performed.
  3356. *
  3357. * Don't free memory not originally allocated by kmalloc()
  3358. * or you will run into trouble.
  3359. */
  3360. void kfree(const void *objp)
  3361. {
  3362. struct kmem_cache *c;
  3363. unsigned long flags;
  3364. if (unlikely(!objp))
  3365. return;
  3366. local_irq_save(flags);
  3367. kfree_debugcheck(objp);
  3368. c = virt_to_cache(objp);
  3369. debug_check_no_locks_freed(objp, obj_size(c));
  3370. __cache_free(c, (void *)objp);
  3371. local_irq_restore(flags);
  3372. }
  3373. EXPORT_SYMBOL(kfree);
  3374. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3375. {
  3376. return obj_size(cachep);
  3377. }
  3378. EXPORT_SYMBOL(kmem_cache_size);
  3379. const char *kmem_cache_name(struct kmem_cache *cachep)
  3380. {
  3381. return cachep->name;
  3382. }
  3383. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3384. /*
  3385. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3386. */
  3387. static int alloc_kmemlist(struct kmem_cache *cachep)
  3388. {
  3389. int node;
  3390. struct kmem_list3 *l3;
  3391. struct array_cache *new_shared;
  3392. struct array_cache **new_alien = NULL;
  3393. for_each_online_node(node) {
  3394. if (use_alien_caches) {
  3395. new_alien = alloc_alien_cache(node, cachep->limit);
  3396. if (!new_alien)
  3397. goto fail;
  3398. }
  3399. new_shared = NULL;
  3400. if (cachep->shared) {
  3401. new_shared = alloc_arraycache(node,
  3402. cachep->shared*cachep->batchcount,
  3403. 0xbaadf00d);
  3404. if (!new_shared) {
  3405. free_alien_cache(new_alien);
  3406. goto fail;
  3407. }
  3408. }
  3409. l3 = cachep->nodelists[node];
  3410. if (l3) {
  3411. struct array_cache *shared = l3->shared;
  3412. spin_lock_irq(&l3->list_lock);
  3413. if (shared)
  3414. free_block(cachep, shared->entry,
  3415. shared->avail, node);
  3416. l3->shared = new_shared;
  3417. if (!l3->alien) {
  3418. l3->alien = new_alien;
  3419. new_alien = NULL;
  3420. }
  3421. l3->free_limit = (1 + nr_cpus_node(node)) *
  3422. cachep->batchcount + cachep->num;
  3423. spin_unlock_irq(&l3->list_lock);
  3424. kfree(shared);
  3425. free_alien_cache(new_alien);
  3426. continue;
  3427. }
  3428. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3429. if (!l3) {
  3430. free_alien_cache(new_alien);
  3431. kfree(new_shared);
  3432. goto fail;
  3433. }
  3434. kmem_list3_init(l3);
  3435. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3436. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3437. l3->shared = new_shared;
  3438. l3->alien = new_alien;
  3439. l3->free_limit = (1 + nr_cpus_node(node)) *
  3440. cachep->batchcount + cachep->num;
  3441. cachep->nodelists[node] = l3;
  3442. }
  3443. return 0;
  3444. fail:
  3445. if (!cachep->next.next) {
  3446. /* Cache is not active yet. Roll back what we did */
  3447. node--;
  3448. while (node >= 0) {
  3449. if (cachep->nodelists[node]) {
  3450. l3 = cachep->nodelists[node];
  3451. kfree(l3->shared);
  3452. free_alien_cache(l3->alien);
  3453. kfree(l3);
  3454. cachep->nodelists[node] = NULL;
  3455. }
  3456. node--;
  3457. }
  3458. }
  3459. return -ENOMEM;
  3460. }
  3461. struct ccupdate_struct {
  3462. struct kmem_cache *cachep;
  3463. struct array_cache *new[NR_CPUS];
  3464. };
  3465. static void do_ccupdate_local(void *info)
  3466. {
  3467. struct ccupdate_struct *new = info;
  3468. struct array_cache *old;
  3469. check_irq_off();
  3470. old = cpu_cache_get(new->cachep);
  3471. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3472. new->new[smp_processor_id()] = old;
  3473. }
  3474. /* Always called with the cache_chain_mutex held */
  3475. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3476. int batchcount, int shared)
  3477. {
  3478. struct ccupdate_struct *new;
  3479. int i;
  3480. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3481. if (!new)
  3482. return -ENOMEM;
  3483. for_each_online_cpu(i) {
  3484. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3485. batchcount);
  3486. if (!new->new[i]) {
  3487. for (i--; i >= 0; i--)
  3488. kfree(new->new[i]);
  3489. kfree(new);
  3490. return -ENOMEM;
  3491. }
  3492. }
  3493. new->cachep = cachep;
  3494. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3495. check_irq_on();
  3496. cachep->batchcount = batchcount;
  3497. cachep->limit = limit;
  3498. cachep->shared = shared;
  3499. for_each_online_cpu(i) {
  3500. struct array_cache *ccold = new->new[i];
  3501. if (!ccold)
  3502. continue;
  3503. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3504. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3505. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3506. kfree(ccold);
  3507. }
  3508. kfree(new);
  3509. return alloc_kmemlist(cachep);
  3510. }
  3511. /* Called with cache_chain_mutex held always */
  3512. static int enable_cpucache(struct kmem_cache *cachep)
  3513. {
  3514. int err;
  3515. int limit, shared;
  3516. /*
  3517. * The head array serves three purposes:
  3518. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3519. * - reduce the number of spinlock operations.
  3520. * - reduce the number of linked list operations on the slab and
  3521. * bufctl chains: array operations are cheaper.
  3522. * The numbers are guessed, we should auto-tune as described by
  3523. * Bonwick.
  3524. */
  3525. if (cachep->buffer_size > 131072)
  3526. limit = 1;
  3527. else if (cachep->buffer_size > PAGE_SIZE)
  3528. limit = 8;
  3529. else if (cachep->buffer_size > 1024)
  3530. limit = 24;
  3531. else if (cachep->buffer_size > 256)
  3532. limit = 54;
  3533. else
  3534. limit = 120;
  3535. /*
  3536. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3537. * allocation behaviour: Most allocs on one cpu, most free operations
  3538. * on another cpu. For these cases, an efficient object passing between
  3539. * cpus is necessary. This is provided by a shared array. The array
  3540. * replaces Bonwick's magazine layer.
  3541. * On uniprocessor, it's functionally equivalent (but less efficient)
  3542. * to a larger limit. Thus disabled by default.
  3543. */
  3544. shared = 0;
  3545. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3546. shared = 8;
  3547. #if DEBUG
  3548. /*
  3549. * With debugging enabled, large batchcount lead to excessively long
  3550. * periods with disabled local interrupts. Limit the batchcount
  3551. */
  3552. if (limit > 32)
  3553. limit = 32;
  3554. #endif
  3555. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3556. if (err)
  3557. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3558. cachep->name, -err);
  3559. return err;
  3560. }
  3561. /*
  3562. * Drain an array if it contains any elements taking the l3 lock only if
  3563. * necessary. Note that the l3 listlock also protects the array_cache
  3564. * if drain_array() is used on the shared array.
  3565. */
  3566. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3567. struct array_cache *ac, int force, int node)
  3568. {
  3569. int tofree;
  3570. if (!ac || !ac->avail)
  3571. return;
  3572. if (ac->touched && !force) {
  3573. ac->touched = 0;
  3574. } else {
  3575. spin_lock_irq(&l3->list_lock);
  3576. if (ac->avail) {
  3577. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3578. if (tofree > ac->avail)
  3579. tofree = (ac->avail + 1) / 2;
  3580. free_block(cachep, ac->entry, tofree, node);
  3581. ac->avail -= tofree;
  3582. memmove(ac->entry, &(ac->entry[tofree]),
  3583. sizeof(void *) * ac->avail);
  3584. }
  3585. spin_unlock_irq(&l3->list_lock);
  3586. }
  3587. }
  3588. /**
  3589. * cache_reap - Reclaim memory from caches.
  3590. * @w: work descriptor
  3591. *
  3592. * Called from workqueue/eventd every few seconds.
  3593. * Purpose:
  3594. * - clear the per-cpu caches for this CPU.
  3595. * - return freeable pages to the main free memory pool.
  3596. *
  3597. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3598. * again on the next iteration.
  3599. */
  3600. static void cache_reap(struct work_struct *w)
  3601. {
  3602. struct kmem_cache *searchp;
  3603. struct kmem_list3 *l3;
  3604. int node = numa_node_id();
  3605. struct delayed_work *work =
  3606. container_of(w, struct delayed_work, work);
  3607. if (!mutex_trylock(&cache_chain_mutex))
  3608. /* Give up. Setup the next iteration. */
  3609. goto out;
  3610. list_for_each_entry(searchp, &cache_chain, next) {
  3611. check_irq_on();
  3612. /*
  3613. * We only take the l3 lock if absolutely necessary and we
  3614. * have established with reasonable certainty that
  3615. * we can do some work if the lock was obtained.
  3616. */
  3617. l3 = searchp->nodelists[node];
  3618. reap_alien(searchp, l3);
  3619. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3620. /*
  3621. * These are racy checks but it does not matter
  3622. * if we skip one check or scan twice.
  3623. */
  3624. if (time_after(l3->next_reap, jiffies))
  3625. goto next;
  3626. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3627. drain_array(searchp, l3, l3->shared, 0, node);
  3628. if (l3->free_touched)
  3629. l3->free_touched = 0;
  3630. else {
  3631. int freed;
  3632. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3633. 5 * searchp->num - 1) / (5 * searchp->num));
  3634. STATS_ADD_REAPED(searchp, freed);
  3635. }
  3636. next:
  3637. cond_resched();
  3638. }
  3639. check_irq_on();
  3640. mutex_unlock(&cache_chain_mutex);
  3641. next_reap_node();
  3642. refresh_cpu_vm_stats(smp_processor_id());
  3643. out:
  3644. /* Set up the next iteration */
  3645. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3646. }
  3647. #ifdef CONFIG_PROC_FS
  3648. static void print_slabinfo_header(struct seq_file *m)
  3649. {
  3650. /*
  3651. * Output format version, so at least we can change it
  3652. * without _too_ many complaints.
  3653. */
  3654. #if STATS
  3655. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3656. #else
  3657. seq_puts(m, "slabinfo - version: 2.1\n");
  3658. #endif
  3659. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3660. "<objperslab> <pagesperslab>");
  3661. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3662. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3663. #if STATS
  3664. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3665. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3666. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3667. #endif
  3668. seq_putc(m, '\n');
  3669. }
  3670. static void *s_start(struct seq_file *m, loff_t *pos)
  3671. {
  3672. loff_t n = *pos;
  3673. struct list_head *p;
  3674. mutex_lock(&cache_chain_mutex);
  3675. if (!n)
  3676. print_slabinfo_header(m);
  3677. p = cache_chain.next;
  3678. while (n--) {
  3679. p = p->next;
  3680. if (p == &cache_chain)
  3681. return NULL;
  3682. }
  3683. return list_entry(p, struct kmem_cache, next);
  3684. }
  3685. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3686. {
  3687. struct kmem_cache *cachep = p;
  3688. ++*pos;
  3689. return cachep->next.next == &cache_chain ?
  3690. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3691. }
  3692. static void s_stop(struct seq_file *m, void *p)
  3693. {
  3694. mutex_unlock(&cache_chain_mutex);
  3695. }
  3696. static int s_show(struct seq_file *m, void *p)
  3697. {
  3698. struct kmem_cache *cachep = p;
  3699. struct slab *slabp;
  3700. unsigned long active_objs;
  3701. unsigned long num_objs;
  3702. unsigned long active_slabs = 0;
  3703. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3704. const char *name;
  3705. char *error = NULL;
  3706. int node;
  3707. struct kmem_list3 *l3;
  3708. active_objs = 0;
  3709. num_slabs = 0;
  3710. for_each_online_node(node) {
  3711. l3 = cachep->nodelists[node];
  3712. if (!l3)
  3713. continue;
  3714. check_irq_on();
  3715. spin_lock_irq(&l3->list_lock);
  3716. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3717. if (slabp->inuse != cachep->num && !error)
  3718. error = "slabs_full accounting error";
  3719. active_objs += cachep->num;
  3720. active_slabs++;
  3721. }
  3722. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3723. if (slabp->inuse == cachep->num && !error)
  3724. error = "slabs_partial inuse accounting error";
  3725. if (!slabp->inuse && !error)
  3726. error = "slabs_partial/inuse accounting error";
  3727. active_objs += slabp->inuse;
  3728. active_slabs++;
  3729. }
  3730. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3731. if (slabp->inuse && !error)
  3732. error = "slabs_free/inuse accounting error";
  3733. num_slabs++;
  3734. }
  3735. free_objects += l3->free_objects;
  3736. if (l3->shared)
  3737. shared_avail += l3->shared->avail;
  3738. spin_unlock_irq(&l3->list_lock);
  3739. }
  3740. num_slabs += active_slabs;
  3741. num_objs = num_slabs * cachep->num;
  3742. if (num_objs - active_objs != free_objects && !error)
  3743. error = "free_objects accounting error";
  3744. name = cachep->name;
  3745. if (error)
  3746. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3747. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3748. name, active_objs, num_objs, cachep->buffer_size,
  3749. cachep->num, (1 << cachep->gfporder));
  3750. seq_printf(m, " : tunables %4u %4u %4u",
  3751. cachep->limit, cachep->batchcount, cachep->shared);
  3752. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3753. active_slabs, num_slabs, shared_avail);
  3754. #if STATS
  3755. { /* list3 stats */
  3756. unsigned long high = cachep->high_mark;
  3757. unsigned long allocs = cachep->num_allocations;
  3758. unsigned long grown = cachep->grown;
  3759. unsigned long reaped = cachep->reaped;
  3760. unsigned long errors = cachep->errors;
  3761. unsigned long max_freeable = cachep->max_freeable;
  3762. unsigned long node_allocs = cachep->node_allocs;
  3763. unsigned long node_frees = cachep->node_frees;
  3764. unsigned long overflows = cachep->node_overflow;
  3765. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3766. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3767. reaped, errors, max_freeable, node_allocs,
  3768. node_frees, overflows);
  3769. }
  3770. /* cpu stats */
  3771. {
  3772. unsigned long allochit = atomic_read(&cachep->allochit);
  3773. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3774. unsigned long freehit = atomic_read(&cachep->freehit);
  3775. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3776. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3777. allochit, allocmiss, freehit, freemiss);
  3778. }
  3779. #endif
  3780. seq_putc(m, '\n');
  3781. return 0;
  3782. }
  3783. /*
  3784. * slabinfo_op - iterator that generates /proc/slabinfo
  3785. *
  3786. * Output layout:
  3787. * cache-name
  3788. * num-active-objs
  3789. * total-objs
  3790. * object size
  3791. * num-active-slabs
  3792. * total-slabs
  3793. * num-pages-per-slab
  3794. * + further values on SMP and with statistics enabled
  3795. */
  3796. const struct seq_operations slabinfo_op = {
  3797. .start = s_start,
  3798. .next = s_next,
  3799. .stop = s_stop,
  3800. .show = s_show,
  3801. };
  3802. #define MAX_SLABINFO_WRITE 128
  3803. /**
  3804. * slabinfo_write - Tuning for the slab allocator
  3805. * @file: unused
  3806. * @buffer: user buffer
  3807. * @count: data length
  3808. * @ppos: unused
  3809. */
  3810. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3811. size_t count, loff_t *ppos)
  3812. {
  3813. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3814. int limit, batchcount, shared, res;
  3815. struct kmem_cache *cachep;
  3816. if (count > MAX_SLABINFO_WRITE)
  3817. return -EINVAL;
  3818. if (copy_from_user(&kbuf, buffer, count))
  3819. return -EFAULT;
  3820. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3821. tmp = strchr(kbuf, ' ');
  3822. if (!tmp)
  3823. return -EINVAL;
  3824. *tmp = '\0';
  3825. tmp++;
  3826. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3827. return -EINVAL;
  3828. /* Find the cache in the chain of caches. */
  3829. mutex_lock(&cache_chain_mutex);
  3830. res = -EINVAL;
  3831. list_for_each_entry(cachep, &cache_chain, next) {
  3832. if (!strcmp(cachep->name, kbuf)) {
  3833. if (limit < 1 || batchcount < 1 ||
  3834. batchcount > limit || shared < 0) {
  3835. res = 0;
  3836. } else {
  3837. res = do_tune_cpucache(cachep, limit,
  3838. batchcount, shared);
  3839. }
  3840. break;
  3841. }
  3842. }
  3843. mutex_unlock(&cache_chain_mutex);
  3844. if (res >= 0)
  3845. res = count;
  3846. return res;
  3847. }
  3848. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3849. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3850. {
  3851. loff_t n = *pos;
  3852. struct list_head *p;
  3853. mutex_lock(&cache_chain_mutex);
  3854. p = cache_chain.next;
  3855. while (n--) {
  3856. p = p->next;
  3857. if (p == &cache_chain)
  3858. return NULL;
  3859. }
  3860. return list_entry(p, struct kmem_cache, next);
  3861. }
  3862. static inline int add_caller(unsigned long *n, unsigned long v)
  3863. {
  3864. unsigned long *p;
  3865. int l;
  3866. if (!v)
  3867. return 1;
  3868. l = n[1];
  3869. p = n + 2;
  3870. while (l) {
  3871. int i = l/2;
  3872. unsigned long *q = p + 2 * i;
  3873. if (*q == v) {
  3874. q[1]++;
  3875. return 1;
  3876. }
  3877. if (*q > v) {
  3878. l = i;
  3879. } else {
  3880. p = q + 2;
  3881. l -= i + 1;
  3882. }
  3883. }
  3884. if (++n[1] == n[0])
  3885. return 0;
  3886. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3887. p[0] = v;
  3888. p[1] = 1;
  3889. return 1;
  3890. }
  3891. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3892. {
  3893. void *p;
  3894. int i;
  3895. if (n[0] == n[1])
  3896. return;
  3897. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3898. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3899. continue;
  3900. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3901. return;
  3902. }
  3903. }
  3904. static void show_symbol(struct seq_file *m, unsigned long address)
  3905. {
  3906. #ifdef CONFIG_KALLSYMS
  3907. char *modname;
  3908. const char *name;
  3909. unsigned long offset, size;
  3910. char namebuf[KSYM_NAME_LEN+1];
  3911. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3912. if (name) {
  3913. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3914. if (modname)
  3915. seq_printf(m, " [%s]", modname);
  3916. return;
  3917. }
  3918. #endif
  3919. seq_printf(m, "%p", (void *)address);
  3920. }
  3921. static int leaks_show(struct seq_file *m, void *p)
  3922. {
  3923. struct kmem_cache *cachep = p;
  3924. struct slab *slabp;
  3925. struct kmem_list3 *l3;
  3926. const char *name;
  3927. unsigned long *n = m->private;
  3928. int node;
  3929. int i;
  3930. if (!(cachep->flags & SLAB_STORE_USER))
  3931. return 0;
  3932. if (!(cachep->flags & SLAB_RED_ZONE))
  3933. return 0;
  3934. /* OK, we can do it */
  3935. n[1] = 0;
  3936. for_each_online_node(node) {
  3937. l3 = cachep->nodelists[node];
  3938. if (!l3)
  3939. continue;
  3940. check_irq_on();
  3941. spin_lock_irq(&l3->list_lock);
  3942. list_for_each_entry(slabp, &l3->slabs_full, list)
  3943. handle_slab(n, cachep, slabp);
  3944. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3945. handle_slab(n, cachep, slabp);
  3946. spin_unlock_irq(&l3->list_lock);
  3947. }
  3948. name = cachep->name;
  3949. if (n[0] == n[1]) {
  3950. /* Increase the buffer size */
  3951. mutex_unlock(&cache_chain_mutex);
  3952. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3953. if (!m->private) {
  3954. /* Too bad, we are really out */
  3955. m->private = n;
  3956. mutex_lock(&cache_chain_mutex);
  3957. return -ENOMEM;
  3958. }
  3959. *(unsigned long *)m->private = n[0] * 2;
  3960. kfree(n);
  3961. mutex_lock(&cache_chain_mutex);
  3962. /* Now make sure this entry will be retried */
  3963. m->count = m->size;
  3964. return 0;
  3965. }
  3966. for (i = 0; i < n[1]; i++) {
  3967. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3968. show_symbol(m, n[2*i+2]);
  3969. seq_putc(m, '\n');
  3970. }
  3971. return 0;
  3972. }
  3973. const struct seq_operations slabstats_op = {
  3974. .start = leaks_start,
  3975. .next = s_next,
  3976. .stop = s_stop,
  3977. .show = leaks_show,
  3978. };
  3979. #endif
  3980. #endif
  3981. /**
  3982. * ksize - get the actual amount of memory allocated for a given object
  3983. * @objp: Pointer to the object
  3984. *
  3985. * kmalloc may internally round up allocations and return more memory
  3986. * than requested. ksize() can be used to determine the actual amount of
  3987. * memory allocated. The caller may use this additional memory, even though
  3988. * a smaller amount of memory was initially specified with the kmalloc call.
  3989. * The caller must guarantee that objp points to a valid object previously
  3990. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3991. * must not be freed during the duration of the call.
  3992. */
  3993. size_t ksize(const void *objp)
  3994. {
  3995. if (unlikely(objp == NULL))
  3996. return 0;
  3997. return obj_size(virt_to_cache(objp));
  3998. }