core.c 190 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. if (rq->skip_clock_update > 0)
  111. return;
  112. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  113. rq->clock += delta;
  114. update_rq_clock_task(rq, delta);
  115. }
  116. /*
  117. * Debugging: various feature bits
  118. */
  119. #define SCHED_FEAT(name, enabled) \
  120. (1UL << __SCHED_FEAT_##name) * enabled |
  121. const_debug unsigned int sysctl_sched_features =
  122. #include "features.h"
  123. 0;
  124. #undef SCHED_FEAT
  125. #ifdef CONFIG_SCHED_DEBUG
  126. #define SCHED_FEAT(name, enabled) \
  127. #name ,
  128. static const char * const sched_feat_names[] = {
  129. #include "features.h"
  130. };
  131. #undef SCHED_FEAT
  132. static int sched_feat_show(struct seq_file *m, void *v)
  133. {
  134. int i;
  135. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  136. if (!(sysctl_sched_features & (1UL << i)))
  137. seq_puts(m, "NO_");
  138. seq_printf(m, "%s ", sched_feat_names[i]);
  139. }
  140. seq_puts(m, "\n");
  141. return 0;
  142. }
  143. #ifdef HAVE_JUMP_LABEL
  144. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  145. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  146. #define SCHED_FEAT(name, enabled) \
  147. jump_label_key__##enabled ,
  148. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  149. #include "features.h"
  150. };
  151. #undef SCHED_FEAT
  152. static void sched_feat_disable(int i)
  153. {
  154. if (static_key_enabled(&sched_feat_keys[i]))
  155. static_key_slow_dec(&sched_feat_keys[i]);
  156. }
  157. static void sched_feat_enable(int i)
  158. {
  159. if (!static_key_enabled(&sched_feat_keys[i]))
  160. static_key_slow_inc(&sched_feat_keys[i]);
  161. }
  162. #else
  163. static void sched_feat_disable(int i) { };
  164. static void sched_feat_enable(int i) { };
  165. #endif /* HAVE_JUMP_LABEL */
  166. static int sched_feat_set(char *cmp)
  167. {
  168. int i;
  169. int neg = 0;
  170. if (strncmp(cmp, "NO_", 3) == 0) {
  171. neg = 1;
  172. cmp += 3;
  173. }
  174. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  175. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  176. if (neg) {
  177. sysctl_sched_features &= ~(1UL << i);
  178. sched_feat_disable(i);
  179. } else {
  180. sysctl_sched_features |= (1UL << i);
  181. sched_feat_enable(i);
  182. }
  183. break;
  184. }
  185. }
  186. return i;
  187. }
  188. static ssize_t
  189. sched_feat_write(struct file *filp, const char __user *ubuf,
  190. size_t cnt, loff_t *ppos)
  191. {
  192. char buf[64];
  193. char *cmp;
  194. int i;
  195. if (cnt > 63)
  196. cnt = 63;
  197. if (copy_from_user(&buf, ubuf, cnt))
  198. return -EFAULT;
  199. buf[cnt] = 0;
  200. cmp = strstrip(buf);
  201. i = sched_feat_set(cmp);
  202. if (i == __SCHED_FEAT_NR)
  203. return -EINVAL;
  204. *ppos += cnt;
  205. return cnt;
  206. }
  207. static int sched_feat_open(struct inode *inode, struct file *filp)
  208. {
  209. return single_open(filp, sched_feat_show, NULL);
  210. }
  211. static const struct file_operations sched_feat_fops = {
  212. .open = sched_feat_open,
  213. .write = sched_feat_write,
  214. .read = seq_read,
  215. .llseek = seq_lseek,
  216. .release = single_release,
  217. };
  218. static __init int sched_init_debug(void)
  219. {
  220. debugfs_create_file("sched_features", 0644, NULL, NULL,
  221. &sched_feat_fops);
  222. return 0;
  223. }
  224. late_initcall(sched_init_debug);
  225. #endif /* CONFIG_SCHED_DEBUG */
  226. /*
  227. * Number of tasks to iterate in a single balance run.
  228. * Limited because this is done with IRQs disabled.
  229. */
  230. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  231. /*
  232. * period over which we average the RT time consumption, measured
  233. * in ms.
  234. *
  235. * default: 1s
  236. */
  237. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  238. /*
  239. * period over which we measure -rt task cpu usage in us.
  240. * default: 1s
  241. */
  242. unsigned int sysctl_sched_rt_period = 1000000;
  243. __read_mostly int scheduler_running;
  244. /*
  245. * part of the period that we allow rt tasks to run in us.
  246. * default: 0.95s
  247. */
  248. int sysctl_sched_rt_runtime = 950000;
  249. /*
  250. * __task_rq_lock - lock the rq @p resides on.
  251. */
  252. static inline struct rq *__task_rq_lock(struct task_struct *p)
  253. __acquires(rq->lock)
  254. {
  255. struct rq *rq;
  256. lockdep_assert_held(&p->pi_lock);
  257. for (;;) {
  258. rq = task_rq(p);
  259. raw_spin_lock(&rq->lock);
  260. if (likely(rq == task_rq(p)))
  261. return rq;
  262. raw_spin_unlock(&rq->lock);
  263. }
  264. }
  265. /*
  266. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  267. */
  268. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  269. __acquires(p->pi_lock)
  270. __acquires(rq->lock)
  271. {
  272. struct rq *rq;
  273. for (;;) {
  274. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  275. rq = task_rq(p);
  276. raw_spin_lock(&rq->lock);
  277. if (likely(rq == task_rq(p)))
  278. return rq;
  279. raw_spin_unlock(&rq->lock);
  280. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  281. }
  282. }
  283. static void __task_rq_unlock(struct rq *rq)
  284. __releases(rq->lock)
  285. {
  286. raw_spin_unlock(&rq->lock);
  287. }
  288. static inline void
  289. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  290. __releases(rq->lock)
  291. __releases(p->pi_lock)
  292. {
  293. raw_spin_unlock(&rq->lock);
  294. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  295. }
  296. /*
  297. * this_rq_lock - lock this runqueue and disable interrupts.
  298. */
  299. static struct rq *this_rq_lock(void)
  300. __acquires(rq->lock)
  301. {
  302. struct rq *rq;
  303. local_irq_disable();
  304. rq = this_rq();
  305. raw_spin_lock(&rq->lock);
  306. return rq;
  307. }
  308. #ifdef CONFIG_SCHED_HRTICK
  309. /*
  310. * Use HR-timers to deliver accurate preemption points.
  311. */
  312. static void hrtick_clear(struct rq *rq)
  313. {
  314. if (hrtimer_active(&rq->hrtick_timer))
  315. hrtimer_cancel(&rq->hrtick_timer);
  316. }
  317. /*
  318. * High-resolution timer tick.
  319. * Runs from hardirq context with interrupts disabled.
  320. */
  321. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  322. {
  323. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  324. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  325. raw_spin_lock(&rq->lock);
  326. update_rq_clock(rq);
  327. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  328. raw_spin_unlock(&rq->lock);
  329. return HRTIMER_NORESTART;
  330. }
  331. #ifdef CONFIG_SMP
  332. static int __hrtick_restart(struct rq *rq)
  333. {
  334. struct hrtimer *timer = &rq->hrtick_timer;
  335. ktime_t time = hrtimer_get_softexpires(timer);
  336. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  337. }
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. __hrtick_restart(rq);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. __hrtick_restart(rq);
  361. } else if (!rq->hrtick_csd_pending) {
  362. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * cmpxchg based fetch_or, macro so it works for different integer types
  425. */
  426. #define fetch_or(ptr, val) \
  427. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  428. for (;;) { \
  429. __old = cmpxchg((ptr), __val, __val | (val)); \
  430. if (__old == __val) \
  431. break; \
  432. __val = __old; \
  433. } \
  434. __old; \
  435. })
  436. #ifdef TIF_POLLING_NRFLAG
  437. /*
  438. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  439. * this avoids any races wrt polling state changes and thereby avoids
  440. * spurious IPIs.
  441. */
  442. static bool set_nr_and_not_polling(struct task_struct *p)
  443. {
  444. struct thread_info *ti = task_thread_info(p);
  445. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  446. }
  447. #else
  448. static bool set_nr_and_not_polling(struct task_struct *p)
  449. {
  450. set_tsk_need_resched(p);
  451. return true;
  452. }
  453. #endif
  454. /*
  455. * resched_task - mark a task 'to be rescheduled now'.
  456. *
  457. * On UP this means the setting of the need_resched flag, on SMP it
  458. * might also involve a cross-CPU call to trigger the scheduler on
  459. * the target CPU.
  460. */
  461. void resched_task(struct task_struct *p)
  462. {
  463. int cpu;
  464. lockdep_assert_held(&task_rq(p)->lock);
  465. if (test_tsk_need_resched(p))
  466. return;
  467. cpu = task_cpu(p);
  468. if (cpu == smp_processor_id()) {
  469. set_tsk_need_resched(p);
  470. set_preempt_need_resched();
  471. return;
  472. }
  473. if (set_nr_and_not_polling(p))
  474. smp_send_reschedule(cpu);
  475. }
  476. void resched_cpu(int cpu)
  477. {
  478. struct rq *rq = cpu_rq(cpu);
  479. unsigned long flags;
  480. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  481. return;
  482. resched_task(cpu_curr(cpu));
  483. raw_spin_unlock_irqrestore(&rq->lock, flags);
  484. }
  485. #ifdef CONFIG_SMP
  486. #ifdef CONFIG_NO_HZ_COMMON
  487. /*
  488. * In the semi idle case, use the nearest busy cpu for migrating timers
  489. * from an idle cpu. This is good for power-savings.
  490. *
  491. * We don't do similar optimization for completely idle system, as
  492. * selecting an idle cpu will add more delays to the timers than intended
  493. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  494. */
  495. int get_nohz_timer_target(int pinned)
  496. {
  497. int cpu = smp_processor_id();
  498. int i;
  499. struct sched_domain *sd;
  500. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  501. return cpu;
  502. rcu_read_lock();
  503. for_each_domain(cpu, sd) {
  504. for_each_cpu(i, sched_domain_span(sd)) {
  505. if (!idle_cpu(i)) {
  506. cpu = i;
  507. goto unlock;
  508. }
  509. }
  510. }
  511. unlock:
  512. rcu_read_unlock();
  513. return cpu;
  514. }
  515. /*
  516. * When add_timer_on() enqueues a timer into the timer wheel of an
  517. * idle CPU then this timer might expire before the next timer event
  518. * which is scheduled to wake up that CPU. In case of a completely
  519. * idle system the next event might even be infinite time into the
  520. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  521. * leaves the inner idle loop so the newly added timer is taken into
  522. * account when the CPU goes back to idle and evaluates the timer
  523. * wheel for the next timer event.
  524. */
  525. static void wake_up_idle_cpu(int cpu)
  526. {
  527. struct rq *rq = cpu_rq(cpu);
  528. if (cpu == smp_processor_id())
  529. return;
  530. /*
  531. * This is safe, as this function is called with the timer
  532. * wheel base lock of (cpu) held. When the CPU is on the way
  533. * to idle and has not yet set rq->curr to idle then it will
  534. * be serialized on the timer wheel base lock and take the new
  535. * timer into account automatically.
  536. */
  537. if (rq->curr != rq->idle)
  538. return;
  539. /*
  540. * We can set TIF_RESCHED on the idle task of the other CPU
  541. * lockless. The worst case is that the other CPU runs the
  542. * idle task through an additional NOOP schedule()
  543. */
  544. set_tsk_need_resched(rq->idle);
  545. /* NEED_RESCHED must be visible before we test polling */
  546. smp_mb();
  547. if (!tsk_is_polling(rq->idle))
  548. smp_send_reschedule(cpu);
  549. }
  550. static bool wake_up_full_nohz_cpu(int cpu)
  551. {
  552. if (tick_nohz_full_cpu(cpu)) {
  553. if (cpu != smp_processor_id() ||
  554. tick_nohz_tick_stopped())
  555. smp_send_reschedule(cpu);
  556. return true;
  557. }
  558. return false;
  559. }
  560. void wake_up_nohz_cpu(int cpu)
  561. {
  562. if (!wake_up_full_nohz_cpu(cpu))
  563. wake_up_idle_cpu(cpu);
  564. }
  565. static inline bool got_nohz_idle_kick(void)
  566. {
  567. int cpu = smp_processor_id();
  568. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  569. return false;
  570. if (idle_cpu(cpu) && !need_resched())
  571. return true;
  572. /*
  573. * We can't run Idle Load Balance on this CPU for this time so we
  574. * cancel it and clear NOHZ_BALANCE_KICK
  575. */
  576. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  577. return false;
  578. }
  579. #else /* CONFIG_NO_HZ_COMMON */
  580. static inline bool got_nohz_idle_kick(void)
  581. {
  582. return false;
  583. }
  584. #endif /* CONFIG_NO_HZ_COMMON */
  585. #ifdef CONFIG_NO_HZ_FULL
  586. bool sched_can_stop_tick(void)
  587. {
  588. struct rq *rq;
  589. rq = this_rq();
  590. /* Make sure rq->nr_running update is visible after the IPI */
  591. smp_rmb();
  592. /* More than one running task need preemption */
  593. if (rq->nr_running > 1)
  594. return false;
  595. return true;
  596. }
  597. #endif /* CONFIG_NO_HZ_FULL */
  598. void sched_avg_update(struct rq *rq)
  599. {
  600. s64 period = sched_avg_period();
  601. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  602. /*
  603. * Inline assembly required to prevent the compiler
  604. * optimising this loop into a divmod call.
  605. * See __iter_div_u64_rem() for another example of this.
  606. */
  607. asm("" : "+rm" (rq->age_stamp));
  608. rq->age_stamp += period;
  609. rq->rt_avg /= 2;
  610. }
  611. }
  612. #endif /* CONFIG_SMP */
  613. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  614. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  615. /*
  616. * Iterate task_group tree rooted at *from, calling @down when first entering a
  617. * node and @up when leaving it for the final time.
  618. *
  619. * Caller must hold rcu_lock or sufficient equivalent.
  620. */
  621. int walk_tg_tree_from(struct task_group *from,
  622. tg_visitor down, tg_visitor up, void *data)
  623. {
  624. struct task_group *parent, *child;
  625. int ret;
  626. parent = from;
  627. down:
  628. ret = (*down)(parent, data);
  629. if (ret)
  630. goto out;
  631. list_for_each_entry_rcu(child, &parent->children, siblings) {
  632. parent = child;
  633. goto down;
  634. up:
  635. continue;
  636. }
  637. ret = (*up)(parent, data);
  638. if (ret || parent == from)
  639. goto out;
  640. child = parent;
  641. parent = parent->parent;
  642. if (parent)
  643. goto up;
  644. out:
  645. return ret;
  646. }
  647. int tg_nop(struct task_group *tg, void *data)
  648. {
  649. return 0;
  650. }
  651. #endif
  652. static void set_load_weight(struct task_struct *p)
  653. {
  654. int prio = p->static_prio - MAX_RT_PRIO;
  655. struct load_weight *load = &p->se.load;
  656. /*
  657. * SCHED_IDLE tasks get minimal weight:
  658. */
  659. if (p->policy == SCHED_IDLE) {
  660. load->weight = scale_load(WEIGHT_IDLEPRIO);
  661. load->inv_weight = WMULT_IDLEPRIO;
  662. return;
  663. }
  664. load->weight = scale_load(prio_to_weight[prio]);
  665. load->inv_weight = prio_to_wmult[prio];
  666. }
  667. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  668. {
  669. update_rq_clock(rq);
  670. sched_info_queued(rq, p);
  671. p->sched_class->enqueue_task(rq, p, flags);
  672. }
  673. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  674. {
  675. update_rq_clock(rq);
  676. sched_info_dequeued(rq, p);
  677. p->sched_class->dequeue_task(rq, p, flags);
  678. }
  679. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  680. {
  681. if (task_contributes_to_load(p))
  682. rq->nr_uninterruptible--;
  683. enqueue_task(rq, p, flags);
  684. }
  685. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  686. {
  687. if (task_contributes_to_load(p))
  688. rq->nr_uninterruptible++;
  689. dequeue_task(rq, p, flags);
  690. }
  691. static void update_rq_clock_task(struct rq *rq, s64 delta)
  692. {
  693. /*
  694. * In theory, the compile should just see 0 here, and optimize out the call
  695. * to sched_rt_avg_update. But I don't trust it...
  696. */
  697. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  698. s64 steal = 0, irq_delta = 0;
  699. #endif
  700. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  701. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  702. /*
  703. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  704. * this case when a previous update_rq_clock() happened inside a
  705. * {soft,}irq region.
  706. *
  707. * When this happens, we stop ->clock_task and only update the
  708. * prev_irq_time stamp to account for the part that fit, so that a next
  709. * update will consume the rest. This ensures ->clock_task is
  710. * monotonic.
  711. *
  712. * It does however cause some slight miss-attribution of {soft,}irq
  713. * time, a more accurate solution would be to update the irq_time using
  714. * the current rq->clock timestamp, except that would require using
  715. * atomic ops.
  716. */
  717. if (irq_delta > delta)
  718. irq_delta = delta;
  719. rq->prev_irq_time += irq_delta;
  720. delta -= irq_delta;
  721. #endif
  722. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  723. if (static_key_false((&paravirt_steal_rq_enabled))) {
  724. steal = paravirt_steal_clock(cpu_of(rq));
  725. steal -= rq->prev_steal_time_rq;
  726. if (unlikely(steal > delta))
  727. steal = delta;
  728. rq->prev_steal_time_rq += steal;
  729. delta -= steal;
  730. }
  731. #endif
  732. rq->clock_task += delta;
  733. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  734. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  735. sched_rt_avg_update(rq, irq_delta + steal);
  736. #endif
  737. }
  738. void sched_set_stop_task(int cpu, struct task_struct *stop)
  739. {
  740. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  741. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  742. if (stop) {
  743. /*
  744. * Make it appear like a SCHED_FIFO task, its something
  745. * userspace knows about and won't get confused about.
  746. *
  747. * Also, it will make PI more or less work without too
  748. * much confusion -- but then, stop work should not
  749. * rely on PI working anyway.
  750. */
  751. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  752. stop->sched_class = &stop_sched_class;
  753. }
  754. cpu_rq(cpu)->stop = stop;
  755. if (old_stop) {
  756. /*
  757. * Reset it back to a normal scheduling class so that
  758. * it can die in pieces.
  759. */
  760. old_stop->sched_class = &rt_sched_class;
  761. }
  762. }
  763. /*
  764. * __normal_prio - return the priority that is based on the static prio
  765. */
  766. static inline int __normal_prio(struct task_struct *p)
  767. {
  768. return p->static_prio;
  769. }
  770. /*
  771. * Calculate the expected normal priority: i.e. priority
  772. * without taking RT-inheritance into account. Might be
  773. * boosted by interactivity modifiers. Changes upon fork,
  774. * setprio syscalls, and whenever the interactivity
  775. * estimator recalculates.
  776. */
  777. static inline int normal_prio(struct task_struct *p)
  778. {
  779. int prio;
  780. if (task_has_dl_policy(p))
  781. prio = MAX_DL_PRIO-1;
  782. else if (task_has_rt_policy(p))
  783. prio = MAX_RT_PRIO-1 - p->rt_priority;
  784. else
  785. prio = __normal_prio(p);
  786. return prio;
  787. }
  788. /*
  789. * Calculate the current priority, i.e. the priority
  790. * taken into account by the scheduler. This value might
  791. * be boosted by RT tasks, or might be boosted by
  792. * interactivity modifiers. Will be RT if the task got
  793. * RT-boosted. If not then it returns p->normal_prio.
  794. */
  795. static int effective_prio(struct task_struct *p)
  796. {
  797. p->normal_prio = normal_prio(p);
  798. /*
  799. * If we are RT tasks or we were boosted to RT priority,
  800. * keep the priority unchanged. Otherwise, update priority
  801. * to the normal priority:
  802. */
  803. if (!rt_prio(p->prio))
  804. return p->normal_prio;
  805. return p->prio;
  806. }
  807. /**
  808. * task_curr - is this task currently executing on a CPU?
  809. * @p: the task in question.
  810. *
  811. * Return: 1 if the task is currently executing. 0 otherwise.
  812. */
  813. inline int task_curr(const struct task_struct *p)
  814. {
  815. return cpu_curr(task_cpu(p)) == p;
  816. }
  817. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  818. const struct sched_class *prev_class,
  819. int oldprio)
  820. {
  821. if (prev_class != p->sched_class) {
  822. if (prev_class->switched_from)
  823. prev_class->switched_from(rq, p);
  824. p->sched_class->switched_to(rq, p);
  825. } else if (oldprio != p->prio || dl_task(p))
  826. p->sched_class->prio_changed(rq, p, oldprio);
  827. }
  828. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  829. {
  830. const struct sched_class *class;
  831. if (p->sched_class == rq->curr->sched_class) {
  832. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  833. } else {
  834. for_each_class(class) {
  835. if (class == rq->curr->sched_class)
  836. break;
  837. if (class == p->sched_class) {
  838. resched_task(rq->curr);
  839. break;
  840. }
  841. }
  842. }
  843. /*
  844. * A queue event has occurred, and we're going to schedule. In
  845. * this case, we can save a useless back to back clock update.
  846. */
  847. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  848. rq->skip_clock_update = 1;
  849. }
  850. #ifdef CONFIG_SMP
  851. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  852. {
  853. #ifdef CONFIG_SCHED_DEBUG
  854. /*
  855. * We should never call set_task_cpu() on a blocked task,
  856. * ttwu() will sort out the placement.
  857. */
  858. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  859. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  860. #ifdef CONFIG_LOCKDEP
  861. /*
  862. * The caller should hold either p->pi_lock or rq->lock, when changing
  863. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  864. *
  865. * sched_move_task() holds both and thus holding either pins the cgroup,
  866. * see task_group().
  867. *
  868. * Furthermore, all task_rq users should acquire both locks, see
  869. * task_rq_lock().
  870. */
  871. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  872. lockdep_is_held(&task_rq(p)->lock)));
  873. #endif
  874. #endif
  875. trace_sched_migrate_task(p, new_cpu);
  876. if (task_cpu(p) != new_cpu) {
  877. if (p->sched_class->migrate_task_rq)
  878. p->sched_class->migrate_task_rq(p, new_cpu);
  879. p->se.nr_migrations++;
  880. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  881. }
  882. __set_task_cpu(p, new_cpu);
  883. }
  884. static void __migrate_swap_task(struct task_struct *p, int cpu)
  885. {
  886. if (p->on_rq) {
  887. struct rq *src_rq, *dst_rq;
  888. src_rq = task_rq(p);
  889. dst_rq = cpu_rq(cpu);
  890. deactivate_task(src_rq, p, 0);
  891. set_task_cpu(p, cpu);
  892. activate_task(dst_rq, p, 0);
  893. check_preempt_curr(dst_rq, p, 0);
  894. } else {
  895. /*
  896. * Task isn't running anymore; make it appear like we migrated
  897. * it before it went to sleep. This means on wakeup we make the
  898. * previous cpu our targer instead of where it really is.
  899. */
  900. p->wake_cpu = cpu;
  901. }
  902. }
  903. struct migration_swap_arg {
  904. struct task_struct *src_task, *dst_task;
  905. int src_cpu, dst_cpu;
  906. };
  907. static int migrate_swap_stop(void *data)
  908. {
  909. struct migration_swap_arg *arg = data;
  910. struct rq *src_rq, *dst_rq;
  911. int ret = -EAGAIN;
  912. src_rq = cpu_rq(arg->src_cpu);
  913. dst_rq = cpu_rq(arg->dst_cpu);
  914. double_raw_lock(&arg->src_task->pi_lock,
  915. &arg->dst_task->pi_lock);
  916. double_rq_lock(src_rq, dst_rq);
  917. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  918. goto unlock;
  919. if (task_cpu(arg->src_task) != arg->src_cpu)
  920. goto unlock;
  921. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  922. goto unlock;
  923. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  924. goto unlock;
  925. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  926. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  927. ret = 0;
  928. unlock:
  929. double_rq_unlock(src_rq, dst_rq);
  930. raw_spin_unlock(&arg->dst_task->pi_lock);
  931. raw_spin_unlock(&arg->src_task->pi_lock);
  932. return ret;
  933. }
  934. /*
  935. * Cross migrate two tasks
  936. */
  937. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  938. {
  939. struct migration_swap_arg arg;
  940. int ret = -EINVAL;
  941. arg = (struct migration_swap_arg){
  942. .src_task = cur,
  943. .src_cpu = task_cpu(cur),
  944. .dst_task = p,
  945. .dst_cpu = task_cpu(p),
  946. };
  947. if (arg.src_cpu == arg.dst_cpu)
  948. goto out;
  949. /*
  950. * These three tests are all lockless; this is OK since all of them
  951. * will be re-checked with proper locks held further down the line.
  952. */
  953. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  954. goto out;
  955. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  956. goto out;
  957. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  958. goto out;
  959. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  960. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  961. out:
  962. return ret;
  963. }
  964. struct migration_arg {
  965. struct task_struct *task;
  966. int dest_cpu;
  967. };
  968. static int migration_cpu_stop(void *data);
  969. /*
  970. * wait_task_inactive - wait for a thread to unschedule.
  971. *
  972. * If @match_state is nonzero, it's the @p->state value just checked and
  973. * not expected to change. If it changes, i.e. @p might have woken up,
  974. * then return zero. When we succeed in waiting for @p to be off its CPU,
  975. * we return a positive number (its total switch count). If a second call
  976. * a short while later returns the same number, the caller can be sure that
  977. * @p has remained unscheduled the whole time.
  978. *
  979. * The caller must ensure that the task *will* unschedule sometime soon,
  980. * else this function might spin for a *long* time. This function can't
  981. * be called with interrupts off, or it may introduce deadlock with
  982. * smp_call_function() if an IPI is sent by the same process we are
  983. * waiting to become inactive.
  984. */
  985. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  986. {
  987. unsigned long flags;
  988. int running, on_rq;
  989. unsigned long ncsw;
  990. struct rq *rq;
  991. for (;;) {
  992. /*
  993. * We do the initial early heuristics without holding
  994. * any task-queue locks at all. We'll only try to get
  995. * the runqueue lock when things look like they will
  996. * work out!
  997. */
  998. rq = task_rq(p);
  999. /*
  1000. * If the task is actively running on another CPU
  1001. * still, just relax and busy-wait without holding
  1002. * any locks.
  1003. *
  1004. * NOTE! Since we don't hold any locks, it's not
  1005. * even sure that "rq" stays as the right runqueue!
  1006. * But we don't care, since "task_running()" will
  1007. * return false if the runqueue has changed and p
  1008. * is actually now running somewhere else!
  1009. */
  1010. while (task_running(rq, p)) {
  1011. if (match_state && unlikely(p->state != match_state))
  1012. return 0;
  1013. cpu_relax();
  1014. }
  1015. /*
  1016. * Ok, time to look more closely! We need the rq
  1017. * lock now, to be *sure*. If we're wrong, we'll
  1018. * just go back and repeat.
  1019. */
  1020. rq = task_rq_lock(p, &flags);
  1021. trace_sched_wait_task(p);
  1022. running = task_running(rq, p);
  1023. on_rq = p->on_rq;
  1024. ncsw = 0;
  1025. if (!match_state || p->state == match_state)
  1026. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1027. task_rq_unlock(rq, p, &flags);
  1028. /*
  1029. * If it changed from the expected state, bail out now.
  1030. */
  1031. if (unlikely(!ncsw))
  1032. break;
  1033. /*
  1034. * Was it really running after all now that we
  1035. * checked with the proper locks actually held?
  1036. *
  1037. * Oops. Go back and try again..
  1038. */
  1039. if (unlikely(running)) {
  1040. cpu_relax();
  1041. continue;
  1042. }
  1043. /*
  1044. * It's not enough that it's not actively running,
  1045. * it must be off the runqueue _entirely_, and not
  1046. * preempted!
  1047. *
  1048. * So if it was still runnable (but just not actively
  1049. * running right now), it's preempted, and we should
  1050. * yield - it could be a while.
  1051. */
  1052. if (unlikely(on_rq)) {
  1053. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1054. set_current_state(TASK_UNINTERRUPTIBLE);
  1055. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1056. continue;
  1057. }
  1058. /*
  1059. * Ahh, all good. It wasn't running, and it wasn't
  1060. * runnable, which means that it will never become
  1061. * running in the future either. We're all done!
  1062. */
  1063. break;
  1064. }
  1065. return ncsw;
  1066. }
  1067. /***
  1068. * kick_process - kick a running thread to enter/exit the kernel
  1069. * @p: the to-be-kicked thread
  1070. *
  1071. * Cause a process which is running on another CPU to enter
  1072. * kernel-mode, without any delay. (to get signals handled.)
  1073. *
  1074. * NOTE: this function doesn't have to take the runqueue lock,
  1075. * because all it wants to ensure is that the remote task enters
  1076. * the kernel. If the IPI races and the task has been migrated
  1077. * to another CPU then no harm is done and the purpose has been
  1078. * achieved as well.
  1079. */
  1080. void kick_process(struct task_struct *p)
  1081. {
  1082. int cpu;
  1083. preempt_disable();
  1084. cpu = task_cpu(p);
  1085. if ((cpu != smp_processor_id()) && task_curr(p))
  1086. smp_send_reschedule(cpu);
  1087. preempt_enable();
  1088. }
  1089. EXPORT_SYMBOL_GPL(kick_process);
  1090. #endif /* CONFIG_SMP */
  1091. #ifdef CONFIG_SMP
  1092. /*
  1093. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1094. */
  1095. static int select_fallback_rq(int cpu, struct task_struct *p)
  1096. {
  1097. int nid = cpu_to_node(cpu);
  1098. const struct cpumask *nodemask = NULL;
  1099. enum { cpuset, possible, fail } state = cpuset;
  1100. int dest_cpu;
  1101. /*
  1102. * If the node that the cpu is on has been offlined, cpu_to_node()
  1103. * will return -1. There is no cpu on the node, and we should
  1104. * select the cpu on the other node.
  1105. */
  1106. if (nid != -1) {
  1107. nodemask = cpumask_of_node(nid);
  1108. /* Look for allowed, online CPU in same node. */
  1109. for_each_cpu(dest_cpu, nodemask) {
  1110. if (!cpu_online(dest_cpu))
  1111. continue;
  1112. if (!cpu_active(dest_cpu))
  1113. continue;
  1114. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1115. return dest_cpu;
  1116. }
  1117. }
  1118. for (;;) {
  1119. /* Any allowed, online CPU? */
  1120. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1121. if (!cpu_online(dest_cpu))
  1122. continue;
  1123. if (!cpu_active(dest_cpu))
  1124. continue;
  1125. goto out;
  1126. }
  1127. switch (state) {
  1128. case cpuset:
  1129. /* No more Mr. Nice Guy. */
  1130. cpuset_cpus_allowed_fallback(p);
  1131. state = possible;
  1132. break;
  1133. case possible:
  1134. do_set_cpus_allowed(p, cpu_possible_mask);
  1135. state = fail;
  1136. break;
  1137. case fail:
  1138. BUG();
  1139. break;
  1140. }
  1141. }
  1142. out:
  1143. if (state != cpuset) {
  1144. /*
  1145. * Don't tell them about moving exiting tasks or
  1146. * kernel threads (both mm NULL), since they never
  1147. * leave kernel.
  1148. */
  1149. if (p->mm && printk_ratelimit()) {
  1150. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1151. task_pid_nr(p), p->comm, cpu);
  1152. }
  1153. }
  1154. return dest_cpu;
  1155. }
  1156. /*
  1157. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1158. */
  1159. static inline
  1160. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1161. {
  1162. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1163. /*
  1164. * In order not to call set_task_cpu() on a blocking task we need
  1165. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1166. * cpu.
  1167. *
  1168. * Since this is common to all placement strategies, this lives here.
  1169. *
  1170. * [ this allows ->select_task() to simply return task_cpu(p) and
  1171. * not worry about this generic constraint ]
  1172. */
  1173. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1174. !cpu_online(cpu)))
  1175. cpu = select_fallback_rq(task_cpu(p), p);
  1176. return cpu;
  1177. }
  1178. static void update_avg(u64 *avg, u64 sample)
  1179. {
  1180. s64 diff = sample - *avg;
  1181. *avg += diff >> 3;
  1182. }
  1183. #endif
  1184. static void
  1185. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1186. {
  1187. #ifdef CONFIG_SCHEDSTATS
  1188. struct rq *rq = this_rq();
  1189. #ifdef CONFIG_SMP
  1190. int this_cpu = smp_processor_id();
  1191. if (cpu == this_cpu) {
  1192. schedstat_inc(rq, ttwu_local);
  1193. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1194. } else {
  1195. struct sched_domain *sd;
  1196. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1197. rcu_read_lock();
  1198. for_each_domain(this_cpu, sd) {
  1199. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1200. schedstat_inc(sd, ttwu_wake_remote);
  1201. break;
  1202. }
  1203. }
  1204. rcu_read_unlock();
  1205. }
  1206. if (wake_flags & WF_MIGRATED)
  1207. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1208. #endif /* CONFIG_SMP */
  1209. schedstat_inc(rq, ttwu_count);
  1210. schedstat_inc(p, se.statistics.nr_wakeups);
  1211. if (wake_flags & WF_SYNC)
  1212. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1213. #endif /* CONFIG_SCHEDSTATS */
  1214. }
  1215. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1216. {
  1217. activate_task(rq, p, en_flags);
  1218. p->on_rq = 1;
  1219. /* if a worker is waking up, notify workqueue */
  1220. if (p->flags & PF_WQ_WORKER)
  1221. wq_worker_waking_up(p, cpu_of(rq));
  1222. }
  1223. /*
  1224. * Mark the task runnable and perform wakeup-preemption.
  1225. */
  1226. static void
  1227. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1228. {
  1229. check_preempt_curr(rq, p, wake_flags);
  1230. trace_sched_wakeup(p, true);
  1231. p->state = TASK_RUNNING;
  1232. #ifdef CONFIG_SMP
  1233. if (p->sched_class->task_woken)
  1234. p->sched_class->task_woken(rq, p);
  1235. if (rq->idle_stamp) {
  1236. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1237. u64 max = 2*rq->max_idle_balance_cost;
  1238. update_avg(&rq->avg_idle, delta);
  1239. if (rq->avg_idle > max)
  1240. rq->avg_idle = max;
  1241. rq->idle_stamp = 0;
  1242. }
  1243. #endif
  1244. }
  1245. static void
  1246. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1247. {
  1248. #ifdef CONFIG_SMP
  1249. if (p->sched_contributes_to_load)
  1250. rq->nr_uninterruptible--;
  1251. #endif
  1252. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1253. ttwu_do_wakeup(rq, p, wake_flags);
  1254. }
  1255. /*
  1256. * Called in case the task @p isn't fully descheduled from its runqueue,
  1257. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1258. * since all we need to do is flip p->state to TASK_RUNNING, since
  1259. * the task is still ->on_rq.
  1260. */
  1261. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1262. {
  1263. struct rq *rq;
  1264. int ret = 0;
  1265. rq = __task_rq_lock(p);
  1266. if (p->on_rq) {
  1267. /* check_preempt_curr() may use rq clock */
  1268. update_rq_clock(rq);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. ret = 1;
  1271. }
  1272. __task_rq_unlock(rq);
  1273. return ret;
  1274. }
  1275. #ifdef CONFIG_SMP
  1276. static void sched_ttwu_pending(void)
  1277. {
  1278. struct rq *rq = this_rq();
  1279. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1280. struct task_struct *p;
  1281. raw_spin_lock(&rq->lock);
  1282. while (llist) {
  1283. p = llist_entry(llist, struct task_struct, wake_entry);
  1284. llist = llist_next(llist);
  1285. ttwu_do_activate(rq, p, 0);
  1286. }
  1287. raw_spin_unlock(&rq->lock);
  1288. }
  1289. void scheduler_ipi(void)
  1290. {
  1291. /*
  1292. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1293. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1294. * this IPI.
  1295. */
  1296. preempt_fold_need_resched();
  1297. if (llist_empty(&this_rq()->wake_list)
  1298. && !tick_nohz_full_cpu(smp_processor_id())
  1299. && !got_nohz_idle_kick())
  1300. return;
  1301. /*
  1302. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1303. * traditionally all their work was done from the interrupt return
  1304. * path. Now that we actually do some work, we need to make sure
  1305. * we do call them.
  1306. *
  1307. * Some archs already do call them, luckily irq_enter/exit nest
  1308. * properly.
  1309. *
  1310. * Arguably we should visit all archs and update all handlers,
  1311. * however a fair share of IPIs are still resched only so this would
  1312. * somewhat pessimize the simple resched case.
  1313. */
  1314. irq_enter();
  1315. tick_nohz_full_check();
  1316. sched_ttwu_pending();
  1317. /*
  1318. * Check if someone kicked us for doing the nohz idle load balance.
  1319. */
  1320. if (unlikely(got_nohz_idle_kick())) {
  1321. this_rq()->idle_balance = 1;
  1322. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1323. }
  1324. irq_exit();
  1325. }
  1326. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1327. {
  1328. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1329. smp_send_reschedule(cpu);
  1330. }
  1331. bool cpus_share_cache(int this_cpu, int that_cpu)
  1332. {
  1333. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1334. }
  1335. #endif /* CONFIG_SMP */
  1336. static void ttwu_queue(struct task_struct *p, int cpu)
  1337. {
  1338. struct rq *rq = cpu_rq(cpu);
  1339. #if defined(CONFIG_SMP)
  1340. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1341. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1342. ttwu_queue_remote(p, cpu);
  1343. return;
  1344. }
  1345. #endif
  1346. raw_spin_lock(&rq->lock);
  1347. ttwu_do_activate(rq, p, 0);
  1348. raw_spin_unlock(&rq->lock);
  1349. }
  1350. /**
  1351. * try_to_wake_up - wake up a thread
  1352. * @p: the thread to be awakened
  1353. * @state: the mask of task states that can be woken
  1354. * @wake_flags: wake modifier flags (WF_*)
  1355. *
  1356. * Put it on the run-queue if it's not already there. The "current"
  1357. * thread is always on the run-queue (except when the actual
  1358. * re-schedule is in progress), and as such you're allowed to do
  1359. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1360. * runnable without the overhead of this.
  1361. *
  1362. * Return: %true if @p was woken up, %false if it was already running.
  1363. * or @state didn't match @p's state.
  1364. */
  1365. static int
  1366. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1367. {
  1368. unsigned long flags;
  1369. int cpu, success = 0;
  1370. /*
  1371. * If we are going to wake up a thread waiting for CONDITION we
  1372. * need to ensure that CONDITION=1 done by the caller can not be
  1373. * reordered with p->state check below. This pairs with mb() in
  1374. * set_current_state() the waiting thread does.
  1375. */
  1376. smp_mb__before_spinlock();
  1377. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1378. if (!(p->state & state))
  1379. goto out;
  1380. success = 1; /* we're going to change ->state */
  1381. cpu = task_cpu(p);
  1382. if (p->on_rq && ttwu_remote(p, wake_flags))
  1383. goto stat;
  1384. #ifdef CONFIG_SMP
  1385. /*
  1386. * If the owning (remote) cpu is still in the middle of schedule() with
  1387. * this task as prev, wait until its done referencing the task.
  1388. */
  1389. while (p->on_cpu)
  1390. cpu_relax();
  1391. /*
  1392. * Pairs with the smp_wmb() in finish_lock_switch().
  1393. */
  1394. smp_rmb();
  1395. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1396. p->state = TASK_WAKING;
  1397. if (p->sched_class->task_waking)
  1398. p->sched_class->task_waking(p);
  1399. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1400. if (task_cpu(p) != cpu) {
  1401. wake_flags |= WF_MIGRATED;
  1402. set_task_cpu(p, cpu);
  1403. }
  1404. #endif /* CONFIG_SMP */
  1405. ttwu_queue(p, cpu);
  1406. stat:
  1407. ttwu_stat(p, cpu, wake_flags);
  1408. out:
  1409. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1410. return success;
  1411. }
  1412. /**
  1413. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1414. * @p: the thread to be awakened
  1415. *
  1416. * Put @p on the run-queue if it's not already there. The caller must
  1417. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1418. * the current task.
  1419. */
  1420. static void try_to_wake_up_local(struct task_struct *p)
  1421. {
  1422. struct rq *rq = task_rq(p);
  1423. if (WARN_ON_ONCE(rq != this_rq()) ||
  1424. WARN_ON_ONCE(p == current))
  1425. return;
  1426. lockdep_assert_held(&rq->lock);
  1427. if (!raw_spin_trylock(&p->pi_lock)) {
  1428. raw_spin_unlock(&rq->lock);
  1429. raw_spin_lock(&p->pi_lock);
  1430. raw_spin_lock(&rq->lock);
  1431. }
  1432. if (!(p->state & TASK_NORMAL))
  1433. goto out;
  1434. if (!p->on_rq)
  1435. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1436. ttwu_do_wakeup(rq, p, 0);
  1437. ttwu_stat(p, smp_processor_id(), 0);
  1438. out:
  1439. raw_spin_unlock(&p->pi_lock);
  1440. }
  1441. /**
  1442. * wake_up_process - Wake up a specific process
  1443. * @p: The process to be woken up.
  1444. *
  1445. * Attempt to wake up the nominated process and move it to the set of runnable
  1446. * processes.
  1447. *
  1448. * Return: 1 if the process was woken up, 0 if it was already running.
  1449. *
  1450. * It may be assumed that this function implies a write memory barrier before
  1451. * changing the task state if and only if any tasks are woken up.
  1452. */
  1453. int wake_up_process(struct task_struct *p)
  1454. {
  1455. WARN_ON(task_is_stopped_or_traced(p));
  1456. return try_to_wake_up(p, TASK_NORMAL, 0);
  1457. }
  1458. EXPORT_SYMBOL(wake_up_process);
  1459. int wake_up_state(struct task_struct *p, unsigned int state)
  1460. {
  1461. return try_to_wake_up(p, state, 0);
  1462. }
  1463. /*
  1464. * Perform scheduler related setup for a newly forked process p.
  1465. * p is forked by current.
  1466. *
  1467. * __sched_fork() is basic setup used by init_idle() too:
  1468. */
  1469. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1470. {
  1471. p->on_rq = 0;
  1472. p->se.on_rq = 0;
  1473. p->se.exec_start = 0;
  1474. p->se.sum_exec_runtime = 0;
  1475. p->se.prev_sum_exec_runtime = 0;
  1476. p->se.nr_migrations = 0;
  1477. p->se.vruntime = 0;
  1478. INIT_LIST_HEAD(&p->se.group_node);
  1479. #ifdef CONFIG_SCHEDSTATS
  1480. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1481. #endif
  1482. RB_CLEAR_NODE(&p->dl.rb_node);
  1483. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1484. p->dl.dl_runtime = p->dl.runtime = 0;
  1485. p->dl.dl_deadline = p->dl.deadline = 0;
  1486. p->dl.dl_period = 0;
  1487. p->dl.flags = 0;
  1488. INIT_LIST_HEAD(&p->rt.run_list);
  1489. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1490. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1491. #endif
  1492. #ifdef CONFIG_NUMA_BALANCING
  1493. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1494. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1495. p->mm->numa_scan_seq = 0;
  1496. }
  1497. if (clone_flags & CLONE_VM)
  1498. p->numa_preferred_nid = current->numa_preferred_nid;
  1499. else
  1500. p->numa_preferred_nid = -1;
  1501. p->node_stamp = 0ULL;
  1502. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1503. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1504. p->numa_work.next = &p->numa_work;
  1505. p->numa_faults_memory = NULL;
  1506. p->numa_faults_buffer_memory = NULL;
  1507. p->last_task_numa_placement = 0;
  1508. p->last_sum_exec_runtime = 0;
  1509. INIT_LIST_HEAD(&p->numa_entry);
  1510. p->numa_group = NULL;
  1511. #endif /* CONFIG_NUMA_BALANCING */
  1512. }
  1513. #ifdef CONFIG_NUMA_BALANCING
  1514. #ifdef CONFIG_SCHED_DEBUG
  1515. void set_numabalancing_state(bool enabled)
  1516. {
  1517. if (enabled)
  1518. sched_feat_set("NUMA");
  1519. else
  1520. sched_feat_set("NO_NUMA");
  1521. }
  1522. #else
  1523. __read_mostly bool numabalancing_enabled;
  1524. void set_numabalancing_state(bool enabled)
  1525. {
  1526. numabalancing_enabled = enabled;
  1527. }
  1528. #endif /* CONFIG_SCHED_DEBUG */
  1529. #ifdef CONFIG_PROC_SYSCTL
  1530. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1531. void __user *buffer, size_t *lenp, loff_t *ppos)
  1532. {
  1533. struct ctl_table t;
  1534. int err;
  1535. int state = numabalancing_enabled;
  1536. if (write && !capable(CAP_SYS_ADMIN))
  1537. return -EPERM;
  1538. t = *table;
  1539. t.data = &state;
  1540. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1541. if (err < 0)
  1542. return err;
  1543. if (write)
  1544. set_numabalancing_state(state);
  1545. return err;
  1546. }
  1547. #endif
  1548. #endif
  1549. /*
  1550. * fork()/clone()-time setup:
  1551. */
  1552. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1553. {
  1554. unsigned long flags;
  1555. int cpu = get_cpu();
  1556. __sched_fork(clone_flags, p);
  1557. /*
  1558. * We mark the process as running here. This guarantees that
  1559. * nobody will actually run it, and a signal or other external
  1560. * event cannot wake it up and insert it on the runqueue either.
  1561. */
  1562. p->state = TASK_RUNNING;
  1563. /*
  1564. * Make sure we do not leak PI boosting priority to the child.
  1565. */
  1566. p->prio = current->normal_prio;
  1567. /*
  1568. * Revert to default priority/policy on fork if requested.
  1569. */
  1570. if (unlikely(p->sched_reset_on_fork)) {
  1571. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1572. p->policy = SCHED_NORMAL;
  1573. p->static_prio = NICE_TO_PRIO(0);
  1574. p->rt_priority = 0;
  1575. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1576. p->static_prio = NICE_TO_PRIO(0);
  1577. p->prio = p->normal_prio = __normal_prio(p);
  1578. set_load_weight(p);
  1579. /*
  1580. * We don't need the reset flag anymore after the fork. It has
  1581. * fulfilled its duty:
  1582. */
  1583. p->sched_reset_on_fork = 0;
  1584. }
  1585. if (dl_prio(p->prio)) {
  1586. put_cpu();
  1587. return -EAGAIN;
  1588. } else if (rt_prio(p->prio)) {
  1589. p->sched_class = &rt_sched_class;
  1590. } else {
  1591. p->sched_class = &fair_sched_class;
  1592. }
  1593. if (p->sched_class->task_fork)
  1594. p->sched_class->task_fork(p);
  1595. /*
  1596. * The child is not yet in the pid-hash so no cgroup attach races,
  1597. * and the cgroup is pinned to this child due to cgroup_fork()
  1598. * is ran before sched_fork().
  1599. *
  1600. * Silence PROVE_RCU.
  1601. */
  1602. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1603. set_task_cpu(p, cpu);
  1604. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1605. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1606. if (likely(sched_info_on()))
  1607. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1608. #endif
  1609. #if defined(CONFIG_SMP)
  1610. p->on_cpu = 0;
  1611. #endif
  1612. init_task_preempt_count(p);
  1613. #ifdef CONFIG_SMP
  1614. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1615. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1616. #endif
  1617. put_cpu();
  1618. return 0;
  1619. }
  1620. unsigned long to_ratio(u64 period, u64 runtime)
  1621. {
  1622. if (runtime == RUNTIME_INF)
  1623. return 1ULL << 20;
  1624. /*
  1625. * Doing this here saves a lot of checks in all
  1626. * the calling paths, and returning zero seems
  1627. * safe for them anyway.
  1628. */
  1629. if (period == 0)
  1630. return 0;
  1631. return div64_u64(runtime << 20, period);
  1632. }
  1633. #ifdef CONFIG_SMP
  1634. inline struct dl_bw *dl_bw_of(int i)
  1635. {
  1636. return &cpu_rq(i)->rd->dl_bw;
  1637. }
  1638. static inline int dl_bw_cpus(int i)
  1639. {
  1640. struct root_domain *rd = cpu_rq(i)->rd;
  1641. int cpus = 0;
  1642. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1643. cpus++;
  1644. return cpus;
  1645. }
  1646. #else
  1647. inline struct dl_bw *dl_bw_of(int i)
  1648. {
  1649. return &cpu_rq(i)->dl.dl_bw;
  1650. }
  1651. static inline int dl_bw_cpus(int i)
  1652. {
  1653. return 1;
  1654. }
  1655. #endif
  1656. static inline
  1657. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1658. {
  1659. dl_b->total_bw -= tsk_bw;
  1660. }
  1661. static inline
  1662. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1663. {
  1664. dl_b->total_bw += tsk_bw;
  1665. }
  1666. static inline
  1667. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1668. {
  1669. return dl_b->bw != -1 &&
  1670. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1671. }
  1672. /*
  1673. * We must be sure that accepting a new task (or allowing changing the
  1674. * parameters of an existing one) is consistent with the bandwidth
  1675. * constraints. If yes, this function also accordingly updates the currently
  1676. * allocated bandwidth to reflect the new situation.
  1677. *
  1678. * This function is called while holding p's rq->lock.
  1679. */
  1680. static int dl_overflow(struct task_struct *p, int policy,
  1681. const struct sched_attr *attr)
  1682. {
  1683. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1684. u64 period = attr->sched_period ?: attr->sched_deadline;
  1685. u64 runtime = attr->sched_runtime;
  1686. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1687. int cpus, err = -1;
  1688. if (new_bw == p->dl.dl_bw)
  1689. return 0;
  1690. /*
  1691. * Either if a task, enters, leave, or stays -deadline but changes
  1692. * its parameters, we may need to update accordingly the total
  1693. * allocated bandwidth of the container.
  1694. */
  1695. raw_spin_lock(&dl_b->lock);
  1696. cpus = dl_bw_cpus(task_cpu(p));
  1697. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1698. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1699. __dl_add(dl_b, new_bw);
  1700. err = 0;
  1701. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1702. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1703. __dl_clear(dl_b, p->dl.dl_bw);
  1704. __dl_add(dl_b, new_bw);
  1705. err = 0;
  1706. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1707. __dl_clear(dl_b, p->dl.dl_bw);
  1708. err = 0;
  1709. }
  1710. raw_spin_unlock(&dl_b->lock);
  1711. return err;
  1712. }
  1713. extern void init_dl_bw(struct dl_bw *dl_b);
  1714. /*
  1715. * wake_up_new_task - wake up a newly created task for the first time.
  1716. *
  1717. * This function will do some initial scheduler statistics housekeeping
  1718. * that must be done for every newly created context, then puts the task
  1719. * on the runqueue and wakes it.
  1720. */
  1721. void wake_up_new_task(struct task_struct *p)
  1722. {
  1723. unsigned long flags;
  1724. struct rq *rq;
  1725. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1726. #ifdef CONFIG_SMP
  1727. /*
  1728. * Fork balancing, do it here and not earlier because:
  1729. * - cpus_allowed can change in the fork path
  1730. * - any previously selected cpu might disappear through hotplug
  1731. */
  1732. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1733. #endif
  1734. /* Initialize new task's runnable average */
  1735. init_task_runnable_average(p);
  1736. rq = __task_rq_lock(p);
  1737. activate_task(rq, p, 0);
  1738. p->on_rq = 1;
  1739. trace_sched_wakeup_new(p, true);
  1740. check_preempt_curr(rq, p, WF_FORK);
  1741. #ifdef CONFIG_SMP
  1742. if (p->sched_class->task_woken)
  1743. p->sched_class->task_woken(rq, p);
  1744. #endif
  1745. task_rq_unlock(rq, p, &flags);
  1746. }
  1747. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1748. /**
  1749. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1750. * @notifier: notifier struct to register
  1751. */
  1752. void preempt_notifier_register(struct preempt_notifier *notifier)
  1753. {
  1754. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1755. }
  1756. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1757. /**
  1758. * preempt_notifier_unregister - no longer interested in preemption notifications
  1759. * @notifier: notifier struct to unregister
  1760. *
  1761. * This is safe to call from within a preemption notifier.
  1762. */
  1763. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1764. {
  1765. hlist_del(&notifier->link);
  1766. }
  1767. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1768. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1769. {
  1770. struct preempt_notifier *notifier;
  1771. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1772. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1773. }
  1774. static void
  1775. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1776. struct task_struct *next)
  1777. {
  1778. struct preempt_notifier *notifier;
  1779. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1780. notifier->ops->sched_out(notifier, next);
  1781. }
  1782. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1783. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1784. {
  1785. }
  1786. static void
  1787. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1788. struct task_struct *next)
  1789. {
  1790. }
  1791. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1792. /**
  1793. * prepare_task_switch - prepare to switch tasks
  1794. * @rq: the runqueue preparing to switch
  1795. * @prev: the current task that is being switched out
  1796. * @next: the task we are going to switch to.
  1797. *
  1798. * This is called with the rq lock held and interrupts off. It must
  1799. * be paired with a subsequent finish_task_switch after the context
  1800. * switch.
  1801. *
  1802. * prepare_task_switch sets up locking and calls architecture specific
  1803. * hooks.
  1804. */
  1805. static inline void
  1806. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1807. struct task_struct *next)
  1808. {
  1809. trace_sched_switch(prev, next);
  1810. sched_info_switch(rq, prev, next);
  1811. perf_event_task_sched_out(prev, next);
  1812. fire_sched_out_preempt_notifiers(prev, next);
  1813. prepare_lock_switch(rq, next);
  1814. prepare_arch_switch(next);
  1815. }
  1816. /**
  1817. * finish_task_switch - clean up after a task-switch
  1818. * @rq: runqueue associated with task-switch
  1819. * @prev: the thread we just switched away from.
  1820. *
  1821. * finish_task_switch must be called after the context switch, paired
  1822. * with a prepare_task_switch call before the context switch.
  1823. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1824. * and do any other architecture-specific cleanup actions.
  1825. *
  1826. * Note that we may have delayed dropping an mm in context_switch(). If
  1827. * so, we finish that here outside of the runqueue lock. (Doing it
  1828. * with the lock held can cause deadlocks; see schedule() for
  1829. * details.)
  1830. */
  1831. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1832. __releases(rq->lock)
  1833. {
  1834. struct mm_struct *mm = rq->prev_mm;
  1835. long prev_state;
  1836. rq->prev_mm = NULL;
  1837. /*
  1838. * A task struct has one reference for the use as "current".
  1839. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1840. * schedule one last time. The schedule call will never return, and
  1841. * the scheduled task must drop that reference.
  1842. * The test for TASK_DEAD must occur while the runqueue locks are
  1843. * still held, otherwise prev could be scheduled on another cpu, die
  1844. * there before we look at prev->state, and then the reference would
  1845. * be dropped twice.
  1846. * Manfred Spraul <manfred@colorfullife.com>
  1847. */
  1848. prev_state = prev->state;
  1849. vtime_task_switch(prev);
  1850. finish_arch_switch(prev);
  1851. perf_event_task_sched_in(prev, current);
  1852. finish_lock_switch(rq, prev);
  1853. finish_arch_post_lock_switch();
  1854. fire_sched_in_preempt_notifiers(current);
  1855. if (mm)
  1856. mmdrop(mm);
  1857. if (unlikely(prev_state == TASK_DEAD)) {
  1858. if (prev->sched_class->task_dead)
  1859. prev->sched_class->task_dead(prev);
  1860. /*
  1861. * Remove function-return probe instances associated with this
  1862. * task and put them back on the free list.
  1863. */
  1864. kprobe_flush_task(prev);
  1865. put_task_struct(prev);
  1866. }
  1867. tick_nohz_task_switch(current);
  1868. }
  1869. #ifdef CONFIG_SMP
  1870. /* rq->lock is NOT held, but preemption is disabled */
  1871. static inline void post_schedule(struct rq *rq)
  1872. {
  1873. if (rq->post_schedule) {
  1874. unsigned long flags;
  1875. raw_spin_lock_irqsave(&rq->lock, flags);
  1876. if (rq->curr->sched_class->post_schedule)
  1877. rq->curr->sched_class->post_schedule(rq);
  1878. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1879. rq->post_schedule = 0;
  1880. }
  1881. }
  1882. #else
  1883. static inline void post_schedule(struct rq *rq)
  1884. {
  1885. }
  1886. #endif
  1887. /**
  1888. * schedule_tail - first thing a freshly forked thread must call.
  1889. * @prev: the thread we just switched away from.
  1890. */
  1891. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1892. __releases(rq->lock)
  1893. {
  1894. struct rq *rq = this_rq();
  1895. finish_task_switch(rq, prev);
  1896. /*
  1897. * FIXME: do we need to worry about rq being invalidated by the
  1898. * task_switch?
  1899. */
  1900. post_schedule(rq);
  1901. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1902. /* In this case, finish_task_switch does not reenable preemption */
  1903. preempt_enable();
  1904. #endif
  1905. if (current->set_child_tid)
  1906. put_user(task_pid_vnr(current), current->set_child_tid);
  1907. }
  1908. /*
  1909. * context_switch - switch to the new MM and the new
  1910. * thread's register state.
  1911. */
  1912. static inline void
  1913. context_switch(struct rq *rq, struct task_struct *prev,
  1914. struct task_struct *next)
  1915. {
  1916. struct mm_struct *mm, *oldmm;
  1917. prepare_task_switch(rq, prev, next);
  1918. mm = next->mm;
  1919. oldmm = prev->active_mm;
  1920. /*
  1921. * For paravirt, this is coupled with an exit in switch_to to
  1922. * combine the page table reload and the switch backend into
  1923. * one hypercall.
  1924. */
  1925. arch_start_context_switch(prev);
  1926. if (!mm) {
  1927. next->active_mm = oldmm;
  1928. atomic_inc(&oldmm->mm_count);
  1929. enter_lazy_tlb(oldmm, next);
  1930. } else
  1931. switch_mm(oldmm, mm, next);
  1932. if (!prev->mm) {
  1933. prev->active_mm = NULL;
  1934. rq->prev_mm = oldmm;
  1935. }
  1936. /*
  1937. * Since the runqueue lock will be released by the next
  1938. * task (which is an invalid locking op but in the case
  1939. * of the scheduler it's an obvious special-case), so we
  1940. * do an early lockdep release here:
  1941. */
  1942. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1943. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1944. #endif
  1945. context_tracking_task_switch(prev, next);
  1946. /* Here we just switch the register state and the stack. */
  1947. switch_to(prev, next, prev);
  1948. barrier();
  1949. /*
  1950. * this_rq must be evaluated again because prev may have moved
  1951. * CPUs since it called schedule(), thus the 'rq' on its stack
  1952. * frame will be invalid.
  1953. */
  1954. finish_task_switch(this_rq(), prev);
  1955. }
  1956. /*
  1957. * nr_running and nr_context_switches:
  1958. *
  1959. * externally visible scheduler statistics: current number of runnable
  1960. * threads, total number of context switches performed since bootup.
  1961. */
  1962. unsigned long nr_running(void)
  1963. {
  1964. unsigned long i, sum = 0;
  1965. for_each_online_cpu(i)
  1966. sum += cpu_rq(i)->nr_running;
  1967. return sum;
  1968. }
  1969. unsigned long long nr_context_switches(void)
  1970. {
  1971. int i;
  1972. unsigned long long sum = 0;
  1973. for_each_possible_cpu(i)
  1974. sum += cpu_rq(i)->nr_switches;
  1975. return sum;
  1976. }
  1977. unsigned long nr_iowait(void)
  1978. {
  1979. unsigned long i, sum = 0;
  1980. for_each_possible_cpu(i)
  1981. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1982. return sum;
  1983. }
  1984. unsigned long nr_iowait_cpu(int cpu)
  1985. {
  1986. struct rq *this = cpu_rq(cpu);
  1987. return atomic_read(&this->nr_iowait);
  1988. }
  1989. #ifdef CONFIG_SMP
  1990. /*
  1991. * sched_exec - execve() is a valuable balancing opportunity, because at
  1992. * this point the task has the smallest effective memory and cache footprint.
  1993. */
  1994. void sched_exec(void)
  1995. {
  1996. struct task_struct *p = current;
  1997. unsigned long flags;
  1998. int dest_cpu;
  1999. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2000. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2001. if (dest_cpu == smp_processor_id())
  2002. goto unlock;
  2003. if (likely(cpu_active(dest_cpu))) {
  2004. struct migration_arg arg = { p, dest_cpu };
  2005. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2006. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2007. return;
  2008. }
  2009. unlock:
  2010. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2011. }
  2012. #endif
  2013. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2014. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2015. EXPORT_PER_CPU_SYMBOL(kstat);
  2016. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2017. /*
  2018. * Return any ns on the sched_clock that have not yet been accounted in
  2019. * @p in case that task is currently running.
  2020. *
  2021. * Called with task_rq_lock() held on @rq.
  2022. */
  2023. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2024. {
  2025. u64 ns = 0;
  2026. if (task_current(rq, p)) {
  2027. update_rq_clock(rq);
  2028. ns = rq_clock_task(rq) - p->se.exec_start;
  2029. if ((s64)ns < 0)
  2030. ns = 0;
  2031. }
  2032. return ns;
  2033. }
  2034. unsigned long long task_delta_exec(struct task_struct *p)
  2035. {
  2036. unsigned long flags;
  2037. struct rq *rq;
  2038. u64 ns = 0;
  2039. rq = task_rq_lock(p, &flags);
  2040. ns = do_task_delta_exec(p, rq);
  2041. task_rq_unlock(rq, p, &flags);
  2042. return ns;
  2043. }
  2044. /*
  2045. * Return accounted runtime for the task.
  2046. * In case the task is currently running, return the runtime plus current's
  2047. * pending runtime that have not been accounted yet.
  2048. */
  2049. unsigned long long task_sched_runtime(struct task_struct *p)
  2050. {
  2051. unsigned long flags;
  2052. struct rq *rq;
  2053. u64 ns = 0;
  2054. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2055. /*
  2056. * 64-bit doesn't need locks to atomically read a 64bit value.
  2057. * So we have a optimization chance when the task's delta_exec is 0.
  2058. * Reading ->on_cpu is racy, but this is ok.
  2059. *
  2060. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2061. * If we race with it entering cpu, unaccounted time is 0. This is
  2062. * indistinguishable from the read occurring a few cycles earlier.
  2063. */
  2064. if (!p->on_cpu)
  2065. return p->se.sum_exec_runtime;
  2066. #endif
  2067. rq = task_rq_lock(p, &flags);
  2068. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2069. task_rq_unlock(rq, p, &flags);
  2070. return ns;
  2071. }
  2072. /*
  2073. * This function gets called by the timer code, with HZ frequency.
  2074. * We call it with interrupts disabled.
  2075. */
  2076. void scheduler_tick(void)
  2077. {
  2078. int cpu = smp_processor_id();
  2079. struct rq *rq = cpu_rq(cpu);
  2080. struct task_struct *curr = rq->curr;
  2081. sched_clock_tick();
  2082. raw_spin_lock(&rq->lock);
  2083. update_rq_clock(rq);
  2084. curr->sched_class->task_tick(rq, curr, 0);
  2085. update_cpu_load_active(rq);
  2086. raw_spin_unlock(&rq->lock);
  2087. perf_event_task_tick();
  2088. #ifdef CONFIG_SMP
  2089. rq->idle_balance = idle_cpu(cpu);
  2090. trigger_load_balance(rq);
  2091. #endif
  2092. rq_last_tick_reset(rq);
  2093. }
  2094. #ifdef CONFIG_NO_HZ_FULL
  2095. /**
  2096. * scheduler_tick_max_deferment
  2097. *
  2098. * Keep at least one tick per second when a single
  2099. * active task is running because the scheduler doesn't
  2100. * yet completely support full dynticks environment.
  2101. *
  2102. * This makes sure that uptime, CFS vruntime, load
  2103. * balancing, etc... continue to move forward, even
  2104. * with a very low granularity.
  2105. *
  2106. * Return: Maximum deferment in nanoseconds.
  2107. */
  2108. u64 scheduler_tick_max_deferment(void)
  2109. {
  2110. struct rq *rq = this_rq();
  2111. unsigned long next, now = ACCESS_ONCE(jiffies);
  2112. next = rq->last_sched_tick + HZ;
  2113. if (time_before_eq(next, now))
  2114. return 0;
  2115. return jiffies_to_nsecs(next - now);
  2116. }
  2117. #endif
  2118. notrace unsigned long get_parent_ip(unsigned long addr)
  2119. {
  2120. if (in_lock_functions(addr)) {
  2121. addr = CALLER_ADDR2;
  2122. if (in_lock_functions(addr))
  2123. addr = CALLER_ADDR3;
  2124. }
  2125. return addr;
  2126. }
  2127. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2128. defined(CONFIG_PREEMPT_TRACER))
  2129. void __kprobes preempt_count_add(int val)
  2130. {
  2131. #ifdef CONFIG_DEBUG_PREEMPT
  2132. /*
  2133. * Underflow?
  2134. */
  2135. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2136. return;
  2137. #endif
  2138. __preempt_count_add(val);
  2139. #ifdef CONFIG_DEBUG_PREEMPT
  2140. /*
  2141. * Spinlock count overflowing soon?
  2142. */
  2143. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2144. PREEMPT_MASK - 10);
  2145. #endif
  2146. if (preempt_count() == val) {
  2147. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2148. #ifdef CONFIG_DEBUG_PREEMPT
  2149. current->preempt_disable_ip = ip;
  2150. #endif
  2151. trace_preempt_off(CALLER_ADDR0, ip);
  2152. }
  2153. }
  2154. EXPORT_SYMBOL(preempt_count_add);
  2155. void __kprobes preempt_count_sub(int val)
  2156. {
  2157. #ifdef CONFIG_DEBUG_PREEMPT
  2158. /*
  2159. * Underflow?
  2160. */
  2161. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2162. return;
  2163. /*
  2164. * Is the spinlock portion underflowing?
  2165. */
  2166. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2167. !(preempt_count() & PREEMPT_MASK)))
  2168. return;
  2169. #endif
  2170. if (preempt_count() == val)
  2171. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2172. __preempt_count_sub(val);
  2173. }
  2174. EXPORT_SYMBOL(preempt_count_sub);
  2175. #endif
  2176. /*
  2177. * Print scheduling while atomic bug:
  2178. */
  2179. static noinline void __schedule_bug(struct task_struct *prev)
  2180. {
  2181. if (oops_in_progress)
  2182. return;
  2183. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2184. prev->comm, prev->pid, preempt_count());
  2185. debug_show_held_locks(prev);
  2186. print_modules();
  2187. if (irqs_disabled())
  2188. print_irqtrace_events(prev);
  2189. #ifdef CONFIG_DEBUG_PREEMPT
  2190. if (in_atomic_preempt_off()) {
  2191. pr_err("Preemption disabled at:");
  2192. print_ip_sym(current->preempt_disable_ip);
  2193. pr_cont("\n");
  2194. }
  2195. #endif
  2196. dump_stack();
  2197. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2198. }
  2199. /*
  2200. * Various schedule()-time debugging checks and statistics:
  2201. */
  2202. static inline void schedule_debug(struct task_struct *prev)
  2203. {
  2204. /*
  2205. * Test if we are atomic. Since do_exit() needs to call into
  2206. * schedule() atomically, we ignore that path. Otherwise whine
  2207. * if we are scheduling when we should not.
  2208. */
  2209. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2210. __schedule_bug(prev);
  2211. rcu_sleep_check();
  2212. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2213. schedstat_inc(this_rq(), sched_count);
  2214. }
  2215. /*
  2216. * Pick up the highest-prio task:
  2217. */
  2218. static inline struct task_struct *
  2219. pick_next_task(struct rq *rq, struct task_struct *prev)
  2220. {
  2221. const struct sched_class *class = &fair_sched_class;
  2222. struct task_struct *p;
  2223. /*
  2224. * Optimization: we know that if all tasks are in
  2225. * the fair class we can call that function directly:
  2226. */
  2227. if (likely(prev->sched_class == class &&
  2228. rq->nr_running == rq->cfs.h_nr_running)) {
  2229. p = fair_sched_class.pick_next_task(rq, prev);
  2230. if (unlikely(p == RETRY_TASK))
  2231. goto again;
  2232. /* assumes fair_sched_class->next == idle_sched_class */
  2233. if (unlikely(!p))
  2234. p = idle_sched_class.pick_next_task(rq, prev);
  2235. return p;
  2236. }
  2237. again:
  2238. for_each_class(class) {
  2239. p = class->pick_next_task(rq, prev);
  2240. if (p) {
  2241. if (unlikely(p == RETRY_TASK))
  2242. goto again;
  2243. return p;
  2244. }
  2245. }
  2246. BUG(); /* the idle class will always have a runnable task */
  2247. }
  2248. /*
  2249. * __schedule() is the main scheduler function.
  2250. *
  2251. * The main means of driving the scheduler and thus entering this function are:
  2252. *
  2253. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2254. *
  2255. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2256. * paths. For example, see arch/x86/entry_64.S.
  2257. *
  2258. * To drive preemption between tasks, the scheduler sets the flag in timer
  2259. * interrupt handler scheduler_tick().
  2260. *
  2261. * 3. Wakeups don't really cause entry into schedule(). They add a
  2262. * task to the run-queue and that's it.
  2263. *
  2264. * Now, if the new task added to the run-queue preempts the current
  2265. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2266. * called on the nearest possible occasion:
  2267. *
  2268. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2269. *
  2270. * - in syscall or exception context, at the next outmost
  2271. * preempt_enable(). (this might be as soon as the wake_up()'s
  2272. * spin_unlock()!)
  2273. *
  2274. * - in IRQ context, return from interrupt-handler to
  2275. * preemptible context
  2276. *
  2277. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2278. * then at the next:
  2279. *
  2280. * - cond_resched() call
  2281. * - explicit schedule() call
  2282. * - return from syscall or exception to user-space
  2283. * - return from interrupt-handler to user-space
  2284. */
  2285. static void __sched __schedule(void)
  2286. {
  2287. struct task_struct *prev, *next;
  2288. unsigned long *switch_count;
  2289. struct rq *rq;
  2290. int cpu;
  2291. need_resched:
  2292. preempt_disable();
  2293. cpu = smp_processor_id();
  2294. rq = cpu_rq(cpu);
  2295. rcu_note_context_switch(cpu);
  2296. prev = rq->curr;
  2297. schedule_debug(prev);
  2298. if (sched_feat(HRTICK))
  2299. hrtick_clear(rq);
  2300. /*
  2301. * Make sure that signal_pending_state()->signal_pending() below
  2302. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2303. * done by the caller to avoid the race with signal_wake_up().
  2304. */
  2305. smp_mb__before_spinlock();
  2306. raw_spin_lock_irq(&rq->lock);
  2307. switch_count = &prev->nivcsw;
  2308. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2309. if (unlikely(signal_pending_state(prev->state, prev))) {
  2310. prev->state = TASK_RUNNING;
  2311. } else {
  2312. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2313. prev->on_rq = 0;
  2314. /*
  2315. * If a worker went to sleep, notify and ask workqueue
  2316. * whether it wants to wake up a task to maintain
  2317. * concurrency.
  2318. */
  2319. if (prev->flags & PF_WQ_WORKER) {
  2320. struct task_struct *to_wakeup;
  2321. to_wakeup = wq_worker_sleeping(prev, cpu);
  2322. if (to_wakeup)
  2323. try_to_wake_up_local(to_wakeup);
  2324. }
  2325. }
  2326. switch_count = &prev->nvcsw;
  2327. }
  2328. if (prev->on_rq || rq->skip_clock_update < 0)
  2329. update_rq_clock(rq);
  2330. next = pick_next_task(rq, prev);
  2331. clear_tsk_need_resched(prev);
  2332. clear_preempt_need_resched();
  2333. rq->skip_clock_update = 0;
  2334. if (likely(prev != next)) {
  2335. rq->nr_switches++;
  2336. rq->curr = next;
  2337. ++*switch_count;
  2338. context_switch(rq, prev, next); /* unlocks the rq */
  2339. /*
  2340. * The context switch have flipped the stack from under us
  2341. * and restored the local variables which were saved when
  2342. * this task called schedule() in the past. prev == current
  2343. * is still correct, but it can be moved to another cpu/rq.
  2344. */
  2345. cpu = smp_processor_id();
  2346. rq = cpu_rq(cpu);
  2347. } else
  2348. raw_spin_unlock_irq(&rq->lock);
  2349. post_schedule(rq);
  2350. sched_preempt_enable_no_resched();
  2351. if (need_resched())
  2352. goto need_resched;
  2353. }
  2354. static inline void sched_submit_work(struct task_struct *tsk)
  2355. {
  2356. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2357. return;
  2358. /*
  2359. * If we are going to sleep and we have plugged IO queued,
  2360. * make sure to submit it to avoid deadlocks.
  2361. */
  2362. if (blk_needs_flush_plug(tsk))
  2363. blk_schedule_flush_plug(tsk);
  2364. }
  2365. asmlinkage __visible void __sched schedule(void)
  2366. {
  2367. struct task_struct *tsk = current;
  2368. sched_submit_work(tsk);
  2369. __schedule();
  2370. }
  2371. EXPORT_SYMBOL(schedule);
  2372. #ifdef CONFIG_CONTEXT_TRACKING
  2373. asmlinkage __visible void __sched schedule_user(void)
  2374. {
  2375. /*
  2376. * If we come here after a random call to set_need_resched(),
  2377. * or we have been woken up remotely but the IPI has not yet arrived,
  2378. * we haven't yet exited the RCU idle mode. Do it here manually until
  2379. * we find a better solution.
  2380. */
  2381. user_exit();
  2382. schedule();
  2383. user_enter();
  2384. }
  2385. #endif
  2386. /**
  2387. * schedule_preempt_disabled - called with preemption disabled
  2388. *
  2389. * Returns with preemption disabled. Note: preempt_count must be 1
  2390. */
  2391. void __sched schedule_preempt_disabled(void)
  2392. {
  2393. sched_preempt_enable_no_resched();
  2394. schedule();
  2395. preempt_disable();
  2396. }
  2397. #ifdef CONFIG_PREEMPT
  2398. /*
  2399. * this is the entry point to schedule() from in-kernel preemption
  2400. * off of preempt_enable. Kernel preemptions off return from interrupt
  2401. * occur there and call schedule directly.
  2402. */
  2403. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2404. {
  2405. /*
  2406. * If there is a non-zero preempt_count or interrupts are disabled,
  2407. * we do not want to preempt the current task. Just return..
  2408. */
  2409. if (likely(!preemptible()))
  2410. return;
  2411. do {
  2412. __preempt_count_add(PREEMPT_ACTIVE);
  2413. __schedule();
  2414. __preempt_count_sub(PREEMPT_ACTIVE);
  2415. /*
  2416. * Check again in case we missed a preemption opportunity
  2417. * between schedule and now.
  2418. */
  2419. barrier();
  2420. } while (need_resched());
  2421. }
  2422. EXPORT_SYMBOL(preempt_schedule);
  2423. #endif /* CONFIG_PREEMPT */
  2424. /*
  2425. * this is the entry point to schedule() from kernel preemption
  2426. * off of irq context.
  2427. * Note, that this is called and return with irqs disabled. This will
  2428. * protect us against recursive calling from irq.
  2429. */
  2430. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2431. {
  2432. enum ctx_state prev_state;
  2433. /* Catch callers which need to be fixed */
  2434. BUG_ON(preempt_count() || !irqs_disabled());
  2435. prev_state = exception_enter();
  2436. do {
  2437. __preempt_count_add(PREEMPT_ACTIVE);
  2438. local_irq_enable();
  2439. __schedule();
  2440. local_irq_disable();
  2441. __preempt_count_sub(PREEMPT_ACTIVE);
  2442. /*
  2443. * Check again in case we missed a preemption opportunity
  2444. * between schedule and now.
  2445. */
  2446. barrier();
  2447. } while (need_resched());
  2448. exception_exit(prev_state);
  2449. }
  2450. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2451. void *key)
  2452. {
  2453. return try_to_wake_up(curr->private, mode, wake_flags);
  2454. }
  2455. EXPORT_SYMBOL(default_wake_function);
  2456. #ifdef CONFIG_RT_MUTEXES
  2457. /*
  2458. * rt_mutex_setprio - set the current priority of a task
  2459. * @p: task
  2460. * @prio: prio value (kernel-internal form)
  2461. *
  2462. * This function changes the 'effective' priority of a task. It does
  2463. * not touch ->normal_prio like __setscheduler().
  2464. *
  2465. * Used by the rt_mutex code to implement priority inheritance
  2466. * logic. Call site only calls if the priority of the task changed.
  2467. */
  2468. void rt_mutex_setprio(struct task_struct *p, int prio)
  2469. {
  2470. int oldprio, on_rq, running, enqueue_flag = 0;
  2471. struct rq *rq;
  2472. const struct sched_class *prev_class;
  2473. BUG_ON(prio > MAX_PRIO);
  2474. rq = __task_rq_lock(p);
  2475. /*
  2476. * Idle task boosting is a nono in general. There is one
  2477. * exception, when PREEMPT_RT and NOHZ is active:
  2478. *
  2479. * The idle task calls get_next_timer_interrupt() and holds
  2480. * the timer wheel base->lock on the CPU and another CPU wants
  2481. * to access the timer (probably to cancel it). We can safely
  2482. * ignore the boosting request, as the idle CPU runs this code
  2483. * with interrupts disabled and will complete the lock
  2484. * protected section without being interrupted. So there is no
  2485. * real need to boost.
  2486. */
  2487. if (unlikely(p == rq->idle)) {
  2488. WARN_ON(p != rq->curr);
  2489. WARN_ON(p->pi_blocked_on);
  2490. goto out_unlock;
  2491. }
  2492. trace_sched_pi_setprio(p, prio);
  2493. p->pi_top_task = rt_mutex_get_top_task(p);
  2494. oldprio = p->prio;
  2495. prev_class = p->sched_class;
  2496. on_rq = p->on_rq;
  2497. running = task_current(rq, p);
  2498. if (on_rq)
  2499. dequeue_task(rq, p, 0);
  2500. if (running)
  2501. p->sched_class->put_prev_task(rq, p);
  2502. /*
  2503. * Boosting condition are:
  2504. * 1. -rt task is running and holds mutex A
  2505. * --> -dl task blocks on mutex A
  2506. *
  2507. * 2. -dl task is running and holds mutex A
  2508. * --> -dl task blocks on mutex A and could preempt the
  2509. * running task
  2510. */
  2511. if (dl_prio(prio)) {
  2512. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2513. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2514. p->dl.dl_boosted = 1;
  2515. p->dl.dl_throttled = 0;
  2516. enqueue_flag = ENQUEUE_REPLENISH;
  2517. } else
  2518. p->dl.dl_boosted = 0;
  2519. p->sched_class = &dl_sched_class;
  2520. } else if (rt_prio(prio)) {
  2521. if (dl_prio(oldprio))
  2522. p->dl.dl_boosted = 0;
  2523. if (oldprio < prio)
  2524. enqueue_flag = ENQUEUE_HEAD;
  2525. p->sched_class = &rt_sched_class;
  2526. } else {
  2527. if (dl_prio(oldprio))
  2528. p->dl.dl_boosted = 0;
  2529. p->sched_class = &fair_sched_class;
  2530. }
  2531. p->prio = prio;
  2532. if (running)
  2533. p->sched_class->set_curr_task(rq);
  2534. if (on_rq)
  2535. enqueue_task(rq, p, enqueue_flag);
  2536. check_class_changed(rq, p, prev_class, oldprio);
  2537. out_unlock:
  2538. __task_rq_unlock(rq);
  2539. }
  2540. #endif
  2541. void set_user_nice(struct task_struct *p, long nice)
  2542. {
  2543. int old_prio, delta, on_rq;
  2544. unsigned long flags;
  2545. struct rq *rq;
  2546. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2547. return;
  2548. /*
  2549. * We have to be careful, if called from sys_setpriority(),
  2550. * the task might be in the middle of scheduling on another CPU.
  2551. */
  2552. rq = task_rq_lock(p, &flags);
  2553. /*
  2554. * The RT priorities are set via sched_setscheduler(), but we still
  2555. * allow the 'normal' nice value to be set - but as expected
  2556. * it wont have any effect on scheduling until the task is
  2557. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2558. */
  2559. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2560. p->static_prio = NICE_TO_PRIO(nice);
  2561. goto out_unlock;
  2562. }
  2563. on_rq = p->on_rq;
  2564. if (on_rq)
  2565. dequeue_task(rq, p, 0);
  2566. p->static_prio = NICE_TO_PRIO(nice);
  2567. set_load_weight(p);
  2568. old_prio = p->prio;
  2569. p->prio = effective_prio(p);
  2570. delta = p->prio - old_prio;
  2571. if (on_rq) {
  2572. enqueue_task(rq, p, 0);
  2573. /*
  2574. * If the task increased its priority or is running and
  2575. * lowered its priority, then reschedule its CPU:
  2576. */
  2577. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2578. resched_task(rq->curr);
  2579. }
  2580. out_unlock:
  2581. task_rq_unlock(rq, p, &flags);
  2582. }
  2583. EXPORT_SYMBOL(set_user_nice);
  2584. /*
  2585. * can_nice - check if a task can reduce its nice value
  2586. * @p: task
  2587. * @nice: nice value
  2588. */
  2589. int can_nice(const struct task_struct *p, const int nice)
  2590. {
  2591. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2592. int nice_rlim = nice_to_rlimit(nice);
  2593. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2594. capable(CAP_SYS_NICE));
  2595. }
  2596. #ifdef __ARCH_WANT_SYS_NICE
  2597. /*
  2598. * sys_nice - change the priority of the current process.
  2599. * @increment: priority increment
  2600. *
  2601. * sys_setpriority is a more generic, but much slower function that
  2602. * does similar things.
  2603. */
  2604. SYSCALL_DEFINE1(nice, int, increment)
  2605. {
  2606. long nice, retval;
  2607. /*
  2608. * Setpriority might change our priority at the same moment.
  2609. * We don't have to worry. Conceptually one call occurs first
  2610. * and we have a single winner.
  2611. */
  2612. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2613. nice = task_nice(current) + increment;
  2614. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2615. if (increment < 0 && !can_nice(current, nice))
  2616. return -EPERM;
  2617. retval = security_task_setnice(current, nice);
  2618. if (retval)
  2619. return retval;
  2620. set_user_nice(current, nice);
  2621. return 0;
  2622. }
  2623. #endif
  2624. /**
  2625. * task_prio - return the priority value of a given task.
  2626. * @p: the task in question.
  2627. *
  2628. * Return: The priority value as seen by users in /proc.
  2629. * RT tasks are offset by -200. Normal tasks are centered
  2630. * around 0, value goes from -16 to +15.
  2631. */
  2632. int task_prio(const struct task_struct *p)
  2633. {
  2634. return p->prio - MAX_RT_PRIO;
  2635. }
  2636. /**
  2637. * idle_cpu - is a given cpu idle currently?
  2638. * @cpu: the processor in question.
  2639. *
  2640. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2641. */
  2642. int idle_cpu(int cpu)
  2643. {
  2644. struct rq *rq = cpu_rq(cpu);
  2645. if (rq->curr != rq->idle)
  2646. return 0;
  2647. if (rq->nr_running)
  2648. return 0;
  2649. #ifdef CONFIG_SMP
  2650. if (!llist_empty(&rq->wake_list))
  2651. return 0;
  2652. #endif
  2653. return 1;
  2654. }
  2655. /**
  2656. * idle_task - return the idle task for a given cpu.
  2657. * @cpu: the processor in question.
  2658. *
  2659. * Return: The idle task for the cpu @cpu.
  2660. */
  2661. struct task_struct *idle_task(int cpu)
  2662. {
  2663. return cpu_rq(cpu)->idle;
  2664. }
  2665. /**
  2666. * find_process_by_pid - find a process with a matching PID value.
  2667. * @pid: the pid in question.
  2668. *
  2669. * The task of @pid, if found. %NULL otherwise.
  2670. */
  2671. static struct task_struct *find_process_by_pid(pid_t pid)
  2672. {
  2673. return pid ? find_task_by_vpid(pid) : current;
  2674. }
  2675. /*
  2676. * This function initializes the sched_dl_entity of a newly becoming
  2677. * SCHED_DEADLINE task.
  2678. *
  2679. * Only the static values are considered here, the actual runtime and the
  2680. * absolute deadline will be properly calculated when the task is enqueued
  2681. * for the first time with its new policy.
  2682. */
  2683. static void
  2684. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2685. {
  2686. struct sched_dl_entity *dl_se = &p->dl;
  2687. init_dl_task_timer(dl_se);
  2688. dl_se->dl_runtime = attr->sched_runtime;
  2689. dl_se->dl_deadline = attr->sched_deadline;
  2690. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2691. dl_se->flags = attr->sched_flags;
  2692. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2693. dl_se->dl_throttled = 0;
  2694. dl_se->dl_new = 1;
  2695. dl_se->dl_yielded = 0;
  2696. }
  2697. static void __setscheduler_params(struct task_struct *p,
  2698. const struct sched_attr *attr)
  2699. {
  2700. int policy = attr->sched_policy;
  2701. if (policy == -1) /* setparam */
  2702. policy = p->policy;
  2703. p->policy = policy;
  2704. if (dl_policy(policy))
  2705. __setparam_dl(p, attr);
  2706. else if (fair_policy(policy))
  2707. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2708. /*
  2709. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2710. * !rt_policy. Always setting this ensures that things like
  2711. * getparam()/getattr() don't report silly values for !rt tasks.
  2712. */
  2713. p->rt_priority = attr->sched_priority;
  2714. p->normal_prio = normal_prio(p);
  2715. set_load_weight(p);
  2716. }
  2717. /* Actually do priority change: must hold pi & rq lock. */
  2718. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2719. const struct sched_attr *attr)
  2720. {
  2721. __setscheduler_params(p, attr);
  2722. /*
  2723. * If we get here, there was no pi waiters boosting the
  2724. * task. It is safe to use the normal prio.
  2725. */
  2726. p->prio = normal_prio(p);
  2727. if (dl_prio(p->prio))
  2728. p->sched_class = &dl_sched_class;
  2729. else if (rt_prio(p->prio))
  2730. p->sched_class = &rt_sched_class;
  2731. else
  2732. p->sched_class = &fair_sched_class;
  2733. }
  2734. static void
  2735. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2736. {
  2737. struct sched_dl_entity *dl_se = &p->dl;
  2738. attr->sched_priority = p->rt_priority;
  2739. attr->sched_runtime = dl_se->dl_runtime;
  2740. attr->sched_deadline = dl_se->dl_deadline;
  2741. attr->sched_period = dl_se->dl_period;
  2742. attr->sched_flags = dl_se->flags;
  2743. }
  2744. /*
  2745. * This function validates the new parameters of a -deadline task.
  2746. * We ask for the deadline not being zero, and greater or equal
  2747. * than the runtime, as well as the period of being zero or
  2748. * greater than deadline. Furthermore, we have to be sure that
  2749. * user parameters are above the internal resolution of 1us (we
  2750. * check sched_runtime only since it is always the smaller one) and
  2751. * below 2^63 ns (we have to check both sched_deadline and
  2752. * sched_period, as the latter can be zero).
  2753. */
  2754. static bool
  2755. __checkparam_dl(const struct sched_attr *attr)
  2756. {
  2757. /* deadline != 0 */
  2758. if (attr->sched_deadline == 0)
  2759. return false;
  2760. /*
  2761. * Since we truncate DL_SCALE bits, make sure we're at least
  2762. * that big.
  2763. */
  2764. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2765. return false;
  2766. /*
  2767. * Since we use the MSB for wrap-around and sign issues, make
  2768. * sure it's not set (mind that period can be equal to zero).
  2769. */
  2770. if (attr->sched_deadline & (1ULL << 63) ||
  2771. attr->sched_period & (1ULL << 63))
  2772. return false;
  2773. /* runtime <= deadline <= period (if period != 0) */
  2774. if ((attr->sched_period != 0 &&
  2775. attr->sched_period < attr->sched_deadline) ||
  2776. attr->sched_deadline < attr->sched_runtime)
  2777. return false;
  2778. return true;
  2779. }
  2780. /*
  2781. * check the target process has a UID that matches the current process's
  2782. */
  2783. static bool check_same_owner(struct task_struct *p)
  2784. {
  2785. const struct cred *cred = current_cred(), *pcred;
  2786. bool match;
  2787. rcu_read_lock();
  2788. pcred = __task_cred(p);
  2789. match = (uid_eq(cred->euid, pcred->euid) ||
  2790. uid_eq(cred->euid, pcred->uid));
  2791. rcu_read_unlock();
  2792. return match;
  2793. }
  2794. static int __sched_setscheduler(struct task_struct *p,
  2795. const struct sched_attr *attr,
  2796. bool user)
  2797. {
  2798. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2799. MAX_RT_PRIO - 1 - attr->sched_priority;
  2800. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2801. int policy = attr->sched_policy;
  2802. unsigned long flags;
  2803. const struct sched_class *prev_class;
  2804. struct rq *rq;
  2805. int reset_on_fork;
  2806. /* may grab non-irq protected spin_locks */
  2807. BUG_ON(in_interrupt());
  2808. recheck:
  2809. /* double check policy once rq lock held */
  2810. if (policy < 0) {
  2811. reset_on_fork = p->sched_reset_on_fork;
  2812. policy = oldpolicy = p->policy;
  2813. } else {
  2814. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2815. if (policy != SCHED_DEADLINE &&
  2816. policy != SCHED_FIFO && policy != SCHED_RR &&
  2817. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2818. policy != SCHED_IDLE)
  2819. return -EINVAL;
  2820. }
  2821. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2822. return -EINVAL;
  2823. /*
  2824. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2825. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2826. * SCHED_BATCH and SCHED_IDLE is 0.
  2827. */
  2828. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2829. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2830. return -EINVAL;
  2831. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2832. (rt_policy(policy) != (attr->sched_priority != 0)))
  2833. return -EINVAL;
  2834. /*
  2835. * Allow unprivileged RT tasks to decrease priority:
  2836. */
  2837. if (user && !capable(CAP_SYS_NICE)) {
  2838. if (fair_policy(policy)) {
  2839. if (attr->sched_nice < task_nice(p) &&
  2840. !can_nice(p, attr->sched_nice))
  2841. return -EPERM;
  2842. }
  2843. if (rt_policy(policy)) {
  2844. unsigned long rlim_rtprio =
  2845. task_rlimit(p, RLIMIT_RTPRIO);
  2846. /* can't set/change the rt policy */
  2847. if (policy != p->policy && !rlim_rtprio)
  2848. return -EPERM;
  2849. /* can't increase priority */
  2850. if (attr->sched_priority > p->rt_priority &&
  2851. attr->sched_priority > rlim_rtprio)
  2852. return -EPERM;
  2853. }
  2854. /*
  2855. * Can't set/change SCHED_DEADLINE policy at all for now
  2856. * (safest behavior); in the future we would like to allow
  2857. * unprivileged DL tasks to increase their relative deadline
  2858. * or reduce their runtime (both ways reducing utilization)
  2859. */
  2860. if (dl_policy(policy))
  2861. return -EPERM;
  2862. /*
  2863. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2864. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2865. */
  2866. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2867. if (!can_nice(p, task_nice(p)))
  2868. return -EPERM;
  2869. }
  2870. /* can't change other user's priorities */
  2871. if (!check_same_owner(p))
  2872. return -EPERM;
  2873. /* Normal users shall not reset the sched_reset_on_fork flag */
  2874. if (p->sched_reset_on_fork && !reset_on_fork)
  2875. return -EPERM;
  2876. }
  2877. if (user) {
  2878. retval = security_task_setscheduler(p);
  2879. if (retval)
  2880. return retval;
  2881. }
  2882. /*
  2883. * make sure no PI-waiters arrive (or leave) while we are
  2884. * changing the priority of the task:
  2885. *
  2886. * To be able to change p->policy safely, the appropriate
  2887. * runqueue lock must be held.
  2888. */
  2889. rq = task_rq_lock(p, &flags);
  2890. /*
  2891. * Changing the policy of the stop threads its a very bad idea
  2892. */
  2893. if (p == rq->stop) {
  2894. task_rq_unlock(rq, p, &flags);
  2895. return -EINVAL;
  2896. }
  2897. /*
  2898. * If not changing anything there's no need to proceed further,
  2899. * but store a possible modification of reset_on_fork.
  2900. */
  2901. if (unlikely(policy == p->policy)) {
  2902. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2903. goto change;
  2904. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2905. goto change;
  2906. if (dl_policy(policy))
  2907. goto change;
  2908. p->sched_reset_on_fork = reset_on_fork;
  2909. task_rq_unlock(rq, p, &flags);
  2910. return 0;
  2911. }
  2912. change:
  2913. if (user) {
  2914. #ifdef CONFIG_RT_GROUP_SCHED
  2915. /*
  2916. * Do not allow realtime tasks into groups that have no runtime
  2917. * assigned.
  2918. */
  2919. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2920. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2921. !task_group_is_autogroup(task_group(p))) {
  2922. task_rq_unlock(rq, p, &flags);
  2923. return -EPERM;
  2924. }
  2925. #endif
  2926. #ifdef CONFIG_SMP
  2927. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2928. cpumask_t *span = rq->rd->span;
  2929. /*
  2930. * Don't allow tasks with an affinity mask smaller than
  2931. * the entire root_domain to become SCHED_DEADLINE. We
  2932. * will also fail if there's no bandwidth available.
  2933. */
  2934. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2935. rq->rd->dl_bw.bw == 0) {
  2936. task_rq_unlock(rq, p, &flags);
  2937. return -EPERM;
  2938. }
  2939. }
  2940. #endif
  2941. }
  2942. /* recheck policy now with rq lock held */
  2943. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2944. policy = oldpolicy = -1;
  2945. task_rq_unlock(rq, p, &flags);
  2946. goto recheck;
  2947. }
  2948. /*
  2949. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2950. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2951. * is available.
  2952. */
  2953. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2954. task_rq_unlock(rq, p, &flags);
  2955. return -EBUSY;
  2956. }
  2957. p->sched_reset_on_fork = reset_on_fork;
  2958. oldprio = p->prio;
  2959. /*
  2960. * Special case for priority boosted tasks.
  2961. *
  2962. * If the new priority is lower or equal (user space view)
  2963. * than the current (boosted) priority, we just store the new
  2964. * normal parameters and do not touch the scheduler class and
  2965. * the runqueue. This will be done when the task deboost
  2966. * itself.
  2967. */
  2968. if (rt_mutex_check_prio(p, newprio)) {
  2969. __setscheduler_params(p, attr);
  2970. task_rq_unlock(rq, p, &flags);
  2971. return 0;
  2972. }
  2973. on_rq = p->on_rq;
  2974. running = task_current(rq, p);
  2975. if (on_rq)
  2976. dequeue_task(rq, p, 0);
  2977. if (running)
  2978. p->sched_class->put_prev_task(rq, p);
  2979. prev_class = p->sched_class;
  2980. __setscheduler(rq, p, attr);
  2981. if (running)
  2982. p->sched_class->set_curr_task(rq);
  2983. if (on_rq) {
  2984. /*
  2985. * We enqueue to tail when the priority of a task is
  2986. * increased (user space view).
  2987. */
  2988. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  2989. }
  2990. check_class_changed(rq, p, prev_class, oldprio);
  2991. task_rq_unlock(rq, p, &flags);
  2992. rt_mutex_adjust_pi(p);
  2993. return 0;
  2994. }
  2995. static int _sched_setscheduler(struct task_struct *p, int policy,
  2996. const struct sched_param *param, bool check)
  2997. {
  2998. struct sched_attr attr = {
  2999. .sched_policy = policy,
  3000. .sched_priority = param->sched_priority,
  3001. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3002. };
  3003. /*
  3004. * Fixup the legacy SCHED_RESET_ON_FORK hack
  3005. */
  3006. if (policy & SCHED_RESET_ON_FORK) {
  3007. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3008. policy &= ~SCHED_RESET_ON_FORK;
  3009. attr.sched_policy = policy;
  3010. }
  3011. return __sched_setscheduler(p, &attr, check);
  3012. }
  3013. /**
  3014. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3015. * @p: the task in question.
  3016. * @policy: new policy.
  3017. * @param: structure containing the new RT priority.
  3018. *
  3019. * Return: 0 on success. An error code otherwise.
  3020. *
  3021. * NOTE that the task may be already dead.
  3022. */
  3023. int sched_setscheduler(struct task_struct *p, int policy,
  3024. const struct sched_param *param)
  3025. {
  3026. return _sched_setscheduler(p, policy, param, true);
  3027. }
  3028. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3029. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3030. {
  3031. return __sched_setscheduler(p, attr, true);
  3032. }
  3033. EXPORT_SYMBOL_GPL(sched_setattr);
  3034. /**
  3035. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3036. * @p: the task in question.
  3037. * @policy: new policy.
  3038. * @param: structure containing the new RT priority.
  3039. *
  3040. * Just like sched_setscheduler, only don't bother checking if the
  3041. * current context has permission. For example, this is needed in
  3042. * stop_machine(): we create temporary high priority worker threads,
  3043. * but our caller might not have that capability.
  3044. *
  3045. * Return: 0 on success. An error code otherwise.
  3046. */
  3047. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3048. const struct sched_param *param)
  3049. {
  3050. return _sched_setscheduler(p, policy, param, false);
  3051. }
  3052. static int
  3053. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3054. {
  3055. struct sched_param lparam;
  3056. struct task_struct *p;
  3057. int retval;
  3058. if (!param || pid < 0)
  3059. return -EINVAL;
  3060. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3061. return -EFAULT;
  3062. rcu_read_lock();
  3063. retval = -ESRCH;
  3064. p = find_process_by_pid(pid);
  3065. if (p != NULL)
  3066. retval = sched_setscheduler(p, policy, &lparam);
  3067. rcu_read_unlock();
  3068. return retval;
  3069. }
  3070. /*
  3071. * Mimics kernel/events/core.c perf_copy_attr().
  3072. */
  3073. static int sched_copy_attr(struct sched_attr __user *uattr,
  3074. struct sched_attr *attr)
  3075. {
  3076. u32 size;
  3077. int ret;
  3078. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3079. return -EFAULT;
  3080. /*
  3081. * zero the full structure, so that a short copy will be nice.
  3082. */
  3083. memset(attr, 0, sizeof(*attr));
  3084. ret = get_user(size, &uattr->size);
  3085. if (ret)
  3086. return ret;
  3087. if (size > PAGE_SIZE) /* silly large */
  3088. goto err_size;
  3089. if (!size) /* abi compat */
  3090. size = SCHED_ATTR_SIZE_VER0;
  3091. if (size < SCHED_ATTR_SIZE_VER0)
  3092. goto err_size;
  3093. /*
  3094. * If we're handed a bigger struct than we know of,
  3095. * ensure all the unknown bits are 0 - i.e. new
  3096. * user-space does not rely on any kernel feature
  3097. * extensions we dont know about yet.
  3098. */
  3099. if (size > sizeof(*attr)) {
  3100. unsigned char __user *addr;
  3101. unsigned char __user *end;
  3102. unsigned char val;
  3103. addr = (void __user *)uattr + sizeof(*attr);
  3104. end = (void __user *)uattr + size;
  3105. for (; addr < end; addr++) {
  3106. ret = get_user(val, addr);
  3107. if (ret)
  3108. return ret;
  3109. if (val)
  3110. goto err_size;
  3111. }
  3112. size = sizeof(*attr);
  3113. }
  3114. ret = copy_from_user(attr, uattr, size);
  3115. if (ret)
  3116. return -EFAULT;
  3117. /*
  3118. * XXX: do we want to be lenient like existing syscalls; or do we want
  3119. * to be strict and return an error on out-of-bounds values?
  3120. */
  3121. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3122. return 0;
  3123. err_size:
  3124. put_user(sizeof(*attr), &uattr->size);
  3125. return -E2BIG;
  3126. }
  3127. /**
  3128. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3129. * @pid: the pid in question.
  3130. * @policy: new policy.
  3131. * @param: structure containing the new RT priority.
  3132. *
  3133. * Return: 0 on success. An error code otherwise.
  3134. */
  3135. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3136. struct sched_param __user *, param)
  3137. {
  3138. /* negative values for policy are not valid */
  3139. if (policy < 0)
  3140. return -EINVAL;
  3141. return do_sched_setscheduler(pid, policy, param);
  3142. }
  3143. /**
  3144. * sys_sched_setparam - set/change the RT priority of a thread
  3145. * @pid: the pid in question.
  3146. * @param: structure containing the new RT priority.
  3147. *
  3148. * Return: 0 on success. An error code otherwise.
  3149. */
  3150. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3151. {
  3152. return do_sched_setscheduler(pid, -1, param);
  3153. }
  3154. /**
  3155. * sys_sched_setattr - same as above, but with extended sched_attr
  3156. * @pid: the pid in question.
  3157. * @uattr: structure containing the extended parameters.
  3158. * @flags: for future extension.
  3159. */
  3160. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3161. unsigned int, flags)
  3162. {
  3163. struct sched_attr attr;
  3164. struct task_struct *p;
  3165. int retval;
  3166. if (!uattr || pid < 0 || flags)
  3167. return -EINVAL;
  3168. retval = sched_copy_attr(uattr, &attr);
  3169. if (retval)
  3170. return retval;
  3171. if (attr.sched_policy < 0)
  3172. return -EINVAL;
  3173. rcu_read_lock();
  3174. retval = -ESRCH;
  3175. p = find_process_by_pid(pid);
  3176. if (p != NULL)
  3177. retval = sched_setattr(p, &attr);
  3178. rcu_read_unlock();
  3179. return retval;
  3180. }
  3181. /**
  3182. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3183. * @pid: the pid in question.
  3184. *
  3185. * Return: On success, the policy of the thread. Otherwise, a negative error
  3186. * code.
  3187. */
  3188. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3189. {
  3190. struct task_struct *p;
  3191. int retval;
  3192. if (pid < 0)
  3193. return -EINVAL;
  3194. retval = -ESRCH;
  3195. rcu_read_lock();
  3196. p = find_process_by_pid(pid);
  3197. if (p) {
  3198. retval = security_task_getscheduler(p);
  3199. if (!retval)
  3200. retval = p->policy
  3201. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3202. }
  3203. rcu_read_unlock();
  3204. return retval;
  3205. }
  3206. /**
  3207. * sys_sched_getparam - get the RT priority of a thread
  3208. * @pid: the pid in question.
  3209. * @param: structure containing the RT priority.
  3210. *
  3211. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3212. * code.
  3213. */
  3214. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3215. {
  3216. struct sched_param lp = { .sched_priority = 0 };
  3217. struct task_struct *p;
  3218. int retval;
  3219. if (!param || pid < 0)
  3220. return -EINVAL;
  3221. rcu_read_lock();
  3222. p = find_process_by_pid(pid);
  3223. retval = -ESRCH;
  3224. if (!p)
  3225. goto out_unlock;
  3226. retval = security_task_getscheduler(p);
  3227. if (retval)
  3228. goto out_unlock;
  3229. if (task_has_rt_policy(p))
  3230. lp.sched_priority = p->rt_priority;
  3231. rcu_read_unlock();
  3232. /*
  3233. * This one might sleep, we cannot do it with a spinlock held ...
  3234. */
  3235. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3236. return retval;
  3237. out_unlock:
  3238. rcu_read_unlock();
  3239. return retval;
  3240. }
  3241. static int sched_read_attr(struct sched_attr __user *uattr,
  3242. struct sched_attr *attr,
  3243. unsigned int usize)
  3244. {
  3245. int ret;
  3246. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3247. return -EFAULT;
  3248. /*
  3249. * If we're handed a smaller struct than we know of,
  3250. * ensure all the unknown bits are 0 - i.e. old
  3251. * user-space does not get uncomplete information.
  3252. */
  3253. if (usize < sizeof(*attr)) {
  3254. unsigned char *addr;
  3255. unsigned char *end;
  3256. addr = (void *)attr + usize;
  3257. end = (void *)attr + sizeof(*attr);
  3258. for (; addr < end; addr++) {
  3259. if (*addr)
  3260. return -EFBIG;
  3261. }
  3262. attr->size = usize;
  3263. }
  3264. ret = copy_to_user(uattr, attr, attr->size);
  3265. if (ret)
  3266. return -EFAULT;
  3267. return 0;
  3268. }
  3269. /**
  3270. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3271. * @pid: the pid in question.
  3272. * @uattr: structure containing the extended parameters.
  3273. * @size: sizeof(attr) for fwd/bwd comp.
  3274. * @flags: for future extension.
  3275. */
  3276. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3277. unsigned int, size, unsigned int, flags)
  3278. {
  3279. struct sched_attr attr = {
  3280. .size = sizeof(struct sched_attr),
  3281. };
  3282. struct task_struct *p;
  3283. int retval;
  3284. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3285. size < SCHED_ATTR_SIZE_VER0 || flags)
  3286. return -EINVAL;
  3287. rcu_read_lock();
  3288. p = find_process_by_pid(pid);
  3289. retval = -ESRCH;
  3290. if (!p)
  3291. goto out_unlock;
  3292. retval = security_task_getscheduler(p);
  3293. if (retval)
  3294. goto out_unlock;
  3295. attr.sched_policy = p->policy;
  3296. if (p->sched_reset_on_fork)
  3297. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3298. if (task_has_dl_policy(p))
  3299. __getparam_dl(p, &attr);
  3300. else if (task_has_rt_policy(p))
  3301. attr.sched_priority = p->rt_priority;
  3302. else
  3303. attr.sched_nice = task_nice(p);
  3304. rcu_read_unlock();
  3305. retval = sched_read_attr(uattr, &attr, size);
  3306. return retval;
  3307. out_unlock:
  3308. rcu_read_unlock();
  3309. return retval;
  3310. }
  3311. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3312. {
  3313. cpumask_var_t cpus_allowed, new_mask;
  3314. struct task_struct *p;
  3315. int retval;
  3316. rcu_read_lock();
  3317. p = find_process_by_pid(pid);
  3318. if (!p) {
  3319. rcu_read_unlock();
  3320. return -ESRCH;
  3321. }
  3322. /* Prevent p going away */
  3323. get_task_struct(p);
  3324. rcu_read_unlock();
  3325. if (p->flags & PF_NO_SETAFFINITY) {
  3326. retval = -EINVAL;
  3327. goto out_put_task;
  3328. }
  3329. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3330. retval = -ENOMEM;
  3331. goto out_put_task;
  3332. }
  3333. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3334. retval = -ENOMEM;
  3335. goto out_free_cpus_allowed;
  3336. }
  3337. retval = -EPERM;
  3338. if (!check_same_owner(p)) {
  3339. rcu_read_lock();
  3340. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3341. rcu_read_unlock();
  3342. goto out_unlock;
  3343. }
  3344. rcu_read_unlock();
  3345. }
  3346. retval = security_task_setscheduler(p);
  3347. if (retval)
  3348. goto out_unlock;
  3349. cpuset_cpus_allowed(p, cpus_allowed);
  3350. cpumask_and(new_mask, in_mask, cpus_allowed);
  3351. /*
  3352. * Since bandwidth control happens on root_domain basis,
  3353. * if admission test is enabled, we only admit -deadline
  3354. * tasks allowed to run on all the CPUs in the task's
  3355. * root_domain.
  3356. */
  3357. #ifdef CONFIG_SMP
  3358. if (task_has_dl_policy(p)) {
  3359. const struct cpumask *span = task_rq(p)->rd->span;
  3360. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3361. retval = -EBUSY;
  3362. goto out_unlock;
  3363. }
  3364. }
  3365. #endif
  3366. again:
  3367. retval = set_cpus_allowed_ptr(p, new_mask);
  3368. if (!retval) {
  3369. cpuset_cpus_allowed(p, cpus_allowed);
  3370. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3371. /*
  3372. * We must have raced with a concurrent cpuset
  3373. * update. Just reset the cpus_allowed to the
  3374. * cpuset's cpus_allowed
  3375. */
  3376. cpumask_copy(new_mask, cpus_allowed);
  3377. goto again;
  3378. }
  3379. }
  3380. out_unlock:
  3381. free_cpumask_var(new_mask);
  3382. out_free_cpus_allowed:
  3383. free_cpumask_var(cpus_allowed);
  3384. out_put_task:
  3385. put_task_struct(p);
  3386. return retval;
  3387. }
  3388. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3389. struct cpumask *new_mask)
  3390. {
  3391. if (len < cpumask_size())
  3392. cpumask_clear(new_mask);
  3393. else if (len > cpumask_size())
  3394. len = cpumask_size();
  3395. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3396. }
  3397. /**
  3398. * sys_sched_setaffinity - set the cpu affinity of a process
  3399. * @pid: pid of the process
  3400. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3401. * @user_mask_ptr: user-space pointer to the new cpu mask
  3402. *
  3403. * Return: 0 on success. An error code otherwise.
  3404. */
  3405. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3406. unsigned long __user *, user_mask_ptr)
  3407. {
  3408. cpumask_var_t new_mask;
  3409. int retval;
  3410. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3411. return -ENOMEM;
  3412. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3413. if (retval == 0)
  3414. retval = sched_setaffinity(pid, new_mask);
  3415. free_cpumask_var(new_mask);
  3416. return retval;
  3417. }
  3418. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3419. {
  3420. struct task_struct *p;
  3421. unsigned long flags;
  3422. int retval;
  3423. rcu_read_lock();
  3424. retval = -ESRCH;
  3425. p = find_process_by_pid(pid);
  3426. if (!p)
  3427. goto out_unlock;
  3428. retval = security_task_getscheduler(p);
  3429. if (retval)
  3430. goto out_unlock;
  3431. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3432. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3433. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3434. out_unlock:
  3435. rcu_read_unlock();
  3436. return retval;
  3437. }
  3438. /**
  3439. * sys_sched_getaffinity - get the cpu affinity of a process
  3440. * @pid: pid of the process
  3441. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3442. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3443. *
  3444. * Return: 0 on success. An error code otherwise.
  3445. */
  3446. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3447. unsigned long __user *, user_mask_ptr)
  3448. {
  3449. int ret;
  3450. cpumask_var_t mask;
  3451. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3452. return -EINVAL;
  3453. if (len & (sizeof(unsigned long)-1))
  3454. return -EINVAL;
  3455. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3456. return -ENOMEM;
  3457. ret = sched_getaffinity(pid, mask);
  3458. if (ret == 0) {
  3459. size_t retlen = min_t(size_t, len, cpumask_size());
  3460. if (copy_to_user(user_mask_ptr, mask, retlen))
  3461. ret = -EFAULT;
  3462. else
  3463. ret = retlen;
  3464. }
  3465. free_cpumask_var(mask);
  3466. return ret;
  3467. }
  3468. /**
  3469. * sys_sched_yield - yield the current processor to other threads.
  3470. *
  3471. * This function yields the current CPU to other tasks. If there are no
  3472. * other threads running on this CPU then this function will return.
  3473. *
  3474. * Return: 0.
  3475. */
  3476. SYSCALL_DEFINE0(sched_yield)
  3477. {
  3478. struct rq *rq = this_rq_lock();
  3479. schedstat_inc(rq, yld_count);
  3480. current->sched_class->yield_task(rq);
  3481. /*
  3482. * Since we are going to call schedule() anyway, there's
  3483. * no need to preempt or enable interrupts:
  3484. */
  3485. __release(rq->lock);
  3486. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3487. do_raw_spin_unlock(&rq->lock);
  3488. sched_preempt_enable_no_resched();
  3489. schedule();
  3490. return 0;
  3491. }
  3492. static void __cond_resched(void)
  3493. {
  3494. __preempt_count_add(PREEMPT_ACTIVE);
  3495. __schedule();
  3496. __preempt_count_sub(PREEMPT_ACTIVE);
  3497. }
  3498. int __sched _cond_resched(void)
  3499. {
  3500. if (should_resched()) {
  3501. __cond_resched();
  3502. return 1;
  3503. }
  3504. return 0;
  3505. }
  3506. EXPORT_SYMBOL(_cond_resched);
  3507. /*
  3508. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3509. * call schedule, and on return reacquire the lock.
  3510. *
  3511. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3512. * operations here to prevent schedule() from being called twice (once via
  3513. * spin_unlock(), once by hand).
  3514. */
  3515. int __cond_resched_lock(spinlock_t *lock)
  3516. {
  3517. int resched = should_resched();
  3518. int ret = 0;
  3519. lockdep_assert_held(lock);
  3520. if (spin_needbreak(lock) || resched) {
  3521. spin_unlock(lock);
  3522. if (resched)
  3523. __cond_resched();
  3524. else
  3525. cpu_relax();
  3526. ret = 1;
  3527. spin_lock(lock);
  3528. }
  3529. return ret;
  3530. }
  3531. EXPORT_SYMBOL(__cond_resched_lock);
  3532. int __sched __cond_resched_softirq(void)
  3533. {
  3534. BUG_ON(!in_softirq());
  3535. if (should_resched()) {
  3536. local_bh_enable();
  3537. __cond_resched();
  3538. local_bh_disable();
  3539. return 1;
  3540. }
  3541. return 0;
  3542. }
  3543. EXPORT_SYMBOL(__cond_resched_softirq);
  3544. /**
  3545. * yield - yield the current processor to other threads.
  3546. *
  3547. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3548. *
  3549. * The scheduler is at all times free to pick the calling task as the most
  3550. * eligible task to run, if removing the yield() call from your code breaks
  3551. * it, its already broken.
  3552. *
  3553. * Typical broken usage is:
  3554. *
  3555. * while (!event)
  3556. * yield();
  3557. *
  3558. * where one assumes that yield() will let 'the other' process run that will
  3559. * make event true. If the current task is a SCHED_FIFO task that will never
  3560. * happen. Never use yield() as a progress guarantee!!
  3561. *
  3562. * If you want to use yield() to wait for something, use wait_event().
  3563. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3564. * If you still want to use yield(), do not!
  3565. */
  3566. void __sched yield(void)
  3567. {
  3568. set_current_state(TASK_RUNNING);
  3569. sys_sched_yield();
  3570. }
  3571. EXPORT_SYMBOL(yield);
  3572. /**
  3573. * yield_to - yield the current processor to another thread in
  3574. * your thread group, or accelerate that thread toward the
  3575. * processor it's on.
  3576. * @p: target task
  3577. * @preempt: whether task preemption is allowed or not
  3578. *
  3579. * It's the caller's job to ensure that the target task struct
  3580. * can't go away on us before we can do any checks.
  3581. *
  3582. * Return:
  3583. * true (>0) if we indeed boosted the target task.
  3584. * false (0) if we failed to boost the target.
  3585. * -ESRCH if there's no task to yield to.
  3586. */
  3587. int __sched yield_to(struct task_struct *p, bool preempt)
  3588. {
  3589. struct task_struct *curr = current;
  3590. struct rq *rq, *p_rq;
  3591. unsigned long flags;
  3592. int yielded = 0;
  3593. local_irq_save(flags);
  3594. rq = this_rq();
  3595. again:
  3596. p_rq = task_rq(p);
  3597. /*
  3598. * If we're the only runnable task on the rq and target rq also
  3599. * has only one task, there's absolutely no point in yielding.
  3600. */
  3601. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3602. yielded = -ESRCH;
  3603. goto out_irq;
  3604. }
  3605. double_rq_lock(rq, p_rq);
  3606. if (task_rq(p) != p_rq) {
  3607. double_rq_unlock(rq, p_rq);
  3608. goto again;
  3609. }
  3610. if (!curr->sched_class->yield_to_task)
  3611. goto out_unlock;
  3612. if (curr->sched_class != p->sched_class)
  3613. goto out_unlock;
  3614. if (task_running(p_rq, p) || p->state)
  3615. goto out_unlock;
  3616. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3617. if (yielded) {
  3618. schedstat_inc(rq, yld_count);
  3619. /*
  3620. * Make p's CPU reschedule; pick_next_entity takes care of
  3621. * fairness.
  3622. */
  3623. if (preempt && rq != p_rq)
  3624. resched_task(p_rq->curr);
  3625. }
  3626. out_unlock:
  3627. double_rq_unlock(rq, p_rq);
  3628. out_irq:
  3629. local_irq_restore(flags);
  3630. if (yielded > 0)
  3631. schedule();
  3632. return yielded;
  3633. }
  3634. EXPORT_SYMBOL_GPL(yield_to);
  3635. /*
  3636. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3637. * that process accounting knows that this is a task in IO wait state.
  3638. */
  3639. void __sched io_schedule(void)
  3640. {
  3641. struct rq *rq = raw_rq();
  3642. delayacct_blkio_start();
  3643. atomic_inc(&rq->nr_iowait);
  3644. blk_flush_plug(current);
  3645. current->in_iowait = 1;
  3646. schedule();
  3647. current->in_iowait = 0;
  3648. atomic_dec(&rq->nr_iowait);
  3649. delayacct_blkio_end();
  3650. }
  3651. EXPORT_SYMBOL(io_schedule);
  3652. long __sched io_schedule_timeout(long timeout)
  3653. {
  3654. struct rq *rq = raw_rq();
  3655. long ret;
  3656. delayacct_blkio_start();
  3657. atomic_inc(&rq->nr_iowait);
  3658. blk_flush_plug(current);
  3659. current->in_iowait = 1;
  3660. ret = schedule_timeout(timeout);
  3661. current->in_iowait = 0;
  3662. atomic_dec(&rq->nr_iowait);
  3663. delayacct_blkio_end();
  3664. return ret;
  3665. }
  3666. /**
  3667. * sys_sched_get_priority_max - return maximum RT priority.
  3668. * @policy: scheduling class.
  3669. *
  3670. * Return: On success, this syscall returns the maximum
  3671. * rt_priority that can be used by a given scheduling class.
  3672. * On failure, a negative error code is returned.
  3673. */
  3674. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3675. {
  3676. int ret = -EINVAL;
  3677. switch (policy) {
  3678. case SCHED_FIFO:
  3679. case SCHED_RR:
  3680. ret = MAX_USER_RT_PRIO-1;
  3681. break;
  3682. case SCHED_DEADLINE:
  3683. case SCHED_NORMAL:
  3684. case SCHED_BATCH:
  3685. case SCHED_IDLE:
  3686. ret = 0;
  3687. break;
  3688. }
  3689. return ret;
  3690. }
  3691. /**
  3692. * sys_sched_get_priority_min - return minimum RT priority.
  3693. * @policy: scheduling class.
  3694. *
  3695. * Return: On success, this syscall returns the minimum
  3696. * rt_priority that can be used by a given scheduling class.
  3697. * On failure, a negative error code is returned.
  3698. */
  3699. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3700. {
  3701. int ret = -EINVAL;
  3702. switch (policy) {
  3703. case SCHED_FIFO:
  3704. case SCHED_RR:
  3705. ret = 1;
  3706. break;
  3707. case SCHED_DEADLINE:
  3708. case SCHED_NORMAL:
  3709. case SCHED_BATCH:
  3710. case SCHED_IDLE:
  3711. ret = 0;
  3712. }
  3713. return ret;
  3714. }
  3715. /**
  3716. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3717. * @pid: pid of the process.
  3718. * @interval: userspace pointer to the timeslice value.
  3719. *
  3720. * this syscall writes the default timeslice value of a given process
  3721. * into the user-space timespec buffer. A value of '0' means infinity.
  3722. *
  3723. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3724. * an error code.
  3725. */
  3726. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3727. struct timespec __user *, interval)
  3728. {
  3729. struct task_struct *p;
  3730. unsigned int time_slice;
  3731. unsigned long flags;
  3732. struct rq *rq;
  3733. int retval;
  3734. struct timespec t;
  3735. if (pid < 0)
  3736. return -EINVAL;
  3737. retval = -ESRCH;
  3738. rcu_read_lock();
  3739. p = find_process_by_pid(pid);
  3740. if (!p)
  3741. goto out_unlock;
  3742. retval = security_task_getscheduler(p);
  3743. if (retval)
  3744. goto out_unlock;
  3745. rq = task_rq_lock(p, &flags);
  3746. time_slice = 0;
  3747. if (p->sched_class->get_rr_interval)
  3748. time_slice = p->sched_class->get_rr_interval(rq, p);
  3749. task_rq_unlock(rq, p, &flags);
  3750. rcu_read_unlock();
  3751. jiffies_to_timespec(time_slice, &t);
  3752. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3753. return retval;
  3754. out_unlock:
  3755. rcu_read_unlock();
  3756. return retval;
  3757. }
  3758. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3759. void sched_show_task(struct task_struct *p)
  3760. {
  3761. unsigned long free = 0;
  3762. int ppid;
  3763. unsigned state;
  3764. state = p->state ? __ffs(p->state) + 1 : 0;
  3765. printk(KERN_INFO "%-15.15s %c", p->comm,
  3766. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3767. #if BITS_PER_LONG == 32
  3768. if (state == TASK_RUNNING)
  3769. printk(KERN_CONT " running ");
  3770. else
  3771. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3772. #else
  3773. if (state == TASK_RUNNING)
  3774. printk(KERN_CONT " running task ");
  3775. else
  3776. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3777. #endif
  3778. #ifdef CONFIG_DEBUG_STACK_USAGE
  3779. free = stack_not_used(p);
  3780. #endif
  3781. rcu_read_lock();
  3782. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3783. rcu_read_unlock();
  3784. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3785. task_pid_nr(p), ppid,
  3786. (unsigned long)task_thread_info(p)->flags);
  3787. print_worker_info(KERN_INFO, p);
  3788. show_stack(p, NULL);
  3789. }
  3790. void show_state_filter(unsigned long state_filter)
  3791. {
  3792. struct task_struct *g, *p;
  3793. #if BITS_PER_LONG == 32
  3794. printk(KERN_INFO
  3795. " task PC stack pid father\n");
  3796. #else
  3797. printk(KERN_INFO
  3798. " task PC stack pid father\n");
  3799. #endif
  3800. rcu_read_lock();
  3801. do_each_thread(g, p) {
  3802. /*
  3803. * reset the NMI-timeout, listing all files on a slow
  3804. * console might take a lot of time:
  3805. */
  3806. touch_nmi_watchdog();
  3807. if (!state_filter || (p->state & state_filter))
  3808. sched_show_task(p);
  3809. } while_each_thread(g, p);
  3810. touch_all_softlockup_watchdogs();
  3811. #ifdef CONFIG_SCHED_DEBUG
  3812. sysrq_sched_debug_show();
  3813. #endif
  3814. rcu_read_unlock();
  3815. /*
  3816. * Only show locks if all tasks are dumped:
  3817. */
  3818. if (!state_filter)
  3819. debug_show_all_locks();
  3820. }
  3821. void init_idle_bootup_task(struct task_struct *idle)
  3822. {
  3823. idle->sched_class = &idle_sched_class;
  3824. }
  3825. /**
  3826. * init_idle - set up an idle thread for a given CPU
  3827. * @idle: task in question
  3828. * @cpu: cpu the idle task belongs to
  3829. *
  3830. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3831. * flag, to make booting more robust.
  3832. */
  3833. void init_idle(struct task_struct *idle, int cpu)
  3834. {
  3835. struct rq *rq = cpu_rq(cpu);
  3836. unsigned long flags;
  3837. raw_spin_lock_irqsave(&rq->lock, flags);
  3838. __sched_fork(0, idle);
  3839. idle->state = TASK_RUNNING;
  3840. idle->se.exec_start = sched_clock();
  3841. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3842. /*
  3843. * We're having a chicken and egg problem, even though we are
  3844. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3845. * lockdep check in task_group() will fail.
  3846. *
  3847. * Similar case to sched_fork(). / Alternatively we could
  3848. * use task_rq_lock() here and obtain the other rq->lock.
  3849. *
  3850. * Silence PROVE_RCU
  3851. */
  3852. rcu_read_lock();
  3853. __set_task_cpu(idle, cpu);
  3854. rcu_read_unlock();
  3855. rq->curr = rq->idle = idle;
  3856. idle->on_rq = 1;
  3857. #if defined(CONFIG_SMP)
  3858. idle->on_cpu = 1;
  3859. #endif
  3860. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3861. /* Set the preempt count _outside_ the spinlocks! */
  3862. init_idle_preempt_count(idle, cpu);
  3863. /*
  3864. * The idle tasks have their own, simple scheduling class:
  3865. */
  3866. idle->sched_class = &idle_sched_class;
  3867. ftrace_graph_init_idle_task(idle, cpu);
  3868. vtime_init_idle(idle, cpu);
  3869. #if defined(CONFIG_SMP)
  3870. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3871. #endif
  3872. }
  3873. #ifdef CONFIG_SMP
  3874. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3875. {
  3876. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3877. p->sched_class->set_cpus_allowed(p, new_mask);
  3878. cpumask_copy(&p->cpus_allowed, new_mask);
  3879. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3880. }
  3881. /*
  3882. * This is how migration works:
  3883. *
  3884. * 1) we invoke migration_cpu_stop() on the target CPU using
  3885. * stop_one_cpu().
  3886. * 2) stopper starts to run (implicitly forcing the migrated thread
  3887. * off the CPU)
  3888. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3889. * 4) if it's in the wrong runqueue then the migration thread removes
  3890. * it and puts it into the right queue.
  3891. * 5) stopper completes and stop_one_cpu() returns and the migration
  3892. * is done.
  3893. */
  3894. /*
  3895. * Change a given task's CPU affinity. Migrate the thread to a
  3896. * proper CPU and schedule it away if the CPU it's executing on
  3897. * is removed from the allowed bitmask.
  3898. *
  3899. * NOTE: the caller must have a valid reference to the task, the
  3900. * task must not exit() & deallocate itself prematurely. The
  3901. * call is not atomic; no spinlocks may be held.
  3902. */
  3903. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3904. {
  3905. unsigned long flags;
  3906. struct rq *rq;
  3907. unsigned int dest_cpu;
  3908. int ret = 0;
  3909. rq = task_rq_lock(p, &flags);
  3910. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3911. goto out;
  3912. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3913. ret = -EINVAL;
  3914. goto out;
  3915. }
  3916. do_set_cpus_allowed(p, new_mask);
  3917. /* Can the task run on the task's current CPU? If so, we're done */
  3918. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3919. goto out;
  3920. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3921. if (p->on_rq) {
  3922. struct migration_arg arg = { p, dest_cpu };
  3923. /* Need help from migration thread: drop lock and wait. */
  3924. task_rq_unlock(rq, p, &flags);
  3925. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3926. tlb_migrate_finish(p->mm);
  3927. return 0;
  3928. }
  3929. out:
  3930. task_rq_unlock(rq, p, &flags);
  3931. return ret;
  3932. }
  3933. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3934. /*
  3935. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3936. * this because either it can't run here any more (set_cpus_allowed()
  3937. * away from this CPU, or CPU going down), or because we're
  3938. * attempting to rebalance this task on exec (sched_exec).
  3939. *
  3940. * So we race with normal scheduler movements, but that's OK, as long
  3941. * as the task is no longer on this CPU.
  3942. *
  3943. * Returns non-zero if task was successfully migrated.
  3944. */
  3945. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3946. {
  3947. struct rq *rq_dest, *rq_src;
  3948. int ret = 0;
  3949. if (unlikely(!cpu_active(dest_cpu)))
  3950. return ret;
  3951. rq_src = cpu_rq(src_cpu);
  3952. rq_dest = cpu_rq(dest_cpu);
  3953. raw_spin_lock(&p->pi_lock);
  3954. double_rq_lock(rq_src, rq_dest);
  3955. /* Already moved. */
  3956. if (task_cpu(p) != src_cpu)
  3957. goto done;
  3958. /* Affinity changed (again). */
  3959. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3960. goto fail;
  3961. /*
  3962. * If we're not on a rq, the next wake-up will ensure we're
  3963. * placed properly.
  3964. */
  3965. if (p->on_rq) {
  3966. dequeue_task(rq_src, p, 0);
  3967. set_task_cpu(p, dest_cpu);
  3968. enqueue_task(rq_dest, p, 0);
  3969. check_preempt_curr(rq_dest, p, 0);
  3970. }
  3971. done:
  3972. ret = 1;
  3973. fail:
  3974. double_rq_unlock(rq_src, rq_dest);
  3975. raw_spin_unlock(&p->pi_lock);
  3976. return ret;
  3977. }
  3978. #ifdef CONFIG_NUMA_BALANCING
  3979. /* Migrate current task p to target_cpu */
  3980. int migrate_task_to(struct task_struct *p, int target_cpu)
  3981. {
  3982. struct migration_arg arg = { p, target_cpu };
  3983. int curr_cpu = task_cpu(p);
  3984. if (curr_cpu == target_cpu)
  3985. return 0;
  3986. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3987. return -EINVAL;
  3988. /* TODO: This is not properly updating schedstats */
  3989. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3990. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3991. }
  3992. /*
  3993. * Requeue a task on a given node and accurately track the number of NUMA
  3994. * tasks on the runqueues
  3995. */
  3996. void sched_setnuma(struct task_struct *p, int nid)
  3997. {
  3998. struct rq *rq;
  3999. unsigned long flags;
  4000. bool on_rq, running;
  4001. rq = task_rq_lock(p, &flags);
  4002. on_rq = p->on_rq;
  4003. running = task_current(rq, p);
  4004. if (on_rq)
  4005. dequeue_task(rq, p, 0);
  4006. if (running)
  4007. p->sched_class->put_prev_task(rq, p);
  4008. p->numa_preferred_nid = nid;
  4009. if (running)
  4010. p->sched_class->set_curr_task(rq);
  4011. if (on_rq)
  4012. enqueue_task(rq, p, 0);
  4013. task_rq_unlock(rq, p, &flags);
  4014. }
  4015. #endif
  4016. /*
  4017. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4018. * and performs thread migration by bumping thread off CPU then
  4019. * 'pushing' onto another runqueue.
  4020. */
  4021. static int migration_cpu_stop(void *data)
  4022. {
  4023. struct migration_arg *arg = data;
  4024. /*
  4025. * The original target cpu might have gone down and we might
  4026. * be on another cpu but it doesn't matter.
  4027. */
  4028. local_irq_disable();
  4029. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4030. local_irq_enable();
  4031. return 0;
  4032. }
  4033. #ifdef CONFIG_HOTPLUG_CPU
  4034. /*
  4035. * Ensures that the idle task is using init_mm right before its cpu goes
  4036. * offline.
  4037. */
  4038. void idle_task_exit(void)
  4039. {
  4040. struct mm_struct *mm = current->active_mm;
  4041. BUG_ON(cpu_online(smp_processor_id()));
  4042. if (mm != &init_mm) {
  4043. switch_mm(mm, &init_mm, current);
  4044. finish_arch_post_lock_switch();
  4045. }
  4046. mmdrop(mm);
  4047. }
  4048. /*
  4049. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4050. * we might have. Assumes we're called after migrate_tasks() so that the
  4051. * nr_active count is stable.
  4052. *
  4053. * Also see the comment "Global load-average calculations".
  4054. */
  4055. static void calc_load_migrate(struct rq *rq)
  4056. {
  4057. long delta = calc_load_fold_active(rq);
  4058. if (delta)
  4059. atomic_long_add(delta, &calc_load_tasks);
  4060. }
  4061. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4062. {
  4063. }
  4064. static const struct sched_class fake_sched_class = {
  4065. .put_prev_task = put_prev_task_fake,
  4066. };
  4067. static struct task_struct fake_task = {
  4068. /*
  4069. * Avoid pull_{rt,dl}_task()
  4070. */
  4071. .prio = MAX_PRIO + 1,
  4072. .sched_class = &fake_sched_class,
  4073. };
  4074. /*
  4075. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4076. * try_to_wake_up()->select_task_rq().
  4077. *
  4078. * Called with rq->lock held even though we'er in stop_machine() and
  4079. * there's no concurrency possible, we hold the required locks anyway
  4080. * because of lock validation efforts.
  4081. */
  4082. static void migrate_tasks(unsigned int dead_cpu)
  4083. {
  4084. struct rq *rq = cpu_rq(dead_cpu);
  4085. struct task_struct *next, *stop = rq->stop;
  4086. int dest_cpu;
  4087. /*
  4088. * Fudge the rq selection such that the below task selection loop
  4089. * doesn't get stuck on the currently eligible stop task.
  4090. *
  4091. * We're currently inside stop_machine() and the rq is either stuck
  4092. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4093. * either way we should never end up calling schedule() until we're
  4094. * done here.
  4095. */
  4096. rq->stop = NULL;
  4097. /*
  4098. * put_prev_task() and pick_next_task() sched
  4099. * class method both need to have an up-to-date
  4100. * value of rq->clock[_task]
  4101. */
  4102. update_rq_clock(rq);
  4103. for ( ; ; ) {
  4104. /*
  4105. * There's this thread running, bail when that's the only
  4106. * remaining thread.
  4107. */
  4108. if (rq->nr_running == 1)
  4109. break;
  4110. next = pick_next_task(rq, &fake_task);
  4111. BUG_ON(!next);
  4112. next->sched_class->put_prev_task(rq, next);
  4113. /* Find suitable destination for @next, with force if needed. */
  4114. dest_cpu = select_fallback_rq(dead_cpu, next);
  4115. raw_spin_unlock(&rq->lock);
  4116. __migrate_task(next, dead_cpu, dest_cpu);
  4117. raw_spin_lock(&rq->lock);
  4118. }
  4119. rq->stop = stop;
  4120. }
  4121. #endif /* CONFIG_HOTPLUG_CPU */
  4122. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4123. static struct ctl_table sd_ctl_dir[] = {
  4124. {
  4125. .procname = "sched_domain",
  4126. .mode = 0555,
  4127. },
  4128. {}
  4129. };
  4130. static struct ctl_table sd_ctl_root[] = {
  4131. {
  4132. .procname = "kernel",
  4133. .mode = 0555,
  4134. .child = sd_ctl_dir,
  4135. },
  4136. {}
  4137. };
  4138. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4139. {
  4140. struct ctl_table *entry =
  4141. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4142. return entry;
  4143. }
  4144. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4145. {
  4146. struct ctl_table *entry;
  4147. /*
  4148. * In the intermediate directories, both the child directory and
  4149. * procname are dynamically allocated and could fail but the mode
  4150. * will always be set. In the lowest directory the names are
  4151. * static strings and all have proc handlers.
  4152. */
  4153. for (entry = *tablep; entry->mode; entry++) {
  4154. if (entry->child)
  4155. sd_free_ctl_entry(&entry->child);
  4156. if (entry->proc_handler == NULL)
  4157. kfree(entry->procname);
  4158. }
  4159. kfree(*tablep);
  4160. *tablep = NULL;
  4161. }
  4162. static int min_load_idx = 0;
  4163. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4164. static void
  4165. set_table_entry(struct ctl_table *entry,
  4166. const char *procname, void *data, int maxlen,
  4167. umode_t mode, proc_handler *proc_handler,
  4168. bool load_idx)
  4169. {
  4170. entry->procname = procname;
  4171. entry->data = data;
  4172. entry->maxlen = maxlen;
  4173. entry->mode = mode;
  4174. entry->proc_handler = proc_handler;
  4175. if (load_idx) {
  4176. entry->extra1 = &min_load_idx;
  4177. entry->extra2 = &max_load_idx;
  4178. }
  4179. }
  4180. static struct ctl_table *
  4181. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4182. {
  4183. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4184. if (table == NULL)
  4185. return NULL;
  4186. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4187. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4188. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4189. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4190. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4191. sizeof(int), 0644, proc_dointvec_minmax, true);
  4192. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4193. sizeof(int), 0644, proc_dointvec_minmax, true);
  4194. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4195. sizeof(int), 0644, proc_dointvec_minmax, true);
  4196. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4197. sizeof(int), 0644, proc_dointvec_minmax, true);
  4198. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4199. sizeof(int), 0644, proc_dointvec_minmax, true);
  4200. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4201. sizeof(int), 0644, proc_dointvec_minmax, false);
  4202. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4203. sizeof(int), 0644, proc_dointvec_minmax, false);
  4204. set_table_entry(&table[9], "cache_nice_tries",
  4205. &sd->cache_nice_tries,
  4206. sizeof(int), 0644, proc_dointvec_minmax, false);
  4207. set_table_entry(&table[10], "flags", &sd->flags,
  4208. sizeof(int), 0644, proc_dointvec_minmax, false);
  4209. set_table_entry(&table[11], "max_newidle_lb_cost",
  4210. &sd->max_newidle_lb_cost,
  4211. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4212. set_table_entry(&table[12], "name", sd->name,
  4213. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4214. /* &table[13] is terminator */
  4215. return table;
  4216. }
  4217. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4218. {
  4219. struct ctl_table *entry, *table;
  4220. struct sched_domain *sd;
  4221. int domain_num = 0, i;
  4222. char buf[32];
  4223. for_each_domain(cpu, sd)
  4224. domain_num++;
  4225. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4226. if (table == NULL)
  4227. return NULL;
  4228. i = 0;
  4229. for_each_domain(cpu, sd) {
  4230. snprintf(buf, 32, "domain%d", i);
  4231. entry->procname = kstrdup(buf, GFP_KERNEL);
  4232. entry->mode = 0555;
  4233. entry->child = sd_alloc_ctl_domain_table(sd);
  4234. entry++;
  4235. i++;
  4236. }
  4237. return table;
  4238. }
  4239. static struct ctl_table_header *sd_sysctl_header;
  4240. static void register_sched_domain_sysctl(void)
  4241. {
  4242. int i, cpu_num = num_possible_cpus();
  4243. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4244. char buf[32];
  4245. WARN_ON(sd_ctl_dir[0].child);
  4246. sd_ctl_dir[0].child = entry;
  4247. if (entry == NULL)
  4248. return;
  4249. for_each_possible_cpu(i) {
  4250. snprintf(buf, 32, "cpu%d", i);
  4251. entry->procname = kstrdup(buf, GFP_KERNEL);
  4252. entry->mode = 0555;
  4253. entry->child = sd_alloc_ctl_cpu_table(i);
  4254. entry++;
  4255. }
  4256. WARN_ON(sd_sysctl_header);
  4257. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4258. }
  4259. /* may be called multiple times per register */
  4260. static void unregister_sched_domain_sysctl(void)
  4261. {
  4262. if (sd_sysctl_header)
  4263. unregister_sysctl_table(sd_sysctl_header);
  4264. sd_sysctl_header = NULL;
  4265. if (sd_ctl_dir[0].child)
  4266. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4267. }
  4268. #else
  4269. static void register_sched_domain_sysctl(void)
  4270. {
  4271. }
  4272. static void unregister_sched_domain_sysctl(void)
  4273. {
  4274. }
  4275. #endif
  4276. static void set_rq_online(struct rq *rq)
  4277. {
  4278. if (!rq->online) {
  4279. const struct sched_class *class;
  4280. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4281. rq->online = 1;
  4282. for_each_class(class) {
  4283. if (class->rq_online)
  4284. class->rq_online(rq);
  4285. }
  4286. }
  4287. }
  4288. static void set_rq_offline(struct rq *rq)
  4289. {
  4290. if (rq->online) {
  4291. const struct sched_class *class;
  4292. for_each_class(class) {
  4293. if (class->rq_offline)
  4294. class->rq_offline(rq);
  4295. }
  4296. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4297. rq->online = 0;
  4298. }
  4299. }
  4300. /*
  4301. * migration_call - callback that gets triggered when a CPU is added.
  4302. * Here we can start up the necessary migration thread for the new CPU.
  4303. */
  4304. static int
  4305. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4306. {
  4307. int cpu = (long)hcpu;
  4308. unsigned long flags;
  4309. struct rq *rq = cpu_rq(cpu);
  4310. switch (action & ~CPU_TASKS_FROZEN) {
  4311. case CPU_UP_PREPARE:
  4312. rq->calc_load_update = calc_load_update;
  4313. break;
  4314. case CPU_ONLINE:
  4315. /* Update our root-domain */
  4316. raw_spin_lock_irqsave(&rq->lock, flags);
  4317. if (rq->rd) {
  4318. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4319. set_rq_online(rq);
  4320. }
  4321. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4322. break;
  4323. #ifdef CONFIG_HOTPLUG_CPU
  4324. case CPU_DYING:
  4325. sched_ttwu_pending();
  4326. /* Update our root-domain */
  4327. raw_spin_lock_irqsave(&rq->lock, flags);
  4328. if (rq->rd) {
  4329. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4330. set_rq_offline(rq);
  4331. }
  4332. migrate_tasks(cpu);
  4333. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4334. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4335. break;
  4336. case CPU_DEAD:
  4337. calc_load_migrate(rq);
  4338. break;
  4339. #endif
  4340. }
  4341. update_max_interval();
  4342. return NOTIFY_OK;
  4343. }
  4344. /*
  4345. * Register at high priority so that task migration (migrate_all_tasks)
  4346. * happens before everything else. This has to be lower priority than
  4347. * the notifier in the perf_event subsystem, though.
  4348. */
  4349. static struct notifier_block migration_notifier = {
  4350. .notifier_call = migration_call,
  4351. .priority = CPU_PRI_MIGRATION,
  4352. };
  4353. static void __cpuinit set_cpu_rq_start_time(void)
  4354. {
  4355. int cpu = smp_processor_id();
  4356. struct rq *rq = cpu_rq(cpu);
  4357. rq->age_stamp = sched_clock_cpu(cpu);
  4358. }
  4359. static int sched_cpu_active(struct notifier_block *nfb,
  4360. unsigned long action, void *hcpu)
  4361. {
  4362. switch (action & ~CPU_TASKS_FROZEN) {
  4363. case CPU_STARTING:
  4364. set_cpu_rq_start_time();
  4365. return NOTIFY_OK;
  4366. case CPU_DOWN_FAILED:
  4367. set_cpu_active((long)hcpu, true);
  4368. return NOTIFY_OK;
  4369. default:
  4370. return NOTIFY_DONE;
  4371. }
  4372. }
  4373. static int sched_cpu_inactive(struct notifier_block *nfb,
  4374. unsigned long action, void *hcpu)
  4375. {
  4376. unsigned long flags;
  4377. long cpu = (long)hcpu;
  4378. switch (action & ~CPU_TASKS_FROZEN) {
  4379. case CPU_DOWN_PREPARE:
  4380. set_cpu_active(cpu, false);
  4381. /* explicitly allow suspend */
  4382. if (!(action & CPU_TASKS_FROZEN)) {
  4383. struct dl_bw *dl_b = dl_bw_of(cpu);
  4384. bool overflow;
  4385. int cpus;
  4386. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4387. cpus = dl_bw_cpus(cpu);
  4388. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4389. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4390. if (overflow)
  4391. return notifier_from_errno(-EBUSY);
  4392. }
  4393. return NOTIFY_OK;
  4394. }
  4395. return NOTIFY_DONE;
  4396. }
  4397. static int __init migration_init(void)
  4398. {
  4399. void *cpu = (void *)(long)smp_processor_id();
  4400. int err;
  4401. /* Initialize migration for the boot CPU */
  4402. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4403. BUG_ON(err == NOTIFY_BAD);
  4404. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4405. register_cpu_notifier(&migration_notifier);
  4406. /* Register cpu active notifiers */
  4407. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4408. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4409. return 0;
  4410. }
  4411. early_initcall(migration_init);
  4412. #endif
  4413. #ifdef CONFIG_SMP
  4414. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4415. #ifdef CONFIG_SCHED_DEBUG
  4416. static __read_mostly int sched_debug_enabled;
  4417. static int __init sched_debug_setup(char *str)
  4418. {
  4419. sched_debug_enabled = 1;
  4420. return 0;
  4421. }
  4422. early_param("sched_debug", sched_debug_setup);
  4423. static inline bool sched_debug(void)
  4424. {
  4425. return sched_debug_enabled;
  4426. }
  4427. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4428. struct cpumask *groupmask)
  4429. {
  4430. struct sched_group *group = sd->groups;
  4431. char str[256];
  4432. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4433. cpumask_clear(groupmask);
  4434. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4435. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4436. printk("does not load-balance\n");
  4437. if (sd->parent)
  4438. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4439. " has parent");
  4440. return -1;
  4441. }
  4442. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4443. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4444. printk(KERN_ERR "ERROR: domain->span does not contain "
  4445. "CPU%d\n", cpu);
  4446. }
  4447. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4448. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4449. " CPU%d\n", cpu);
  4450. }
  4451. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4452. do {
  4453. if (!group) {
  4454. printk("\n");
  4455. printk(KERN_ERR "ERROR: group is NULL\n");
  4456. break;
  4457. }
  4458. /*
  4459. * Even though we initialize ->capacity to something semi-sane,
  4460. * we leave capacity_orig unset. This allows us to detect if
  4461. * domain iteration is still funny without causing /0 traps.
  4462. */
  4463. if (!group->sgc->capacity_orig) {
  4464. printk(KERN_CONT "\n");
  4465. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4466. break;
  4467. }
  4468. if (!cpumask_weight(sched_group_cpus(group))) {
  4469. printk(KERN_CONT "\n");
  4470. printk(KERN_ERR "ERROR: empty group\n");
  4471. break;
  4472. }
  4473. if (!(sd->flags & SD_OVERLAP) &&
  4474. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4475. printk(KERN_CONT "\n");
  4476. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4477. break;
  4478. }
  4479. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4480. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4481. printk(KERN_CONT " %s", str);
  4482. if (group->sgc->capacity != SCHED_POWER_SCALE) {
  4483. printk(KERN_CONT " (cpu_capacity = %d)",
  4484. group->sgc->capacity);
  4485. }
  4486. group = group->next;
  4487. } while (group != sd->groups);
  4488. printk(KERN_CONT "\n");
  4489. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4490. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4491. if (sd->parent &&
  4492. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4493. printk(KERN_ERR "ERROR: parent span is not a superset "
  4494. "of domain->span\n");
  4495. return 0;
  4496. }
  4497. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4498. {
  4499. int level = 0;
  4500. if (!sched_debug_enabled)
  4501. return;
  4502. if (!sd) {
  4503. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4504. return;
  4505. }
  4506. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4507. for (;;) {
  4508. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4509. break;
  4510. level++;
  4511. sd = sd->parent;
  4512. if (!sd)
  4513. break;
  4514. }
  4515. }
  4516. #else /* !CONFIG_SCHED_DEBUG */
  4517. # define sched_domain_debug(sd, cpu) do { } while (0)
  4518. static inline bool sched_debug(void)
  4519. {
  4520. return false;
  4521. }
  4522. #endif /* CONFIG_SCHED_DEBUG */
  4523. static int sd_degenerate(struct sched_domain *sd)
  4524. {
  4525. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4526. return 1;
  4527. /* Following flags need at least 2 groups */
  4528. if (sd->flags & (SD_LOAD_BALANCE |
  4529. SD_BALANCE_NEWIDLE |
  4530. SD_BALANCE_FORK |
  4531. SD_BALANCE_EXEC |
  4532. SD_SHARE_CPUPOWER |
  4533. SD_SHARE_PKG_RESOURCES |
  4534. SD_SHARE_POWERDOMAIN)) {
  4535. if (sd->groups != sd->groups->next)
  4536. return 0;
  4537. }
  4538. /* Following flags don't use groups */
  4539. if (sd->flags & (SD_WAKE_AFFINE))
  4540. return 0;
  4541. return 1;
  4542. }
  4543. static int
  4544. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4545. {
  4546. unsigned long cflags = sd->flags, pflags = parent->flags;
  4547. if (sd_degenerate(parent))
  4548. return 1;
  4549. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4550. return 0;
  4551. /* Flags needing groups don't count if only 1 group in parent */
  4552. if (parent->groups == parent->groups->next) {
  4553. pflags &= ~(SD_LOAD_BALANCE |
  4554. SD_BALANCE_NEWIDLE |
  4555. SD_BALANCE_FORK |
  4556. SD_BALANCE_EXEC |
  4557. SD_SHARE_CPUPOWER |
  4558. SD_SHARE_PKG_RESOURCES |
  4559. SD_PREFER_SIBLING |
  4560. SD_SHARE_POWERDOMAIN);
  4561. if (nr_node_ids == 1)
  4562. pflags &= ~SD_SERIALIZE;
  4563. }
  4564. if (~cflags & pflags)
  4565. return 0;
  4566. return 1;
  4567. }
  4568. static void free_rootdomain(struct rcu_head *rcu)
  4569. {
  4570. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4571. cpupri_cleanup(&rd->cpupri);
  4572. cpudl_cleanup(&rd->cpudl);
  4573. free_cpumask_var(rd->dlo_mask);
  4574. free_cpumask_var(rd->rto_mask);
  4575. free_cpumask_var(rd->online);
  4576. free_cpumask_var(rd->span);
  4577. kfree(rd);
  4578. }
  4579. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4580. {
  4581. struct root_domain *old_rd = NULL;
  4582. unsigned long flags;
  4583. raw_spin_lock_irqsave(&rq->lock, flags);
  4584. if (rq->rd) {
  4585. old_rd = rq->rd;
  4586. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4587. set_rq_offline(rq);
  4588. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4589. /*
  4590. * If we dont want to free the old_rd yet then
  4591. * set old_rd to NULL to skip the freeing later
  4592. * in this function:
  4593. */
  4594. if (!atomic_dec_and_test(&old_rd->refcount))
  4595. old_rd = NULL;
  4596. }
  4597. atomic_inc(&rd->refcount);
  4598. rq->rd = rd;
  4599. cpumask_set_cpu(rq->cpu, rd->span);
  4600. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4601. set_rq_online(rq);
  4602. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4603. if (old_rd)
  4604. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4605. }
  4606. static int init_rootdomain(struct root_domain *rd)
  4607. {
  4608. memset(rd, 0, sizeof(*rd));
  4609. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4610. goto out;
  4611. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4612. goto free_span;
  4613. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4614. goto free_online;
  4615. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4616. goto free_dlo_mask;
  4617. init_dl_bw(&rd->dl_bw);
  4618. if (cpudl_init(&rd->cpudl) != 0)
  4619. goto free_dlo_mask;
  4620. if (cpupri_init(&rd->cpupri) != 0)
  4621. goto free_rto_mask;
  4622. return 0;
  4623. free_rto_mask:
  4624. free_cpumask_var(rd->rto_mask);
  4625. free_dlo_mask:
  4626. free_cpumask_var(rd->dlo_mask);
  4627. free_online:
  4628. free_cpumask_var(rd->online);
  4629. free_span:
  4630. free_cpumask_var(rd->span);
  4631. out:
  4632. return -ENOMEM;
  4633. }
  4634. /*
  4635. * By default the system creates a single root-domain with all cpus as
  4636. * members (mimicking the global state we have today).
  4637. */
  4638. struct root_domain def_root_domain;
  4639. static void init_defrootdomain(void)
  4640. {
  4641. init_rootdomain(&def_root_domain);
  4642. atomic_set(&def_root_domain.refcount, 1);
  4643. }
  4644. static struct root_domain *alloc_rootdomain(void)
  4645. {
  4646. struct root_domain *rd;
  4647. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4648. if (!rd)
  4649. return NULL;
  4650. if (init_rootdomain(rd) != 0) {
  4651. kfree(rd);
  4652. return NULL;
  4653. }
  4654. return rd;
  4655. }
  4656. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4657. {
  4658. struct sched_group *tmp, *first;
  4659. if (!sg)
  4660. return;
  4661. first = sg;
  4662. do {
  4663. tmp = sg->next;
  4664. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4665. kfree(sg->sgc);
  4666. kfree(sg);
  4667. sg = tmp;
  4668. } while (sg != first);
  4669. }
  4670. static void free_sched_domain(struct rcu_head *rcu)
  4671. {
  4672. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4673. /*
  4674. * If its an overlapping domain it has private groups, iterate and
  4675. * nuke them all.
  4676. */
  4677. if (sd->flags & SD_OVERLAP) {
  4678. free_sched_groups(sd->groups, 1);
  4679. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4680. kfree(sd->groups->sgc);
  4681. kfree(sd->groups);
  4682. }
  4683. kfree(sd);
  4684. }
  4685. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4686. {
  4687. call_rcu(&sd->rcu, free_sched_domain);
  4688. }
  4689. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4690. {
  4691. for (; sd; sd = sd->parent)
  4692. destroy_sched_domain(sd, cpu);
  4693. }
  4694. /*
  4695. * Keep a special pointer to the highest sched_domain that has
  4696. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4697. * allows us to avoid some pointer chasing select_idle_sibling().
  4698. *
  4699. * Also keep a unique ID per domain (we use the first cpu number in
  4700. * the cpumask of the domain), this allows us to quickly tell if
  4701. * two cpus are in the same cache domain, see cpus_share_cache().
  4702. */
  4703. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4704. DEFINE_PER_CPU(int, sd_llc_size);
  4705. DEFINE_PER_CPU(int, sd_llc_id);
  4706. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4707. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4708. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4709. static void update_top_cache_domain(int cpu)
  4710. {
  4711. struct sched_domain *sd;
  4712. struct sched_domain *busy_sd = NULL;
  4713. int id = cpu;
  4714. int size = 1;
  4715. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4716. if (sd) {
  4717. id = cpumask_first(sched_domain_span(sd));
  4718. size = cpumask_weight(sched_domain_span(sd));
  4719. busy_sd = sd->parent; /* sd_busy */
  4720. }
  4721. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4722. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4723. per_cpu(sd_llc_size, cpu) = size;
  4724. per_cpu(sd_llc_id, cpu) = id;
  4725. sd = lowest_flag_domain(cpu, SD_NUMA);
  4726. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4727. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4728. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4729. }
  4730. /*
  4731. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4732. * hold the hotplug lock.
  4733. */
  4734. static void
  4735. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4736. {
  4737. struct rq *rq = cpu_rq(cpu);
  4738. struct sched_domain *tmp;
  4739. /* Remove the sched domains which do not contribute to scheduling. */
  4740. for (tmp = sd; tmp; ) {
  4741. struct sched_domain *parent = tmp->parent;
  4742. if (!parent)
  4743. break;
  4744. if (sd_parent_degenerate(tmp, parent)) {
  4745. tmp->parent = parent->parent;
  4746. if (parent->parent)
  4747. parent->parent->child = tmp;
  4748. /*
  4749. * Transfer SD_PREFER_SIBLING down in case of a
  4750. * degenerate parent; the spans match for this
  4751. * so the property transfers.
  4752. */
  4753. if (parent->flags & SD_PREFER_SIBLING)
  4754. tmp->flags |= SD_PREFER_SIBLING;
  4755. destroy_sched_domain(parent, cpu);
  4756. } else
  4757. tmp = tmp->parent;
  4758. }
  4759. if (sd && sd_degenerate(sd)) {
  4760. tmp = sd;
  4761. sd = sd->parent;
  4762. destroy_sched_domain(tmp, cpu);
  4763. if (sd)
  4764. sd->child = NULL;
  4765. }
  4766. sched_domain_debug(sd, cpu);
  4767. rq_attach_root(rq, rd);
  4768. tmp = rq->sd;
  4769. rcu_assign_pointer(rq->sd, sd);
  4770. destroy_sched_domains(tmp, cpu);
  4771. update_top_cache_domain(cpu);
  4772. }
  4773. /* cpus with isolated domains */
  4774. static cpumask_var_t cpu_isolated_map;
  4775. /* Setup the mask of cpus configured for isolated domains */
  4776. static int __init isolated_cpu_setup(char *str)
  4777. {
  4778. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4779. cpulist_parse(str, cpu_isolated_map);
  4780. return 1;
  4781. }
  4782. __setup("isolcpus=", isolated_cpu_setup);
  4783. struct s_data {
  4784. struct sched_domain ** __percpu sd;
  4785. struct root_domain *rd;
  4786. };
  4787. enum s_alloc {
  4788. sa_rootdomain,
  4789. sa_sd,
  4790. sa_sd_storage,
  4791. sa_none,
  4792. };
  4793. /*
  4794. * Build an iteration mask that can exclude certain CPUs from the upwards
  4795. * domain traversal.
  4796. *
  4797. * Asymmetric node setups can result in situations where the domain tree is of
  4798. * unequal depth, make sure to skip domains that already cover the entire
  4799. * range.
  4800. *
  4801. * In that case build_sched_domains() will have terminated the iteration early
  4802. * and our sibling sd spans will be empty. Domains should always include the
  4803. * cpu they're built on, so check that.
  4804. *
  4805. */
  4806. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4807. {
  4808. const struct cpumask *span = sched_domain_span(sd);
  4809. struct sd_data *sdd = sd->private;
  4810. struct sched_domain *sibling;
  4811. int i;
  4812. for_each_cpu(i, span) {
  4813. sibling = *per_cpu_ptr(sdd->sd, i);
  4814. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4815. continue;
  4816. cpumask_set_cpu(i, sched_group_mask(sg));
  4817. }
  4818. }
  4819. /*
  4820. * Return the canonical balance cpu for this group, this is the first cpu
  4821. * of this group that's also in the iteration mask.
  4822. */
  4823. int group_balance_cpu(struct sched_group *sg)
  4824. {
  4825. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4826. }
  4827. static int
  4828. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4829. {
  4830. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4831. const struct cpumask *span = sched_domain_span(sd);
  4832. struct cpumask *covered = sched_domains_tmpmask;
  4833. struct sd_data *sdd = sd->private;
  4834. struct sched_domain *child;
  4835. int i;
  4836. cpumask_clear(covered);
  4837. for_each_cpu(i, span) {
  4838. struct cpumask *sg_span;
  4839. if (cpumask_test_cpu(i, covered))
  4840. continue;
  4841. child = *per_cpu_ptr(sdd->sd, i);
  4842. /* See the comment near build_group_mask(). */
  4843. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4844. continue;
  4845. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4846. GFP_KERNEL, cpu_to_node(cpu));
  4847. if (!sg)
  4848. goto fail;
  4849. sg_span = sched_group_cpus(sg);
  4850. if (child->child) {
  4851. child = child->child;
  4852. cpumask_copy(sg_span, sched_domain_span(child));
  4853. } else
  4854. cpumask_set_cpu(i, sg_span);
  4855. cpumask_or(covered, covered, sg_span);
  4856. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  4857. if (atomic_inc_return(&sg->sgc->ref) == 1)
  4858. build_group_mask(sd, sg);
  4859. /*
  4860. * Initialize sgc->capacity such that even if we mess up the
  4861. * domains and no possible iteration will get us here, we won't
  4862. * die on a /0 trap.
  4863. */
  4864. sg->sgc->capacity = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4865. sg->sgc->capacity_orig = sg->sgc->capacity;
  4866. /*
  4867. * Make sure the first group of this domain contains the
  4868. * canonical balance cpu. Otherwise the sched_domain iteration
  4869. * breaks. See update_sg_lb_stats().
  4870. */
  4871. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4872. group_balance_cpu(sg) == cpu)
  4873. groups = sg;
  4874. if (!first)
  4875. first = sg;
  4876. if (last)
  4877. last->next = sg;
  4878. last = sg;
  4879. last->next = first;
  4880. }
  4881. sd->groups = groups;
  4882. return 0;
  4883. fail:
  4884. free_sched_groups(first, 0);
  4885. return -ENOMEM;
  4886. }
  4887. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4888. {
  4889. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4890. struct sched_domain *child = sd->child;
  4891. if (child)
  4892. cpu = cpumask_first(sched_domain_span(child));
  4893. if (sg) {
  4894. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4895. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  4896. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  4897. }
  4898. return cpu;
  4899. }
  4900. /*
  4901. * build_sched_groups will build a circular linked list of the groups
  4902. * covered by the given span, and will set each group's ->cpumask correctly,
  4903. * and ->cpu_capacity to 0.
  4904. *
  4905. * Assumes the sched_domain tree is fully constructed
  4906. */
  4907. static int
  4908. build_sched_groups(struct sched_domain *sd, int cpu)
  4909. {
  4910. struct sched_group *first = NULL, *last = NULL;
  4911. struct sd_data *sdd = sd->private;
  4912. const struct cpumask *span = sched_domain_span(sd);
  4913. struct cpumask *covered;
  4914. int i;
  4915. get_group(cpu, sdd, &sd->groups);
  4916. atomic_inc(&sd->groups->ref);
  4917. if (cpu != cpumask_first(span))
  4918. return 0;
  4919. lockdep_assert_held(&sched_domains_mutex);
  4920. covered = sched_domains_tmpmask;
  4921. cpumask_clear(covered);
  4922. for_each_cpu(i, span) {
  4923. struct sched_group *sg;
  4924. int group, j;
  4925. if (cpumask_test_cpu(i, covered))
  4926. continue;
  4927. group = get_group(i, sdd, &sg);
  4928. cpumask_setall(sched_group_mask(sg));
  4929. for_each_cpu(j, span) {
  4930. if (get_group(j, sdd, NULL) != group)
  4931. continue;
  4932. cpumask_set_cpu(j, covered);
  4933. cpumask_set_cpu(j, sched_group_cpus(sg));
  4934. }
  4935. if (!first)
  4936. first = sg;
  4937. if (last)
  4938. last->next = sg;
  4939. last = sg;
  4940. }
  4941. last->next = first;
  4942. return 0;
  4943. }
  4944. /*
  4945. * Initialize sched groups cpu_capacity.
  4946. *
  4947. * cpu_capacity indicates the capacity of sched group, which is used while
  4948. * distributing the load between different sched groups in a sched domain.
  4949. * Typically cpu_capacity for all the groups in a sched domain will be same
  4950. * unless there are asymmetries in the topology. If there are asymmetries,
  4951. * group having more cpu_capacity will pickup more load compared to the
  4952. * group having less cpu_capacity.
  4953. */
  4954. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  4955. {
  4956. struct sched_group *sg = sd->groups;
  4957. WARN_ON(!sg);
  4958. do {
  4959. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4960. sg = sg->next;
  4961. } while (sg != sd->groups);
  4962. if (cpu != group_balance_cpu(sg))
  4963. return;
  4964. update_group_capacity(sd, cpu);
  4965. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  4966. }
  4967. /*
  4968. * Initializers for schedule domains
  4969. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4970. */
  4971. static int default_relax_domain_level = -1;
  4972. int sched_domain_level_max;
  4973. static int __init setup_relax_domain_level(char *str)
  4974. {
  4975. if (kstrtoint(str, 0, &default_relax_domain_level))
  4976. pr_warn("Unable to set relax_domain_level\n");
  4977. return 1;
  4978. }
  4979. __setup("relax_domain_level=", setup_relax_domain_level);
  4980. static void set_domain_attribute(struct sched_domain *sd,
  4981. struct sched_domain_attr *attr)
  4982. {
  4983. int request;
  4984. if (!attr || attr->relax_domain_level < 0) {
  4985. if (default_relax_domain_level < 0)
  4986. return;
  4987. else
  4988. request = default_relax_domain_level;
  4989. } else
  4990. request = attr->relax_domain_level;
  4991. if (request < sd->level) {
  4992. /* turn off idle balance on this domain */
  4993. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4994. } else {
  4995. /* turn on idle balance on this domain */
  4996. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4997. }
  4998. }
  4999. static void __sdt_free(const struct cpumask *cpu_map);
  5000. static int __sdt_alloc(const struct cpumask *cpu_map);
  5001. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5002. const struct cpumask *cpu_map)
  5003. {
  5004. switch (what) {
  5005. case sa_rootdomain:
  5006. if (!atomic_read(&d->rd->refcount))
  5007. free_rootdomain(&d->rd->rcu); /* fall through */
  5008. case sa_sd:
  5009. free_percpu(d->sd); /* fall through */
  5010. case sa_sd_storage:
  5011. __sdt_free(cpu_map); /* fall through */
  5012. case sa_none:
  5013. break;
  5014. }
  5015. }
  5016. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5017. const struct cpumask *cpu_map)
  5018. {
  5019. memset(d, 0, sizeof(*d));
  5020. if (__sdt_alloc(cpu_map))
  5021. return sa_sd_storage;
  5022. d->sd = alloc_percpu(struct sched_domain *);
  5023. if (!d->sd)
  5024. return sa_sd_storage;
  5025. d->rd = alloc_rootdomain();
  5026. if (!d->rd)
  5027. return sa_sd;
  5028. return sa_rootdomain;
  5029. }
  5030. /*
  5031. * NULL the sd_data elements we've used to build the sched_domain and
  5032. * sched_group structure so that the subsequent __free_domain_allocs()
  5033. * will not free the data we're using.
  5034. */
  5035. static void claim_allocations(int cpu, struct sched_domain *sd)
  5036. {
  5037. struct sd_data *sdd = sd->private;
  5038. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5039. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5040. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5041. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5042. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5043. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5044. }
  5045. #ifdef CONFIG_NUMA
  5046. static int sched_domains_numa_levels;
  5047. static int *sched_domains_numa_distance;
  5048. static struct cpumask ***sched_domains_numa_masks;
  5049. static int sched_domains_curr_level;
  5050. #endif
  5051. /*
  5052. * SD_flags allowed in topology descriptions.
  5053. *
  5054. * SD_SHARE_CPUPOWER - describes SMT topologies
  5055. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5056. * SD_NUMA - describes NUMA topologies
  5057. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5058. *
  5059. * Odd one out:
  5060. * SD_ASYM_PACKING - describes SMT quirks
  5061. */
  5062. #define TOPOLOGY_SD_FLAGS \
  5063. (SD_SHARE_CPUPOWER | \
  5064. SD_SHARE_PKG_RESOURCES | \
  5065. SD_NUMA | \
  5066. SD_ASYM_PACKING | \
  5067. SD_SHARE_POWERDOMAIN)
  5068. static struct sched_domain *
  5069. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5070. {
  5071. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5072. int sd_weight, sd_flags = 0;
  5073. #ifdef CONFIG_NUMA
  5074. /*
  5075. * Ugly hack to pass state to sd_numa_mask()...
  5076. */
  5077. sched_domains_curr_level = tl->numa_level;
  5078. #endif
  5079. sd_weight = cpumask_weight(tl->mask(cpu));
  5080. if (tl->sd_flags)
  5081. sd_flags = (*tl->sd_flags)();
  5082. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5083. "wrong sd_flags in topology description\n"))
  5084. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5085. *sd = (struct sched_domain){
  5086. .min_interval = sd_weight,
  5087. .max_interval = 2*sd_weight,
  5088. .busy_factor = 32,
  5089. .imbalance_pct = 125,
  5090. .cache_nice_tries = 0,
  5091. .busy_idx = 0,
  5092. .idle_idx = 0,
  5093. .newidle_idx = 0,
  5094. .wake_idx = 0,
  5095. .forkexec_idx = 0,
  5096. .flags = 1*SD_LOAD_BALANCE
  5097. | 1*SD_BALANCE_NEWIDLE
  5098. | 1*SD_BALANCE_EXEC
  5099. | 1*SD_BALANCE_FORK
  5100. | 0*SD_BALANCE_WAKE
  5101. | 1*SD_WAKE_AFFINE
  5102. | 0*SD_SHARE_CPUPOWER
  5103. | 0*SD_SHARE_PKG_RESOURCES
  5104. | 0*SD_SERIALIZE
  5105. | 0*SD_PREFER_SIBLING
  5106. | 0*SD_NUMA
  5107. | sd_flags
  5108. ,
  5109. .last_balance = jiffies,
  5110. .balance_interval = sd_weight,
  5111. .smt_gain = 0,
  5112. .max_newidle_lb_cost = 0,
  5113. .next_decay_max_lb_cost = jiffies,
  5114. #ifdef CONFIG_SCHED_DEBUG
  5115. .name = tl->name,
  5116. #endif
  5117. };
  5118. /*
  5119. * Convert topological properties into behaviour.
  5120. */
  5121. if (sd->flags & SD_SHARE_CPUPOWER) {
  5122. sd->imbalance_pct = 110;
  5123. sd->smt_gain = 1178; /* ~15% */
  5124. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5125. sd->imbalance_pct = 117;
  5126. sd->cache_nice_tries = 1;
  5127. sd->busy_idx = 2;
  5128. #ifdef CONFIG_NUMA
  5129. } else if (sd->flags & SD_NUMA) {
  5130. sd->cache_nice_tries = 2;
  5131. sd->busy_idx = 3;
  5132. sd->idle_idx = 2;
  5133. sd->flags |= SD_SERIALIZE;
  5134. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5135. sd->flags &= ~(SD_BALANCE_EXEC |
  5136. SD_BALANCE_FORK |
  5137. SD_WAKE_AFFINE);
  5138. }
  5139. #endif
  5140. } else {
  5141. sd->flags |= SD_PREFER_SIBLING;
  5142. sd->cache_nice_tries = 1;
  5143. sd->busy_idx = 2;
  5144. sd->idle_idx = 1;
  5145. }
  5146. sd->private = &tl->data;
  5147. return sd;
  5148. }
  5149. /*
  5150. * Topology list, bottom-up.
  5151. */
  5152. static struct sched_domain_topology_level default_topology[] = {
  5153. #ifdef CONFIG_SCHED_SMT
  5154. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5155. #endif
  5156. #ifdef CONFIG_SCHED_MC
  5157. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5158. #endif
  5159. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5160. { NULL, },
  5161. };
  5162. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5163. #define for_each_sd_topology(tl) \
  5164. for (tl = sched_domain_topology; tl->mask; tl++)
  5165. void set_sched_topology(struct sched_domain_topology_level *tl)
  5166. {
  5167. sched_domain_topology = tl;
  5168. }
  5169. #ifdef CONFIG_NUMA
  5170. static const struct cpumask *sd_numa_mask(int cpu)
  5171. {
  5172. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5173. }
  5174. static void sched_numa_warn(const char *str)
  5175. {
  5176. static int done = false;
  5177. int i,j;
  5178. if (done)
  5179. return;
  5180. done = true;
  5181. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5182. for (i = 0; i < nr_node_ids; i++) {
  5183. printk(KERN_WARNING " ");
  5184. for (j = 0; j < nr_node_ids; j++)
  5185. printk(KERN_CONT "%02d ", node_distance(i,j));
  5186. printk(KERN_CONT "\n");
  5187. }
  5188. printk(KERN_WARNING "\n");
  5189. }
  5190. static bool find_numa_distance(int distance)
  5191. {
  5192. int i;
  5193. if (distance == node_distance(0, 0))
  5194. return true;
  5195. for (i = 0; i < sched_domains_numa_levels; i++) {
  5196. if (sched_domains_numa_distance[i] == distance)
  5197. return true;
  5198. }
  5199. return false;
  5200. }
  5201. static void sched_init_numa(void)
  5202. {
  5203. int next_distance, curr_distance = node_distance(0, 0);
  5204. struct sched_domain_topology_level *tl;
  5205. int level = 0;
  5206. int i, j, k;
  5207. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5208. if (!sched_domains_numa_distance)
  5209. return;
  5210. /*
  5211. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5212. * unique distances in the node_distance() table.
  5213. *
  5214. * Assumes node_distance(0,j) includes all distances in
  5215. * node_distance(i,j) in order to avoid cubic time.
  5216. */
  5217. next_distance = curr_distance;
  5218. for (i = 0; i < nr_node_ids; i++) {
  5219. for (j = 0; j < nr_node_ids; j++) {
  5220. for (k = 0; k < nr_node_ids; k++) {
  5221. int distance = node_distance(i, k);
  5222. if (distance > curr_distance &&
  5223. (distance < next_distance ||
  5224. next_distance == curr_distance))
  5225. next_distance = distance;
  5226. /*
  5227. * While not a strong assumption it would be nice to know
  5228. * about cases where if node A is connected to B, B is not
  5229. * equally connected to A.
  5230. */
  5231. if (sched_debug() && node_distance(k, i) != distance)
  5232. sched_numa_warn("Node-distance not symmetric");
  5233. if (sched_debug() && i && !find_numa_distance(distance))
  5234. sched_numa_warn("Node-0 not representative");
  5235. }
  5236. if (next_distance != curr_distance) {
  5237. sched_domains_numa_distance[level++] = next_distance;
  5238. sched_domains_numa_levels = level;
  5239. curr_distance = next_distance;
  5240. } else break;
  5241. }
  5242. /*
  5243. * In case of sched_debug() we verify the above assumption.
  5244. */
  5245. if (!sched_debug())
  5246. break;
  5247. }
  5248. /*
  5249. * 'level' contains the number of unique distances, excluding the
  5250. * identity distance node_distance(i,i).
  5251. *
  5252. * The sched_domains_numa_distance[] array includes the actual distance
  5253. * numbers.
  5254. */
  5255. /*
  5256. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5257. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5258. * the array will contain less then 'level' members. This could be
  5259. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5260. * in other functions.
  5261. *
  5262. * We reset it to 'level' at the end of this function.
  5263. */
  5264. sched_domains_numa_levels = 0;
  5265. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5266. if (!sched_domains_numa_masks)
  5267. return;
  5268. /*
  5269. * Now for each level, construct a mask per node which contains all
  5270. * cpus of nodes that are that many hops away from us.
  5271. */
  5272. for (i = 0; i < level; i++) {
  5273. sched_domains_numa_masks[i] =
  5274. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5275. if (!sched_domains_numa_masks[i])
  5276. return;
  5277. for (j = 0; j < nr_node_ids; j++) {
  5278. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5279. if (!mask)
  5280. return;
  5281. sched_domains_numa_masks[i][j] = mask;
  5282. for (k = 0; k < nr_node_ids; k++) {
  5283. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5284. continue;
  5285. cpumask_or(mask, mask, cpumask_of_node(k));
  5286. }
  5287. }
  5288. }
  5289. /* Compute default topology size */
  5290. for (i = 0; sched_domain_topology[i].mask; i++);
  5291. tl = kzalloc((i + level + 1) *
  5292. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5293. if (!tl)
  5294. return;
  5295. /*
  5296. * Copy the default topology bits..
  5297. */
  5298. for (i = 0; sched_domain_topology[i].mask; i++)
  5299. tl[i] = sched_domain_topology[i];
  5300. /*
  5301. * .. and append 'j' levels of NUMA goodness.
  5302. */
  5303. for (j = 0; j < level; i++, j++) {
  5304. tl[i] = (struct sched_domain_topology_level){
  5305. .mask = sd_numa_mask,
  5306. .sd_flags = cpu_numa_flags,
  5307. .flags = SDTL_OVERLAP,
  5308. .numa_level = j,
  5309. SD_INIT_NAME(NUMA)
  5310. };
  5311. }
  5312. sched_domain_topology = tl;
  5313. sched_domains_numa_levels = level;
  5314. }
  5315. static void sched_domains_numa_masks_set(int cpu)
  5316. {
  5317. int i, j;
  5318. int node = cpu_to_node(cpu);
  5319. for (i = 0; i < sched_domains_numa_levels; i++) {
  5320. for (j = 0; j < nr_node_ids; j++) {
  5321. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5322. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5323. }
  5324. }
  5325. }
  5326. static void sched_domains_numa_masks_clear(int cpu)
  5327. {
  5328. int i, j;
  5329. for (i = 0; i < sched_domains_numa_levels; i++) {
  5330. for (j = 0; j < nr_node_ids; j++)
  5331. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5332. }
  5333. }
  5334. /*
  5335. * Update sched_domains_numa_masks[level][node] array when new cpus
  5336. * are onlined.
  5337. */
  5338. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5339. unsigned long action,
  5340. void *hcpu)
  5341. {
  5342. int cpu = (long)hcpu;
  5343. switch (action & ~CPU_TASKS_FROZEN) {
  5344. case CPU_ONLINE:
  5345. sched_domains_numa_masks_set(cpu);
  5346. break;
  5347. case CPU_DEAD:
  5348. sched_domains_numa_masks_clear(cpu);
  5349. break;
  5350. default:
  5351. return NOTIFY_DONE;
  5352. }
  5353. return NOTIFY_OK;
  5354. }
  5355. #else
  5356. static inline void sched_init_numa(void)
  5357. {
  5358. }
  5359. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5360. unsigned long action,
  5361. void *hcpu)
  5362. {
  5363. return 0;
  5364. }
  5365. #endif /* CONFIG_NUMA */
  5366. static int __sdt_alloc(const struct cpumask *cpu_map)
  5367. {
  5368. struct sched_domain_topology_level *tl;
  5369. int j;
  5370. for_each_sd_topology(tl) {
  5371. struct sd_data *sdd = &tl->data;
  5372. sdd->sd = alloc_percpu(struct sched_domain *);
  5373. if (!sdd->sd)
  5374. return -ENOMEM;
  5375. sdd->sg = alloc_percpu(struct sched_group *);
  5376. if (!sdd->sg)
  5377. return -ENOMEM;
  5378. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5379. if (!sdd->sgc)
  5380. return -ENOMEM;
  5381. for_each_cpu(j, cpu_map) {
  5382. struct sched_domain *sd;
  5383. struct sched_group *sg;
  5384. struct sched_group_capacity *sgc;
  5385. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5386. GFP_KERNEL, cpu_to_node(j));
  5387. if (!sd)
  5388. return -ENOMEM;
  5389. *per_cpu_ptr(sdd->sd, j) = sd;
  5390. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5391. GFP_KERNEL, cpu_to_node(j));
  5392. if (!sg)
  5393. return -ENOMEM;
  5394. sg->next = sg;
  5395. *per_cpu_ptr(sdd->sg, j) = sg;
  5396. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5397. GFP_KERNEL, cpu_to_node(j));
  5398. if (!sgc)
  5399. return -ENOMEM;
  5400. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5401. }
  5402. }
  5403. return 0;
  5404. }
  5405. static void __sdt_free(const struct cpumask *cpu_map)
  5406. {
  5407. struct sched_domain_topology_level *tl;
  5408. int j;
  5409. for_each_sd_topology(tl) {
  5410. struct sd_data *sdd = &tl->data;
  5411. for_each_cpu(j, cpu_map) {
  5412. struct sched_domain *sd;
  5413. if (sdd->sd) {
  5414. sd = *per_cpu_ptr(sdd->sd, j);
  5415. if (sd && (sd->flags & SD_OVERLAP))
  5416. free_sched_groups(sd->groups, 0);
  5417. kfree(*per_cpu_ptr(sdd->sd, j));
  5418. }
  5419. if (sdd->sg)
  5420. kfree(*per_cpu_ptr(sdd->sg, j));
  5421. if (sdd->sgc)
  5422. kfree(*per_cpu_ptr(sdd->sgc, j));
  5423. }
  5424. free_percpu(sdd->sd);
  5425. sdd->sd = NULL;
  5426. free_percpu(sdd->sg);
  5427. sdd->sg = NULL;
  5428. free_percpu(sdd->sgc);
  5429. sdd->sgc = NULL;
  5430. }
  5431. }
  5432. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5433. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5434. struct sched_domain *child, int cpu)
  5435. {
  5436. struct sched_domain *sd = sd_init(tl, cpu);
  5437. if (!sd)
  5438. return child;
  5439. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5440. if (child) {
  5441. sd->level = child->level + 1;
  5442. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5443. child->parent = sd;
  5444. sd->child = child;
  5445. }
  5446. set_domain_attribute(sd, attr);
  5447. return sd;
  5448. }
  5449. /*
  5450. * Build sched domains for a given set of cpus and attach the sched domains
  5451. * to the individual cpus
  5452. */
  5453. static int build_sched_domains(const struct cpumask *cpu_map,
  5454. struct sched_domain_attr *attr)
  5455. {
  5456. enum s_alloc alloc_state;
  5457. struct sched_domain *sd;
  5458. struct s_data d;
  5459. int i, ret = -ENOMEM;
  5460. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5461. if (alloc_state != sa_rootdomain)
  5462. goto error;
  5463. /* Set up domains for cpus specified by the cpu_map. */
  5464. for_each_cpu(i, cpu_map) {
  5465. struct sched_domain_topology_level *tl;
  5466. sd = NULL;
  5467. for_each_sd_topology(tl) {
  5468. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5469. if (tl == sched_domain_topology)
  5470. *per_cpu_ptr(d.sd, i) = sd;
  5471. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5472. sd->flags |= SD_OVERLAP;
  5473. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5474. break;
  5475. }
  5476. }
  5477. /* Build the groups for the domains */
  5478. for_each_cpu(i, cpu_map) {
  5479. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5480. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5481. if (sd->flags & SD_OVERLAP) {
  5482. if (build_overlap_sched_groups(sd, i))
  5483. goto error;
  5484. } else {
  5485. if (build_sched_groups(sd, i))
  5486. goto error;
  5487. }
  5488. }
  5489. }
  5490. /* Calculate CPU capacity for physical packages and nodes */
  5491. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5492. if (!cpumask_test_cpu(i, cpu_map))
  5493. continue;
  5494. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5495. claim_allocations(i, sd);
  5496. init_sched_groups_capacity(i, sd);
  5497. }
  5498. }
  5499. /* Attach the domains */
  5500. rcu_read_lock();
  5501. for_each_cpu(i, cpu_map) {
  5502. sd = *per_cpu_ptr(d.sd, i);
  5503. cpu_attach_domain(sd, d.rd, i);
  5504. }
  5505. rcu_read_unlock();
  5506. ret = 0;
  5507. error:
  5508. __free_domain_allocs(&d, alloc_state, cpu_map);
  5509. return ret;
  5510. }
  5511. static cpumask_var_t *doms_cur; /* current sched domains */
  5512. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5513. static struct sched_domain_attr *dattr_cur;
  5514. /* attribues of custom domains in 'doms_cur' */
  5515. /*
  5516. * Special case: If a kmalloc of a doms_cur partition (array of
  5517. * cpumask) fails, then fallback to a single sched domain,
  5518. * as determined by the single cpumask fallback_doms.
  5519. */
  5520. static cpumask_var_t fallback_doms;
  5521. /*
  5522. * arch_update_cpu_topology lets virtualized architectures update the
  5523. * cpu core maps. It is supposed to return 1 if the topology changed
  5524. * or 0 if it stayed the same.
  5525. */
  5526. int __weak arch_update_cpu_topology(void)
  5527. {
  5528. return 0;
  5529. }
  5530. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5531. {
  5532. int i;
  5533. cpumask_var_t *doms;
  5534. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5535. if (!doms)
  5536. return NULL;
  5537. for (i = 0; i < ndoms; i++) {
  5538. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5539. free_sched_domains(doms, i);
  5540. return NULL;
  5541. }
  5542. }
  5543. return doms;
  5544. }
  5545. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5546. {
  5547. unsigned int i;
  5548. for (i = 0; i < ndoms; i++)
  5549. free_cpumask_var(doms[i]);
  5550. kfree(doms);
  5551. }
  5552. /*
  5553. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5554. * For now this just excludes isolated cpus, but could be used to
  5555. * exclude other special cases in the future.
  5556. */
  5557. static int init_sched_domains(const struct cpumask *cpu_map)
  5558. {
  5559. int err;
  5560. arch_update_cpu_topology();
  5561. ndoms_cur = 1;
  5562. doms_cur = alloc_sched_domains(ndoms_cur);
  5563. if (!doms_cur)
  5564. doms_cur = &fallback_doms;
  5565. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5566. err = build_sched_domains(doms_cur[0], NULL);
  5567. register_sched_domain_sysctl();
  5568. return err;
  5569. }
  5570. /*
  5571. * Detach sched domains from a group of cpus specified in cpu_map
  5572. * These cpus will now be attached to the NULL domain
  5573. */
  5574. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5575. {
  5576. int i;
  5577. rcu_read_lock();
  5578. for_each_cpu(i, cpu_map)
  5579. cpu_attach_domain(NULL, &def_root_domain, i);
  5580. rcu_read_unlock();
  5581. }
  5582. /* handle null as "default" */
  5583. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5584. struct sched_domain_attr *new, int idx_new)
  5585. {
  5586. struct sched_domain_attr tmp;
  5587. /* fast path */
  5588. if (!new && !cur)
  5589. return 1;
  5590. tmp = SD_ATTR_INIT;
  5591. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5592. new ? (new + idx_new) : &tmp,
  5593. sizeof(struct sched_domain_attr));
  5594. }
  5595. /*
  5596. * Partition sched domains as specified by the 'ndoms_new'
  5597. * cpumasks in the array doms_new[] of cpumasks. This compares
  5598. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5599. * It destroys each deleted domain and builds each new domain.
  5600. *
  5601. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5602. * The masks don't intersect (don't overlap.) We should setup one
  5603. * sched domain for each mask. CPUs not in any of the cpumasks will
  5604. * not be load balanced. If the same cpumask appears both in the
  5605. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5606. * it as it is.
  5607. *
  5608. * The passed in 'doms_new' should be allocated using
  5609. * alloc_sched_domains. This routine takes ownership of it and will
  5610. * free_sched_domains it when done with it. If the caller failed the
  5611. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5612. * and partition_sched_domains() will fallback to the single partition
  5613. * 'fallback_doms', it also forces the domains to be rebuilt.
  5614. *
  5615. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5616. * ndoms_new == 0 is a special case for destroying existing domains,
  5617. * and it will not create the default domain.
  5618. *
  5619. * Call with hotplug lock held
  5620. */
  5621. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5622. struct sched_domain_attr *dattr_new)
  5623. {
  5624. int i, j, n;
  5625. int new_topology;
  5626. mutex_lock(&sched_domains_mutex);
  5627. /* always unregister in case we don't destroy any domains */
  5628. unregister_sched_domain_sysctl();
  5629. /* Let architecture update cpu core mappings. */
  5630. new_topology = arch_update_cpu_topology();
  5631. n = doms_new ? ndoms_new : 0;
  5632. /* Destroy deleted domains */
  5633. for (i = 0; i < ndoms_cur; i++) {
  5634. for (j = 0; j < n && !new_topology; j++) {
  5635. if (cpumask_equal(doms_cur[i], doms_new[j])
  5636. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5637. goto match1;
  5638. }
  5639. /* no match - a current sched domain not in new doms_new[] */
  5640. detach_destroy_domains(doms_cur[i]);
  5641. match1:
  5642. ;
  5643. }
  5644. n = ndoms_cur;
  5645. if (doms_new == NULL) {
  5646. n = 0;
  5647. doms_new = &fallback_doms;
  5648. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5649. WARN_ON_ONCE(dattr_new);
  5650. }
  5651. /* Build new domains */
  5652. for (i = 0; i < ndoms_new; i++) {
  5653. for (j = 0; j < n && !new_topology; j++) {
  5654. if (cpumask_equal(doms_new[i], doms_cur[j])
  5655. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5656. goto match2;
  5657. }
  5658. /* no match - add a new doms_new */
  5659. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5660. match2:
  5661. ;
  5662. }
  5663. /* Remember the new sched domains */
  5664. if (doms_cur != &fallback_doms)
  5665. free_sched_domains(doms_cur, ndoms_cur);
  5666. kfree(dattr_cur); /* kfree(NULL) is safe */
  5667. doms_cur = doms_new;
  5668. dattr_cur = dattr_new;
  5669. ndoms_cur = ndoms_new;
  5670. register_sched_domain_sysctl();
  5671. mutex_unlock(&sched_domains_mutex);
  5672. }
  5673. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5674. /*
  5675. * Update cpusets according to cpu_active mask. If cpusets are
  5676. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5677. * around partition_sched_domains().
  5678. *
  5679. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5680. * want to restore it back to its original state upon resume anyway.
  5681. */
  5682. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5683. void *hcpu)
  5684. {
  5685. switch (action) {
  5686. case CPU_ONLINE_FROZEN:
  5687. case CPU_DOWN_FAILED_FROZEN:
  5688. /*
  5689. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5690. * resume sequence. As long as this is not the last online
  5691. * operation in the resume sequence, just build a single sched
  5692. * domain, ignoring cpusets.
  5693. */
  5694. num_cpus_frozen--;
  5695. if (likely(num_cpus_frozen)) {
  5696. partition_sched_domains(1, NULL, NULL);
  5697. break;
  5698. }
  5699. /*
  5700. * This is the last CPU online operation. So fall through and
  5701. * restore the original sched domains by considering the
  5702. * cpuset configurations.
  5703. */
  5704. case CPU_ONLINE:
  5705. case CPU_DOWN_FAILED:
  5706. cpuset_update_active_cpus(true);
  5707. break;
  5708. default:
  5709. return NOTIFY_DONE;
  5710. }
  5711. return NOTIFY_OK;
  5712. }
  5713. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5714. void *hcpu)
  5715. {
  5716. switch (action) {
  5717. case CPU_DOWN_PREPARE:
  5718. cpuset_update_active_cpus(false);
  5719. break;
  5720. case CPU_DOWN_PREPARE_FROZEN:
  5721. num_cpus_frozen++;
  5722. partition_sched_domains(1, NULL, NULL);
  5723. break;
  5724. default:
  5725. return NOTIFY_DONE;
  5726. }
  5727. return NOTIFY_OK;
  5728. }
  5729. void __init sched_init_smp(void)
  5730. {
  5731. cpumask_var_t non_isolated_cpus;
  5732. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5733. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5734. sched_init_numa();
  5735. /*
  5736. * There's no userspace yet to cause hotplug operations; hence all the
  5737. * cpu masks are stable and all blatant races in the below code cannot
  5738. * happen.
  5739. */
  5740. mutex_lock(&sched_domains_mutex);
  5741. init_sched_domains(cpu_active_mask);
  5742. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5743. if (cpumask_empty(non_isolated_cpus))
  5744. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5745. mutex_unlock(&sched_domains_mutex);
  5746. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5747. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5748. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5749. init_hrtick();
  5750. /* Move init over to a non-isolated CPU */
  5751. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5752. BUG();
  5753. sched_init_granularity();
  5754. free_cpumask_var(non_isolated_cpus);
  5755. init_sched_rt_class();
  5756. init_sched_dl_class();
  5757. }
  5758. #else
  5759. void __init sched_init_smp(void)
  5760. {
  5761. sched_init_granularity();
  5762. }
  5763. #endif /* CONFIG_SMP */
  5764. const_debug unsigned int sysctl_timer_migration = 1;
  5765. int in_sched_functions(unsigned long addr)
  5766. {
  5767. return in_lock_functions(addr) ||
  5768. (addr >= (unsigned long)__sched_text_start
  5769. && addr < (unsigned long)__sched_text_end);
  5770. }
  5771. #ifdef CONFIG_CGROUP_SCHED
  5772. /*
  5773. * Default task group.
  5774. * Every task in system belongs to this group at bootup.
  5775. */
  5776. struct task_group root_task_group;
  5777. LIST_HEAD(task_groups);
  5778. #endif
  5779. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5780. void __init sched_init(void)
  5781. {
  5782. int i, j;
  5783. unsigned long alloc_size = 0, ptr;
  5784. #ifdef CONFIG_FAIR_GROUP_SCHED
  5785. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5786. #endif
  5787. #ifdef CONFIG_RT_GROUP_SCHED
  5788. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5789. #endif
  5790. #ifdef CONFIG_CPUMASK_OFFSTACK
  5791. alloc_size += num_possible_cpus() * cpumask_size();
  5792. #endif
  5793. if (alloc_size) {
  5794. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5795. #ifdef CONFIG_FAIR_GROUP_SCHED
  5796. root_task_group.se = (struct sched_entity **)ptr;
  5797. ptr += nr_cpu_ids * sizeof(void **);
  5798. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5799. ptr += nr_cpu_ids * sizeof(void **);
  5800. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5801. #ifdef CONFIG_RT_GROUP_SCHED
  5802. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5803. ptr += nr_cpu_ids * sizeof(void **);
  5804. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5805. ptr += nr_cpu_ids * sizeof(void **);
  5806. #endif /* CONFIG_RT_GROUP_SCHED */
  5807. #ifdef CONFIG_CPUMASK_OFFSTACK
  5808. for_each_possible_cpu(i) {
  5809. per_cpu(load_balance_mask, i) = (void *)ptr;
  5810. ptr += cpumask_size();
  5811. }
  5812. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5813. }
  5814. init_rt_bandwidth(&def_rt_bandwidth,
  5815. global_rt_period(), global_rt_runtime());
  5816. init_dl_bandwidth(&def_dl_bandwidth,
  5817. global_rt_period(), global_rt_runtime());
  5818. #ifdef CONFIG_SMP
  5819. init_defrootdomain();
  5820. #endif
  5821. #ifdef CONFIG_RT_GROUP_SCHED
  5822. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5823. global_rt_period(), global_rt_runtime());
  5824. #endif /* CONFIG_RT_GROUP_SCHED */
  5825. #ifdef CONFIG_CGROUP_SCHED
  5826. list_add(&root_task_group.list, &task_groups);
  5827. INIT_LIST_HEAD(&root_task_group.children);
  5828. INIT_LIST_HEAD(&root_task_group.siblings);
  5829. autogroup_init(&init_task);
  5830. #endif /* CONFIG_CGROUP_SCHED */
  5831. for_each_possible_cpu(i) {
  5832. struct rq *rq;
  5833. rq = cpu_rq(i);
  5834. raw_spin_lock_init(&rq->lock);
  5835. rq->nr_running = 0;
  5836. rq->calc_load_active = 0;
  5837. rq->calc_load_update = jiffies + LOAD_FREQ;
  5838. init_cfs_rq(&rq->cfs);
  5839. init_rt_rq(&rq->rt, rq);
  5840. init_dl_rq(&rq->dl, rq);
  5841. #ifdef CONFIG_FAIR_GROUP_SCHED
  5842. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5843. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5844. /*
  5845. * How much cpu bandwidth does root_task_group get?
  5846. *
  5847. * In case of task-groups formed thr' the cgroup filesystem, it
  5848. * gets 100% of the cpu resources in the system. This overall
  5849. * system cpu resource is divided among the tasks of
  5850. * root_task_group and its child task-groups in a fair manner,
  5851. * based on each entity's (task or task-group's) weight
  5852. * (se->load.weight).
  5853. *
  5854. * In other words, if root_task_group has 10 tasks of weight
  5855. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5856. * then A0's share of the cpu resource is:
  5857. *
  5858. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5859. *
  5860. * We achieve this by letting root_task_group's tasks sit
  5861. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5862. */
  5863. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5864. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5865. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5866. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5867. #ifdef CONFIG_RT_GROUP_SCHED
  5868. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5869. #endif
  5870. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5871. rq->cpu_load[j] = 0;
  5872. rq->last_load_update_tick = jiffies;
  5873. #ifdef CONFIG_SMP
  5874. rq->sd = NULL;
  5875. rq->rd = NULL;
  5876. rq->cpu_capacity = SCHED_POWER_SCALE;
  5877. rq->post_schedule = 0;
  5878. rq->active_balance = 0;
  5879. rq->next_balance = jiffies;
  5880. rq->push_cpu = 0;
  5881. rq->cpu = i;
  5882. rq->online = 0;
  5883. rq->idle_stamp = 0;
  5884. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5885. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5886. INIT_LIST_HEAD(&rq->cfs_tasks);
  5887. rq_attach_root(rq, &def_root_domain);
  5888. #ifdef CONFIG_NO_HZ_COMMON
  5889. rq->nohz_flags = 0;
  5890. #endif
  5891. #ifdef CONFIG_NO_HZ_FULL
  5892. rq->last_sched_tick = 0;
  5893. #endif
  5894. #endif
  5895. init_rq_hrtick(rq);
  5896. atomic_set(&rq->nr_iowait, 0);
  5897. }
  5898. set_load_weight(&init_task);
  5899. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5900. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5901. #endif
  5902. /*
  5903. * The boot idle thread does lazy MMU switching as well:
  5904. */
  5905. atomic_inc(&init_mm.mm_count);
  5906. enter_lazy_tlb(&init_mm, current);
  5907. /*
  5908. * Make us the idle thread. Technically, schedule() should not be
  5909. * called from this thread, however somewhere below it might be,
  5910. * but because we are the idle thread, we just pick up running again
  5911. * when this runqueue becomes "idle".
  5912. */
  5913. init_idle(current, smp_processor_id());
  5914. calc_load_update = jiffies + LOAD_FREQ;
  5915. /*
  5916. * During early bootup we pretend to be a normal task:
  5917. */
  5918. current->sched_class = &fair_sched_class;
  5919. #ifdef CONFIG_SMP
  5920. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5921. /* May be allocated at isolcpus cmdline parse time */
  5922. if (cpu_isolated_map == NULL)
  5923. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5924. idle_thread_set_boot_cpu();
  5925. set_cpu_rq_start_time();
  5926. #endif
  5927. init_sched_fair_class();
  5928. scheduler_running = 1;
  5929. }
  5930. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5931. static inline int preempt_count_equals(int preempt_offset)
  5932. {
  5933. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5934. return (nested == preempt_offset);
  5935. }
  5936. void __might_sleep(const char *file, int line, int preempt_offset)
  5937. {
  5938. static unsigned long prev_jiffy; /* ratelimiting */
  5939. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5940. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5941. !is_idle_task(current)) ||
  5942. system_state != SYSTEM_RUNNING || oops_in_progress)
  5943. return;
  5944. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5945. return;
  5946. prev_jiffy = jiffies;
  5947. printk(KERN_ERR
  5948. "BUG: sleeping function called from invalid context at %s:%d\n",
  5949. file, line);
  5950. printk(KERN_ERR
  5951. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5952. in_atomic(), irqs_disabled(),
  5953. current->pid, current->comm);
  5954. debug_show_held_locks(current);
  5955. if (irqs_disabled())
  5956. print_irqtrace_events(current);
  5957. #ifdef CONFIG_DEBUG_PREEMPT
  5958. if (!preempt_count_equals(preempt_offset)) {
  5959. pr_err("Preemption disabled at:");
  5960. print_ip_sym(current->preempt_disable_ip);
  5961. pr_cont("\n");
  5962. }
  5963. #endif
  5964. dump_stack();
  5965. }
  5966. EXPORT_SYMBOL(__might_sleep);
  5967. #endif
  5968. #ifdef CONFIG_MAGIC_SYSRQ
  5969. static void normalize_task(struct rq *rq, struct task_struct *p)
  5970. {
  5971. const struct sched_class *prev_class = p->sched_class;
  5972. struct sched_attr attr = {
  5973. .sched_policy = SCHED_NORMAL,
  5974. };
  5975. int old_prio = p->prio;
  5976. int on_rq;
  5977. on_rq = p->on_rq;
  5978. if (on_rq)
  5979. dequeue_task(rq, p, 0);
  5980. __setscheduler(rq, p, &attr);
  5981. if (on_rq) {
  5982. enqueue_task(rq, p, 0);
  5983. resched_task(rq->curr);
  5984. }
  5985. check_class_changed(rq, p, prev_class, old_prio);
  5986. }
  5987. void normalize_rt_tasks(void)
  5988. {
  5989. struct task_struct *g, *p;
  5990. unsigned long flags;
  5991. struct rq *rq;
  5992. read_lock_irqsave(&tasklist_lock, flags);
  5993. do_each_thread(g, p) {
  5994. /*
  5995. * Only normalize user tasks:
  5996. */
  5997. if (!p->mm)
  5998. continue;
  5999. p->se.exec_start = 0;
  6000. #ifdef CONFIG_SCHEDSTATS
  6001. p->se.statistics.wait_start = 0;
  6002. p->se.statistics.sleep_start = 0;
  6003. p->se.statistics.block_start = 0;
  6004. #endif
  6005. if (!dl_task(p) && !rt_task(p)) {
  6006. /*
  6007. * Renice negative nice level userspace
  6008. * tasks back to 0:
  6009. */
  6010. if (task_nice(p) < 0 && p->mm)
  6011. set_user_nice(p, 0);
  6012. continue;
  6013. }
  6014. raw_spin_lock(&p->pi_lock);
  6015. rq = __task_rq_lock(p);
  6016. normalize_task(rq, p);
  6017. __task_rq_unlock(rq);
  6018. raw_spin_unlock(&p->pi_lock);
  6019. } while_each_thread(g, p);
  6020. read_unlock_irqrestore(&tasklist_lock, flags);
  6021. }
  6022. #endif /* CONFIG_MAGIC_SYSRQ */
  6023. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6024. /*
  6025. * These functions are only useful for the IA64 MCA handling, or kdb.
  6026. *
  6027. * They can only be called when the whole system has been
  6028. * stopped - every CPU needs to be quiescent, and no scheduling
  6029. * activity can take place. Using them for anything else would
  6030. * be a serious bug, and as a result, they aren't even visible
  6031. * under any other configuration.
  6032. */
  6033. /**
  6034. * curr_task - return the current task for a given cpu.
  6035. * @cpu: the processor in question.
  6036. *
  6037. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6038. *
  6039. * Return: The current task for @cpu.
  6040. */
  6041. struct task_struct *curr_task(int cpu)
  6042. {
  6043. return cpu_curr(cpu);
  6044. }
  6045. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6046. #ifdef CONFIG_IA64
  6047. /**
  6048. * set_curr_task - set the current task for a given cpu.
  6049. * @cpu: the processor in question.
  6050. * @p: the task pointer to set.
  6051. *
  6052. * Description: This function must only be used when non-maskable interrupts
  6053. * are serviced on a separate stack. It allows the architecture to switch the
  6054. * notion of the current task on a cpu in a non-blocking manner. This function
  6055. * must be called with all CPU's synchronized, and interrupts disabled, the
  6056. * and caller must save the original value of the current task (see
  6057. * curr_task() above) and restore that value before reenabling interrupts and
  6058. * re-starting the system.
  6059. *
  6060. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6061. */
  6062. void set_curr_task(int cpu, struct task_struct *p)
  6063. {
  6064. cpu_curr(cpu) = p;
  6065. }
  6066. #endif
  6067. #ifdef CONFIG_CGROUP_SCHED
  6068. /* task_group_lock serializes the addition/removal of task groups */
  6069. static DEFINE_SPINLOCK(task_group_lock);
  6070. static void free_sched_group(struct task_group *tg)
  6071. {
  6072. free_fair_sched_group(tg);
  6073. free_rt_sched_group(tg);
  6074. autogroup_free(tg);
  6075. kfree(tg);
  6076. }
  6077. /* allocate runqueue etc for a new task group */
  6078. struct task_group *sched_create_group(struct task_group *parent)
  6079. {
  6080. struct task_group *tg;
  6081. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6082. if (!tg)
  6083. return ERR_PTR(-ENOMEM);
  6084. if (!alloc_fair_sched_group(tg, parent))
  6085. goto err;
  6086. if (!alloc_rt_sched_group(tg, parent))
  6087. goto err;
  6088. return tg;
  6089. err:
  6090. free_sched_group(tg);
  6091. return ERR_PTR(-ENOMEM);
  6092. }
  6093. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6094. {
  6095. unsigned long flags;
  6096. spin_lock_irqsave(&task_group_lock, flags);
  6097. list_add_rcu(&tg->list, &task_groups);
  6098. WARN_ON(!parent); /* root should already exist */
  6099. tg->parent = parent;
  6100. INIT_LIST_HEAD(&tg->children);
  6101. list_add_rcu(&tg->siblings, &parent->children);
  6102. spin_unlock_irqrestore(&task_group_lock, flags);
  6103. }
  6104. /* rcu callback to free various structures associated with a task group */
  6105. static void free_sched_group_rcu(struct rcu_head *rhp)
  6106. {
  6107. /* now it should be safe to free those cfs_rqs */
  6108. free_sched_group(container_of(rhp, struct task_group, rcu));
  6109. }
  6110. /* Destroy runqueue etc associated with a task group */
  6111. void sched_destroy_group(struct task_group *tg)
  6112. {
  6113. /* wait for possible concurrent references to cfs_rqs complete */
  6114. call_rcu(&tg->rcu, free_sched_group_rcu);
  6115. }
  6116. void sched_offline_group(struct task_group *tg)
  6117. {
  6118. unsigned long flags;
  6119. int i;
  6120. /* end participation in shares distribution */
  6121. for_each_possible_cpu(i)
  6122. unregister_fair_sched_group(tg, i);
  6123. spin_lock_irqsave(&task_group_lock, flags);
  6124. list_del_rcu(&tg->list);
  6125. list_del_rcu(&tg->siblings);
  6126. spin_unlock_irqrestore(&task_group_lock, flags);
  6127. }
  6128. /* change task's runqueue when it moves between groups.
  6129. * The caller of this function should have put the task in its new group
  6130. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6131. * reflect its new group.
  6132. */
  6133. void sched_move_task(struct task_struct *tsk)
  6134. {
  6135. struct task_group *tg;
  6136. int on_rq, running;
  6137. unsigned long flags;
  6138. struct rq *rq;
  6139. rq = task_rq_lock(tsk, &flags);
  6140. running = task_current(rq, tsk);
  6141. on_rq = tsk->on_rq;
  6142. if (on_rq)
  6143. dequeue_task(rq, tsk, 0);
  6144. if (unlikely(running))
  6145. tsk->sched_class->put_prev_task(rq, tsk);
  6146. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6147. lockdep_is_held(&tsk->sighand->siglock)),
  6148. struct task_group, css);
  6149. tg = autogroup_task_group(tsk, tg);
  6150. tsk->sched_task_group = tg;
  6151. #ifdef CONFIG_FAIR_GROUP_SCHED
  6152. if (tsk->sched_class->task_move_group)
  6153. tsk->sched_class->task_move_group(tsk, on_rq);
  6154. else
  6155. #endif
  6156. set_task_rq(tsk, task_cpu(tsk));
  6157. if (unlikely(running))
  6158. tsk->sched_class->set_curr_task(rq);
  6159. if (on_rq)
  6160. enqueue_task(rq, tsk, 0);
  6161. task_rq_unlock(rq, tsk, &flags);
  6162. }
  6163. #endif /* CONFIG_CGROUP_SCHED */
  6164. #ifdef CONFIG_RT_GROUP_SCHED
  6165. /*
  6166. * Ensure that the real time constraints are schedulable.
  6167. */
  6168. static DEFINE_MUTEX(rt_constraints_mutex);
  6169. /* Must be called with tasklist_lock held */
  6170. static inline int tg_has_rt_tasks(struct task_group *tg)
  6171. {
  6172. struct task_struct *g, *p;
  6173. do_each_thread(g, p) {
  6174. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6175. return 1;
  6176. } while_each_thread(g, p);
  6177. return 0;
  6178. }
  6179. struct rt_schedulable_data {
  6180. struct task_group *tg;
  6181. u64 rt_period;
  6182. u64 rt_runtime;
  6183. };
  6184. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6185. {
  6186. struct rt_schedulable_data *d = data;
  6187. struct task_group *child;
  6188. unsigned long total, sum = 0;
  6189. u64 period, runtime;
  6190. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6191. runtime = tg->rt_bandwidth.rt_runtime;
  6192. if (tg == d->tg) {
  6193. period = d->rt_period;
  6194. runtime = d->rt_runtime;
  6195. }
  6196. /*
  6197. * Cannot have more runtime than the period.
  6198. */
  6199. if (runtime > period && runtime != RUNTIME_INF)
  6200. return -EINVAL;
  6201. /*
  6202. * Ensure we don't starve existing RT tasks.
  6203. */
  6204. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6205. return -EBUSY;
  6206. total = to_ratio(period, runtime);
  6207. /*
  6208. * Nobody can have more than the global setting allows.
  6209. */
  6210. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6211. return -EINVAL;
  6212. /*
  6213. * The sum of our children's runtime should not exceed our own.
  6214. */
  6215. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6216. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6217. runtime = child->rt_bandwidth.rt_runtime;
  6218. if (child == d->tg) {
  6219. period = d->rt_period;
  6220. runtime = d->rt_runtime;
  6221. }
  6222. sum += to_ratio(period, runtime);
  6223. }
  6224. if (sum > total)
  6225. return -EINVAL;
  6226. return 0;
  6227. }
  6228. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6229. {
  6230. int ret;
  6231. struct rt_schedulable_data data = {
  6232. .tg = tg,
  6233. .rt_period = period,
  6234. .rt_runtime = runtime,
  6235. };
  6236. rcu_read_lock();
  6237. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6238. rcu_read_unlock();
  6239. return ret;
  6240. }
  6241. static int tg_set_rt_bandwidth(struct task_group *tg,
  6242. u64 rt_period, u64 rt_runtime)
  6243. {
  6244. int i, err = 0;
  6245. mutex_lock(&rt_constraints_mutex);
  6246. read_lock(&tasklist_lock);
  6247. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6248. if (err)
  6249. goto unlock;
  6250. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6251. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6252. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6253. for_each_possible_cpu(i) {
  6254. struct rt_rq *rt_rq = tg->rt_rq[i];
  6255. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6256. rt_rq->rt_runtime = rt_runtime;
  6257. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6258. }
  6259. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6260. unlock:
  6261. read_unlock(&tasklist_lock);
  6262. mutex_unlock(&rt_constraints_mutex);
  6263. return err;
  6264. }
  6265. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6266. {
  6267. u64 rt_runtime, rt_period;
  6268. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6269. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6270. if (rt_runtime_us < 0)
  6271. rt_runtime = RUNTIME_INF;
  6272. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6273. }
  6274. static long sched_group_rt_runtime(struct task_group *tg)
  6275. {
  6276. u64 rt_runtime_us;
  6277. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6278. return -1;
  6279. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6280. do_div(rt_runtime_us, NSEC_PER_USEC);
  6281. return rt_runtime_us;
  6282. }
  6283. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6284. {
  6285. u64 rt_runtime, rt_period;
  6286. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6287. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6288. if (rt_period == 0)
  6289. return -EINVAL;
  6290. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6291. }
  6292. static long sched_group_rt_period(struct task_group *tg)
  6293. {
  6294. u64 rt_period_us;
  6295. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6296. do_div(rt_period_us, NSEC_PER_USEC);
  6297. return rt_period_us;
  6298. }
  6299. #endif /* CONFIG_RT_GROUP_SCHED */
  6300. #ifdef CONFIG_RT_GROUP_SCHED
  6301. static int sched_rt_global_constraints(void)
  6302. {
  6303. int ret = 0;
  6304. mutex_lock(&rt_constraints_mutex);
  6305. read_lock(&tasklist_lock);
  6306. ret = __rt_schedulable(NULL, 0, 0);
  6307. read_unlock(&tasklist_lock);
  6308. mutex_unlock(&rt_constraints_mutex);
  6309. return ret;
  6310. }
  6311. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6312. {
  6313. /* Don't accept realtime tasks when there is no way for them to run */
  6314. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6315. return 0;
  6316. return 1;
  6317. }
  6318. #else /* !CONFIG_RT_GROUP_SCHED */
  6319. static int sched_rt_global_constraints(void)
  6320. {
  6321. unsigned long flags;
  6322. int i, ret = 0;
  6323. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6324. for_each_possible_cpu(i) {
  6325. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6326. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6327. rt_rq->rt_runtime = global_rt_runtime();
  6328. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6329. }
  6330. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6331. return ret;
  6332. }
  6333. #endif /* CONFIG_RT_GROUP_SCHED */
  6334. static int sched_dl_global_constraints(void)
  6335. {
  6336. u64 runtime = global_rt_runtime();
  6337. u64 period = global_rt_period();
  6338. u64 new_bw = to_ratio(period, runtime);
  6339. int cpu, ret = 0;
  6340. unsigned long flags;
  6341. /*
  6342. * Here we want to check the bandwidth not being set to some
  6343. * value smaller than the currently allocated bandwidth in
  6344. * any of the root_domains.
  6345. *
  6346. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6347. * cycling on root_domains... Discussion on different/better
  6348. * solutions is welcome!
  6349. */
  6350. for_each_possible_cpu(cpu) {
  6351. struct dl_bw *dl_b = dl_bw_of(cpu);
  6352. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6353. if (new_bw < dl_b->total_bw)
  6354. ret = -EBUSY;
  6355. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6356. if (ret)
  6357. break;
  6358. }
  6359. return ret;
  6360. }
  6361. static void sched_dl_do_global(void)
  6362. {
  6363. u64 new_bw = -1;
  6364. int cpu;
  6365. unsigned long flags;
  6366. def_dl_bandwidth.dl_period = global_rt_period();
  6367. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6368. if (global_rt_runtime() != RUNTIME_INF)
  6369. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6370. /*
  6371. * FIXME: As above...
  6372. */
  6373. for_each_possible_cpu(cpu) {
  6374. struct dl_bw *dl_b = dl_bw_of(cpu);
  6375. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6376. dl_b->bw = new_bw;
  6377. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6378. }
  6379. }
  6380. static int sched_rt_global_validate(void)
  6381. {
  6382. if (sysctl_sched_rt_period <= 0)
  6383. return -EINVAL;
  6384. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6385. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6386. return -EINVAL;
  6387. return 0;
  6388. }
  6389. static void sched_rt_do_global(void)
  6390. {
  6391. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6392. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6393. }
  6394. int sched_rt_handler(struct ctl_table *table, int write,
  6395. void __user *buffer, size_t *lenp,
  6396. loff_t *ppos)
  6397. {
  6398. int old_period, old_runtime;
  6399. static DEFINE_MUTEX(mutex);
  6400. int ret;
  6401. mutex_lock(&mutex);
  6402. old_period = sysctl_sched_rt_period;
  6403. old_runtime = sysctl_sched_rt_runtime;
  6404. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6405. if (!ret && write) {
  6406. ret = sched_rt_global_validate();
  6407. if (ret)
  6408. goto undo;
  6409. ret = sched_rt_global_constraints();
  6410. if (ret)
  6411. goto undo;
  6412. ret = sched_dl_global_constraints();
  6413. if (ret)
  6414. goto undo;
  6415. sched_rt_do_global();
  6416. sched_dl_do_global();
  6417. }
  6418. if (0) {
  6419. undo:
  6420. sysctl_sched_rt_period = old_period;
  6421. sysctl_sched_rt_runtime = old_runtime;
  6422. }
  6423. mutex_unlock(&mutex);
  6424. return ret;
  6425. }
  6426. int sched_rr_handler(struct ctl_table *table, int write,
  6427. void __user *buffer, size_t *lenp,
  6428. loff_t *ppos)
  6429. {
  6430. int ret;
  6431. static DEFINE_MUTEX(mutex);
  6432. mutex_lock(&mutex);
  6433. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6434. /* make sure that internally we keep jiffies */
  6435. /* also, writing zero resets timeslice to default */
  6436. if (!ret && write) {
  6437. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6438. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6439. }
  6440. mutex_unlock(&mutex);
  6441. return ret;
  6442. }
  6443. #ifdef CONFIG_CGROUP_SCHED
  6444. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6445. {
  6446. return css ? container_of(css, struct task_group, css) : NULL;
  6447. }
  6448. static struct cgroup_subsys_state *
  6449. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6450. {
  6451. struct task_group *parent = css_tg(parent_css);
  6452. struct task_group *tg;
  6453. if (!parent) {
  6454. /* This is early initialization for the top cgroup */
  6455. return &root_task_group.css;
  6456. }
  6457. tg = sched_create_group(parent);
  6458. if (IS_ERR(tg))
  6459. return ERR_PTR(-ENOMEM);
  6460. return &tg->css;
  6461. }
  6462. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6463. {
  6464. struct task_group *tg = css_tg(css);
  6465. struct task_group *parent = css_tg(css_parent(css));
  6466. if (parent)
  6467. sched_online_group(tg, parent);
  6468. return 0;
  6469. }
  6470. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6471. {
  6472. struct task_group *tg = css_tg(css);
  6473. sched_destroy_group(tg);
  6474. }
  6475. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6476. {
  6477. struct task_group *tg = css_tg(css);
  6478. sched_offline_group(tg);
  6479. }
  6480. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6481. struct cgroup_taskset *tset)
  6482. {
  6483. struct task_struct *task;
  6484. cgroup_taskset_for_each(task, tset) {
  6485. #ifdef CONFIG_RT_GROUP_SCHED
  6486. if (!sched_rt_can_attach(css_tg(css), task))
  6487. return -EINVAL;
  6488. #else
  6489. /* We don't support RT-tasks being in separate groups */
  6490. if (task->sched_class != &fair_sched_class)
  6491. return -EINVAL;
  6492. #endif
  6493. }
  6494. return 0;
  6495. }
  6496. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6497. struct cgroup_taskset *tset)
  6498. {
  6499. struct task_struct *task;
  6500. cgroup_taskset_for_each(task, tset)
  6501. sched_move_task(task);
  6502. }
  6503. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6504. struct cgroup_subsys_state *old_css,
  6505. struct task_struct *task)
  6506. {
  6507. /*
  6508. * cgroup_exit() is called in the copy_process() failure path.
  6509. * Ignore this case since the task hasn't ran yet, this avoids
  6510. * trying to poke a half freed task state from generic code.
  6511. */
  6512. if (!(task->flags & PF_EXITING))
  6513. return;
  6514. sched_move_task(task);
  6515. }
  6516. #ifdef CONFIG_FAIR_GROUP_SCHED
  6517. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6518. struct cftype *cftype, u64 shareval)
  6519. {
  6520. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6521. }
  6522. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6523. struct cftype *cft)
  6524. {
  6525. struct task_group *tg = css_tg(css);
  6526. return (u64) scale_load_down(tg->shares);
  6527. }
  6528. #ifdef CONFIG_CFS_BANDWIDTH
  6529. static DEFINE_MUTEX(cfs_constraints_mutex);
  6530. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6531. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6532. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6533. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6534. {
  6535. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6536. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6537. if (tg == &root_task_group)
  6538. return -EINVAL;
  6539. /*
  6540. * Ensure we have at some amount of bandwidth every period. This is
  6541. * to prevent reaching a state of large arrears when throttled via
  6542. * entity_tick() resulting in prolonged exit starvation.
  6543. */
  6544. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6545. return -EINVAL;
  6546. /*
  6547. * Likewise, bound things on the otherside by preventing insane quota
  6548. * periods. This also allows us to normalize in computing quota
  6549. * feasibility.
  6550. */
  6551. if (period > max_cfs_quota_period)
  6552. return -EINVAL;
  6553. mutex_lock(&cfs_constraints_mutex);
  6554. ret = __cfs_schedulable(tg, period, quota);
  6555. if (ret)
  6556. goto out_unlock;
  6557. runtime_enabled = quota != RUNTIME_INF;
  6558. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6559. /*
  6560. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6561. * before making related changes, and on->off must occur afterwards
  6562. */
  6563. if (runtime_enabled && !runtime_was_enabled)
  6564. cfs_bandwidth_usage_inc();
  6565. raw_spin_lock_irq(&cfs_b->lock);
  6566. cfs_b->period = ns_to_ktime(period);
  6567. cfs_b->quota = quota;
  6568. __refill_cfs_bandwidth_runtime(cfs_b);
  6569. /* restart the period timer (if active) to handle new period expiry */
  6570. if (runtime_enabled && cfs_b->timer_active) {
  6571. /* force a reprogram */
  6572. cfs_b->timer_active = 0;
  6573. __start_cfs_bandwidth(cfs_b);
  6574. }
  6575. raw_spin_unlock_irq(&cfs_b->lock);
  6576. for_each_possible_cpu(i) {
  6577. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6578. struct rq *rq = cfs_rq->rq;
  6579. raw_spin_lock_irq(&rq->lock);
  6580. cfs_rq->runtime_enabled = runtime_enabled;
  6581. cfs_rq->runtime_remaining = 0;
  6582. if (cfs_rq->throttled)
  6583. unthrottle_cfs_rq(cfs_rq);
  6584. raw_spin_unlock_irq(&rq->lock);
  6585. }
  6586. if (runtime_was_enabled && !runtime_enabled)
  6587. cfs_bandwidth_usage_dec();
  6588. out_unlock:
  6589. mutex_unlock(&cfs_constraints_mutex);
  6590. return ret;
  6591. }
  6592. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6593. {
  6594. u64 quota, period;
  6595. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6596. if (cfs_quota_us < 0)
  6597. quota = RUNTIME_INF;
  6598. else
  6599. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6600. return tg_set_cfs_bandwidth(tg, period, quota);
  6601. }
  6602. long tg_get_cfs_quota(struct task_group *tg)
  6603. {
  6604. u64 quota_us;
  6605. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6606. return -1;
  6607. quota_us = tg->cfs_bandwidth.quota;
  6608. do_div(quota_us, NSEC_PER_USEC);
  6609. return quota_us;
  6610. }
  6611. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6612. {
  6613. u64 quota, period;
  6614. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6615. quota = tg->cfs_bandwidth.quota;
  6616. return tg_set_cfs_bandwidth(tg, period, quota);
  6617. }
  6618. long tg_get_cfs_period(struct task_group *tg)
  6619. {
  6620. u64 cfs_period_us;
  6621. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6622. do_div(cfs_period_us, NSEC_PER_USEC);
  6623. return cfs_period_us;
  6624. }
  6625. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6626. struct cftype *cft)
  6627. {
  6628. return tg_get_cfs_quota(css_tg(css));
  6629. }
  6630. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6631. struct cftype *cftype, s64 cfs_quota_us)
  6632. {
  6633. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6634. }
  6635. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6636. struct cftype *cft)
  6637. {
  6638. return tg_get_cfs_period(css_tg(css));
  6639. }
  6640. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6641. struct cftype *cftype, u64 cfs_period_us)
  6642. {
  6643. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6644. }
  6645. struct cfs_schedulable_data {
  6646. struct task_group *tg;
  6647. u64 period, quota;
  6648. };
  6649. /*
  6650. * normalize group quota/period to be quota/max_period
  6651. * note: units are usecs
  6652. */
  6653. static u64 normalize_cfs_quota(struct task_group *tg,
  6654. struct cfs_schedulable_data *d)
  6655. {
  6656. u64 quota, period;
  6657. if (tg == d->tg) {
  6658. period = d->period;
  6659. quota = d->quota;
  6660. } else {
  6661. period = tg_get_cfs_period(tg);
  6662. quota = tg_get_cfs_quota(tg);
  6663. }
  6664. /* note: these should typically be equivalent */
  6665. if (quota == RUNTIME_INF || quota == -1)
  6666. return RUNTIME_INF;
  6667. return to_ratio(period, quota);
  6668. }
  6669. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6670. {
  6671. struct cfs_schedulable_data *d = data;
  6672. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6673. s64 quota = 0, parent_quota = -1;
  6674. if (!tg->parent) {
  6675. quota = RUNTIME_INF;
  6676. } else {
  6677. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6678. quota = normalize_cfs_quota(tg, d);
  6679. parent_quota = parent_b->hierarchal_quota;
  6680. /*
  6681. * ensure max(child_quota) <= parent_quota, inherit when no
  6682. * limit is set
  6683. */
  6684. if (quota == RUNTIME_INF)
  6685. quota = parent_quota;
  6686. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6687. return -EINVAL;
  6688. }
  6689. cfs_b->hierarchal_quota = quota;
  6690. return 0;
  6691. }
  6692. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6693. {
  6694. int ret;
  6695. struct cfs_schedulable_data data = {
  6696. .tg = tg,
  6697. .period = period,
  6698. .quota = quota,
  6699. };
  6700. if (quota != RUNTIME_INF) {
  6701. do_div(data.period, NSEC_PER_USEC);
  6702. do_div(data.quota, NSEC_PER_USEC);
  6703. }
  6704. rcu_read_lock();
  6705. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6706. rcu_read_unlock();
  6707. return ret;
  6708. }
  6709. static int cpu_stats_show(struct seq_file *sf, void *v)
  6710. {
  6711. struct task_group *tg = css_tg(seq_css(sf));
  6712. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6713. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6714. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6715. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6716. return 0;
  6717. }
  6718. #endif /* CONFIG_CFS_BANDWIDTH */
  6719. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6720. #ifdef CONFIG_RT_GROUP_SCHED
  6721. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6722. struct cftype *cft, s64 val)
  6723. {
  6724. return sched_group_set_rt_runtime(css_tg(css), val);
  6725. }
  6726. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6727. struct cftype *cft)
  6728. {
  6729. return sched_group_rt_runtime(css_tg(css));
  6730. }
  6731. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6732. struct cftype *cftype, u64 rt_period_us)
  6733. {
  6734. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6735. }
  6736. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6737. struct cftype *cft)
  6738. {
  6739. return sched_group_rt_period(css_tg(css));
  6740. }
  6741. #endif /* CONFIG_RT_GROUP_SCHED */
  6742. static struct cftype cpu_files[] = {
  6743. #ifdef CONFIG_FAIR_GROUP_SCHED
  6744. {
  6745. .name = "shares",
  6746. .read_u64 = cpu_shares_read_u64,
  6747. .write_u64 = cpu_shares_write_u64,
  6748. },
  6749. #endif
  6750. #ifdef CONFIG_CFS_BANDWIDTH
  6751. {
  6752. .name = "cfs_quota_us",
  6753. .read_s64 = cpu_cfs_quota_read_s64,
  6754. .write_s64 = cpu_cfs_quota_write_s64,
  6755. },
  6756. {
  6757. .name = "cfs_period_us",
  6758. .read_u64 = cpu_cfs_period_read_u64,
  6759. .write_u64 = cpu_cfs_period_write_u64,
  6760. },
  6761. {
  6762. .name = "stat",
  6763. .seq_show = cpu_stats_show,
  6764. },
  6765. #endif
  6766. #ifdef CONFIG_RT_GROUP_SCHED
  6767. {
  6768. .name = "rt_runtime_us",
  6769. .read_s64 = cpu_rt_runtime_read,
  6770. .write_s64 = cpu_rt_runtime_write,
  6771. },
  6772. {
  6773. .name = "rt_period_us",
  6774. .read_u64 = cpu_rt_period_read_uint,
  6775. .write_u64 = cpu_rt_period_write_uint,
  6776. },
  6777. #endif
  6778. { } /* terminate */
  6779. };
  6780. struct cgroup_subsys cpu_cgrp_subsys = {
  6781. .css_alloc = cpu_cgroup_css_alloc,
  6782. .css_free = cpu_cgroup_css_free,
  6783. .css_online = cpu_cgroup_css_online,
  6784. .css_offline = cpu_cgroup_css_offline,
  6785. .can_attach = cpu_cgroup_can_attach,
  6786. .attach = cpu_cgroup_attach,
  6787. .exit = cpu_cgroup_exit,
  6788. .base_cftypes = cpu_files,
  6789. .early_init = 1,
  6790. };
  6791. #endif /* CONFIG_CGROUP_SCHED */
  6792. void dump_cpu_task(int cpu)
  6793. {
  6794. pr_info("Task dump for CPU %d:\n", cpu);
  6795. sched_show_task(cpu_curr(cpu));
  6796. }